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ABSTRACT 

EVALUATING THE ROLE OF GLUTATHIONE IN DETOXIFICATION OF 

METAL-BASED NANOPARTICLES IN PLANTS 

SEPTEMBER 2016  

CHUANXIN MA, B. S., TIANJIN UNIVERSITY OF TECHNOLOGY, CHINA 

M. S., TIANJIN UNIVERSITY OF TECHNOLOGY, CHINA 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Om Parkash Dhankher and Professor Baoshan Xing 

The potential risks from metal-based nanoparticles (NPs) in the environment have 

increased with the rapidly rising demand for and use of nano-enabled consumer products. 

Plant’s central roles in ecosystem function and food chain integrity ensure intimate 

contact with water and soil systems, both of which are considered sinks for NPs 

accumulation. Thus, this dissertation describes three main objectives to comprehensively 

understand the interactions between plants and NPs and to characterize the role of 

glutathione (GSH) in detoxification of metal-based NPs in plants at physiological, 

biochemical, and molecular levels.  

(1) The effects of cerium oxide (CeO2) and indium oxide (In2O3) NPs exposure on 

Arabidopsis thaliana were investigated. In this study, we used the model plant “A. 

thaliana” to test the toxicity of two commonly used NPs, CeO2 and In2O3, in semisolid 

medium and hydroponic system. The results indicated that CeO2 NPs could induce 

oxidative stress in A. thaliana. The lipid peroxidation in terms of MDA contents and ROS 

production were very high in CeO2 and In2O3 treated plants. Activities of ROS 
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scavengers and stress related enzymes in CeO2 and In2O3 NPs treated A. thaliana were 

also higher than control plants. Relative expression of genes involved in stress response 

such as the sulfur assimilation and GSH metabolic pathway demonstrated that A. thaliana 

activated the defense mechanism to counteract nanotoxicity. 

(2) To explore whether the enhanced level of GSH could protect plants from silver (Ag) 

NPs toxicity, we used the engineered Crambe abyssinica (a member of rassicaseae) 

plants expressing the E. coli γ-glutamylecysteine synthase (γ-ECS) gene. Our results 

showed that transgenic lines, when exposed to Ag NPs and AgNO3 (Ag+ ions), were 

significantly more tolerant in terms of fresh biomass, total chlorophyll contents, 

transpiration rates. MDA contents were much lower than the wild type (WT) plants.  In 

addition, transgenic γ-ECS lines could accumulate 2-6 folds Ag in shoot and slightly 

lower or no difference in root relative to WT plant. These results indicate that GSH and 

related peptides protect plants from Ag nanotoxicity. 

(3) The third aim was to investigate the physiological effects of Ag NPs on soybean and 

to characterize the role of GSH in detoxification of Ag NPs and enhancement of nitrogen 

assimilation. Our results showed that the presences of Ag NPs could severely 

compromise the nitrogen fixation via symbiotic relationship in soybean. The total number 

of nodules and Rhizobium sp. growth in HM medium were inhibited upon exposure to Ag 

NPs. Elemental analysis indicated that Ag NPs mainly accumulated in the root system, 

and more than 50% Ag was in form of Ag-GSH, and the rest part remained in Ag NPs. 

The additions of GSH could notably counteract Ag nanotoxicity and enhance total N 

levels in soybean. Thus, plant might utilize GSH as a nitrogen source and might need 
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very less help from the symbiotic relationship with Rhizobium sp. to assimilate the N. 

The related work is currently underway to further investigate the role of GSH in metal 

detoxification and N enhancement.   
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

Nanotechnology has been thoroughly integrated into modern existence with impacted 

industries including manufacturing, biomedical applications, electronics, 

telecommunications, agriculture, and renewable energy. At present, nanoparticles of 

silver (Ag NPs), titanium oxide (TiO2 NPs), zinc oxide (ZnO NPs) and cerium oxide 

(CeO2 NPs) are the mostly widely used materials, being incorporated into products such 

as cosmetics, pharmaceuticals, electronic devices, herbicides, and food additive.1 

Approximately 3000 tons of TiO2 NPs were produced yearly 2 and more than 50% were 

used in personal care products such as sunscreens.3 ZnO NPs have uses similar to TiO2 

NPs, including application in sunscreens and paints.4 Cerium is the most widely used rare 

earth elements (REEs); CeO2 NPs possess useful and unique magnetic, catalytic and optic 

properties, and are mainly used in polishing technologies, fuel cells, cosmetic additives 

and industrial products.5 As examples, nanomaterials have been applied in medicine and 

biology, including as fluorescent biological labels, for drug and gene delivery and as 

probes of DNA structure.6, 7 Ag NPs were suggested as playing a role in the treatment of 

HIV 8 and ZnO NPs have been evaluated for tumor cell destruction and also to serve as a 

targeted delivery agent for drug treatment.9 

With the widespread use of consumer products that contain nanomaterials, 

concerns over the safety of nanotechnology have been increasing.10, 11 Although 

nanomaterials bring many benefits, the unique properties of these substances enable them 
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to more effectively penetrate in the cells and cause nanotoxicity to microorganisms, 

plants, and animals. Zhao et al. indicated that copper oxide nanoparticles (CuO NPs) 

could cause membrane damage to Escherichia coli as demonstrated by K+ leakage.12 

Zebrafish (Danio rerio) is a widely used organism to study toxicological effects of 

different kinds of nanoparticles. One recent study showed that as exposure days increased, 

the number of viable embryos was decreased significantly under TiO2 NPs exposure.13 

Yang et al. considered other environmental factors such as sunlight and dissolved organic 

matter, and observed that nanotoxicity of TiO2 NPs in the presence of humic acid (HA) 

was greatly enhanced without simulated sunlight compared to TiO2 NPs treatment only.14 

The cytotoxicity of cobalt (Co) and CuO NPs to human lung epithelial A549 cells were 

reported recently.15, 16 Both of these studies concluded that reactive oxygen species (ROS) 

were induced upon NPs penetration of A549 cells, causing subsequent irreversible DNA 

damage as demonstrated by the comet assay.  

Plants, being the dominant species, are critical to ecosystem function and food 

supply integrity. Based on the findings of recent laboratory studies, abiotic and oxidative 

stresses caused by nanoparticle exposure in plants were described at both physiological 

and biochemical levels.17, 18, 19, 20 A common finding from plant nanotoxicity studies is 

that excess amounts of ROS are produced upon NP (CuO NPs, Ag NPs, CeO2 NPs) 

exposure to terrestrial plant species such as wheat (Triticum aestivum L.), rice (Oryza 

sativa L.), onion (Allium cepa L.), corn (Zea mays).18, 21, 22, 23 ROS could induce damage 

of critical biological molecules such as lipids, proteins and DNA.24 For example, ZnO 

and CeO2 NPs caused increased chromosomal aberration indices and lipid peroxidation in 

A. cepa 25 and Arabidopsis thaliana 20, respectively. In order to understand gene 
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regulation in plants to NPs exposure, microarrays were used to analyze gene regulation in 

A. thaliana treated with ZnO and TiO2 NPs. Although both NPs disrupted gene regulation 

involved in response to abiotic stresses, genotoxicity was highly NP-specific, with ZnO 

NPs inducing a much greater molecular response than TiO2.
26 

Overall, it is clear that metal-based NPs can cause toxicity to biota in the 

environment. Regardless of the pathway of metal-based NPs released or discharged in the 

environment, their potential risks need to be fully characterized so as to avoid negative 

impact on environmental and human health. 

1.2 Distribution of Metal-based NPs in Higher Plants 

1.2.1 Bioaccumulation of Metal-based NPs in plants 

For understanding metal-based NPs interactions with terrestrial plants, it is critical to 

thoroughly characterize the particles distribution and fate within the individual tissues. 

However, due to differences in plant species, growth conditions such as soil matrix, 

temperature, humidity, light, and exposure periods, it is difficult to draw conclusions 

regarding the NPs uptake in plants. Thus, bioaccumulation factor (BAF), defined as 

[concentration of metal in plant shoot or root] / [exposure concentration in soil or 

water/hydroponic solution], was calculated to compare and analyze the differences of 

NPs uptake in higher plants. Investigations where separate root and shoot tissues were 

harvested from either in soil or hydroponic solution amended with NPs were selected to 

calculate tissue-specific BAFs. The BAF in shoots and roots exposed to different 

strengths of Hoagland’s solution amended with Ag NPs and CeO2 NPs are higher than 
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accumulation in plants grown in soil. In addition, uptake of metal-based NPs in plants is 

influenced by nanoparticle size, which was demonstrated in cucumber (Cucumis sativus) 

exposed to CeO2 NPs (7 and 25 nm) 27, as well as for annual ryegrass (Lolium 

multifolrum) exposed to Ag NPs (6 and 25 nm).28 Interestingly, ZnO NPs seem to behave 

differently with regard to exposure medium. The BAF in both roots and shoots of 

perennial ryegrass (Lolium perenne) 29 and velvet mesquite (Prosopis juliflora-velutina) 

30 are lower than that of edible crops (soybean, corn, wheat and green peas) grown in soil. 

31, 32, 33, 34 However, comparison across species is confounded by the fact that species-

specific mechanisms for metal-based NPs uptake and translocation may occur. Annual 

ryegrass 28 and perennial ryegrass 29 are related species that were used to conduct 

phytotoxicity of Ag NPs and ZnO NPs, respectively. The BAF of Ag NPs in annual 

ryegrass roots is 13-23, depending on nanoparticle size, which is much higher than the 

BAF of ZnO NPs in perennial ryegrass roots. Both soybean 32 and corn 23, 33 bio-

accumulated more ZnO NPs in both shoot and root parts than CeO2 NPs in the soil 

amended with these particles. In addition, the BAF in both shoot and root of Ag NPs 

treated soybean is significantly lower than the ones exposed to CeO2 NPs and ZnO 

NPs.32, 35 These studies showed that NPs enter the plant roots and accumulated in various 

tissues. However, to fully understand metal-based NPs behavior in plants, more studies 

are necessary to consider factors such as soil texture, medium strength, and exposure time 

that affect the NPs uptake and accumulation in plants. Since there is a lack of sufficient 

data to compare or summarize the uptake patterns of these NPs in plants, we will discuss 

their impacts from the perspective of nanotoxicity in the sections below.  
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1.2.2 Nanoparticle Distribution in Plants  

The impact of NPs exposure on plants depends on the effective transport, translocation 

and accumulation of NPs in plant tissues and organelles. Transmission electronic 

microscopy (TEM) is one of the most common and direct techniques to locate NPs in 

plant cells. When metal-based NPs are present either in medium or soil matrix, NPs may 

move through the symplastic or apopolastic region to penetrate the epidermis of roots, 

pass through cortex, and finally translocate and distributed to stems and leaves via the 

xylem and phloem. CeO2 NPs aggregates were confirmed in roots of corn grown in 

solution containing 200 mg/L CeO2 NPs and were mainly distributed through apoplastic 

route.36 A similar translocation pattern was evident for lanthanum oxide NPs (La2O3 NPs) 

in cucumber exposed to NPs amended distilled water.37 Fluorescent-labeled mesoporous 

silica nanoparticles (FLMSNPs) were used to observe how NPs transport in different 

plant species under hydroponic conditions. Evidence of FLMSNPs accumulation in the 

casparian strip and flow of fluorescent aggregates towards xylem vessels were observed 

in wheat roots after 5 days of NPs exposure. Similarly, FLMSNPs were present in the 

epidermis and endodermis of exposed lupin (Lupinus L.) roots.38 Additionally, transport 

data of superparamagnetic iron oxide NPs (SPIONs) in soybean and ZnO NPs in corn 

was reported to occur within xylem vessels.33, 39 However, other studies demonstrated 

that NPs transport might involve both xylem and phloem. Au NPs were found in both 

plasmodesma of the phloem complex and in xylem vessels within exposed woody poplar 

(Populus deltoids × nigra), indicating that both sieve tube elements (elongated cells in 

the phloem vessels) and xylem structures participated in NPs transport.40 In agriculture, 

NPs have been used as an additive in pesticide or herbicide formulations due to their 
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antimicrobial properties 41, 42 that are applied directly to plant leaves via foliar spray. 

Absorbed NPs from the foliar application could be redistributed to roots or other plant 

tissues via phloem vessels. Nanoparticles of both CeO2 and calcium oxide (CaO) were 

shown to translocate to roots via phloem tissues after foliar application to cucumber 

seedlings and groundnut (Arachis hypogaea), respectively.43, 44 By contrast, no CeO2 NPs 

were evident inside the hydroponically grown cucumber root cells upon exposure to 20 

mg/L CeO2 NPs for 7 days, indicating NPs could not effectively penetrate the root 

epidermis and likely only aggregated on the root surface.27 

Few studies have shown the localization and distribution of trace metal oxide 

nanoparticles, such as CuO NPs and TiO2 NPs inside plant cells.45, 46 Both leaves and 

roots of Elsholtzia splendens (a member of mint family Lamiaceae) exposed to CuO NPs 

had the particles located in the intercellular space or protoplast, as shown by TEM-

EDS.45 TiO2 NPs were mainly translocated into the vacuole and chloroplasts of plant 

cells in the roots and shoots of exposed wheat.46 Similarly, CuO NPs were shown to cross 

the epidermal cell walls of root of maize seedlings and were localized in the cytoplasm.47 

Faisal et al. used TEM to suggest that nickel oxide nanoparticles (NiO NPs) could either 

accumulate in the intercellular spaces of tomato roots or pass through parenchymal cell 

wall to eventually locate in the vacuole. However, confirmation of the presumed 

visualized NPs was not obtained.48 Although, the translocation and distribution of NPs of 

trace metal oxides is shown in the above-mentioned studies, the information regarding 

the translocation and distribution of REEs is not clear.49, 50   



7 
 

Micro X-ray fluorescence (μXRF) is another method to trace the distribution of 

metal elements by providing tri-colored elemental image maps of plant tissues. Upon NPs 

accumulation in plants, the X-ray absorption spectroscopy (XAS) can clearly show metal-

based NPs distribution and biotransformation. The μXRF and XAS analysis of elemental 

Zn from ZnO NPs exposed velvet mesquite was shown mainly in the root cortex, as well 

as in vascular tissue and mesophyll of leaves analyzed.30  Similarly, elemental Ce was 

found in the transport system of rice roots when treated with 500 mg/L CeO2 NPs for 10 

days by μXRF.51 NPs size can also influence the location of particles accumulation in 

plants. Ti from 14 nm TiO2 NPs tended to accumulate in the root parenchyma of both rice 

and rapeseed (Brassica napus), whereas, 25 nm NPs had Ti largely in the root vascular 

cylinder as analyzed by μXRF.52 Other studies have shown that the crystal phase of TiO2 

NPs influenced in planta accumulation of TiO2 in cucumber. For example, anatase-TiO2 

NPs was found predominantly in the xylem and cortex, while rutile-TiO2 NPs were 

accumulated in phloem of exposed cucumber as shown by both μXRF and XAS.53 

Not surprisingly, several groups have shown that the accumulation and 

translocation of metal-based NPs in plants is also species specific. Differential 

bioavailability of Au NPs to tobacco and wheat grown in Au NPs amended nutrient 

solution were reported through μXRF images. No Au was found to penetrate wheat root 

surfaces upon exposure to three different sizes of Au NPs coated with either citrate or 

tannate, but elemental Au was observed in tobacco leaves after treatment with 30 nm 

citrated coated Au NPs.54 Definitive evidence of TiO2 NPs and CeO2 NPs presence in the 

edible tissues of exposed cucumber and soybean were reported by both μXRF and XAS. 

55, 56 These studies clearly showed the accumulation of metal-based NPs within food 
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crops, including the edible tissues, can readily occur. Once NPs are in the food chain, 

transfer and accumulation within humans becomes a possibility. Consequently, the 

potential risks and implications of NPs to the food chain should become a topic of intense 

investigation.  

Although many studies have demonstrated the in planta NPs translocation, the 

mechanisms remain unclear. The plant cell wall has a unique structure, mainly composed 

of cellulose (40.6-51.2% of the cell wall material) and lignin (10-25% of the cell wall 

material), both of which can obviously influence the structure and permeability of the 

cell.57 The cell wall has ability to physically exclude certain large molecules.58 The 

typical pore size of the cell wall is 5-10 nm, which is large enough to allow small protein 

diffusion 59, but NPs in the environment may be excluded, especially if agglomeration as 

a function of pH, ionic strength and organic matter has occurred. However, some fraction 

of NPs will still likely be less than the 5-10 nm range and able to readily penetrate the 

cell wall. NPs exposure may cause ROS production or have other effects that may alter 

the cell wall structure. If large amounts of NPs are detected within plant cells by TEM 

and XAS, cell wall structure should be analyzed for such damage or alteration.60  Nano 

zerovalent iron (nZVI) induced OH- radicals that triggered cell wall loosening in 

Arabidopsis roots, further reducing cell wall thickness of the seedling.61 The authors 

indicated that this NPs induced ROS impact could be one of the most important reasons 

as a result of NPs accumulation inside of plants.  Additional investigations are needed to 

characterize the role of pore size change of cell walls in the accumulation and 

translocation of NPs in higher plants.  
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1.2.3 Biotransformation of metal-based NPs inside plants 

Previous studies have demonstrated that metal-based NPs can release ions into the 

substrate (medium or soil matrix).29, 62 As such, in experiments evaluating metal-based 

NPs and plants interactions, ion controls must be included in the design so as to 

appropriately assess the role of elemental particle size and dissolution in damages at both 

physiological and genotoxic levels in higher plants. In order to address this issue, XAS 

can be applied to evaluate potential in planta biotransformation of NPs. For example, X-

ray absorption near edge structure (XANES) analysis of alfalfa (Medicago sativa) 

exposed to tetrachloroaurate, Au (III), was shown to be converted to Au (0) in the range 

of 2-20 nm in both roots and shoots; a finding further confirmed by TEM and X-ray 

EDS.63 Several studies have used XAS to determine metal speciation in the exposed plant 

so as to illustrate the form or transition state played the dominant role in oxidative 

stresses induction. Soybean accumulated both 462 mg/kg Ce and 150 mg/kg Zn when 

exposed to 4000 mg/L of CeO2 and ZnO NPs, respectively. Interestingly, Ce (IV) was 

found in the plant tissues, similar to the form present in the original CeO2 NPs; however, 

no ZnO NPs were found, suggesting significant transformation. As such, this study 

demonstrates that nanotoxicity can be induced by either the NPs itself or from metal ions 

released from NPs.64 ZnO NPs can release relatively high amounts of Zn ions at pH 7.5 

(19%) 65, which may explain the lack of in planta detection of ZnO NPs in this study. 

Others have reported that CeO2 NPs accumulate in the roots of edible plants, including 

cucumber, alfalfa, tomato, corn and kidney bean (Phaseolus vulgaris).66, 67 Further, both 

Ce and Zn could accumulate in the pods of soybean in soil grown plants in the presences 

of CeO2 NPs and Zn-citrate, respectively. However, without ionic metal control, it was 
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not possible to assess the source and nature of the accumulated metals.55 Consistent 

results were reported for several REE NPs, including CeO2, Yb2O3 and La2O3 NPs; all 

were partially biotransformed to phosphate precipitates in cucumber, although the 

majority of the contaminant was still present as RRE NPs.68, 37, 50 Similarly, Zn-phosphate 

formed from Zn ions released from the NPs accumulated in wheat shoots; there was no 

ZnO NPs signal detected by XAS.18 By analyzing Zn speciation in the soil matrix, it was 

noted that ZnO NPs can transform into Zn ions rapidly; after 1 hr, there was no Zn 

detected in the NPs form.69 However, both CuO NPs and Cu-sulfide were detected in 

wheat shoots grown in 500 mg/kg CuO NPs amended sand.70 Similarly, Shi et al. 

reported that CuO NPs in Elsholtzia (Elsholtzia splendens) could be transformed to Cu-

Alginate, Cu-Oxalate and Cu-Cysteine.45 Whether Cu NPs or ions can be taken up first, 

with subsequent transformation to these compounds is not clear. Hence, more research is 

needed to provide clear evidence for the mechanisms and temporal/kinetic aspects of NPs 

transformation in plants. 

Although XANES could be helpful to better understand NPs behavior inside 

plants, the most essential issue is to understand the mechanisms of biotransformation of 

metal-based NPs, including in both the growth media and the plants.  Based on a 

summary of what is currently known, CeO2 NPs can be accumulated by many plant 

species but transformation appears to be limited. However, for plants exposed to ZnO 

NPs, the metal ions appear to be most abundant inside the exposed plants, which 

subsequently causes abiotic stress. The question remains open is on the precise means by 

which ZnO NPs transforms to the ions. We suggest two hypotheses: one is that ZnO NPs 

release metal ions in the substrates, which are then available for plant uptake, and ZnO 
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NPs do not enter the plant directly. Once in the plants, the ions may or may not be 

subsequently reduced to NP form. The second possibility is that ZnO NPs enter the plant 

directly by unknown means, with dissolution to ions happening subsequently via species-

specific processes inside plant. Either mechanism would explain the general lack of in 

planta detection of NPs.  

1.3 Phytotoxicity of NPs at physiological and morphological levels in plants 

1.3.1 Effects at Physiological levels 

Nanotoxicity of metal-based NPs to plants at the physiological level has been 

demonstrated by root length inhibition, biomass decrease, altered transpiration rate and 

plant developmental delays.17, 71, 72, 73, 74 Figure 1.1 describes potential oxidative damage 

in different organelles within plant cells through interactions with metal-based NPs. Once 

NPs enter plant tissues, the particles could disrupt the synthesis of chlorophyll in leaves. 

Chlorophyll content was significantly reduced in wheat exposed to 500 mg/kg CuO and 

ZnO NPs as compared to controls.18 Similar results were reported for ZnO NPs (0 to 500 

ppm) treated green peas, and Ag NPs (100 and 1000 ppm) treated tomatoes.34, 75 Ag NPs 

exposure only inhibited chlorophyll b content in rice 22. The chlorophyll content in 

soybean exposed to either 400 or 800 mg/kg CeO2 and ZnO NPs was not significantly 

different from control plants.76 In addition to negative effects on chlorophyll biosynthesis, 

other NPs such as Au, TiO2, and ZnO were shown to enhance the chlorophyll content in 

mustard (Brassica juncea), cucumber and cluster bean (Cyamopsis tetragonoloba L.), 

respectively. 56, 77, 78 
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Lipid peroxidation is another important parameter that is indicative of cell 

membrane integrity. ROS generation is known to be a primary factor that results in cell 

membrane damage through lipid peroxidation, leading to ion leakage and potential cell 

death. Both CuO and ZnO NPs at 500 mg/kg induced lipid peroxidation in sand grown 

wheat 18, although the ion leakage was not assessed in this study. Another study on corn 

exposed to CeO2 NPs indicated that lipid peroxidation directly led to ion leakage.23 

Conversely, Rico et al. reported no elevation of lipid peroxidation in rice treated with 

CeO2 NPs (0-500 mg/L), but ion leakage was observed at the higher exposure 

concentrations.79 

Another impact of interest from metal-based NPs exposure involves nutrient 

transport and assimilation in plants. Several reports suggest this possibility, and if 

widespread, in planta nutrient cycling disruption could be more deleterious to plants than 

ROS-related effects. CeO2 NPs were shown to significantly diminish N2 fixation in the 

nodules of soybean, which subsequently lead to reduced plant growth from N 

deficiency.32 ZnO NPs had no such impacts on N2 fixation in the same study. Specific 

nutrients, such as phosphorus (P), could bind to the surface of CeO2 NPs, which can 

significantly lower elemental bioavailability and cause nutrient deprivation in plants.80 

Conversely, TiO2 NPs at 500 mg/L was shown to significantly enhance P and K 

availability in cucumber fruit.56 Another study related to Au NPs in Arabidopsis showed 

evidence of down regulation of genes involved in metal transporters (such as Zn, Na, Ca, 

Cu, Fe and Mn) and aquaporins (integral membrane pore proteins). This down regulation 

of cation transporters may be a defense mechanism that inhibits Au uptake and further 

alleviate phytotoxicity.81 Although there is indirect evidence that NPs could disrupt ion-
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selective channels, analysis of the regulation of genes involved in nutrient transport as a 

function of exposure may shed light on both the positive and negative impacts of NPs on 

plant growth. 

1.3.2 Effects at Morphological level 

Morphological changes in plants, especially in roots, have been observed with NPs 

exposure. In the roots of L. multiflorum exposed to 40 mg/L Ag NPs, highly vacuolated 

cortical cells and a damaged root cap were observed by light microscopy.28 REE NPs 

such as Yb2O3 were also shown to cause severe cellular morphological changes in the 

meristem and root cap of exposed cucumber.68 Interestingly, a tunneling-like effect was 

reported in root tip cells of maize treated with 1000 μg/mL ZnO NPs, which could cause 

cellular disintegration.19 Since the literature on morphological changes in plant roots is 

not extensive, it is unclear whether the impacts on plants are dependent on metal-based 

NPs or plant species or both. Also, a better understanding of whether these morphological 

changes such as the formation of highly vacuolated cortical cells are the means of defense 

against abiotic/oxidative stress caused by NPs exposure is needed, as this organelle is 

known as a primary storage site for toxic substances. 

1.4 Metal-Based NPs Induce DNA Damage in Higher Plants 

Although a number of studies have demonstrated that metal-based NPs can cause 

oxidative stress through ROS production, far less is known about the potential for DNA 

damage upon particle exposure.  Atha et al. investigated the genotoxic effects of CuO 

NPs exposure on three terrestrial plants.82 In this study, the levels of three oxidatively 
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modified bases: 7,8-dihydro-8-oxoguanine (8-OH-Gua), 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde), 

which can cause G-T, A-C and A-T transversion, respectively, were measured by GC/MS 

in radish (Raphanus sativus) and perennial ryegrass after exposure to different 

concentrations of CuO NPs (10-1000 mg/L). The amount of all three compounds, 

expressed as lesions/106 DNA bases, were significantly increased as CuO NP exposure 

increased.  The Comet assay is another common procedure to determine DNA damage in 

plants. TiO2 NPs induced DNA damage in A. cepa when exposed to 4 mM TiO2 NPs for 

3 hours. After 24 hours, % tail DNA in 2 mM TiO2 NPs treated A. cepa was almost three 

times higher than control group.83 DNA damage was also noted in tomato and A. cepa 

exposed to NiO NPs and Ag NPs, respectively.21, 48 

An analysis of the mitotic index (MI), chromosomal aberrations (CA) and 

micronuclei induction (MN) also provide evidence for the genotoxicity of NPs in plants. 

A dose-dependent relationship between MI and exposure concentration of Ag NPs and 

ZnO NPs was observed in the root tips of broad bean (Vicia faba) and A. cepa, 

respectively.25, 84 A similar dose-dependent response of MI/CA was found in TiO2 NPs 

treated Vicia narboensis L., maize 85, and A. cepa exposed to Ag NPs.21 The random 

amplified polymorphic DNA assay (RAPD) is another method that has been used to 

assess DNA damage and stability in plants treated with different metal-based NPs. 

Lopez-Moreno et al.  exposed soybean to ZnO NPs and CeO2 NPs, nanoceria was found 

to cause DNA instability/alteration at both 2000 and 4000 mg/L.64 Although DNA 

damage induced by metal-based NPs in plants has been documented, the mechanism of 

that damage, it’s severity relative to plant health, and whether plants can recover from 
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that DNA damage need further investigations.  In addition, to further understand 

molecular and biochemical responses of plant to metal-based NPs, it is necessary to study 

the global response of plants at transcriptome, proteome and metablome levels in plants.86 

1.5 Production of excessive ROS in response to metal-based NPs toxicity 

Under the non-stressed environmental conditions, reactive oxygen species (ROS) can be 

byproducts of normal metabolic pathways localized in organelles such as chloroplasts, 

mitochondrion and peroxisomes.87 These ROS are balanced or removed by specific 

housekeeping antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) 

or ascorbic peroxidase (APX), whose activity helps to avoid oxidative damages in 

plants.88 However, abiotic stresses (e.g., salt, high or low temperature and heavy metals) 

can generate excessive amounts of ROS, which can cause severe oxidative damage to 

plant biomolecules through electron transfer.89 There are four important types of ROS, 

including singlet oxygen (1O2), superoxide (O2
-), hydrogen peroxide (H2O2) and 

hydroxyl radical (HO).90 In order to lower the toxicity of ROS to plants, specific 

defensive antioxidant enzymes such as SOD, can convert highly toxic ROS (O2
-) to less 

toxic species (H2O2). However, H2O2 can initiate the Fenton reaction, which is catalyzed 

by metal ions (Fe2+, Cu2+), and generate HO, highly reactive ROS (hROS), which cannot 

be detoxified by any known enzymatic system.  In plants, this hROS has the ability to 

induce adverse and irreversible damage on biomolecules such as lipids, DNA, and 

proteins.90, 91 So far, there are no reports on HO determination in plants as a function of 

metal-based NPs exposure. 
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The levels of H2O2 can be readily measured to determine ROS production as a 

function of metal-based NPs exposure in plant tissues. H2O2 levels in a two rice cultivars 

exposed to same concentration of CeO2 NPs showed varied response. H2O2 level in rice 

cultivar ‘Neptune’ was almost three times higher than the control group upon exposure to 

500 mg/L CeO2 NPs 51, whereas cultivar ‘Cheniere’ showed no significant difference 

upon exposure to the same concentration of CeO2 NPs.79 However, low dose exposure 

(62.5 mg/L) in both rice cultivars showed that H2O2 was scavenged.51, 79 Lee et al. 

provided evidence to demonstrate that CeO2 NPs at lower exposure concentration (50 

mg/L) could eliminate ROS through a Fenton-type reaction.92 Zhao et al. measured H2O2 

level in corn grown in CeO2 NPs amended soil, and reported effective antioxidant 

defense through CAT and APX activities, both of which converted ROS to H2O. The 

authors also reported that the H2O2 was predominantly located in epidermal, parenchyma 

and bundle sheath cells within the leaf tissue.23 

Other metal-based NPs such as Ag NPs and ZnO NPs have been shown to 

generate excessive amounts of ROS, which subsequently caused a series of adverse 

effects on plants, such as cell death, DNA damage, pollen membranes integrity and 

chlorophyll content.21, 34, 93 Panda et al. not only reported higher H2O2 levels in A. cepa 

upon exposure to Ag NPs but also that the level of O2
- was significantly elevated.21 To 

our knowledge, this is the only report on O2
- level in plant tissues when treated with NPs. 

The relationship between O2
- and H2O2 production and NPs-induced phytotoxicity is still 

unclear. As mentioned earlier, in order to defend against oxidative stresses, plants are 

capable of converting more toxic ROS (O2
-) into less toxic species. Hence, it is necessary 

to determine the relationship among different types of ROS induced by metal-bases NPs, 
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and to gain additional information to further understand the roles of protective 

antioxidant enzymes on ROS scavenging. As mentioned above, no known antioxidant 

systems can successfully transform HOproduced in response to NPs exposure. 

Therefore, further studies should be focused on differentiating between the types of ROS 

formed in response to exposure to various NPs, which will help us in understanding the 

mechanisms of antioxidant enzymes for protecting plants from oxidative stress. 

1.6 Role of glutathione and its related peptides in detoxification of metal-based NPs 

in plants 

GSH as a well characterized antioxidant and a critical component of defenses for 

oxidative stresses caused as a result of heavy metals exposure.94, 95, 96 The GSH 

biosynthesis pathway starts with sulfur assimilation through the activity of sulfate 

adenylyltransferase (ATPS), adenosine-5’-phosphosulfate reductase (APSR) and sulfite 

reductase (SiR), to generate sulfite which is a precursor of cysteine.97, 98, 99 GSH 

biosynthesize is catalyzed by cysteine synthase (CS), γ-glutamylcysteine synthase (γECS) 

and glutathione synthase (GS) to produce cysteine, γEC and GSH, respectively.96, 99 GSH 

can scavenge ROS and be oxidized to a disulfide form (GSSG), which can then be 

recycled by glutathione reductase (GR). Phytochelatins (PCs), synthesized by 

phytochelatin synthase using GSH as substrate, play important roles in the detoxification 

of heavy metals by chelating metal ions, with subsequent storage in vacuoles and the cell 

wall.100, 101, 102  

The heavy metal detoxification pathway through GSH biosynthesis has been well 

characterized. By overexpressing γECS gene in shoots of A. thaliana, Li et al. showed 
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that significantly higher levels of GSH and PCs were produced upon arsenic (As) and 

mercury (Hg) exposure, leading directly to increased metal tolerance as evident in the 

phenotype of transgenic plant.103 Similarly, Pauolse et al. and Zulfiqar et al. reported that 

transcripts involved in sulfur assimilation and glutathione biosynthesis were upregulated 

in Abyssinian mustard (Crambe abyssinica Hochst. Ex Fries) that was treated with As 

and Cr.104, 105 

Whether the similar phenomenon is activated upon NPs phytotoxicity is still 

unclear, although some studies have begun to assess GSH levels in plants exposed to 

metal-based NPs. Plant gene regulation involved in sulfur assimilation and GSH 

biosynthesis upon metal-based NPs exposure were first reported in A. thaliana exposed to 

CeO2 and In2O3 NPs.20 This study showed that both CeO2 and In2O3 NPs could induce 

upregulation of genes related to both sulfur assimilation and GSH biosynthesis pathways. 

GSH or GSSG quantification may be used as an alternative method to demonstrate the 

role of the GSH biosynthesis pathway in NPs detoxification. Dimkpa et al. measured 

transcripts encoding metallothionein (MT), which is a cysteine-rich protein, and GSSG in 

wheat were determined after exposure to Ag NPs, Ag+ ions and bulk Ag in sand. MT and 

GSSG levels were highly induced with the Ag NPs and Ag+ ions treatments.62 Consistent 

results showed that the level of GSSG in wheat shoots and roots grown in CuO and ZnO 

NPs mixed sandy soil were elevated as well.18 However, increased levels of GSSG could 

not be used to directly show that high levels of GSH were depleted to convert ROS into 

H2O. There was a dose-dependent response between GSH levels and exposure to NiO 

NPs.48 GSH level was found to increase in tomatoes treated with 1000 mg/L NiO NPs, 

although a slight decline of GSH level was observed at 1500 and 2000 mg/L NiO NPs 
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doses but the concentration was still significantly higher as compared to the control. 

These studies indicate that GSH is involved either in detoxification of metal ions released 

from NPs or tackling of ROS generated in response to NPs exposure in plants. To date, 

except one study 20, there is no reported studies evaluating either gene regulation or 

antioxidant levels, such as cysteine, GSH and PCs, as part of the sulfur assimilation and 

GSH metabolic pathway in response to NPs phytotoxicity. Understanding plant’s 

response to nanotoxicity at the molecular level will be critical to accurately assessing 

overall exposure, risk concerns and developing strategies to mitigate those nanoparticles 

associated risks. Therefore, in order to understand the interaction between several metal-

based NPs and plants at molecular and biochemical levels, and to investigate the role of 

GSH in detoxification of metal-based NPs in plants, we propose the following specific 

aims: 

 

Specific Aims 

1. Analysis of Arabidopsis thaliana for physiological and molecular response to 

CeO2 and In2O3 NPs exposure. 

2. Investigation of the enhanced level of GSH on alleviating Ag NPs toxicity to 

Crambe abyssinica.  

3. Characterization of the role of GSH in detoxification of silver nanoparticles and 

enhancement of nitrogen assimilation to improve yield in soybean (Glycine max). 
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Figure 1. 1 Schematic diagram of possible routes of NPs uptake by roots and cell damages caused by NPs exposure. (A) Plants 

grown in a medium amended with NPs. (B) Plants grown in soils amended with NPs. (C) NPs exposed on plants via foliar spray. (D) 

Symplast and apoplast could be mostly possible routes for NPs entering plants. (E) Potential damages could be caused by NPs at the 

cellular level. Other damages at molecular and biochemical levels, such as DNA damages and transcription levels of genes involved 

in NPs detoxification pathways are also present.
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CHAPTER 2 

PHYSIOLOGICAL AND MOLECULAR RESPONSES OF ARABIDOPSIS 

THALIANA TO CEO2 AND IN2O3 NPS EXPOSURES 

2.1 Introduction 

The use of nanotechnology in industries such as medicine, energy, cosmetics and 

agriculture has increased rapidly, and as such, concerns over the risk of nanomaterial 

exposure to the environment and to human health have been frequently raised.106,107 

According to the model of Keller and Lazareva, the release of engineered nanomaterials 

(ENMs) in the United States will be from 7-20% of that produced, although the precise 

amount at a given location will vary with wastewater management/treatment techniques 

and biosolids disposal.2 Once released to soil, the fate, bioavailability and toxicity of 

nanoparticles (NPs) are dependent on particle aggregation, surface properties, soil 

characteristics, and ion release.108, 109 Investigations focusing on the effects of NPs on 

plant species is a prerequisite for understanding the ultimate risk posed by these materials 

in the environment. So far, most of the studies related to nanotoxicity in the environment 

have focused mainly on two different aspects: investigation on nanotoxicity to living 

organisms in environmentally realistic scenarios and characterizing the underlying 

biochemical/molecular mechanisms of nanotoxicity under the laboratory conditions. A 

growing number of laboratory studies have been conducted where high (500-5000 mg/kg) 

doses of NPs are applied to evaluate nanotoxicity to terrestrial plants over short time 

periods.  Investigations focusing on phytotoxicity caused by NPs exposure at more 

environmentally relevant concentrations over longer periods of time are far more 

limited.110  By the simulated application of contaminated sewage and biosolids, Colman 
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et al. demonstrated that low exposure dose (0.14mg/kg) of Ag NPs resulted in 

Microstegium vimeneum biomass decreases by 32% and significantly declined the 

microbial richness (101±22 operational taxonomic unit, OTUs).111 Similarly, upon 

exposure to 2.5 mg/L Ag NPs, phytoplankton cell density was reduced during the first 4 

days of the test.112 

Plants are critical to both ecosystem function and to the human food supply; 

however, information on the interactions of REE oxide NPs with these organisms is 

rather limited. Ma et al. (2010) measured the effect of several REE oxide NPs on the root 

elongation of a number of plants and reported both species- and particle-specific 

effects.49 Oxides of Gd, La, and Yb proved to be quite phytotoxic, whereas NP CeO2 had 

negative effects on only one of seven species tested. Similarly, Birbaum et al. (2010) 

failed to observe CeO2 NP translocation in exposed maize.113 A number of additional 

reports have addressed the effects of CeO2 NPs on plant species such as Medicago sativa, 

Cucumis Sativus, and Lycopersicon esculentum. In general, results showed that CeO2 NPs 

may accumulate in some plant species as exposure concentrations increases; however, 

traditional measures of phytotoxicity were largely unaffected by particle 

exposure.114,115,50,116 Interestingly, Lopez-Moreno et al. (2010) noted that NP CeO2 

negatively impacted the germination of four crops but also generally increased root and 

shoot elongation of seedlings of the same species.116 In another study, Lopez-Moreno et 

al. (2010) described NP-specific changes in the molecular profile of soybean upon 

exposure to CeO2 NPs as measured by random amplified polymorphic DNA assays.114 

More recently, Zhao et al. (2012) reported that ROS production caused by CeO2 NPs 

exposure in Zea mays induced catalase and ascorbate peroxidase, both of which are 
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related to stress defense.117 Notably, no reports were found in which the phytotoxicity of 

NP In2O3 was investigated. To achieve the necessary comprehensive understanding of 

plant-NP interactions, including overall response, effects, and accumulation; under REE 

oxide NPs exposure, parallel biochemical and molecular endpoints must be evaluated. 

In the present study, Arabidopsis thaliana was used as model plant to investigate 

the effects of CeO2 NPs and In2O3 NPs exposure. Representative parameters such as 

biomass, root length, chlorophyll and anthocyanin content, lipid peroxidation, and 

elemental content  (NPs accumulation and nutrient contents) were measured to 

understand the plant’s defense and response to abiotic stress caused by the REE oxide 

NPs. In order to achieve a comprehensive understanding of detoxification pathways in 

plants, the underlying molecular mechanism for defense response was also fully 

investigated. Activities of ROS scavengers, such as SOD, CAT, APX and POD, and 

stress related enzymes, including GST, GR, PAL, and PPO, were measured in both NPs 

treated A. thaliana. In addition, upon on exposures to CeO2 and In2O3 NPs, quantitative 

real-time polymerase chain reaction (qRT-PCR) was used to analyze: the transcript levels 

of the important genes involved in sulfur assimilation, GSH biosynthesis pathway, as 

well as iron transport in A. thaliana. Our goal was to comprehensively evaluate A. 

thaliana antioxidant defense mechanisms, detoxification pathways, and nutrient status in 

response to metal oxide NP exposure. 
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2.2 Methods and Materials 

2.2.1 Nanoparticle characterization 

Nanoparticle CeO2 (99.97%, 10 nm to 30 nm) and In2O3 (99.995%, 20 nm to 70 nm) 

were purchased from US Research Nanomaterials, Inc. Solutions at 250 and 1000 mg/L 

of both NPs were twice dispersed by ultrasonic treatment in half-strength Hoagland’s 

solution and deionozed H2O for 1 h. The solutions were then maintained in the dark at 

ambient temperature overnight as described in Lin and Xing (2008).29 The hydrodynamic 

diameter (DLS) and zeta potential of NP suspension were analyzed using a Nano 

Zetasizer; the results are presented in Table 2.1. 

2.2.2 Experimental design 

A. thaliana seeds were sterilized by 70% (v/v) of ethanol for 5 min and then were soaked 

in 30% (v/v) of Clorox for 30 min.  The seeds were then washed five times with 

autoclaved deionized H2O.118 Twenty five sterilized seeds were placed on each petri dish; 

there were four replicate dishes for each NPs concentration. Seeds were stratified at 4°C 

for 24 h prior to transfer to a controlled-environment cabinet (cycling 16 h light and 8 h 

dark at 22°C and 18°C, respectively) and incubated vertically after germination to 

facilitate shoot and root growth for an additional 25 days. At harvest, shoot biomass and 

root length measurements were taken from each replicate dish. Harvested plant tissues 

were stored at -80 °C until further analysis. 

In addition, a hydroponic system was established similar to that described in Dixit 

and Dhankher.119 Fourteen days old A. thaliana seedlings were transferred to magenta 
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boxes containing half-strength MS liquid medium amended with 250 mg/L and 1000 

mg/L CeO2 NPs and In2O3 NPs separately. Plants were grown in an identical 

environment as described above. After an exposure period of 5 d, A. thaliana root and 

shoot tissues were harvested and were rinsed with 1 millimol/L nitric acid (HNO3), 

followed by three washes with deionized (DI) H2O.79 Fresh tissues were oven-dried at 

65 °C for 48 h prior to analysis of nutrient uptake and for total N measurement. 

2.2.3 Chlorophyll measurement 

Chlorophyll content was determined modifying the method of Lichtenthaler (1987).120 

Briefly, 50 mg of fresh leaves were cut into pieces (less than 1 cm) and added to 10 mL 

of 95% ethanol to extract chlorophyll. All samples were incubated in the dark for 3-d and 

the absorbance of supernatant was measured at 664.2 nm and 648.6 nm by UV-Vis 

spectrophotometer (Spectronic Genesis 2). Chlorophyll a, chlorophyll b and total 

chlorophyll were determined by: Chla=13.36A664.2-5.19A648.6, Chlb=27.43A648.6-

8.12A664.2 and Total chlorophyll=Chla + Chlb. 

2.2.4 Anthocyanin measurement 

Anthocyanin is an antioxidant as well as a stress response pigment produced by plants as 

a defense against ROS damage.121 Harvested A. thaliana tissues (50 mg) were ground in 

liquid nitrogen and then mixed with 1 mL of 1% (v/v) HCl in methanol prior to 

incubation in the dark at 4 °C overnight. After adding 500 μL of chloroform and 500 μL 

of DI H2O to the extracts, the samples were vortexed and centrifuged at 12,000 rpm for 2 

min.  The absorbance of the supernatant was measured at 530 nm and 657 nm by UV-Vis 
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spectrophotometer (Agilent 8453). The final anthocyanin concentration was determined 

by using A530 - 1/4 A657.
122 

2.2.5 Lipid peroxidation measurement 

Lipid peroxidation was measured by the TBARS assay.123 Malondialdehyde (MDA), 

which forms during fatty acid degradation and is indicative of lipid peroxidation, was 

determined as a function of REE oxide NPs treatment. Specifically, 200 mg of plant 

tissues (shoots, roots) were homogenized in 4 mL of 0.1% of trichloroacetic acid (TCA). 

The extracts were centrifuged at 10,000 rpm for 15 min and then 1 mL of supernatant 

was pipetted into mixture solution containing 2 mL of 20% TCA and 2 mL of 0.5% TBA. 

After heating at 95 °C for 30 min and cooling on ice, absorbance of supernatant was read 

at 532 nm and 600 nm by UV-Vis spectrophotometer (Agilent 8453).  The final MDA 

concentration, which is produced by reacting with TBA, was calculated based on 

Lambert-Beer’s equation (extinction coefficient of MDA is 155 mM/cm). 

2.2.6 Analysis of ROS production 

Total ROS were measured in control and NP treated A. thaliana seedlings by using the 

fluorescent dye 2’,7’-dichlorofluorescein diacetate (DCFDA).123 A. thaliana seedlings 

were soaked in a solution of 1 millimol/L DCFDA for 15 min in dark. Plant tissues were 

imaged using a Spinning Disc Confocal microscope on a Nikon Ti system running 

Metamorph imaging software (Yokogawa Electric Corp.) with settings of 400 ms 

exposure time and a Plant GFP Disk. Fluorescence intensity in each image was calculated 

by ImageJ 1.49r software.   
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Hydrogen peroxide (H2O2) and superoxide anion (O2
−) were measured in control 

and NP treated A. thaliana seedlings using diaminobenzidine tetrahydrochloride (DAB) 

and nitroblue tetrazolium chloride (NBT), respectively.123 

For the H2O2 staining assay, A. thaliana seedlings were soaked in 1mg/mL DAB 

solution at pH 3.8. The plant tissues were vacuum-infiltrated at 100 to 150 mbar for 1 

min, and this step was repeated 3 times. The plant tissues were then incubated for 5 h in a 

high humidity environment until dark colored precipitates were observed. Before 

observing the levels of H2O2 in the plant tissues under light microscopy, chlorophyll was 

removed by 95% ethanol washes. Relative color intensity was calculated in histogram 

function in Adobe Photoshop CS version 8.0. 

For the O2
− staining assay, the plant tissues were immersed into a staining 

mixture containing 0.1% (w/v) NBT, 10 millimol/L sodium azide, and 50 millimol/L 

potassium phosphate and then vacuum-infiltrated at 100 to150 mbar for 1 min, which was 

again repeated 3 times. The plant tissues were incubated in the mixture for 15 min, and 

then the infiltrated seedlings were exposed to cool fluorescent light for 20 min at room 

temperature. The samples were treated with 95% ethanol to stop the reaction and to 

remove the chlorophyll. Blue staining was then observed in each A. thaliana seedling by 

light microscopy. 

2.2.7 Analysis of total protein and antioxidant Enzyme Activity 

Fresh root and shoot tissues were homogenized in liquid nitrogen to fine powder. A 0.5 g 

sample of homogenized tissue was then mixed with 5 mL extraction buffer vigorously for 

5 min using a vortex mixer. The mixture was centrifuged at 4421×g for 20 min, and the 
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supernatant in each treatment was used for measuring total protein and antioxidant 

enzyme activities.  

 Catalase (CAT) was extracted in 25 mM KH2PO4 with pH 7.4. Decreased 

absorbance in the reaction that contained 100 μL of supernatant and 1900 μL of reaction 

buffer (10 mM H2O2) was recorded at 240 nm for 3 min. The H2O2 extinction coefficient 

was 23.148 mM-1 cm-1.23 

Ascorbate peroxidase (APX) was extracted in 100 mM phosphate buffer (pH 7.0) 

containing 0.1 mM EDTA, 0.1 mM ascorbate and 2% β-mercaptoethanol. The reaction 

buffer was made of 50 mM phosphate buffer (pH 7.0) and 0.6 mM ascorbic acid. The 

total 2 mL reaction system contained 100 μL of enzyme extract and 1900 μL of reaction 

buffer. Decreased absorbance was monitored at 290 nm for 3 min after initiating the 

reaction with 10% H2O2.
124 

Superoxide dismutase (SOD) was extracted in 50 mM phosphate (pH 7.8) 

containing 0.1% (w/v) ascorbate, 0.1 % (w/v) bovine serum albumin (BSA), and 0.05% 

(w/v) β-mercaptoethanol. Nitroblue tetrazolium (NBT) was used to indirectly determine 

SOD activities. Briefly, 100 μL of enzyme extract and 1900 μL of 50 mM phosphate 

buffer (pH 7.8) containing 9.9 mM L-methionine, 57 μM NBT, 0.0044% (w/v) riboflavin 

and 0.025% (w/v) Triton X-100 were mixed in cuvette and placed under fluorescent tube 

light (light intensity: 250 μmol m-2s-1) for 20 min. Reduction in the absorbance of NBT 

was recorded at 560 nm.124 

Peroxidase (POD) was extracted in 50 mM phosphate (pH 7.0) containing 1% 

(w/v) polyvinylpyrrolidone. Briefly, 50 μL of enzyme extract was mixed with reaction 
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buffer containing 1.75 mL of 50 mM sodium phosphate buffer (pH 7.0) and 0.1 mL of 4% 

guaiacol in cuvette and 0.1 mL of 1% H2O2 was used to initiate the reaction. Increased 

absorbance was recorded at 470 nm for 2 min.125  

Polyphenol oxidase (PPO) was extracted in the same buffer as stated in POD 

extraction. The reaction mixture consisted of 200 μL of enzyme extract and 2.8 mL of 10 

mM catechol. PPO activity was recorded by measuring its ability of oxidizing catechol at 

410 nm.125, 126 

Phenylalanin ammonialyase (PAL) was extracted in 0.1 M sodium borate buffer 

(pH 8.8). 100 μL of enzyme extract was used to react with 2.9 mL of reaction buffer 

containing 100 mM sodium borate buffer (pH 8.8) and 50 mM 1-phenylalanine at 37 °C 

for 1 hr. The absorbance change was monitored at 298 nm.125, 126  

Glutathione S-transferase (GST) was extracted in 50 mM phosphate buffer (pH 

7.5) containing 1 mM Ethylenediaminetetraacetic acid (EDTA) and 1 mM dithiothreitol 

(DTT). 1-Chloro-2,4-dinitrobenzene (CDNB) was used to conjugate with thiol group of 

glutathione (GSH) and form GS-DNB conjugate.  The increase of absorbance recorded at 

340 nm for 5 min represents GST activity.124 

Glutathione reductase (GR) was extracted in 100 mM phosphate buffer (pH 7.5) 

containing 0.5 mM EDTA. A sample of 100 μL of enzyme extract was added into a 

reaction buffer containing 500 μL of 2 mM oxidized GSH (GSSG), 50 μL of β-

Nicotinamide adenine dinucleotide phosphate, reduced (NADPH) and 350 μL of assay 

buffer (100 mM potassium phosphate buffer with 1 mM EDTA). The decrease in 

absorbance was recorded at 340 nm for 2 min.127 
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2.2.8 Elemental analysis of A. thaliana tissues 

Dry shoot or root tissues were ground to fine powder and approximately 50 mg was 

transferred into a glass tube containing 3 mL concentrated HNO3. All samples were 

digested at 105 °C for 40 min in a heating block and then 500 μL H2O2 was added for 20 

min to complete the digestion. All digests were diluted with deionized (DI) H2O to 50 mL 

prior to elemental analysis for Ce and In by inductively coupled plasma mass 

spectroscopy (ICP-MS) and for macro- and micronutrients by inductively coupled plasma 

optical emission spectrometry (ICP-OES).35 

2.2.9 Quantitative analysis of gene expression in A. thaliana  

Total plant tissue was homogenized in liquid nitrogen and kept under -80 °C for RNA 

isolation. RNeasy plant mini kits (Qiagen) were used to isolate total RNA from A. 

thaliana according to the manufacturer instructions. The RNA concentration was 

quantified by NanoDrop spectrophotometry.  One μg of total RNA was used for reverse 

transcription using Thermo Scientific Verso cDNA Synthesis Kit for first-strand cDNA 

synthesis and was again quantified by NanoDrop spectrophotometry. All gene-specific 

primers used for quantitative real time PCR analysis were designed using the 

PrimerQuest (Intergrated DNA Technologies). For specificity, primers were designed 

from the C-terminal non-conserved regions to give a product size of 100–150 bp. Finally, 

200 ng/μL cDNA was used as template to run qRT-PCR according to the manufacturer 

instructions for MastercyclerR ep realplex (Eppendorf AG, Hamburg, Germany) with 

Absolute Blue qPCR SYBR Green Mix (Thermo Fisher Scientific, Surrey, UK). A 

complete list of primer sequences and the qRT-PCR amplification program can be found 
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in Appendix I. The total volume from the qRT-PCR was 20 μL and actin-2 was used as a 

housekeeping gene for normalization. Relative quantity (2-ΔΔCt method) was then used to 

calculate relative gene expression level.128 

2.2.10 Statistical analysis 

A one-way analysis of variance (One-way ANOVA) followed by Duncan’s multiple 

comparison test (IBM SPSS Statistics 20) was used to determine statistical significance 

of each parameter across treatments, except qRT-PCR assay, in which Student t-test was 

applied to determine statistical significance of each gene. In the tables and figures for 

each assay, values followed by different letters are significantly different at p ≤ 0.05. 

2.3 Results and Discussion 

2.3.1 Nanoparticle characterization 

Table 2.1 shows the hydrodynamic diameter and zeta potential of CeO2 and In2O3 NPs 

dispersed in deionized water and 1/2X Hoagland’s solution. Generally, the hydrodynamic 

diameters of CeO2 and In2O3 NPs in the deionized water were significantly smaller than 

in 1/2X Hoagland’s solution, suggesting that ion strength is one of the main factors that 

can determine the NP aggregation in solution. However, two different concentrations of 

both NPs had no impact on either hydrodynamic diameter or zeta potential regardless of 

solution types. Interestingly, as compared to the zeta potential values from the deionized 

water treatment, 1/2X Hoagland’s solution altered the surface charges of both NPs from 

positive to negative. 
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2.3.2 A. thaliana phenotype grown on CeO2 and In2O3 NPs 

The growth of A. thaliana in the presence of 0-3000 ppm CeO2 NP is shown in Figure 1; 

visible signs of phytotoxicity are evident at concentrations as low as 500 ppm (Figure 2.1 A).  

At 250 ppm of CeO2 NPs, the total plant biomass was significantly increased (p<0.01), 

although root length was unaffected (Figure 2.1 B and C). At 500 ppm of CeO2 NPs, fresh 

biomass was not significantly affected by exposure but the average root length was reduced 

by nearly 60%. In addition, exposure to CeO2 at concentrations higher than 500 ppm yielded a 

classic dose-response effect, with higher concentrations resulting in biomass reductions of 75-

90%.  Morphologically, at concentrations of 500 ppm CeO2 NPs and higher, A. thaliana roots 

were stunted and failed to penetrate the 1/2X MS medium; chlorosis of the leaves was also 

evident. At 3000 ppm, the plants did not survive exposure and biomass could not be 

determined. These findings deviate from some published work with this nanoparticle. Zhang 

et al. (2012) exposed cucumber to CeO2 NPs at 2000 ppm and indicated that shoot and root 

biomass was unaffected by the nanoparticle.50 Similarly, Ma et al. (2010) observed that CeO2 

NPs had no impact on root elongation of six out of seven plant species.49 Alternatively, our 

findings are in line with those of García et al (2011), where 640 ppm of CeO2 NPs almost 

completely inhibited the germination of cucumber, lettuce and tomato.129 At concentrations of 

64 ppm, phytoxicity was significantly reduced but for cucumber, the inhibition rate was still 

90%. From the literature and based on our findings, it is clear that the phytoxicity will not 

only be species-specific but at low concentrations, growth enhancement may occur under 

some circumstances.    

The effect of In2O3 NPs exposure on A. thaliana is shown in Figure 2.2.  Because 

little is known about In2O3 phytotoxicity, a broader concentration range for exposure was 
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employed as compared to CeO2. Notably, no visible signs of phytotoxicity were evident 

at exposure concentrations up to 2000 ppm. In terms of fresh biomass, NPs exposure 

resulted in significantly enhanced growth at 50 and 500 ppm and had no effect at the 

other concentrations. However, root length was significantly, although not dramatically, 

reduced at all exposure concentrations.  On average, root length was reduced by 10-20% 

by In2O3 exposure but this effect clearly had no impact on overall plant mass. To our 

knowledge, this is the first report of NP In2O3 effects on plant growth.  It is clear that 

under similar exposure conditions, CeO2 NPs seem to exert much greater phytotoxicity 

than does In2O3. 

2.3.3 Chlorophyll Content of A. thaliana exposed to CeO2 and In2O3 NPs 

The chlorophyll content of A. thaliana exposed to CeO2 NPs is shown in Figure 2.3. 

Chlorophyll amounts in the 250 ppm and 500 ppm NPs treatments were unaffected by 

particle exposure. This is particularly interesting at 500 ppm, where although root 

elongation was significantly inhibited, shoot biomass and chlorophyll were equivalent to 

the control plants.  At the 1000 ppm and 2000 ppm, chlorophyll content was reduced by 

58 and 89%, respectively, relative to the control plants. Although the mechanism of 

phytotoxicity remains unresolved, it is clear that such a loss in photosynthetic potential 

would clearly compromise overall plant growth and vigor.  A decrease in chlorophyll 

content upon exposure to metal nanoparticles has been reported by Jiang et al (2012)130, 

Shi et al (2011)131 and Oukarroum et al (2012).132 Interestingly, In2O3 NPs treatment, 

even at levels of 2000 ppm, had no effect on the chlorophyll content of A. thaliana 

tissues. The total chlorophyll of control plants was approximately 2.4 mg/g, with the 

In2O3 NPs-exposed plants having values ranging from 2.2-2.5 mg/g. Notably, the data on 
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chlorophyll content is in good agreement with the biomass results; CeO2 NPs clearly 

exert significantly greater phytotoxicity on A. thaliana than does NP In2O3. 

2.3.4 Anthocyanin production in A. thaliana treated with CeO2 and In2O3 NPs 

Because of the significant membrane damage likely resulting from ROS production and 

associated toxicity of CeO2 NPs exposure, the anthocyanin content of exposed tissues 

was determined (Figure 2.4). Significant anthocyanin production as evident by extract 

pigmentation in A. thaliana was observed at the 1000 and 2000 ppm exposure levels; no 

pigment production was evident at 250 ppm treatment. Quantitation of anthocyanin 

production confirms the results; the 250 ppm exposure level had no impact on 

anthocyanin production.  However, exposure at 1000 ppm of CeO2 NPs resulted in 

significantly greater (p≤0.01) anthocyanin content but the effect was somewhat reduced 

at the 2000 ppm level. Interestingly, anthocyanin levels were not significantly affected by 

In2O3 NPs exposure. 

2.3.5 Effect of CeO2 and In2O3 NPs on membrane integrity 

Lipid peroxidation, which can be indirectly measured by MDA formation, is an indicative 

of abiotic stress, such as that of induced metal toxicity. Cell membrane damage generally 

results from reactive oxygen species (ROS) production, which then damage 

phospholipids. The formation of MDA in A. thaliana as a function of CeO2 exposure is 

shown in Figure 2.5. CeO2 NPs at 250 and 500 ppm had no impact on MDA production 

but at an exposure of 1000 ppm, the MDA levels were 4 fold higher than that observed in 

the control plants (significant at p≤0.01).  Metal and metal oxide NPs have been known 

to induce dose-dependent increase in lipid peroxidation in a number of plant species.47,133 
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Interestingly, exposure to In2O3 NPs at concentrations up to 1000 ppm had no effect on 

A. thaliana lipid peroxidation.  MDA production in control plants was approximately 

0.37 µM and NPs-exposed plants had MDA levels of 0.37-0.42 µM.  The lack of 

membrane damage upon In2O3 exposure suggests that either this particular NP does not 

induce ROS formation even at high exposure concentrations or perhaps that the plant’s 

detoxification pathways are sufficient to address and remedy the induced stress. Similar 

to our findings, Zhao et al. (2012) showed the activation of plant defense response and 

subsequent lack of membrane damage by exposure to CeO2 NPs.117 

2.3.6 Analysis of ROS production in A. thaliana seedlings 

ROS are common byproducts in plant metabolism.87 However, under abiotic stress 

conditions, elevated levels of ROS can cause oxidative stress and lead to a series of 

adverse impacts on plant growth and development.89 Confocal fluorescence microscopy 

was used to observe the induction of ROS in A. thaliana roots exposed to variable NP 

concentrations  (Figure 2.6 A). Significantly higher levels of ROS (green fluorescence) 

were evident in the A. thaliana roots upon NP treatments relative to controls, with 

notably highest fluorescence response at the 1000 mg/L In2O3 NPs exposure. Quantitative 

analysis of ROS-derived fluorescence intensity (Figure 2.6 B) showed that the total ROS 

intensity across all NP treatments was 6-10 times higher than the control unexposed 

plants. ROS speciation (H2O2 and O2
−) was assessed using histochemical staining (DAB 

and NBT) (Figure 2.7 A). Exposures of 250 and 1000 mg/L CeO2 and In2O3 NPs induced 

higher amounts of H2O2 in A. thaliana leaves as compared with the control. Relative 

color intensities in both NPs treated leaves were approximately 2 to 3-fold of the control 
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(Figure 2.7 B). Conversely, negligible amounts of O2
− were only observed in the 1000 

mg/L NP treatments of Arabidopsis leaves (images are not shown).  

 

Previously, it was noticed that H2O2 content in Neptune, a medium amylose rice 

cultivar, exposed to 250 mg/L of CeO2 NPs was similar to the control group.51 As 

exposure concentration increased to 500 mg/L, significantly higher levels of H2O2 were 

found in Neptune but no changes were found in Cheniere, a high amylose rice cultivar.79, 

51 Although, 250 mg/L of both NPs induced higher ROS in A. thaliana, no oxidative 

damage was evident in terms of MDA, chlorophyll, or anthocyanin content at this NP 

concentration.20 These findings aligned with Arora et al., who found that Au NPs induced 

ROS in Brassica juncea but had no impact either on growth or total seed yield.77 Other 

metal-based NPs can also cause oxidative stresses by inducing excessive amounts of ROS 

at even lower concentrations. Rice seedlings treated with 0.2 to1 mg/L Ag NPs showed 

that significantly high levels of ROS productions (H2O2 and O2
−) resulted in cell death in 

root tips.134 Similarly, elevations of H2O2 and O2
− in 250 mg/L ZnO NPs treated rice 

seedlings were also evident.135 Taken together, these results indicate that at certain 

exposure dose of metal-based NPs, induced ROS may act as a signaling molecule and 

thus could bio-stimulate plant growth by manipulating cell wall elongation.20, 61  However, 

excessive amounts of ROS production in NP treated plants could lead to oxidative stress. 

The underlying mechanisms in plants to defend/counteract the nanotoxicity need to be 

further characterized due to NP types, exposure doses, and plant species.  
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2.3.7 Analysis of activities of ROS scavengers  

Based on the observation of increased ROS levels in NP-exposed A. thaliana, the 

activities of key ROS scavenging enzymes (SOD, CAT, APX and POD) were measured 

(Figure 2.8). SOD activities in A. thaliana exposed to both NPs were approximately 2- to 

3-fold higher as compared to the control plants, with the exception of the 250 mg/L CeO2 

NP treatment (not significantly different from the controls, Figure 2.8 A). SOD is capable 

of converting O2
− to H2O2, but the increased H2O2 levels need to be reduced or 

scavenged by antioxidant enzymes such as CAT, APX and POD in order to protect the 

plants from oxidative stress. Although the activities of CAT and APX at both exposure 

concentrations of In2O3 were increased by approximately 2-fold, these increases were not 

statistically significant (Figure 2.8 B and C). Alternatively, CeO2 NP exposure increased 

both CAT and APX activities by 3.5- to 4-fold, with the exception of 250 mg/L CeO2 NP 

treatment. POD is another H2O2 scavenger that can catalyze compounds such as L-

ascorbic acid and guaiacol to donate electrons and subsequently convert H2O2 to H2O. 

Upon exposure to both NPs, POD activities were significantly increased, with the 1000 

mg/L CeO2 NP treatment showing nearly twice the POD activity in comparison to the 

untreated controls (Figure 2.8 D).   

Faisal et al. reported significantly increased SOD levels in tomato exposed to 0 

mg/L to1000 mg/L NiO NPs. However, as exposure concentrations further increased, the 

decreases of SOD activity indicated that the antioxidant defense system was 

compromised.48 Exposure to 250 mg/L CeO2 NPs caused elevated SOD activity in the 

rice cultivar Cheniere, but no change in enzyme activity was found at 500 mg/L.51 

Similar results were also reported in 1 μg/mL and 100 μg/mL Al2O3 NP-treated onion 
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root, respectively.136 These studies demonstrate that the pattern of antioxidant enzyme 

response may depend on NP type, NP exposure concentration and plant species. For 

example, in the root of the rice cultivar Cheniere treated with 500 mg/L CeO2 NP, CAT 

activities were 50% that of the control group, while the activities of APX and POD were 

increased by 2 fold and 4-fold, respectively.79 Similarly, upon foliar treatment of 2.94 

g/m3 CeO2 NPs, increases in cucumber APX levels were observed only in the root (foliar 

spray), but CAT activities were increased in both leaf and root tissue.44 In our study, 

In2O3 NPs only increased POD activities in A. thaliana, whereas CeO2 NP exposure, 

particularly at the 1000 mg/L treatment, increased the levels of CAT, APX and POD.  

 

2.3.8 Analysis of activities of stress related antioxidant enzymes in response to CeO2 

and In2O3 NP exposures 

In most plant species, glutathione (GSH) metabolic pathway plays a critical role in the 

detoxification of toxic compounds including heavy metals and xenobiotics. In this 

pathway, GST catalyzes the conjugation of GSH to xenobiotic substrates (CeO2 and 

In2O3 NPs in this case) via sulfhydryl groups, which then subsequently lowers 

contaminant toxicity to the plant. GSH can also directly break down H2O2 in the 

ascorbate-glutathione cycle; here, GSH is converted to GSSG (the oxidized form 

GSH).137 GR can reduce GSSG to GSH; an elevated GR activity can further enhance the 

efficiency of GSH-mediated detoxification of xenobiotic substrates.138 Results from the 

measurement of GST and GR activity are shown in Figure 2.9 A and B. GST levels were 

generally unaffected by NP exposure, with the exception of a 40% increase in the GST 

level for the 1000 mg/L CeO2 NP treatment. No statistically significant change was 
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evident in the other NP treatments. Conversely, GR activity was increased by 

approximately 15% and 51% in the 1000 mg/L CeO2 NP and 1000 mg/L In2O3 NP 

treatments, respectively.  

The importance of the GSH metabolic pathway in scavenging ROS has been well 

established in many studies.139, 140 How the plant can reuse oxidized GSH (GSSG) and 

promote GSH efficiency upon NP exposure was unclear. To our knowledge, there are 

only few studies reported on the GR activity in response to NP exposures in living 

systems. Rico et al. demonstrated that GR activity was increased in the roots of rice 

cultivar (Neptune) upon exposure to 62.5 and 500 mg/L CeO2 NPs, whereas the 

decreases in the GR activity was evident in both rice cultivar Cheniere roots and shoots 

across four concentrations of CeO2 NPs.79, 51 The reduction in GR activity may correlate 

with low levels of ROS production and lipid peroxidation. At the molecular level, the 

transcription of GST in ZnO NPs treated A. thaliana were increased by approximately 9 

to 11-fold, 26 while this value was 3 to 4-fold for Ag NPs exposure.86  

Flavonoids can act as non-enzymatic antioxidants and are able to provide defense 

against oxidative damages.24 In the current study, we sought to further examine 

anthocyanin overproduction as a potential defense mechanism for NP detoxification. 

Phenylanine ammonialyase (PAL) is a key enzyme in the anthocyanin biosynthesis 

pathway,141, 142 and its activity can directly determine anthocyanin levels in plants. 

Although, In2O3 had no effect on PAL activity, the 1000 mg/L CeO2 NPs-exposed A. 

thaliana seedlings had levels that were 10-fold greater than the PAL activity levels in the 

control group (Figure 2.9 C). These findings are highly consistent with the results of 
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anthocyanin production, where anthocyanin levels were largely unchanged in response to 

In2O3 and but were significantly elevated in the presence of CeO2 NPs.  

Polyphenol oxidase (PPO), which converts phenols into quinones, is another 

antioxidant enzyme associated with ROS removal and metal detoxification.125, 143 Upon 

treatment with In2O3 NPs, PPO activities were significantly increased at both doses 

(Figure 2.9 D). Although CeO2 NPs at 250 mg/L had no impact, PPO activity was 

elevated by nearly 4-fold when exposed to 1000 mg/L CeO2 NPs. PPO activities can be 

regulated during various biotic and abiotic stresses.144 Additional studies are needed to 

fully understand how PPO and ROS levels in plants are correlated following NP 

exposures.  

2.3.9 Distribution of cerium and indium in A. thaliana tissues 

With CeO2 NPs treatments, the Ce content in 1000 mg/L CeO2 NP-treated root was 

increased by approximately 4.3 times relative to the Ce content in the 250 mg/L CeO2 

NP-treated root (Figure 2.10 A). Similarly, there was a dose-response increase of Ce 

content in the shoot. However, regardless of exposure doses, no difference of In content 

in root was evident while there was a slight increase in shoot In levels. (Figure 2.10 B).  

Dose-response fashion was showed in soybean seedlings exposed to 0-4000 mg/L CeO2 

NPs suspension.64 Potting experiment conducted by Zhao et al. (2013) suggested that the 

concentrations of Ce in cucumber upon exposure to 800 mg/kg CeO2 NPs decreased from 

root to fruits; approximately 200-fold higher Ce concentration in CeO2 NPs treated fruits 

suggested that food safety could be of major concerns.76 Another study demonstrated that 

Ce mainly accumulated in corn root and barely transported to the aboveground part (leaf 
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and corn cob).145 These results suggest that the uptake and tissue distribution of NPs 

depends on the type of NPs and plant species. 

2.3.10 Elemental analysis in CeO2 and In2O3 NPs treated A. thaliana 

Nutrient displacement caused by CeO2 and In2O3 NP exposure could result in nutrient 

deficiency and abiotic stress. As shown in Table 2.2, both doses of CeO2 NPs 

significantly reduced K levels in A. thaliana shoots, although the decreases noted in the 

roots were statistically insignificant. In2O3 NPs had no impact on K uptake. The levels of 

Mg were largely unaffected by NP treatment, except when the plants were exposed to 

250 mg/L In2O3 NPs: the Mg levels in the roots were increased by approximately 20% 

relative to the control. The Ca content in the root at these exposure concentrations 

showed an average increase of 11.5% and 29% in the CeO2 and In2O3 NP treatments, 

respectively, whereas the shoot concentrations of Ca were unaffected. The concentration 

of P in both root and shoot tissue was decreased significantly by exposure to 1000 mg/L 

CeO2 NPs, although no other treatments had an effect on P content. Exposure to the NPs 

had no impact on the levels of total N and S in both shoot and root tissues (data are not 

given).  

The levels of additional micronutrients were analyzed in A. thaliana shoot and 

root tissues (Table 2.3). Fe content was affected by the NP exposure; levels of this 

important element were decreased in a dose-dependent manner, with overall reductions of 

over 50% for the high CeO2 NP treatment. Given the amount of plant biomass available, 

the levels of Fe in A. thaliana shoots were below the instrument detection limit 

(Analytical Solution Quantification Limit, ASQL is 270 ppb) and are thus not shown in 
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Table 2. The CeO2 and In2O3 NPs had no impact on the levels of Zn and B. Exposure to 

both NPs at 1000 mg/L caused significant decreases in the root Mn levels; however no 

effects on the Mn levels were evident at the lower NP concentrations in the roots or in 

any of the treated shoot tissues. Metal-based NPs can disrupt nutrient uptake and 

assimilation in plants, which could directly impact plant growth, development, quality 

and yield at harvest.146  

In the present study, the uptake of Fe, which is critical for plant growth 

photosynthesis,147 was significantly decreased in the presence of both NPs. Similarly, Ag 

NPs significantly lowered the levels of Fe in Crambe.148 However, upon exposure to 800 

mg/kg CeO2 NPs, the Fe content in corncobs was not changed relative to the control.145 

Low Fe accumulation could be ascribed to the impact of NPs on the relative expression 

of divalent cation transporters in A. thaliana. For example, down-regulations of both 

IRT1and IRT2 were evident in 25 mg/L Au NPs-treated A. thaliana.81 Another iron 

transporter, FRO, in A. thaliana was also down-regulated in the presence of Ag NPs.86  

Ca is a secondary messenger molecule, which is involved in response to both 

abiotic and biotic stresses.149, 150, 151  The elevation of Ca in A. thaliana roots may indicate 

that NP-induced ROS trigger Ca2+ ion channels to increase the concentration of Ca, 

which could subsequently stimulate defense related gene expressions in response to NP-

induced oxidative stress.152 The decrease in P uptake in 1000 mg/L CeO2 NPs treated A. 

thaliana root agrees with other studies that have shown that CeO2 NPs can bind P and 

lower the nutrients bioavailability.80 A long-term study on corn and CeO2 NP interactions 

demonstrated no impact on the accumulation of mineral nutrients in corncobs; however, 

it altered the distribution and localization of nutrients, such as Ca, Fe, Cu and Zn, in the 
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edible portion.145 Besides mineral nutrients, CeO2 and In2O3 NPs could also reduce the 

protein content in plants (Figure 2.11). In addition to the abiotic stressor (metal-based 

NPs), there are many factors including soil pH, fertilizers, soil organic matter etc. that can 

determine the nutrient levels in plants. Based on these results in A. thaliana seedlings, it 

is concluded that these effects may also be evident in other terrestrial plants, especially 

for crop plants, and thus could result in lower food quality and crops yield. 

2.3.11 Regulations of iron transporters genes in A. thaliana seedlings exposed to 

CeO2 and In2O3 NPs 

The transcript levels of genes encoding the three important iron transporters (IRT, FER, 

and FRO) in A. thaliana were measured in an attempt to explain the reduced levels of Fe 

in the root tissue (Figure 2.12). Under iron deficiency, the relative expressions of these 

root-specific iron transporters are known to increase in A. thaliana.153, 154 In plant leaves, 

FER is essential for the synthesis of iron containing proteins;155 the expression level of 

the gene encoding FER can be used as a good proxy to indicate iron levels in plant shoot 

tissues. Figure 2.12 shows the time-dependent transcript levels of these three iron 

transporters in A. thaliana shoots and roots upon exposure to 1000 mg/L CeO2 and In2O3 

NPs after 96 and 120 hours. These exposure durations correspond with the exposure 

period for analysis of nutrient displacement assays in A. thaliana. Although, slight but not 

significant increases in FER expression were found in A. thaliana shoots upon exposure 

to both NPs at 96 hours, but the significant decreases in both CeO2 and In2O3 NP-treated 

A. thaliana shoots were evident at 120 hours. In the roots of A. thaliana, the relative 

expression of FRO in 1000 mg/L In2O3 NPs treatment was elevated approximately 1.5 

and 2.5-fold at 96 and 120 hours, respectively. Similarly, the transcript levels of IRT 
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were also up-regulated in In2O3 NPs treatment. It is interesting to note that the exposure 

of 1000 mg/L CeO2 NPs did not affect the FRO and IRT regulations at 96 and 120 hours. 

Although the functions of these iron transporters in A. thaliana have been well 

characterized,153, 154, 155 the explanation of Fe deficiency in the NP-treated A. thaliana is 

unknown. As discussed earlier for the low Fe content in A. thaliana root, differential 

regulation of the cation transporters might be part of the defense mechanism in response 

to abiotic stresses to prevent the plants from accumulating potentially toxic metals. Au 

NPs caused 132.3 and 38.4-fold decreases in IRT1 and IRT2 relative to the control in A. 

thaliana.81 Similarly, relative expression of FRO4 was only 0.29-fold of the control in Ag 

NPs treated A. thaliana, while no change was found in Ag ions treatment.86 Plants can 

adjust their metabolism to control the uptake of toxic metals by down-regulating the 

expression levels of metal-related transporters. Our study has demonstrated that CeO2 

NPs are more toxic to A. thaliana than In2O3 NPs under the same exposure doses.20 

Although both NPs can cause decreases in Fe content, the addition of CeO2 NPs resulted 

in significantly low content of Fe in A. thaliana, compared to the In2O3 NPs treatment. 

One of the most possible reasons is that upregulation of FRO and IRT in the In2O3 NPs 

treatment is to compensate for Fe deficiency. Another possibility is that IRT may be co-

transporting Ce along with Fe. Therefore, due to the toxicity of CeO2 NPs to the plants, it 

is possible that A. thaliana avoided taking up Ce by downregulating IRT. Our hypothesis 

is supported by previous studies showing that IRT transporter can take up many different 

metal cations, including cadmium, copper, zinc, cobalt and manganese.156, 157 Further 

studies are needed to explore the mechanistic explanation for the interactions between Fe 

uptake and NP accumulation in plants. 
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2.3.12 CeO2 and In2O3 NPs effect on antioxidant and stress-related gene expression 

To evaluate antioxidant and stress-related gene expression under 500 or 1000 ppm CeO2 

NPs exposure, A. thaliana transcript production was quantified with qRT-PCR (Figure 

2.13). GSH is the major antioxidant molecule in cells and has been shown to protect 

plants from oxidative stress caused by toxic metals and other abiotic stressors.  Therefore, 

our efforts were focused on the regulation of genes involved in the sulfur assimilation and 

the glutathione metabolic pathway in response to CeO2 and In2O3 NPs exposure. The 

relative level of sulfate adenylytransferase (ATPS) gene expression was significantly 

enhanced by both concentrations of CeO2 NPs (Figure 2.13 A).  Adenosine-5′-

phosphosulfate reductase (APR) can convert adenosine-5′-phosphosulfate (APS) to 

sulfite and then to biosynthesized sulfide, a precursor of cysteine, under the catalysis of 

sulfite reductase (SiR). Figure 2.13 B and 6C show the relative expression of APR and 

SiR as a function of CeO2 NPs exposure. APR expression under 1000 ppm of CeO2 NPs 

treatment was 4-fold higher than untreated control plants, whereas the relative expression 

of SiR at the same treatment level was dramatically reduced. This inhibition of SiR 

synthesis is likely due to less sulfide production and may explain the lack of cysteine 

synthase (CS) induction (Figure 2.13 D). Glutathione synthase expression was more than 

doubled in Arabidopsis exposed to 500 and 1000 ppm CeO2 NPs (Figure 2.13 E). In 

plants, adenosine phosphosulfate kinase (APSK) plays a crucial role in a secondary 

metabolic pathway of sulfate assimilation.158 As shown in Figure 2.13 F, treatment with 

CeO2 NPs significantly increases APSK expression; at 1000 ppm of CeO2 NPs, the gene 

was up-regulated by 3-fold over untreated plants.  
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The impact of In2O3 NPs exposure on these same genes is shown in Figure 2.14 

and notably, the pattern of induction is somewhat similar to that observed with CeO2 

NPs.  For example, the relative level of ATPS gene expression, which controls APS 

synthesis by catalyzing sulfate, was significantly increased by exposure to In2O3 NPs at 

both 50 and 500 ppm (Figure 2.14 A). However, unlike CeO2 NP exposure, the 

upregulation of genes involved in sulfite and sulfide biosynthesis was far less significant 

(Figure 2.14 B and C), although NP exposure concentrations were intentionally lower for 

In2O3. Conversely, the glutathione metabolic pathway was significantly induced, with 

more than a 4-fold increase in GS transcript expression at 50 ppm of In2O3 NPs treatment 

(Figure 2.14 E). For CeO2 NPs treatment, exposure to 500 ppm NP only doubled GS 

expression.  Moreover, as precursor of glutathione, CS was also up regulated to a much 

higher extent upon In2O3 NPs treatment (Figure 2.14 D). It is presumed that significantly 

greater activation of the glutathione pathway (CS, GS) upon In2O3 NPs exposure is 

responsible for general lack of phytotoxicity (biomass, chlorophyll, anthocyanin, lipid 

peroxidation) observed with treated A. thaliana.  The phenomenon of metal ion 

detoxification in plants through the glutathione metabolic pathway has been demonstrated 

previously.159,160,161 In the field of nanoparticle phytotoxicity, others have recently begun 

to focus on tissue glutathione levels as an important parameter of study.162 

Sulfur is a required cellular nutrient and is necessary for the biosynthesis of 

several important macromolecules.163,164 After adenosine phosphosulfate (APS) formation 

under the catalysis of ATPS, subsequent sulfate assimilation can occur by two pathways 

in plants.158,98 The primary pathway is that APS can be reduced to sulfite by sulfite 

reductase (SiR) and then channeled into cysteine synthesis, which is a precursor to 
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biosynthesize glutathione. The secondary sulfated metabolic pathway is controlled by 

APSK, which plays an important role in plant growth and viability.158,98 The genes 

involved in both of sulfated metabolic pathways were induced under the stressful 

conditions caused by CeO2 and In2O3 NPs exposure. The pathway involved in glutathione 

metabolism is part of the primary sulfated pathway. Figures 6 and 7 displayed that 

transcripts related to antioxidants were induced by both REE oxide NPs, suggesting an 

enhancement of plant defense to oxidative stresses through the glutathione pathway. 

Paulose et al (2010) reported gene expression of Crambe abyssinica in response to 

arsenate exposure and demonstrated that transcripts related to sulfated metabolism (SiR, 

ATPS) and glutathione synthase (GS) were induced under this abiotic stress.104 Similarly, 

Zulfiqar et al (2011) noted that glutathione metabolism and amino acid synthesis were 

stimulated in Crambe abyssinica upon exposure to chromium.165 

Clearly, the literature on REE metal oxide NP interactions with plants is under 

developed.  Given the widespread and increasing use of this class of nanoparticles and 

the potential ecological and human health impacts through food chain contamination, it is 

clear that significant research into this area is necessary. This is the first report 

demonstrating differential regulatory response through altered expression of glutathione 

and sulfated metabolic pathways in response to REE oxide NPs exposure.   
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Table 2. 1 Characterization of CeO2 and In2O3 NPs in DI water and 1/2X Hoagland's 

solution 

Treatment Solution DLS (nm) Zeta potential (mV) 

250 mg/L 

In2O3 NPs 

DI water 229±56.7 28.59±3.34 

1/2X Hoagland’s solution 1795.9±57.5 -8.68±1.70 

1000 mg/L 

In2O3 NPs 

DI water 221.4±6.5 32.28±1.95 

1/2X Hoagland’s solution 1779.5±73.4 -10.38±1.52 

250 mg/L 

CeO2 NPs 

DI water 249.4±2.5 43.09±2.11 

1/2X Hoagland’s solution 3352.8±691.5 -4.24±1.02 

1000 mg/L 

CeO2 NPs 

DI water 209.1±1.0 43.58±2.39 

1/2X Hoagland’s solution 3532.6±1075.9 -6.12±0.81 
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Table 2. 2 The levels of macronutrients in shoot and root of A. thaliana exposed to CeO2 and In2O3 NPs for 5 d  

Plant tissue 
Macro-

nutrient 
Control  

CeO2 NPs (ppm) In2O3 (ppm) 

250 1000 250 1000 

Shoot 

(mg/kg) 

K 64799.0±3003.1B 56314.5±1683.8 A 55106.5±971.0 A 59535.8±2345.8 AB 60573.7±1665.0AB 

Mg 2431.3±65.2 A 2279.0±79.7 A 2348.5±88.9 A 2371.0±82.1 A 2288.1±63.0 A 

Ca 7302.1±533.2 A 6762.1±88.0 A 6642.4±166.1 A 7212.2±156.3 A 7579.5±403.4 A 

P 12056.2±721.6 B 10377.8±267.1 B 8138.7±811.5 A 11994.8±545.5 B 11200.3±99.8 B 

Root 

(mg/kg) 

K 32842.1±2813.5a 31482.0±1446.9 ab 26862.5±752.0 a 35321.8±3860.2 a 27945.2±2779.5ab 

Mg 1135.9±54.6 a 1159.7±18.5 a 1175.1±30.9 a 1354.8±26.6 b 1210.0±4.5 a 

Ca 5355. 6±269.6 a 5946.7±121.8 b 6295.9±181.2 bc 7014.8±168.2 d 6696.6±178.6 cd 

P 6931.5±345.5 bc 6942.0±229.2 bc 5872.3±178.2 a 7687.4±376.6 c 6356.6±318.4 ab 

                  Note: Data are mean ± standard error of 4 or 5 replicates. Values of each element content followed by different letters indicate that the data points  

                        are significantly different at p ≤ 0.05. 

 
 
 

Table 2. 3 The levels of micronutrients in shoot and root of A. thaliana exposed to CeO2 and In2O3 NPs for 5 d 

Plant tissue 
Micro-

nutrient 
Control  

CeO2 NPs (ppm) In2O3 (ppm) 

250 1000 250 1000 

Shoot 

(mg/kg) 

Fe < 270 < 270 < 270 < 270 < 270 

Zn 139.4±10.2 AB 124.7±2.0 A 124.0±4.1 A 140.7±5.2 AB 149.0±7.9 B 

Mn 245.7±11.1 B 225.3±6.6 AB 216.9±6.6 A 238.5±3.1 AB 215.6±10.4 A 

B 100.3±6.8 A 103.7±5.6 A 102.9±6.6 A 99.5±12.3 A 91.7±2.4 A 

Root 

(mg/kg) 

Fe 3512.5±123.4 d 2745.9±74.5 bc 1448.7±196.6 a 3045.7±117.2 cd 2279.0±292.4 b 

Zn 339.8±16.9 ab 379.7±16.9 b 294.2±10.1 a 356.0±19.8 b 348.7±4.1 b 

Mn 107.4±6.4 c 75.9±1.4 a 83.2±5.8 ab 96.7±7.0 bc 90.4±4.6 ab 

B 159.7±24.6 ab 189.8±24.2 b 112.3±11.5 a 179.6±32.0 ab 113.4±17.1 a 

   Note: Data are mean ± standard error of 4 or 5 replicates. Values of each element content followed by different letters indicate that the data points 

                       are significantly different at p ≤ 0.05. For Fe determination, analytical Solution Quantification Limit (ASQL) is 270 ppb.
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Figure 2. 1 A. thaliana treated with different concentrations of CeO2 NPs. (A) Images of 

A. thaliana exposed to different nominated concentrations of CeO2 NPs. (B) Fresh 

biomass of A. thaliana including roots and shoots. (C) Root length of A. thaliana. The 

means are averaged from 4 replicates and error bars correspond to standard error of 

mean. Values of fresh biomass or roots length followed by different letters are highly 

significant differences at p<0.01. 
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Figure 2. 2 A. thaliana treated with different concentrations of In2O3 NPs. (A) Images of 

A. thaliana exposed to different nominated concentrations of In2O3 NPs. (B) Fresh 

biomass of Arabidopsis Thaliana including roots and shoots. (C) Root length of A. 

thaliana. The means are averaged from 4 replicates and error bars correspond to standard 

error of mean. Values of fresh biomass or roots length followed by different letters are 

highly significant differences at p<0.01.
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Figure 2. 3 Total chlorophyll of A. thaliana treated with different concentrations of CeO2 

(A) and In2O3 (B) NPs. The means are averaged from 4 replicates of A. thaliana leaves. 

The error bars correspond to standard error of mean. Values of total chlorophyll followed 

by different letters are highly significant differences at p<0.01.
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Figure 2. 4 Quantification of anthocyanin in the leaves of A. thaliana treated with 

different concentrations of CeO2 NPs. (A) image of anthocyanin color in Arabidopsis 

leaves increased as exposure doses of CeO2 NPs increased. (B) quantification of 

anthocyanin under different concentrations of CeO2 NPs treatment. The means are 

averaged from 4 replicates of anthocyanin and the error bars correspond to standard error 

of mean.  Values of anthocyanin followed by different letters are highly significant 

differences at p<0.01.
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Figure 2. 5 Lipid peroxidation of A. thaliana treated with different concentrations of 

CeO2 (A) and In2O3 (B) NPs. The means are averaged from 4 replicates of A. thaliana. 

The error bars correspond to standard error of mean. Values of Malodialdehyde followed 

by different letters are highly significant differences at p<0.01.
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Figure 2. 6 Total ROS production in A. thaliana root treated with 250 and 1000 mg/L 

CeO2 and In2O3 NPs at Day 7. Panels A1-A5 represent the total ROS in control, 250 

mg/L CeO2, 1000 mg/L CeO2, 250 mg/L In2O3, and 1000 mg/L In2O3 NPs treatment, 

respectively. Panel B represents fluorescence intensity corresponding to each treatment. 

Data are mean ± standard error of three replicates.  Values of fluorescence intensity 

followed by different letters indicate that the data points are significantly different at 

p≤0.05.
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Figure 2. 7 H2O2 production in A. thaliana shoot treated with 250 and 1000 mg/L CeO2 

and In2O3 at Day 7. Panels A1-A5 represent the H2O2 levels in control, 250 mg/L CeO2, 

1000 mg/L CeO2, 250 mg/L In2O3, and 1000 mg/L In2O3 NPs treatment, respectively. 

Panel B represents relative intensity corresponding to each treatment. Data are mean ± 

standard error of three replicates.  Values of fluorescence intensity followed by different 

letters indicate that the data points are significantly different at p≤0.05. 
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Figure 2. 8 Antioxidant enzyme activities in A. thaliana seedlings treated with 250 and 

1000 mg/L In2O3 and CeO2 NPs for 25 d. (A) SOD activities in A. thaliana in response to 

both In2O3 and CeO2 NPs exposures; (B) differences of CAT activities in NP-treated A. 

thaliana seedlings; (C) responses of APX activities in A. thaliana seedlings to NP 

exposures; (D) POD activities in A. thaliana treated with NPs. Data are mean ± standard 

error of four or five replicates. Values of each antioxidant enzyme activities followed by 

different letters indicate that the data points are significantly different at p ≤ 0.05. 
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Figure 2. 9 Activities of stress related enzymes in A. thaliana seedlings treated with 250 

and 1000 mg/L In2O3 and CeO2 NPs for 25 d. (A) GST activities in A. thaliana seedlings 

treated with two concentrations of In2O3 and CeO2 NPs; (B) responses of GR activities in 

A. thaliana to NP exposures; (C) PAL activities in in A. thaliana treated with NPs; (D) 

differences of PPO activities in NP-treated A. thaliana seedlings. Data are mean ± 

standard error of three replicates.  Values of each enzyme activities followed by different 

letters indicate that the data points are significantly different at p ≤ 0.05.
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Figure 2. 10 Ce and In content in shoot and root of A. thaliana after 5 d exposure. (A) Ce 

content in shoot and root of Arabidopsis treated with 250 and 1000 mg/L CeO2 NPs; (B) 

In content in shoot and root of Arabidopsis treated with 250 and 1000 mg/L In2O3 NPs. 

Data are mean ± standard error of 4 or 5 replicates. Values of metal uptake followed by 

double asterisks indicate statistically significant differences at p≤0.01 compared to 

control group. 
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Figure 2. 11 Total protein content in A. thaliana seedlings treated with different 

concentrations of In2O3 and CeO2 NPs. Data are mean± standard error of 3 replicates. 

Values of total protein content followed by different letters indicate that the data points 

are significantly different at p≤0.05. 
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Figure 2. 12 Relative expressions of iron transporter in A. thaliana treated with 1000 

mg/L CeO2 and In2O3 NPs at 96 and 120 hours.  A, B, and C- expression levels of FER, 

FRO and IRT in A. thaliana treated with both NPs, respectively. Data are mean ± 

standard error of three replicates.
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Figure 2. 13 Relative expression of antioxidant related genes in responses to CeO2 NPs 

in A. thaliana. Figure A-F represent ATPS, APR, SiR, CS, GS, and APSK, respectively. 

The means are averaged from 3 replicates of A. thaliana. The error bars correspond to 

standard error of mean. Values of each gene followed by different letters with apostrophe 

are significant differences at p<0.05.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

R
e
la

ti
v
e
 E

x
p

r
e
ss

io
n

 o
f 

A
P

S
K

0 500  1000  

F 

CeO2 NPs Concentration (ppm) 

a’ 

a’ 

b’ 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

R
e
la

ti
v
e
 E

x
p

r
e
ss

io
n

 o
f 

A
T

P
S

0 500  1000  

A 

a’ 

b’ 

b’c’ 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

R
e
la

ti
v
e
 e

x
p

r
e
ss

io
n

 o
f 

G
S

0 500  1000  

E 

CeO2 NPs Concentration (ppm) 

a’ 

a’ 

a’ 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

R
e
la

ti
v
e
 E

x
p

r
e
ss

io
n

 o
f 

C
S

0 500  1000  

D 

a’ 

a’ 

a’ 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

R
e
la

ti
v
e
 E

x
p

r
e
ss

io
n

 o
f 

A
P

R

0 500  1000  

B 

a’ 

b’ 

c’ 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

R
e
la

ti
v
e
 E

x
p

r
e
ss

io
n

 o
f 

S
iR

C 
a’ 

a’ 

a’ 

0 50

0 

100

0 



 63 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 2. 14 Relative expression of antioxidant related genes in responses to In2O3 NPs 

in A. thaliana. Figure A-F represent ATPS, APR, SiR, CS, GS, and APSK, respectively. 

The means are averaged from 3 replicates of A. thaliana. The error bars correspond to 

standard error of mean. Values of each gene followed by different letters with apostrophe 

are significant differences at p<0.05.
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CHAPTER 3 

REDUCED SILVER NANOPARTICLE PHYTOTOXICITY IN CRAMBE 

ABYSSINICA WITH ENHANCED GLUTATHIONE PRODUCTION BY 

OVEREXPRESSING BACTERIAL Γ-GLUTAMYLCYSTEINE SYNTHASE 

 

3.1 Introduction 

Nanotechnology has been applied in a diverse range of industries, including 

pharmaceuticals, cosmetics, electronics, and agriculture.166, 167, 168 It is widely known that 

at size dimensions of the nanoscale (<100nm), physical and chemical properties of 

materials can change dramatically, and that much of this change is driven by the higher 

ratio of surface to volume.  It is the usefulness of many of these unique size-dependent 

properties that has driven the exponential growth in nanotechnology.1, 169, 68, 170 However, 

it is also widely recognized that there is an insufficient understanding of nanomaterial 

fate, transport and effects in the environment.171, 172  A number of recent studies have 

been published demonstrating that upon nanoparticle exposure, toxicity to plants, 

microorganism, and animals may occur.173, 29, 174, 37, 64 175 Clearly, further work, 

particularly at the mechanistic and molecular scale, is necessary to fully characterize the 

risk of nanomaterial use and exposure.  

 Silver nanoparticles (Ag NPs) are among the most widely used nanomaterials in 

consumer products,176 largely due to the observed antimicrobial activity, and as such, 

concerns over Ag NPs impacts on non-target biota have increased. Zheng et al. 

demonstrated that Ag-SiO2 shell nanoparticles displayed antimycotic activity to 

phytopathogenic fungi at doses as low as 0.5 ppm.177 Savithramma et al. observed that 

Ag NPs synthesized from Shorea tumbuggaia were highly effective at inhibiting both 

bacterial and fungal growth.178 Similarly, Escherichia coli exposed to Ag NPs 
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experienced growth inhibition but importantly, sulfidation of Ag NPs, as may be common 

in wastewater treatment, lessened the observed nanotoxicity.179 

 Although numerous reports have recently been published on the fate and toxicity 

of nanomaterials to terrestrial plants species, a critical knowledge is still lacking. 

Mechanisms of nanoparticle toxicity remain elusive but due to the increased reactivity 

and small size, nanoparticle entry into and accumulation within plants cells may be 

significant. A growing body of evidences has demonstrated that Ag NPs at a wide range 

of concentrations can result in oxidative stress, leading to observed phytotoxicity, 

although low exposure doses of Ag NPs from 0.01 to 0.1 mg/L could stimulate A. 

thaliana growth.180 Ravindran et al. and Stampoulis et al. noted that Ag NPs in a wide 

range of exposure doses from 10 to 1000 ppm inhibited seed germination, root elongation, 

biomass/growth and transpiration rate in tomato (Lycopersicum esculentum), corn (Zea 

mays) and summer squash (Cucurbita pepo).181, 182 Upon exposure to Ag NPs (20nm and 

100nm) for 14 days, duckweed (Lemna minor L.) exhibited a linear dose-response 

relationship, as exposure doses increased, both frond number and relative growth rate of 

duckweed were significantly decreased.183 Lee et al. evaluated the phytotoxicity of Ag 

NPs to mung bean (Phaseolus radiates) and sorghum (Sorghum bicolor) under both agar 

and soil conditions.72 Interestingly, the phytotoxicity of Ag NPs in soil was markedly less, 

presumably to the lower bioavailability of the particles in natural media. It is noteworthy 

that the majority of the nanoparticle phytotoxicity data is confined to physiological 

endpoints and that few studies have addressed toxicity at the molecular level. Kaveh et al. 

demonstrated that transcripts involved in thalianol biosynthetic pathway (one of plant 

defense mechanism) were highly up-regulated in Ag NPs treated A. thaliana.86 Panda et 
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al. described the genotoxicity of Ag NPs to Allium cepa when compared to other Ag 

forms, noting that the NPs caused cell death and DNA damage by inducing reactive 

oxygen species (ROS) generation.21 

Crambe abyssinica, a member of Brassicacea, is naturally tolerant to abiotic 

stresses such as cold, salt and heavy metals.184 Crambe is a high biomass, high oil content 

(35-40%) crop with a short life cycle, making it an ideal industrial crop for both biofuel 

production and phytoremediation.104 Previously, we engineered Crambe to overexpress 

the E. coli γ-ECS gene, which yields high levels of glutathione (GSH), as compared to 

wild type (WT) Crambe.184 GSH is widely recognized as one of the most important redox 

buffer in living cells for the detoxification of oxidative stress and damage caused as a 

result of high ROS levels production under stress conditions. In this study, two 

independent γ-ECS transgenic Crambe lines were exposed to Ag NPs and Ag+ ions to 

evaluate the potential tolerance of genetically modified Crambe to nanoparticle and ionic 

Ag. Measured physiological parameters included biomass, transpiration rate, and 

chlorophyll content, as well as Ag shoot and root content. In addition, to gain a 

perspective on toxicity and tolerance, three main thiol compounds involved in the entire 

GSH metabolic pathway along with soluble nutrient elements were evaluated. To our 

knowledge, this study represents the first report of simultaneous physiological and 

biochemical effects of nanotoxicity to genetically engineered plant.  
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3.2 Materials and Methods 

3.2.1 Seed sterilization  

C. abyssinica cultivar BelAnn was transformed with γ-ECS gene as described by 

Chhikara et al.184 Two transgenic lines (γ-ECS1 and 16) showing high transgenic 

expression were selected for this study.184 γ-ECS16 showed higher expression level of γ-

ECS transcripts as well as γ-ECS protein level compared to γ-ECS1.184 Seeds of WT and 

two independent homozygous transgenic Crambe were surface sterilized with 70% 

ethanol for 10 min, twice soaked in 25% (v/v) commercial bleach solution for 15 min, 

and washed 5 times with autoclaved DI H2O for 5 min rinsing.118 The seeds were 

inoculated on half-strength Murashige and Skoog medium (1/2x MS medium: 2.22 g MS 

Basal medium/vitamins, 20 g sucrose and 8 g phytoblend in 1 L DI H2O, pH 5.7) in 

magenta boxes.185 The plants were incubated in a growth chamber at 22 °C with 16h/8h 

(light/dark) cycle, the light intensity is 250 μmol m-2s-1. 

3.2.2 Determination of inhibitory Ag concentrations  

An initial screening study was conducted to characterize the dose-dependent nature of 

toxicity and to enable determination of optimum Ag exposure concentrations for 

additional physiological and biochemical studies. The initial concentrations were 25, 50, 

100 and 200 mg/L Ag NPs (particle size 20 nm; purchased from US Research 

Nanomaterials, Inc); 500, 1000, 2000 and 3000 mg/L for bulk Ag (particle size: 44 μm; 

Strem Chemicals); and 25, 50, 100 and 200 μM for Ag+ ions (Fisher Scientific). Ag NPs 

were twice dispersed by ultrasonic treatment for 30min each time prior to storage in the 

dark place at room temperature overnight.29 Hydrodynamic diameters of Ag NPs in DI 
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water and Hoagland’s solution were measured by Dynamic Light Scattering (DLS), as 

shown in Figure 3.1.  For each treatment, fifteen seeds of WT Crambe per box were 

planted into Ag-amended 1/2x MS medium. All experiments were conducted in 

triplicates. These magenta boxes were maintained in a growth chamber as described 

above for 25 days prior to biomass determination. 

Based on the preliminary dose-response assay (Figure 3.2), 200 and 250 mg/L 

were selected as the Ag NP exposure levels, and 200 and 250 μM were chosen for Ag+ 

ions. However, no significant difference of fresh biomass was found among bulk Ag 

treatments (even at 3000 mg/L exposure dose) as compared to Ag NPs and Ag+ ions 

treatments. Thus, additional work in this study will exclude bulk Ag treatment. Using 

identical exposure conditions, both WT and transgenic Crambe were exposed to Ag for 

25 days.  

3.2.3 Phytotoxicity of Ag NPs to Crambe in hydroponic systems 

To determine the impact of Ag exposure on transpiration and metal uptake, WT and 

transgenic Crambe were germinated in a magenta box with 1/2x MS medium containing 

phytoblend as described above. After 25 days, the plants were carefully removed from 

solid medium, and were rinsed gently with DI water to remove attached media on the 

roots.  Both WT and transgenic Crambe were transferred to half-strength Hoagland’s 

solution (Hoagland Modified Basal Salt Mixture purchased from Phytotechnology 

Laboratories) and allowed to acclimatize for 7 days prior to 5 days exposure to the Ag 

NPs and Ag+ ions treatments. The transpiration was measured by the volume of solution 
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lost; fresh solution without Ag was added daily to maintain a consistent volume. After 

exposure, plant tissues were harvested to evaluate Ag content, GSH, and nutrient levels.  

3.2.4 Measurement of chlorophyll content 

Chlorophyll content was determined by modified protocol as described in 

Lichtenthaler.120 Briefly, 50 mg fresh tissue was harvested and cut into pieces (< 1 cm), 

and added to 15 mL centrifuge tubes amended with 10 mL 95% ethanol. The tested tubes 

were kept in the dark for 3-5 days and the chlorophyll content was measured by a UV-Vis 

spectrophotometer (Spectronic Genesis 2). Chlorophyll a, chlorophyll b and total 

chlorophyll were determined by the following equations: Chla=13.36A664.2-5.19A648.6, 

Chlb=27.43A648.6-8.12A664.2 and Total chlorophyll=Chla+Chlb.  

3.2.5 Measurement of Ag accumulation and nutrient uptake in Crambe 

Harvested root tissue was rinsed with DI H2O three times to remove surface retained Ag. 

All shoot and root samples were oven-dried at 65 °C for 3 days and then 30 mg of tissue 

was transferred to 15 mL centrifuge tubes amended with 3 mL of HNO3. The samples 

were digested at room temperature for 48 hrs. Five hundred microliters of H2O2 were then 

added to complete the tissue digestion. The digests were diluted 35 folds with DI H2O 

prior to determination of Ag content by inductively coupled plasma mass spectroscopy 

(ICP-MS, Agilent 7500ce).35 Ag NPs and AgNO3 amended ½ X Hoagland’s solution was 

centrifuged at 5000 rpm for 1 hr. Supernatant was passed through 0.45μm filter then used 

for determination of Ag content.  
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For extraction of soluble fraction of nutrient shoot and root 200 mg tissue samples 

were extracted in I mL of 5% perchloric acid (PCA). Samples were again frozen and 

thawed 3 times and kept frozen at -20°C until analyses.186 For quantitation of nutrients 

PCA extracts were diluted 100 fold and analyzed using a simultaneous axial inductively 

coupled plasma emission spectrophotometer (ICP-AES, Vista CCD, Varian, Palo Alto, 

CA, USA) and Vista Pro software (Version 4.0). National Institute of Standards and 

Technology (NIST, Gaithersburg, MD, USA) standards for Eastern white pine needles 

(SRM 1575A) and apple leaves (SRM 1515) were used since no standards are available 

for fresh foliar tissues. We did use an in-house ground wood reference sample for quality 

control and assurance. For all samples, a standard curve was repeated after every 20 

samples, and check standards were run after every recalibration and after every 10 

samples.  

3.2.6 Measurement of lipid peroxidation in Crambe 

Lipid peroxidation was determined by measuring malondialdehyde (MDA) content in 

shoot and root of Crambe. 200 mg of plant tissues were homogenized in 4 mL of 0.1% 

(w/v) of tricholoroacetic acid (TCA).  The extracts were used for measuring MDA 

content following the method described in Jambunathan (2010).187  

3.2.7 Measurement of levels of γEC, GSH and PC3 in Crambe  

A pool of approximate 200 mg fresh tissue (homogenous mix of shoot and root) was 

collected in 1.5 mL containing 1 mL extraction buffer (6.3mM diethylenetrianmine 

pentacetic acid, DTPA, mixed with 0.1% trifluoroacetic acid, TFA). The extracts were 

used for derivatization and analysis of thiol compounds (Cysteine, γEC, GSH and PC3) 
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as described in Minocha et al.188 250 μL of sample extract or standard was mixed with 

solution containing 615 μL of 200 mM 4-(2-hydroxyethyl)-piperazine-1- propane 

sulfonic acid (HEPPS) buffer and 25 μL of 20 mM Tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP). 0.5 mM N-acetyl-l-cysteine (NAC) was used as an internal 

standard. The mixture was incubated at 45 °C for 10 min, and 10 μL of 50 mM 

monobromobimane (mBBr) was added before placing all samples in the dark place at 45 

°C for 30 min. 1M methanesulfonic acid (MSA) was used to terminate the reaction. All 

samples were passed through 0.45 μm filters and stored at -20 °C until analysis of thiol 

compounds using high performance liquid chromatography (HPLC). 

3.2.8 Statistical analysis 

For each assay, the means are averaged from 4-5 replicates and error bars correspond to 

standard error of mean. One-way analysis of variance (One-way ANOVA) followed by 

Duncan multiple comparison test was used to determine statistical significance of each 

parameter among treatments. Values of each assay followed by different letters are 

significantly different at p ≤ 0.01 or 0.05. 

3.3 Results and Discussion  

3.3.1 Determination of inhibitory Ag concentrations for Crambe growth 

Wild type Crambe was exposed to different concentrations of NPs, Ag+ ions as well as 

Ag bulk particles (Figure 3.2). Exposure to 25 mg/L Ag NPs resulted in a significant 

decrease in plant biomass relative to unexposed controls but the observed phytotoxicity 

was not significantly different at 25, 50, and 100 mg/L. At 200 mg/L Ag NPs, the 
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biomass reductions were significantly greater than other exposure concentrations and 

were 60% less than that of unexposed controls. Although 50 µM of Ag+ ions had no 

impact on plant biomass, exposure to higher concentrations resulted in dose-dependent 

phytotoxicity (Figure 3.2). Bulk Ag exposure at 200-2000 mg/L resulted in 18-32% 

biomass reductions relative to unexposed controls; high variability in biomass at 3000 

mg/L exposure resulted in statistical ambiguity with regard to toxicity (Figure 3.2).  It is 

notable that for exposure at equivalent concentrations of 200 mg/L (µM for Ag+ ions), Ag 

NP results in 20% more biomass reduction, indicating greater toxic response with Ag 

NPs exposure.  In addition, Ag NP exposure at 25 mg/L induced significantly greater 

toxicity than much higher levels of ionic or bulk particles. Based on these findings, 

concentrations of 200 and 250 mg/L for Ag NPs and 200 and 250 M for Ag+ ions were 

selected for additional study. High concentrations of bulk Ag were used to select 

inhibitory concentration for this study, however, bulk Ag treatment did not show higher 

phytotoxicity compared to other two treatments. Therefore, we stopped using bulk Ag in 

further experiment. 

3.3.2 Analysis of fresh biomass in Ag-exposed Crambe  

As described in Material & Methods sections, transgenic γ-ECS and wild type (WT) 

plants were exposed to 200 and 250 mg/L Ag NPs and 200 and 250 μM Ag+ ions. After 

25 days of Ag exposure, the biomass (roots and shoots) of WT and two independent γ-

ECS transgenic Crambe lines was determined at harvest. There were no significant 

differences in the biomass of WT and transgenic plants in the non-exposed control. Ag 

exposure in any form significantly reduced the biomass of all plant types (Figure 3.3). 

However, across all four Ag-exposure scenarios, γ-ECS Crambe lines achieved 
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significantly higher biomass than respective WT plants. WT Crambe biomass was 28-

33% and 44-46% less than the transgenic lines at 200 mg/L and 250 mg/L Ag NPs, 

respectively. Similarly, transgenic Crambe lines attained significantly greater biomass 

under Ag+ ions exposure as compared to WT; at 200 and 250 µM, the WT mass was 

reduced by 39-43% and 27-33%, respectively, relative to γ-ECS Crambe. Collectively, 

Ag NPs exposure resulted in more damages to both WT and transgenic Crambe as 

compared to Ag+ ions treatment, nanoscale effects might be the main reason beyond the 

toxicity caused by Ag+ ions.   

The exposure dose for Ag NP and Ag+ ions in our study is higher than that used in 

a number of other studies, including annual ryegrass (Lolium multiflorum) (0-40 ppm) in 

solutions, 28 wheat (Triticum aestivum L.) (2.5 ppm) in sand matrix,189 P. radiatus and S. 

bicolor (0-40 ppm) in agar test 72 and rice (Oryza sativa L.) (0-60 ppm) in N6 growth 

cultivation media.22 Transgenic Crambe lines exhibited greater tolerance and were 

noticeably healthier than WT after exposure to Ag NPs and Ag+ ions (Fig. 1). In 

accordance with a number of recent studies, Ag NPs caused greater phytotoxicity than 

corresponding bulk and ion treatments. Hawthorne et al. reported significantly less 

zucchini biomass upon exposure to 250 ppm Ag NPs relative to an equivalent bulk Ag 

control.173 Dimpka et al. illustrated that the inhibition of wheat root and shoot tissue was 

significantly greater for Ag NPs (2.5 mg/kg) than an equivalent amount of Ag+ ions.189 In 

addition to Ag, other metal NPs such as CuO,71, 190, 131 CeO2  (0-4000 ppm) 66 and Al2O3 

191 have been reported to induce oxidative stress and reduce the biomass of plants such as 

Z. mays, cucumber (Cucumis sativus),  dotted duckweed (Landoltia punctata) and 

tobacco (Nicotiana tabacum). 
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3.3.3 Analysis of chlorophyll content in Ag-exposed Crambe 

As the critical photosynthetic pigment, chlorophyll levels can be a significant indicator of 

toxicity to plants. In the control plants, there were no significant differences in the 

chlorophyll content between WT and transgenic Crambe (Figure 3.4). The chlorophyll 

content of all plants was decreased upon Ag exposure, regardless of concentration and Ag 

types. However, similar to the biomass data above, across all four Ag-exposure scenarios 

the chlorophyll levels in the γ-ECS Crambe lines were significantly greater than the 

respective WT plants.  WT Crambe chlorophyll content was 47-49% and 34-42% less 

than the transgenic lines at 200 mg/L and 250 mg/L Ag NPs, respectively. Similarly, 

transgenic Crambe produced significantly greater chlorophyll content under Ag+ ions 

exposure as compared to WT; at 200 and 250 µM, the WT mass was reduced by 47-49% 

and 39-40%, respectively, relative to γ-ECS Crambe.  

Similarly, Jiang et al. reported a time-dependent decrease in giant duckweed 

(Spirodela polyrhiza) chlorophyll content upon exposure to 0-10ppm Ag NPs. 192 

Oukarroum et al. investigated the impact of 0-10 ppm Ag NPs exposure on green algae 

(Chlorella vulgaris and Dunaliella tertiolecta) at two temperatures.  The study reported 

not only dose dependent decreases in chlorophyll content but also described a 

nanoparticle-induced disruption of photosynthetic electron transport. 193 Although other 

metal oxide nanoparticles such as CuO NPs 131 have also been shown to decrease 

chlorophyll production, it is worth noting that both TiO2 
194 NPs and Au NPs 77 were 

reported to increase the production of the pigment in T. aestivum spp. and Brassica 

juncea. Additional studies are being planned to characterize the mechanism of Ag NPs-

induced decreases in chlorophyll levels, which may occur by inhibition of chloroplast 
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formation or by direct interaction with and degradation of chlorophyll. From the aspect of 

molecular response to Ag NPs treated A. thaliana, down-regulation of transcription levels 

of protochlorophyllide reductases, which are responsible for chlorophyll sysnthesis, were 

observed. 86 This result could further lead us to understand the mechanism of chlorophyll 

degradation occurred in the presence of Ag NPs. 

3.3.4 Analysis of Ag-exposure on transpiration in Crambe  

In order to understand the effects of Ag NPs on plant transpiration rate, hydroponic 

system was set up as shown in Appendix II. The transpiration rate was determined by 

calculating water loss by volume for each replicate over 24 h interval for 5 days period 

(Figure 3.5). Similar to biomass and chlorophyll, the transpiration rate after 5 days 

exposure was reduced by Ag NPs exposure, regardless of concentrations, but both γ-ECS 

Crambe lines consistently transpired more solution than the respective WT individuals. 

The transpiration rates of WT Crambe treated with 250 mg/L Ag NPs were significantly 

reduced by 35-46% relative to the transgenic lines (Figure 3.5). Similar results for 

transpiration rate were obtained when plants were exposed to 200 mg/L Ag NPs (data not 

shown).  Interestingly, the exposure to Ag+ ions at 250 M concentration had no effect 

on solution transpiration rates, regardless of plant types. Also, at lower concentration of 

200 M Ag+ ions, no difference in transpiration rate was observed (data not shown).  

Our findings are in agreement with Stampoulis et al. where Ag NPs decreased C. 

pepo transpiration volume by 75% as compared to bulk-exposed and untreated plants.182 

Conversely, transpiration rate was not impacted in corn and radish plants grown in CeO2 

NPs amended soil.145, 195 Another study demonstrated that TiO2 NPs could notably 
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elevate transpiration rate in Elm tree (Ulmus elongata) hydroponically.196 This finding is 

highly significant that, in spite of the well-known phytotoxicity of Ag NPs, the γ-ECS 

Crambe lines yielded significantly greater growth (biomass, transpiration) at equivalent 

exposures, strongly implicating GSH metabolism in the defense of NP-induced abiotic 

stress. 

3.3.5 Analysis of lipid peroxidation in Ag-exposed Crambe 

Membrane integrity in both WT and transgenic Crambe was assessed by MDA formation 

(Figure 3.6). MDA content in shoot of Crambe showed that significantly high level of 

MDA was produced in WT Crambe compared to both transgenic lines regardless of Ag 

forms. At 200 mg/L Ag NPs and 200 μM Ag+ ions, MDA content in both γ-ECS Crambe 

was reduced by 27.3 - 32.5% and 20.6 - 33.6%, respectively, relative to WT. Similarly, in 

the root of both WT and transgenic Crambe, significantly low MDA content in both 

transgenic lines indicated that γ-ECS engineered plants showed high tolerance to metal 

stresses, regardless of metal forms. Other NPs could also induce excess amounts of MDA 

production in plants, indicating oxidative stress occurred in plants in the presence of 

metal-based NPs. As exposure doses of CuO NPs increased, MDA content in root of 

mung beans was significantly elevated.197 High level of MDA was measured in CeO2 

NPs treated A. thaliana.20 However, CeO2 NPs could not induce lipid peroxidation in 

either corn plants or kidney beans.23, 198  Up-regulations of relative expression of genes, 

including glutathione S-transferase, peroxidase, superoxide dismutase, all of which can 

scavenge excess amounts of ROS, were evident in Ag NPs treated A. thaliana.86 
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3.3.6 Analysis of γEC, GSH and phytochelatins in Ag-exposed Crambe  

Cysteine is the primary precursor molecule in glutathione (GSH) biosynthesis in plants. 

In the unexposed plants, cysteine levels were similar for the WT and transgenic Crambe. 

However, upon exposure to Ag NPs and Ag+ ions, cysteine production was significantly 

greater for the γ-ECS transgenic Crambe lines (Figure 3.7 A), clearly demonstrating the 

enhanced GSH metabolic pathway enabled by γ-ECS gene overexpression. γ-

Glutamylcysteine (γ-EC) and GSH play essential roles in metal detoxification through 

thiol group (-SH) chelation. In Figure 3.7 B, transgenic plants produced significantly 

higher levels (up to four-fold) of γ-EC under the catalysis of γ-glutamylcysteine 

synthetase (γ-ECS), regardless of Ag presence. Glutathione synthetase (GS) converts γEC 

into γ-Glu-Cys-Gly (GSH) and in Figure 3.7 C, significantly greater GSH synthesis is 

evident in both transgenic lines without any treatments. Notably, GSH levels in WT and 

transgenic plants were decreased after exposed to Ag NPs and Ag+ ions compared to the 

respective untreated control groups.  PC synthetase (PCS) can effectively convert GSH 

into phytochelatins- PCs (γ-Glu-Cys)2-8-Gly, which results in depleting GSH levels. As 

shown in Figure 3.7 D, PC3 levels in both transgenic lines were overproduced compared 

to WT upon exposure 250 mg/L Ag NPs.  

Cysteine is an effective antioxidant and could counteract Ag-induced stress 

because of the thiol group (-SH). Li et al. found that a significant increase in cysteine 

could be induced through overexpression of γ-ECS in Arabidopsis upon arsenic treatment 

because the great demand to synthesize GSH.103 In addition, cysteine can be converted 

into GSH rapidly under the catalysis of γ-ECS and GS. Additionally, under the abiotic 

stress caused by Ag, reactive oxygen species (ROS) can be produced in plants, especially 
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superoxide anion (O2
-) and hydrogen peroxide (H2O2).

21 Due to the direct toxicity of ROS 

in plant cells, GSH redox cycles are frequently activated for plant defense.  In the GSH-

mediated defense pathway, GSH peroxidase (GPx) can detoxify hydrogen peroxide by 

oxidizing GSH to GSSG.199 GSH, also through its redox activity, can directly reduce Ag+ 

ions through the conversion of GSH to the GSSG.200 This may explain the reduction in 

overall GSH levels upon Ag NPs and Ag+ ions treatment as compared to the control 

group. Dimkpa et al. demonstrated that GSSG in T. aestivum was increased significantly 

after treating with 2.5 ppm Ag NPs and 2.5 ppm Ag+ ions.189  Highly induced 

transcription levels of glutathione synthase (GS) were evident in both In2O3 and CeO2 

NPs treated Arabidopsis.20 Another reasonable pathway to explain the GSH depletion is 

through phytochelatin biosynthesis. 201, 103 GSH is the precursor for the synthesis of 

phytochelatins catalyzed by phytochelatin synthase (PCS). 201  It has been reported that 

PCS in plants can be activated by metal ions such as Cd2+, Hg2+, Ag+, Zn2+ and Cu2+, 202 

which could yield high levels of phytochelatins for detoxification of toxic metals.  Li et 

al. observed that in transgenic Arabidopsis by overexpressing AtPCS1, Cd exposure 

enhanced phytochelatins levels by several fold over the control group. 203 Our results 

agree with these findings in that Ag NPs treatment increased PC3 levels in both WT and 

transgenic Crambe (Fig. 5D). Another possible pathway for GSH depletion is that GSH 

can directly bind/complex with Ag via –SH group.  

3.3.7 Ag distribution and nutrient displacement in Crambe  

The Ag content in each of the non-Ag exposed Crambe plants was below 0.5 μg/kg (not 

shown in the figure). The shoot Ag content of transgenic Crambe under Ag NPs 

treatment was significantly higher than WT. Notably, the Ag content in γ-ECS 16 shoots 
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reached to 50.5 mg/kg, which is 5-fold higher than WT plants (Figure 3.8 A).  Under Ag+ 

ions exposure, the shoots of γ-ECS transgenic Crambe also contained significantly higher 

Ag levels than WT plants, although the size of the increase was not as dramatic as 

observed with the NP treatment. Contrary to shoot, Ag content in the roots of both γ-ECS 

1 and γ-ECS 16 Crambe exposed to Ag NPs were lower than WT. However, the Ag 

content of plant roots exposed to Ag+ ions did not vary significantly among the γ-ECS 

and WT Crambe plants (Figure 3.8 B). Additional studies will be conducted to explore 

the decreased Ag content in transgenic root tissue. The shoot-to-root translocation factor 

(TFs; shoot concentration divided by root concentration) is shown in Figure 3.8 C. 

Regardless of Ag type, the transgenic Crambe translocation had significantly greater 

quantities of the element to the shoot tissue than WT. The centrifuged Hoagland’s 

solution supernatant of AgNO3 exposed plants had similar Ag levels across all plant types 

(Figure 3.8 D). Similarly, for the γ-ECS 16 Crambe, the solution Ag content of the Ag 

NPs treatment did not vary from that of the WT. However, for unknown reasons, the γ-

ECS 1-8 treated with 250 ppm Ag NPs had nearly 3 fold higher Ag levels in the 

supernatant than WT. Notably, the root Ag content of these plants did contain 

significantly lower Ag levels than WT.  

This observation is particularly noteworthy given the markedly decreased 

phytotoxicity observed with the γ-ECS Crambe but may have been a function of the 

significantly greater transpiration exhibited by the transgenic plants relative to WT. This 

observation may suggest that the higher levels of GSH and PC3 synthesis in transgenic 

plants may result in greater chelation of Ag or potentially differential storage in vacuoles 

or the cell wall. The findings of higher metal NP translocation than equivalent ions agree 
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with the work of De L Torre-Roche et al., where soybean (Glycine max) and C. pepo 

accumulated more shoot Ag under NP exposure (500 and 2000 ppm) relative to bulk or 

ions.204  Similarly, Dimpka et al. reported that Ag levels in T. aestivum shoots were 

greater under 2.5 ppm Ag NPs treatment than equivalent bulk metal.189 Others have 

reported on a dose-dependent accumulation of Ag NPs in organisms such as L. 

multiflorum 28 and Chlamydomonas reinhardtii.205 In fact, similar dose-dependent 

nanoparticle accumulation has been noted for various concentrations of CuO, ZnO and 

Au NPs in C. sativus 71, Z. mays 206 and B. juncea.77 Although our study only investigated 

a limited concentration range of Ag NPs and Ag+ ions in WT and transgenic Crambe, the 

data clearly suggest phytochelation of Ag + with PC3, GSH and cysteine, along with 

subsequent transport from roots to shoots. In related work, we observed that engineered 

A. thaliana overexpressing the γ-ECS gene could also accumulated higher levels of 

cadmium and mercury than WT.201 

Along with Ag distribution, nutrient elements were also determined in both WT 

and transgenic Crambe (Table 3.1). The levels of most soluble nutrient elements, such as 

Ca, K, Mg, Zn and Mn, were similar regardless of Ag presence and plant types, 

indicating that either Ag NPs or Ag+ ions could not disrupt nutrient transport in Crambe. 

However, Fe level in WT Crambe, as one exception, was significantly lower in either Ag 

NPs or Ag+ ions treatment than WT control group. Similar phenomenon was not found in 

γ-ECS Crambe lines as Fe levels in these lines were higher than WT plants under Ag NPs 

or Ag+ ions. In addition, our results showed that P level in Ag+ ions treated transgenic 

Crambe was significantly elevated compared to untreated transgenic controls, although 

the difference between WT and transgenic lines treated with Ag+ ions was not significant. 
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Both Zhao et al. and Gao et al. studies suggested that CeO2 and TiO2 NPs could not 

disrupt nutrient levels in corn and U. elongata, respectively.145, 196  Further studies are 

necessary to understand how plants respond to nutrient elements uptake in the presence 

of NPs and whether there is a defense mechanism (such as stomatal closure, transpiration 

rate reduction) in plants to avoid excess elements uptake, which subsequently causes 

nutrient displacement.207 

In conclusion, we showed that enhanced level of GSH in transgenic Crambe 

expressing γ-ECS is involved in protecting plants from phytotoxicity caused by Ag NPs 

and Ag+ ions. Further, exposure to Ag NPs caused significant decrease in Fe uptake only 

in wild type plants and not in γ-ECS lines. Since Fe is the most deficient nutrient for plant 

growth, our results holds significant importance to prevent crop yield loss as a results of 

Ag NPs and Ag+ ions-induced phytotoxicity and Fe deficiency. This study is highly 

helpful to understand the fate, transport and toxicity of NPs in plants and role of GSH in 

counteracting the Ag NPs phytotoxicity, which could prove useful for mitigating the 

threat of NPs in the food chain and the environment. 
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Figure 3. 1 Hydrodynamic diameter analysis of Ag NPs by DLS. (A) Images of two 

different concentrations of Ag NPs dispensed in DI water and Hoagland’s solution (HS). 

(B) Hydrodynamic diameter analysis of Ag NPs in DI water and HS respectively. The 

means are averaged from 7 replicates.  Hydrodynamic diameter of Ag NPs dispensed in 

HS was significantly higher than that of in DI water because of high ion strength in HS. 

Nanoparticle could be forced to agglomerate together in the solution with high ion 

strength. 
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Figure 3. 2 Phenotypes of WT Crambe versus different forms of Ag. (A) In Ag NPs 

treatment, WT Crambe was exposed in the range of 25-200 ppm; In Ag+ ions treatment, a 

series of doses were used from 50 to 200 μM to test Ag+ ions toxicity on WT Crambe; In 

Bulk Ag treatment, no significant differences were observed in a wide range from 500 to 

3000 mg/L. (B) Effects of various of Ag on fresh biomass of WT Crambe. Bulk Ag 

caused less damages to plants compared to other two forms of Ag. Data are mean ± 

standard error of three replicates of 15 plants each. Values of total fresh biomass 

followed by different letters are significantly different at p ≤ 0.05. 
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Figure 3. 3 Growth analysis of WT and γ-ECS lines treated with Ag NPs and Ag+ ions. Plants were exposed to the indicated 

concentrations of Ag NPs and Ag+ ions, respectively, for 25 days. (A) Images of WT and γ-ECS lines grown on Ag NPs and Ag+ ions 

amended 1/2 x MS media after 25 day of growth. (B) Total fresh biomass of Ag NPs and Ag+ ions treated WT and two γ-ECS lines. 

Data are mean ± standard error of 3 replicates of 15 plants each. Values of total fresh biomass followed by different letters are 

significantly different at p ≤ 0.01.
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Figure 3. 4 Analysis of total chlorophyll content in WT and γ-ECS lines treated with Ag 

NPs and Ag+ ions. Data are mean ± standard error of three replicates of 15 plants each. 

Values of total chlorophyll contents followed by different letters are significantly 

different at p ≤ 0.05. 
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Figure 3. 5 Analysis of transpiration rate between WT and transgenic Crambe treated 

with 250 ppm Ag NPs and 250 μM Ag+ ions for 5 days. Water loss was calculated in 24 

hours intervals. Data are mean ± standard error of 5 replicates. Values of transpiration 

rate marked with asterisks (*) are significantly different at p ≤ 0.05.
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Figure 3. 6 Lipid peroxidation in shoot and root of WT and γ-ECS Crambe. MDA 

contents in shoot (A) and root (B) of WT and transgenic Crambe treated with 250 mg/L 

Ag NPs and 250 μM Ag+ ions, respectively, for 25 days. Data are mean ± standard error 

of 4 replicates of 15 plants each. Values of MDA content followed by different letters are 

significantly different at p ≤ 0.05. 
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Figure 3. 7 Analysis of total cysteine, γ-EC, GSH and PC3 levels in WT and γ-ECS 

Crambe treated with 250 mg/L Ag NPs and 250 µM Ag+ ions. The individual component 

above were extracted from homogenous mix of shoots and roots tissues. Figure A, B, C, 

and D represent different levels of cysteine, γ -EC, GSH and PC3 between WT and 

transgenic Crambe, respectively. Data are mean ± standard error of 4 replicates. Values 

of each component followed by different letters are significantly different at p ≤ 0.05. 
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Figure 3. 8 Ag uptake and distribution in WT and γ-ECS lines treated with 250 mg/L Ag 

NPs and 250 μM Ag+ ions. Panels A, B, C, and D represent Ag content in shoots, roots, 

TFs (shoots/roots), and supernatant of 1/2 x Hoagland’s solution, resrectively. Data are 

mean ± standard error of 4 replicates. Values of Ag concentration in Ag NPs and Ag+ 

ions treatment followed by different lowercase and uppercase letters, respectively, are 

significantly different at p ≤ 0.05. 
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Table3. 1 Soluble elements (extracted in 5% perchloric acid) in Ag NPs and Ag+ ions 

treated WT and γ-ECS Crambe lines 

Soluble 

Nutrient 

element 

(µmoles 

g-1 FW) 

Treatment WT Crambe γECS 1 Crambe γECS 16 Crambe 

Ca 

Control 36.55±1.30 b 35.48±1.52 b 36.71±4.51 b 

250 mg/L Ag NPs 26.97±1.62 a 32.64±2.56 ab 29.61±1.45 ab  

250 μM Ag+ ions 31.87±1.74 ab 33.15±2.61 ab 35.05±1.87 b 

K 

Control 62.60±1.85 ab 62.28±3.06 ab 64.68±2.18 ab 

250 mg/L Ag NPs 65.47±1.01 abc 68.83±0.70 bc 74.35±3.62 b  

250 μM Ag+ ions 58.98±5.09 a 68.09±2.89 abc 66.85±1.66 abc 

Mg 

Control 5.36±0.30 ab 4.92±0.31 ab 4.67±0.38 ab 

250 mg/L Ag NPs 4.13±0.30 a 4.39±0.33 ab 4.91±0.57 ab 

250 μM Ag+ ions 5.21±0.41 ab 5.19±0.35 ab 5.56±0.40 b 

Mn 

Control 0.169±0.051 a 0.158±0.023 a 0.167±0.025 a 

250 mg/L Ag NPs 0.146±0.029 a 0.168±0.019 a 0.115±0.012 a 

250 μM Ag+ ions 0.166±0.021 a 0.207±0.034 a 0.184±0.040 a 

Fe 

Control 0.406±0.025 c 0.289±0.062 abc 0.211±0.003 ab 

250 mg/L Ag NPs 0.135±0.034 a 0.220±0.076 ab 0.170±0.053 ab  

250 μM Ag+ ions 0.261±0.042 ab 0.340±0.075 bc 0.147±0.057 a  

Zn 

Control 0.051±0.007 ab 0.048±0.004 a 0.053±0.001 ab 

250 mg/L Ag NPs 0.048±0.004 a 0.044±0.003 a 0.065±0.007 c 

250 μM Ag+ ions 0.054±0.003 ab 0.069±0.007 c 0.071±0.003 bc 

P 

Control 3.01±0.51 a 3.34±0.34 a 3.52±1.00 a 

250 mg/L Ag NPs 3.22±0.37 a 4.16±0.27 ab 5.02±1.17 ab 

250 μM Ag+ ions 4.22±0.80 ab 6.40±0.92 b 6.16±1.01 b 

Data are mean ± standard error of 4 replicates. Values of each element level followed by different letters 

are significantly different at p ≤ 0.05.  
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CHAPTER 4 

THE IMPORTANT ROLE OF GLUTATHIONE IN DETOXIFICATION OF 

SILVER NANOPARTICLES AND ENHANCEMENT OF NITROGEN 

ASSIMILATION IN SOYBEAN (GLYCINE MAX) 

 

4.1 Introduction 

Nanomaterials (NMs) are applied as nanocapsules for delivery of pesticides, fertilizers, 

and growth hormones; as nanosensors for detecting plant pathogens and monitoring soil 

conditions; and as carrier for delivering targeted gene to plants.208 For example, Ag NPs 

is one of commonly used metal-based NMs in agriculture and industries. Beside direct 

application in agriculture, the released Ag NPs could also end up in agricultural filed via 

sewage sludge application. Due to their specific properties, NMs may pose potential risks 

in agricultural systems with low exposure doses despite positive impacts on the crops. 

Sustainable management of natural resource is the aim in agriculture.209 Thus, it is very 

important to assess the nanoparticles (NPs) safety in agriculture. 

Legume plants, belonging to Leguminosae family, are grown for purpose of good 

grain seed (such as beans) and major source of protein and edible oils in agriculture. It is 

well known that legume plants are capable of establishing a symbiotic relationship with 

Rhizobium species through forming nodules in the root system. Then, the atmospheric 

nitrogen (N2) can be trapped and converted into ammonia (NH4
+), which is bioavailable 

for plants compared with other nitrogen forms, by nitrogen fixing bacteria inside the 

nodules. The Rhizobia-legume symbiosis is considered as one of the most important 

mutualistic evolution in agriculture.210 However, a major concern is that introducing NPs 

into agricultural system may pose phytotoxicity to both the legume plants and N fixing 

Rhizobia Sp., which subsequently disrupt nodules formation in the root system, and 
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eventually compromise nitrogen cycle in agriculture. This could cause significant loss of 

crop yield and seriously affect the global food security.  Recent studies have 

demonstrated that Ag NPs could inhibit root length, decrease plant biomass, alter 

transpiration rate, and delay plant development.17, 71, 72, 73, 74 Also, NPs could lower 

nitrogen-fixation potential in soybean nodules, although no effect on nodules formation 

(dry weight of nodules) in the presence of NPs was evident.32 Related research is still in 

the initial stage. Thus, the question regarding the effect of NPs on N fixation, how NPs 

disrupt nodules formation in legume plants that is critical to crop yield and food safety in 

full life cycle analysis of plants remains unanswered.  

Soybean, one of the dominant crop legumes, can fix 16.4 Ton N annually, which 

represents 77% of the N fixed by the crop legumes.211 Moreover, soybeans rank second, 

after corn, among the most-planted field crops in the USA, and soybean oil represents 

approximately 65% of all edible oil consumed in the United States 

(http://www.epa.gov/agriculture/ag101/cropmajor.html). The possible reasons that the 

applications of Ag NPs incorporated products in agriculture could potentially comprise N 

fixation in legume plants are: (1) the presences of NPs can inhibit Rhizobium species 

activity in soil212, which will result in decreasing the chances of establishing symbiotic 

relationship with soybean; (2) In the early phase of legume-Rhizobia symbiosis 

establishment, soybean can biosynthesize some flavonoids such as genistein and daidzein 

to recognize specific Rhizobia in the early phase of legume.213 Upon exposure to Ag NPs, 

the phase of recognition can be compromised due to disorder of flavonoid secretion. 

Together, failure to establish the legume-Rhizobia relationship could directly results in 

decreases of nitrogen-fixation efficiency in nodules, which may significantly affect crop 
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yield. Additional fertilizers have to be applied in the field with regard to this matter, 

which are not only costly, but also bring in some environmental concerns as nitrogen run-

off from agriculture fields are major cause of N pollution in soil and ground water. Thus, 

in order to avoid these foreseeable concerns, how to alleviate NPs impacts on nitrogen-

fixation efficiency in soybean becomes one of critical problems that need serious 

consideration and warrant further studies.   

GSH is involved in plant defense against abiotic stresses such as heavy metals, 

drought and extreme temperature. It also plays an essential role in the development of the 

root nodules during the symbiotic interaction. On one hand, previous studies have 

demonstrated that introducing buthionine sulphoximine (BSO), an inhibitor of GSH, in 

legume plant could alter nodule formation.214 Low level of GSH production could 

directly result in decreasing the numbers of root nodules. On the other hand, in order to 

bio-convert N2 into NH4
+, nodules are required to create a reducing condition 

accompanied by ROS production. Thus, GSH may also scavenge ROS through 

glutathione-ascorbate cycle in order to avoid disruption of nitrogen-fixation potential 

induced by ROS.215 Glutathione S-transferases (GSTs) are ubiquitous enzymes, which are 

capable of catalyzing GSH conjugation to xenobiotic substrates for the purpose of 

detoxification.  GST9 is the most prevalent one out of 14 forms of GST in nodules of 

soybean. Downregulation of transcript levels of GST resulted in decrease of nitrogenase 

activity and increase of oxidative stress. Thus, GSTs are also crucial to nitrogen-fixation 

potential in nodules 139. Collectively, GSH is involved in nitrogen-fixation potential, 

which is directly linked to fertilizer usage and crop quality. Thus, in this study the role of 

GSH will be characterized in soybean upon exposure to Ag NPs. 
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In this study, we investigated the physiological effects of Ag NPs on soybean 

growth, including fresh biomass, nodule numbers and biomass, net photosynthetic rate, 

transpiration rate, and stomatal conductance. At harvest, total Ag content and nutrient 

contents were determined in nodule, root, and shoot of soybean. Synchrotron based X-ray 

fluorescent microscopy was applied to differentiate Ag speciation in plant tissues. Total 

N in nodule, root, and shoot was measured as well. In addition, we characterized the role 

of GSH in detoxifying Ag nanotoxicity and enhancing N assimilation in soybean. All of 

these results can help us understand how NPs interact with legumes and potentially lower 

the nitrogen-fixing potential. These questions directly link to crop yield and food quality 

in the sustainable agriculture. 

4.2 Materials and Methods 

4.2.1 Experimental design 

Substrate optimization. Prior to conduct the exposure experiment, we optimized the soil 

substrate by mixing with different types of commonly used amendments (vermiculite and 

potting mix). 25% or 50% (v/v) vermiculite and potting mix was mixed with field soil 

collected from the Agronomy Research Farm of the University of Massachusetts in South 

Deerfield. Soybean was grown for 3 weeks under greenhouse conditions. At harvest, we 

chose physiological parameters, including plant biomass, shoot height and total number 

of nodules to determine the soil substrate used in this study. 

Concentration selection of Ag NPs. Ag NPs was mixed with optimized soil substrate 

thoroughly, according to the desired exposure concentrations in each treatment (0-62.5 

mg/kg). Pots were filled with 250 g soil and 50 mL of tap water was added into each pot 
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from the bottom. After 24 hours, soybean was seeded in the surface soil at 1 cm depth. 

Plants were maintained under the greenhouse conditions for 4-5 weeks. Fresh biomass 

and number of nodules were used to determine the selected concentrations. 

Concentration selection of GSH. Soybean was seeded in each pot containing 250 g soil 

without any addition of Ag NPs. 50 mL of different concentrations (0, 5, 10, and 20 mM) 

of GSH solution was applied to each pot every week for 4 weeks. The optimized 

concentration of GSH was determined based on results of fresh biomass, total number of 

nodules. 

4.2.2 Chlorophyll content 

Chlorophyll content will be determined by the procedure modified by Lichtenthaler 

(1987).120 Briefly, 50 mg fresh tissue will be harvested and cut into pieces (< 1 cm), and 

added to 15 mL centrifuge tubes amended with 10 mL 95% ethanol. The tested tubes will 

be kept in the dark for 3-5 days and the chlorophyll content will be measured by a UV-

Vis spectrophotometer (Spectronic Genesis 2). Chlorophyll a, chlorophyll b and total 

chlorophyll will be determined by the following equations: Chla=13.36A664.2-5.19A648.6, 

Chlb=27.43A648.6-8.12A664.2 and Total chlorophyll=Chla+Chlb. 

4.2.3 Net photosynthesis rate, transpiration rate, stomatal conductance  

Photosynthesis rate (Pn), stomatal conductance and transpiration rate were measured 

right after the first trifoliate leaves fully developed. LI-6400XT Portable Photosynthesis 

System was used to measure all the parameters in both control and Ag NPs treated 

soybean. For instrument setup, CO2 in reference chamber was 400 μmoles; relative 
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humidity was between 50-65%; light intensity was 750 μmoles; flow was 200 μmoles. In 

order to obtain stable reading, the machine was matched every ten samples.  

4.2.4 Metal uptake and nutrient displacement 

Dry shoot or root tissues were ground to fine powder and approximately 50 mg was 

transferred into a glass tube containing 3 mL concentrated HNO3. All samples were 

digested at 105 °C for 40 min in a heating block and then 500 μL H2O2 was added for 20 

min to complete the digestion. All digests were diluted with deionized (DI) H2O to 50 mL 

prior to elemental analysis for Ce and In by inductively coupled plasma mass 

spectroscopy (ICP-MS) and for macro- and micronutrients by inductively coupled plasma 

optical emission spectrometry (ICP-OES).35 

4.2.5 Ag biotransformation in soil and plant tissues 

Soybean tissues were harvested and stored at -80 °C until further analysis. The root and 

nodule were axially sectioned to 30 micron thickness using a cryomicrotome. The thin 

sections were mounted onto slides and were stored in the freezer. Synchrotron X-ray 

fluorescence maps were collected at an energy higher than Ag K-edge (25523 eV). At Ag 

hot spots, micro X-ray absorption near edge structure (μXANES) was collected at Ag K-

edge. Bulk X-ray absorption spectroscopy (XAS) was collected for representative Ag 

model compounds (e.g. Ag NPs, Ag2S, AgCl, AgNO3, Ag3PO4, Ag-GSH, and Ag-

citrate). Principle component analysis and linear combination fittings (LCF) were 

conducted on the unknown and reference compounds to determine the structure and 

relative composition of the unknown samples.  
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4.2.6 Total nitrogen analysis 

Soybean tissues (leaf, root and nodule) were freeze-dried using Lyophilizer (FREEZONE 

4.5, LABCONCO). All tissues were ground to fine powder before Kjeldahl digestion for 

determining total nitrogen. Briefly, 0.2g tissue and 1.625 g of mixture of potassium 

sulfate and cupric sulfate were mixed in kjeldahl flask. 3.5 mL sulfuric acid was added 

into each sample and digested at medium heat till clear solution was observed. Then, 

sample was further digested at high heat for 40 min after solution had turned to green. All 

digests were cooled down in the hood before adding 46.5 mL deionized distilled H2O into 

each flask. Total nitrogen was measured using the QC8500 analyzer.216 

4.2.7 Growth curve of Ag NPs treated Bradyrhizobium in HM medium w/ or w/o the 

presences of GSH 

Previously, it was shown that Bradyrhizobium abundance was the highest as compared to 

Frankia and Rhizobium in the field soil.217 As the same soil used in the soybean work 

here, Bradyrhizobium japonicum  (USDA 110) was chose to test Ag NPs effects on 

rhizobium growth in HEPES-MES (HM) medium with or without the additions of GSH 

(Appendix III). A series of exposure concentrations of Ag NPs were prepared in 

autoclaved deionized H2O. 5 mM of GSH was used to study whether the presences of 

GSH could reduce Ag NPs toxicity to rhizobium. Bradyrhizobium was inoculated in HM 

medium and when OD600nm reached to approximately 1.0 in each flask, different 

concentrations of Ag NPs suspension and GSH solution were added into the culture. The 

experiment lasted for one week, and the culture was sampled at Day 1, 2, 3, 5 and 7. A 

fixed amount of culture were spread on growth media plate and the changes of total 
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number of colonies in each Ag NPs treatment over 7 days was determined.   

Dehydrogenase activity was used to determine Bradyrhizobium activities upon 

exposures to different concentrations of Ag NPs. At Day 7, a volume of 2 mL culture in 

each treatment was transferred into Eppendorf tube and centrifuged at 4000 rpm, 4 °C for 

15 min. The cell pellet was re-suspended in 2 mL deionized H2O, then 2mL 0.2% 

triphenyl tetrazolium chloride (TTC) was added into the suspension. The mixture was 

inoculated at 37 °C overnight. The red formazan was extracted by 4 mL acetone, and then 

OD value was determined at 484 nm.218 

4.2.8 Analysis of γEC and GSH 

The contents of GSH and γEC in Ag NPs treated soybean with or without the additions of 

GSH were determined by following the identical protocols described in section 3.2.7.  

4.2.9 Analysis of amino acid  

Approximately 200 mg fresh soybean tissues were placed in 1 mL of 5% (v/v) ice cold 

perchloric acid and were stored at -20 °C until further analysis.  Detailed information 

regarding sample preparation, HPLC conditions, as well as sample separation can be 

found in Minocha et al. (2004).219 

4.3 Results and Discussion 

4.3.1 Effects of different types of soil amendments on soybean nodules  

As shown in Figure 4.1, soybean was grown in natural soil amended with 25 or 50% (v/v) 

vermiculite or potting mix. There was not much visible difference among all the 
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treatment, except the vermiculite alone treatment, in which soybean was relative small as 

compared to other treatments (Figure 4.1 A). Root length and whole plant height did not 

exhibit the significant different among all the treatments (Figure 4.1 B). However, due to 

the low contents of organic matter and nutrient in the vermiculite, the lowest shoot 

biomass was evident in the vermiculite alone treatment (Figure 4.1 C).  

At harvest, the image of soybean root system is shown in Figure 4.2 A. 

Interestingly, no nodule was evident in both vermiculite and potting mix alone 

treatments. Two types of amendments had different impact on total numbers of nodules. 

The highest numbers of nodules were found in the treatment of 25% vermiculite + 75% 

soil. The additions of 25 or 50% potting mix significantly decreased the nodule numbers 

relative to the control (natural soil alone treatment). The possible reason might be that the 

organic matter content in the potting mix was notably high as compared with the 

vermiculite, and could provide the relatively sufficient nitrogen source and thus, plant 

might need less help from the symbiotic relationship with rhizobium, which can fix N 

from the atmosphere and convert N2 to NH4
+.  

4.3.2 Physiological effects of Ag NPs on soybean 

4.3.2.1 Effects of Ag NPs on soybean growth and nodule formation 

The additions of different concentrations of Ag NPs can severely impact soybean growth 

as shown in Figure 4.3 A. Low exposure doses of Ag NPs did not impact on soybean 

growth in term of fresh biomass. As exposure doses of Ag NPs increased to 62.5 mg/kg, 

the fresh biomass of soybean root and shoot were decreased by more than 50% relative to 

the control group (Figure 4.3 B). Although the exposure dose of 31.2 mg/kg Ag NPs had 
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no impact on plant biomass, the total numbers of nodules were significantly lower than 

the control and other Ag NPs treatments (Figure 4.3 C).  

It is well known the fact that metal-based NPs are unstable and can release certain 

amounts of ions to the environment. In order to figure out which form of Ag contributes 

the most on inhibition of soybean growth, Ag ions (in form of Ag NO3) and bulk Ag (in 

micro-size) were also applied as Ag controls in this study. Both Ag ions and bulk Ag had 

no impact on soybean growth in terms of plant phenotype, fresh biomass and total 

numbers of nodules (Figure 4.4 A-C). Thus, nano-size effect might be the main reason 

that caused phytotoxicity to soybean.  

4.3.2.2 Effects of Ag NPs on photosynthesis system in soybean 

Photosynthesis system plays the essential role in plant growth and development. Net 

photosynthetic rate (Pn), stomatal conductance (Sc), transpiration rate (Tr) and total 

chlorophyll content in Ag NPs treated soybean are shown in Figure 4.5. The lowest Pn 

were evident in 62.5 mg/kg Ag NPs treatment, and low concentrations of Ag NPs had no 

impact on Pn (Figure 4.5 A). Similarly, the lowest Sc and Tr were only evident in 62.5 

mg/kg Ag NPs treated soybean (Figure 4.5 B and C). Total chlorophyll content in Ag 

NPs treated soybean further confirmed that Ag NPs could compromise the photosynthesis 

system in soybean and subsequently result in low plant biomass (Figure 4.5 D). Our 

previous study also demonstrated that the presences of 200 and 250 mg/L Ag NPs could 

significantly reduce the total chlorophyll content in Crambe grown in medium.220 

Compared to the Crambe work, Ag NPs could cause phytotoxicity to soybean at the 

exposure dose as low as 62.5 mg/kg, indicating soybean is really sensitive to Ag NPs.  
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Interestingly, the additions of Ag ions and bulk Ag had no impact on Pn, Sc and Tr, but 

slight elevations of Sc and Tr were evident in the treatments of two different 

concentrations of bulk Ag.  

4.3.2.3 Ag distribution in nodule, root, and shoot of soybean 

Figure 4.6 shows Ag uptake in nodule and root of soybean treated with different 

concentrations of Ag NPs. The Ag contents in soybean nodule were increased as 

exposure doses of Ag NPs increased (Figure 4.6 A). The dose-response fashion was also 

evident in soybean root. The Ag accumulation in 62.5 mg/kg Ag NPs treated soybean 

root was more than 4-fold higher as compared with the one in 31.2 mg/kg Ag NPs 

treatment. No Ag accumulation was found in the aboveground tissue (data is not shown).  

4.3.2.4 Analysis of Ag speciation in soil and soybean tissues 

Metal-based nanoparticles (NPs) transformation can help us further understand the 

toxicity and biological fate of NPs to living organisms. As discussed above, phytotoxicity 

caused by Ag NPs can be mainly ascribed to nano-size effect. Thus, it is of importance to 

figure out whether metal biotransformation could occur in soybean tissue, as the Ag 

uptakes in nodule and root were evident. The related results could provide comprehensive 

understand on metal detoxification in soybean plant.  

Figure 4.7 A-D represent Ag speciation in soil, nodule, cross section of root, and 

whole root, respectively. Ag speciation in 31.2 mg/kg Ag NPs soil was analyzed at 

harvest and LCF indicated that approximately 77.8% Ag remained in the form of Ag 

NPs, 18.3% Ag converted to Ag2S, and very tiny amounts (4.8%) of Ag-GSH were also 
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evident (Table 4.1). In 31.2 mg/kg Ag NPs treated nodule, we found that the majority of 

Ag was still in the form of Ag NPs (83.6%) and only 16% of Ag existed in the form of 

Ag-GSH. However, Ag speciation exhibited the opposite results in soybean root tissues. 

We conducted the mapping on both cross section of roots and whole root (the root 

surface) in the treatment with 62.5 mg/kg Ag NPs. Two hot spots in each mapping were 

select to differentiate Ag speciation using XANES. Highly identical results were found in 

different positions of Ag NPs treated soybean roots that almost 60% of Ag were in form 

of Ag-GSH and the rest part remained in Ag NPs. Foliar exposure study demonstrated 

that Ag NPs in lettuce leaf were mainly in the form of oxidation of Ag NPs and 

complexation of Ag+ by thiol molecules.221 Another study suggested that 

biotransformation of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag NPs 

was different in aquatic microcosms. The plant derived dissolved organic matter could 

biotransform part of GA-Ag NPs to oxidized Ag (5-14%) and Ag complexation 

associated with thiol molecules (22-28%).222 Biotransformation of other NPs such as 

CeO2 NPs and ZnO NPs were also reported previously. Evidence on the presence of 

CeO2 NPs in edible portion of soybean was reported using Synchrotron X-ray 

Fluorescence Mapping, suggesting that food safety caused by NPs should receive more 

attention than ever.55 

4.3.2.5 Analysis of macro- and micro-nutrient displacements in soybean 

The contents of macro and micronutrients in nodule, root and shoot of Ag NPs treated 

soybean are shown in Table 4.2 and 4.3, respectively. In the nodule, the presences of 31.2 

mg/kg Ag NPs notably elevated the macronutrient contents, including K, P, S, Ca and 

Na, by 1.7-, 1.8-, 1.44-, 1.57-, and 1.65-fold of the control, respectively. In the root, 



 103 

elevations of K, P, and Mg were evident in 31.2 mg/kg Ag NPs treatment. As exposure 

dose of Ag NPs increased to 62.5 mg/kg, significant decrease of Mg in the root was 

found. In the shoot, 62.5 mg/kg Ag NPs severely disrupt the macronutrient contents. For 

example, 28%, 22%, 38%, and 76% decreases in K, P, Ca, and Na contents were found in 

soybean shoot treated with 62.5 mg/kg Ag NPs as compared with the control group.  

Similar to the macronutrient contents, the presences of Ag NPs could also impact 

on micronutrient contents in soybean tissues. For example, the Fe and Zn contents in 31.2 

mg/kg Ag NPs treated nodule were increased by approximately 90% and 100% relative 

to the control, respectively. In the shoot, the addition of 62.5 mg/kg Ag NPs severely 

reduced the Fe, Cu, and Zn contents when compared to the control group.  

Metal-based NPs could disrupt nutrient uptake and assimilation in plants, which 

could directly impact plant growth, development, and yield at harvest. In our previous 

study, uptake of Fe, which is required for plant growth, especially for photosynthesis, 147 

in Arabidopsis root was significantly decreased in the presences of CeO2 and In2O3 NPs. 

Ag NPs significantly lowered the levels of Fe in both Ag NPs and Ag+ ions treated wild 

type Crambe.220 Ca is a versatile second messenger, which is involved in responding to 

both abiotic and biotic stresses. 149, 150, 151  However, the presences of high concentration 

of Ag NPs severely reduced the Ca uptake in soybean shoot. In addition, Mg is also 

involved in chlorophyll synthesis.223 Taken together, nutrient displacement might be 

another possible reason that resulted in adverse effects on photosynthesis system in 

soybean.  
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4.3.2.6 Effects of Ag NPs on total N in soybean roots, shoots and nodules 

Total N in shoot and root system of Ag NPs treated soybean are shown in Figure 4.8. In 

soybean shoot, the lowest total N was evident in 62.5 mg/kg Ag NPs treatment, which 

was approximately 50% less than the control. Low exposure doses of Ag NPs such as 3.9 

and 7.8 mg/kg Ag NPs had no impact on total N in soybean shoot (Figure 4.8 A). Similar 

decreases in total N of soybean nodule are shown in Figure 4.8 B. Interestingly, the 

exposure dose of Ag NPs as low as 7.8 mg/kg could notably lower the total N in the 

nodule. The decrease in total N in the root system was only evident in 62.5 mg/kg Ag 

NPs treatment. A recent study demonstrated that N2 fixation potential was significantly 

reduced in CeO2 and ZnO NPs treated soybean relative to control group. Scanning 

electron microscopy images further demonstrated that absence of rhizobia in CeO2 NPs 

treated nodule was evident, which directly resulted in decrease of N2 fixation potential.32 

4.3.2.7 Effects of Ag NPs on Bradyrhizobium growth in HM medium  

Figure 4.9 shows growth curve of Bradyrhizobium in Ag NPs amended HM medium for 

7 days. Low exposure doses of Ag NPs, such as 5 and 10 mg/L, had significant impact on 

inhibiting Bradyrhizobium growth. As Ag NPs concentrations increased to 25-75 mg/L, 

severe inhibitions in the treatments with 50 and 75 mg/L Ag NPs were evident. For 

example, the number of CFU in 75 mg/L Ag NPs treated culture was only 6% of the 

control after 24 hours. In this experiment, the range of exposure doses of Ag NPs is 

consistent with the plant exposure study. Thus, the related results could provide the solid 

evidence that Ag NPs inhibited rhizobium growth in the environment could be one of 

possibilities that compromises the symbiotic relationship between legume plants and 
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rhizobium and subsequently results in low N assimilation in plants.  

4.3.3 The presences of GSH significantly alleviate Ag nanotoxicity to soybean 

4.3.3.1 GSH concentration selection 

Phenotypic image of different concentrations of GSH treated soybean is shown in Figure 

4.10 A. The additions of 5 and 10 mM GSH significantly enhanced the fresh biomass. 

However, as the concentration of GSH increased to 20 mM, the fresh biomass was 

decreased to the control level (Figure 4.10 B). Interestingly, the presences of GSH could 

severely decrease nodule formation. For example, the total number of nodules in the 5 

mM GSH treatment was extremely low as compared to the control (without the addition 

of GSH). As concentrations of GSH increased to 10 and 20 mM, no nodule was evident 

in soybean root system. Thus, in the following experiment, only 5 mM GSH was applied 

to characterize the role of GSH on alleviation of Ag NPs toxicity to soybean. 

4.3.3.2 Physiological effects of GSH on Ag NPs treated soybean  

Figure 4.11A and B show phenotypic difference between Ag NPs alone and (Ag NPs + 

5mM GSH) treatments. The additions of 5 mM GSH notably increased fresh biomass in 

both treatments with 31.2 and 62.5 mg/kg Ag NPs. The presences of 5 mM GSH 

significantly elevated the total biomass in 31.2 and 62.5 mg/kg Ag NPs treatments by 

approximately 100% as compared with the control without the GSH presences (Figure 

4.11 C).  

However, the additions of 5 mM GSH inhibited nodule formation in terms of 

number of nodules and nodule biomass. As shown in Figure 4.11 C and D, the total 
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number of nodules in GSH control group was only one fifth of the control (without the 

additions of GSH). Similar result was also evident in nodule biomass. 

Thus, we hypothesized that the presences of GSH might interact with Ag NPs to 

lower its toxicity and bioavailability to soybean, and the extra GSH might be used as 

nitrogen source for plant growth and subsequently reduce the nodule formation in the 

root system.  

4.3.3.3 Effects of GSH on photosynthesis system in Ag NPs treated soybean 

Figure 4.12 shows effects of GSH on the total chlorophyll content and net photosynthetic 

rate in Ag NPs treated soybean. Across all four scenarios, the additions of GSH did not 

significantly alter the photosynthesis system in soybean. For example, the values of Pn, 

Sc, and Tr in (Ag NPs + 5 mM GSH) treatment were not statistically different as 

compared with either the control group or the GSH control. In the following study, we 

put the main effort on figuring out the reason that GSH enhanced plant growth and 

reduced the Ag nanotoxicity.  

4.3.3.4 Effects of GSH on total N in Ag NPs treated soybean 

Figure 4.13 A shows total N in shoot and root of soybean treated with 5, 10, 20 mM 

GSH. The presences of 5 mM GSH significantly elevated the total N level in soybean 

shoot as compared with the control group. No difference between the treatments of 10 

and 20 mM GSH was evident. In the root, the total N in 10 and 20 mM GSH treatments 

were approximately 2-fold higher than the control root.  

Figure 4.13 B-D represent total N in shoot, nodule, and root system of Ag NPs 
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treated soybean with or without the additions of GSH. The consistent results that high 

concentration of Ag NPs (62.5 mg/kg) decreased the total N in soybean shoot and root 

were evident. Interestingly, the presence of GSH notably increased the total N in shoot in 

both 31.2 and 62.5 mg/kg Ag NPs treatments, which was 46 and 69% higher than the 

GSH control, respectively (Figure 4.13 B). Similar results were also evident in the root 

system (Figure 4.13 D). However, the presences of GSH severely reduced the total N in 

the nodule as shown in Figure 4.13 C. The possible reasons might be that (1) GSH could 

inhibit rhizobium activities in soil and subsequently resulted in low nodule numbers and 

biomass; (2) GSH was used as nitrogen source to maintain plant growth and soybean 

probably needed no help from rhizobium to assimilate N from atmosphere. Thus, in order 

to figure out how the additions of GSH impact the rhizobium growth, we measured 

growth curve of Ag NPs treated Bradyrhizobium with the presences of 5 mM GSH.   

4.3.3.5 Growth curve of Ag NPs treated Bradyrhizobium with the presences of GSH 

Figure 4.14 exhibits activities of Ag NPs treated Bradyrhizobium in the presences of 5 

mM GSH. Without the presences of Ag NPs, 5 mM GSH severely reduced the total CFU 

as compared with the control group. However, when introducing 50 and 70 mg/L Ag NPs 

into the culture, we found that the additions of 5 mM GSH enhanced Bradyrhizobium 

growth in term of total CFU number as compare with its respective Ag NPs control 

(Figure 4.14 A). In addition, we also measured dehydrogenase activities (DHA) in each 

treatment, as this enzyme activity can represent microorganism activities upon exposure 

to pollutants in the environment. The DHA results were consistent with the CFU number 

in the culture (Figure 4.14 B). In the GSH control group, 5 mM GSH severely inhibited 

the DHA activities by 44.4%, and subsequently resulted in significantly low CFU number 
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in the culture relative to the control group. In the Ag NPs treatments, the presences of 

GSH notably increased the DHA activity in 50 mg/L Ag NPs treatment, but only slightly 

higher DHA activity was evident in 75 mg/L Ag NPs treatment as compared to its 

respective control.  

4.3.3.6 γEC and GSH contents 

Figure 4.15 shows the contents of thiol compounds, including cysteine, γEC, and GSH, in 

Ag NPs treated soybean shoots, roots, and nodules with or without 5 mM GSH additions. 

As shown in Figure 4.15 A1-A3, the addition of 5 mM GSH significantly elevated the 

levels of cysteine, γEC, as well as GSH in 31.25 mg/kg Ag NPs treated shoots. However, 

no elevation among all three thiol compounds was obversed in 62.5 mg/kg Ag NPs 

treatment, regardless of the presence of 5 mM GSH. In soybean roots, the addition of 5 

mM GSH notably increased the levels of three thiol compounds among all treatments 

when compared to their respective non-GSH controls. It is worthwhile to notice that 

extremely low content of GSH was evident in 62.5 mg/kg Ag NPs treated soybean roots 

and there was no GSH detected in 31.25 mg/kg Ag NPs treated soybean roots (Figure 

4.15 B3). Interestingly, the GSH levels were similar between control and 31.25 mg/kg Ag 

NPs treatment with or without the GSH additions. In order to figure out where GSH went 

after taken up by soybean, the contents of amino acids were measured among all 

treatments in section 4.3.3.7.   

4.3.3.7 Analysis of amino acid  

The contents of amino acids involved in nitrogen assimilation pathway, including 

alanine, glutamate, and glutamine, were measured in Ag NPs treated soybean with or 
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without the addition of 5 mM GSH (Figure 4.16). As expected, the contents of all three 

amino acids were significantly increased in the GSH treatments as compared to the non-

GSH treatments regardless of the presence of Ag NPs. For example, in 31.25 mg/kg Ag 

NPs treated soybean shoots, the contents of alanine and glutamate were 5-6 folds higher 

relative to the non-GSH treatments (Figure 4.16 A1 and A2). Additionally, the presence 

of Ag NPs further induced the amino acid contents as compared to the control group. 

Similar results were also evident in soybean roots (Figure 4.16 B1 and B2). Interestingly, 

there was no significant difference at the amino acid contents in soybean nodules among 

all treatments, although slight increases of all three amino acids were found in the GSH 

control relative to the non-GSH control (Figure 4.16 C1-C3). 

Taken together, soybean plant is sensitive to Ag NPs exposure. The presences of 

Ag NPs could severely inhibit plant growth, alter the photosynthesis system, and disrupt 

the nutrient contents in soybean. When introducing GSH into plant-soil system, we found 

that the additions of GSH could significantly alleviate the Ag nanotoxicity to soybean 

and further enhance plant growth in term of fresh biomass. GSH had no impact on the 

photosynthesis system in soybean but inhibited the nodule formation in the root system. 

We conducted the separated experiment to investigate the interactions between 

Bradyrhizobium and GSH or (Ag NPs + GSH) under the laboratory conditions. The 

results suggested that GSH could inhibit Bradyrhzobium growth in terms of the CFU 

number and DHA activities. However, with the presence of Ag NPs, GSH could alleviate 

Ag NPs toxicity and increase the CFU number as compared with the Ag NPs alone 

treatments. Thus, we speculated that GSH might coat on the surface of Ag NPs or form 

the complexation of Ag with the thiol molecules to alleviate Ag NPs toxicity to 
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Bradyrhizobium. This process could decrease the GSH level in the culture and 

subsequently reduce the negative effect of GSH on rhizobium growth. Significantly high 

levels of total N were evident in either the GSH control or (Ag NPs + GSH) treatments. 

We currently put our main effort on investigating the underlying mechanism how 

soybean utilizes GSH as nitrogen source for its own growth in the presences of Ag NPs. 

The related experiments including analysis of cysteine and GSH contents, amino acid 

contents, as well as gene expression involved in GSH degradation pathway in soybean, 

are currently underway. 
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Figure 4. 1 Effects of different types of amendments on soybean growth. (A) phenotypic images of soybean grown in soil amended 

with different percentages of vermiculite and potting mix; (B) root length and whole plant length; (C) fresh biomass of root and shoot. 

V: vermiculite; P: potting mix; GS: garden soil. 
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Figure 4. 2 Effects of different types of amendments on total numbers of nodules. (A) 

phenotypic images of soybean nodules grown in soil amended with different percentages 

of vermiculite and potting mix; (B) total numbers of nodules. V: vermiculite; P: potting 

mix; GS: garden soil.
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Figure 4. 3 Physiological effects of Ag NPs on soybean growth. (A) phenotypic images 

of soybean grown in different concentrations of Ag NPs amended soil; (B) fresh biomass 

of soybean; (C) total numbers of nodules. 
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Figure 4. 4 Physiological effects of Ag+ ions and bulk Ag on soybean growth. (A1-2) 

phenotypic images of soybean grown in Ag ions and Bulk Ag amended soil, respectively; 

(B) fresh biomass of soybean; (C) total numbers of nodules.
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Figure 4. 5 Effects of Ag NPs on photosynthesis system in soybean. Figure A-D 

represent net photosynthesis rate, stomatal conductance, transpiration and chlorophyll 

content, respectively. 
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Figure 4. 6 Ag distribution in soybean grown in different concentrations of Ag NPs 

amended soil. Figure A and B represent Ag content in nodules and roots, respectively. 
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Figure 4. 7 Ag transformation in plant-soil system. (A) Ag biotransformation in soil; (B) Ag biotransformation in nodule; (C) Ag 

biotransformation in cross section of root; (D) Ag biotransformation in whole root.
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Table 4. 1 Analysis of Ag speciation in soil and soybean tissues 

XANES Sample Name 
Reference compounds 

Ag3PO4 Ag-GSH Ag NP Ag2S Ag-citrate Note 

Bulk 31.25 mg/kg Ag NPs amended soil  0.048 0.778 0.183   

Micro 31.25 mg/kg Ag NPs treated nodule  0.16 0.836    

Micro 62.5 mg/kg Ag NPs treated root (cross section)  0.515 0.488   Position 1 

Micro 62.5 mg/kg Ag NPs treated root (cross section)  0.6 0.396   Position 2 

Micro 62.5 mg/kg Ag NPs treated whole root   0.589 0.396   Position 1 

Micro 62.5 mg/kg Ag NPs treated whole root    0.586 0.397   Position 2 
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Table 4. 2 Macronutrient content in nodule, root and shoot of Ag NPs treated soybean 

Element Plant tissue 
Ag NPs treatments (mg/kg) 

Control 3.9 7.8 15.6 31.2 62.5 

K 

Nodule 182527±34124 236594±5961 256173±8779 261814±27623 317991±15448  

Root 215179±45057 210201±45540 321566±52482 223535±43465 355221±11888 196968±16307 

Shoot 251043±6695 263149±8926 256101±3103 252251±7489 225472±1994 181573±11115 

P 

Nodule 42322±8889 57304±2608 63638±2162 62210±6112 76712±5137  

Root 19117±2511 20198±769 22747±2140 24074±1515 28010±1222 20604±759 

Shoot 21530±1910 23393±720 26546±830 26359±1210 30637±802 16883±707 

S 

Nodule 20425±3642 27206±674 28084±928 26794±1734 29471±1025  

Root 19962±3519 18622±2201 22243±2863 17372±2156 21635±858 18784±900 

Shoot 18056±625 18112±669 19573±429 17853±908 19559±1103 15329±937 

Mg 

Nodule 25144±4106 33708±578 32999±773 34032±1488 30200±1604  

Root 43387±6912 39718±6827 34958±4369 34559±6728 63427±5444 32577±2555 

Shoot 42658±1514 41424±1389 41105±1360 39351±1235 42138±2582 42370±2063 

Ca 

Nodule 19801±4263 27488±1058 27309±599 28859±4533 31142±1983  

Root 40586±1710 47128±2913 39442±3478 45337±2595 40387±881 40784±1843 

Shoot 122688±6076 123983±3178 130561±4160 122653±2972 114359±5389 75785±3414 

Na 

Nodule 2749±566 3664±290 4170±390 4783±497 4539±1043  

Root 11027±782 9741±964 11358±979 11958±320 12368±825 26790±1800 

Shoot 1165±328 864±181 452±72 977±206 328±37 280±32 
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Table 4. 3 Micronutrient content in nodule, root and shoot of Ag NPs treated soybean 

Element Plant tissue 
Ag NPs treatments (mg/kg) 

Control 3.9 7.8 15.6 31.2 62.5 

Fe 

Nodule 3530±699 4843±252 4769±534 5165±400 6830±700  

Root 16881±3639 16505±3705 6502±969 13962±1904 9805±1268 6431±684 

Shoot 631±14 627±112 449±30 472±28 451±28 505±18 

Cu 

Nodule 136±51 95±4 87±5 90±20 98±25  

Root 567±41 453±26 383±32 492±46 346±9.5 492±19 

Shoot 67±4 59±2 51±5 47±5 45±12 27±2 

B 

Nodule 105±50 67±2 75±10 50±9 45±60  

Root 79±2.4 114±18 81±6.7 106±14 85±3 118±14 

Shoot 194±8 190±8 212±19 173±8 227±25 220±10 

Mn 

Nodule 109±50 94±4 98±12 95±6 131±38  

Root 422±62 507±109 595±121 493±109 629±19 764±55 

Shoot 693±35 679±51 762±63 681±60 618±32 827±32 

Zn 

Nodule 259±71 272±18 346±22 340±101 527±78  

Root 276±9 277±10 261±16 307±39 255±6 294±8 

Shoot 365±24 320±120 349±18 324±16 361±21 278±10 

Mo 

Nodule 178±60 133±7 209±19 113±9 70±80  

Root 0 0 0 1.6±8 0 0 

Shoot 0 0 0 0 24±12 11±6 
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Figure 4. 8 Analysis of total N in soybean treated with different concentrations of Ag 

NPs. Figure A-C represent total N content in shoot, nodule, and root system of soybean, 

respectively.
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Figure 4. 9 Growth curve of Bradyrhizobium grown in HM medium treated with 

different concentrations of Ag NPs for 7 days. 
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Figure 4. 10 Effects of different concentrations of GSH on soybean growth. (A) 

phenotypic image of soybean grown in the presences of different concentrations of GSH; 

(B) Fresh biomass of soybean. 
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Figure 4. 11 Physiological effects of GSH on Ag NPs treated soybean growth. Figure A and B represent phenotypic images of 

soybean treated with Ag NPs alone and (Ag NPs + 5 mM GSH), respectively; Figure C-E represent fresh biomass, numbers of 

nodules, and nodule biomass, respectively. 

CONTROL 
31.25 62.5 

Ag NPs treatments (mg/kg) 

A 

CONTROL 

+ 5mM GSH 

31.25 62.5 

Ag NPs + 5mM GSH 

treatments (mg/kg) 

B 

0

2

4

6

8

10

F
re

sh
 b

io
m

a
ss

 (
g

)

root shoot total

31.25 62.5 0 31.25 62.5 0 

Ag NPs (mg/kg) Ag NPs (mg/kg) 

+ 5mM GSH  

C 

b

d 

d d 

c 
ab 

b 

0

10

20

30

40

50

60

70

N
u

m
b

er
s 

o
f 

n
o

d
u

le
s

0 31.25 0 31.25 

Ag NPs (mg/kg) Ag NPs (mg/kg) 

+ 5mM GSH  

D 

a 

a 

b 

b 

0 31.25 0 31.25 

Ag NPs (mg/kg) Ag NPs (mg/kg) 

+ 5mM GSH  

0

0.05

0.1

0.15

0.2

0.25

N
o

d
u

le
 b

io
m

a
ss

 (
g

)

E 

ab 

a 

b b 



 125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 12 The presences of GSH impact on photosynthesis system in Ag NPs treated soybean. Figure A-D represent total 

chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate, respectively. 

 

 

A B 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
T

o
ta

l 
c
h

lo
ro

p
h

y
ll

 (
m

g
/g

)

0 10 40 5 10 20 40 0 

31.25 mg/kg Ag NPs + GSH (mM) Control + GSH  (mM) 

a a

b 

a

b 

a

b 

a

b 

bc 

c

d 

d 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

P
n

0 10 40 5 10 20 0 

31.25 mg/kg Ag NPs + GSH (mM) Control + GSH (mM) 

a 

ab 

ab 

ab 

ab 

b 
b 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S
to

m
a

ta
l 

co
n

d
u

ct
a

n
ce

0 10 40 5 10 20 0 
31.25 mg/kg Ag NPs + GSH (mM) Control + GSH (mM) 

a 

a 

a 

a 

a 

a a 

0 10 40 5 10 20 0 
31.25 mg/kg Ag NPs + GSH (mM) Control + GSH (mM) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
ra

n
sp

ir
a

ti
o

n
 r

a
te

 (
m

m
o

l)
 

a a 
a 

ab 

a

b 

ab 

b 
C D 



 126 

 

 

 

 

 

 

 

 

 

 

Figure 4. 13 Analysis of total N in Ag NPs treated soybean with or without the presences 

of GSH. (A) effects of different concentrations of GSH on total N; (B) total N in shoot; 

(C) total N in nodule; (D) total N in root system.
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Figure 4. 14 Growth curve of Ag NPs treated Bradyrhizobium with or without the 

presences of GSH. (A) growth curve; (B) dehydrogenase activities in the Ag NPs 

treatment w/ or w/o the additions of GSH.
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Figure 4. 15 The contents of thiol compounds in Ag NPs treated soybean tissues with or without 5 mM GSH addition. Figure A1, B1, 

and C1 represent the cysteine contents in soybean shoots, roots, and nodules, respectively; Figure A2, B2, and C2 represent the 

gamma-EC contents in soybean shoots, roots, and nodules, respectively; Figure A3, B3, and C3 represent the GSH content in soybean 

shoots, roots, and nodules, respectively. 
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Figure 4. 16 The contents of amino acids in Ag NPs treated soybean tissues with or without 5 mM GSH addition. Figure A1, B1, and 

C1 represent the alanine contents in soybean shoots, roots, and nodules, respectively; Figure A2, B2, and C2 represent the glutamate 

contents in soybean shoots, roots, and nodules, respectively; Figure A3, B3, and C3 represent the glutamine content in soybean shoots, 

roots, and nodules, respectively. 
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CHAPTER 5 

CONCLUSIONS AND PERSPECTIVE 

5.1 Conclusions 

The potential risks from metal-based nanoparticles (NPs) in the environment have 

increased with the rapidly rising demand for and use of nano-enabled consumer products. 

Plant’s central roles in ecosystem function and food chain integrity ensure intimate 

contact with water and soil systems, both of which are considered sinks for NPs 

accumulation. Thus, this study has mainly focused on three objectives: (1) analysis of A. 

thaliana for physiological and molecular response to CeO2 and In2O3 NPs exposure; (2) 

investigation of the enhanced level of GSH on alleviation Ag NPs toxicity to Crambe 

abyssinica; (3) characterization of the role of glutathione in detoxification of silver 

nanoparticles and enhancement of nitrogen assimilation in soybean (Glycine max). 

The effects of CeO2 and In2O3 NPs exposure on A. thaliana were investigated. 

Exposure at 250 ppm CeO2 NPs significantly increased plant biomass but at 500-2000 

ppm, plant growth was decreased by up to 85% in a dose dependent fashion. At 1000 and 

2000 ppm CeO2 NPs, chlorophyll production was reduced by nearly 60% and 85%, 

respectively, and anthocyanin production was increased 3-5 fold. MDA production, a 

measure of lipid peroxidation, was unaffected by exposure to 250-500 ppm CeO2 NPs, 

but at 1000 ppm, MDA formation was increased by 2.5-fold. Exposure to 25-2000 ppm 

In2O3 NPs had no effect on Arabidopsis thaliana biomass and only minor effects (15%) 

on root elongation. Total chlorophyll and MDA production were unaffected by In2O3 NPs 
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exposure. High level of MDA indicated that oxidative stress occurred in NPs treated A. 

thaliana. Thus, we further investigated the defense mechanisms of A. thaliana in 

response to CeO2 and In2O3 NPs exposure. Excessive amounts of total ROS were 

measured upon exposure to both NPs, demonstrating clear oxidative stress in Arabidopsis. 

Analysis of ROS scavenger activity indicated that activities of SOD, CAT, APX, and 

POD were significantly elevated upon exposure to CeO2 NPs, while these elevations 

were only evident for SOD and POD activities in the In2O3 NP treatments. In addition, 

the activities of GST and GR were increased approximately 15% and 51% by 1000 mg/L 

CeO2 and In2O3 treatment, respectively. Molecular response to NPs exposures as 

measured by qPCR showed that both types of elements altered the expression of genes 

central to the stress response such as the sulfur assimilation and GSH biosynthesis 

pathway; a series of genes known to be significant in the detoxification of metal toxicity 

in plants. Interestingly, In2O3 NPs exposure resulted in a 3.8-4.6 fold increase in GS 

transcript production whereas CeO2 NPs yielded only a 2-fold increase. 

Ag NPs are widely used in consumer products and their release has raised serious 

concerns about risk of their exposure to the environment and to human health. We have 

previously engineered Crambe abyssinica plants expressing the bacterial γ-

glutamylecysteine synthase (γ-ECS) for enhancing GSH levels. In this study, we 

investigated if enhanced levels of GSH and its derivatives can protect plants from Ag 

NPs and Ag+ ions. Our results showed that transgenic lines, when exposed to Ag NPs and 

AgNO3 (Ag+ ions), were significantly more tolerant, attaining 28%-46% higher biomass 

and 34-49% more chlorophyll contents, as well as maintaining 35-46% higher 

transpiration rates as compared to wild type (WT) plants. Transgenic γ-ECS lines showed 
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2-6 folds of Ag accumulation in shoot and slightly lower or no difference in roots relative 

to WT plant. The levels of MDA in γ-ECS lines was also 27.3-32.5% lower than in WT 

Crambe. These results indicate that GSH and related peptides protect plants from Ag 

nanotoxicity. 

The aim of the third objective was to investigate the physiological effects of Ag 

NPs on soybean and to characterize the role of GSH in detoxification of Ag NPs and 

enhancement of nitrogen assimilation. Our results indicated that the presences of Ag NPs 

could result in significantly low biomass and completely inhibit nodule formation at the 

exposure dose as low as 62.5 mg/kg. In addition, Ag NPs could alter the photosynthesis 

system in soybean in terms of net photosynthetic rate, stomatal conductance, transpiration 

rate, as well as total chlorophyll content. The total N in Ag NPs treated soybean nodule 

suggested that 31.2 mg/kg Ag NPs could severely reduce the total N level as compared to 

the control. Elemental analysis demonstrated that Ag uptake in soybean root and nodule 

was in dose-response manor, however, no Ag accumulation was found in soybean shoot. 

Synchrotron based micro X-ray fluorescent microscopy was applied to analyze Ag 

speciation in plant tissue. We found that more than 50% Ag in the root was converted to 

Ag-GSH, the rest part of Ag still remained in Ag NPs. The second part of this objective 

was to characterize the role of GSH. The additions of GSH could notably enhance the 

fresh biomass of Ag NPs treated soybean. However, the total number of nodules was 

significantly lowered as compared to the non-GSH control group. The total N level 

indicated that the presences of GSH could significantly increase the N level in both shoot 

and root of Ag NPs treated soybean. Thus, plant might utilize GSH as a nitrogen source 

and might need very less help from the symbiotic relationship with rhizobium to 
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assimilate the N. In order to further understand the underlying mechanism that GSH can 

counteract Ag nanotoxicity and enhance total N level in soybean, the related works, 

including amino acid analysis, GSH content, the important genes involved in GSH 

biodegradation pathway, are currently underway.  

5.2 Perspective 

Significant gaps remain in our understanding on the mechanisms of molecular responses 

of plants to oxidative stress induced by NPs. In order to reveal plant responses at protein 

and DNA levels to NPs exposure, global assays such as proteomics, RNA-seq or DNA 

microarrays and metabolomics must be developed and applied. At the current time, there 

are few reports of using DNA-microarray to reveal molecular responses of plants such as 

A. thaliana to NPs such as TiO2, ZnO, Ag NPs, and CdS QD, respectively.26, 86, 224 

Furthermore, specific and highly responsive genes with regard to metal-based NPs 

exposure need to be explored through biotechnology. Clearly, when a plant initiates 

defense to resist the effects of metal-based NPs stresses, more than one detoxification 

pathway may be activated. The question is whether all of these pathways contribute 

equally to detoxify/resist metals or oxidative stresses. If not, we should to examine which 

detoxification pathway(s) is (are) dominant in the entire system and how detoxification 

pathways vary with plant species and/or particle type. 

Assessing the overall environmental implications of metal-based NPs is another 

critical knowledge gap. To date, the literature is replete with studies investigating 

nanotoxicity to a range of biota (microorganism, plants and animals) under conditions 

and concentrations that are likely quite far from being environmentally realistic. Using 
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environmentally relevant concentrations are necessary to understand rate and disposition 

within terrestrial ecosystems, including potential for trophic transfer and food chain 

contamination. As such, applying mathematic models is a useful approach to predict the 

concentrations of different metal-based NPs in the environment.225, 226 In addition, it is 

necessary to emphasize the importance of nanotoxicity studies on plants under the field 

or field-like conditions. The presence of metal-based NPs in the vegetative tissues of 

edible crops has been reported but quantification in actual edible tissue is far less 

common. In the meantime, the questions such as which types of NPs can effectively 

translocate to the fruits and whether molecular and biochemical mechanisms exist in 

plants to minimize or prevent NPs translocation should be addressed. Regarding to 

trophic transfer of metal-based NPs along food chain, increased system complexity (such 

as numbers of NPs, species of living organisms, trophic levels, temperature and exposure 

time) will be required to better represent the environmentally realistic conditions so as to 

accurately describe the fate and behavior of NPs in the food chain.  

Due to increasing demands for nanotechnology and nanomaterials, the potential 

risks of metal-based NPs on crops and other terrestrial plants is an area of research where 

much more focus is warranted. Nanomaterials may not only affect crop yield and quality, 

but also the diversity of microorganisms in the rhizosphere and endosphere. Given the 

critical role of plants and plant-based symbiotic microbes in critical carbon and nitrogen 

cycles, caution is clearly warranted. Filling the critical knowledge gaps of nanomaterial 

fate and effects in terrestrial environments is the only way to enable accurate and 

meaningful exposure and risk assessment, both for human health and the environment.
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APPENDIX I 

List of primers used in qPCR 

Gene name Primer sequence (5’-3’) 

Actin-F CGTGACCTTACTGATTAC 

Actin-R TTCTCCTTGATGTCTCTT 

ATPS1 - F ACAGTGGTTTCGATATTCCCG 

ATPS1 - R CACGTTTCTCTACTGGATGACC 

APR1 - F AAGGCTTGGATTACTGGTCAG 

APR1 - R ATTCCCTTCAACATTCGCAAC 

SiR - F CGACCCATTAAACCAAACTGC 

SiR - R CGTAGTCCAGACCAACCTTTT 

CYSC1 - F CTTATTGGGAAAACGCCTCTTG 

CYSC1 - R GCTACAAGTTGGCTGGAAATG 

GSH1 - F CCAAACGGATTTCTCAGCATG 

GSH1 - R GGCAAAGTACATAGGGACATCG 

APSK – F TGTTGTTGTTCGTGCTTGT 

APSK – R CGTGTGACCGTTAATGGATT 

FRO-F GCTTCCGCCGATTTCTTAAGGC 

FRO-R AACGGAGTTATCCCGCTTCCTC 

IRT-F ACTTCAAACTGCGCCGGAAGAATG 

IRT-R AGCTTTGTTGACGCACGGTTC 

FER-F CAACGTTGCTATGAAGGGACTAGC 

FER-R ACTCTTCCTCCTCTTTGGTTCTGG 

 

qRT-PCR amplification program:  

For genes encoding sulfur assimilation and GSH biosynthesis pathway: 95 °C for 15 min; 

95 °C for 15 s, 55 °C for 30 s, 72 °C for 1 min, repeating 40 cycles; 95 °C for 15 s, 55 °C 

for 15 s, melting curve for 20 min; 95 °C for 15s. 

For genes encoding iron transporters: 95 °C for 15 min; 95 °C for 15s, 59 °C for 30s, 72 

°C for 10 s, repeating 40 cycles; 72 °C for 10 min; 95 °C for 15 s, 59 °C for 15 s, melting 

curve for 20 min; 95 °C for 15 s. 
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APPENDIX II 

Hydroponic set up 
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APPENDIX III 

HM medium for Bradyrhizobium 

HM Media (in 1 L):  

Na2HPO4: 0.125 g; 

Na2SO4: 0.25 g; 

NH4Cl: 0.32 g;  

MgSO47H2O: 0.18 g; 

Yeast extract: 0.25 g; 

D-Arabinose: 1 g; 

Na-Gluconate: 1 g; 

FeCl3 (1 mM): 0.004 g; 

CaCl22H2O: 0.013 g; 

HEPES: 1.3 g; 

MES: 1.1 g 

Adjust pH 6.6 with NaOH. 

Take to 1 liter and autoclave for 30 minutes. 

Media can be stored at room temperature. 
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205. Piccapietra, F.; Allué, C. G.; Sigg, L.; Behra, R., Intracellular silver accumulation 
in Chlamydomonas reinhardtii upon exposure to carbonate coated silver 
nanoparticles and silver nitrate. Environmental science & technology 2012, 46 (13), 
7390-7397. 
206. Zhao, L.; Peralta-Videa, J. R.; Ren, M.; Varela-Ramirez, A.; Li, C.; Hernandez-
Viezcas, J. A.; Aguilera, R. J.; Gardea-Torresdey, J. L., Transport of Zn in a sandy loam 
soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and 
confocal microscopy studies. Chemical Engineering Journal 2012, 184, 1-8. 
207. Alidoust, D.; Isoda, A., Phytotoxicity assessment of γ-Fe2O3 nanoparticles on 
root elongation and growth of rice plant. Environmental earth sciences 2014, 71 
(12), 5173-5182. 
208. Parisi, C.; Vigani, M.; Cerezo, E. R. Proceedings of a Workshop on" 
Nanotechnology for the agricultural sector: from research to the field"; Institute for 
Prospective and Technological Studies, Joint Research Centre: 2014. 
209. Bourguignon, F.; Bénassy-Quéré, A.; Dercon, S.; Estache, A.; Gunning, J.; 
Kanbur, R.; Klasen, S.; Maxwell, S.; Platteau, J.; Spadaro, A., Millennium Development 
Goals at Midpoint: Where Do We Stand and Where Do We Need to Go? European 
Report on Development. 2008. 



 154 

210. Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J., Establishing nitrogen-fixing 
symbiosis with legumes: how many rhizobium recipes? Trends in microbiology 
2009, 17 (10), 458-466. 
211. Herridge, D. F.; Peoples, M. B.; Boddey, R. M., Global inputs of biological 
nitrogen fixation in agricultural systems. Plant and Soil 2008, 311 (1-2), 1-18. 
212. Ge, Y.; Priester, J. H.; Van De Werfhorst, L. C.; Walker, S. L.; Nisbet, R. M.; An, 
Y.-J.; Schimel, J. P.; Gardea-Torresdey, J. L.; Holden, P. A., Soybean Plants Modify 
Metal Oxide Nanoparticle Effects on Soil Bacterial Communities. Environmental 
Science & Technology 2014, 48 (22), 13489-13496. 
213. Stacey, G.; Libault, M.; Brechenmacher, L.; Wan, J.; May, G. D., Genetics and 
functional genomics of legume nodulation. Current opinion in plant biology 2006, 9 
(2), 110-121. 
214. Frendo, P.; Harrison, J.; Norman, C.; Jiménez, M. J. H.; Van de Sype, G.; Gilabert, 
A.; Puppo, A., Glutathione and homoglutathione play a critical role in the nodulation 
process of Medicago truncatula. Molecular plant-microbe interactions 2005, 18 (3), 
254-259. 
215. Groten, K.; Vanacker, H.; Dutilleul, C.; Bastian, F.; Bernard, S.; Carzaniga, R.; 
Foyer, C. H., The roles of redox processes in pea nodule development and 
senescence. Plant, Cell & Environment 2005, 28 (10), 1293-1304. 
216. Diamond, D., QuikChem Method 13-107-06-2-D. In Lachat Instruments Inc., 
Lachat Instruments Inc.: 1992. 
217. COLE, E. J. ASSESSING KILN-PRODUCED HARDWOOD BIOCHAR FOR 
IMPROVING SOIL HEALTH IN A TEMPERATE CLIMATE AGRICULTURAL SOIL. 
Dissertation, 2015. 
218. Burdock, T.; Brooks, M.; Ghaly, A., A dehydrogenase activity test for 
monitoring the growth of Streptomyces venezuelae in a nutrient rich medium. 
Journal of Bioprocessing & Biotechniques 2012, 2011. 
219. Minocha, R.; Long, S., Simultaneous separation and quantitation of amino 
acids and polyamines of forest tree tissues and cell cultures within a single high-
performance liquid chromatography run using dansyl derivatization. Journal of 
Chromatography A 2004, 1035 (1), 63-73. 
220. Ma, C.; Chhikara, S.; Minocha, R.; Long, S.; Musante, C.; White, J. C.; Xing, B.; 
Dhankher, O. P., Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica 
with Enhanced Glutathione Production by Overexpressing Bacterial γ-
Glutamylcysteine Synthase. Environmental science & technology 2015, 49 (16), 
10117-10126. 
221. Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cécillon, L.; Bureau, S.; Barthès, V.; 
Ouerdane, L.; Carrière, M.; Sarret, G., Foliar exposure of the crop Lactuca sativa to 
silver nanoparticles: evidence for internalization and changes in Ag speciation. 
Journal of hazardous materials 2014, 264, 98-106. 
222. Unrine, J. M.; Colman, B. P.; Bone, A. J.; Gondikas, A. P.; Matson, C. W., Biotic 
and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag 
nanoparticles. Part 1. Aggregation and dissolution. Environmental science & 
technology 2012, 46 (13), 6915-6924. 



 155 

223. Godde, D.; Dannehl, H., Stress-induced chlorosis and increase in D1-protein 
turnover precede photoinhibition in spinach suffering under magnesium/sulphur 
deficiency. Planta 1994, 195 (2), 291-300. 
224. Marmiroli, M.; Pagano, L.; Savo Sardaro, M. L.; Villani, M.; Marmiroli, N., 
Genome-Wide Approach in Arabidopsis thaliana to Assess the Toxicity of Cadmium 
Sulfide Quantum Dots. Environmental Science & Technology 2014, 48 (10), 5902-
5909. 
225. Sun, T. Y.; Gottschalk, F.; Hungerbühler, K.; Nowack, B., Comprehensive 
probabilistic modelling of environmental emissions of engineered nanomaterials. 
Environmental Pollution 2014, 185 (0), 69-76. 
226. Gottschalk, F.; Sun, T.; Nowack, B., Environmental concentrations of 
engineered nanomaterials: review of modeling and analytical studies. Environmental 
pollution 2013, 181, 287-300. 
 
 


	Evaluating the Role of Glutathione in Detoxification of Metal-Based Nanoparticles in Plants
	Recommended Citation

	tmp.1475509584.pdf.7EKQX

