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Abstract 

There has been increasing interest in complex coacervates for deriving and transporting 
biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liquid that results from the 
electrostatic complexation of oppositely-charged macro-ions. Coacervates have long been used as a 
strategy for encapsulation, particularly in food and personal care products. More recent efforts have 
focused on the utility of this class of materials for the encapsulation of small molecules, proteins, 
RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. 
Furthermore, coacervate-related materials have found utility as in other areas of biomedicine, 
including cartilage mimics, tissue culture scaffolds, and adhesives for wet, biological environments. 
Here, we discuss the self-assembly of complex coacervate-based materials, current challenges in the 
intelligent design of these materials, and their utility applications in the broad field of biomedicine. 

 

Introduction 

Complex coacervation is an associative, liquid-liquid phase separation phenomenon1-12 that is driven 
by an initial electrostatic attraction between oppositely charged macroions,1-5,13-19 followed by the 
entropic gains associated with the release of small, bound counter-ions and the restructuring of 
water molecules.1-3,13 The original work by Bungenberg de Jong focused on biomacromolecular 
systems of proteins and polysaccharides.20 Building on this foundational research, coacervates have 
found utility as encapsulants, additives, emulsifiers, and viscosity modifiers in food science and 
personal care products.21-26 The scope of coacervation has expanded from proteins and 
polysaccharides to include polynucleotides,7,8,27-30 synthetic polymers,31-37 surfactants,38-45 
nanoparticles,46,47 and other hierarchical assemblies.48-55 Furthermore, the utility of coacervates has 
extended into fields such as adhesives,9,56-70 drug delivery,4,7,8,16-19,28,32,34,71-84 nano/bio-reactors,31,33,85-

87 and cellular biology.7,88-105 

Much of the utility of coacervates, particularly in the areas of food science, personal care products, 
and medicine comes from the ability to generate formulations and drive encapsulation in the 
absence of organic solvents.3,4,73,106 Coacervation is typically performed directly from aqueous 
solutions of oppositely charged macro-ions, and is modulated via changes in ionic strength, pH, 
etc.1,6,29,55,72,74 The use of naturally-derived biomacromolecules can further facilitate the 
biocompatibility of the resulting coacervate-based materials,4,16,73,107,108 although a wide range of 
safe and highly effective synthetic polymers have also been demonstrated.4,73,109,110 Alternatively, 



materials with innate antimicrobial and/or antibacterial activity such as poly(L-lysine) or 
poly(ethyleneimine) can be taken advantage of for some applications to circumvent the need for 
additional active ingredients while avoiding the potential for developing antibiotic resistant 
bacteria.111-113 Moving beyond the mere use of biological materials, researchers have also drawn 
inspiration from biological processes such as DNA-histone binding,28 heparin-growth factor 
interactions,19,76-78,107,108,110 and intracellular protein-RNA granules.82,92,94,101,102 Similarly, coacervate-
based materials can be designed to respond to a variety of stimuli, including ionic strength, changes 
in pH, redox chemistries, temperature, light, etc. for use in sensing27,114-116 or drug delivery 
applications.74,106,117 This review is designed to provide an overview of complex coacervation, with an 
emphasis on the use of such materials for applications in the broad field of biomedicine. 

Complex Coacervate Phase Behavior: 
Coacervation typically results in the formation of a dispersion of macromolecule-rich (e.g., polymer, 
protein, etc.) coacervate droplets in equilibrium with a macromolecule-poor 
supernatant.1,2,4,14,80,109,118-123 In addition to the high concentrations of macromolecules, the 
coacervate phase also retains both water and salt.124 These droplets have the potential to coalesce 
over time (Figure 1) to form a bulk coacervate liquid.1,109,118,119,121,123 Such coalescence can also be 
accelerated via centrifugation.1,4,82,118,123,125 However, complexation between oppositely-charged 
polyelectrolytes can also result in the formation of solid precipitates and flocs. It should be noted the 
term “complex coacervation” has been widely applied to a large variety of materials in the literature, 
leading to significant ambiguity in the field.126,127 Clear use of terminology is also complicated by the 
fact that it is difficult to directly observe the liquid nature (or lack thereof) of the resulting material 
due to the size, scale of the preparation, or hierarchical nature of the resulting assembly. While the 
majority of the discussion here will focus on liquid, coacervate-based materials, we will touch briefly 
on other, related materials.   

In characterizing the self-assembly and formulation of coacervate-based materials, an understanding 
of coacervation phase behavior is critical. Phase behavior is one instance where differences between 
liquid coacervates and solid complexes is often observed, with solid materials tending to form 
kinetically-trapped, rather than equilibrium states. Below, we discuss the effect of various 
experimental parameters such as the stoichiometric charge ratio, pH, ionic strength, temperature, 
and the molecular-level details of the various macromolecules on coacervation. 

Characterization:  
Characterization of coacervation has commonly been performed using methods such as 
turbidimetry1,2,4,6,7,14,15,60 and/or light scattering16,17,29,35,111,117,128 that take advantage of the light 
scattered by the presence of coacervate droplets in solution. Turbidimetry, in particular, is amenable 
for high-throughput experiments designed to examine the effect of multiple variables such as charge 
stoichiometry, ionic strength, and pH on coacervate phase 
behavior.1,2,4,6,7,10,11,14,15,30,37,44,60,71,74,82,109,118,119,122-124,128-157 These types of measurements are typically 
paired with observations via optical microscopy1,2,62,131 to determine whether the observed phase 
separation is the result of liquid complex coacervation or the formation of a solid 
precipitate,11,125,128,131,140,155,158-161 as well as verifying the location of observed phase boundaries. 
Additionally, microscopic analysis of droplet coalescence can facilitate the determination of material 
properties such as viscosity and surface tension (Figure 1).91,98 In general, it is important to note that 



microscopy and turbidity-style measurements tend to provide only a qualitative, phenomenological 
mapping of coacervate phase behavior, rather than a quantitative analysis.  

 

Figure 1. (a) Phase separation of 100 mg/mL Z-Cat-C10, a catechol-containing zwitterionic surfactant inspired by mussel 
foot protein-5 (mfp-5) in 4-mm-diameter glass test tubes. The turbid dispersions of coacervate droplets (left) and the bulk-
separated phases showing the denser coalesced coacervate phase on the bottom (middle and right). The tilted tube (right) 
indicates the fluidity of both phases (right). (b) Cryo-TEM image of the interface between the dense coacervate phase 
(CoA) and the equilibrium solution (EqS). White arrows indicate same small aggregates found in both phases. (c) Optical 
micrographs showing the time course of the coalescence of coacervates composed of Z-Cat-C10. The 16 min, 4 s image 
shows coalescence of two droplets. Figure adapted with permission from Ref. [64] (Ahn, et al., Nature Commun, (2015), 6, 
8663.). 

Stoichiometry: 
The charge stoichiometry, or the ratio between the number of positive and negative charges present 
within a formulation, is one of the most critical parameters associated with complex 
coacervation.1,4,54,118-120,124,162 The ability of a mixture of materials to coacervate is directly related to 
the need to achieve electroneutrality within a given phase.1,128,138,155,156 For the simple example of 
two oppositely-charged polymers, where both polymers have the same number of charges, 
electroneutrality will be achieved at a 1:1 ratio of polycation to polyanion (or a mole fraction of 0.5 
for a particular species). Turbidity analysis, as in Figure 2, demonstrates that coacervation occurs in 
an extremely narrow range of stoichiometric compositions, centered around net neutrality. 
However, it is possible to broaden the observed range of compositions over which coacervation is 
observed through the addition of salt.1,14,121,122 Salt enables extrinsic charge compensation of the 
various polyelectrolytes (i.e., charge-charge pairing with a salt ion, rather than intrinsic charge 
compensation through an interaction with the oppositely-charged polyelectrolyte) and differential 
partitioning of salt vs. macro-ions between the coacervate and supernatant phases.6,163 



 

Figure 2. Turbidity plot as a function of mole fraction poly(allylamine hydrochloride) p(AH) at pH 6.5 were both (pAH) and 
poly(acrylic acid sodium chloride) (pAA) are fully charged (black circles) and pH 8.5 where pAH is only half charged (blue 
squares). Data are shown for no salt conditions (open symbols) and 100 mM NaCl (closed symbols). All samples were 
prepared at 1 mM total monomer concentration and complexes were prepared by adding pAA to solution containing pAH 
and the desired salt concentration. Figure adapted with permission from Ref. [1] (Perry et al., Polymers, (2014), 6, 1756-
1772.). 

While charge stoichiometry effects are relatively straightforward to predict for simple 
polyelectrolytes, where only a single type of charge group is present within a given macromolecule, 
intuition is much more challenging for complex molecules such as proteins, which contain both 
positive and negatively-charged groups. In these systems, the driving force for coacervation does not 
necessarily come from the overall charge of the macromolecules, but from specific charge patches 
on the protein surface. Thus, coacervation has been observed on the “wrong” side of the isoelectric 
point (pI, the point where a molecule carries no net charge) because of the dominance of local 
charge effects.10,39,125,143 

Effect of pH: 
While composition is one method for adjusting the charge stoichiometry of a system, pH is powerful 
strategy for modulating coacervation that can also be leveraged for responsive materials.4,18,56,106,164 
For weak (sometimes called annealed) polyelectrolytes, the fractional charge present on the 
macromolecule is a function of pH. Typical weak ionic groups include carboxylates and amines. The 
pH responsiveness of a single charged group can be defined by the pKa, or the negative log of the 
acid dissociation constant. By definition, when the pH of a solution is equal to that of the pKa, half of 
the molecules present will be charged, and half will be neutralized. It should be noted that similar 
definitions can be made on the basis of the base dissociation constant, pKb. However, the two terms 
are mathematically interchangeable using the relationship pKa + pKb ≈ 14, so for clarity we will only 
discuss pKa. Thus, for acidic groups such as carboxylates, the fraction of charged groups will increase 
at pH values above the pKa. However, for basic groups such as amines, the fraction of charged 
groups will increase at pH values below the pKa. At solution conditions two pH units away from the 
pKa, it is usually a reasonable approximation to assume that the ionic groups present are fully 
charged. 



While the definitions of charge fraction and pH-responsive behavior are relatively straightforward 
for small molecule ions, polyelectrolytes are more complicated to describe. The challenge in 
describing the effects of pH on a charged macromolecule lies in the fact that no single pKa value can 
be used to describe the entire molecule, and that the “apparent pKa” changes as a function of the 
number of charged groups. Thus, it is more accurate to discuss the degree of ionization (α) for a 
simple polyelectrolyte, although pKa values have been more commonly reported. A particular 
challenge in using pKa as a simplified method for describing the charge state of a polyelectrolyte is 
the fact that the degree of ionization can be a strong function of salt concentration, sometimes 
shifting the “apparent pKa” several pH units.165 

The effect of pH on the stoichiometry of complex coacervation can clearly be observed in Figure 2. 
For the system of poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), both 
of which are weak polyelectrolytes, pH = 6.5 represents a solution condition that is both two pH 
units away from the apparent pKa of both polyelectrolytes, and equidistant between the two 
apparent pKa values.1 Thus, it is reasonable to assume that both polymers are equally charged. This 
assumption is further confirmed by the sharp peak in turbidity observed at a 1:1 mole ratio (mole 
fraction pAH = 0.5). However, at a solution pH = 8.5, corresponding to the apparent pKa for pAH, the 
peak in turbidity shifts to a mole ratio of 2:1 pAH:pAA (mole fraction pAH = 0.67), as would be 
expected for conditions where the pAH is only half charged. Similar shifts in stoichiometry are also 
observed when multiple polyelectrolytes are present, with coacervation favoring conditions of net 
neutrality.118  

As mentioned above, predicting the coacervation behavior for complex polyelectrolytes, such as 
proteins that contain multiple charged species, is much more challenging. The isoelectric point (pI) is 
a common parameter used to describe the point at which a protein has no net charge. When the pH 
is below the pI, a protein carries a net positive charge, whereas it is net negative when the pH is 
above its pI. However, this type of general parameter is unable to describe the presence (or 
absence) of local charge patches, which may dominate the complexation interaction.10,39,125,143 Thus, 
understanding the effect of environmental pH on the formation or dissolution of protein-containing 
coacervates is a non-trivial undertaking. However, pH can be a powerful strategy in designing 
responsive materials for sensing and/or the triggered release of therapeutics.4,84,106,114,166 

Effect of Salt: 
Another environmental factor that heavily impacts the formation and dissociation of coacervates is 
the ionic strength.1,6,74,147,159,164 At low concentrations, the presence of salt can facilitate coacervation 
by modulating the strength of the electrostatic interactions between polyelectrolytes and enabling 
extrinsic charge compensation to allow for molecular rearrangement.1,6,163 In fact, a transition from 
solid precipitate to liquid coacervate has been observed as a function of salt for some systems.6,120,121 
However, at high enough ionic strength, the concentration of salt present in the system disfavors the 
entropic release of bound counterions, inhibiting coacervate formation. Turbidimetry allows for 
observation of these trends, though we caution against interpreting the details of such curves too 
finely, due to the qualitative limitations of turbidity measurements (Figure 3).1,109,118-122,167 

The most telling and accurate result from a turbidimetric salt experiment is identification of the 
critical salt concentration, or the point at which phase separation is no longer observed.1,118-122 To a 
first approximation, trends in the critical salt concentration scale directly with ionic strength; 



however, there are important secondary effects. As can be seen in Figures 3a and 3b, the divalent 
salts CaCl2 and Na2SO4 result in a dramatically lower critical salt concentration than monovalent 
NaCl. Interestingly, a much more significant decrease in the critical salt concentration was observed 
for the divalent cation Ca2+, than for the divalent anion SO4

2-. This difference was explained in several 
related ways, including differences in the “hardness” of the various ions, the free energies of 
hydration, and also the chaotropic and kosmotropic Hofmeister behavior of the ions.1,168-174 Similar, 
though more subtle behavior can also be observed upon examination of additional ions, such as a 
halide series of sodium salts (Figure 3c) or other ionic functionalities (Figure 3d). As with pH, the 
tunable dependence of coacervation on salt concentration can be harnessed to control the 
responsiveness of a material, including sensing, encapsulation, and release.74,147,159,164 

 

Figure 3. Plots of turbidity showing a comparison of (a) a series of mono and divalent salts. (b) A plot of turbidity vs. ionic 
strength for the salts shown in (a). Additional comparisons of a series of (c) a series of sodium halide salts and (d) other 
monovalent sodium salts. All samples were prepared at 1 mM total monomer concentration, 50/50 mol% pAA/pAH ratio at 
pH 6.5 and complexes were prepared by adding pAA to solution containing pAH and the desired salt concentration. Figure 
adapted with permission from Ref. [1] (Perry et al., Polymers, (2014), 6, 1756-1772.). 

Effect of Temperature: 
In general, coacervation between oppositely-charged polymers tends to show a relatively weak 
temperature dependence. For instance, isothermal titration calorimetry (ITC) studies of polypeptide-
based coacervates detected only small changes in both the enthalpy and entropy of coacervation as 
a function of temperature.123 It should be noted that there are a variety of examples where a 
stronger temperature effect has been reported; however, much of this temperature dependence 
correlates with the behavior of the individual molecules, such as proteins or surfactants, rather than 
the coacervation-driven self-assembly.10,11,175-178 



Thermodynamic Phase Diagrams: 
While the qualitative nature of turbidity and/or light scattering experiments typically provides only a 
phenomenological characterization of coacervation, quantitative parameters such as the critical salt 
concentration can be extracted from such data to map out thermodynamic phase behavior. One of 
the major limitations of turbidity-style measurements is inability to correlate phenomenological 
observations of coacervate formation with compositional information. However, at the critical salt 
concentration, where phase separation is no longer observed, one can reasonably take the 
composition of the very last miniscule droplet of coacervate phase to equal that of the overall 
sample – defining a single point on the binodal curve. It is unfortunate, however, that very few 
thermodynamic phase diagrams have been reported, despite the availability of a large body of work 
on the phenomenological characterization of coacervation in the literature. 

A schematic depiction of a series of binodal curves for a polymer-based coacervate system is shown 
in Figure 4. The location of the phase boundaries are indicated on a plot of salt concentration vs. 
polymer concentration, for a given stoichiometric composition, pH, temperature, etc. The two-phase 
region where coacervation is observed is located underneath the binodal curve, while the single-
phase region is located above the curve. Samples prepared at a composition falling within the two-
phase region will undergo coacervation and form a polymer-rich coacervate phase and a polymer-
poor supernatant phase, the equilibrium compositions of these two phases are defined by a tie-line. 
In Figure 4, the tie-line indicates that the concentration of salt in the supernatant is higher than that 
in the coacervate, as suggested by recent theoretical predictions for coacervate phase behavior,179 
however many studies use the simplifying assumption that the salt concentration is the same in the 
two phases.133,162 Parameters such as polymer chain length can increase the width of the two-phase 
region, to an asymptotic limit of infinite chain length. Polymers with a higher charge density will 
similarly increase with width of the two-phase region.162,179 Finally, the top-most point on the 
binodal curve, known as the critical point (where spinodal decomposition occurs), asymptotically 
approaches a finite limit in salt concentration at zero polymer concentration with increasing polymer 
chain length.179 Thus, for a given polymer system, there is an absolute limit on the range of ionic 
strengths over which coacervation can be observed. 

 

Figure 4. Schematic representation of a series of thermodynamic phase diagrams, or binodal curves, as a function of salt 
concentration and polymer concentration (for a given stoichiometry, solution pH, and temperature), defining the boundary 
between the two-phase region of coacervation (beneath the curve) and the single-phase solution region (above the curve). 
The critical point is indicated at the highest point of each curve. The dashed tie line defines the equilibrium concentration 
for a coexisting coacervate and supernatant phase. Increasing polymer chain length can drive an increase in the width of 
the two-phase region, as indicated by the arrow. Similar trends have been observed for increasing polymer charge density. 



Kinetically Trapped Materials and Precipitation 
As with the liquid-liquid phase separation that drives complex coacervation, variations in the charge 
stoichiometry, ionic strength, and pH of the solution can also have a significant impact on the 
formation of solid precipitates or flocs. Variations in these parameters can lead to transitions from a 
single solution phase to solid precipitates, liquid coacervates, and then back to a single 
phase.44,125,158,159,161 However, the solid nature of these materials means that it is challenging to 
access the lowest thermodynamic state, and thus solid materials often suffer from kinetic trapping 
that can alter their phase behavior, responsiveness, and material properties. One of the most 
commonly reported observations suggesting kinetic limitations in sample preparation for both 
precipitates and coacervates is a different response related to the order in which the various 
components of the mixture are added. While careful experimental design and equilibration time can 
help to minimize these effects in coacervates, because of their liquid nature, kinetic trapping is much 
more difficult to overcome for solid materials. 

Molecular Design: 
In addition to external solution variables, the molecular characteristics of the component materials 
also play important roles in defining the extent of coacervation and the resultant materials 
properties. 

Chirality: 
An intriguing variable affecting the coacervation of polypeptides is chirality. Naturally-occurring 
proteins are composed almost entirely of L amino acids. Thus, in attempting to use charged 
polypeptides such as poly(lysine) and poly(glutamate) as protein mimetic polymers, it would be 
reasonable to attempt complexation with enantio-pure polymers composed entirely of L amino 
acids. However, a recent study demonstrated that in order for complexation to result in liquid-liquid 
phase separation, it was necessary for at least one of the polypeptides to be composed of a racemic, 
or 50/50 mixture of D and L monomers (Figure 5a), otherwise a solid precipitate with strong β-sheet 
character results.14 These β-sheet precipitates could be disrupted and “melted” to form an apparent 
liquid coacervate with the addition of urea. The importance of hydrogen bonding was further 
highlighted through a comparison of the critical salt concentration for coacervates composed of a 
single racemic polypeptide and coacervates composed entirely of racemic polypeptides. A 
significantly higher critical salt concentration was observed when only a single racemic species was 
present, suggesting that hydrogen bonding could be used as an additional variable to control the 
salt-responsiveness of a coacervate-based material. 

 



Figure 5. (a) Bright-field optical micrographs showing the liquid coacervates or solid precipitates resulting from the 
stoichiometric electrostatic complexation of L, D, or racemic (D,L) poly(lysine) (single letter abbreviation K) with L, D or 
racemic (D,L) poly(glutamate) (single letter abbreviation E) at a total residue concentration of 6 and 100 mM NaCl, pH 7.0. 
Complexes are formed from pLK + pLE, pDK + pLE, p(D,L)K + pLE, pLK + pDE, pDK + pDE, p(D,L)K + pDE, pLK + p(D,L)E, pDK + 
p(D,L)E, p(D,L)K + p(D,L)E. Liquid coacervate droplets are only observed during complexation involving a racemic polymer. 
Scale bars are 25 µm. Figure adapted with permission from Ref. [14] (Perry et al., Nature Commun, (2015), 6, 6052.). (b) 
Secondary structure of each residue vs. time for various 1 µs MD simulations of 10-amino acid polypeptide pairs. “A” 
denotes simulations containing non-homochiral peptides of poly(glutamate) (PGlu, blue), with a specified number of 
continuous L amino acids in the center of the chain, in complex with a homochiral poly(L-lysine) (PLys, red). The structures 
of PLys and PGlu are shown at 0, 400, 700, and 1000 ns for each pair. Figure adapted from Ref. [13] (Hoffmann et al., Soft 
Matter, (2015), 11, 1525-1538.) with permission from The Royal Society of Chemistry. 

The molecular-level details describing this chirality-driven phenomenon were further elucidated 
through the use of molecular dynamics (MD) simulations.13,14,126 These 1 µs simulations, coupled 
with supporting Fourier transform infrared spectroscopy (FTIR) data confirmed that formation of β-
sheet structured precipitates was the result of backbone hydrogen bond formation between 
interacting pairs of oppositely-charged polypeptides. Hydrogen bonding between peptides 
eliminated sites for peptide-water hydrogen bonds, helping to expel water from the resulting 
complex. In contrast, the combination of D and L of amino acids present in a racemic polypeptide 
disrupted the ability of the system to form hydrogen bonds due to steric effects. 

One interesting feature of the MD results for the coacervate-forming system of poly(L-lysine) with 
poly(D,L-glutamate) was the appearance of transient areas of β-sheet structure. To answer the 
question of how many continuous amino acids of the same chirality were needed to stabilize the 
formation of a stable β-sheet structure, additional MD simulations were performed.13 The data, 
summarized in Figure 5b suggest that a stable β-sheet requires the presence of eight continuous 
amino acids of the same chirality. This result suggests the potential for using sequence control of 
amino acid chirality as a means for modulating the number of hydrogen bonding interactions 
present in a polypeptide-based material, and thus the resultant material properties. 

It should be noted that the potential for hydrogen bond-driven precipitation is only a concern for 
polypeptides or protein-based materials where stable secondary structure is not already present. 
Thus, for stable α-helical peptides or folded proteins, the internal hydrogen bonds associated with 
the secondary structure of the material are not accessible.2,4,16-18,71,73,74,147 However, these studies are 
interesting in the context of naturally-occurring liquid granules observed in cells, where the phase 
separation is commonly associated with interactions between RNA and intrinsically disordered 
proteins that lack any stable secondary structure. Thus, an open question in the field of polypeptide-
based coacervation is how the role of chemical sequence affects the ability of a particular system to 
undergo coacervation, as well as the resultant material properties.7,88-100,102-105 

Branching and Molecular Topology: 
Another architectural feature of both natural and synthetic polymers is the presence of branches, 
loops or other types of molecular topology. While reports on coacervation include variety of 
branched polymers, the majority of efforts have utilized naturally occurring polymers that are not 
well defined either chemically or physically.19,158,180-183 However, advances in polymer chemistry have 
enabled the synthesis of increasingly dense branched and brush polymer structures. These 
chemistries represent an intriguing opportunity to explore the steric limitations of electrostatic 
interactions.  



Looking beyond simple branching, recent work modeling the distribution of counterions on 
polyelectrolytes of different architectures has demonstrated the critical role of molecular 
topology.184 Extension of this work into the field of coacervation could provide some interesting 
results into the role of the entropic driving force of counter-ion release, and how this can be 
modulated by molecular design. 

Hierarchical Structure: 
Looking beyond molecular topology, hierarchically-structured coacervate-based materials have also 
been reported. While coacervation of homopolymers enables bulk phase separation (Figure 
6a),1,2,4,13,14 coupling a polyelectrolyte domain to a hydrophobic polymer block drives the formation 
of nanometer-scale micelles with a coacervate corona (Figure 6b).185 Alternatively, coupling the 
polyelectrolyte domain to a neutral, water-soluble polymer such as poly(ethylene glycol) (PEG) 
creates a molecular interface that drives microphase separation and the formation of coacervate-
core micelles (Figure 6c).49,50,52,53 Modulation of the length of the neutral and polyelectrolyte blocks 
has also been reported to lead to coacervate-core vesicles (Figure 6d).73,85,186 Extension of this 
strategy to a triblock copolymer system enables the formation of flower-like micelles under dilute 
conditions, or structured, hydrogel-like coacervate-based materials at higher concentrations, where 
the coacervate domains act as crosslinking points within the network (Figures 6e and 6f).48-51,55,187,188 
More complex coacervate-based geometries analogous to structures observed in traditional 
solvophobic block copolymers (i.e., bicontinuous, gyroid, etc.) should also be possible. 

 

Figure 6. Architectural schemes of various hierarchically-structured coacervate-based materials including (a) bulk 
coacervates, (b) coacervate-corona micelles, (c) coacervate-core micelles, (d) coacervate-core vesicles (also known as 
polyion complex vesicles, or PICsomes), and triblock copolymer coacervate hydrogels with both (e) spherical and (f) 
hexagonal coacervate geometries. 

While details of the various architectures have significant implications for the material properties 
and utility of the various coacervate-based materials, the effects of charge stoichiometry, pH, and 
ionic strength are consistent between bulk and micro-phase separated coacervate-based 
materials.35,37,38,48-51,132,148,151,185 Similarly, the observed trends relating to polypeptide chirality are 
transferrable to microphase-separated systems.14 However, the length-scales associated with the 



micro-phase separated nature of these materials makes direct confirmation of the liquid or solid 
nature of the resulting coacervate domains extremely challenging. Perhaps the best evidence for the 
“liquid” nature of such materials is related to the fast equilibration time and monodispersity of 
coacervate-core micelles, as compared with parallel micellar materials that would be expected to 
form more solid-like core structures.14,37,186,189,190 

It is important to note that the geometric constraints of microphase separation do impose additional 
considerations on the self-assembly of the system. As mentioned above, the balance between the 
length of the polyelectrolyte block and the neutral polymer block controls the geometry of the 
system (i.e., micelles34,37,38,132,148 vs. vesicles73,85,186). Furthermore, micellar systems typically contain a 
well-defined number of molecules, or a characteristic aggregation number. Research has also shown 
that for coacervate-core micelles, where both of the polyelectrolytes are present as block 
copolymers, the geometric constraints of the system enable chain-length recognition, such that 
complexation is only favorable between block copolymer of the same length charge block.132 

Applications: 
Complex coacervate-based materials have been used for a variety of applications across a range of 
disciplines, including nutraceutical and drug delivery platforms, sensors, biomimetic adhesives, and 
cartilage mimics. In the following sections, we survey the use of coacervate-based materials across 
the broad field of biomedicine. 

Encapsulation: 
One of the most significant areas for complex coacervation has been as a method for 
encapsulation.2,4,7,8,16-18,33,35,36,38,72,73,110,117,180,191 Coacervation-based encapsulation has been widely 
used in food science, medicine, sensing, and in the development of 
nanoreactors.19,27,57,59,77,107,108,110,114,115,192-199 Encapsulation can be achieved by utilizing the cargo 
material as part of the coacervate matrix,4,8,15,72,81,128,136,137,140,146,200-203 as a result of specific 
interactions,115 or by preferential partitioning.4,17,18,29,72,74,87 In all of these cases, two major 
advantages of coacervation are (i) the ability to perform encapsulation in a purely aqueous 
environment,3,4,73,106,190,204 and (ii) the potential for dramatically enriching the molecule of interest in 
the macromolecule-rich coacervate phase, as compared to the original solution. 

The encapsulation of proteins within a coacervate phase can represent a particular challenge due to 
the fact that not all proteins of interest are strongly charged. A strategy for overcoming this 
limitation was recently reported for the case of binary, protein-polyelectrolyte coacervates. In this 
work, the natural charge state of various proteins was supplemented through the use of conjugation 
chemistry to create artificially supercharged proteins using succinic anhydride.15 Furthermore, the 
authors were also able to elegantly demonstrate that the degree of supercharging necessary to 
effect coacervation (as defined by the ratio of the number of negative to positive charged groups, 
for subsequent coacervation with a polycation) is relatively low – on the order of 1.1 to 1.4 (Figure 
7a).  

Ternary systems of coacervates have also been reported as an effective strategy for encapsulating 
proteins.4,72 Rather than relying on the charge of the protein itself to drive coacervation, the use of a 
ternary system of proteins and polymers allows for the initial formation of an intermediate complex 
between the protein of interest and an oppositely-charged polyelectrolyte, the overall charge of 
which is dominated by the polyelectrolyte. Coacervation is then induced by the addition of a second 



polyelectrolyte, which interacts directly with the intermediate complex (Figure 7b).4 While a broad 
exploration of ternary composition space has not been performed, preliminary reports suggest a 
trade-off between encapsulation efficiency and total protein loading, as would be expected given 
the need to maintain charge neutrality in the coacervate phase. Further exploration of ternary 
composition space represents an exciting area for further investigations.  

 

Figure 7. (a) Plot of changes in turbidity as a function of the ratio of negative-to-positive residues on the protein. The grey 
shaded region corresponds to proteins that do not undergo phase separation. Figure adapted with permission from Ref. 
[15]. (Obermeyer et al., Soft Matter, (2016), 12, 3570-3581.) (b) Encapsulation of bovine serum albumin (BSA) into a 
coacervate. Positively-charged poly(L-lysine) (PLys) is added to the negatively-charged protein to form an intermediate 
complex. Negatively-charged poly(D,L-glutamate) (PGlu) is then added to form the complex coacervate. Figure adapted 
with permission from Ref. [4] (Black et al., ACS Macro Lett, (2014), 3, 1088-1091.). 

Upon encapsulation, it is critical to test whether the coacervation process adversely affected the 
guest molecules. This consideration is particularly important for proteins, as opposed to small 
molecules, and can be assayed using spectroscopic methods such as circular dichroism (CD) and 
FTIR, which are sensitive to the protein secondary structure. Fortunately, coacervation is a relatively 
gentle method for encapsulation that maintains proteins in an aqueous environment. Typical reports 
have shown minimal evidence for adverse effects of coacervation on protein structure.4,16,205  

Beyond the prospect of coacervation serving as a gentle method of encapsulating proteins, there is 
also significant potential for coacervation to enhance the stability of guest biomacromolecules. The 
dense, macromolecule-rich coacervate phase can provide entropic stabilization, based on crowding 
and excluded volume effects that disfavor protein unfolding and denaturation, as well as enthalpic 
stabilization based on interactions between the coacervate matrix and the guest molecules.2,4,7,31-

33,71,117,206-208 Such stabilization has also been shown to improve the thermal stability of proteins, and 
reduce their degradation over time.3,31 For example, an increase in the melting temperature and 
resistance to denaturation by urea was reported for trypsin upon incorporation into coacervates of 
cross-linked poly(ethylene glycol)-block-poly(α,β-aspartic acid) (PEG-PAA).31 This increase in the 
overall stability of the protein resulted in an improvement in the ability to store trypsin formulations 
over time – a key issue for therapeutics and other biomaterials during transportation and storage. 
Similar strategies have long been utilized for the delivery of DNA and RNA to cells to protect against 
nuclease degradation.80 

Delivery Platforms: 
Building on the strengths of complex coacervation for encapsulation, such materials have been 
commonly used as a platform for the delivery of nutraceuticals,194-196,198,199 drugs,34,77,209 
proteins,4,8,16-18,29,32,34,71-75 RNA,7,81,82 and DNA.28,34,79,80,210 The lack of organic solvents in coacervation 



has added benefits in the context of drug delivery, beyond those related to the gentle encapsulation 
of biomolecules. Biocompatibility is a critical design aspect for formulations intended for use in vivo, 
and a fully aqueous processing scheme eliminates the need for additional steps to eliminate even 
trace amounts of organic solvents. This biocompatibility can be further achieved through the use of 
naturally-derived biomacromolecules,4,16,73,107,108 although a wide range of safe and effective 
synthetic polymers have also been reported.4,73,109,110  

Drug delivery platforms typically address multiple challenges, including (i) protection and/or 
isolation of the cargo, (ii) enabling targeted delivery and uptake into the cells or tissues of interest, 
and (iii) controlled release of therapeutics over time. A variety of reports have demonstrated the 
efficacy of coacervation as the basis of a drug delivery platform, taking advantage of the flexible and 
modular capabilities of charge-driven self-assembly to address each of these challenges. 

The motivation driving cargo encapsulation is typically different for small molecule therapeutics 
compared to biomacromolecules.34,209,211 Small molecule drugs tend to suffer from poor solubility in 
water, thus requiring specialized encapsulation to facilitate delivery at therapeutically-relevant 
concentrations.43,212 While similar solubility obstacles can exist for proteins and other biomolecule-
based therapeutics, maintaining the stability of the sample and avoiding degradation from proteases 
and nucleases during delivery is typically a more significant challenge. A variety of reports have 
demonstrated the protective capacity of coacervate-based materials, including bulk 
coacervates,76,200-202 coacervate-core micelles,34,81 and coacervate-core vesicles (also known as 
polyion complex vesicles, or PICsomes).186 

From a delivery standpoint, bulk and hydrogel-like coacervate-based materials are typically the most 
useful in circumstances that allow for bolus-style delivery (i.e., direct application or injection of the 
material to the site of interest). For example, coacervate-based hydrogels composed of alginate and 
chitosan were shown to enhance the proliferation of cells in vitro while accelerating healing 
efficiency and wound closure in a rat model.213 In another series of reports, the cationic polymer 
poly(ethylene argininylaspartate diglyceride) (PEAD) was used in concert with the glycosaminoglycan 
heparin to form coacervate-based delivery vehicles that take advantage of the strong binding affinity 
between heparin and various growth factors to enable cargo encapsulation and protection. 
Applications included the use of heparin-binding epidermal growth factor-like growth factor (HB-
EGF) to accelerate wound healing,197 fibroblast growth factor-2 (FGF2) to enhance angiogenesis in 
both surface wounds and after myocardial infarction (Figure 8a),76,78 stromal cell-derived factor 
(SDF)-1a for vascular regeneration,108 bone morphogenetic protein-2 for stem cell differentiation 
and bone formation,214 nerve growth factor (NGF) for nerve regeneration,110 and the anti-
inflammatory cytokine interleukin-10 (IL-10).215  



 

Figure 8. (a) Comparison of H&E (scale bar is 1 mm) and α-actinin (scale bar is 50 µm) stained tissues for infarcted 
myocardium receiving treatments of saline, [PEAD:Heparin], free FGF2 and FGF2 coacervate. Application of the coacervate 
FGF2 formulation significantly reduced the infarct area, preventing ventricular dilation and preserving cardiac fibers, 
compared with the other treatment strategies. α-actinin stained tissues demonstrate enhanced preservation of 
cardiomyocites in the infarct zone for the FGF2 coacervate treatment. Figure adapted with permission from Ref. [78]. (Chu 
et al., Biomaterials, (2013), 34, 1747-1756.) (b) Adhesive complex coacervate adhesive analysis on skull surface (left) and 
CD68 immunoreactivity (green) associated with adhesive (red). Scale bars represent 500 µm. Figure adapted with 
permission from Ref. [57] (Winslow et al., Biomaterials, (2010), 31, 9373-9381.). 

The issue of cargo protection is often coupled with strategies to facilitate cellular uptake. For 
instance, the vast majority of non-viral strategies for gene delivery rely on electrostatic complex 
formation between the negatively-charged DNA or RNA and a positively-charged carrier polymer, 
surfactant, or lipid.216-219 Such complexation helps to protect against attack from nucleases.220,221 The 
positively-charged carrier materials also help to facilitate cellular uptake by masking the negative 
charge of the DNA or RNA222 and facilitating an attractive interaction with the negatively-charged 
cellular membrane.223 Reports of coacervate-based platforms for gene delivery include both bulk 
complexes200-203 and micellar38,81,220,221,224-226 systems for the delivery of plasmid DNA, microRNA,81 
and siRNA226 (small interfering RNA). Specific diseases targeted by these approaches include 
atherosclerosis81 and cancer.226  

While encapsulation can protect cargo molecules during administration, two critical aspects of 
targeted delivery are the need to direct the therapeutic to a specific area of interest, followed by 
triggered release. Targeted delivery can increase the efficiency of a therapeutic dose while 
decreasing the potential for adverse side effects resulting from systemic exposure. The modular 
nature of coacervation allows for the straightforward incorporation of specific targeting 
moieties.77,81,181 For instance, the efficacy of two different peptides incorporated onto the corona of 
coacervate-core micelles has been reported for the targeted delivery of microRNA to treat 
atherosclerosis.81 

The triggered release of therapeutic cargo can be achieved through a variety of means including 
changes in pH, ionic strength, or specific degradation events (i.e. proteolysis). The choice of release 
mechanism is often specific to a particular application. However, for many biomedical applications, 
changes in pH associated with cellular uptake via endocytosis can be used to trigger disassembly of 



the coacervate-based delivery vehicle. Alternatively, more stable interactions can be utilized for 
controlled release systems.16,19,76,77,106,107,110 

While the idea of targeted delivery is typically associated with medical applications, food scientists 
have recently begun to adapt older concepts where complex coacervation has been used to entrap 
flavors and oils for the delivery of proteins, nutraceuticals, and other water-soluble actives.194-196 Just 
as delivery platforms in biomedicine can be harnessed to facilitate uptake, materials design 
strategies are being utilized to enable more efficient absorption of nutrients, vitamins, and 
antioxidant molecules during digestion.198,199 Here, the design parameters are limited in terms of 
biocompatibility, the availability of bulk quantities of food-grade, cost, and the need to generate a 
delicious product. 

Bioinspired Adhesives: 
Just as aqueous processing enabled encapsulation and delivery applications, the aqueous liquid-
liquid phase separation aspect of complex coacervation has driven significant advances in the area of 
bioadhesives.9,56-70,227,228 Coacervate-based adhesives were first observed in natural systems, such as 
the sandcastle worm and mussels.58,62,64,65,229 The sandcastle worm builds a tube-like dwelling by 
mixing together oppositely charged proteins, forming a complex coacervate phase that it uses to 
glue together individual grains of sand.230 Similarly, mussels secrete a series of mussel foot proteins 
(mfp), which form the basis of a coacervate-based adhesive. The challenge in these living systems, as 
well as many biomedical applications is the need to create an effective adhesive that is capable of 
working in a wet environment. 

The two main challenges in developing an underwater adhesive are (i) avoiding dilution and (ii) 
accessing the surfaces of interest to establish an adhesive interaction. The use of coacervate-based 
materials circumvents the issue of dilution by taking advantage of the liquid-liquid phase separation 
to create a macromolecule-rich adhesive material. In the case of marine animals, it is also necessary 
for this coacervate to be stable at the ionic strength of seawater. Furthermore, coacervates typically 
have an extremely low surface tension with water (~1 mJ/m2).109,152 This low surface tension 
facilitates spreading of the coacervate phase on surfaces and penetration into tight cracks etc. 
However, to achieve adhesion, it is necessary to displace surface-bound water. A recent study 
inspired by the chemistry of mussel adhesives showed that neighboring lysine and catechol moieties 
(i.e., dopamine, DOPA) in these natural adhesives interacted synergistically to prime the surface for 
adhesion. The alkyl amine group from the lysine was able to penetrate the hydrated cation layer 
present on a mica surface, allowing the bidentate catechol group to form adhesive hydrogen 
bonds.231 The adhesive can then be cured by a subsequent pH change to form a load-bearing solid.65 

The main biomedical areas for such adhesives include bone,56,57 cartilage,232,233 and tissue 
repair,56,58,230,233-237 as well as implants.9 For example, coacervate-based adhesives composed of 
poly(acrylamide-co-aminopropyl methacrylamide)-poly(ethylene glycol diacrylate) and poly(2-
(methacryloyoxy)ethyl phosphate dopamine methacrylamide)-poly(ethylene glycol diacrylate) were 
used in vitro to seal an iatrogenic defect in a fetal membrane patch. The adhesives were able to 
function, as well as withstand traction and turbulence without leakage of fluid or slippage.59 
Cytotoxicity tests revealed the adhesive to be non-toxic and may help prevent iatrogenic preterm 
premature rupture of the membranes.59 In another example, craniofacial reconstruction via a non-
cytotoxic coacervate adhesive of gelatin and phosphodopamine in rats was conducted (Figure 8c).57 



The adhesive was used to attach a piece of circular bone in the skull and, after recovery from 
anaesthesia, were allowed to move freely. The adhesive was observed to effectively hold the bone in 
place despite free movement of the animals. Furthermore, as the adhesive material was resorbed by 
the body, it was replaced by new bone without affecting alignment.57 Though these and other 
examples have demonstrated the potential for coacervate-based adhesives, further in vivo testing 
and ultimately clinical experiments are still needed to fully validate their safety and efficacy.233 
However, one particular advantage of bio-inspired coacervate-based adhesives would be the 
potential for repairing tissue and bone without the need to remove the adhesive at a later time.  

Protocells and Membraneless Organelles: 
Historically, one particularly contentious topic surrounding complex coacervation was the potential 
for these phase-separated compartments to serve as a type of protocell that could form the basis for 
the evolution of life.7,30,238-245 This hypothesis, originally put forth by Oparin,156,240,245-248 has re-
emerged in the scientific literature though there are contentious discussions about the functional 
practicality of such membraneless compartments,88,91,95,249 particularly with respect to their ability to 
sequester materials such as RNA without exchange. However, such systems do allow for the 
formation of model protocell environments that allow for the testing of specific aspects of 
biogenesis. In a recent report, reversible compartmentalization was demonstrated as a result of 
coacervation between RNA and a cationic peptide (Figure 10a).7,82,250 This system represented a 
minimal synthetic model demonstrating the regulation of droplet formation based on changes in the 
peptide phosphorylation state using a kinase/phosphatase enzyme pair. 

Beyond the historical debate, phase-separated and coacervate-like materials have been increasingly 
discussed in the context of cellular compartmentalization. Improvements in microscopy and labelling 
strategies has led to the discovery of a tremendous range of membraneless cellular compartments 
that harness liquid-liquid phase separation to drive functionality. Such compartmentalization has 
been typically associated with interactions between intrinsically disordered proteins (IDPs) and 
oligonucleotides. The formation of stress granules has been observed as a mechanism for cells to 
arrest certain metabolic pathways while retaining the enzymatic machinery for later use.251 Granule 
formation has also been associated with loci of transcription93,98,252-254 and ribosome biogenesis, such 
as nucleoli (Figure 9a,b).127,253 Compartmentalization also enables passive noise filtration, which can 
further help to increase the predictability of transcriptional outputs.254  

In addition to the potential benefits of compartmentalization, aberrant phase transitions have also 
been correlated with disease states. FUS is a prion like IDP associated with the neurodegenerative 
disease ALS that has been shown to form liquid compartments as a result of stress and/or DNA 
damage. However, aging experiments demonstrated that mutations in FUS associated ALS resulted 
in an accelerated liquid-to-solid transition (Figure 9c).104 While it should be noted that complex 
coacervation is not the driving force behind the formation of all membraneless organelles,127 there is 
tremendous potential for parallel scientific exploration in the space between pure biology and pure 
materials science.  



 

Figure 9. (a) Differential interface contrast (DIC) and fluorescence micrographs of a HeLa cell expressing Ddx4YFP. Ddx4YFP 
forms dense, spherical organelles in the nucleus. Cells were stained with antibodies to visualize nucleoli, PML bodies, 
nuclear speckles, and Cajal bodies. Figure adapted with permission from Ref. [253]. (Nott et al., Mol. Cell, (2015), 57, 936-
947.) (b) Time-lapse imaging of a nuclear body assembly in transiently transfected HeLa cells expressing Nephrin 
intracellular domain (NCID). Scale bar represents 5 µm. Figure adapted with permission from Ref. [127]. (Pak et al., Mol. 
Cell, (2016), 63, 72-85.) (c) Representative images of the morphological changes in in vitro droplets of wild-type (WT) and 
G156E FUS during an “aging” experiment over 8 hr. Figure adapted with permission from Ref. [104]. (Patel et al., Cell, 
(2015), 162, 1066-1077).  

Nano / Bioreactors: 
The compartmentalization afforded by coacervation can also be harnessed to define micro- or 
nanoscale reaction chambers. Coacervate droplets and coacervate-core micelles have been used to 
entrap enzymes to create nanoreactors and potentially increase the reaction efficiency and/or 
operational stability of the encapsulated proteins (Figure 10b).31,33,85 In one example, a higher 
thermal tolerance was achieved for encapsulated trypsin, along with an increased reaction rate 
when compared to native trypsin.31 In another example, the encapsulation of such constructs have 
the potential to be used to enable enzyme replacement therapies. Alternatively, these reactors can 
selectively uptake nanoparticles (Figure 10b) or other small molecules (Figure 10c) to enable in situ 
chemical synthesis.85,87 For instance, nanoreactors containing poly(ethylene glycol)-b-poly(α,β-
aspartic acid) (PEG-b-PAsp) and homo-catiomer poly([5-aminopentyl]-α,β-aspartamide) (Homo-
PAsp-AP) were capable of activating prodrugs on location at tumor tissue sites.85  



 

Figure 10. (a) Schematic illustration of enzyme activities during the reversible reaction using lambda protein phosphate 
(LPP) enzyme and protein kinase A (PKA) with adenosine diphosphate (ADP), adenosine triphosphate (ATP) and EDTA 
resulting in the formation and dissolution of a coacervate phase. Figure adapted with permission from Ref. [82]. (Aumiller 
and Keating, Nat. Chem., (2015), 8, 129-137.) (b) UV-vis spectra demonstrating the encapsulation of CMDex-Fe3O4 (left), 
CMDex-Co3O4 (middle) and gold (right) nanoparticles in poly(lysine)-adenosine triphosphate (PLys-ATP) droplets with 
accompanying optical images of the magnetic CMDex-Fe3O4 nanoparticle system and a TEM micrograph of encapsulated 
gold nanoparticles. (c) Plots of the change in concentration of (top) 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 
(ABTS) and b-NADPH (bottom) as a function of time in both the presence (closed circles) and absence (open circles) of 
catalytic coacervate droplets. Figures adapted with permission from Ref. [30]. (Koga, Nat. Chem., (2011), 3, 720-724.) (d) 
UV-vis spectra (top) and plot of the time-dependent changes in the normalized peak intensities (bottom) for the selective 
catalytic degradation of methylene blue compared with rhodamine B dye as a result of selective uptake into coacervate 
microdroplets formed from titania nanosheets, poly(diallyldimethylammonium) chloride, and ATP. Figure adapted with 
permission from Ref. [87] (Lv et al., Chem. Commum., (2015), 51, 8600-8602.). 

Sensing: 
Coacervate-based materials have been harnessed for a variety of different sensing applications. The 
well-defined size and aggregation number of coacervate-core micelles has facilitated their use as 
fluorescent nano-probes for the characterization of diffusive behavior in fluorescence recovery after 
photobleaching (FRAP) studies.192,193 However, an important consideration in the development of 
such diffusional probes is the effect of environmental changes on the size and stability of the 
particle. One possibility for stabilizing such particles is through a cross-linking reaction, such as the 
amidation reaction that can occur at high temperatures between a carboxylate and an amine.  

The controlled incorporation of lanthanide(III) ions into coacervate-core micelles has been reported 
for use in various imaging techniques.115,116 Gadolinium(III) is commonly used as a contrast agent in 
magnetic resonance imaging (MRI), while other lanthanides such as europium(III) can be used as 
luminescent probes (Figure 11a-b).115 These types of multivalent metal ions can easily be 
incorporated into coacervate-based materials by taking advantage of electrostatic interactions. This 
ease of incorporation is significant because of recent trends favoring the development of multimodal 
probes, such as multiple lanthanide(III) species, to combine the high resolution of MRI and the 



sensitivity of optical imaging techniques. The ease of incorporating controlled quantities of multiple 
lanthanides into coacervate-based materials overcomes previous challenges associated with 
controlling the distribution of the various ions in other nanoparticle-based approaches. 

Polyelectrolyte complexes have also been used directly for detection. In one example, the 
photoluminescence of thiophene-containing conjugated polymers in complex with double stranded 
DNA was used to enable quantitative DNA detection.27 In a second example, a lamellar thin-film 
photonic gel was created using a poly(styrene-b-2-vinylpyridine) (PS-P2VP) block copolymer. The 
positively-charged P2VP layer allowed for the uptake of water and various proteins from solution, 
resulting in a change in the lamellar geometry that could be directly observed as a change in the 
reflected, or structural color of the film (Figure 11c-d). Differences in the size and pH-dependent 
charge of various proteins provided the basis for colorimetric fingerprinting and identification.114 

 

Figure 11. (a) Structure of the ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4) and the diblock 
copolymer poly(N-methyl-2-vinyl-pyridinium iodide)-b-poly(ethylene oxide) (P2MVP41-PEO205), along with a schematic 
representation of the formation of the corresponding Eu/Gd-complex coacervate-core micelles (C3Ms).(b) Luminescent 
emission intensity and nuclear magnetic resonance dispersion profiles of Eu/Gd-C3Ms at different Eu3+/Gd3+ ratios. Figure 
adapted with permission from Ref. [115]. (Wang et al., Chem. Commun., (2013), 49, 3736.) (c) Schematic of the lamellar 
poly(styrene-b-2-vinylpyridine) (PS-QP2VP) photonic gel and its two possible behaviors (swelling/ contraction) in protein 
solutions. (d) Photos of PS-QP2VP photonic gels after soaking in 1% protein solutions in 10 mM Tris buffer overnight. Scale 
bar is 1 mm. Reprinted with permission from Fan et al., (2014). Responsive Block Copolymer Photonics Triggered by 
Protein–Polyelectrolyte Coacervation. ACS Nano, 8(11), 11467–11473. Copyright 2014. American Chemical Society. Ref. 
[114]. 



Layer-by-Layer Films: 
Moving beyond the strict definition of coacervation, layer-by-layer (LbL) films are an analogous class 
of materials built on the concept of polyelectrolyte complexation. LbL films are assembled by the 
sequential deposition of oppositely-charged polyelectrolytes on a surface.255 While complex 
coacervation is an equilibrium phase separation, LbL films are a kinetically-trapped assembly. Such 
films can be formed onto a variety of surfaces, including bubbles and droplets to create capsules for 
delivery. LbL assembly can be used either as a method for creating a capsule, or as a layered 
structure that allows for the direct release of therapeutics upon disassembly. Careful design of the 
layered structures can enable both spatial and temporal control over the release of therapeutics. 
Alternatively, the materials of the films themselves could be harnessed as active coatings, such as 
antibacterial and/or antifouling surfaces.113 However, an in-depth discussion of LbL films is beyond 
the scope of this article. We refer the readers to several other recent review articles on the topic.256-

259 

Solid Polyelectrolyte Complexes: 
While LbL films can be formed as free-standing films, they are much more commonly presented as 
coatings. However, recent reports have demonstrated the utility of bulk polyelectrolyte complex 
solids as well. Unlike coacervates, polyelectrolyte complexes were historically considered 
intractable, as they were resistant to either solvent or thermal processing.6,260 Instead, the presence 
of both salt and water has been shown to enable plasticization of these “saloplastic” materials. The 
biocompatibility of these materials should follow based on the properties of the individual 
components, as with complex coacervates. Compacted saloplastic materials typically show extensive 
porosity and mechanical properties that make them attractive as materials for bioimplants such as 
cartilage mimics,261 or replacement materials for the nucleus pulposus in intervertebral disks,262 as 
well as tissue culture scaffolds, supports for biocatalysis, and drug delivery vehicles.260 However, 
thus far saloplastic materials have only been reported for synthetic polymer systems. Expanding this 
class of materials to include biopolyelectrolytes such as proteins, hyaluronic acid, chitosan, or 
chondroitin sulfate has tremendous potential to further enhance their utility. A more detailed 
discussion of these materials is beyond the scope of this article, and we refer readers to a recent 
review article on the subject.260 

Conclusion 

Complex coacervates have been gaining interest in various fields owing to their tunability, 
biocompatibility, and wide range of utility in medical applications and beyond. The strength of 
complex coacervates lies in their ability to encapsulate and stabilize a wide range of cargoes, 
including hydrophilic molecules. Furthermore, this encapsulation can be performed in a fully 
aqueous environment while taking advantage of a vast diversity of both natural and synthetic 
polyelectrolyte materials. This combination of factors favors coacervate-based materials in the 
development of delivery platforms, sensors, and other compartmentalized structures ranging from 
drug delivery to green catalysis. In fact, coacervate-based materials have progressed into Stage I 
clinical trials for the delivery of cisplatin to solid tumors.212 

However, widespread success of coacervate-based materials across diverse applications requires a 
strong foundational understanding of complex coacervate self-assembly. This is a particular 
challenge as the field looks to harness increasingly complex molecular systems. In addition to ionic 



strength and pH control, new efforts are focusing on understanding the effects of molecular 
topology, chemical sequence, orthogonal interactions such as hydrogen bonding, and more complex 
three-dimensional structures. Additional experimental and computational efforts are critical to 
continue the development of this field, and an emphasis must be placed on establishing a broad, 
molecular-level understanding of coacervation in general. While many experimental reports have 
taken advantage of naturally occurring biopolymers, it is critical to use well-defined model systems 
to understand the basic physical phenomena, and then determine how to translate these results to 
more realistic, less chemically or physically well-defined material systems. This level of predictive 
understanding would enable the intelligent design of a diverse array of materials and help to open 
up new and exciting avenues for exploration and development. 
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