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ABSTRACT 

THE CELLULAR CONTEXT OF ESTRADIOL REGULATION IN THE ZEBRA 

FINCH AUDITORY FOREBRAIN 

SEPTEMBER 2016 

MAAYA Z. IKEDA B.A., KNOX COLLEGE 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Professor Luke Remage-Healey 

 

Estradiol, traditionally known as a hormone that communicates with distant cells in the 

body, is also synthesized locally in the brain to act as a neuromodulator. Neuromodulators differ 

from neurotransmitters in that they simultaneously affect a population of neurons and their 

actions are not limited to the synapse. One of the many effects of estradiol signaling is rapid 

modulation of auditory processing in response to external stimuli. The enzyme required for 

estradiol synthesis, aromatase, is highly expressed in the regions that are involved in higher-

order processing of sounds in humans and songbirds. Since zebra finches, a type of songbird, are 

one of the few laboratory animals that communicate via complex learned vocalization, they are 

commonly used as a model for vocal learning and auditory processing. Although many aspects 

of the actions of estradiol in the zebra finch forebrain have been revealed, little is known 

regarding how estradiol levels are regulated via aromatase activity. First, this dissertation 

describes the procedure for in vivo microdialysis, a method that allows local estradiol detection 

in freely moving animals. Second, using in vivo microdialysis, we investigated whether another 

neuromodulator, norepinephrine, regulates global estradiol levels within a secondary auditory 

region, caudomedial nidopallium (NCM). The results showed no evidence that norepinephrine 

has a major role in controlling estradiol levels in the NCM. However, in vivo electrophysiological 
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recordings from the NCM revealed that norepinephrine has a similar role in auditory 

processing as estradiol but acts via a different mechanism. Finally, the dissertation 

examined the identities and organization of aromatase-expressing neurons and found 

that the heterogeneity of aromatase cells was different between different aromatase-

positive regions. Aromatase-expressing cell bodies were found to be more prominent in 

regions with low expression of a transmembrane G-protein coupled estrogen receptor, 

GPER1, while high pre-synaptic aromatase-expressing regions expressed high amounts 

of GPER1. Moreover, aromatase-expressing cells were found in somato-somatic clusters. 

Preliminary data injecting dyes in clustered cells indicate that the neurons in clusters 

may be communicating with one another through gap junctions.  Overall, this 

dissertation provides new knowledge for understanding the relationship between 

neuronal interactions and aromatase signaling in the context of auditory processing. 
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CHAPTER I 

INTRODUCTION 

Background 

For many animals, altering behavior in response to external stimuli is critical for 

survival. One of the ways organisms adjust their behavior to the changes in the 

environment is via neuron-secreting substances called neuromodulators, produced 

during different physiological states. Accurately interpreting auditory information and 

its context is extremely important for social species that heavily rely on communication 

via vocalization for survival and reproduction. The context of auditory information is 

thought to be encoded by the actions of neuromodulators such as catecholamines and 

estradiol. Estradiol, a steroid traditionally considered to be a gonadal hormone, is 

produced within the brain and is known to have properties similar to classical 

neuromodulators (Reviewed in Remage-Healey, 2014). However, the specific 

mechanisms of how estradiol signaling is controlled remain to be elucidated. Studies 

have indicated that one of the mechanisms is via local regulation of estradiol synthesis 

by the enzyme aromatase which produces estradiol via conversion of testosterone. 

Although at least part of the molecular and cellular mechanisms that control aromatase 

activity has been revealed by previous studies, almost nothing is known about how 

neuronal connectivity across or within brain regions influence changes in aromatase 

activity or estradiol levels on a circuit level. This dissertation provides new insights into 

how estradiol actions in one auditory region could be either controlled by or interact 

with neuronal activity of other regions that project to or from the region.   
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This introduction is outlined as the following: (1) Background information on state-

dependent modulation of auditory processing by two types of neuromodulators, estradiol and 

catecholamines from human and animal studies. (2) The mechanism of local estradiol 

regulation, the gaps in the literature and potential circuit mechanism of aromatase regulation. 

(3) The advantages of using songbirds, especially zebra finches, as a model for studying 

neuroestradiol actions in auditory processing. (4) Review of the literature on the role of the 

songbird secondary auditory region, the caudal medial nidopallium (NCM). (5)  Estradiol and 

catecholaminergic actions in the NCM and potential interactions. (6) Hypotheses and questions 

addressed in this dissertation. 

State-dependent modulation of auditory processing by estradiol and catecholamines: studies 

in humans and animal models 

Many variables such as environmental changes, aging, mental disorders, and use of 

drugs can cause changes in auditory processing (Mccartney et al., 1994; Mendelson and 

Ricketts, 2001; Martin and Jerger, 2005; Liang et al., 2006; Winton-brown et al., 2011; Javitt and 

Sweet, 2015). These changes are mediated in part by the changes in chemicals that affect 

neuronal activity, such as hormones and neuromodulators. Neuromodulators are released by 

neurons and alter the activities of a population of neurons. Catecholamines and estradiol are 

examples of neuromodulators that are known to affect auditory processing (Examples of studies 

in different species: Anderer et al., 2004; Remage-Healey et al., 2010; Kudoh and Shibuki, 2006. 

Reviewed in Hurley et al., 2004; Caras, 2013; Krentzel and Remage-Healey, 2014; and Javitt and 

Sweet, 2015). 
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Catecholamines are a group of neuromodulators that are synthesized from the 

amino acid tyrosine, and include dopamine, epinephrine, and norepinephrine. Some 

disorders that affect the dopaminergic or noradrenergic system, such as autism, 

depression and schizophrenia, are associated with disturbed auditory processing (Lam 

et al., 2006; Tollkötter et al., 2006; Javitt and Sweet, 2015).  Drugs such as 

psychostimulants and depressants that act by interacting with the catecholaminergic 

system also alter auditory processing (Hughes et al., 1988; Kössl and Vater, 1989; Tobey 

et al., 2005; Dixit et al., 2006; Winton-brown et al., 2011).  Norepinephrine is specifically 

released by neuronal fibers whose cell bodies are located in the locus coeruleus, a 

nucleus in the brain stem. In healthy individuals, norepinephrine is released in response 

to stress and unexpected stimuli, regulates cortical arousal, and is involved in memory 

retrieval and complex cognitive tasks (Sara and Bouret, 2012).  

 In mammalian models, changes in norepinephrine levels induced either by environmental 

stimuli or application of drugs or adrenergic agonists can alter neuronal activity in the auditory 

cortex (Foote et al., 1975; Shinba et al., 1992; Edeline, 1995; Manunta and Edeline, 1997, 1999, 

2004; Gaese and Ostwald, 2001; Ji and Suga, 2003; Syka et al., 2005; Salgado et al., 2011, 2012). 

Moreover, as discussed in later sections, many studies in songbirds support the idea that 

catecholamines may play a major role in auditory processing.  

 

  Estradiol is a type of estrogen that is produced in the brain and in other organs such as 

the gonads. Although other neuromodulators including norepinephrine are also produced 

peripherally, they do not cross the blood brain barrier (Reviewed in Edvinsson and MacKenzie, 

1977). Since estradiol does cross the blood brain barrier, the neuronal changes due to estradiol 

are due to changes both in circulating estradiol levels and in local estradiol synthesis. Estradiol 
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synthesis is mediated by the enzyme aromatase that converts testosterone to estradiol and 

androstenedione to estrone, which in turn can be converted to estradiol.  In the human and 

monkey temporal cortex, where the auditory cortex is located, aromatase is expressed densely 

in neurons (Yague and Muñoz, 2006; Yague et al., 2008). For women, menopause, hormonal 

contraception, hormonal replacement therapy, and different phases of the menstrual cycle can 

alter hearing and neuronal activity in auditory regions (Anderer et al., 2004; Walpurger et al., 

2004; Mordecai et al., 2008; Cowell et al., 2011). Although there are no studies that have 

directly tested the effect of local estradiol synthesis on auditory processing in humans, systemic 

blockade of estradiol synthesis or signaling with an aromatase inhibitor or estrogen receptor 

blockers, respectively, are shown to alter auditory and speech processing (Wagner and Morrell, 

1996; Jenkins et al., 2004; Bakoyiannis et al., 2016). Since aromatase expression is very low in 

the auditory cortices in rodents (Sanghera et al., 1991; Wagner and Morrell, 1996), many studies 

on local estradiol signaling on auditory processing has been done in songbirds, which have rich 

aromatase expression in auditory regions (Shen et al., 1995; Metzdorf et al., 1999; Jacobs et al., 

2000; Saldanha et al., 2000). The role of neuromodulators in auditory processing in songbirds is 

discussed further in later sections. Therefore, across species, both circulating and brain-

generated estradiol are shown to play a role in auditory processing.  

Mechanism of local estradiol regulation: the gaps in the literature and potential circuit 

mechanism of aromatase regulation 

Estradiol has a broad range of actions often categorized loosely into two groups, 

classical and non-classical actions (Vasudevan and Pfaff, 2008). Classical actions are mediated by 

classic estrogen receptors that are located in or can translocate into the nucleus to act as 

transcription factors. Non-classical actions are actions of estradiol that do not involve genomic 
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transcription and act through the activation of cellular signaling cascades via opening or 

altering kinetics of ion channels, metabotropic receptors, receptors of other 

neuromodulators (Boulware et al., 2005; Kumar et al., 2015; Peterson et al., 2016 etc. 

Reviewed in Prossnitz et al., 2008; Kow and Pfaff, 2016). Many of the non-classical 

actions are shown to be mediated by transmembrane estrogen receptors or estrogen 

receptors associated with the plasma membrane via palmitoylation or other types of 

protein modifications  (Meitzen et al., 2013; Banerjee et al., 2014). Non-classical actions 

are also called “rapid” actions because many of their effects can be observed within 

seconds while the effects of classical actions take longer. While estradiol has both 

classical and non-classical effects on neurotransmission and plasticity and both are likely 

to be activated concurrently (Vasudevan and Pfaff, 2008), most neuromodulatory 

effects that happen rapidly are considered to be mainly the consequences of non-

classical actions of estradiol (Compagnone and Mellon, 2000; Balthazart and Ball, 2006; 

Remage-Healey et al., 2011b).  

 

While many published studies have focused on the downstream effects and 

mechanisms of estradiol actions, one of the important questions that remains to be 

answered is how estradiol signaling, itself, is controlled in the brain. Traditionally, 

neuromodulator actions can be controlled by many mechanisms including its rate of 

synthesis, rate of release, receptor expression, receptor location, ligand affinity states of 

receptors, clearance, and degradation. Especially, as for other neuromodulators, the 

amount of local estradiol and timescale is expected to be extremely important for the 

specific and location-specific activation of downstream effects. However, as mentioned 

above, estradiol is not only produced within the brain, but also can come from 
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peripheral sources through the bloodstream. In addition, unlike most neuromodulators, 

estradiol is lipophilic and is considered to be capable of diffusing through the plasma 

membrane and, therefore, not kept in vesicles (Charlier et al., 2013b). Therefore, local estradiol 

levels are most likely affected by estradiol clearance (including degradation), diffusion, and local 

synthesis  

 

The only known mechanism of estradiol clearance is through metabolism. Estradiol can 

be converted either to estrone by 17 beta-hydroxysteroid dehydrogenase (17 β-HSD), or to 

various hydroxyestrodiols by the enzymes of the cytochrome p450 family (CYP) through 

oxidation (Zhu and Conney, 1998; Balthazart and Ball, 2006). To my knowledge, with the 

exception of aromatase activity, the only mechanisms of modulating of the activities of these 

enzymes that have been reported are via changes that involve translation, transcription, or 

degradation of the gene or protein. Although possible, no reports have been published, to date, 

on the rapid regulation of these enzymes except by aromatase. Even though the role of 

aromatase in clearance has been suggested in the field, no studies have tested this specifically 

(Charlier et al., 2015). Moreover, to rapidly control estradiol concentration, the enzymes are 

expected to be expressed close to the loci of action and near the plasma membrane. Although 

the subcellular localization of these enzymes has not been extensively studied, the currently 

available literature has suggested the presence of these enzymes only within the mitochondria 

(Miksys and Tyndale, 2002). Together, although clearance or metabolism of estradiol may 

contribute to the maintenance of global levels of estradiol, not enough evidence exists to 

suggest it is one of the main mechanisms of rapid and local regulation of estradiol signaling. 
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The presumed mechanism of regulating rapid estradiol signaling is via local 

estradiol synthesis. Aromatase activity in the brain changes rapidly in response to 

treatments that alters neuronal activity and application of neurotransmitters (Baillien 

and Balthazart, 1997; Balthazart et al., 2001, 2003a, 2011; Remage-Healey et al., 2008, 

2009a, 2011a; Charlier et al., 2013b; Comito et al., 2016). Moreover, in some areas, 

aromatase is not only found in the cell bodies but also in the synaptic terminals which 

further supports the idea that estradiol actions are controlled by rapid changes in local 

aromatase activity (Roselli, 1995; Naftolin et al., 1996; Hojo et al., 2004; Peterson et al., 

2005). In vivo fluctuations in estradiol within regions have been demonstrated using 

microdialysis (Remage-Healey et al., 2008). Moreover, local inhibition of aromatase 

activity with an aromatase inhibitor decreases local estradiol levels (Remage-Healey et 

al., 2008). These pieces of evidence suggest that, in addition to global and regional levels 

of estradiol, estradiol levels at the synaptic cleft are also important for the control of 

estradiol actions (Figure 1).  
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A schematic to illustrate the possible control mechanisms of aromatase activity and 
local estradiol levels when subpopulation of neurons (star shapes) are activated. Circles A, B, 
and C represents heterogenic regions with differing pattern of aromatase expression. Estradiol 
within in a region could be come from the blood stream (not shown) or synthesized from local 
somatic (black shapes) or pre-synaptic (blue lines) aromatase. In regions where aromatase is 
primarily found pre-synaptically (region B), aromatase+ terminals are likely to come from other 
regions that express somatic aromatase (regions A & C). In regions where aromatase is found 
both in the pre-synaptic boutons and cell bodies (A), aromatase+ terminals can come either 
from within the same region or a different region. In regions with heterogeneous aromatase+ 
neurons (region A), sub-regional aromatase concentration may be more important than in 
regions with homogeneous aromatase neuronal identity (region C). (1) Estradiol levels of the 
whole area can be upregulated by local aromatase in regions where aromatase is abundantly 
expressed (shades in regions A & C). (2) Sub-regional estradiol levels around aromatase+ 
neurons are up- or down- regulated via neuronal activity (shades around star shaped neurons). 
(3) Pre- or post- synaptic aromatase activity may depend on receiving inputs from other 
neurons. Signals that affect presynaptic aromatase activity can come from axoaxonic synapses 
(region C, dotted square a), while post-synaptic (or somatic) aromatase activity may depend on 
direct pre-synaptic inputs coming from either aromatase positive or negative terminals from 
neurons whose cell bodies reside inside (region A, top dotted square a) or outside (region A, 
bottom dotted square a) of the region. (4) Somatic or pre-synaptic aromatase activity is 
dependent on neuronal activity or action potentials (arrows b). The signals may come from 
inside (region A, arrows b) or outside of the region where the pre-synaptic aromatase terminals 
are. (5) Somatic or pre-synaptic aromatase activity can be affected by the actions of other 
neuromodulators (somatic, region A & B c; pre-synaptic, region C c). To avoid complication, 
possible circuit mechanisms of neuromodulators’ actions on aromatase activity were excluded 
from this diagram (See Figure 2). 
 

Figure 1: Possible role of circuits in the regulation of local estradiol levels 
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Estradiol levels could be rapidly regulated through the regulation of aromatase 

activity, in two ways: i) by changing the amount of aromatase protein and ii) by changing 

the enzymatic activity of aromatase. Since most rapid actions occur within seconds to 

minutes, the rapid increase in estradiol is mostly likely due to the change in aromatase 

activity and not to protein levels (Balthazart et al., 1990). Thus, only literature regarding 

rapid regulation of aromatase activity through activation of cellular signaling cascades 

will be reviewed. In different species, both in vivo and  in vitro, evidence shows that 

aromatase activity is inhibited by phosphorylation-inducing environments such as the 

addition of magnesium (Mg2+), calcium (Ca2+), or ATP (Balthazart et al., 2001, 2003a; 

Remage-Healey et al., 2011a; Charlier et al., 2016; Comito et al., 2016). Although 

detailed comparisons of studies done in different species suggest slight species and 

regional differences in the mechanisms, in general, the results agree that aromatase is 

inhibited by kinase activities via phosphorylation and calmodulin binding to aromatase 

(Balthazart et al., 2005; Miller et al., 2008; Charlier et al., 2016; Comito et al., 2016). 

Moreover, conditions that induce increases in neuronal activity, such as the addition of 

potassium (K+), kainite, NMDA, or AMPA, decrease aromatase activity (Balthazart et al., 

2001; Remage-Healey et al., 2008, 2011a). In the zebra finch secondary auditory region 

(which expresses high levels of pre-synaptic aromatase), local infusion of the pre-

synaptic voltage calcium inhibitor conotoxin inhibited the K+-induced decrease in local 

estradiol levels in awake behaving birds (Remage-Healey et al., 2011a). Moreover, in 

supernatant-containing microsomes, synaptosomes, and mitochondria from this region, 

Ca2+ had a large inhibitory effect on aromatase activity while, in the supernatant from 

regions with known low pre-synaptic aromatase, Ca2+ had no effect on aromatase 

activity (Comito et al., 2016). This suggests that pre-synaptic aromatase and non-
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presynaptic aromatase may be regulated through different mechanisms.  For pre-synaptic 

aromatase, increases in pre-synaptic calcium levels induced by neuronal activity may decrease 

aromatase activity and, therefore, estradiol levels. Interestingly, this is in contrast to traditional 

neuromodulators that are released in response to calcium influx induced by neuronal activity. 

Moreover, dopamine, but not other catecholamines, inhibits aromatase activity in Japanese 

quail brain homogenates (Baillien and Balthazart, 1997), suggesting that there could be multiple 

pathways for regulating or modulating local aromatase activity (See Figure 1 & 2). 

 

Catecholaminergic receptors could potentially be acting at least at three different locations: (A) 
Pre-synaptically to aromatase+ neurons, (B) Post-synaptically on aromatase+ neurons, or (C) 
Pre-synaptically (via axo-axonic synapse) to pre-synaptic terminals. Catecholaminergic receptor 
activation can change aromatase activity either by directly activating signaling pathways (a) or 
indirectly via modulating channel openings (b). VGCC, voltage-gated calcium channel; ER, 
estrogen receptor. 

Advantages of using songbirds, especially zebra finches, as a model for studying 

neuroestradiol actions in auditory processing 

Studying the mechanisms of speech and language processing has been difficult due to 

the lack of a good animal model. Only a small number of species other than humans 

Figure 2: Potential mechanisms for how other neuromodulators may play a role in 

regulating or modulating aromatase activity 
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communicate with complex vocalizations that require auditory learning to appropriately 

respond to vocalizations. Although rodents and primates are closely related to humans, they are 

not perfect models as they produce unlearned vocalizations and their auditory systems 

are not as complex as humans (Petkov and Jarvis, 2012). In birdsongs, similarly to 

human speech, the volume, pitch, duration, syntax, and sequence of song elements 

convey information that is important for the receiver. Also, as mentioned above, 

songbirds have aromatase expression and activity in the cortical auditory regions that is 

high and comparable to human auditory cortex (Callard et al., 1978; Saldanha et al., 

2000). In rodent cortex, although aromatase expression is moderate (Foidart et al., 

1995; Tremere et al., 2011), aromatase activity is undetectable (Callard et al., 1978; 

Lephart, 1996). Therefore, songbirds, such as zebra finches, have become popular as a 

model for understanding complex vocal and auditory learning and for studying the role 

of estradiol in auditory processing. Although songbirds are distantly related to humans, 

expression patterns of some genes that are linked to speech learning are similar 

between humans and songbirds (Pfenning et al., 2014). The connectivity between and 

functions of avian auditory regions are also found to be analogous to those of humans 

(Brainard and Doupe, 2002; Jarvis, 2004; Castelino and Schmidt, 2010). For example, 

both the human secondary cortex and the songbird secondary auditory region, NCM, 

respond to visual information (Lewis et al., 2000; Kruse et al., 2004; Remage-Healey et 

al., 2012). Thus, despite the differences and lack of homology, the functionality and 

connections of different regions involved in vocalization and auditory memory are 

similar to that of humans.  
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Among many songbird species, zebra finches are one of the most popular in the 

laboratory. Zebra finches are not only easily kept and bred in captivity but also have a 

simple song usage and learning process.  Zebra finches are socially monogamous and 

songs are sung by males to females during courtship. Since they are a social species, living in 

large groups in the wild, they are not as territorial as other species (Zann, 1996; Goodson et al., 

1999). Therefore, songs are not often used in aggressive situations, and the primary purpose of 

songs is thought to be individual recognition, males attracting females, and tutoring the young 

(Clayton, 1987; Goodson et al., 1999). While many songbirds learn multiple songs over multiple 

seasons, zebra finches learn only one song throughout their lifetime and they learn it during an 

early, critical period in development. Generally, males learn their songs from their caregivers 

(called tutors), which are, in most cases, their fathers. Once they reach adulthood, their critical 

period for learning new song elements has closed. These features make zebra finches an 

attractive songbird species to conduct research on the basic mechanisms of song and auditory 

learning and to use them as a model for hormonal actions on auditory processing.  

 

Although vocalizations can be used for many purposes, in zebra finches, one of the 

primary usages of vocalization is attracting mates during courtship. For females, the quality of 

songs is one of the important factors for choosing a mate (Forstmeier and Birkhead, 2004; 

Tomaszycki and Adkins-Regan, 2005; Holveck and Riebel, 2007).  Females seem to  acquire 

preferences for songs through development, and their experience impacts mate and song 

choice in adulthood (Collins, 1995; Riebel, 2000; Lauay et al., 2004; Riebel et al., 2009). While 

most regions in the auditory circuit show no gross differences in overall sizes and activity 

between females and males, detailed and direct comparisons have indicated differences in 

function and connectivity (Peterson et al., 2005; Pinaud et al., 2006; Rohmann et al., 2007; 
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Gobes et al., 2009; Remage-Healey et al., 2012; Krentzel and Remage-Healey, 2015 

(review); Comito et al., 2016 etc.). Specifically, in males, some genetic and 

electrophysiological evidence suggest that tutor songs are represented in not only the 

motor regions but also in auditory regions (Bolhuis et al., 2000; Gobes and Bolhuis, 

2007; Yanagihara and Yazaki-Sugiyama, 2016) suggesting that, unlike in females, in 

males auditory regions may be involved in song learning and production in addition to 

auditory learning and processing. Nevertheless, many studies of auditory regions have 

been conducted in males, resulting in difficulty interpreting the implications. Therefore, 

because of biological relevance to the behavior in the wild, to avoid potential 

confounding influences of singing and, depending on the purposes of the study, females 

may be preferable over males, for use as a model to study auditory processing. 

 

Although the songbird brain is not homologous to that of mammals, there are 

many similarities in the functionalities of the regions and analogous connections 

between regions. As in mammals, in songbirds, auditory information from the cochlea is 

first processed in the cochlear nucleus, and then into the midbrain nucleus 

mesencephalicus lateralis, pars dorsalis (MLd; homologous to the inferior colliculus in 

mammals) and then through the thalamus (Ov) before arriving to the cortex (Karten H J, 

1968; Kelley and Nottebohm, 1979; Brauth and McHale, 1988; Vates et al., 1996; 

Chirathivat et al., 2015). The first thalamorecipient is the primary auditory region field L, 

which is analogous to the primary auditory cortex in mammals. Field L neurons send 

projections to at least four secondary cortical regions: i) caudal mesopallium (CM); ii) 

ventral portion of the intermediate arcopallium (AIV); iii) HVC shelf (proper name), and 

iv) caudomedial nidopallium (NCM; Vates et al., 1996; Mandelblat-Cerf et al., 2014; 
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Chirathivat et al., 2015). Among these four regions, the NCM contains high expression of 

aromatase and has received the most attention with regard to estradiol signaling. 

 

Zebra finches can discriminate songs of their own species (conspecific songs) from songs 

of other species (heterospecific songs) (Scharff et al., 1998; Braaten et al., 2007). In addition, 

they can recognize songs of their own (BOS, bird’s own song), their tutors, and familiar 

individuals (Cynx and Nottebohm, 1992; Riebel et al., 2002; Braaten et al., 2007; Gobes and 

Bolhuis, 2007; Remage-Healey et al., 2010). The mechanism for how these auditory memories 

are stored has not been elucidated. In general, most types of memories are thought to be 

formed through similar complex processes that involve the following: processing or encoding of 

the experience and consolidation, storage, retrieval, and reinforcement of the memory (Nadel 

et al., 2012). Auditory memories in songbirds are thought to be formed in a similar manner. 

Nevertheless, importantly, motor memory that is required for vocalization and auditory 

processing that is necessary for correcting a bird’s own singing performance, should not be 

confused with general auditory memory that is used in individual recognition or sexual 

preferences (Riebel et al., 2002; Gobes and Bolhuis, 2007). Since tutor song and BOS are 

extremely important for the birds’ performances for singing, their memory is likely to be stored 

via a different mechanism than other auditory information.  

Review of the literature on the role of the songbird secondary auditory region, the caudal 

medial nidopallium (NCM) 

The role of the NCM in auditory processing or memory is unclear. Many hypotheses on 

the role of the NCM are derived from behavioral preference tests in lesioned birds and 

expression of a song-induced immediate-early gene, egr-1. Both females and males show 



 

15 

behavioral preference for familiar (including tutor, mate, and father’s) songs over novel 

songs (Miller, 1979; Riebel et al., 2002; Gobes and Bolhuis, 2007; Woolley and Doupe, 

2008), and these results from innate preferences have been used in combination with 

lesions and pharmacological manipulations to infer the role of the NCM (Gobes and 

Bolhuis, 2007; London and Clayton, 2008; Remage-Healey et al., 2010; Canopoli et al., 

2016). Often, song preferences are used as evidence for sexual or social preference, or 

the presence of memory or recognition of songs. In the NCM, exposing zebra finches to 

songs leads to enhanced expression of immediate-early genes, such as c-fos, arc, and 

egr-1 (Mello et al., 1992; Mello and Ribeiro, 1998; Bailey et al., 2002; Velho et al., 2005; 

Tremere et al., 2009). All three of these immediate-early genes are inducible 

transcription factors that are used as markers for neuronal activity and synaptic 

plasticity (Reviewed in Alberini, 2009; Shepherd and Bear, 2011). Comparisons of 

intensities of egr-1 induction by different sound stimuli are commonly used to speculate 

about the function of NCM. Although many studies have focused on the role of the 

NCM, its function is still unclear due to difficulty in interpreting results of behavioral 

preference to songs or the intensity of egr-1 induction. Adding more complexity, there 

seems to be a disagreement between studies in defining the boundaries of the NCM ( 

Terpstra et al., 2004). While some groups define the lateral boundary of the NCM to be 

around 1mm medial to the midline (such as Mello and Clayton, 1994),other groups 

include regions more lateral as part of NCM (such as Gobes and Bolhuis, 2007; for a 

thorough survey of studies, refer to Terpstra et al., 2004). Some of the many hypotheses 

for activities involving the NCM include the following: i) formation and maintenance of 

auditory memory; ii) formation and maintenance of song memory used for vocalization 

in males; and iii) Integration of auditory and other sensory information and encoding 
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context. In sections below, I will review existing literature on studies that led to the different 

hypotheses on NCM function. 

 

The evidence for the NCM being in involved in auditory memory comes from the 

observations that both song-induced egr-1 expression and electrophysiological responses of the 

neurons are high in response to novel songs and habituate in response to repetition of  the 

same songs (Chew et al., 1995; Mello et al., 1995). This higher response to novel songs 

compared to familiar songs is seen in both sexes (Chew et al., 1996; Woolley and Doupe, 2008; 

Yoder et al., 2014), suggesting that the NCM is involved in general auditory memory. In 

agreement with this hypothesis, in males, bilateral lesions of the NCM diminishes the birds’ 

preference for tutor songs (Gobes and Bolhuis, 2007). However, although this could be viewed 

as an evidence for the NCM’s involvement in familiar song memory or recognition, the results of 

this study also support another hypothesis: that the NCM is important for tutor song learning in 

males. In males, it is not clear whether the innate behavioral preference for tutor songs is due to 

recognition of familiar individuals or innate affinity to tutor or songs similar to the bird’s own 

song. Male zebra finches naturally prefer their own song over other songs (Remage-Healey et 

al., 2010). Since no equivalent studies can be performed in females, the implication of the lack 

of tutor preference in the NCM lesioned birds is inconclusive. Altogether, although egr-1 

expression and electrophysiological evidence suggest a role for the NCM in song recognition, 

corresponding behavioral studies to fully support this hypothesis are lacking. 

 

In addition to the role in song memory, in males, the NCM has been implicated in song 

learning. Traditionally, as mentioned above, motor memory that is important for vocalization is 

thought to be stored differently than auditory memory required for song recognition in different 
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nuclei. However, studies suggest that the NCM may play a role during the initial 

formation of tutor song memory required for singing and song maintenance in 

adulthood. During development in males, the basal expression of egr-1 peaks around 30 

days post-hatch (dph) when birds starts to vocalize and practice the tutor song (Jin and 

Clayton, 1997). Moreover, infusing an extracellular signal-regulated kinase (ERK) 

inhibitor, bilaterally, into the NCM in juveniles during access to their tutor impairs 

eventual tutor song learning (London and Clayton, 2008). On the other hand, when the 

NCM is lesioned at 40 dph after their first exposure to tutor songs, the animals are able 

to sing songs similar to tutor songs as well as control animals, when they are older 

(Canopoli et al., 2016). Studies in adults suggest that at least some molecular memory of 

tutor songs are encoded in the NCM in adulthood. When males are exposed to their 

tutor songs, egr-1 induction is correlated with the birds’ songs’ similarities to their tutor 

songs (Bolhuis et al., 2000). In addition, in adults, the NCM seems to be involved in 

access to birds’ own songs or tutor songs. When the NCM is bilaterally lesioned, 

lesioned animals show no impairment in hearing, basic song recognition, or singing 

performance (Gobes and Bolhuis, 2007; Canopoli et al., 2014). Lesioned birds also 

perform as well as control animals in pitch shifting paradigms, where they are reinforced 

to shift the pitch of one of the syllables in their songs to a higher frequency to avoid a 

white noise punishment (Canopoli et al., 2014). This result implicates that NCM lesions 

do not impair processing of the pitch of their own vocalizations. However, the lesioned 

birds are not as precise as control animals in returning to the original pitch after the end 

of the paradigm, which suggest that NCM lesions could instead impair access to the 

template of their own songs (Canopoli et al., 2014).  The above mentioned studies 

suggest that the NCM plays some roles in song learning. However, this is unlikely to be 
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the only function of NCM since, although females do not sing, the overall size of the NCM is 

similar between females and males and the NCM in many studies show similar results when 

conducted both in females and males.  

 

Studies on song-induced egr-1 expression also provide evidence for NCM involvement in 

processing context information of auditory stimuli. Sound loudness, sound location, and visual 

information modify song-induced egr-1 expression (Kruse et al., 2004; Avey et al., 2005). In the 

NCM of females but not males, egr-1 expression is enhanced in response to female calls (Gobes 

et al., 2009). In females, egr-1 expression is higher in response to female calls than to male calls. 

In males, while female calls cause no induction of egr-1 expression when males are alone, the 

presence of other males enhances egr-1 expression in response to female calls (Vignal et al., 

2005). Moreover, physiological state also impacts song-induced egr-1 expression levels (Park 

and Clayton, 2002). While in freely moving birds, conspecific songs induce higher expression of 

egr-1 compared to generated noise, while in physically restrained birds, song-induced egr-1 

expression is similar in response to conspecific songs and noise (Park and Clayton, 2002).  In a 

similar fashion to the egr-1 response, electrophysiological studies also suggest that NCM activity 

is sensitive to context. In males, when animals are alone, the NCM neurons do not respond 

differently to familiar and unfamiliar female calls (Menardy et al., 2014).  However, in the 

presence of other conspecific individuals, NCM neurons responds stronger to familiar females 

calls over unfamiliar female calls (Menardy et al., 2014). In contrast, in a similar study in 

females, NCM neurons responded more strongly to familiar male calls over unfamiliar male calls 

regardless of context (Menardy et al., 2012). In one study done in females, temporal bilateral 

lesioning of the NCM with lidocaine diminished females’ preference to males with ordinary 

songs over males with distorted songs, suggesting that the NCM is involved in song processing 
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important for mate preference (Tomaszycki and Blaine, 2014). From this evidence, it 

appears that the NCM may play an important role in context processing for sounds, 

although more behavioral studies with physiological manipulations need to be 

performed to fully examine this hypothesis.  

Estradiol and catecholaminergic actions in the NCM and potential interactions 

The fact that environmental and social factors can alter NCM activity suggests 

that neuromodulators may play a role in modulating NCM activity. In the NCM, two of 

the most studied neuromodulator categories are neurosteroids and catecholamines. In 

the zebra finch NCM, a large amount of estradiol can be detected locally (Remage-

Healey et al., 2008, 2012) and aromatase expression is high (Shen et al., 1995; Saldanha 

et al., 2000). Moreover, both tyrosine-hydroxylase (TH) and dopamine-beta-hydroxylase 

(DBH) fibers are found in the NCM (Bottjer, 1993; Mello et al., 1998). In the NCM of 

other songbird species, catecholamines and their metabolites have been detected from 

micro-punches (Sockman and Salvante, 2008; Matragrano et al., 2012). In the NCM, 

both estradiol and catcholamine synthesis has been shown to increase after song 

exposure. In the white-throated sparrow NCM, expression of phosphorylated TH was 

increased after 15 min of song exposure and the levels of dopamine metabolites, 

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were enhanced in 

tissue from animals sacrificed after 30 min of song exposure (Matragrano et al., 2012). 

In zebra finches, when females (but not males) are exposed to conspecific song 

playback, the number of egr-1 positive TH neurons increases in the locus coeruleus 

(Matragrano et al., 2012). Since locus coeruleus neurons are believed to be the principal 

site where the cell bodies of norepinephrine-synthesizing neurons localize, this result 
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indicates that norepinephrine levels may be enhanced in areas where DBH fibers are present, 

including the NCM. In both female and male NCM, when local estradiol levels are measured 

using in vivo microdialysis, estradiol levels are enhanced in response to song playback (Remage-

Healey et al., 2008, 2012). 

 

While evidence suggests that estradiol plays an important role in auditory processing, 

the exact signaling and mechanism controlling local synthesis is unclear. Blocking local estradiol 

synthesis acutely using an aromatase inhibitor, fadrozole, diminishes males’ preferences for 

their own songs over conspecific songs (Remage-Healey et al., 2010). Also, in adult males, 

systemic fadrozole treatment for days prior to song exposure blocks NCM neuronal responses 

from habituating to the song (Yoder et al., 2012). In both females and males, NCM neurons 

expresses abundant aromatase in the cell bodies (Saldanha et al., 2000), and infusing exogenous 

estradiol directly into the NCM enhances NCM neuronal responses to auditory stimuli relative to 

the baseline (Remage-Healey et al., 2010, 2012). Although this suggests that estradiol has a 

common role in females and males, there is some evidence for sex differences. In males, 

estradiol levels in the NCM are not only enhanced with song stimuli but also enhanced with 

visual stimuli of a female or when they are interacting with females (Remage-Healey et al., 

2008). In females, visual stimuli alone do not have effect on estradiol levels in the NCM 

(Remage-Healey et al., 2012). In females, fadrozole infusion to the NCM decreases relative 

electrophysiological auditory responsiveness and the effect persist after the drug infusion 

(Remage-Healey et al., 2012), while in males, fadrozole has a small decreasing effect on NCM 

auditory responsiveness during fadrozole infusion and a large rebound effect is seen after the 

fadrozole has been washed out (Remage-Healey et al., 2010). In addition, estradiol infusion into 

the male NCM enhances neuronal responses to BOS in the HVC, a sensory-motor nucleus for 
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vocalization (Remage-Healey and Joshi, 2012), suggesting that, at least in males, 

estradiol signaling in the NCM is involved in processing or recognizing BOS. Moreover, 

more aromatase is found pre-synaptically in males compared to females (Peterson et 

al., 2005; Rohmann et al., 2007; Comito et al., 2016). These pieces of evidence together 

with evidence for the involvement of the NCM in song learning and maintenance (see 

previous section) suggest that sex differences in estradiol signaling may account for sex 

differences in the function of the NCM. Therefore, both in females and males, estradiol 

seems to be important for auditory processing while the mechanisms and the 

functionality may be different between the sexes.  

 

Evidence for the role of catecholamines in songbird behavior comes from 

studies using N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a 

neurotoxin which selectively induces the degeneration of adrenergic neurons that 

produce norepinephrine (Ross and Stenfors, 2015).  However, most studies with DSP-4 

are done on courtship and singing behavior and only a few studies specifically focus on 

auditory processing or the role of NCM. In the female canary NCM, treatment with DSP-

4 decreases song-induced egr-1 expression and diminishes the difference in the egr-1 

responses between conspecific and heterospecific songs (Lynch and Ball, 2008). In zebra 

finch males, when song-induced regional activity is measured by functional magnetic 

resonance (fMRI), selectivity to BOS over conspecific songs and to heterospecific songs 

over conspecific songs were reversed in DSP-4 treated birds (Poirier et al., 2009). In 

seasonally-breeding songbirds, catecholaminergic signaling in the NCM are shown to 

interact with circulating estradiol levels that are higher during the breeding season 

compared to non-breeding seasons (LeBlanc et al., 2007; Matragrano et al., 2011; 
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Heimovics et al., 2012). Moreover, in other songbird species, catecholaminergic modulation 

alters behaviors that are associated with the NCM (Appeltants et al., 2002; Pawlisch et al., 

2011). However, in zebra finches, the role of catecholamines in the NCM isless clear. In addition, 

the molecular or cellular mechanisms of how catecholamines affect auditory processing are not 

known for any species. Only one study has directly tested the role of norepinephrine on the 

functionality of the NCM. In this study, using adult female zebra finches, blocking adrenergic 

receptor subtypes with specific inhibitors, phentolamine and propranolol, shortly before song 

playback to the birds decreased song-induced egr-1 and c-fos expression in the NCM (Velho et 

al., 2012). In the same study, when phentolamine was applied unilaterally to the NCM after 

birds were introduced to a song and the electrophysiological response to the same song or a 

new song was recorded shortly after, no difference was found in the habituation rate to the 

songs between phentolamine-treated and non-treated hemispheres. However, when 

phentolamine was applied before a song exposure and the response to the same song and to a 

new song was recorded about 20 hrs later, the relative habituation rate of the original song to 

the habituation rate of the novel song was smaller in the phentolamine-treated hemisphere 

compared to the control hemisphere. These results indicate that adrenergic signaling in the 

NCM during auditory experiences may be important for auditory memory formation.   

 

In the NCM, the study of rapid neuromodulatory actions suggests that estradiol and 

some catecholamines, such as norepinephrine, may either have synergistic effects or otherwise 

interactive effects. As mentioned above, in the NCM, both estradiol and norepinephrine are 

detectable and the enzymes that are required for their syntheses are expressed. Estradiol and 

norepinephrine levels are also both elevated in response to songs and they are both important 

for song or auditory processing such as song preference and NCM electrophysiological 
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habituation to songs (Remage-Healey et al., 2008, 2010; Pawlisch et al., 2011; 

Matragrano et al., 2012; Velho et al., 2012; Vahaba et al., 2013; Yoder et al., 2014). 

Furthermore, the downstream effects on egr-1 activation seem to be similar. Blocking 

estradiol synthesis or blocking adrenergic receptor activation reduces song-induced egr-

1 expression (Velho et al., 2012; Krentzel and Remage-Healey, 2014). In one study done 

in the NCM in canary males, aromatase-expressing cell bodies were shown to be 

surrounded densely by  TH+ fibers (Appeltants et al., 2004), supporting the hypothesis 

that catecholamines, including norepinephrine, could be regulating aromatase activity 

through pre-synaptic inputs.  

Hypotheses and questions addressed in this dissertation 

In summary, in the zebra finch brain, while the importance both of 

catecholamines and estradiol in auditory processing has been examined, the precise 

mechanism of estradiol regulation and the extent of interaction with catecholaminergic 

signaling is unclear. As mentioned above, in the NCM, aromatase activity is enhanced 

when birds are exposed to auditory stimuli. However, whether this mechanism is due to 

or modulated by the change in neuronal activity of aromatase-expressing neurons or the 

activation of signaling cascades by the actions of other neuromodulators is not clear. 

Since there is strong evidence that the levels of both catecholamines and estradiol are 

enhanced during auditory experience, it is possible that the actions of one of the 

catecholaminergic neuromodulators alter aromatase activity. Even though studies in the 

NCM suggest that catecholamines can interact with estradiol, none of them compared 

their effects to estradiol or directly tested the possibility that catecholaminergic effects 

could interfere or interact with estradiol-dependent effects.   
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In addition, although we know that application of exogenous estradiol enhances auditory-

evoked neuronal activity in majority of the neurons in the NCM, it is not clear in vivo how the 

estradiol levels are controlled at the level of circuits within the NCM. Both the presynaptic and 

somatic locations of aromatase are likely to have mechanistic importance in the higher order 

auditory processing in the NCM. At the same time, the activity-dependent regulation of 

aromatase activity, as well as the network connectivity of aromatase positive neurons are 

unknown but are important for understanding the mechanism of estradiol modulation of 

information processing. The organization, connection, and identity of aromatase neurons within 

cortical regions will provide clues to this mechanism.   

 

Therefore, in this dissertation, I explore the central hypothesis that the network and 

chemical environment of aromatase cells is integral to the regulation of estradiol synthesis. 

More specifically, I i) Tested the role of norepinephrine in auditory processing and whether it 

plays a role in the regulation of aromatase activity and ii) Analyzed the identities and 

organization of aromatase positive cells in the NCM and other auditory regions. 
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CHAPTER II 

IN VIVO DETECTION OF FLUCTUATING BRAIN STEROID LEVELS IN ZEBRA FINCHES 

Published in Cold Spring Harbor Protocols.  

Authors: Ikeda M, Rensel MA, Schlinger BA, Remage-Healey L.  

Year: 2014.  

Abstract/Introduction 

This protocol describes a method for the in vivo measurement of steroid 

hormones in brain circuits of the zebra finch. A guide cannula is surgically implanted 

into the skull, microdialysate is collected through a microdialysis probe that is 

inserted into the cannula, and steroid concentrations in the microdialysate are 

determined using the enzyme-linked immunosorbent assay (ELISA). In some cases, 

the steroids measured are derived locally (e.g., neural estrogens in males), whereas 

in other cases, the steroids measured reflect systemic circulating levels and/or 

central conversion (e.g., the primary androgen testosterone and the primary 

glucocorticoid corticosterone). A reverse-microdialysis (“retrodialysis”) method that 

can be used to deliver pharmacological agents into the brain to influence local 

steroid neurochemistry as well as behavior is also discussed. 

Materials 

It is essential that you consult the appropriate Material Safety Data Sheets and 

your institution’s Environmental Health and Safety Office for proper handling of 

equipment and hazardous material used in this protocol. 
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Reagents 

Artificial cerebrospinal fluid (aCSF) for zebra finch brain.  

The bovine serum albumin (BSA) in the aCSF increases the solubility of lipophilic steroids 

(Remage-Healey et al. 2008, 2010); however, BSA causes interference with the ELISA for 

corticosterone. When measuring brain corticosterone levels, use BSA-free Dulbecco’s 

phosphate-buffered saline (Sigma-Aldrich) instead of aCSF. 

ELISA kit to detect the steroid of interest 

Corticosterone EIA kit (Cayman Chemical; cat. no. 500655) 

E2 EIA kit (Cayman Chemical; cat. no. 582251) for 17-β-estradiol Testosterone ELISA kit 

(Enzo Life Sciences; cat. no. ADI-900-065) 

Equithesin 

We use an in-house formulation of this general anesthetic that contains 10.2 mg/mL 

Nembutal, 42.5 mg/mL chloral hydrate, 34.6% propylene glycol, 8.9% ethanol, and 21 mg/mL 

magnesium sulfate. Equithesin is administered intramuscularly at a dose of 3.2 mg/kg body 

weight. Isofluorane can be used as an   alternative. 

Ethanol (20% and 100%) 

Lidocaine (2% in ethanol) or another local anesthetic Meloxicam 

Zebra finches (males and females; age >120 d) 

All finches used in our experiments are from our institutional breeding colony. 

Equipment 

Acoustic attenuation chamber (Audiometric Booth AB08; Eckel Industries) 

The chamber has a one-way glass partition and a 10-mm portal for microdialysis inflow/outflow 

tubing. 

Cotton-tipped applicators  
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Cyanoacrylate adhesive (e.g., Vetbond) 

Dental acrylic (Perm Reline and Repair Resin; Hygenic; cat. no. H00358) Dissection microscope 

(Zeiss OPMI 1) 

Fluorinated ethylene propylene (FEP) tubing and adaptors (CMA Microdialysis)  

Fraction collector (refrigerated) (CMA 470) (CMA Microdialysis) 

This is optional, but it is very useful for the collection of large numbers of 

samples. 

Guide cannula (CMA 7) (CMA Microdialysis) Heating pad (FHC) 

Kimwipes  

Microdialysis cage 

Microdialysis probe (CMA 7; 1 mm cuprophane probe membrane) (CMA Microdialysis) 

The probe membrane has a 6-kDa cutoff, which allows the passive diffusion of 

small molecules and pharmacological agents such as steroids and enzyme inhibitors 

(~300 Da). 

Microdialysis tubing adaptors (for connection to swivel) (Instech MC015)  

Needles (22-, 26-, and 30-gauge) 

Probe/guide clip (CMA)  

Standard surgical tools 

Stereotaxic apparatus (adapted for use with small birds) 

We use a device that was custom-made by Herb Adams Engineering. 

Swivel (dual-channel, quartz-lined) (Instech 375/D/22QM) Syringe, for injections (0.5-cc) 

Syringe, for pump (1.0-cc; set to infuse at 2.0 µL/min) Syringe filters (0.22-µm) 

Syringe pump (PHD 22/2000 Infusion from Harvard Apparatus) 

Tether (a modified sleeve that connects the swivel to the cannula; see Fig. 3) 
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A counter-balanced lever arm can be obtained from Instech for microdialysis studies with 

mice. 

Method 

Surgery 

The surgical procedure takes 30 min–1 h. 

1. Weigh the zebra finch. Deprive the animal of food for ~40 min to allow the crop to empty and 

to prevent aspiration pneumonia during surgery. 

2.  Incubate the Equithesin in a warm water bath to dissolve any crystals in the solution. 

3.  Administer an intramuscular injection of 50 µL of Equithesin to the breast muscle of the finch. 

For animals <100 d posthatch or <12 g in weight, inject 30–45 µL of Equithesin. 

For Equithesin-induced anesthesia, breathing rates should be short and shallow. Wait 20 

min until the bird is deeply anesthetized. If breathing is labored, terminate surgery immediately. 

For isoflurane-induced anesthesia, use 2%–3% isoflurane with 0.4 L/min oxygen. Monitor 

the depth of anesthesia as described above; isoflurane typically takes effect within 5 min. 

Incrementally decrease the isoflurane throughout the procedure to prevent overdose while 

maintaining the depth of anesthesia. 

4.  Wrap the bird in a Kimwipe “tunic” and bind the body loosely with tape. 

Animals are more comfortable during survival surgery if they are lightly restrained 

(Grandin 2007). 

5.  Remove the feathers from the head and around the ear canal using scissors. Alternatively, 

brush the head feathers back gently with a cotton-tipped applicator soaked in 20% ethanol. 

6.  Secure the bird on a stereotaxic apparatus on top of a heating pad set at ~34˚C. 
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Set the angle of the head to ensure the skull plane of the target area is 

perpendicular to the cannula entry point. For implantations targeting the caudal 

telencephalon, this head angle is typically 45˚. 
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At the top is the swivel connected to the microdialysis cage with inlet and outlet FEP tubing. The 
top of the tether (lever arm) contains either a thin wire or plastic straw (such as those that are 
shipped with CMA 7 probes to protect them) to enable lightweight rigidity, and it is then 
enshrouded with tape. The tether is angled to provide a lever arm to translate rotational torque 
from the bird to the swivel while also allowing full freedom of movement (including flight) inside 
the cage. Multiple tape component stages ensure flexibility in addition to an angled lever arm. 
 
7.  Inject 10–15 µL of 2% lidocaine subcutaneously into the scalp. 

Figure 3: Schematic representation of the customizable tether design used in zebra 

finch in vivo microdialysis 
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Smooth the lidocaine into the working area and confirm that the local anesthetic 

is effective by testing the scalp with light forceps. 

8.  Using iridectomy scissors, make incisions to the skin along the midline and expose the skull. 

Make lateral incisions from this medial incision at both rostral and caudal ends, forming an “I.” 

9.  Locate the bifurcation of the midsagittal sinus (point-of-origin). 

This can be best accomplished by making a small window incision (remove a 1 

mm × 1 mm) in the upper leaflet of skull surrounding the sinus area. Leave the lower 

leaflet intact. 

10.  Secure a 26-gauge needle to a probe/guide clip attached to a micromanipulator and place 

the tip of the needle on top of the point-of-origin (“zero point”) without piercing the lower 

leaflet. Note the coordinates on the micrometer scales for x and y dimensions on the stereotaxic 

apparatus. 

11.  Using stereotaxic coordinates create a small hole through both upper and lower leaflets of 

the skull using needle tips. 

12.  Carefully resect the dura mater inside the hole using a 30-gauge needle and expose the 

brain surface. 

A shallow lateral resection is essential to avoid damaging underlying brain 

tissue. 

13.  Descend the guide cannula ventral to the target area using pre-established depth 

coordinates. 

Leave the obdurator (the “dummy probe” supplied with the CMA cannula) inside 

the guide cannula. 

14.  Secure the guide cannula to the skull by applying a thin layer of cyanoacrylate adhesive 

around the opening, avoiding direct contact with the surface of the brain. 
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For subadults, use a #11 scalpel blade to etch small, shallow lines in the skull area 

roughening the skull surface and encouraging cyanoacrylate adhesion. 

15.  While the cyanoacrylate is drying, apply dental acrylic on top of it using cotton swabs. Layer 

additional cyanoacrylate as necessary. 

Make sure that the dental acrylic completely covers the guide shaft of the cannula and at least 

one third of the cannula housing itself. 

16.  Reattach the scalp to all remaining exposed skull areas by applying cyanoacrylate under the 

skin and securing it to the skull and dental acrylic. 

17.  After recovery, monitor and treat the animal for perioperative pain as necessary with 

meloxicam (or another nonsteroidal anti-inflammatory drug). 

Probe Implantation 

Perform probe implantation 3–4 d after surgery. The procedure takes ~1 h. 

18.  Fill FEP tubing and the swivel assembled to the microdialysis cage with aCSF. 

19.  Prime the microdialysis probe by placing it in the probe clip and immersing it in 100% 

ethanol in a microcentrifuge tube. Keeping the probe immersed, pump water (for 20 min) and 

then aCSF (8 µL/min) into the probe through the inlet tube and attach a microdialysis tether to 

the probe using a small piece of tape. After flushing, remove the probe from the microcentrifuge 

tube and implant it in the guide cannula (see Step 20). 

This transfer should be completed quickly (<1 min) so that the microdialysis probe does 

not dry out. 

20.  Grasp the bird in one hand, stabilize the head gently with fingertips and, using #5 forceps, 

remove the dummy probe from the guide cannula and replace it with the prefilled microdialysis 

probe. 
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Implantation can be completed under light isoflurane anesthesia to minimize 

disturbance. 

21.  Apply small amount of cyanoacrylate adhesive to the exterior of the probe housing at the 

top of the cannula to keep the probe in place. 

Make sure the cyanoacrylate is external to the cannula channel to not impact 

the CNS or probe, and double- check that aCSF is welling out from the outlet tubing after 

the implantation. 

22.  Connect the inlet and outlet tubing to the microdialysis tubing inside the   chamber. 

23.  Attach the tether to the arm as shown in Figure 3. Adjust the tether height and lever arm, 

and confirm that dialysate is flowing at the correct rate. 

Most ELISAs require at least 50 µL of sample. A flow rate of 2 µL/min for 30 min 

is sufficient to obtain such samples. See Troubleshooting. 

Detection of Steroids 

24.  Begin in vivo experiments 8–12 h following implantation to allow implantation-induced 

neuro- chemical responses to subside. Use a commercially available ELISA kit to detect steroids 

in the dialysate. 

In most cases, the dialysate can be run directly on the ELISA plate because our 

aCSF with BSA is similar to the composition of the ELISA assay buffer. Always run four to 

eight control wells for each ELISA with aCSF that has not been perfused through the 

dialysate system to establish baseline comparisons. 

Troubleshooting 

Problem (Step 23): The aCSF dialysate is not flowing at the correct rate. 
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Solution: When the bird is removed from the system, flush ddH2O through the entire system 

(FEP tubing, swivel inlet, and outlet) for 60 min after every use at 8–10 µL/min. Continue 

flushing ddH2O at 0.5–1.0 µL/min until the next experiment. Filter the aCSF perfusate through a 

0.22-µm syringe filter before pumping it through the microdialysis setup to prevent particulate 

buildup. 

 

Problem (Step 23): The FEP tubing is clogged (i.e., there is no flow through a section of the 

dialysis setup). 

Solution: Double-check that fluid is welling from the syringe tip at the desired flow rate. Run the 

system at 8 µL/min for ~1 min to try to flush bubbles or particulate matter from the tubing. 

Check that fluid is coming out of each connection of FEP tubing. Trim the ends of the FEP tubing 

at each connection to remove clogs. 

 

Problem (Step 23): The clog is isolated to the bird (within the probe tubing). 

Solution: Make sure that the FEP tubing in the tether is not tangled. Remove the tape around 

the FEP tubing and reapply to reduce possible rotational torque constriction. 

 

Problem (Step 23): The clog is within the swivel. 

Solution: Remove the microdialysis probe lead and run ddH2O through the swivel at 20 µL/min. 

If perfusate is welling from the swivel, wait 5 min at 8 µL/min. This will flush any particulate 

matter and/or bubbles in the swivel. Replace the swivel. 

 

Problem (Step 23): The clog is within a section of FEP tubing. 
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Solution: Run at 20 µL/min through the isolated section of FEP for 5–10 min. Switch out the 

section of FEP tubing. 

Discussion 

The in vivo microdialysis procedure described here has been used successfully to 

detect fluctuating neurosteroids in the auditory forebrain (Remage-Healey et al. 2008, 

2012; Ikeda et al. 2012) and in the hippocampus (Rensel et al. 2012; Rensel and 

Schlinger 2013) of behaving adult zebra finches. Similar methods have been developed 

to examine changing levels of catecholamines in behaving zebra finches (e.g., Sasaki et 

al. 2006). 

This protocol can be adapted to reverse-microdialyze (retrodialyze) drugs and 

steroidogenic compounds (Remage-Healey et al. 2008). When selecting candidate 

retrodialysis compounds, it is important to consider molecular mass. Proteins and other 

large molecules >6 kDa are likely to be bound up in the microdialysis tubing, but see 

Ulrich et al. (2013) for further discussion. Typical retrodialysis experiments involve 

collecting several serial baseline samples with aCSF perfusion, switching to a new 

syringe prefilled with drug dissolved in aCSF for 30–60 min, and then a period of 

washout in aCSF. When retrodialysis experiments are performed inside a sound-

attenuation chamber, syringe changes can be conducted outside the chamber, allowing 

experimental manipulation without disturbing the animal. When switching to a new 

solution allow 1–2 min of high rate of flow (8–10 µL/min) to confirm the perfusate is 

flowing and to eliminate air bubbles in the FEP tubing. Once flow is re-established the 

experiment can resume at the desired flow rate (i.e., 2 µL/min). Automated liquid 

switches (obtained from CMA Microdialysis) can also be used. It is important to account 
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for the “dead volume” of the microdialysis tubing and swivel, given the dimensions of FEP tubing 

and the total volume of perfusate passing through the swivel. Calculations of dead volume, 

factoring in the flow rate, allow for precise timing of sample collection during retrodialysis 

intervals. The in vivo microdialysis methods described here can be used to study steroid 

signaling in the brain for a variety of experimental purposes. Thus, the combined study of 

neurochemistry and behavior in a vocal learning species now has a new set of powerful tools. 

Recipe 

Artificial Cerebrospinal Fluid (aCSF) for Zebra Finch Brain 

Reagent   Final concentration 

NaCl    199 mM 

NaHCO3   26.2 mM 

KCl    2.5 mM 

MgSO4                  1.0 mM 

CaCl2    2.5 mM 

Glucose   11.0 mM 

Dissolve the reagents in ultrapure ddH2O (~18 Mfi) and adjust the pH to 7.4–7.6. Store 

at 4˚C in the dark for a maximum of 4 wk. Add 1% bovine serum albumin (BSA; Sigma- Aldrich 

Α1470) to 50-mL aliquots and filter (with 0.2-µm syringe filters) to eliminate suspended particles 

and reduce clogging of FEP tubing and probes. 
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Abstract 

The catecholamine norepinephrine plays a significant role in auditory processing. Most 

studies to date have examined the effects of norepinephrine on the neuronal response to 

relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the 

detection of complex syntactical sounds, as well as the coding properties of sensory neurons. 

Songbirds provide an opportunity to understand how auditory neurons encode complex, 

learned vocalizations, and the potential role of norepinephrine in modulating the neuronal 

computations for acoustic communication. Here, we infused norepinephrine into the zebra finch 

auditory cortex and per- formed extracellular recordings to study the modulation of song 

representations in single neurons. Consistent with its proposed role in enhancing signal 

detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it 

significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by 

clonidine, an a-2 receptor agonist. Moreover, a pattern classifier analysis indicated that 

norepinephrine enhanced the ability of single neurons to accurately encode complex auditory 

stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird 

brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. 
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Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory 

cortex had detectable effects on local estradiol levels. Moreover, pretreatment with 

fadrozole, a specific aromatase inhibitor, did not block norepinephrine’s 

neuromodulatory effects. Together, these findings indicate that norepinephrine 

enhances signal detection and information encoding for complex auditory stimuli by 

suppressing spontaneous “noise” activity and that these actions are independent of 

local neuroestrogen synthesis. 

Introduction 

Neuromodulators are critical for state-dependent changes in neural circuit 

activity and behavior. Norepinephrine in particular is important for both altering the 

gain of sensory stimuli and for fast behavioral switching (Bouret and Sara, 2005). During 

development, sensory plasticity of the visual and auditory cortex is dependent on 

norepinephrine, indicating a key role in shaping early sensory experience (Kasamatsu et 

al., 1979; Edeline et al., 2011; Shepard et al., 2015). Computational models and in vitro 

recordings have generated predictions about the role of norepinephrine in shaping 

neural circuit activity, via specific actions at adrenergic receptor (AR) subclasses 

(Hasselmo et al., 1997; Carey and Regehr, 2009). In mammalian auditory cortex, 

norepinephrine enhances auditory processing of pure tones and calls, by decreasing 

spontaneous and auditory-evoked firing, altering ex- citatory/inhibitory balance, and 

altering frequency tuning (Foote et al., 1975; Manunta and Edeline, 1997, 2004; Salgado 

et al., 2011a, 2012). However, it is less clear what role norepinephrine plays in the 

coding of complex sensory stimuli; that is, beyond the processing of simple stimuli, such 

as tones and the tuning of receptive fields (Hurley et al., 2004). 
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Songbirds have become a premiere system for understanding how auditory neurons 

encode complex, learned vocalizations (Woolley and Rubel, 2002; Elie and Theunissen, 2015). 

Norepinephrine has been associated with auditory processing in the songbird brain (Sockman 

and Salvante, 2008; Castelino and Schmidt, 2010), and norepinephrine can influence the activity 

of songbird premotor neurons via actions at a-ARs (Cardin and Schmidt, 2004; Sizemore and 

Perkel, 2008). Noradrenergic signaling is necessary for immediate-early gene induction in 

response to song, as well as long-term adaptation of forebrain neurons to familiar stimuli (Lynch 

et al., 2012; Velho et al., 2012). Songbirds therefore provide an exceptional opportunity to test 

how norepinephrine modulates the neural coding of auditory stimuli, in particular the coding of 

complex vocalizations important for social communication and learning. 

Norepinephrine likely interacts with other neuromodulators in the control of audition. 

In one forebrain region of songbirds, the caudomedial nidopallium (NCM), a region analogous to 

mammalian secondary auditory cortex, local estradiol levels are elevated in response to hearing 

songs (Remage-Healey et al., 2008, 2012). In the canary NCM, fibers expressing tyrosine 

hydroxylase surround aromatase-positive neurons, suggesting that catecholamines regulate 

local estradiol synthesis (Appeltants et al., 2004). Furthermore, inhibiting either catecholamine 

or estradiol actions in the NCM disrupts auditory processing and immediate-early gene 

induction (Lynch and Ball, 2008; Remage-Healey et al., 2010; Poirier and Van der Linden, 2011; 

Velho et al., 2012; Vahaba et al., 2013). These studies suggest that catecholamines and 

neuroestrogens interact to modulate auditory processing in songbirds, although this interaction 

has not been tested in any system to date. 

Here, we directly test the hypothesis that norepinephrine regulates the auditory coding 

of complex vocalizations in the songbird forebrain. Furthermore, we examine whether 

norepinephrine actions are dependent on local estradiol synthesis. We find that norepinephrine 
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enhances the coding accuracy of higher auditory cortical neurons for complex 

vocalizations, an effect similar to neuroestrogen modulation, but without directly 

impacting neuroestrogen synthesis. 

Materials and Methods 

A total of 74 female zebra finches were used in this study. The protocols for 

animal care and use were approved by the Institutional Animal Care and Use Committee 

at the University of Massachusetts (Amherst, Massachusetts). Adult female zebra 

finches were housed in unisex cages un- der photoperiod of 14 h light (7:00 –21:00) and 

10 h dark. We elected to perform these experiments in females because of the more 

extensive prior literature on catecholamines in the auditory forebrain of female 

songbirds (Sockman and Salvante, 2008; Matragrano et al., 2011, 2012; Pawlisch et al., 

2011). In vivo microdialysis procedures closely followed those as detailed in a recent 

protocol paper (Ikeda et al., 2014). 

Surgery. The protocol for surgeries were adapted from Remage-Healey et al. 

(2008, 2010) and Remage-Healey and Joshi (2012) and Ikeda et al. (2014). Birds were 

orally administered meloxicam (1 µl/g weight). After 20 min, birds were intramuscularly 

injected with 45 µl of equithesin. Lidocane (20 µl, 4% in ethanol; Sigma-Aldrich) was 

then injected subcutaneously under the scalp for local anesthesia, and an incision was 

made to remove the skin to expose the skull. The bifurcation point of the midsagittal 

sinus was used as point of origin. Using a stereotaxic frame with a micromanipulator, 

the coordinates for cannula insertion and recording site were located. 

For microdialysis experiments, a guide cannula with a dummy probe (CMA 7; 

CMA Microdialysis AB) was inserted into the brain (1.1 mm lateral and 1.2 mm rostral 
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relative to the point of origin). The tip of the cannula was placed 1.4 mm ventral from the 

surface of the brain. The cannula was fixed to the skull with dental cement and cyanoacrylate. 

The birds were allowed to recover for at least 4 d following surgery before microdialysis began. 

Retrodialysis. The day before starting experiments, the dummy probe was replaced with 

a microdialysis probe (CMA 7 with 2 mm membrane; Microdialysis Probe, CMA Microdialysis) 

prefilled with aCSF. The inlet and outlet tubing from the probe was connected to a microdialysis 

swivel (Instech Laboratories) and then to a syringe pump (PHD 2000 Harvard Apparatus) and a 

collection tube, respectively, with FEP tubing (0.12 mm inner diameter; CMA Microdialysis) (see 

Fig. 3.3A). Animals were placed inside a sound-attenuation chamber with a one-way glass 

partition (Eckel Industries) to allow undisturbed sample collection and manipulation of 

retrodialysis conditions. The probe was perfused at a flow rate of 0.5 µl/min with aCSF (199 mM 

NaCl, 26.2 mM NaHCO3, 2.5 mM KCl, 1 mM NaH2PO4, 1.3 mM MgSO4, 2.5 mM CaCl, 11 mM 

glucose, 1% BSA, pH 7.4 –7.6). Twenty-four hours after probe implantation, the flow rate was 

increased to 2 µl/min at least 30 min before the start of the experiment and kept at this rate 

until the end of the experiment. 

Each experiment consisted of collecting consecutive samples twice before (Pre1 and 

Pre2), once during (Retro), and twice after (Post1 and Post2) retrodialysis treatments. All 

collection intervals were 30 min. Regular aCSF was pumped through the probe during the pre 

and post periods, while 0, 0.01, or 0.1 mM of norepinephrine-hydrocloride (Sigma-Aldrich) aCSF 

solution was infused through the dialysis probe during retrodialysis (Retro). Experiments were 

conducted twice a day in the morning (9:30 A.M.) and the afternoon (2:00 P.M.) for 3– 4 d with 

treatments randomized for each subject and period. The animals were monitored with a video 

camera during retrodialysis. In a subset of animals, experiments were performed at night to test 

for potential circadian effects of norepinephrine on estradiol levels in NCM. The night 
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experiments began at 9:30 P.M. relative time (i.e., 30 min after lights off). Estradiol 

concentrations in the dialysate samples were measured by ELISA, previously validated with 

GC/MS (Remage-Healey et al., 2008, 2012). All samples from each animal were assayed 

in the same run to minimize interassay variation. For adrenergic antagonist retrodialysis 

(reagents purchased from Sigma-Aldrich), samples were collected in the same manner 

as norepinephrine retrodialysis, but only two samples were collected (once before and 

once during antagonist treatment with 30 min collection intervals) because we did not 

observe a difference between the two pre collection periods in the previous 

retrodialysis experiment. 

The videotaped trials were analyzed offline using JWatcher to assess whether 

there were any changes in locomotor activity with treatment. Within 2 d after the last 

experiment, birds were killed using an overdose of isoflurane. They were then either 

rapidly decapitated or transcardially perfused with 0.1 M PBS followed by 10% formalin. 

The brains were extracted and fixed in 20% sucrose formalin solution for at least 24 h at 

4°C. The brains were then frozen and embedded in OCT at -80°C, sectioned by cryostat 

(45 µm), and Nissl stained with thionin to confirm the location of the probe site. All 

microdialysis experiments below are from birds confirmed to have probe sites restricted 

to NCM. 

Electrophysiology with retrodialysis. For electrophysiology experiments, the 

skull dorsal to the NCM was marked with a #11 scalpel blade. Using cyanoacrylate and 

dental acrylic, a custom-made head post was attached to the rostral skull. A silver wire 

reference ground was inserted under the upper-leaflet of skull. Experiments were 

conducted 1–2 d after surgery. On the day of the experiment, the bird was anesthetized 

with three 30 µl intramuscular injections of 20% urethane spaced 30 min apart. After 
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the last injection, the bird was secured by the head post to an in vivo recording rig inside a 

sound attenuation booth (Industrial Acoustics). Body temperature was maintained at ~37°C with 

a heating pad (FHC Neurocraft). A small craniotomy exposed the brain surface dorsal to NCM. A 

microdialysis probe (as above, filled with aCSF as above) and an extracellular electrode 

(Carbostar-1, Kation Scientific) were inserted into the NCM (~1.4 mm ventral from the surface of 

the brain) adjacent to each other (within 200 –500 µm). All recordings began after a mini- mum 

20 min delay following implantation of the probe/electrode to allow implantation-induced 

changes to subside. Each recording session collected NCM extracellular responses to 

randomized 20 repetitions of four 2 s playback stimuli (CON1, conspecific zebra finch song 1; 

CON2, conspecific zebra finch song 2; HET, heterospecific bengalese finch song; WN, white 

noise; »70 dB). The interstimulus interval was at 10 s, and the total duration of each recording 

was ~15 min. All recordings were amplified, bandpass filtered (300 –5000 Hz; A-M Systems), and 

digitized at 20 kHz (Micro 1401, Spike 2 software; Cambridge Electronic Design). 

To collect baseline responses to auditory stimuli, the first recording   was collected 

following 30 min of aCSF perfusion (Pre). To test the effect of norepinephrine (N = 17), 

recordings were conducted after 30 – 40 min infusion of 0.1 mM norepinephrine (in aCSF, NE), 

and then followed by   30 min aCSF washout (Post). In a separate set of birds (N = 10), to test the 

effect of norepinephrine in the presence an aromatase inhibitor, fadrozole (100 –500 µM) 

(Wade et al., 1994), the NCM was perfused with fadrozole for 30 –50 min, before and during 

and after 0.1 mM norepinephrine infusions. In a separate set of animals (N = 9), the effect of 

adrenergic agonists (all from Sigma-Aldrich), cirazoline (N = 2), and clonidine (N = 6), and an α2 

antagonist, idazoxan (N = 1), were tested at two different concentrations (0.5 mM, LOW; 5 mM, 

HIGH). After the “Pre” recording, the sites were infused with low dose of the agonists, and then 

with high dose. For the agonist experiments, we noticed that some single units (N = 6 of 13) 
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were not auditory for some stimuli at baseline (evoked firing — spontaneous firing < 0), 

but following agonist treatment they developed an auditory response pattern (evoked 

firing — spontaneous firing > 0), and these units were included in the analyses. Each 

infusion period was followed by recording sessions. For all experiments, recording sites 

were lesioned (10 µA for 10 s) to allow electrode site confirmation. 

The dialysates during the infusions and recordings were collected and stored at -

80°C and were later measured for estradiol levels with ELISA. Immediately after the 

electrophysiological recordings, animals were killed in the same way as the microdialysis 

experiment. The brains were extracted for anatomical confirmation of electrode and 

probe sites. 

Double-label immunocytochemistry. A separate set of n = 2 animals were killed 

with an overdose of isoflurane and transcardially perfused with 0.1 M PBS followed by 

fresh ice-cold 4% PFA. Brains were extracted and postfixed in 4% PFA for 1 h. The brains 

were then cryoprotected in 30% sucrose PBS overnight. The brains were embedded in 

OCT and cryosectioned at 40 µm into 0.1 M PB. The free-floating sections were rinsed 

with PB and blocked and permeabilized with 10% normal goat serum in 0.3% PBS and 

Triton X-100 (PBT) for 1 h. The sections were incubated with anti-zebra finch aromatase 

rabbit antibody (1:2500 in 0.3% PBT; generous gift of Dr. Colin Saldanha) in room 

temperature for 1 h and in 4°C for 48 h. The sections were then washed with 0.1% PBT, 

incubated with goat anti-rabbit IgG (1:500 in 0.3% PBT; Vector Laboratories; 1 h), 

washed in 0.1% PBT, treated with avidin-biotin-peroxidase complex (Vectastain ABC Kit, 

Vector Laboratories; 90 min), washed again in 0.1% PBT, and developed in Vector 

NovaRED enzyme substrate (Vector Laboratories; 5–10 min). The sections were stained 

for DBH by repeating the procedure using anti-DBH rabbit (1:8000; Immunostar), goat 
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anti-rabbit IgG (1:500; Vector Laboratories), and Vector SG enzyme substrate (Vector 

Laboratories; 5–10 min). After development, the sections were mounted onto gelatin-

coated slides. The slides were dried overnight and coverslipped with Permount (Fisher Scientific) 

and visualized under a light microscope (Zeiss). 

Because the two primary antibodies were raised in the same species (rabbit), the 

immunostaining was analyzed with caution. However, generally, the two populations were 

clearly distinguishable from one another, as DBH was found in beaded fibers and aromatase was 

found in cell bodies and their processes. Sections exposed to both primary anti- bodies were 

compared with sections from the same animals in the same run exposed to one or the other 

primary antibody to assess reliability. 

Data analysis. For dialysate samples, to normalize individual variability in levels of 

estradiol in the baseline samples (0.1–10 pg/ml), the raw data for collections Pre2, Retro, Post1, 

and Post2 were transformed according to the following formula: 

(Raw pg/ml + 1 pg/ml)/ (Pre1 pg/ml + 1 pg/ml) 

The effect of norepinephrine on the normalized estradiol levels across treatments was 

then tested using nonparametric Friedman ANOVA. 

Electrophysiological recordings were analyzed using Spike2 (Cambridge Electronic 

Design). Baseline activity and stimulus-evoked activity were obtained from recordings 2 s before 

(baseline) and 2 s after (during stimuli) the beginning of the stimuli. 

For multiunit activity, a threshold for each recording session was set such that spiking 

activity exceeded background noise by 1.5- to 3-fold. For each recording session, the threshold 

level was maintained for the entire set of recordings, so that all sampling periods per 

experiment (Pre, NE, Post) were analyzed with the same threshold (as in Remage-Healey and 

Joshi, 2012). The number of action potentials with amplitudes above threshold was counted for 
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each 10 ms interval (bin). Multiunit activity was analyzed to determine overall patterns 

(see, e.g., Fig. 3.1C); all results reported below are for sorted single units. 

To determine whether norepinephrine induced changes in NCM auditory-

evoked activity at the level of single neurons, recordings were sorted for single-unit 

analysis (as in Remage-Healey et al., 2010; Remage- Healey and Joshi, 2012). Large-

amplitude single units were identified via waveform sorting using principal component 

analysis (see Fig. 3.1B). Spikes with defined waveforms were matched to a sorting 

template with an accuracy range of 60%–100%, and the spike z-score values were 

calculated for each identified single unit. Playback peristimulus time histograms were 

generated for each single unit to verify auditory responsiveness. Only units with 

refractory periods longer than 1 ms were included in the analysis. The normalized 

auditory response (“auditory z-score”) values were calculated by taking the difference 

between the mean number of spikes per bin during the stimulus (2 s from the onset) 

and the mean number of spikes per bin during the baseline period (2 s before stimulus 

onset) divided by the SD of the difference between the stimulus and baseline periods 

(Remage-Healey and Joshi, 2012). Bursts were defined as a series of three or more 

spikes with interspike interval < 10 mS. The signal-to-noise ratio was also computed by 

calculating the ratio between the number of spikes per second during the stimulus and 

the number of spikes per second during baseline (Manunta and Edeline, 1999). 

To assess whether norepinephrine influences auditory encoding, a pattern 

classifier was used to test how an individual cell’s temporal patterning of response to 

each stimulus was distinguishable from its response to other stimuli in the presence or 

absence of norepinephrine. A customized MATLAB (version 8.1) script was written using 

the built-in function classify. Spike trains were binned in 160 –2000 ms intervals, and all 
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spikes in each bin were summed to yield a representation of the firing pattern in terms of the 

number of spikes/bin. We used a hold-one-out cross-validation technique to train and test the 

classifier. Because there were a total of 20 trials in each recording, the classifier was trained 

using the spiking pattern (spikes/bin) from a subset of 19 trials to classify those 19 trials into the 

four different stimulus categories (CON1, CON2, HET, WN). The classifier then assigned the 

remaining spiking pattern (the test pattern) to one of the four stimulus categories, based on its 

similarity to the learned categories. This was repeated 20 times, such that each of the 20 

recorded trials served as the test pattern on one occasion. Classification accuracy (% correct) 

was calculated based on the success rate of the classifier for correctly identifying the category of 

the stimulus that elicited the held-out (test) spiking pattern. 

For the electrophysiological recordings, the changes in different parameters across 

different treatments were analyzed using two-way repeated-measures (TW-RM) ANOVA, where 

sound stimuli and treatments were used as factors. When sphericity was violated, Greenhouse-

Geisser correction was used for adjustment. Post hoc comparisons were performed with 

nonparametric paired Wilcoxon signed-rank tests (pW-SRT). 

Results 

Norepinephrine enhances the auditory-evoked activity and signal-to-noise ratio for NCM 
auditory neurons 

 
In vivo retrodialysis was coupled with extracellular electrophysiological recording to test 

whether norepinephrine (0.1 mM) has an effect on auditory-evoked activity in the NCM (Fig. 

3.1A; N = 17 animals). An example multiunit response from one animal is shown in Figure 4C. 

Upon inspection of histological sections, we noted that retrodialysis probes were positioned in 

the rostral auditory lobule (NCM/CMM boundary along the mesopallial lamina) in 5 

experiments, whereas the remaining (N = 12) experiments had probes correctly placed in the 
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caudal NCM. We therefore restricted our analyses to the experiments in which the 

probes were correctly positioned within caudal NCM (N = 12 birds). Single units from the 

caudal NCM were sorted using principal component analysis (Fig. 3.1B). For N = 18 

auditory- responsive single units (stimulus-evoked firing — spontaneous (prestimulus) 

firing > 0), norepinephrine significantly increased the auditory z-score for all stimuli (Fig. 

3.1D; TW-RM ANOVA, main effect treatment: F(2,30) = 13 p = 0.00011; main effect 

stimuli: F(1.2,18) = 13 p = 0.0013; treatment × stimulus interaction: F(6,90) = 6.8 p = 

0.0000054; pW-SRT: PRE vs NE, CON1, p = 0.0041; CON2, p = 0.021; HET, p = 0.0012; 

WN, p = 0.044). The z-score values returned back to baseline levels after washout (pW-

SRT: NE vs POST, CON1, p = 0.0018; CON2, p = 0.00048; HET, p = 0.0090; WN, p = 0.012), 

indicating that the effect of norepinephrine was reversible. We also calculated the 

signal-to- noise ratio, which has traditionally been used to measure how sensory 

neurons are modulated by norepinephrine to enhance signal detection (Foote et al., 

1975; Manunta and Edeline, 1997). As with z-scores, signal-to-noise ratios significantly 

increased with norepinephrine infusion for all stimuli (Fig. 3.1E; TW-RM ANOVA, main 

effect treatment, F(2,34) = 19, p = 0.0033; main effect stimuli, F(1.1,18) = 20 p = 

0.00021; treatment × stimulus interaction, F(2.0,52) = p = 0.053; pW-SRT: PRE vs NE, 

CON1, p = 0.00025; CON2, p = 0.0015; HET, p = 0.00021; WN, p = 0.00058). The signal-

to-noise values returned back to baseline levels after washout (pW-SRT: NE vs POST, 

CON1, p = 0.0069; CON2, p = 0.00049; HET, p = 0.036; WN, p = 0.0030). As in many 

sensory systems, the signal-to-noise ratio was highly correlated with other measures of 

auditory processing. The z-score values and signal-to-noise ratio during the PRE period 

were significantly correlated (Pearson correlation, r = 0.76, p = 0.00021), and the 
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response strength values (firing activity during stimulus — prestimulus firing) were also highly 

correlated with signal- to-noise ratio (r = 0.74, p = 0.00066). 

Norepinephrine suppresses spontaneous firing 

The changes in signal-to-noise ratio may be due to changes in spontaneous activity, 

auditory-evoked activity, or both (Foote et al., 1975; Manunta and Edeline, 1997). In the rodent 

auditory cortex, norepinephrine causes increases in signal-to-noise ratio in cells whose 

spontaneous activity is concurrently suppressed (Manunta and Edeline, 1997). Thus, in the NCM 

neurons recorded here, we tested whether the norepinephrine- induced enhancement in signal-

to-noise ratio was due to a decrease in spontaneous activity (Fig. 3.1). In the same units isolated 

above (N = 18), we observed that norepinephrine caused a significant decrease in the number of 

spikes and bursts during spontaneous firing (i.e., activity before auditory stimulus presentation) 

while having no significant effects on auditory- evoked firing during stimuli (Fig. 3.2 A, C; pW-

SRT: PRE vs NE, number of spikes during spontaneous firing [p =  0.014] and during presentation 

of stimuli [p = 1.00]; number of bursts during spontaneous firing [p = 0.0069] and during 

presentation of stimuli [p = 0.90], data not illustrated). Furthermore, the variance in the number 

of spikes was significantly reduced for spontaneous firing, but it did not change for firing during 

stimuli (data not illustrated; pW-SRT: PRE vs NE, base- line, p = 0.012; during stimuli, p = 0.43). 

The percentages of spikes found within bursts was decreased following norepinephrine infusion 

for spontaneous firing but not during the presentation of stimuli (data not illustrated, pW-SRT: 

PRE vs NE, baseline, p = 0.0090; during stimuli, p = 0.32). In mammalian auditory cortex, 

norepinephrine is known to alter the firing frequency both before stimulus onset and during the 

stimulus, and the degree of change in spontaneous firing is related to the change in auditory-

evoked firing (Foote et al., 1975; Manunta and Edeline, 1997, 1999). To determine whether this 

relationship holds true in avian auditory cortex, we examined correlations between auditory-
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evoked and spontaneous activity. During the pre-NE period, there was a significant 

correlation across our population of single units between the spontaneous firing rate 

and firing rate during stimulus presentations (data not illustrated; Pearson correlation, r 

= 0.79, p = 0.000098). Then, taking into account the changes during norepinephrine 

treatment, the change in spontaneous firing frequency upon norepinephrine 

retrodialysis positively correlated with the NE- induced changes in firing frequency 

evoked by auditory stimuli (averaged across all four auditory stimuli; Fig. 3.2A; Pearson 

correlation, r = 0.84, p = 0.000011) and the change in the number of bursts for 

spontaneous firing positively correlated with the change in the number of bursts for 

firing driven by auditory stimuli (also averaged across all four auditory stimuli; data not  

illustrated, Pearson correlation, r = 0.88, p = 0.0000015). Therefore, for our population 

of single NCM neurons, the degree of enhancement of evoked firing enabled by 

norepinephrine was directly related to the degree of concurrent suppression of 

spontaneous firing activity. 
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A, Experimental setup. In urethane-anesthetized animals, a microdialysis probe was inserted 
into the NCM. An electrode was inserted caudal to the probe. Norepinephrine dissolved in aCSF 
(0.1 mM) was administered through the probe. B, A representative plot of single-unit clusters 
isolated using principal component analysis. Insets, 100 sequential traces overlaid from 
identified neurons. C, A typical multiunit response to a conspecific song (CON1) from one 
animal. Raster plots of spikes incorporated in z-score analysis (top) and peristimulus time 
histograms (100 ms bins, middle) relative to the onset to the stimulus (arrows, oscillograms at 
bottom). D, E, Norepinephrine enhances the auditory z-score (D) and signal-to-noise ratio (E) 
similarly in NCM single units. Data are mean ± SEM (N = 18). Inset, Within cell comparison of z-
score for the CON1 stimulus. CON, Conspecific zebra finch songs; HET, heterospecific Bengalese 
finch song; WN, white noise *p < 0.05 (vs PRE). **p < 0.01 (vs PRE). ***p < 0.001 (vs PRE). 

Figure 4: Norepinephrine modulates responses to auditory stimuli in caudal 

NCM 
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Spontaneous activity was measured 2s before the beginning of stimuli; spiking activity during 
auditory stimuli was extracted for2s from the beginning of the stimuli. A significant correlation 
between the percentage change in the number of spontaneous spikes and the percentage 
change in signal-to-noise ratio for CON1 (A) and percentage changes in number of spikes during 
stimuli (averaged across all four stimuli) (B). r and p values are derived from Pearson 
correlations. C, Norepinephrine suppresses spontaneous firing (left) but does not change the 

Figure 5: Norepinephrine induces changes in spontaneous activity and firing during 

stimuli, which result in the enhancement of the auditory signal-to-noise ratio 
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firing rate during stimuli (averaged across all stimuli, right). Dashed line indicates a unity line. 
Data points above this line indicate an increase in signal-to-noise ratio (mean ± SEM). N.S., Not 
significant, p > 0.05. *p < 0.05 (vs PRE). 
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A, Classification accuracy (mean ± SEM) among four stimuli, including white noise (with WN, bin 
size 160 ms) and among songs (no WN, bin size 400 ms). *p < 0.05 (within-group comparison vs 
PRE). **p < 0.01 (within-group comparison vs PRE). B, A significant correlation between 
spontaneous firing and classification accuracy in the absence of treatment (top). C, A significant 
correlation between percentage change in spontaneous firing induced by NE and relative 
classification accuracy during NE infusion (bottom). 
 

Figure 6: Norepinephrine enhances neural coding for complex vocalizations 

(i.e., song) 
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In rodent auditory cortex, Manunta and Edeline (1999) reported that the change in 

spontaneous firing frequency by nor- epinephrine is correlated with an enhancement in signal-

to-noise ratio. During the pre-NE period, there was a significant correlation between 

spontaneous firing and signal-to-noise ratio for songs but not for white noise (data not 

illustrated; Pearson correlations; CON1: r = —0.71, p = 0.0011; CON2: r = —0.72, p = 0.00076; 

HET: r = —0.60, p = 0.0091; WN: r = —0.28, p = 0.26). 

With norepinephrine, the change in spontaneous firing negatively correlated 

significantly with the change in signal-to-noise ratio to birdsongs but not white noise (Fig. 3.2B; 

CON1, r = —0.65, p = 0.0032; CON2, r = —0.73, p = 0.00052; HET, r = —0.60, p = 0.0083; WN, r = 

—0.36, p = 0.14; data not illustrated for CON2, HET, and WN). Together, norepinephrine in the 

avian auditory NCM appears to have a similar neuromodulatory function for the processing of 

complex sounds, as in mammalian auditory cortex for tone processing. The observations that 

norepinephrine enhances the signal-to-noise ratio while also decreasing spontaneous activity 

then raised the question whether norepinephrine effectively changes the ability of NCM 

neurons to encode complex auditory stimuli. 

Norepinephrine significantly enhances auditory coding of complex stimuli (i.e., song) 

Norepinephrine may not only enhance the detection of stimuli but also enhance the 

brain’s ability to accurately encode complex sounds, such as song. Using the same set of 

recordings (N = 18 units), a classifier was trained to discriminate the firing patterns produced in 

response to the four stimuli presented during the experiments (see Materials and Methods). 

The classification ac- curacy was tested with 8 different bin sizes between 160 and 2000 ms. The 

data plotted in Figure 6A are from the smallest bin sizes for which the classifier could be run, 

using data including songs and white noise (with WN) and data including songs but no white 

noise (without WN). The classifier we used requires at least one spike in each bin for all stimuli, 
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to be able to find a solution. We observed that, with smaller bin sizes, it became more 

likely that there was at least one bin with no spikes, which sometimes made it not 

possible to run the classifier. In the “with WN” condition, there is one more stimulus 

category (i.e., the white noise category) than in the “without WN” condition. This 

reduces the probability that there will exist a bin with no spikes for any stimulus and 

therefore allows the classifier to perform at smaller bin sizes for the “with WN” 

condition than in the “without WN” condition. Norepinephrine significantly increased 

classification accuracy for all bin sizes tested (pW-SRT: PRE vs NE, 2000 ms, p = 0.0052; 

1000 ms, p = 0.023; 667 ms, p = 0.015; 500 ms, p = 0.0029; 400 ms, p = 0.00071; 267 ms, 

p = 0.0021; 200 ms, p = 0.0022; 160 ms, p = 0.0074; “with WN”; Fig. 3.3A). Therefore, 

norepinephrine appears to have an effective role in enhancing the coding accuracy of 

auditory stimuli in NCM neurons, across a variety of time windows. 

Because there was also a significant decrease in spontaneous firing with 

norepinephrine (see above), we speculated that a component of spontaneous firing may 

be acting as background “noise” and interfering with classification accuracy. To assess 

whether there is a simple relationship between a neuron’s spontaneous firing rate and 

its stimulus decoding accuracy in the absence of norepinephrine, correlations between 

these two parameters were calculated. Within the pre-NE period, the decoding accuracy 

of the classifier was significantly inversely correlated with spontaneous firing across the 

population of NCM neurons (Fig. 3.3B; Pearson correlation, r = —0.74, p = 0.00043). 

That is, the lower the spontaneous firing rate of a neuron measured be- fore stimulus 

onset, the higher the decoding accuracy achieved by the classifier for the firing patterns 

elicited in that neuron during auditory stimulus presentation. In contrast, decoding 

accuracy for firing patterns elicited by auditory stimuli was not correlated with firing 
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rate during those same stimuli (data not illustrated; Pearson correlation, r = - 0.41, p = 0.090). 

Therefore, low spontaneous firing is associated with more precise stimulus encoding by NCM 

neurons, which is consistent with the hypothesis that a component of spontaneous firing is 

likely to be contributing “noise” to the ongoing auditory encoding of NCM neurons. This 

interpretation is in line with the observation noted earlier that NE decreased the spontaneous 

firing rate, but not the firing rate during stimuli (Fig. 3.2C). In further agreement with this 

interpretation, the ratio of the decoding accuracy during NE to decoding accuracy pre-NE was 

significantly negatively correlated with both the percentage change in spontaneous firing (Fig. 

3.3C; Pearson correlation, r = 0.51, p = 0.032) and the percentage change in firing during stimuli 

(data not illustrated; Pearson correlation, r = -0.61, p = 0.0076). In summary, our findings 

suggest that norepinephrine modulates songbird auditory neurons by enhancing signal 

detection and decoding accuracy via reducing background noise firing. 

An α2-adrenergic receptor (AR α2) agonist mimics the effects of norepinephrine 

In rodent auditory cortex, the NE-induced decrease in spontaneous activity is similar to 

GABA-induced decreases in spontaneous activity (Manunta and Edeline, 1997), and NE-induced 

increases in inhibitory currents are mediated by an AR α2 mechanism (Salgado et al., 2011b). 

Therefore, we predicted in the NCM that activation of AR α2 by an agonist, clonidine, would 

mimic the effects of norepinephrine in the NCM. The effect of clonidine was tested on a new set 

of birds (N = 6 animals, N = 13 units) with stereotaxic coordinates directed at the caudal NCM. 

We used two different concentrations (0.5 and 5 mM) derived from dose- dependent effects of 

clonidine reported in other regions in the zebra finch brain (Cardin and Schmidt, 2004). Like 

norepinephrine, clonidine significantly enhanced NCM signal-to-noise ratio (Fig. 3.4A, top; pW-

SRT: PRE vs HIGH, CON1, p = 0.011; CON2, p = 0.0016; HET, p = 0.0051; WN, p = 0.030), 

decreased the number of spikes during auditory presentations (Fig. 3.4A, middle; pW-SRT: PRE 
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vs HIGH, CON1, p = 0.017; CON2, p = 0.030; HET, p = 0.021; WN, p = 0.069), and 

decreased spontaneous spiking (Fig. 3.4A, bottom; pW-SRT: PRE vs HIGH, p = 0.011). 

This effect was dose-dependent, as the low dose of clonidine had mixed effects (Fig. 

3.4A; pW-SRT, PRE vs LOW, signal-to-noise ratio: CON1, p = 0.44; CON2, p = 0.0041; HET, 

p = 0.042; WN, p = 0.36; spikes during stimuli: CON1, p = 0.37; CON2, p = 0.83; HET, p = 

0.49; WN, p = 0.24; spontaneous firing: p = 0.14). Moreover, like norepinephrine, the 

clonidine-induced change in spontaneous firing was correlated with the clonidine-

induced change in firing during stimuli (Fig. 3.4C; Pearson correlations, all stimuli 

combined, LOW, r = 0.90, p = 0.000022, data not illustrated; HIGH, r = 0.93, p = 

0.0000030), and the clonidine- induced change in spontaneous firing was correlated 

with the clonidine-induced change in signal-to-noise ratio (Fig. 3.4D; Pearson 

correlations, all stimuli combined, LOW, r = —0.77, p = 0.0019, data not illustrated; 

HIGH, r = —0.57, p = 0.038). We also tested the effect of cirazoline, which is a AR α1 

agonist and AR α2 antagonist (a new set of N = 2 birds, N = 4 units) (Ruffolo and 

Waddell, 1982). In all cells tested, cirazoline caused a mean increase in spontaneous 

activity and the firing during auditory stimuli, while having no discernible influence on 

the signal-to- noise ratio (Fig. 3.4B), although these changes did not reach statistical 

significance (pW-SRT, PRE vs LOW, signal-to-noise ratio: CON1, p = 0.58; CON2, p = 1.0; 

HET, p = 0.58; WN, p = 1.0; spikes during stimuli: CON1, p = 0.10; CON2, p = 0.10; HET, p 

= 0.10; WN, p = 0.10; spontaneous firing: p = 0.10; PRE vs HIGH, signal-to-noise ratio: 

CON1, p = 0.20; CON2, p = 0.36; HET, p = 0.10; WN, p = 0.58; spikes during stimuli: 

CON1, p = 0.10; CON2, p = 0.10; HET, p = 0.10; WN, p = 0.10; spontaneous firing: p = 

0.10). It is important to note that some of the effects of cirazoline could be due to an α2 

antagonism, although a separate α2 antagonist we tested, idazoxan, did not influence 
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any of the tested measures (N = 2 units, data not illustrated). In summary, the major actions of 

norepinephrine on NCM auditory signal detection were mimicked by the AR α2 agonist, 

clonidine. 

 

Norepinephrine does not affect estradiol levels in the NCM 

The NCM region of the songbird is enriched with aromatase (Saldanha et al., 2000; 

Peterson et al., 2005); therefore, estradiol may act as an intermediary mechanism for the 

actions of norepinephrine described above. Estradiol was shown in single NCM units to increase 

the z-score values to multiple stimuli (Remage-Healey and Joshi, 2012) in a similar fashion as 

described here for norepinephrine. Therefore, we tested the hypothesis that norepinephrine 

regulates auditory processing via the regulation of local estradiol levels. 

To test the direct effect of norepinephrine on estradiol levels, in vivo retrodialysis was 

used in a new set of awake behaving animals (N = 18) to measure the changes in local estradiol 

levels in NCM in response to norepinephrine infusions (0, 0.01, and 0.1 mM; Fig. 3.5A). There 

were no significant changes in NCM estradiol levels in response to norepinephrine infusions (Fig. 

3.5 B, C; Friedman ANOVA:0 mM, y 2 = 2.7, N = 17, df = 3, p = 0.44; 0.01 mM NE, y 2 = 4.2, N = 

14, df = 3, p = 0.24; 0.1 mM NE, y 2 = 3.4, N = 15, df = 3, p = 0.33). The result was also not 

dependent on the time of the experiment (Fig. 3.5C): all p > 0.05 for morning (N = 13 

experiments), afternoon (N = 15 experiments), and night (N = 8 experiments). We also scored 

the birds’ activity levels during the norepinephrine infusions in the daytime. There was no effect    

of norepinephrine retrodialysis into NCM on locomotor activity (number of hops/min: control: 

2.1 ± 0.67, N = 9; 0.01 mM NE: 7.21 ± 3.6, N = 11; 0.1 mM NE: 5.5 ± 2.2, N = 10 experiments), 

indicating that birds were equivalently behaviorally responsive during the retrodialysis 

treatments. To further evaluate this hypothesis, in a new set of animals, we tested the effects of 
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adrenergic antagonists on estradiol levels to determine whether blockade of 

endogenous norepinephrine signaling would influence local NCM estradiol levels (N = 

20). Because all AR subtypes are expressed in the NCM (Velho et al., 2012), prazosin, 

RX821001, or propanolol was infused to block α1, α2, and þ receptors, respectively (all 

doses = 0.1 mM). None of the adrenergic antagonists had detectable effects on local 

estradiol levels within NCM (mean estradiol levels relative to baseline during antagonist 

infusions, vehicle: 1.1 ± 0.15, N = 18 experiments; prazosin: 1.2 ± 0.10, N = 16 

experiments; propanolol: 1.7 ± 0.61, N = 11 experiments; RX821001: 2.0 ± 0.55, N = 14 

experiments) (pW-SRT: Pre vs during antagonist, vehicle, p = 0.28; prazosin, p = 0.62; 

propanolol, p = 1.0; RX821001, p = 0.19). Together, these results indicate that 

norepinephrine signaling does not directly impact local forebrain estradiol levels, and 

raises the possibility that the effects of norepinephrine on the electrophysiology of NCM 

neurons are independent of local estradiol synthesis. 

 

The effects of norepinephrine on NCM neuronal activity are not dependent on local estradiol 
synthesis 

 
To directly test whether or not the effects of norepinephrine on auditory-

evoked responses are dependent on local estrogen synthesis within NCM, estradiol 

production was blocked using retrodialysis of the specific aromatase inhibitor, fadrozole 

(100 –500 µM) (Wade et al., 1994) during norepinephrine retrodialysis. In a separate set 

of animals (N = 10), for N = 20 single units in NCM, the z-score response to auditory 

stimuli was recorded before and during fadrozole infusion and then during 

norepinephrine and fadrozole coinfusion. Norepinephrine (0.1 mM) significantly 

enhanced auditory-evoked responses even in the presence of fadrozole (Fig. 3.6A; TW-

RM ANOVA: main effect stimuli: F(1.3,25) = 6.8, p = 0.0096; main effect treatment: 
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F(2.2,42) = 4.0, p = 0.022; treatment × stimulus interaction: F(4.7,88) = 2.7, p = 0.027; pW-SRT: 

PREFAD vs FAD+NE, CON1, p = 0.00032; CON2, p = 0.0014;  HET, p = 0.00032; WN, p = 0.046). 

Moreover, the degree of change in z-score values with NE infusion were not significantly 

different from the same measure collected in the first experiment we conducted with 

norepinephrine in the absence of fadrozole treatment (Student’s t test: percentage change from 

PRE to NE from first experiment, N = 18; vs percentage change from PREFAD vs FAD+NE, N = 20; 

p = 0.56, data not illustrated). Importantly, the changes in auditory-evoked responses during 

norepinephrine retrodialysis were not accompanied by changes in local estradiol levels in NCM 

(Fig. 3.4B; Pearson correlation: r = 0.022, p = 0.95), further indicating that nor- epinephrine 

alters NCM neuronal response properties but does not drive elevations in local estradiol 

concentrations. Together, these results indicate that the actions of norepinephrine on NCM 

neurons are not dependent on local estradiol synthesis in NCM. 
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A, B, Signal-to-noise ratio is enhanced by clonidine at both low and high dose (mean ± SEM, 
top). Both spiking activity during stimuli (middle) and spontaneous spikes (bottom) were 
suppressed by clonidine. There was a mean increase for cirazoline but was not statistically 

Figure 7: The ARα2 agonist clonidine mimics the effects of norepinephrine in the 

NCM 
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significant (spikes during stimuli normalized to “PRE” values; mean ± SEM). The number of 
spontaneous spikes; data are mean ± SEM. N.S., Not significant, p > 0.05. *p < 0.05 (vs PRE). **p 
< 0.01 (vs PRE). C, A significant correlation between percentage changes in spontaneous spikes 
and the percentage changes in the number of spikes during stimuli for clonidine (r = 0.93, p = 
0.0000030; for similar findings with norepinephrine, compare with Fig. 3.2A). There was no 
relationship for cirazoline (r = —0.031, p = 0.96). D, A significant correlation between percentage 
changes in number of spontaneous spikes and percentage changes signal-to-noise ratio to CON1 
for clonidine (r = —0.70, p = 0.0067) but not for cirazoline (r = —0.75, p = 0.24). 
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A, Experimental setup for in vivo reverse microdialysis. A microdialysis probe was inserted into 
the caudal NCM through a guide cannula. The solutions were delivered through tubing and a 
microdialysis swivel, and all manipulations were external to a sound isolation chamber to 
minimize disturbance. B, Estradiol (E2) levels relative to baseline (mean ± SEM) before (PRE), 
during (RETRO), and after (POST1 and POST2) norepinephrine infusions. Dialysates were 
collected every 30 min. 0 mM NE, N = 17; 0.01 mM NE, N = 14; 0.1 mM NE, N = 15. C, Estradiol 
levels in individual birds before (PRE) and during (0.1 mM NE) norepinephrine infusions during 
experiments conducted in the morning (9:30 A.M., N = 13, top), afternoon (2 P.M., N = 15, 
middle), and night (9:30 P.M., N = 8, bottom). 
 

Figure 8: Norepinephrine has no effect on local estradiol levels in NCM 
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Norepinephrine synthesizing fibers are largely dissociated from estradiol synthesizing neurons 
 

The microdialysis and electrophysiology results above together indicate that 

norepinephrine enhances auditory processing and auditory coding using mechanisms that are 

not dependent on local estradiol synthesis in NCM. To examine the anatomical relationship 

between norepinephrine- and estradiol-producing neurons in NCM, DBH and aromatase 

enzymes were stained with double-label immunocytochemistry. In addition to a lack of double-

labeled processes, we observed markedly few occurrences of direct physical interactions 

between aromatase-ir neurons and DBH-ir fibers in the NCM (Fig. 3.6C). This anatomical 

dissociation within the NCM is inconsistent with a principal role of norepinephrine to regulate 

aromatase-expressing neurons in the NCM. 

Discussion 

This study demonstrates the following: (1) norepinephrine enhances auditory detection 

in the songbird auditory cortex; (2) norepinephrine also enhances the coding accuracy of 

individual neurons for complex sounds, via a reduction in concurrent spontaneous firing; (3) 

norepinephrine’s effects are mimicked by an α2 agonist; and (4) norepinephrine achieves similar 

effects as estradiol in modulating forebrain auditory processing in the songbird, but these 

effects are not directly dependent on neuroestrogen synthesis. 

We show that norepinephrine similarly enhances auditory- evoked responses, signal-to-

noise ratios, and auditory encoding, and does so by decreasing spontaneous activity. The 

amount of spontaneous firing positively correlates with firing rates during stimuli presentation, 

and norepinephrine decreases the degree of noise in the spontaneous activity. Furthermore, 

spontaneous firing rate inversely correlated with classification accuracy and signal-to-noise ratio 

for songs, the NE-induced change in spontaneous activity was correlated with the change in 
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firing during stimuli, and the NE-induced change in both the spontaneous firing and 

firing during stimuli inversely correlated with the change in classification accuracy and 

signal-to-noise ratio. Thus, we propose that spontaneous activity irrelevant to auditory 

stimuli (“noise”) is maintained throughout the stimulus-evoked response in the songbird 

auditory cortex and that norepinephrine increases neuronal signal detection and coding 

accuracy by suppressing this constitutive noise (Fig. 3.6D). 
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A, z-score (mean ± SEM). PREaCSF, Before drug treatment; PREFAD, fadrozole pretreatment; 
FAD+NE, fadrozole and norepinephrine; POSTFAD, washout with fadrozole solution; POSTaCSF, 
washout with aCSF. *p < 0.05, versus PREFAD. **p < 0.01, versus PREFAD. ***p < 0.001, versus 
PREFAD. B, There was no significant correlation between percentage change in estradiol (E2) 
levels and percentage change in z-score values in response to CON1. C, Double immunostaning 
of DBH fibers (arrows) and aromatase neurons (red asterisk). Photomicrograph is representative 
of the occurrences in which DBH-ir fibers and aromatase-ir cell bodies and processes exhibited 
limited direct physical interactions in NCM (left). Single-label aromatase (top) and DBH (bottom) 
immunoreactive staining in NCM (right). D, Schematic illustration of the effects of 
norepinephrine and estradiol. Estradiol enhances auditory-evoked firing while norepinephrine 
decreases background noise, resulting in less spontaneous firing (dashed lines). E, Summary of 
what is known from previous findings (thin arrows) and the current study (thick arrows) in NCM. 
Solid arrows, tested in zebra finch; dashed arrows, demonstrated in non-zebra finch songbirds. 

Figure 9: Norepinephrine enhances auditory-evoked responses independent of 

aromatase activity 
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Our findings with zebra finch NCM build upon findings in primate and rodent 

auditory cortex, in which norepinephrine decreases spontaneous firing frequency and 

enhances the signal- to-noise ratio for tones and calls (Foote et al., 1975; Manunta and 

Edeline, 1997, 1999), and the change in signal-to-noise ratio correlates with the change 

in baseline firing activity (Manunta and Edeline, 1997, 1999). To our knowledge, in the 

songbird auditory system, the direct effects of norepinephrine on neuronal firing 

frequency have been examined in only one other study (Cardin and Schmidt, 2004). 

Similar to our findings here for NCM, the administration of norepinephrine to nucleus 

interface, a premotor region essential song production, enhances stimulus selectivity in 

HVC, a sensorimotor region. Our results now indicate that norepinephrine enhances the 

signal-to-noise ratio and auditory coding in the songbird auditory forebrain, which likely 

enhances the neural discrimination of sounds that must be extracted as signals from 

noisy environments (Schneider and Woolley, 2013). We find it particularly interesting 

that norepinephrine induces a change in sensory coding accuracy via a concurrent 

suppression of spontaneous activity in the songbird because it provides a test- able 

prediction for a similar mechanism for sensory coding in mammalian auditory cortex. 

We report that the AR α2 agonist, clonidine, mimics the effects of 

norepinephrine on electrophysiological auditory responses, whereas the AR α1 agonist, 

cirazoline, does not. This is consistent with findings in mammalian sensory cortex, in 

which AR α2 and α1 agonists typically have differential effects on sensory processing 

(Sato et al., 1989; Nai et al., 2009; Salgado et al., 2011b). Our findings identifying the AR 

α2 mechanism are particularly interesting because α2-mediated noradrenergic actions 

are key for associative plasticity in vitro in mammalian cerebellum (Carey and Regehr, 
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2009) and involve the suppression of the rhythmic-generating Ih current (Robbins and Arnsten, 

2009). Therefore, the suppression of concurrent spontaneous firing via an AR α2 mechanism 

identified here may be important for associative plasticity and memory functions in the songbird 

NCM for complex song, during both juvenile and adult periods of song learning. 

In rodent auditory cortex, norepinephrine’s actions involve modulation of inhibitory 

neurotransmission to achieve an enhancement of signal-to-noise ratio (Foote et al., 1975; 

Manunta and Edeline, 1997; Salgado et al., 2011a). Differential effects of norepinephrine on 

spontaneous versus evoked activity in auditory cortex are thought to be achieved via 

differential, layer- specific actions on inhibitory interneurons (Hasselmo et al., 1997; Salgado et 

al., 2011b). Similarly, auditory processing and encoding depend on inhibitory neurotransmission 

in the song- bird NCM (Pinaud and Mello, 2007; Pinaud et al., 2008; Tremere et al., 2009; Jeong 

et al., 2011; Tremere and Pinaud, 2011), although the layered cortical organization typical of 

mammals is not as evident in songbirds (Wang et al., 2010). Therefore, despite the apparently 

divergent neuronal architecture in the songbird auditory cortex, there appears to be a striking 

conservation of modulatory mechanism by norepinephrine shared between birds and mammals. 

Identifying specific cell types and receptor types, along with computational modeling, will 

further dissect how complex vocalizations are processed and modulated in higher-order circuits 

by norepinephrine. 

Although our study confirms that neurons in NCM respond significantly to AR α2 

agonists, it does not provide concrete evidence for the role of endogenous norepinephrine in 

behaving animals. Our electrophysiology experiments were conducted on urethane-

anesthetized birds, which may have precluded our ability to detect endogenous actions of 

norepinephrine, which are highly sensitive to anesthetic state (Vazey and Aston-Jones, 2014). In 

this and other songbird species, however, blocking endogenous norepinephrine actions with 
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specific receptor antagonists in awake subjects can affect auditory-dependent 

behavioral and immediate-early gene responses (Pawlisch et al., 2011; Velho et al., 

2012). In other sensory systems, norepinephrine exerts powerful effects on behavioral 

discrimination of stimuli (e.g., Escanilla et al., 2010). Future experiments on songbird 

audition can be conducted in this species with awake recordings or in combination with 

locus coeruleus stimulation. 

The current study provides several lines of evidence that nor- epinephrine does 

not act via changing aromatase activity in female zebra finch NCM. Norepinephrine did 

not affect estradiol levels in NCM, and its actions on the firing properties of NCM 

neurons were not dependent on aromatase activity. In addition, aromatase-positive 

NCM neurons were largely dissociated from DBH-expressing fibers. It remains to be 

determined whether this pattern of modulation is similar in males because the 

distribution of aromatase-positive cells and fibers is reported to be sexually dimorphic in 

the NCM (Saldanha et al., 2000; Peterson et al., 2005). In previous studies, estradiol 

enhanced baseline- normalized auditory evoked responses in the NCM of both sexes 

(Tremere et al., 2009; Remage-Healey et al., 2010, 2012; Remage-Healey and Joshi, 

2012) and estradiol enhanced auditory encoding of NCM neurons (Tremere and Pinaud, 

2011). We show that norepinephrine similarly enhances auditory-evoked responses and 

enhances auditory encoding in a similar timescale as estradiol. Importantly, estradiol 

enhanced spiking activity during auditory stimuli, but it had no effect on spontaneous 

spiking activity (Remage-Healey et al., 2010), whereas here norepinephrine decreases 

spontaneous activity (Fig. 3.6D). 

The work presented here raises the possibility that norepinephrine and estradiol 

signaling independently regulate sensory-dependent behaviors. In songbirds, estradiol 
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and catecholamine levels are elevated in response to song presentation in a similar timescale 

(Remage-Healey et al., 2008, 2012; Matragrano et al., 2012). Among vertebrates, 

norepinephrine release in the cortex is generally associated with arousal and attention (Aston-

Jones and Bloom, 1981a, b; Aston-Jones et al., 1999). By contrast, the changes in NCM estradiol 

levels seem to be specific to social interactions and auditory playbacks (Remage-Healey et al., 

2008, 2012). As these studies suggest, depending on the environmental context, both 

norepinephrine and estradiol may be released concurrently to modulate NCM sensory 

processing. 

Norepinephrine and estradiol signaling are both required for song-induced immediate 

early gene ZENK (egr-1) induction in the NCM, and song discrimination and preferences (Lynch 

and Ball, 2008; Remage-Healey et al., 2008; Pawlisch et al., 2011; Tremere and Pinaud, 2011; 

Velho et al., 2012; Vahaba et al., 2013). Both aromatase and AR α1 mRNA are found in neurons 

that express inducible zenk mRNA in response to auditory stimuli in the NCM (Jeong et al., 2011; 

Velho et al., 2012). As shown here with norepinephrine, the change in firing rate during song 

stimuli with estradiol was shown to enhance the ability of NCM neurons to encode songs 

(Tremere and Pinaud, 2011). Together, these studies suggest that, although the upstream 

mechanisms appear to be different, they may activate common downstream intracellular 

pathways that are not currently well understood. Norepinephrine and estradiol may have 

differential roles in different parts of the NCM or in different cell types, and future experiments 

should elucidate their divergent mechanisms of action. 

As in songbirds, human language processing is likely to be dependent on both 

neuroestrogen and catecholamine signaling. Polymorphisms in the brain-specific promoter for 

the aromatase gene in humans have been associated with specific language impairments 

(Anthoni et al., 2012), and auditory processing can vary with fluctuating estrogen levels in 
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women (Tillman, 2010). Similarly, many mental disorders, such as schizophrenia, post- 

traumatic stress disorder, attention deficit hyperactivity disorder, and autism, are 

associated with adrenergic dysfunction as well as impairment in speech processing and 

dysregulation of the auditory cortex (Corbett and Stanczak, 1999; Newport and 

Nemeroff, 2000; Rapin and Dunn, 2003; Calhoun et al., 2004; Sweet et al., 2009). 

Studying the role of neuromodulators and their interactions in cortical circuits that 

encode and decode complex sounds may provide insight into treatments of neurological 

and sensory- processing disorders. 
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CHAPTER IV 

CLUSTERED ORGANIZATION AND REGION-SPECIFIC IDENTITIES OF ESTROGEN-PRODUCING 

NEURONS IN THE ZEBRA FINCH FOREBRAIN 

Authors: Ikeda MZ, Krentzel AA, Oliver TS, Scarpa GB, Remage-Healey L 

Abstract 

The neuromodulatory role of estradiol has been reported in many regions of the brain. 

However, regional differences in cellular distributions of aromatase suggest the control 

mechanism for estradiol levels could be different between brain regions and even within regions 

at the micro-circuit level. The underlying differences in estradiol synthesis between neurons 

may be associated with the identities of the aromatase-expressing neurons. Since neuronal 

activity is thought to drive aromatase activity, aromatase-expressing neurons with different 

neuronal identities might be enhancing aromatase activity in a time-specific manner by firing at 

different timings. Fast-spiking interneurons expressing the calcium binding protein parvalbumin 

are known to fire at specific timings relative to certain behaviors (Wild et al., 2005; Schneider et 

al., 2014). Here, we investigated the regional differences in the identity and connections of 

aromatase-expressing neurons using a specific aromatase antibody together with the 

interneuron markers, parvalbumin and calbindin. Aromatase is co-expressed with parvalbumin 

in the NCM and HVC shelf but not in the NCL or hippocampus. A different calcium binding 

protein, calbindin, was not expressed with aromatase in any regions. Notably, aromatase-

expressing neurons formed somato-somatic clusters. In preliminary experiments injecting small 

tracers, po-pro-1 or neurobiotin, into the clustered cells suggest that at least some of the 

clustered neurons may communicate via gap junctions. Moreover, aromatase expression was 



 

75 

compared with G-protein Coupled Estrogen Receptor 1 (GPER1) expression patterns to 

see if the amount of estradiol-synthesizing cells is related to the amount of estradiol-

sensitive cells. We found higher GPER1 expression in regions with low expression of 

somatic aromatase, but included regions with known high pre-synaptic aromatase such 

as the HVC and RA, compared to the NCM and NCL. This suggest that GPER1 may be 

involved mainly in rapid actions of estradiol synthesized from synaptic terminals on 

sensorimotor function. Overall, this study provides new insights on how interneuronal 

communication within and across regions may play a role in aromatase synthesis and 

estrogen actions.    

Introduction 

Songbirds, especially zebra finches, are one of the popular models used to study 

rapid estradiol signaling in complex auditory processing (Remage-Healey, 2014). In many 

ways the songbird model has an advantage over other model systems, and one of which 

is its similarity to humans in the abundance of aromatase, the enzyme required for 

estradiol synthesis, in the cortex (Yague and Muñoz, 2006). In zebra finches, high 

expression of aromatase is found in the caudomedial nidopallium (NCM), a region 

analogous to the mammalian secondary auditory cortex (Shen et al., 1995; Saldanha et 

al., 2000; Peterson et al., 2005). In addition, in the zebra finch brain, many other regions 

involved in auditory processing and song control are found to express aromatase to 

different degrees (Vockel et al., 1990; Saldanha et al., 2000). Although many molecular, 

cellular and physiological studies have elucidated key aspects of the mechanism of 

controlling estradiol levels in the brain, many of those studies were done using brain 

homogenates or using in vivo microdialysis which disrupt at least some circuits and 
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neuronal structures, and are unable to resolve the precise importance of connectivity, 

organization, and identities of the neurons that may be important.  (Baillien and 

Balthazart, 1997; Balthazart et al., 2001, 2003a, 2005, 2006, 2011; Remage-Healey et al., 2008, 

2009b, 2010, 2011a; Jeong et al., 2011; Remage-Healey and Joshi, 2012; Charlier et al., 2013b, 

2016; Comito et al., 2016). Moreover, in the brains of living animals, there may be meaningful 

differences in estradiol signaling at the level of microcircuits or even at the level of cellular 

compartment that cannot be detected by methods that only allow detection of global changes 

of estradiol in a region (Remage-Healey et al., 2008; Ikeda et al., 2014).  

 

In the NCM, aromatase is highly expressed in cell bodies (Saldanha et al., 2000), and 

exposing birds to certain sensory stimuli leads to an increase in estradiol levels within this region 

(Remage-Healey et al., 2008, 2009b, 2012). Further, changes in estradiol levels lead to changes 

in neuronal activity (Remage-Healey et al., 2010, 2012) and neuronal activity leads to changes in 

estradiol levels (Balthazart et al., 2001, 2006; Remage-Healey et al., 2011; Reviwed in Charlier et 

al., 2015). In addition, in different species, aromatase is expressed in pre-synaptic boutons 

(Naftolin et al., 1996; Peterson et al., 2005; Rohmann et al., 2007), allowing the possibility that 

local levels of estradiol within regions are finely controlled at the synapse (Remage-Healey et al., 

2011a; Cornil et al., 2012). Therefore, both the neuronal activity of aromatase-expressing 

neurons themselves, as well as the neuronal activity of afferent inputs to aromatase-expressing 

neurons likely govern aromatase activity. However, the specific afferents or efferents of 

aromatase neurons are unclear. 

 

The neurotransmitter profiles of aromatase-expressing neurons and afferent inputs to 

aromatase-expressing neurons in the NCM have been examined in only a few studies. Using in 
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situ hybridization, aromatase mRNA was shown to be expressed by cells that also 

express either inhibitory or excitatory neuronal markers, glutamic acid decarboxylase 

(GAD65) or vesicular glutamate transporter 2 (VGlut2), respectively (Jeong et al., 2011). 

In the cortex of humans and monkeys, aromatase is expressed in pyramidal neurons and 

in interneurons co-expressing the inhibitory neuronal markers parvalbumin or calbindin 

(Yague and Muñoz, 2006; Yague et al., 2008). In zebra finches, however; the regions that 

express calbindin overlap with those of aromatase (Pinaud et al., 2006), whether or not 

aromatase-expressing neurons also express calbindin is not known. If aromatase and 

estradiol play similar roles and are regulated in a similar fashion across species, it is 

likely that, as in humans and monkeys, aromatase-expressing cells in the zebra finch 

consist of multiple types of interneurons.  

 

Moreover, the majority of aromatase-expressing neurons in the hippocampus 

(HP) and a low percentage of aromatase-expressing neurons in the NCM co-expresses N-

Methyl-D-Aspartate (NMDA) receptors (Saldanha et al., 2004), suggesting that the 

amount of glutamatergic inputs into aromatase-expressing cells are region-specific, and 

may be important in regulating aromatase activity. In the NCM, the low numbers of 

aromatase neurons co-expressing NMDA-R may be due to aromatase-expressing 

neurons receiving non-glutamatergic inputs. Nevertheless, how aromatase activity is 

modulated by afferent inputs is unclear. To be able to design future studies that 

examine how estradiol levels are precisely regulated at macro- and micro-circuit levels, 

it is important to know the neuronal identities of aromatase-expressing neurons and 

how they differ between regions.  
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Furthermore, the localization of estradiol receptors relative to where aromatase is 

expressed is important for understanding estradiol signaling in neural circuits. The G-protein 

coupled estrogen receptor (GPER1) is a non-classical transmembrane estrogen receptor thought 

to be involved in rapid actions of estradiol (GPER1 in CNS, reviewed by Alexander et al., 2016). In 

the NCM, while classical estrogen receptors are expressed (Metzdorf et al., 1999; Saldanha and 

Coomaralingam, 2005; Jeong et al., 2011) the expression of GPER1 is relatively modest (Acharya 

and Veney, 2011). Song-control regions and some auditory regions that previously were shown 

to express low amounts of aromatase, express higher levels of GPER1 compared to auditory 

regions that express high levels of aromatase (Acharya and Veney, 2011). Evidence so far 

supports the idea that GPER1 expression is higher in regions with high pre-synaptic aromatase 

inputs to primarily respond to rapid pre-synaptic changes in estradiol. However, the expression 

of GPER1 and aromatase have never been compared directly, and it is possible that GPER1 

expression is proportional to somatic aromatase expression, when compared in the same 

animals. Thus, the cellular identity and organization of the estradiol-producing and estradiol-

responding neurons are not well known.  

 

This study tests the hypothesis that the neuronal makeup of aromatase-expressing cells 

are interneurons, region specific, and are closely associated with GPER1-expressing neurons. 

This will be tested using antibodies against the zebra finch aromatase protein together with 

different neuronal markers. We predicted that: i) as in humans and monkeys, zebra finch 

aromatase-expressing neurons are a mixture of parvalbumin-(PV) and calbindin-(CB) expressing 

neurons (Yague and Muñoz, 2006; Yague et al., 2008); ii) aromatase-expressing neurons are 

organized to interact with interneurons or even other aromatase neurons, and iii) GPER1 

expression is proportional to aromatase expression.  
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Methods 

Animals 

Adult (> 110 days post-hatch) male (N=6) and female (N=6) zebra finches were 

taken from the aviary. Most of these birds (N=10) were isolated in sound attenuating 

chambers overnight and then were exposed to conspecific songs for 30 min. After the 

playbacks, the birds were left in the dark for 30 min. These procedures were performed 

because tissues from some of the animals were used for pilot studies involving 

visualization of song-induced immediate early gene expression. The conditions were 

kept the same for the rest of the animals to control for potential variability in aromatase 

expression caused by the environment. Two additional animals did not go through the 

playback procedure but their tissues were stained in the same manner as animals that 

were isolated and presented with song playback. Because we did not observe 

differences in staining in tissue from these animals as compared to animals that 

received playbacks, their tissue is included with the rest of the results in this study.  

 

The birds were euthanized by isoflurane overdose, transcardially perfused with 

0.1M PBS followed by 4% paraformaldehyde. The brains were extracted, post-fixed in 

4% paraformaldehyde at room temperature for 2hrs, and submerged in 30% sucrose PB 

in 4 °C. The brains were then molded in OCT compound and sectioned sagittally at 35μm 

using a cryostat (Leica, Germany). The sections were kept in -20 °C in cryoprotectant at 

4 °C in PB until use.  

 

Immunocytochemistry 
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Brain sections were washed thoroughly with PB, permeabilized and blocked with 10% 

normal goat serum in 0.3% phosphate buffer triton X (PBT) for 2hrs at room temperature, and 

incubated with primary antibodies diluted in 0.3% (PBT) (see table for dilutions) at room 

temperature for 1hr and then at 4 °C for two nights (<48hrs). After the primary incubation, the 

sections were washed with 0.1% PBT three times for 15 min  each and were incubated in 

secondary antibodies (anti-rabbit, anti-mouse, and/or anti-guinea pig [either Alexa 488-or Alex 

594-conjugated, raised in goat, Thermo Fisher Scientific Inc., MA, USA; 1/200) for 1hr at room 

temperature. The sections were washed three times for 15 min each in 0.1% PBT and once in 

PB. The sections were mounted onto gelatin-coated slides and coverslipped using ProLong 

Diamond Antifade Mounting Medium (Thermo Fisher).  

For non-fluorescent images, the sections were instead incubated with biotinylated 

secondary antibodies (1/500) for 1hr in room temperature and then with 1:100 of solutions A 

and B provided in VECTASTAIN kit (PK-6100, Vector laboratories CA, USA) in 0.3% PBT for 90 

min. The sections were washed again three times with 0.1% PBT for 10 min each and then the 

stains were visualized using peroxidase substrate kits (Vector SG, Sk4700 or Vector NovaRed Sk-

4800; Vector laboratories).  

The sections were then mounted onto gelatin-coated slides, dried at room temperature, 

dehydrated in increasing concentrations of ethanol, and then coverslipped using permount 

media (Thermo Fisher).   
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Table 1: Primary antibodies and concentrations 

 

Confocal imaging 

Fluorescently labeled sections were imaged using a confocal microscope (NΑ1, 

Nikon, Tokyo, Japan) with NIS-Elements imaging software (Ar). The laser strength and 

gain were determined separately for each section since the intensity of the staining was 

not consistent across sections; however, the imaging settings were kept consistent 

across regions within each section (See Figure 11 for the regions of interest). Pictures of 

the NCM (ventral and dorsal), CMM, and HP were taken from sections 0.2-1mm lateral 

to the midline and pictures of HVC, HVC shelf, NCL, RA were taken from sections 1.7-

2.5mm lateral to the midline. Since the boundaries between the NCL and NCM and 

between the arcopallium and NCL are not clearly defined in the literature, the medial-

most aspect of nucleus taeniea (Tn) was used as a landmark for the lateral boundary of 

the NCM, and pictures of the NCL were taken from sections that were in-plane with RA. 

For each section, stitch images using 10x magnification were taken and used to observe 

the overall pattern of the staining in the sections and as a reference for higher 

magnification images (60x, oil). Once regions were identified, 60x images were taken 

using z-stack settings (1µm z-steps for 9-15µm). Zoomed-in images of individual neurons 

or clusters were taken using z-step sizes (0.1µm-0.5µm).  

Antibody Protein discription Host species Company and catalog number Dilution Citations (antibody specificity)

anti-aromatase

enzyme required for estradiol 

synthesis rabbit gift from Dr. Saldanha 1/2000 Saldanha et al., 2000

anti-calbindin calcium binding protein mouse Sigma Aldrich C9848 1/2000 Pinaud et al., 2006

anti-parvalbumin

calcium binding protein, a marker 

for fast-spiking interneurons mouse Millipore MAB1572 1/10,000 Li et al., 2013

anti-PSD 95

post-synaptic density protein, a 

marker for synapse mouse Millipore MAB1596 1/1000 Chaudhury et al., 2010

anti-NeuN a neruonal marker mouse Millipore MAB377 1/2000-1/5000 Mullen et al., 1992

anti-GPER1

membrane bound G-protein 

coupled estrogen receptor rabbit MBL International LS-A4268 1/2000 Acharya & Veney, 2012
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Image analysis  

The number of immunostained cells and the total number of cells (DAPI-positive nuclei) 

in each z-stack image were counted by blinded experimenters using FIJI software (National 

Institutes of Health, USA). For each region, the numbers of aromatase-positive cells were 

divided by the number of DAPI+ stained nuclei to calculate the percentage of aromatase positive 

cells per total number of cells (percentage of aromatase+ cells). Co-expression of two antigens 

was unambiguously confirmed by comparing both maximal projection images and individual z-

slice images (z-slice images ranged from 9 μm to 15μm in terms of thickness). To avoid including 

potential neurons that were negative for aromatase but were densely innervated by aromatase-

positive terminals, cells with low fluorescent signals (“ghost cells”) were excluded from analysis 

for all cell counts in this study. Examples of “ghost cells” and “aromatase-expressing” cells are 

shown in (Figure 10). Previously, Saldanha et al. (2000) showed that only terminal aromatase is 

found in the arcopallium while somatic aromatase cells are found in the NCL. In our sections, we 

found high intensity cells in the NCL and ghost cells in the nearby arcopallium within the same 

image.  When sections were double-labeled with the post synaptic marker postsynaptic density 

protein 95 (PSD-95) and with aromatase, ghost cells showed higher signals for PSD-95 than 

“aromatase-expressing” cells (Figure 10). When zoomed-in, many of the PSD-95 signals co-

localized with aromatase signals (Figure 20). Although this is not concrete evidence, ghost cells 

are likely to be cells receiving aromatase+ afferents and not expressing intracellular aromatase 

protein. In HVC and arcopallium, although there are no aromatase+ somatas, the presence of 

pre-synaptic aromatase terminals (Saldanha et al., 2000; Peterson et al., 2005) and aromatase 

activity (Vockel et al., 1990; Rohmann et al., 2007) has been reported in these regions   We 

carried out a separate analysis measuring the optical density of randomly chosen cells (N=15 
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somatic and N=24 ghost cells from 11 pictures taken in 5 regions), confirming that cells 

that were included in the analysis as aromatase+ cells had significantly higher optical 

density than ghost cells (unpaired T-test, p < 0.0001; OD: somatic 2.13+/- 0.24; ghost 

0.87 +/- 0.11).  

Clusters were defined as a group of two or more cells forming somato-somatic 

contacts (i.e. zero distance between the cell bodies at 60x magnification). The number 

of cells within each cluster was counted manually by scrolling through z-stack images in 

FIJI.  

 

 

Figure 10: Aromatase+ cells included in analysis and “ghost cells.”  

60x single z-image at the border between arcopallium and NCL from tissue stained against PSD-
95 and aromatase. High-intensity fluorescent cells (arrows, “aromatase+ cells”) are found in the 
NCL while low-intensity fluorescent cells (arrow heads, “ghost cells”) overlapping with PSD-95 
signals are found primarily in the arcopallium. Ghost cells are likely to reflect inputs from pre-
synaptic aromatase terminals, as described by (Saldanha et al., 2000). 
 

Dye injections 

 To test whether gap junctions exist between clustered neurons, a small dye (Po-pro-1, 

Thermo Fisher Scientific, MA) was injected into a clustered cell. The injections were made into 

cells on 300 µm thick slices prepared for whole-cell intracellular recording for a separate study. 
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Po-pro-1 (in DMSO 10 %) or neurobiotin (10%) was mixed with Alexa 488 (10 %) and internal 

solution (K-gluconate, KCl, CaCl2, HEPES, EGTA, MgATP, NaGTP, Na2-Phosphocreatine) and 

injected with a glass pipet while applying current steps (~20 min). After dye injections, the slices 

were fixed at 4 % paraformaldehyde in 4 °C. Two days later, the slices were mounted on slides, 

coverslipped using ProlongGold (Thermo Fisher), and imaged with confocal microscopy. 

Data analysis 

Statistical analyses were performed using statistical software R. One-way ANOVA 

(ANOVA), two-way ANOVA (TW-ANOVA), or post hoc t-tests were conducted when appropriate.  

Results 

The neuronal composition of aromatase positive nuclei is region-dependent 

To test whether the heterogeneity of estradiol-producing cells in the zebra finch brain 

were different across regions, zebra finch brains were immunostained with antibodies against 

the zebra finch aromatase, and co-labeled with other neuronal markers (Figure 11). In 

agreement with previous findings, the percentages of aromatase+ cells were high in the NCM 

and HVC shelf (Saldanha et al., 2000). No aromatase+ cells were found in the ventral CMM 

(Figure 12), although a few sparse and isolated aromatase+ cells were found in the dorsal CMM 

close to the ventricle (Metzdorf et al., 1999, Figure 4.8A). No difference in the percentages of 

aromatase+ cells was found between ventral and dorsal NCM. In contrast to Saldanha et al. 

(2000), the percentage of aromatase+ cells was significantly higher in the hippocampus (HP) 

than in other regions (Figure 11, 12 & 17B; ANOVA for all regions: F(7, 67) = 7.46; post-hoc t-

tests: HP vs any region, p < 0.05; CMM, N= 10; NCMv, N= 11; NCMd, N= 11; HP, N= 11; NCL, N= 

8; HVC shelf A, N= 8; HVC shelf V, N= 8; HVC shelf P, N= 8). Also, notably, the total number of 

aromatase-positive cells in the NCL were comparable to that of the NCM (Figure 12), suggesting 
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the importance of rapid estradiol signaling in this region. There were no sex differences 

in the total number of aromatase-positive cells in the NCM (F, N=6; M, N=5. TW-ANOVA: 

sex, F(1, 18)= 0.79; region, F(1,18)= 0.50; sex*region, F(1,18)= 0.23, p= 0.64), while there 

was a significant sex difference observed in the HVC shelf (F, N=3; M, N=5. TW-ANOVA: 

sex, F(1,18)= 6.8, p= 0.02; region, F(2,18)= 1.0, p= 0.36; sex* region, F(2, 18)= 1.3, p= 

0.28). In the HVC shelf, more aromatase positive cells are found in females than males. 

This is interesting considering the HVC is larger in volume and plays an important role in 

singing in males (Gahr, 1996)   
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Female and male zebra finch brains were stained with aromatase antibody and imaged using a 
confocal microscope. (A) Illustration of sagittal  sections medial (left) to lateral (right) (~0.5 – 2.2 
mm from midline, ~0.3 mm apart). Red circles are approximate areas where 60x images were 
taken for counting aromatase+ cells. Dashed boxes represent areas from which pictures in B 
were taken. A-anterior; V-ventral; P-posterior.  Modified illustrations from ZEBrA: A Zebra Finch 
Expression Atlas, RRID: nif-0000–24345; http://www.zebrafinchatlas.org. (B) Stitched images 
taken with 10x objective. Right, zoomed in stich image using 60x objective from area within 
dashed lines  (C) Projection images from regions of interest using a 60x objective.  
 

 

 

Figure 11: Regions of interest and the aromatase expression pattern 

http://www.zebrafinchatlas.org/
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The number of aromatase and DAPI expressing cell bodies were counted in 60x z-stack images. 
Top, Percentage of aromatase-expressing cells among DAPI+ cells in the regions of interest. HP 
and CMM are significantly different from other regions (Mean ± SEM, post-hoc t-test vs other 
regions: *, p < 0.05). CMM, N= 10; NCMv, N= 11; NCMd, N= 11; HP, N= 11; NCL, N= 8; HVC shelf 
A, N= 8; HVC shelf V, N= 8; HVC shelf P, N= 8. Bottom, No sex differences were found in NCM 
while there was a significant sex difference in HVC shelf. 
 

Double-labeling immunocytochemistry with antibodies against NeuN showed 

that > 99% of aromatase cells were neurons (Figure 14). This is in agreement with a 

previous study showing that most aromatase+ cells in the uninjured zebra finch brain 

are non-glial (Peterson et al., 2004).  Furthermore, double-staining with traditional 

interneuron markers parvalbumin and calbindin showed that none of the aromatase 

positive neurons expresses calbindin in any regions investigated (Figure 13B). By 

contrast, 5 % of ventral and 15% of dorsal NCM aromatase+ neurons were positive for 

Figure 12: Quantification of aromatase expression.  
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parvalbumin (Figure 13C). The percentages of parvalbumin+ aromatase neurons were region-

specific (Figure 13C; TW-ANOVA: sex, F(1, 47)= 0.75, p= 0.39; region, F(7, 47)= 7.3, p< 0.001; 

sex*region, F(7,47)= 0.14, p= 0.99. CMM, N= 9 (F, N=5; M, N=4); NCM, N=10; HP, N= 9 (F, N=6; 

M, N=3): NCL, N= 5 (F, N=3; M, N=2): HVC shelf A, N= 7 (F, N=2; M, N=5); HVC shelf V, N= 6 (F, 

N=3; M, N=3); HVC shelf P, N= 7). Although the percentage of aromatase+ cells was high in the 

HP and NCL, only a few of these cells (<1%) co-expressed parvalbumin (Figure 13C). Therefore, 

NCM aromatase+ neurons are a mixture of a small number of parvalbumin+ neurons and many 

of other types of neurons (>85%), and the contrast in the proportion of parvalbumin positive, 

aromatase+ cells between the NCM and NCL supports the idea that estradiol signaling and the 

role of estradiol are different between these regions. Overall, the difference in the density and 

identity in the aromatase+ cells are region-specific. 
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Aromatase was double-labeled either with PV or CB. Individual variability was seen in PV and 
aromatase co-expressing cells in the NCM but was not due to the location where images were 
taken. (A) Schematics of lateral and medial sections to illustrate where sample images from 
medial and lateral NCM images in B were taken. (B) 60x projection images from medial and 
lateral NCM sections double-labeled either for aromatase and PV (top, three subjects) or 
aromatase and CB (bottom, two subjects). (C) Quantification of PV+ aromatase+ cells. Inset, data 
from NCM separated by sex. (Mean ± SEM,). 

Figure 13: Aromatase+ cells co-express PV and the fraction of co-expressing cells differs 

between individuals 
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(A) Maximum projection images of 60x z-stack images taken from NeuN and aromatase double-
labeled sections. Exemplars of NeuN clusters are circled with dotted lines. Images in the second 
row are zoomed-in images of the cluster in the dotted square in the first row (NCMv). (B) Left, 
Percentages of clustered, not clustered, aromatase+, and aromatase- neurons in the image from 
NCMv in A. Right, Percentages of aromatase+ cells found in clusters with different numbers of 
other aromatase+ cells (Mean ± SEM, N=11). (C) Aromatase+ cell bodies clustered with CB+ and 
PV+ cells. i & iv, Single 60x z-images in NCMv. ii, iii, & v, Maximum projection of zoomed-in 60x 
z-stack images of exemplars of aromatase clusters with PV+Aromatase- cells (ii), PV+Aromatase+ 
cells (iii), and CB+Aromatase- cells (v). vi, left, two single z-images from cluster shown in v to 
illustrate that the CB+ cell in v is not co-expressing aromatase. Right, Orthogonal depth-profile 
images (y-z and x-z images) of the maximum projection image in v.  
 

 

Figure 14: The majority of aromatase+ cells are neurons and are found in clusters 
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Sagittal plane sections were stained with GPER1 or aromatase antibody. (A) Left, 60x stiched z-
stack image of arcopallium. Right, 60x z-stack images in different regions. GPER1 expression is 
highest in field L, HVC, and RA, and low in NCM. Intermediate levels of expression are found in 
arcopallium outside of RA and in CMM. (B) 60x stich z-stacked image of arcopallium (top) and a 
region including HVC (bottom) in sections stained against aromatase. White arrows point to 
somatic aromatase and yellow arrows point to examples of ghost cells. White arrow heads point 
to ghost cells that are positive for PV.  
 

 

Figure 15: GPER1 expression is elevated especially in regions where somal aromatase 

expression is low 
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Aromatase-expressing neurons form clusters with other neurons in NCM 

 

How cells are organized gives clues to how they communicate with one another. A 

striking characteristic of the neurons visualized with NeuN is that they form somatic clusters 

with other neurons (Figure 14). Notably, the clusters in the HP were less compact and discrete 

than clusters in other regions that were analyzed. Detailed analysis of a picture from a double-

label staining for aromatase and NeuN in the ventral NCM revealed that NCMv neurons are 

predominantly found in clusters (78.2%) and were positive for aromatase (65.2%, Figure 14B). 

Analyses of pictures from all animals shows that the majority of aromatase+ neurons are in 

contact with at least one other aromatase+ neuron (65.2± 5.76 %) and many are found in large 

clusters composed of more than three neurons (Figure 14B). Both parvalbumin+ and calbindin+ 

cells were found in clusters with aromatase+ cells (Figure 14C), suggesting that a variety of 

neurons cluster with aromatase cells. Similar to aromatase, many GPER1 expressing neurons 

were also found in clusters in the HVC, CMM, NCL, and NCM (Figure 15). Therefore, the 

organization of aromatase+ neurons are region-specific and many aromatase+ neurons in the 

NCM cluster with different cell types. A preliminary experiment was performed to test the 

diffusion of gap junction-permeable dyes into nearby clustered cells. When a small fluorescent 

dye, po-pro-1, or neurobiotin was injected into a clustered cell, the dye was observable in an 

adjacent cell (po-pro-1, Figure 19; neurobiotin, not shown), suggesting that gap junctions may 

exist between the clustered somato-somatic connections between neurons (Lima MM, Ikeda 

MZ, Scarpa GB, and Remage-Healey L., unpublished).  

 

Aromatase and GPER1 expression pattern suggest the importance of rapid estradiol signaling 
in sensorimotor regions 
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By taking advantage of the fact that we were able to detect aromatase signals in 

regions reported to be negative for somatic aromatase, we compared this distribution 

to that of the membrane estrogen receptor, GPER1. Many neurons were outlined by low 

intensity signals when stained with the aromatase antibody (“ghost cells”, Figure 10), 

possibly representing aromatase+ synaptic terminals. Many ghost cells were present in 

the HVC, CMM, field L and arcopallium (including RA) (Figure 15 & 17, ghost cells in field 

L is not shown). Since ghost cells were low in fluorescence, they were generally not 

visible unless relatively high laser gain settings were used to obtain the images (Figure 

15). When sections were stained with GPER1 antibody, as shown previously, high signals 

were observed in the HVC, HP, and RA (Acharya and Veney, 2011; Figure 15). In the 

NCM, GPER1+ cells were found sporadically. Although not as high in the HVC, GPER1 

expression in the CMM and arcopallium outside of the RA was relatively high. 

Unexpectedly, GPER1 signal was very high in field L. Therefore, low somatic aromatase 

areas such as the HVC, field L, arcopallium, and CMM showed relatively high expression 

of GPER1 and large numbers of aromatase ghost cells. In addition, in the RA and HVC, 

some ghost cells were positive for PV, suggesting that PV+ neurons are responsive to 

estradiol signaling. This result provides additional evidence that estradiol plays 

important roles in auditory processing and vocalization in regions with low numbers of 

somatic aromatase but with high levels of presynaptic aromatase.  
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 Exemplars of aromatase+ neurons in the HVC. (A) Maximum projections of 60x z-stack images 
of sagittal sections stained for aromatase and PV.  Top, aromatase+ cells close to the ventricle. 
Bottom, aromatase+ cell in the middle of the HVC away from the HVC shelf and ventricle. (B) 
Maximum projections of 60x stiched z-stack images of sagittal sections stained for aromatase 
and NeuN. Aromatase+ cells in the HVC away from the ventricle are NeuN+ (arrows), while 
aromatase+ cells at the edge of the tissue are negative for NeuN. 

Figure 16: Aromatase cells positive and negative for NeuN in the HVC.  
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 (A) Left, 60x stiched single z-image of a sagittal section from the caudal medial telencephalon 
stained for aromatase and NeuN (only the fluorescent signal for aromatase is shown). Right, 
cropped, zoomed-in images of areas surrounded by white dashed lines in left image. White 
arrows show examples of aromatase+ cells that are negative for NeuN at the edge of the tissue. 
White arrow heads point to aromatase+ neurons positive for NeuN. Yellow arrows point to 
examples of ghost cells in the CMM. (B) Top, 60x single z-image of a hippocampus sectioned in 
the sagittal plane stained for aromatase. Bottom, bright field 10x image of a caudal section of a 
brain sectioned in the coronal plane and stained for aromatase. Black arrow indicates neurons 
aligning the lateral ventricle.  
 

Figure 17: Aromatase+ cells in the CMM and HP 
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Figure 18: Model for the control mechanism of aromatase activity and regulation of local 

estradiol levels 

A schematic to illustrate putative control mechanisms of aromatase activity and local estradiol 
levels when subpopulations of neurons (star shapes) are activated. Circles A, B, and C represent 
heterogenous regions with differing pattern of aromatase expression. Estradiol within in a 
region could be come from the blood stream (not shown) or synthesized from local somatic 
(black shapes) or pre-synaptic (blue lines) aromatase. In regions where aromatase is primarily 
found pre-synaptically (region B), aromatase+ terminals are likely to come from other regions 
that express somatic aromatase (regions A & C). In regions where aromatase is found both in 
the pre-synaptic boutons and cell bodies (A), aromatase+ terminals can come from either from 
the same region or from a different region. In regions with heterogeneous aromatase+ neurons 
(region A), sub-regional aromatase concentrations may be more important than in regions with 
homogeneous aromatase neuronal identity (region C). (1) Estradiol levels of the whole area can 
be upregulated by local aromatase in regions in which aromatase is abundantly expressed 
(shades in regions A & C). (2) Subregional estradiol levels around aromatase+ neurons are up- or 
down-regulated via neuronal activity (shades around star-shaped neurons). (3) Pre- or post-
synaptic aromatase activity may depend on receiving inputs from other neurons. Signals that 
affect presynaptic aromatase activity can come from axoaxonic synapses (region C, dotted 
square a), while post-synaptic (or somatic) aromatase activity may depend on direct pre-
synaptic inputs coming either from aromatase positive or negative terminals from neurons 
whose cell bodies reside inside (region A, top dotted square a) or outside (region A, bottom 
dotted square a) of the region. (4) Somatic or pre-synaptic aromatase activity is dependent on 
neuronal activity or action potentials (arrows b). The signals may come from inside (region A, 
arrows b) or outside of the region where the pre-synaptic aromatase terminals are. (5) Somatic 
or pre-synaptic aromatase activity can be affected by the actions of other neuromodulators 
(somatic, region A & B c; pre-synaptic, region C c).  
 



 

97 

 

Figure 19: Gap junction-permeable dye diffuses into adjacent clustered cell 

A small fluorescent dye permeable to most gap junctions, po-pro-1 (Thermo Fisher, molecular 
mass 579 Da), mixed with Alexa 488 was injected into a cell clustered with another cell in the 
NCM. The dyes were injected via applying current steps in an intracellular whole-cell recording 
setup. White arrow points to the injected cell. Yellow arrow points to po-pro-1 diffused into cell 
adjacent to the injected cell.  
 

 

Figure 20: PSD-95 and aromatase puncta are localized close to each other 

Sections were stained with antibodies specific for aromatase and PSD-95, and were imaged with 
a confocal microscope. The arrows show co-localizing puncta that may be evidence for pre-
synaptic aromatase+ terminals forming synapses. 
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Discussion 

The current study examined the regional differences in distribution, organization, and 

identities of aromatase expression in the zebra finch brain. The anatomical observations 

described here provide evidence for complexity in the regulation of estradiol signaling.  First, we 

report that although many brain regions express aromatase, the identities of the neurons 

expressing aromatase are distinct between regions. More specifically, the interneuron marker 

parvalbumin was expressed in a portion of aromatase+ neurons in the NCM, while, in the HP 

and NCL, where the percentage of aromatase positive neurons were equivalent to or greater 

than that of the NCM, parvalbumin was not co-expressed with aromatase. This study is, to our 

knowledge, the first to provide direct anatomical evidence for the differences in neuronal 

makeup between the NCL and NCM, and to report that the amount of aromatase expressed in 

caudal NCL is equivalent to that of the NCM. Moreover, the fact that aromatase+ neurons in the 

NCM were a mixture of parvalbumin positive and negative neurons and that the percentage of 

co-expression was different between ventral and dorsal NCM suggest that neuronal estrogen 

synthesis is differentially regulated within and between subregions of the NCM. Since aromatase 

activity has been suggested to be sensitive to neuronal activity (Balthazart et al., 2001, 2006; 

Remage-Healey et al., 2009b), our study shows that estrogen synthesis could be under 

exceedingly localized control in different classes of neurons within and between brain regions 

(Figure 18). In addition, the fact that aromatase+ cells in the human temporal cortex consists of 

glia and neurons, some of which expresses calbindin or parvalbumin, should be taken into 

account when comparing the two species (Yague and Muñoz, 2006; Yague et al., 2008). How 

different cell types interconnect and how different inputs into aromatase cells act to regulate 

aromatase activity may be different between the zebra finch and humans. In the HP, we found 

more aromatase+ somatas than in any other regions we analyzed, while in a previous study, 
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there were less cell bodies expressing aromatase in the HP compared to the NCM 

(Saldanha et al., 2000). This could be due to overestimating aromatase-expressing cells 

by falsely including aromatase negative cells that are densely innervated by aromatase+ 

terminals. However, if the discrepancy between our study and the previous study is not 

methodological in origin, it may be due to the difference hormonal conditions of the 

animals, since the HP aromatase levels are sensitive to circulating estradiol levels 

(Saldanha et al., 2000) 

 

Second, we discovered that neurons are found in discrete clusters in the NCM, 

and that aromatase-expressing neurons are densely clustered. In songbirds, cell clusters 

in the brain have been described only in a few studies (Fortune and Margoliash, 1992; 

Gahr and Garcia-Segura, 1996; Kirn et al., 1999; Medina et al., 2013). In zebra finches, 

cell clusters have been reported in the nidopallium, mesopallium, and hyperpallium 

(Fortune and Margoliash, 1992; Medina et al., 2013). Medina et al. (2013), suggested 

that the clusters in the mesopallium are composed of one neuron and multiple glial 

cells, based on Nissl stain. Our use of NeuN staining in the NCM and other areas 

indicates that the majority of the clusters are composed of neurons in all regions we 

examined including the CMM. In the ventral NCM, the many of aromatase+ neurons 

were found in clusters, which suggest the possible role of electric coupling in the 

regulation of aromatase activity. Not much is known about their function except that 

the neuronal clusters in canary HVC are coupled with gap junctions (Gahr and Garcia-

Segura, 1996). Preliminary data suggest that clusters found in NCM are at least coupled 

with pores that are permeable to compounds that diffuse through gap junctions in other 

systems.  
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Third, the comparison between aromatase and GPER1 expression suggest the 

importance of rapid estradiol signaling through terminal-expressed aromatase in many regions, 

including those that have not been previously reported in the literature, such as the  CMM and 

RA. In some regions, such as the NCM, NCL, and HP, the expression levels between GPER1 and 

aromatase were similar to each other while in other regions, such as the CMM, field L, HVC and 

arcopallium, GPER1 expression was high, even though only ghost cells (which are speculated to 

be synaptic terminals) showed the aromatase staining. Importantly, this study is the first to 

report the extensive expression of GPER1 in field L. It is possible that in the regions where both 

aromatase and estrogen receptors are abundant, estradiol is operating through volume 

transmission, affecting many neurons in the region, while, in other regions where only 

aromatase is pre-synaptically expressed, estradiol fluctuations are limited locally to the synapses 

(Figure 18). In regions where somatic aromatase is rich, local neuronal activity is likely to be 

regulating aromatase activity. On the other hand, in regions with only pre-synaptic aromatase 

expression, aromatase activity may be dependent both on local activity and on the activity of 

the nuclei where their cell bodies reside. It is possible that recently-found projections from the 

HVC shelf and NCL to the ventral intermediate arcopallium (AIV) and the known projections 

from the NCM to CMM could be the source of ghost cells the arcopallium and CMM respectively 

(Vates et al., 1996; Mandelblat-Cerf et al., 2014). In this study, GPER1 and aromatase was not 

double-labeled due to lack of an optimal antibody. However, in the future, we will test the 

hypothesis that aromatase-expressing terminals are innervating GPER1-expressing neurons. 

Experiments directly identifying the source the aromatase+ synaptic terminals are necessary to 

further our understanding of the role and mechanisms of estradiol signaling in these regions.   
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Fourth, we occasionally found neurons with intense aromatase signals in the 

HVC, CMM, and areas close to the edge of the telencephalon. In canaries, aromatase 

mRNA has been reported along the lateral ventricle (Metzdorf et al., 1999). Using 

injured zebra finches, a previous report showed that ventricular aromatase+ cells were 

morphologically similar to radial glia marker-expressing cells as well as the expression 

pattern (Peterson et al., 2004). We found that although many aromatase+ cells that 

were at the lateral edge of the tissue were negative for NeuN, the aromatase+ cells that 

were further from the edge of the tissue were positive for NeuN. In the CNS, neurons 

and radial glia are born in the ventricular zone, and the radial glia give rise to migrating 

neurons (Alvarez-Buylla et al., 1990; Noctor et al., 2001). The cells at the edges of the 

tissue were morphologically similar to the radial glia-like cells found in the ventricular 

zone in canaries (Alvarez-Buylla et al., 1990). Therefore, we suspect that the aromatase+ 

cells at the edge of the tissue are radial glia associated with migrating aromatase+ 

neurons. Although the functions and the identities of the neurons were not pursued in 

the current study, whether or not these aromatase+ neurons are migrating neurons that 

on their way to a different destination, or actively involved in HVC function, together 

with why they express aromatase should be tested in future studies.  

 

The current study provides compelling anatomical evidence for regional 

differences in estradiol regulations and strong motivation for taking regional 

differences, neuronal circuits within and across regions, cell types, and cellular 

organization into account when studying estradiol regulation and mechanisms in the 

future.  
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CHAPTER V 

DISCUSSION 

 

The current dissertation examined the role of norepinephrine in estradiol 

synthesis and identities of aromatase-expressing cells. The results not only gave answers 

to initial questions but also provided new insights that established grounds for future 

studies on the mechanisms controlling estradiol signaling. Specifically, the first chapter 

describes a method, measurement of neurosteroids using in vivo microdialysis, which 

allowed quantifying estradiol levels in the brain in living, behaving animals. The second 

chapter showed that norepinephrine is not involved in controlling estradiol levels, 

despite the fact that it has similar effects as estradiol on sound-induced neuronal 

activity relative to pre-stimulus activity. In the third chapter, the identities of estradiol-

producing cells were shown to be heterogeneous and that they are found in clusters. 

 

In chapter 1, we report the protocol for in vivo microdialysis, a method that 

allows measuring neurosteroids locally in the brain in freely moving animals within a 

relatively small time frame. Traditionally, neurosteroid levels in the brain have been 

measured from extracted brain tissue. Although neurosteroid extraction from brain 

tissue allows estimation of absolute steroid levels, it does not allow within-subject 

comparison at different time points. In vivo microdialysis allows multiple collections 

from the same animals and estradiol levels in the dialysates can be directly measured 

using enzyme-immunoassays (EIAs) without additional steps. Also microdialysis probes 

can be used to deliver drugs locally (retrodialysis). However, in vivo microdialysis 
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disrupts the cytoarchitecture of the neurons and induces many biological responses due to 

injury. Also, even the smallest microdialysis probes are still too large to detect differences in 

estradiol levels within a region smaller than 1mm in diameter. Technological advancement in 

visualization of aromatase activity or estradiol using reporter molecules in slices or in whole 

brains would advance the field. 

 

In chapter 2, we showed strong evidence that norepinephrine does not play a role in 

controlling or modulating estradiol levels in the NCM. Using retrodialysis, we directly infused 

norepinephrine into the NCM and saw no effect on local estradiol levels. Prior to this research, 

little information was available as to how actions of other neuromodulators may affect estradiol 

levels or interfere with actions of estradiol in vivo. Although results from previous studies 

implicated the possibility of catecholamines affecting estradiol levels, in the songbird NCM, no 

studies had tested this directly in vivo. In quail brain homogenates, when the homogenates 

were treated with dopamine or dopamine receptor agonists, aromatase activity decreased 

(Baillien and Balthazart, 1997). However, because this study was done in homogenates, it did 

not take into account the cellular localization of dopamine receptors and aromatase, and other 

factors in the intracellular environment that may have prevented the interactions between 

dopamine receptors and aromatase. Therefore, we were the first to directly test the rapid effect 

of neuromodulators on estradiol synthesis in vivo. Although this study clearly shows that 

norepinephrine does not rapidly affect global estradiol level within NCM, it is still possible that 

norepinephrine has some indirect, long-term or minor effects on estradiol levels. Since 

norepinephrine alters neuronal activity in the NCM (Ikeda et al., 2015) and estradiol levels are 

sensitive to neuronal activity (Remage-Healey et al., 2011a), the changes in neuronal activity 

may indirectly affect estradiol levels. While much is known about what kinds of experiences 
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elevate norepinephrine concentrations in the brain  (Aston-Jones and Bloom, 1981a, 

1981b; Cardin and Schmidt, 2004; Lynch et al., 2012), little is known about how 

experience changes estradiol levels in specific areas. Studies suggest that both estradiol 

and catecholamines, including norepinephrine, levels are elevated in response to songs 

(Remage-Healey et al., 2008, 2012; Lynch et al., 2012; Matragrano et al., 2012). 

However, whether or not there are subtle differences in timing or stimuli they respond 

to are not known. Due to technical difficulties, we failed to test whether both 

norepinephrine and estradiol levels are elevated simultaneously in response to song 

playback. If norepinephrine and estradiol are elevated at approximately the same time 

after song playback, the mechanisms of how that happens and whether their actions on 

auditory processing interfere with one another would be interesting to test in the 

future.  

 

Moreover, in the same chapter, we show that, in the NCM, norepinephrine 

enhances normalized auditory-evoked activity similarly to estradiol but independent of 

estradiol synthesis. Previous to this research, the effect of norepinephrine on neuronal 

activity and how it compared to estradiol was unknown, even though studies 

manipulating the catecholaminergic and estradiol synthesis or levels have shown similar 

outcomes, and suggesting they have similar effects (Remage-Healey et al., 2008, 2010, 

2012; Pawlisch et al., 2011; Matragrano et al., 2012; Velho et al., 2012; Vahaba et al., 

2013; Krentzel and Remage-Healey, 2014). Norepinephrine had been shown to enhance 

the signal-to-noise ratio of sound-induced neuronal activity in the neurons of rodent 

and monkey auditory cortices (Foote et al., 1975; Manunta and Edeline, 1997). Similarly, 

in the zebra finch NCM, estradiol has been shown to enhance auditory evoked neuronal 
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activity (Remage-Healey et al., 2010). Although our results suggest that estradiol and 

norepinephrine independently enhance the signal-to-noise ratio of neuronal activity in 

response to auditory stimuli, we did not show how this is accomplished at the circuit level. 

Estradiol and norepinephrine may be modulating the same or different populations of neurons 

(e.g., Figs. 1-2). While most of the neurons examined responded to norepinephrine, our results 

could be biased due to how single units were sorted (and excluding non-auditory units). For a 

few neurons norepinephrine strongly enhanced auditory-evoked activity in a fashion similar to 

that of estradiol. Testing whether the same neurons are responsive both to norepinephrine and 

estradiol may elucidate some mechanism as to how NCM activity is modulated by multiple 

neuromodulators. Whether norepinephrine- and estradiol- producing terminals are innervating 

the same sets of cells or whether adrenergic receptors and estrogen receptors are expressed in 

proximity to each other are unknown. Moreover, even though this study shows that 

norepinephrine and estradiol seem to affect many neurons via different mechanisms, at the 

end, they are likely to activate the same cellular pathways that lead to the induction of egr-1 

and auditory processing. Previous studies have found that blocking estradiol signaling or 

adrenergic receptors actions inhibits song-induced egr-1 expression (Tremere et al., 2009; Velho 

et al., 2012; Krentzel and Remage-Healey, 2014). Moreover, either blocking estradiol synthesis 

or blocking adrenergic receptors is sufficient to suppress behavioral preferences for songs 

(Remage-Healey et al., 2010; Pawlisch et al., 2011). Future studies should investigate how 

adrenergic and estrogen actions are both necessary for both egr-1 induction and song 

preference while they seem to have independent electrophysiological effects.  

 

In chapter 3, we examined how aromatase-expressing neurons are heterogeneous and 

organized in different regions, which would provide us with clues as to how estradiol may be 
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regulated at the macro- and microcircuit levels. We found that, similarly to monkey and 

human cortices, in the NCM, some aromatase-expressing neurons co-expresses an 

inhibitory neuronal marker, parvalbumin (Yague and Muñoz, 2006; Yague et al., 2008). 

Since parvalbumin neuron numbers in the NCM have been linked to male song learning 

(Asik and Kirn, 2015), future experiments should test whether aromatase-expressing 

parvalbumin neurons have specific roles in auditory learning. At the same time, unlike 

humans and monkeys, aromatase was not co-expressed with calbindin. However, the 

differences between zebra finches and humans does not necessarily make zebra finches 

a model system inferior to monkeys for studying estradiol signaling, since human and 

monkey cortices are also different from one another. While in monkeys, aromatase 

positive cells are mostly neurons and some co-express calretinin, in humans, many 

aromatase-expressing cells are  glial and none were co-expressing calretinin (Yague and 

Muñoz, 2006; Yague et al., 2008). Similar to monkeys, but unlike humans, we found that 

aromatase-expressing cells in the zebra finch were mostly neurons. Therefore, although 

monkeys are relatively evolutionarily closer to humans than zebra finches, zebra finches 

and monkeys are equally different from humans with respect to the profiles of 

aromatase+ cells. This suggests that estradiol signaling in humans is distinct from other 

animals and there are no perfect animal models that would model exactly what 

estradiol does in the cortex. Moreover, the heterogeneity of aromatase-expressing cells 

suggests that, even within regions, aromatase activity may be uniquely regulated in cell-

type or input-specific manners.  

 

We also found that, in the zebra finch brain, many neurons, including 

aromatase-expressing neurons, form somato-somatic clusters. Aromatase-expressing 
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neurons were found to cluster with both aromatase negative and other aromatase positive 

neurons. Previously, in the HVC, gap junctions were found between neurons forming clusters 

(Gahr and Garcia-Segura, 1996). Since the presence of gap junctions in clusters may provide us 

with clues about how aromatase activity is modulated, we injected a small fluorescent dye, po-

pro-1, or neurobiotin into one of the clustered neurons to see if they would diffuse to other 

neurons in the same cluster. In fact, in our preliminary dataset, we found instances where po-

pro-1 or neurobiotin filled other neurons that were not injected. Therefore, we suspect that 

aromatase-expressing neurons are connected via gap junctions and aromatase in those neurons 

may not only be regulated pre-synaptically or via synaptic inputs into the cell body, but also via 

signals coming in through gap junctions. Since the control of aromatase activity involves calcium 

signaling and actions of protein kinases (Balthazart et al., 2001, 2003b, 2005; Remage-Healey et 

al., 2011a; Charlier et al., 2013a; Comito et al., 2016), diffusions of those signaling molecules or 

electric signals via the gap junctions are likely to have effects on aromatase phosphorylation and 

hence aromatase activity. On the other hand, GPER1-expressing neurons were also found in 

clusters in some regions. Estradiol is known to modulate gap junction expression in the ovary 

(Burghardt and Anderson, 1981), but whether estradiol has rapid modulatory effect on gap 

junction permeability is not known. Gap junction permeability can be modulated by dopamine 

and other neuromodulators and are sensitive to calcium, cyclic AMP, and PKA-dependent 

actions (Hampson et al., 1992; Perez-Velazquez et al., 1994; Burghardt et al., 1995; Reviewed in 

Pereda, 2014). Since GPER1 actions affect cAMP-dependent pathways (Filardo et al., 2002), 

GPER1-mediated estradiol actions may modulate gap junction permeability. In the HVC, in a 

study in which dual recordings were performed to identify synaptically-coupled neurons, the 

authors reported that they did not observe any electrically-coupled neurons (Mooney and 

Prather, 2005). However, among all the paired neurons they recorded from, the cells were next 
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to each other in only two cases, and whether or not they had somato-somatic contacts 

were not examined. In our study, aromatase positive neurons were found clustered with 

parvalbumin positive neurons and calbindin positive neurons, suggesting that aromatase 

activity could depend on inputs or signaling from multiple types of neurons. If neurons 

in clusters are communicating via gap junctions, it would be interesting to examine the 

distribution patterns of connexins and how they have a role in affecting aromatase 

activity.  Previous to this study, cell clustering has been reported in field L, mesopallium, 

and hyperpallium, but whether or not they consisted of only neurons and whether 

clustering had functional importance has never been tested (Fortune and Margoliash, 

1992; Medina et al., 2013). Our study now suggests that somato-somatic 

communication via gap-junction coupling may be important for aromatase activity and 

estrogen signaling in the cortex. 

 

Also in chapter 3, we show evidence that aromatase-expressing terminals play a 

role in estradiol signaling in regions that do not express many somatic aromatase, such 

as motor regions involved in vocalization including the HVC and RA. When zebra finch 

brain sections were stained with a specific aromatase antibody, faint signals were found 

in some neurons (ghost cells) in regions where, previously, aromatase was found only 

pre-synaptically. Assuming ghost cells could be cells that were heavily innervated by 

aromatase positive synaptic terminals, we examined their distribution. In the HVC and 

RA, ghost cells were found on parvalbumin expressing neurons, suggesting that synaptic 

estradiol signaling onto parvalbimin expressing interneurons is important in these 

regions. Moreover, when sections from the same animals were stained for aromatase 

and GPER1, we found high expression of GPER1 in regions that were low in aromatase 
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expression, such as field L, HVC, CMM, and arcopallium (including RA). In regions with high 

expression of somatic aromatase, such as the NCM and NCL, we found a moderate amount of 

GPER1-expressing neurons. This suggests that, in regions with low numbers of aromatase-

expressing neurons, GPER1-expressing neurons may be terminated by aromatase positive 

terminal projections coming from high somatic aromatase regions. Importantly, prior to this 

study, the role of estradiol or GPER1 signaling in regions that belong to the song production 

pathway has received little attention. In future experiments, the role of GPER1 in these song 

production regions and the relationship between GPER1 and aromatase positive synaptic 

terminals should be explored in greater detail. Therefore, we provided new evidence for why 

estradiol signaling should be studied in regions outside of the auditory pathway and the 

importance of interregional connections via aromatase-expressing terminals.  

 

In summary, in chapter 3, we show anatomical evidence for potential interneuronal 

interactions playing roles in estradiol levels at different scales. Previous to this study, most 

studies on aromatase activity were done using brain homogenates or in vivo microdialysis which 

disrupts circuits and neuronal structures, and the results that came out of these studies did not 

resolve the connectivity, organization, and identities of the neurons that express aromatase. 

Moreover, in zebra finches, the neurotransmitter profiles of aromatase-expressing neurons 

were not well known. In one study in the NCM,  in situ hybridization against aromatase and 

inhibitory or excitatory neuronal markers, glutamic acid decarboxylase (GAD 65) or vesicular 

glutamate transporter 2 (VGlut2) respectively, showed that aromatase is co-expressed with 

these neuronal markers (Jeong et al., 2011). However, this study did not distinguish between 

different inhibitory neurons or focus on cytoarchitecture of the aromatase neurons. Since 

neuronal activity has been implicated in modulating aromatase activity, our report on profiles of 
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aromatase-expressing neurons and inter-neuronal connections that aromatase neurons 

have with other neurons should be beneficial for designing or interpreting future 

results. Knowing the identity of aromatase-expressing cells, cell type specific control of 

estradiol synthesis using viral vectors can be used in combination with behavioral assays 

and electrophysiological recordings to specifically test the role of estradiol synthesis by 

different neuronal types. However, in order to understand the mechanism of controlling 

aromatase activity, examining the receptor profiles of aromatase positive neurons 

express may be more beneficial since inputs from other neurons are likely to have a 

major effect on aromatase activity. Whether or not aromatase positive neurons have 

common inputs from specific types or populations of neurons is now an active area of 

research.  

 



 

112 

BIBLIOGRAPHY 

 

Acharya KD, Veney SL (2011) Characterization of the G-Protein-Coupled Membrane-Bound 

Estrogen Receptor GPR30 in the Zebra Finch Brain Reveals a Sex Difference in Gene and 

Protein Expression. 

Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol 

Rev 89:121–145. 

Alexander A, Irving A, Harvey J (2016) Emerging roles for the novel estrogen-sensing receptor 

GPER1 in the CNS. Neuropharmacology. 

Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot spots” in adult avian 

ventricular zone reveal radial cell division. Neuron 5:101–109. 

Anderer P, Saletu B, Saletu-Zyhlarz G, Gruber D, Metka M, Huber J, Pascual-Marqui RD (2004) 

Brain Regions Activated during an Auditory Discrimination Task in Insomniac 

Postmenopausal Patients before and after Hormone Replacement Therapy: Low-

Resolution Brain Electromagnetic Tomography Applied to Event-Related Potentials. 

Neuropsychobiology 49:134–153. 

Anon (2014) Artificial Cerebrospinal Fluid (aCSF) for Zebra Finch Brain: Cold Spring Harb Protoc 

2014:pdb.rec085001. 

Anthoni H et al. (2012) The aromatase gene CYP19Α1: several genetic and functional lines of 

evidence supporting a role in reading, speech and language. Behav Genet 42:509–527. 

Appeltants D, Ball GF, Balthazart J (2004) Catecholaminergic inputs to aromatase cells in the 

canary auditory forebrain. Neuroreport 15:1727–1730. 

Appeltants D, Del Negro C, Balthazart J (2002) Noradrenergic control of auditory information 

processing in female canaries. Behav Brain Res 133:221–235. 



 

113 

Asik K, Kirn JR (2015) Incorporation of parvalbumin expressing neurons in the caudomedial nidopallium 

(NCM) of juvenile zebra finches is affected by song tutor availability. Neurosci Meet Planner 

Washington, DC Soc Neurosci:Program#/Poster#: 289.02/Α2. 

Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in 

behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886. 

Aston-Jones G, Bloom FE (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats 

exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900. 

Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. 

Biol Psychiatry 46:1309–1320. 

Avey MT, Phillmore LS, MacDougall-Shackleton SA (2005) Immediate early gene expression following 

exposure to acoustic and visual components of courtship in zebra finches. Behav Brain Res 

165:247–253. 

Bailey DJ, Rosebush JC, Wade J (2002) The hippocampus and caudomedial neostriatum show selective 

responsiveness to conspecific song in the female zebra finch. J Neurobiol 52:43–51. 

Baillien M, Balthazart J (1997) A Direct Dopaminergic Control of Aromatase Activity in the Quail Preoptic 

Area. 63:99–113. 

Bakoyiannis I, Tsigka E-A, Perrea D, Pergialiotis V (2016) The Impact of Endocrine Therapy on Cognitive 

Functions of Breast Cancer Patients: A Systematic Review. Clin Drug Investig 36:109–118. 

Balthazart J, Baillien M, Ball GF (2001) Rapid and Reversible Inhibition of Brain Aromatase Activity. 13. 

Balthazart J, Baillien M, Ball GF (2006) Rapid control of brain aromatase activity by glutamatergic inputs. 

Endocrinology 147:359–366. 

Balthazart J, Baillien M, Ball GF (2011) Rapid Control of Brain Aromatase Activity by Glutamatergic 

Inputs. http://dx.doi.org/101210/en2005-0845. 



 

114 

Balthazart J, Baillien M, Charlier TD (2003) Calcium-dependent phosphorylation processes 

control brain aromatase in quail. 17:1591–1606. 

Balthazart J, Baillien M, Charlier TD, Ball GF (2005) Effects of Calmodulin on Aromatase Activity 

in the Preoptic Area. J Neuroendocrinol 17:664–671. 

Balthazart J, Ball GF (2006) Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci 

29:241–249. 

Balthazart J, Foidart A, Hendrick JC (1990) The induction by testosterone of aromatase activity in 

the preoptic area and activation of copulatory behavior. Physiol Behav 47:83–94. 

Banerjee S, Chambliss KL, Mineo C, Shaul PW (2014) Recent insights into non-nuclear actions of 

estrogen receptor alpha. Steroids 81:64–69. 

Bolhuis JJ, Zijlstra GG, den Boer-Visser AM, Van Der Zee EA (2000) Localized neuronal activation 

in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci U S 

A 97:2282–2285. 

Bottjer SW (1993) The distribution of tyrosine hydroxylase immunoreactivity in the brains of 

male and female zebra finches. J Neurobiol 24:51–69. 

Bouret S, Sara SJ (2005) Network reset: a simplified overarching theory of locus coeruleus 

noradrenaline function. Trends Neurosci 28:574–582. 

Braaten RF, Petzoldt M, Cybenko AK (2007) Recognition memory for conspecific and 

heterospecific song in juvenile zebra finches, Taeniopygia guttata. Anim Behav 73:403–

413. 

Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417:351–358. 

Brauth SE, McHale CM (1988) Auditory pathways in the budgerigar. II. Intratelencephalic 

pathways. Brain Behav Evol 32:193–207. 



 

115 

Burghardt R, Anderson E (1981) Hormonal modulation of gap junctions in rat ovarian follicles. 

Cell Tissue Res 214:181–193. 

Burghardt RC, Barhoumi R, Sewall TC, Bowen JA (1995) Cyclic AMP induces rapid increases in gap 

junction permeability and changes in the cellular distribution of connexin43. J Membr Biol 

148:243–253. 

Calhoun VD, Kiehl KA, Liddle PF, Pearlson GD (2004) Aberrant localization of synchronous hemodynamic 

activity in auditory cortex reliably characterizes schizophrenia. Biol Psychiatry 55:842–849. 

Callard G V, Petro Z, Ryan K (1978) Conversion of Androgen to Estrogen and Other Steroids in the 

Vertebrate Brain. 18:511–523. 

Canopoli A, Herbst JA, Hahnloser RHR (2014) A Higher Sensory Brain Region Is Involved in Reversing 

Reinforcement-Induced Vocal Changes in a Songbird. 34:7018–7026. 

Canopoli A, Zai AT, Hahnloser RH (2016) Lesions of a higher auditory brain area during a sensorimotor 

period do not impair birdsong learning. Matters. 

Caras ML (2013) Estrogenic modulation of auditory processing: A vertebrate comparison. Front 

Neuroendocrinol 34:285–299. 

Cardin JA, Schmidt MF (2004) Noradrenergic inputs mediate state dependence of auditory responses in 

the avian song system. J Neurosci 24:7745–7753. 

Carey MR, Regehr WG (2009) Noradrenergic control of associative synaptic plasticity by selective 

modulation of instructive signals. Neuron 62:112–122. 

Castelino CB, Schmidt MF (2010) What birdsong can teach us about the central noradrenergic system. J 

Chem Neuroanat 39:96–111. 

Charlier TD, Cornil CA, Balthazart J (2013) Rapid modulation of aromatase activity in the vertebrate 

brain. J Exp Neurosci 7:31–37. 



 

116 

Charlier TD, Cornil CA, Patte-Mensah C, Meyer L, Mensah-Nyagan AG, Balthazart J (2015) Local 

modulation of steroid action: rapid control of enzymatic activity. Front Neurosci 9:83. 

Charlier TD, Harada N, Balthazart J, Cornil CA (2016) Human and Quail Aromatase Activity Is 

Rapidly and Reversibly Inhibited by Phosphorylating Conditions. 152:4199–4210. 

Chaudhury S, Jain S, Wadhwa S (2010) Expression of synaptic proteins in the hippocampus and 

spatial learning in chicks following prenatal auditory stimulation. Dev Neurosci 32:114–

124. 

Chew SJ, Mello C, Nottebohm F, Jarvis E, Vicario DS (1995) Decrements in auditory responses to 

a repeated conspecific song are long-lasting and require two periods of protein 

synthesis in the songbird forebrain. Proc Natl Acad Sci 92:3406–3410. 

Chew SJ, Vicario DS, Nottebohm F (1996) A large-capacity memory system that recognizes the 

calls and songs of individual birds. Proc Natl Acad Sci U S A 93:1950–1955. 

Chirathivat N et al. (2015) Hemispheric dominance underlying the neural substrate for learned 

vocalizations develops with experience. Sci Rep 5:11359. 

Clayton NS (1987) Song tutor choice in zebra finches. Anim Behav 35:714–721. 

Collins S a (1995) The effect of recent experience on female choice in zebra finches. Anim Behav 

49:479–486. 

Comito D, Pradhan DS, Karleen BJ, Schlinger BA (2016) Region-specific rapid regulation of 

aromatase activity in zebra finch brain. J Neurochem 136:1177–1185. 

Compagnone NA, Mellon SH (2000) Neurosteroids: Biosynthesis and Function of These Novel 

Neuromodulators. Front Neuroendocrinol 21:1–56. 

Corbett B, Stanczak DE (1999) Neuropsychological performance of adults evidencing Attention-

Deficit Hyperactivity Disorder. Arch Clin Neuropsychol 14:373–387. 



 

117 

Cornil CA, Leung CH, Pletcher ER, Naranjo KC, Blauman SJ, Saldanha CJ (2012) Acute and Specific 

Modulation of Presynaptic Aromatization in the Vertebrate Brain. 

http://dx.doi.org/101210/en2011-2159. 

Cowell PE, Ledger WL, Wadnerkar MB, Skilling FM, Whiteside SP (2011) Hormones and dichotic listening: 

Evidence from the study of menstrual cycle effects. Brain Cogn 76:256–262. 

Cynx J, Nottebohm F (1992) Role of gender, season, and familiarity in discrimination of conspecific song 

by zebra finches (Taeniopygia guttata). Proc Natl Acad Sci U S A 89:1368–1371. 

Dixit A, Vaney N, Tandon OP (2006) Effect of caffeine on central auditory pathways: An evoked potential 

study. Hear Res 220:61–66. 

Edeline JM (1995) The alpha 2-adrenergic antagonist idazoxan enhances the frequency selectivity and 

increases the threshold of auditory cortex neurons. Exp brain Res 107:221–240. 

Edeline J-M, Manunta Y, Hennevin E (2011) Induction of selective plasticity in the frequency tuning of 

auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear Res 

274:75–84. 

Edvinsson L, MacKenzie E (1977) Amine mechanisms in the cerebral circulation. Pharmacol Rev 28:275–

348. 

Elie JE, Theunissen FE (2015) Meaning in the avian auditory cortex: neural representation of 

communication calls. Eur J Neurosci 41:546–567. 

Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C (2010) Noradrenergic modulation of behavioral 

odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 32:458–468. 

Filardo EJ, Quinn JA, Frackelton AR, Bland KI (2002) Estrogen action via the G protein-coupled receptor, 

GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal 

growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70–84. 



 

118 

Foidart A, Harada N, Balthazart J (1995) Aromatase-immunoreactive cells are present in mouse 

brain areas that are known to express high levels of aromatase activity. Cell Tissue Res 

280:561–574. 

Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal 

activity in monkey auditory cortex. Brain Res 86:229–242. 

Forstmeier W, Birkhead TR (2004) Repeatability of mate choice in the zebra finch: consistency 

within and between females. Anim Behav 68:1017–1028. 

Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the 

field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404. 

Gaese BH, Ostwald J (2001) Anesthesia changes frequency tuning of neurons in the rat primary 

auditory cortex. J Neurophysiol 86:1062–1066. 

Gahr M (1996) Developmental changes in the distribution of oestrogen receptor mRNA 

expressing cells in the forebrain of female, male and masculinized female zebra finches. 

Neuroreport 7:2469–2473. 

Gahr M, Garcia-Segura LM (1996) Testosterone-dependent increase of gap-junctions in HVC 

neurons of adult female canaries. Brain Res 712:69–73. 

Gobes SMH, Bolhuis JJ (2007) Birdsong Memory: A Neural Dissociation between Song 

Recognition and Production. 

Gobes SMH, ter Haar SM, Vignal C, Vergne AL, Mathevon N, Bolhuis JJ (2009) Differential 

responsiveness in brain and behavior to sexually dimorphic long calls in male and female 

zebra finches. J Comp Neurol 516:312–320. 

Goodson JL, Eibach R, Sakata J (1999) 2The morphEffect of septal lesions on male song and 

aggression in the colonial zebra finch ( Taeniopygia guttata ) and the territorial field 

sparrow ( Spizella pusilla ). 98:167–180. 



 

119 

Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between 

amacrine cells in mammalian retina. J Neurosci 12:4911–4922. 

Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between 

amacrine cells in mammalian retina. J Neurosci 12:4911–4922. 

Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic 

transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77:3326–3339. 

Heimovics SA, Prior NH, Maddison CJ, Soma KK (2012) Rapid and widespread effects of 17β-estradiol on 

intracellular signaling in the male songbird brain: a seasonal comparison. Endocrinology 

153:1364–1376. 

Hojo Y, Hattori T -a., Enami T, Furukawa A, Suzuki K, Ishii H -t., Mukai H, Morrison JH, Janssen WGM, 

Kominami S, Harada N, Kimoto T, Kawato S (2004) Adult male rat hippocampus synthesizes 

estradiol from pregnenolone by cytochromes P45017 and P450 aromatase localized in neurons. 

Proc Natl Acad Sci 101:865–870. 

Holveck M-J, Riebel K (2007) Preferred songs predict preferred males: consistency and repeatability of 

zebra finch females across three test contexts. Anim Behav 74:297–309. 

Hughes EC, Gott PS, Weinstein RC, Binggeli R (1988) Noradrenergic cerebral stimulation of sensorineural 

impaired subjects: yohimbine effects on speech intelligibility and the auditory brain response. 

Am J Otol 9:122–126. 

Hurley LM, Devilbiss DM, Waterhouse BD (2004) A matter of focus: monoaminergic modulation of 

stimulus coding in mammalian sensory networks. Curr Opin Neurobiol 14:488–495. 

Ikeda M, Rensel MA, Schlinger BA, Remage-Healey L (2014) In vivo detection of fluctuating brain steroid 

levels in zebra finches. Cold Spring Harb Protoc 2014:1267–1272. 



 

120 

Ikeda MZ, Jeon SD, Cowell RA, Remage-Healey L (2015) Norepinephrine Modulates Coding of 

Complex Vocalizations in the Songbird Auditory Cortex Independent of Local 

Neuroestrogen Synthesis. J Neurosci 35:9356–9368. 

Jacobs EC, Arnold AP, Campagnoni AT (2000) Developmental Regulation of the Distribution of 

Aromatase- and Estrogen-Receptor- mRNA-Expressing Cells in the Zebra Finch Brain. 

Dev Neurosci 21:453–472. 

Jarvis ED (2004) Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci 

1016:749–777. 

Javitt DC, Sweet RA (2015) Auditory dysfunction in schizophrenia: integrating clinical and basic 

features. Nat Rev Neurosci 16:535–550. 

Jenkins V, Shilling V, Fallowfield L, Howell A, Hutton S (2004) Does hormone therapy for the 

treatment of breast cancer have a detrimental effect on memory and cognition? A pilot 

study. Psychooncology 13:61–66. 

Jeong JK, Burrows K, Tremere LA, Pinaud R (2011) Neurochemical organization and experience-

dependent activation of estrogen-associated circuits in the songbird auditory forebrain. 

Eur J Neurosci 34:283–291. 

Jeong JK, Terleph TA, Burrows K, Tremere LA, Pinaud R (2011) Expression and rapid experience-

dependent regulation of type-A GABAergic receptors in the songbird auditory forebrain. 

Dev Neurobiol 71:803–817. 

Ji W, Suga N (2003) Development of reorganization of the auditory cortex caused by fear 

conditioning: effect of atropine. J Neurophysiol 90:1904–1909. 

Jin H, Clayton DF (1997) Localized Changes in Immediate-Early Gene Regulation during Sensory 

and Motor Learning in Zebra Finches. Neuron 19:1049–1059. 



 

121 

Karten H J (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic 

projections of the nucleus ovoidalis thalami. Brain Res 11:134–153. 

Kasamatsu T, Pettigrew JD, Ary M (1979) Restoration of visual cortical plasticity by local microperfusion 

of norepinephrine. J Comp Neurol 185:163–181. 

Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus- field L-in the canary. J 

Comp Neurol 183:455–469. 

Kirn JR, Fishman Y, Sasportas K, Alvarez-Buylla A, Nottebohm F (1999) Fate of new neurons in adult 

canary high vocal center during the first 30 days after their formation. J Comp Neurol 411:487–

494. 

Kössl M, Vater M (1989) Noradrenaline enhances temporal auditory contrast and neuronal timing 

precision in the cochlear nucleus of the mustached bat. J Neurosci 9:4169–4178. 

Kow L-M, Pfaff DW (2016) Rapid estrogen actions on ion channels: A survey in search for mechanisms. 

Steroids 111:46–53. 

Krentzel AA, Remage-Healey L (2014) Songbird auditory forebrain: evidence for sex differences, regional 

differences, and a role for estrogen synthesis. In: Abstracts, pp 565.08/VV47. Society for 

Neuroscience. 

Krentzel AA, Remage-Healey L (2015) Sex differences and rapid estrogen signaling: A look at songbird 

audition. Front Neuroendocrinol 38:37–49. 

Kruse AA, Stripling R, Clayton DF (2004) Context-specific habituation of the zenk gene response to song 

in adult zebra finches. Neurobiol Learn Mem 82:99–108. 

Kudoh M, Shibuki K (2006) Sound sequence discrimination learning motivated by reward requires 

dopaminergic D2 receptor activation in the rat auditory cortex. Learn Mem 13:690–698. 

Lam KSL, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: A review of the 

literature. Res Dev Disabil 27:254–289. 



 

122 

Lauay C, Gerlach NM, Adkins-Regan E, DeVoogd TJ (2004) Female zebra finches require early 

song exposure to prefer high-quality song as adults. Anim Behav 68:1249–1255. 

LeBlanc MM, Goode CT, MacDougall-Shackleton E a., Maney DL (2007) Estradiol modulates 

brainstem catecholaminergic cell groups and projections to the auditory forebrain in a 

female songbird. Brain Res 1171:93–103. 

Lephart ED (1996) A review of brain aromatase cytochrome P450. Brain Res Rev 22:1–26. 

Lewis JW, Beauchamp MS, DeYoe EA (2000) A Comparison of Visual and Auditory Motion 

Processing in Human Cerebral Cortex. Cereb Cortex 10:873–888. 

Li J, Zhou X, Huang L, Fu X, Liu J, Zhang X, Sun Y, Zuo M (2013) Alteration of CaBP expression 

pattern in the nucleus magnocellularis following unilateral cochlear ablation in adult 

zebra finches. PLoS One 8:1–11. 

Liang K, Poytress BS, Chen Y, Leslie FM, Weinberger NM, Metherate R (2006) Neonatal nicotine 

exposure impairs nicotinic enhancement of central auditory processing and auditory 

learning in adult rats. Eur J Neurosci 24:857–866. 

London SE, Clayton DF (2008) Functional identification of sensory mechanisms required for 

developmental song learning. Nat Neurosci 11:579–586. 

Lynch KS, Ball GF (2008) Noradrenergic deficits alter processing of communication signals in 

female songbirds. Brain Behav Evol 72:207–214. 

Lynch KS, Diekamp B, Ball GF (2012) Colocalization of immediate early genes in catecholamine 

cells after song exposure in female zebra finches (Taeniopygia guttata). Brain Behav Evol 

79:252–260. 

Mandelblat-Cerf Y, Las L, Denissenko N, Fee M (2014) A role for descending auditory cortical 

projections in songbird vocal learning. Elife 2014:1–23. 



 

123 

Manunta Y, Edeline JM (1997) Effects of noradrenaline on frequency tuning of rat auditory 

cortex neurons. Eur J Neurosci 9:833–847. 

Manunta Y, Edeline J-M (1999) Effects of noradrenaline on frequency tuning of auditory cortex neurons 

during wakefulness and slow-wave sleep. Eur J Neurosci 11:2134–2150. 

Manunta Y, Edeline J-M (2004) Noradrenergic induction of selective plasticity in the frequency tuning of 

auditory cortex neurons. J Neurophysiol 92:1445–1463. 

Martin JS, Jerger JF (2005) Some effects of aging on central auditory processing. J Rehabil Res Dev 42:25. 

Matragrano LL, Beaulieu M, Phillip JO, Rae AI, Sanford SE, Sockman KW, Maney DL (2012) Rapid effects 

of hearing song on catecholaminergic activity in the songbird auditory pathway. PLoS One 

7:e39388. 

Matragrano LL, Sanford SE, Salvante KG, Sockman KW, Maney DL (2011) Estradiol-dependent 

catecholaminergic innervation of auditory areas in a seasonally breeding songbird. Eur J 

Neurosci 34:416–425. 

Mccartney JS, Fried PA, Watkinson B (1994) Central auditory processing in school-age children prenatally 

exposed to cigarette smoke. Neurotoxicol Teratol 16:269–276. 

Medina FS, Hunt GR, Gray RD, Wild JM, Kubke MF (2013) Perineuronal satellite neuroglia in the 

telencephalon of New Caledonian crows and other Passeriformes: evidence of satellite glial cells 

in the central nervous system of healthy birds? PeerJ 1:e110. 

Meitzen J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britson KA, Mermelstein PG 

(2013) Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. 

Endocrinology 154:4293–4304. 

Mello C V, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird 

forebrain. Proc Natl Acad Sci U S A 89:6818–6822. 



 

124 

Mello C V., Ribeiro S (1998) ZENK protein regulation by song in the brain of songbirds. J Comp 

Neurol 393:426–438. 

Mello C, Nottebohm F, Clayton D (1995) Repeated exposure to one song leads to a rapid and 

persistent decline in an immediate early gene’s response to that song in zebra finch 

telencephalon. J Neurosci 15:6919–6925. 

Mello C, Pinaud R, Ribeiro S (1998) Noradrenergic system of the zebra finch brain: 

Immunocytochemical study of dopamine-β-hydroxylase. J Comp Neurol 400:207–228. 

Mello V, Clayton F (1994) Song-induced ZENK Gene Expression in Auditory Pathways of Songbird 

Brain and Its Relation to the Song Control System. 14. 

Menardy F, Giret N, Del Negro C (2014) The presence of an audience modulates responses to 

familiar call stimuli in the male zebra finch forebrain. Eur J Neurosci 40:3338–3350. 

Menardy F, Touiki K, Dutrieux G, Bozon B, Vignal C, Mathevon N, Del Negro C (2012) Social 

experience affects neuronal responses to male calls in adult female zebra finches. Eur J 

Neurosci 35:1322–1336. 

Mendelson JR, Ricketts C (2001) Age-related temporal processing speed deterioration in 

auditory cortex. Hear Res 158:84–94. 

Metzdorf R, Gahr M, Fusani L (1999) Distribution of aromatase, estrogen receptor, and 

androgen receptor mrna in the forebrain of songbirds and nonsongbirds. J Comp Neurol 

407:115–129. 

Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J Psychiatry 

Neurosci 27:406–415. 

Miller DB (1979) Long-term recognition of father’s song by female zebra finches. Nature 

280:389–391. 



 

125 

Miller TW, Shin I, Kagawa N, Evans DB, Waterman MR, Arteaga CL (2008) Aromatase is 

phosphorylated in situ at serine-118. J Steroid Biochem Mol Biol 112:95–101. 

Mooney R, Prather JF (2005) The HVC Microcircuit: The Synaptic Basis for Interactions between Song 

Motor and Vocal Plasticity Pathways. J Neurosci 25:1952–1964. 

Mordecai KL, Rubin LH, Maki PM (2008) Effects of menstrual cycle phase and oral contraceptive use on 

verbal memory. Horm Behav 54:286–293. 

Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. 

Development 116:201–211. 

Nadel L, Hupbach A, Gomez R, Newman-Smith K (2012) Memory formation, consolidation and 

transformation. Neurosci Biobehav Rev 36:1640–1645. 

Naftolin F, Horvath TL, Jakab RL, Leranth C, Harada N, Balthazart J (1996) Aromatase immunoreactivity in 

axon terminals of the vertebrate brain. An immunocytochemical study on quail, rat, monkey and 

human tissues. Neuroendocrinology 63:149–155. 

Nai Q, Dong H-W, Hayar A, Linster C, Ennis M (2009) Noradrenergic regulation of GABAergic inhibition of 

main olfactory bulb mitral cells varies as a function of concentration and receptor subtype. J 

Neurophysiol 101:2472–2484. 

Newport DJ, Nemeroff CB (2000) Neurobiology of posttraumatic stress disorder. Curr Opin Neurobiol 

10:211–218. 

Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial 

glial cells establish radial units in neocortex. Nature 409:714–720. 

Park KH., Clayton DF (2002) Influence of restraint and acute isolation on the selectivity of the adult zebra 

finch zenk gene response to acoustic stimuli. Behav Brain Res 136:185–191. 

Pawlisch BA, Stevenson SA, Riters L V (2011) α₁-Noradrenegic receptor antagonism disrupts female 

songbird responses to male song. Neurosci Lett 496:20–24. 



 

126 

Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. 

Nat Rev Neurosci 15:250–263. 

Perez-Velazquez JL, Valiante TA, Carlen PL (1994) Modulation of gap junctional mechanisms 

during calcium-free induced field burst activity: a possible role for electrotonic coupling 

in epileptogenesis. J Neurosci 14:4308–4317. 

Peterson RS, Lee DW, Fernando G, Schlinger BA (2004) Radial glia express aromatase in the 

injured zebra finch brain. J Comp Neurol 475:261–269. 

Peterson RS, Yarram L, Schlinger BA, Saldanha CJ (2005) Aromatase is pre-synaptic and sexually 

dimorphic in the adult zebra finch brain. Proc Biol Sci 272:2089–2096. 

Peterson RS, Yarram L, Schlinger BA, Saldanha CJ (2005) Aromatase is pre-synaptic and sexually 

dimorphic in the adult zebra finch brain. :2089–2096. 

Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioral phenotypes 

and neurobiological substrates. Front Evol Neurosci 4:12. 

Pfenning AR et al. (2014) Convergent transcriptional specializations in the brains of humans and 

song-learning birds. Science 346:1256846. 

Pinaud R, Fortes AF, Lovell P, Mello C V. (2006) Calbindin-positive neurons reveal a sexual 

dimorphism within the songbird analogue of the mammalian auditory cortex. J 

Neurobiol 66:182–195. 

Pinaud R, Mello C V (2007) GABA immunoreactivity in auditory and song control brain areas of 

zebra finches. J Chem Neuroanat 34:1–21. 

Pinaud R, Terleph TA, Tremere LA, Phan ML, Dagostin AA, Leão RM, Mello C V, Vicario DS (2008) 

Inhibitory network interactions shape the auditory processing of natural communication 

signals in the songbird auditory forebrain. J Neurophysiol 100:441–455. 



 

127 

Poirier C, Boumans T, Verhoye M, Balthazart J, Van der Linden A (2009) Own-Song Recognition 

in the Songbird Auditory Pathway: Selectivity and Lateralization. J Neurosci 29:2252–

2258. 

Poirier C, Van der Linden A-M (2011) Spin echo BOLD fMRI on songbirds. Methods Mol Biol 771:569–

576. 

Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ (2008) Estrogen Signaling through 

the Transmembrane G Protein–Coupled Receptor GPR30. 

http://dx.doi.org/101146/annurev.physiol70113006100518. 

Rapin I, Dunn M (2003) Update on the language disorders of individuals on the autistic spectrum. Brain 

Dev 25:166–172. 

Remage-Healey L (2014) Frank Beach Award Winner: Steroids as neuromodulators of brain circuits and 

behavior. Horm Behav 66:552–560. 

Remage-Healey L, Coleman MJ, Oyama RK, Schlinger B a (2010) Brain estrogens rapidly strengthen 

auditory encoding and guide song preference in a songbird. Proc Natl Acad Sci U S A 107:3852–

3857. 

Remage-Healey L, Coleman MJ, Oyama RK, Schlinger BA (2010) Brain estrogens rapidly strengthen 

auditory encoding and guide song preference in a songbird. Proc Natl Acad Sci 107:3852–3857. 

Remage-Healey L, Dong S, Maidment NT, Schlinger BA (2011) Presynaptic Control of Rapid Estrogen 

Fluctuations in the Songbird Auditory Forebrain. J Neurosci 31:10034–10038. 

Remage-Healey L, Dong SM, Chao AP., Schlinger B a. (2012) Sex-specific, rapid neuroestrogen 

fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol 

107:1621–1631. 

Remage-Healey L, Joshi NR (2012) Changing neuroestrogens within the auditory forebrain rapidly 

transform stimulus selectivity in a downstream sensorimotor nucleus. J Neurosci 32:8231–8241. 



 

128 

Remage-Healey L, Maidment NT, Schlinger BA (2008) Forebrain steroid levels fluctuate rapidly 

during social interactions. Nat Neurosci 11:1327–1334. 

Remage-Healey L, Oyama RK, Schlinger BA (2009) Elevated aromatase activity in forebrain 

synaptic terminals during song. J Neuroendocrinol 21:191–199. 

Remage-Healey L, Saldanha CJ, Schlinger BA (2011b) Estradiol synthesis and action at the 

synapse: evidence for “synaptocrine” signaling. Front Endocrinol (Lausanne) 2:28. 

Riebel K (2000) Early exposure leads to repeatable preferences for male song in female zebra 

finches. Proc Biol Sci 267:2553–2558. 

Riebel K, Naguib M, Gil D (2009) Experimental manipulation of the rearing environment 

influences adult female zebra finch song preferences. Anim Behav 78:1397–1404. 

Riebel K, Smallegange IM, Terpstra NJ, Bolhuis JJ (2002) Sexual equality in zebra finch song 

preference: evidence for a dissociation between song recognition and production 

learning. Proc Biol Sci 269:729–733. 

Robbins TW, Arnsten AFT (2009) The neuropsychopharmacology of fronto-executive function: 

monoaminergic modulation. Annu Rev Neurosci 32:267–287. 

Rohmann KN, Schlinger BA, Saldanha CJ (2007) Subcellular compartmentalization of aromatase 

is sexually dimorphic in the adult zebra finch brain. Dev Neurobiol 67:1–9. 

Roselli CE (1995) Subcellular localization and kinetic properties of aromatase activity in rat brain. 

J Steroid Biochem Mol Biol 52:469–477. 

Ross SB, Stenfors C (2015) DSP4, a Selective Neurotoxin for the Locus Coeruleus Noradrenergic 

System. A Review of Its Mode of Action. Neurotox Res 27:15–30. 

Ruffolo RR, Waddell JE (1982) Receptor interactions of imidazolines: alpha-adrenoceptors of rat 

and rabbit aortae differentiated by relative potencies, affinities and efficacies of 

imidazoline agonists. Br J Pharmacol 77:169–176. 



 

129 

Saldanha CJ, Coomaralingam L (2005) Overlap and co-expression of estrogen synthetic and responsive 

neurons in the songbird brain — a double-label immunocytochemical study. 141:66–75. 

Saldanha CJ, Schlinger BA, Micevych PE, Horvath TL (2004) Presynaptic N-methyl-D-aspartate receptor 

expression is increased by estrogen in an aromatase-rich area of the songbird hippocampus. J 

Comp Neurol 469:522–534. 

Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, Schlinger BA (2000) Distribution and 

regulation of telencephalic aromatase expression in the zebra finch revealed with a specific 

antibody. J Comp Neurol 423:619–630. 

Salgado H, García-Oscos F, Dinh L, Atzori M (2011) Dynamic modulation of short-term synaptic plasticity 

in the auditory cortex: the role of norepinephrine. Hear Res 271:26–36. 

Salgado H, Garcia-Oscos F, Martinolich L, Hall S, Restom R, Tseng KY, Atzori M (2012) Pre- and 

postsynaptic effects of norepinephrine on γ-aminobutyric acid-mediated synaptic transmission 

in layer 2/3 of the rat auditory cortex. Synapse 66:20–28. 

Salgado H, Garcia-Oscos F, Patel A, Martinolich L, Nichols JA, Dinh L, Roychowdhury S, Tseng K-Y, Atzori 

M (2011) Layer-specific noradrenergic modulation of inhibition in cortical layer II/III. Cereb 

Cortex 21:212–221. 

Sanghera MK, Simpson ER, McPhaul MJ, Kozlowski G, Conley AJ, Lephart ED (1991) Immunocytochemical 

distribution of aromatase cytochrome P450 in the rat brain using peptide-generated polyclonal 

antibodies. Endocrinology 129:2834–2844. 

Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through 

arousal. Neuron 76:130–141. 

Sasaki A (2006) Social Context-Dependent Singing-Regulated Dopamine. J Neurosci 26:9010–9014. 

Sato H, Fox K, Daw NW (1989) Effect of electrical stimulation of locus coeruleus on the activity of 

neurons in the cat visual cortex. J Neurophysiol 62:946–958. 



 

130 

Scharff C, Nottebohm F, Cynx J (1998) Conspecific and heterospecific song discrimination in male 

zebra finches with lesions in the anterior forebrain pathway. J Neurobiol 36:81–90. 

Schneider DM, Nelson A, Mooney R (2014) A synaptic and circuit basis for corollary discharge in 

the auditory cortex. Nature 513:189–194. 

Schneider DM, Woolley SMN (2013) Sparse and background-invariant coding of vocalizations in 

auditory scenes. Neuron 79:141–152. 

Shen P, Schlinger BA, Campagnoni AT, Arnold AP (1995) An atlas of aromatase mRNA expression 

in the zebra finch brain. J Comp Neurol 360:172–184. 

Shepard KN, Liles LC, Weinshenker D, Liu RC (2015) Norepinephrine is necessary for experience-

dependent plasticity in the developing mouse auditory cortex. J Neurosci 35:2432–2437. 

Shepherd JD, Bear MF (2011) New views of Arc, a master regulator of synaptic plasticity. Nat 

Neurosci 14:279–284. 

Shinba T, Ando Y, Ozawa N, Yamamoto K (1992) Auditory-evoked response of the cortex after 

yohimbine administration: phase advance effect of central noradrenergic activation. 

Brain Res Bull 28:463–471. 

Sizemore M, Perkel DJ (2008) Noradrenergic and GABA B receptor activation differentially 

modulate inputs to the premotor nucleus RA in zebra finches. J Neurophysiol 100:8–18. 

Sockman KW, Salvante KG (2008) The integration of song environment by catecholaminergic 

systems innervating the auditory telencephalon of adult female European starlings. Dev 

Neurobiol 68:656–668. 

Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA (2009) Reduced dendritic spine 

density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 

34:374–389. 



 

131 

Syka J, Šuta D, Popelář J (2005) Responses to species-specific vocalizations in the auditory cortex 

of awake and anesthetized guinea pigs. Hear Res 206:177–184. 

Terpstra NJ, Bolhuis JJ, Boer-visser AM Den (2004) An Analysis of the Neural Representation of Birdsong 

Memory. 24:4971–4977. 

Tillman GD (2010) Estradiol levels during the menstrual cycle differentially affect latencies to right and 

left hemispheres during dichotic listening: an ERP study. Psychoneuroendocrinology 35:249–

261. 

Tobey EA, Devous MD, Buckley K, Overson G, Harris T, Ringe W, Martinez-Verhoff J (2005) 

Pharmacological enhancement of aural habilitation in adult cochlear implant users. Ear Hear 

26:45S – 56S. 

Tollkötter M, Pfleiderer B, Sörös P, Michael N (2006) Effects of antidepressive therapy on auditory 

processing in severely depressed patients: A combined MRS and MEG study. J Psychiatr Res 

40:293–306. 

Tomaszycki ML, Adkins-Regan E (2005) Experimental alteration of male song quality and output affects 

female mate choice and pair bond formation in zebra finches. Anim Behav 70:785–794. 

Tomaszycki ML, Blaine SK (2014) Temporary inactivation of NCM, an auditory region, increases social 

interaction and decreases song perception in female zebra finches. Behav Processes 108:65–70. 

Tremere LA, Burrows K, Jeong J-K, Pinaud R (2011) Organization of Estrogen-Associated Circuits in the 

Mouse Primary Auditory Cortex. J Exp Neurosci 2011:45–60. 

Tremere LA, Jeong JK, Pinaud R (2009) Estradiol shapes auditory processing in the adult brain by 

regulating inhibitory transmission and plasticity-associated gene expression. J Neurosci 

29:5949–5963. 

Tremere LA, Pinaud R (2011) Brain-generated estradiol drives long-term optimization of auditory coding 

to enhance the discrimination of communication signals. J Neurosci 31:3271–3289. 



 

132 

Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano 

JM, Jiang H, Cirrito JR, Holtzman DM (2013) In vivo measurement of apolipoprotein E 

from the brain interstitial fluid using microdialysis. Mol Neurodegener 8:13. 

Vahaba DM, Lacey WH, Tomaszycki ML (2013) DSP-4, a noradrenergic neurotoxin, produces sex-

specific effects on pairing and courtship behavior in zebra finches. Behav Brain Res 

252:164–175. 

Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with 

genomic actions in the brain. Front Neuroendocrinol 29:238–257. 

Vates GE, Broome BM, Mello C V., Nottebohm F (1996) Auditory pathways of caudal 

telencephalon and their relation to the song system of adult male zebra finches 

(Taenopygia guttata). J Comp Neurol 366:613–642. 

Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus 

coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S 

A 111:3859–3864. 

Velho TAF, Lu K, Ribeiro S, Pinaud R, Vicario D, Mello C V (2012) Noradrenergic control of gene 

expression and long-term neuronal adaptation evoked by learned vocalizations in 

songbirds. PLoS One 7: e36276. 

Velho TAF, Pinaud R, Rodrigues P V., Mello C V. (2005) Co-induction of activity-dependent genes 

in songbirds. Eur J Neurosci 22:1667–1678. 

Vignal C, Andru J, Mathevon N (2005) Social context modulates behavioural and brain 

immediate early gene responses to sound in male songbird. Eur J Neurosci 22:949–955. 

Vockel A, Pröve E, Balthazart J (1990) Sex- and age-related differences in the activity of 

testosterone-metabolizing enzymes in microdissected nuclei of the zebra finch brain. 



 

133 

Wade J, Schlinger BA, Hodges L, Arnold AP (1994) Fadrozole: a potent and specific inhibitor of 

aromatase in the zebra finch brain. Gen Comp Endocrinol 94:53–61. 

Wagner CK, Morrell JI (1996) Distribution and steroid hormone regulation of aromatase mRNA 

expression in the forebrain of adult male and female rats: a cellular-level analysis using in situ 

hybridization. J Comp Neurol 370:71–84. 

Walpurger V, Pietrowsky R, Kirschbaum C, Wolf OT (2004) Effects of the menstrual cycle on auditory 

event-related potentials. Horm Behav 46:600–606. 

Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. 

Proc Natl Acad Sci U S A 107:12676–12681. 

Wild JM, Williams MN, Howie GJ, Mooney R (2005) Calcium-binding proteins define interneurons in HVC 

of the zebra finch (Taeniopygia guttata). J Comp Neurol 483:76–90. 

Winton-brown TT, Allen P, Bhattacharrya S, Borgwardt SJ, Fusar-poli P, Crippa JA, Seal ML, Martin-santos 

R, Ffytche D, Zuardi AW, Atakan Z, Mcguire PK (2011) Modulation of Auditory and Visual 

Processing by Delta-9-Tetrahydrocannabinol and Cannabidiol : an fMRI Study. 

Neuropsychopharmacology 36:1340–1348. 

Woolley SC, Doupe AJ (2008) Social Context–Induced Song Variation Affects Female Behavior and Gene 

Expression Brenowitz E, ed. PLoS Biol 6:e62. 

Woolley SMN, Rubel EW (2002) Vocal memory and learning in adult Bengalese Finches with regenerated 

hair cells. J Neurosci 22:7774–7787. 

Yague JG, Muñoz A, de Monasterio-Schrader P, DeFelipe J, Garcia-Segura LM, Azcoitia I (2006) 

Aromatase expression in the human temporal cortex. Neuroscience 138:389–401. 

Yague JG, Wang AC-J, Janssen WGM, Hof PR, Garcia-Segura LM, Azcoitia I, Morrison JH (2008) 

Aromatase distribution in the monkey temporal neocortex and hippocampus. Brain Res 

1209:115–127. 



 

134 

Yanagihara S, Yazaki-Sugiyama Y (2016) Auditory experience-dependent cortical circuit shaping 

for memory formation in bird song learning. Nat Commun 7:11946. 

Yoder KM, Lu K, Vicario DS (2012) Blocking estradiol synthesis affects memory for songs in 

auditory forebrain of male zebra finches. Neuroreport 23:922–926. 

Yoder KM, Phan ML, Lu K, Vicario DS (2014) He Hears, She Hears: Are There Sex Differences in 

Auditory Processing ? :302–314. 

Zann RA (1996) The zebra finch: a synthesis of field and laboratory studies. Oxford University 

Press. 

Zhu B, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and 

perspectives. Carcinogenesis 19:1–27. 

 

 

 

 

 


	The Cellular Context of Estradiol Regulation in the Zebra Finch Auditory Forebrain
	Recommended Citation

	Introduction
	Materials_and_Methods
	Results
	Norepinephrine_suppresses_spontaneous_fi
	Norepinephrine_does_not_affect_estradiol
	Discussion
	References

