
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Chemistry Department Faculty Publication Series Chemistry

1986

Flow Injection Techniques for Extending the
Working Range of Atomic Absorption
Spectrometry and u.v.-Visible Spectrophotometry
Julian Tyson
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/chem_faculty_pubs

Part of the Chemistry Commons

This Article is brought to you for free and open access by the Chemistry at ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Chemistry Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Tyson, Julian, "Flow Injection Techniques for Extending the Working Range of Atomic Absorption Spectrometry and u.v.-Visible
Spectrophotometry" (1986). Analytica Chimica Acta. 1295.
Retrieved from https://scholarworks.umass.edu/chem_faculty_pubs/1295

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/77513726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/chem_faculty_pubs?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/chemistry?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/chem_faculty_pubs?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/chem_faculty_pubs/1295?utm_source=scholarworks.umass.edu%2Fchem_faculty_pubs%2F1295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


R. FLOW INJECTION TECHNIQUES FOR EXTENDING THE WORKING 
RANGE OF ATOMIC ABSORPTION SPECTROMETRY AND U.V.-VISIBLE 
SPECTROPHOTOMETRY

JULIAN F. TYSON 

Department of Chemistry, University of Technology, Loughborough, Leicestershire, 
LEI I 3TU (Great Britain) 

Nearly all of the chemical manipulations required for conventional 
u.v.­visible and atomic absorption spectrometries can be done by FIA 
techniques [Rl]. In general, these are simpler, safer, faster and cheaper than 
the con­ventional procedures. Most FIA applications concern solution u.v.-
visible spectrophotometry [ R2] though flow injection techniques have been 
applied to AAS [R3]. This section examines the ways in which flow injec­tion 
techniques can extend the working range of AAS and solution u.v.­visible 
spectrophotometry (SS). Any such development will also have potential for a 
calibration strategy. 

CONTROLLED DISPERSION 

The factors which control dispersion in FIA are well known, if not as yet 
well understood. Some of the controlling factors, such as the extent of 
coiling, the nature of the injection process, the number of discontinuities 
in the tubing, and the type of flow cell are either not variable in practical 
situations or are only capable of providing a limited range of dispersion or 
both. From a practical view-point, the volume injected, tube dimensions, 
flow rate and timing of selected operations are important, together with 
the appropriate manifold design. Most variable dispersion manifolds 
designed primarily to dilute the sample have been used for flame AAS. The 
preferred approach for SS appears to be the time-based measurements des-
cribed below. 

Volume injected. The volume injected is normally readily changed (by 
changing the external loop of the valve), but not readily varied from one 
injection to another. Large dispersions may be achieved; up to 100 ( disper­
sion being defined as the dilution factor of the injected material at the point 
of measurement) at the peak maximum [R4]. Thus, the working range is 
increased by the same factor at either end. It is possible to vary the volume 
reproducibly from one injection to another by controlled timing, either of 
the partial injection of the contents of a large loop, or of the aspiration of 



the sample in valveless 'controlled dispersion analysis' [R5] . Injection of a 
portion of the dispersed sample zone into another carrier stream (zone 
sampling) produces dispersions at the peak maximum of up to 130 [R6]. 
The timing of this second injection may also be controlled. 

Carrier tube dimensions. A range of values may be obtained by arranging 
a number of flow lines in parallel. The injected material is switched down 
the most appropriate line. When this technique, with dispersions at peak 
maxima values ranging from 2.52 to 14.9 [R7], is used a working range of 
1-40 µg rn1-1 can be expanded to 2.5-600 µg ml-1

• One of the problems is
that with fixed volume injection, a large dispersion means a large peak width.

Flow rate. This parameter does not provide a sufficient range of disper­
sions in a single line manifold, but may be used in conjunction with a merging 
stream configuration [R8]. The total flow rate will vary, which can cause 
problems with atomic absorption detectors. This can be offset by splitting 
the flow just prior to the detector. 

TIME-BASED MEASUREMENTS 

The factors which give rise to reproducible peak heights also provide 
reproducible peak shapes. Measurement alo"ng the rise or tail of the peak 
gives a variety of dispersions. In addition to the greater dilution, zones on 

the rise or tail usually have a greater reagent-to-sample ratio, which may be 
of benefit. Time-based methods also apply when the peak maximum is 'off 
scale'. 

Peak tail. Measurements on this part of the peak have been used to provide 
'electronic dilution' [R9]. This requires accurate and precise control over 
the delay period between injection and measurement. In conjunction with 
'stopped-flow', it provides a basis for adjusting the 'initial' conditions of 
kinetic methods [RIO]. 

Peak rise. Under normal FIA conditions, the peak rise is too fast to yield 
usable measurements. However, if it is spread out by the deliberate insertion 
of a gradient-forming device (such as a well-stirred mixing chamber), points 
on the rise curve can form the basis of a calibration technique [RU]. The 
time at which the mixing chamber effluent had the same absorbance as the 
sample is substituted into the known concentration/time equation. 

Peak width. This is the most widely used of the time-based methods. 
Although first introduced as a flow injection 'titration' technique [Rl2], 
the concept has wider applications and the more general term, 'peak width' 
is used here rather than 'variable-time kinetic method' [R13]. All peak 
width methods allow the conventional calibration range to be extended 
upwards for several orders of magnitude [R14, R15]. This aspect, strangely 
enough, is hardly ever mentioned. 

The situation where there is no reagent in the carrier stream applies to AAS 
and to the measurement of preformed coloured products. To derive a rela­
tionship between peak width and concentration, some assumptions have to 
be made about peak shape. So far, only exponential peak shapes have been 



considered, for which the peak width at any height is directly proportional 
to a simple logarithmic function of the concentration injected [Rl4]. 

When a reagent is present in the carrier stream, in either a single-line 
manifold or a merged reagent-stream manifold, the peak width will bear the 
same relationship to concentration as the situation above, provided that the 
reagent concentration does not fall below that equivalent to the sample 
concentration at any point on the dispersed profile. 

When the sample concentration exceeds this reagent concentration over a 
portion of the profile (this can always be achieved in a single-line manifold 
by injection of a large enough volume), there are points on the rise and tail 
at which the concentrations of sample and reagent are in their stoichiometric 
ratios. These are the 'equivalence points' of the flow injection 'titration'. An 
approxi�ate expression for the time between them has been derived for the 
single-line manifold [R12, Rl6] and the merging stream manifold [R12]. 
Again, this is a logarithmic function. The practical difficulties of locating the 
equivalence points have not been discussed in any detail and, despite the 
additional simplification introduced, good correlations are obtained between 
the width at any height and the logarithm of the concentration [Rl 7]. 

Double peaks. A new peak-width method has been proposed [R18] in 
which the separation between the double peaks produced when the reagent 
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Fig. Rl. Formation of double peaks in a single-line manifold. Curves a 1, a2, a,, a4 and b 1, 

b2, b3, b4 represent the physical dispersion of the sample and reagent respectively. Curves 
a1, b2, b3, a4, c 1, c2, c3 and d 1, d2, d3, represent the product, sample and reagent profiles 
when reaction occurs. It is assumed that the rate of the product-forming reaction is fast 
compared with the mixing process and that the thermodynamics ensure 'complete' reac­
tion across the profile. This ensures that the product concentration profile (which is 
what, in practice, is measured) is an accurate representation of the dispersed sample or 
reagent profile, depending on which is in excess. 

Fig. R2. Plot of peak separation against the logarithm of the injected sample concentra­
tion. The carrier stream was 1 X 10_., M 1,10-phenanthroline flowing at 2.5 ml min·1 

through a tube 35 cm long. The volume injected was 370 µl and the wavelength 508 nm. 
A least-squares linear regression gave: slope 3. 92, intercept 23.6, standard deviation of 
residuals 0.197 and correlation coefficient 0.998. 



'runs out' is related to the logarithm of the concentration. The basis of this 
is shown in Fig. Rl, and the results for the determination of iron(II) over 
the range 4 X 10-s to 1 X 10-2 M are given in Fig. R2. This method allows .the 
time values of the equivalence points readily to be located. The peak heights 
are also related to concentration and permit extension of the lower end of 
the calibration down to 4 X 10-6 M. 

CONCLUSION 

Flow injection methods have more to offer than being just a more con­
venient way of carrying out existing analytical methods. In addition to open­
ing up new reactions for analytical exploitation and a number of possibilities 
for manipulating sample and reagent concentrations, the availability of 
reproducible concentration gradients offers entirely new ways of obtaining 
analytical information. The challenge to analytical chemists is to discover 
them! 
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