University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service Activities

2017

Frost Cycling, Irrigation, and Heat Stress in Cranberry

Peter Jeranyama UMass Amherst, Cranberry Station, peterj@umass.edu

Casey Kennedy USDA ARS, Casey.Kennedy@ARS.USDA.GOV

Carolyn J. DeMoranville UMass Amherst, Cranberry Station, carolynd@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension Part of the <u>Agriculture Commons</u>

Recommended Citation

Jeranyama, Peter; Kennedy, Casey; and DeMoranville, Carolyn J., "Frost Cycling, Irrigation, and Heat Stress in Cranberry" (2017). *Cranberry Station Extension meetings*. 232. Retrieved from https://scholarworks.umass.edu/cranberry_extension/232

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Frost Cycling, Irrigation and Heat Stress in Cranberry

Peter Jeranyama, Casey Kennedy and Carolyn DeMoranville

Dead bud & No flowers

Odd flowers & no damage

No damage & umbrella bloom

Cranberry Yield (BBL/Ac) by Frost Protection Method

	Year 1		Year 2		Year 3	
Cultivar	CYC	CONV	CYC	CONV	CYC	CONV
EB	240a	150b	185a	165b	264a	242b
Stevens	307a	266a	468a	377b	246a	260a

Observations - Lampinen

- Most MA cranberry beds appear to be too wet during much of the season
- Evaporative demand study -for many weeks in the season, cranberries require less than 1-inch applied as irrigation/week.

Dr. H. J. Franklin Observations (1948)

Dr. H. J. Franklin of the Massachusetts Cranberry Station, observed that cranberry soils are **"too wet oftener than too dry"** (Franklin, 1948)

Irrigation Survey Questions-2015

- Do you use a tensiometer or sensor to schedule your irrigation?
 82% No; 18% Yes
- If you have a tensiometer, is it linked to your automation system?
 68% No; 32% Yes

Objectives

(i) To evaluate the effects of irrigation management on soil tension
(ii) Develop a relationship between soil tension and volumetric water content
(iii)Assess effect of soil tension on cranberry fruit rot and yield.

Volumetric Water Content in a Cranberry Bed on July 27, 2016

Volumetric Soil Moisture Variations on a Bog in Carver in August, 2016

Fruit Rot as affected by Water Regime

Typical Conditions for High-Temperature Scald

- Sunny and still days with high humidity
- Air temperatures >85°F.
- Condition is associated with a thick boundary layer of resistance
- This decreases the ability for the plant to cool the fruit.
- An 85°F air temperature is approx. 105°F on the bog

Mullica Queen Stevens

Berry Temperature on Sept-11-2016

Heat stress mechanisms

- Morphological changes
- Transpirational cooling

Mechanisms that help prevent cellular injury at high temp.

Heat Shock Proteins (HSP)

Refolded protein

HSP

Summary

- The grower practice of supplying 25 mm of water a week resulted in an average tension of <-2 kPa and VW of > 25%.
- 2. Fruit rot was reduced in beds managed using tensiometer as trigger for irrigation (~-5 kPa).
- 3. Fruit yield increased in all cultivars as beds were kept drier and optimum yields were obtained at tensions >-5 kPa.
- 4. Volumetric water sensors could be used in place of tensiometers within acceptable accuracy.

Acknowledgments

United States Department of Agriculture Natural Resources Conservation Service

