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ABSTRACT

CHASING NEW PHYSICS: FROM ELECTROWEAK
BARYOGENESIS TO DARK MATTER

SEPTEMBER 2016

HUAIKE GUO

B.S., SHANDONG NORMAL UNIVERSITY

M.S., PEKING UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael J. Ramsey-Musolf

The origin of the baryon asymmetry in the universe and the nature of the dark

matter remain mysteries and addressing these cosmological puzzles requires physics

beyond the standard model. Electroweak baryogenesis remains a highly testable

framework for explaining the baryon asymmetry and is employed in this work to

study the capability of baryon generation for beyond standard model physics models

and to explore new physics discovery potential in high energy and precision frontier.

Weakly interacting massive particles as cold dark matter are also studied in this work

featuring loop induced direct detection signals and novel nuclear responses within the

recently developed non-relativistic effective field theory framework.
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INTRODUCTION

The standard model(SM) of particle physics provides an unified theoretical frame-

work for describing subatomic particles and their interactions. Its predictions are

found overall agreement with experimental measurements in high energy and preci-

sion frontier and this framework is further solidified by the discovery [3, 78] of the

last missing piece, the Higgs boson which is the key particle responsible for the spon-

taneous symmetry breaking of the theory to give mass to the other particles. The

SM however is not perfect since it is infeasible to explain the observed cosmological

baryon asymmetry in the universe and also does not provides a candidate for the dark

matter.

Precise cosmological measurements have determined that about 84.5% of the

universe matter content is dark matter while only 15.5% is attributed to ordinary

baryonic matter [14] from a collective fit of parameters of the standard cosmological

Lambda Cold Dark Matter model(ΛCDM) to various observations. On one hand,

the origin of the predominance of baryonic matter over anti-matter is still mysterious

from the SM point of view since particle and anti-particle are naturally symmetric

in this framework. On the other hand, the incapability of the SM to incorporate the

dark matter has triggered intensive theoretical efforts resorting to new physics for

understanding the nature of the dark matter and numerous experimental searches

directly or indirectly for the dark matter.

According to Sakharov [201], three conditions are required to generate a net baryon

abundance, that is, baryon number violation, C and CP violation(CPV) and out

of equilibrium conditions(assuming CPT conservation). All mechanisms of baryge-

nesis thus need to satisfy above three conditions. The mechanisms that work at
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Atoms 4.9%

Dark Matter 26.6%

Dark Energy 68.5%

The energy budget of the universe. Plotted using the Planck 2015 results [14].

the grand unified theory scale at approximately 1016GeV generally involve decays of

some heavy particle which violates baryon number conservation. The Affleck-Dine

mechanism [15, 104, 105] has its motivations in the supersymmetry theories. Also

since a lepton asymmetry can be transferred into a baryon asymmetry through the

electroweak Sphaleron process, a leptogenesis [124, 62] scenario can also serve as a

baryogenesis scenario. Furthermore since the expansion of the universe actually vi-

olate time reversal invariance and thus CPT invariance, baryon asymmetry can be

generated in equilibrium conditions which generally involve adding CP-violating inter-

actions to the Lagrangian with the baryonic current coupled to a vector current. The

most interesting mechanism is the electroweak baryogenesis(EWBG) [171, 207, 208]

(See [192] for a recent review) in which the baryon asymmetry is generated duing

duing the electroweak phase transition(EWPT) when the universe went through a

first order phase transition from the electroweak symmetric phase to a phase where

this symmetry is broken by a non-zero Higgs vev. This corresponds to approximately

100GeV and thus can be probed at current high energy collider laboratories. The

following baryogenesis scenarios are set in this framework. In this picture the Higgs

vacuum decay happens by nucleation of bubbles in the symmetric environment within

which Higgs has a non zero vev. The bubbles expand, collide and merge with each
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other and when the phase transition is over, the universe is in the broken phase. In

this picture, the turbulent bubble wall provides a non-equilibrium environment as

required by the Sakharov condition. Even though the standard model(SM) does pro-

vide baryon number violation through weak Sphaleron interactions [182, 168], it falls

short in the following aspects to generate the observed BAU: the magnitude of the

CPV [127, 144, 128] is too tiny for BAU, the EWPT [54, 158] is a smooth cross over

and not a first order EWPT for a 125GeV Higgs [6] from lattice simulations(See [192]

for a catalog of these results) and thus physics beyond the SM is required with new

sources of CPV and with strongly first order EWPT. The purpose of this work is

partly dedicated to constructing and exploring new physics models which include

these ingredients and within which the observed BAU can be generated.

Much effort has also been devoted to understanding the nature of dark matter and

to interpreting its possible signals (See Ref. [209] for a review.). Among the various

dark matter candidates that have been explored in the literature, the weakly inter-

acting massive particle(WIMP) stands out as an highly interesting scenario. However

the nature of dark matter and the way it interacts with the ordinary matter are still

mysteries.

Dark matter is searched conventionally in two ways either directly by observing

possible scintillations from the energy released when dark matter recoils off nucleus

in deep underground detectors or indirectly by tracing annihilations products to dark

matter through discovery of anomalous flux of cosmic rays such as anti-particles and

gamma rays. Experimental searches are complimented by theoretical explorations

of numerous dark matter models and by advances in more precise understanding

of the dark matter nucleus interactions. The traditional direct detection limits are

set assuming spin-independent(SI or Fermi) or spin-dependent(SD or Gamow-Teller)

dark matter nucleon interactions. In very recent years, a systematic non-relativistic

effective field theory(EFT) framework for describing dark matter nucleus interac-
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tions was developed [120, 24] following earlier work in Ref. [115]. This framework is

based on the fact that the dark matter nucleus interaction picture is essentially non-

relativistic and instead of working with relativistically covariant formalism a full set

of non-relativistic operators is constructed in accordance with the underlying Galilean

invariance. A detailed partial wave analysis enables the elastic scattering cross sec-

tion of dark matter off finite-sized nucleus to be expressed as a factorized form with

model dependent part encapsulated as coefficients of six model independent nuclear

responses. These nuclear responses correspond to the previously adopted form factors

for finite momentum transfer or finite-sized nucleus. Thus the various new physics

model explorations is separated from the nuclear calculations of the universal nuclear

responses with a theoretically well founded basis. This also drives current direct de-

tection experimental searches and theoretical analysis to be interpreted on these full

set of non-relativistic operators [203, 72, 26] rather than the previously used incom-

plete SI and SD interactions.

These new nuclear responses are generally involved when loop level dark mat-

ter quark interactions are considered such as when dark matter electric dipole mo-

ment(EDM), magnetic dipole moment(MDM), charge radius, axial charge radius, etc.

contribute at leading order. Such loop induced dark matter quark interactions are

gaining more attention [145, 141, 76] since they generally contribute less to direct de-

tection cross sections in accordance with the currently null search results from direct

detection measurements while still maintaining the right amount of relic abundance.

In this work several models where these novel nuclear responses show up are explored

and their phenomenological roles in this non-relativistic EFT framework are studied.

The following chapters are organized as follows. In chapter 1, an introduction to

various aspects of the EWBG framework is given and the discussion of dark matter

calculations is presented in chapter 2. Since most of the projects is set in the two Higgs

doublet model, a brief discussion of it is given in 3. Pragmatic utilizations of above
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frameworks in calculations of BAU and dark matter properties follows. Specificially,

a quark-flavored EWBG scenario set in the “b-s” quark sector is studied in chapter 4

and a lepton-flavored EWBG scenario set in the “µ − τ” is given in chapter 5. In

chapter 6, a model with tau flavored dark matter is studied and in the following

chapter 7, an analysis of a Higgs portal dark matter scenario set in the two Higgs

doublet model is studied in detail.
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CHAPTER 1

THE ELECTROWEAK BARYOGENESIS FRAMEWORK

In the framework of the Electroweak Baryogenesis(EWBG), the baryon asym-

metry is generated duing the Electroweak phase transition(EWPT) at around T =

100GeV. Compared with other high scale mechanisms, EWBG remains an experimen-

tally probable mechanism and can be tested at the energy frontier. In this chapter we

first give a brief introduction and then review the various ingredients in this picture

and finally show how the baryon asymmetry is calculated.

At high temperatures, the full electroweak symmetry SU(2)L×U(1)Y is manifest

and as temperature drops when the universe expands, the universe went through a

phase transition from this electroweak symmetric phase to the phase where the sym-

metry is broken to the subgroup U(1)EM by a non-zero Higgs vacuum expectation

value(vev) as we feel today. This phase transition proceeds through the nucleation

of electroweak bubbles of the broken phase within the environment where the elec-

troweak symmetry is still unbroken(symmetric phase). This transition has to be first

order to provide a non-equilibrium environment as required by the Sakharov condi-

tions, otherwise all physical quantities will continuously transform as the temperature

drops. The turbulent phase boundaries(bubble wall) provide this non-equilibrium

environment within which the CP-violating interactions of particle scatterings will

create a net chiral flux. This chiral flux is injected into the electroweak symmetric

phase where the baryon number violating electroweak Sphaleron [183, 168] process

convert this chiral asymmetry into a net baryon density which is then later captured
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by the expanding bubble wall. Inside the bubble wall, the Sphaleron process has to

be suppressed to avoid the wiping out the captured baryon asymmetry.

In this picture, the diffusion of the chiral flux in front of the bubble wall provides

an enhancement [98] of the efficiency for baryon generation compared with the earlier

local EWBG mechanism where both the CP-violating process and the electroweak

Sphaleron process have to be inside the narrow bubble wall thus significantly sup-

pressing the baryon generation. Thus this mechanism is essentially non-local EWBG.

Historically, the non-local EWBG further distinguishes two regimes. One regime is

the thin wall case [152, 96, 97] where the particle can move across the bubble wall

without significant scattering with the wall and thus is simpler to deal with. The other

case is the thick wall regime [155, 98] where particle scatterings with the bubble wall

have to be considered.

Furthermore it is discovered that the Non-Markovian nature of scattering(1998)

using Closed Time Path(CTP) formulation of non-equilibrium Quantum Field The-

ory(QFT) is important [200](See Ref. [174] for a pedagogical description.). The obser-

vation is that transport properties in the plasma is non-Markovian, so one should use

the CTP formalism to write down quantum Boltzmann equations(QBE) for particle

densities in the plasma. These equations would involve integral over past time signi-

fying its non-Markovian nature and this memory effect included by integrating over

past history may lead to significant resonant enhancements of the sources. In this

framework, the local and non-local, thin wall and thick wall are all unified in a sys-

tematic framework allowing for a more precise description of the baryon generation.

In the following, we will discuss various aspects entering above picture. We first

introduce the non-trivial vacua structure of the electroweak theory and discuss details

of the barrier between these adjacent vacua state, the electroweak Sphaleron. The

following section explores the CPV invariants in the SM and the 2HDM. After that,
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Figure 1.1: An illustrative picture of the baryon generation during the first order
electroweak phase transition with a single electroweak bubble nucleated. The gradient
of the blue color within the bubble wall represents a increasing Higgs vev from zero
outside across the bubble wall into the bubble where the full finite temperature vev is
developed. Note the generated B outside the bubble is later captured by the expand-
ing bubble and kept inside the bubble. When all the space is turned into the broken
phase, these generated B will become the baryon source for the nucleosynthesis.

the various aspects of the EWPT picture is discussed briefly including the details

of the electroweak bubble, the rate of the baryon number violating process and the

Sphaleron decoupling condition for the preservation of the generated baryons inside

the bubbles. Finally in the last section, we illustrate how the baryon density is

calculated within the CTP formalism.

1.1 Baryon Number Violation

1.1.1 The Anomalous Baryonic Current

Despite the conservation at the classical level, the U(1) baryonic and leptonic cur-

rents are indeed violated in the SM by non-perturbative effects [212] due to anomalies

of the theory. For nf quark or lepton families, these anomalous fermionic currents

are [216, 93]
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∂µj
µ
B = ∂µj

µ
l = nf

[
g2

32π2
WµνW̃

aµν − g′2

32π2
FµνF̃

µν

]
, (1.1)

where W aµν and F µν are respectively the field strength tensor for the gauge fields

associated with the local SU(2)L and U(1)Y symmetries. W̃ aµν ≡ 1
2
εµνρσWaρσ and

with similar definition for F̃ µν . From this relation, we can see the change of the

baryonic number as time evolves depends on the spatial integral over the r.h.s of

above equation.

QB(tf )−QB(ti) =

∫ tf

ti

dt

∫
d3x∂tj

0
B,

=

∫ tf

ti

∫
d3x

[
~O ·~jB + nf

g2

32π2
WµνW̃

aµν

]
, (1.2)

Since the U(1)Y field is not relevant [168], we neglected it in above expression. Fur-

thermore ~jB vanishes at spatial infinity and the first term on the r.h.s wont contribute.

For the second part, the spatial integral over the gauge fields is actually a Chern-

Simons number NCS and if the initial and final gauge configurations are topologically

distinct pure gauges, then their difference is an integer, that is,

∆QB = nf [NCS(tf )−NCS(ti)], (1.3)

where there are three color states for each generation with a total of 3× 1
3
×nf baryon

number change for each unit of Chern-Simons number change. The reason why we

have integer changes over integration of the gauge fields is rooted in the non-trivial

topological structures of the electroweak theory from the requirement that the energy

in Eucliden spacetime is finite.

1.1.2 The Degenerate Electroweak Vacua

The EW theory possesses degenerate vacua structures [149] and in this section we

see how the EW vacua configurations are and introduce the Sphaleron later on. We
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start from the energy functional for static field configurations in the EW theory

E(Φ, ~A) =

∫
d3~x

[
1

4
FijFij + (DiΦ)†(DiΦ) + λ(Φ†Φ− v2

2
)2

]
, (1.4)

and the vacua corresponds to E(Φ, ~A) = 0. Field configurations with finite energy

need to satisfy Φ†Φ = v2

2
at spatial infinity corresponding |~x| → ∞. The trivial

vacuum configuration we can immediate find is

Φ =

 0

v√
2

 , Ai = 0, (1.5)

and others can be obtained through a gauge transformation

Φ′ = UΦ,

A′ ai ta = −ig−1(∂iU)U−1, (1.6)

where U ∈ SU(2) and can be parametrized following Manton [183] by

U(θ, φ, µ) =

 (cosµ− i sinµ cos θ)eiµ sinµ sin θeiϕ

− sinµ sin θe−iϕ (cosµ+ i sinµ cos θ)e−iµ

 . (1.7)

This is related to the standard parametrization of SU(2) element by

U(θ, φ, µ) =

 ei
µ
2 0

0 e−i
µ
2

U [~n(θ,−φ− π

2
), 2µ

] ei
µ
2 0

0 e−i
µ
2

 , (1.8)

where

U(~n, w) = exp(−iw
2
~n · ~σ), 0 ≤ w ≤ 2π, (1.9)

These pure gauge configurations have zero energy and furthermore these configura-

tions can be classified according to the topological group they reside in which can
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Figure 1.2: The Electroweak vacua periodic structure and the Electroweak Sphalerons
from numerical calculations. The left plot is as a function of Chern-Simons number
and the right plot as a function of µ. The lowest points with vanishing energy are
the electroweak vacua and each highest red point in the barrier between two adjacent
vacua corresponds to a Sphaleron solution. The energy value is normalized by 4πv

g

and the numerical calculation uses the Higgs boson mass 125GeV as input to define
the quartic coupling λ.

be characterized by the integer values of the Chern-Simons numbers. For generic

such numbers, its relation with µ is NCS = 2µ−sin(2µ)
2π

[214]. Note these integral values

of topological charges can be generally expressed in terms of Cartan-Maurer inte-

gral invariants(See sec 23.4 in Ref. [216]). Thus these vacua states have a periodic

structure as a function of the Chern-Simons number. This periodic structure of the

EW vacua is shown in Fig. 1.2 as a function of Chern-Simons number(left) and as

a function of µ(right) from numerically minimizing the energy functional for generic

non-pure-gauge configurations as discussed later. The lowest points are the vacua

states. Note that the left figure has a non-zero yet finite slope at each integer values

of the Chern-Simons number while the right figure smoothly approach zero. This is

in accordance with that in Ref. [214].

1.1.3 The Electroweak Sphalerons

The Electroweak Sphalerons correspond to the field configurations that have the

minimum energy among those that sit at the top of the barrier in all the path connect-

ing two neighboring vacua and thus they are saddle points of the energy functional and

unstable. In fact, the word “Sphaleron” coined by N.S.Manton and F.R.Klinkhamer
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in their 1984 paper [168] is based on the Greek adjective “σϕαλερos” which means

“ready to fall” signifying its unstable nature. In this section, we will review the

calculations of Sphaleron profiles in the Electroweak theory following closely the dis-

cussions in the original papers [168, 182] and study its properties to be equipped for

beyond SM Sphaleron studies.

The Higgs field at the spatial infinity which corresponds to a gauge rotation of

the trivial vacuum and gives zero energy in Eq. 1.6 is written explicitly here as

Φ∞(θ, ϕ;µ) =
v√
2

 sinµ sin θeiϕ

e−iµ(cosµ+ i sinµ cos θ)

 ,
To define the fields across R3, we follow the spherical symmetric ansatz,

Φ(r, θ, ϕ;µ) = (1− h(r))

 0

v√
2
e−iµ cosµ

+ h(r)Φ∞(θ, ϕ;µ),

~Aa(θ, φ;µ)ta = −if(r)g−1(~OU∞)U∞ −1, (1.10)

The energy of the Sphaleron as a function of the Higgs coupling λ/g2 is spherically

symmetric and is given by

E =
4πv

g

∫ ∞
0

dξξ2

{
4

ξ2

[
(
df

dξ
)2 sin2 µ+

2

ξ2
f 2(1− f)2 sin4 µ

]
1

2
(
dh

dξ
)2 sin2 µ+

1

ξ2
sin2 µ

[
h2(1− f)2 − 2fh(1− f)(1− h) cos2 µ+ f 2(1− h)2 cos2 µ

]
+

1

4

λ

g2
(1− h2)2 sin4 µ

}
, (1.11)

where the contributions in the first line comes from the gauge kinetic term, the second

line from the Higgs kinetic term and the last line from the Higgs potential.

Note to easily derive above expression, one should use the spherical decomposition

of the gauge fields. Also it should be remembered that above parametrization of the
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path from one vacuum to the adjacent one is not unique, a more generic spherical

symmetric parametrization like the one in Ref. [21] wound involve more form factors

like f, h here and change the energy slightly(see for example Ref. [214]) for field

configurations except for that of the vacua and of the Sphaleron states whose energy

is guaranteed to be unique by definition.

Finally the Sphaleorn profiles can be solved by minimizing the energy functional

with respect to f and h for each fixed µ and we have

d2f

dξ2
=

2

ξ2
f(1− f)(1− 2f) sin2 µ

+
1

8
[2h2(f − 1)− 2h(1− h)(1− 2f) cos2 µ+ 2f(1− h)2 cos2 µ],

d

dξ

[
ξ2dh

dξ

]
= 2h(1− f)2 − 2f(1− f)(1− 2h) cos2 µ− 2f 2(1− h) cos2 µ

+
λ

g2
ξ2h(h2 − 1) sin2 µ, (1.12)

with here f and h subjected to the boundary conditions

f(0) = 0, h(0) = 0, f(∞) = 1, h(∞) = 1,

f(0) = 0, h(0) = 0, f(∞) = 1, h(∞) = 1. (1.13)

Then the profiles f and h can be solved as a function of ξ for each µ from above

two set of equations. It is not possible to seek exact anaytical solutions to these non-

linear coupled equations and numerical method has to be used to precisely determine

the profiles of f and h. In Fig. 1.3, we show the numerically solved f , h, df
dξ

and dh
dξ

profiles when λ
g2 = 0. We can see all these four functions approach ξ →∞ with zero

slope while at ξ = 0, only f has a zero slope and h has a non-zero yet finite slope.

The asymptotic behavior of these functions near either infinity or zero can be studied

directly from Eq. 1.12.
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Figure 1.3: Numerically solved Sphaleron(µ = π
2
) profiles of f , h and their derivatives

as a function of the dimensionless quantity ξ. The Higgs quartic coupling is set to be
zero in this plot.

In Fig. 1.4, we show more profiles of f and h as function of ξ for different choices

of λ
g2 in the range 0 to 1000. It is observed from this figure that for increased λ

g2 , f

and h will both be larger with h having more notiable change of profiles.

With f(ξ) and h(ξ) solved, the energy of the Sphelerons can now be readily

obtained from Eq. 1.11 and in Fig. 1.5 the energies as a function of λ
g2 is shown. The

Sphaleron energy curve as a function of the Higgs quartic coupling has a kink-type

profile with small λ
g2 approaching ≈ 1.6 asymptotically and with large λ

g2 approaching

≈ 2.7. For a 125GeV SM Higgs, λ =
e2m2

H

8m2
W s2W

, we have E ≈ 1.82× 4πv
g
≈ 9TeV.

Fixing the Higgs quartic coupling to be the one corresponding a 125GeV Higgs

boson, we show the energies along the path 0 ≤ µ ≤ π which connects two adjacent

Electroweak vacua in Fig. 1.2. There the Sphalerons on top of the barrier is shown

with a red dot and has energy 1.82 in unit 4πv
g

. Note that there are other [21]

definitions of the path connecting the different vacua and the obtained energy profiles

might differ slightly from the one shown in Fig. 1.5 but the value of the Sphaleron

energies are all the same.

It should noted that the periodicity of the energy functional in Fig. 1.5 is an

essential feature of the studies in solid state physics on material with Bravais lattice
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Figure 1.4: More Sphaleron(µ = π
2
) profiles of f(left) and h(right) as functions of

ξ for different choices λ
g2 in the range from 0 to 1000 with 0(black solid), 10−2(red

dashed), 10−1(blue solid), 1(pink dotted), 10(brown solid), 1000(green dashed).

structures. It is well known that the solution is Bloch waves if here the horizontal axis

variable is replaced by spatial coordinates. This has motivated Ref. [214] to treat NCS

as a dynamical variable replacing the role of x in Schrodinger equations and found

interesting properties of resulting Sphalerons. Following this analysis, Ref. [113, 113]

studied the discovery prospect of the modified Sphalerons at colliders and in IceCube.

This also trigged the study of band structures in Yang-Mills theories in Ref. [30].

1.2 CP-Violation

1.2.1 CPV in the SM and Jarlskog Invariant

In the SM, the only one CP violating complex phase comes from CKM matrix

and the extra spurious phases of a general 3 × 3 unitary matrix are all removed by

rephasing of quark fields. All CP violating physical observables should be invariant

under rephasing of quark fields, that is , they should be able to expressed in terms of

moduli of CKM matrix elements or quartets defined as

Qαiβj = VαiVβjV
∗
αjV

∗
βi. (1.14)
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Figure 1.5: Sphaleron energy in unit of 4πv
g

with λ
g2 varying between a large range of

values. The red triangle is the numerically calculated Sphaleron energy for discrete
values of λ

g2 and the dotted line is the corresponding fitted curve joining these discrete
points.

All higher orders of CKM matrix elements could be expressed in terms of these moduli

and quartets. Also, due to unitariry of CKM matrix, imaginary parts of all Qαiβj are

equal up to a sign difference. Thus we can use

J = ImQ1122 (1.15)

as the unique measure of CPV in the SM.

This term also follows from a more systematic way of considering rephasing in-

variants Suppose in SM, the Yukawa coupling matrices MU ,MD are rotated to be

Hermitian. (For example, start with physical mass matrix and rotate it with some

unitary matrix. But this is not the basis transformation in our discussion. Gener-

ally, this will change gauge-kinetic terms of quarks.) Then the quantity det[MU ,MD]

is a more comprehensive way of characterizing presence or absence of CP violation

[151, 111], since
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det[MU ,MD]

= det[V †mUV,mD]

= 2iIm tr(m2
DV

†mUV mDV
†m2

UV )

= 2i(mt −mu)(mt −mc)(mc −mu)(mb −md)(mb −ms)(ms −md)J, (1.16)

with here mU/D physical mass matrices. Then it follows that in order to have CPV in

the SM, we need not only J to be non-vanishing but also non-zero and non-degenerate

quark masses. However even though this determinant is rephasing invariant, it is not

invariant under weak basis transformation.

Another way [60, 129] of getting this kind of relations is through considering

general CP transformation properties of quark fields and invariance of SM under

those transformations would give another measure of CP violation, tr([HU , HD]3)

where HU ≡MUM
†
U and also the same kind of definition for HD.

tr([HU , HD]3)

= 6iIm tr(H2
UH

2
DHUHD)

= 6iIm tr(m4
DV

†m2
UV m

2
DV

†m4
UV )

= 6i(m2
t −m2

u)(m
2
t −m2

c)(m
2
c −m2

u)(m
2
b −m2

d)(m
2
b −m2

s)(m
2
s −m2

d)J.(1.17)

Comparing this with the formulation in Eq. 1.16, we can see aside from the extra

overall factor of 3 here, the only major difference is the quark masses in Eq. 1.16 are

replaced by squares here. Actually the trace here can also be expressed in terms of a

determinant as in Eq. 1.16 from the following identity for a generic n× n matrix A,

det(A) =
∑

k1,k2,··· ,kn

n∏
l=1

(−1)kl+1

lklkl!
tr(Al)kl , (1.18)

subject to constraint for the summation over kl and l,
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n∑
l=1

l · kl = n. (1.19)

For a 3× 3 matrix as in the SM, this gives

det(A) =
1

6
[(trA)3 − 3tr(A)tr(A2) + 2tr(A3)]. (1.20)

Here A is a commutator, so tr(A) = 0 and det(A) = 1
3
tr(A3), that is,

tr([HU , HD]3) = 3 det([HU , HD]). (1.21)

This relation can be used in organizing the expansion of the L.H.S of Eq. 1.16 into

a form proportional to J which is quite easier than dealing with the products of six

CKM matrix elements if one were to use the determinant.

From experimental measurements of the quark masses and the CKM matrix ele-

ments, we can readily evaluate the CPV invariant using a specific parametrization of

the CKM matrix to have a sense of its magnitude. Since this invariant is of dimension

12, a dimensionless measure should be used at T = 100GeV and this can be chosen

as [93]

tr([HU , HD])3

6i(100GeV)12
≈ 10−20, (1.22)

and it is generally argued on this basis that the CPV in the SM is too small to account

for the observed baryon asymmetry.

1.2.2 CPV Invariants in 2HDM

In chapter 4 and chapter 5, we are going to exploit the relatively large CPV in

the 2HDM to study whether or not it is possible to generate the BAU. More details

of the 2HDM will be presented in chapter 3 to fix our conventions and here we focus
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on listing the set of CPV invariants in this model as a preparation for later studies.

Even though in this study we only work with serveral CPV invariants, we list here a

more complete set of such invariants from group theoretical considerations following

existing studies in the references and use this chapter as a basis for future more

thorough analysis of the CPV effects in the 2HDM.

In the 2HDM, there is now an extra symmetry, the U(2) Higgs basis transfor-

mation and there are possibly many sources of CPV. Thus a clear identification and

formulation of a Jarlskog-like invariant for CPV in 2HDM is highly important to

sort out the different origins of the CPV in such invariant way for phenomenological

analysis.

The procedure for finding such invariants in the 2HDM was introduced in Ref. [57]

and here we give a review and summary of the invariants in the 2HDM even though the

following chapters actually studied only one of the invariants. The basic procedures

for finding these CPV invariants is to firstly list all the symmetries of the theory ,

identify the transformation properties of the fields and construct quantities that are

invariant under these transformations by taking traces of the products. The imaginary

part of such invariants can then serve as a proper invariant formulation of CPV.

1.2.2.1 Fermion and Higgs Basis Transformations

In this section we list the symmetries of the 2HDM and transformation properties

of the fields and couplings. The Fermionic kinetic sector of the Lagrangian is defined

with the convention

LKinetic =
3∑
i=1

[
Q̄i

L
i /DQL

i + ŪR
i i /DU

R
i + D̄R

i i /DD
R
i + ĒL

i i /DE
L
i + ēRi i /De

R
i

]
, (1.23)

with here i, j being the quark and lepton family indices. The generic type III Yuakawa

interactions are defined in its most generic way as
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LYukawa = −QL

[
2∑
j=1

Φ̃jY
U
j

]
UR −QL

[
2∑
j=1

ΦjY
D
j

]
DR − EL

[
2∑
j=1

ΦjY
E
j

]
eR + h.c,

(1.24)

For Higgs potential, it is convenient to work with the following notations to study

basis transformation and invariants [57, 59],

LH =
2∑

a,b=1

µabΦ
†
aΦb +

1

2

2∑
a,b,c,d=1

λab,cd(Φ
†
aΦb)(Φ

†
cΦd), (1.25)

with λab,cd = λcd,ab and Hermiticity imposes the following conditions

µ† = µ, λab,cd = λ∗ba,dc, (1.26)

and vacuum minimization conditions lead to the following constraints,

∑
a

[
µab +

1

2

∑
cd

λab,cdv
∗
cvd

]
vb = 0. (1.27)

With now the definitions given for the kinetic, Yukawa and potential interactions, we

can identify the following transformations that leaves the fermion and scalar kinetic

interactions invariant,

• Flavor symmetries [101, 59]

U(3)QL ⊗ U(3)UR ⊗ U(3)DR ⊗ U(3)LL ⊗ U(3)LR (1.28)

which leaves fermionic gauge-kinetic terms in Eq. 1.23 invariant. Explicitly,

they are

U ′R = D(UR)UR, D′R = D(DR)DR, Q′L = D(QL)QL,

e′R = D(eR)eR, E ′L = D(EL)EL. (1.29)
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• Higgs basis transformation: Φ′a =
∑2

b=1 UabΦb which leaves Higgs gauge-kinetic

terms invariant.

To make sure gauge-kinetic term does not change we assume all transformations above

are space time independent. Above transformations are called basis transformations.

The model parameters in the new basis will have a different form but they are related

with the original parameters through

Y U ′
a = D(QL)Y U

b D
†(UR)Uab,

Y D′
a = D(QL)Y D

b D
†(DR)U∗ab,

Y E′
a = D(EL)Y E

b D
†(eR)U∗ab, (1.30)

for Yukawa couplings and for potential parameters,

µ′ = UµU †,

Ṽ ′ = UṼ U †,

λ′ab,cd = UaeUcgU
∗
bfU

∗
dhλef,gh (1.31)

with Ṽab ≡ vav
∗
b being a tensor under Higgs basis transformation [57]. The fermion

indices associated with Y U,D,E
a and the Higgs basis indices of µ, Ṽ are implicit in above

writing.

If CP exsits, they should be independent on above choices of the basis for fermions

and for the two Higgs doublets. Therefore they should exist through quantities which

are invariant under above transoformations. The procedure of constructing such

invariants is first construct invariants under fermion family transformations. The

resulting quantites are tensors under Higgs basis transformations which needs to be

combined in all possible ways to construct further Higgs basis invariants.
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1.2.2.2 Fermion Family Invariants and Higgs Basis Tensor

Now we write down the quantites which are invairant under fermion family tran-

sofrmations but are tensors under Higgs basis transformation with the definition

Y Da = Y D∗
a , Y Ea = Y E∗

a to make them have the same properties properties under

Higgs basis transformtions

TUab = tr(Y U
a Y

U†
b ), TDab = tr(Y Da Y

D†
b ), T Eab = tr(Y Ea Y

E†
b ), (1.32)

where ‘tr” acts on fermion family indices making TU,D,Eab invariant under the corre-

sponding transformations while the subscripts “a,b” signify that they are still tensors

under Higgs basis transformations,

TU ′ = UTUU †, TD′ = UTDU †, T E ′ = UT EU †. (1.33)

Now we can combine TU,D,E , µ, Ṽ , λ to make invariants also under Higgs basis trans-

formations.

One thing to point out is that, aside from these basis transformations, there

could also be rephasing of left and right handed quark fields equally to eliminate the

unphysical phases in CKM matrix. But these could not be incorporated in above

transformations because they act differently on upper and lower component of QL.

1.2.2.3 CP Invariant Yukawa Sector

The invariants that is nontrivial, simplest and involve Yukawa matrices are [57]

Ja = Im tr(Ṽ µTD), (1.34)

Jb = Im tr(Ṽ µTU), (1.35)

JE = Im tr(Ṽ µT E), (1.36)
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while quantities like Im tr(AnBm) vanish for Hermitian A and B. Other kinds of

invariants are at higher orders of Ṽ , T, µ.

1.2.2.4 Explicit CPV in Potential

Theorem 1 of Ref. [139] states that the Higgs potential is explicitly CP conserving

if and only if a basis exists in which all potential parameters are real. Otherwise,

CP is explicitly violated. Theorem 2 [139] states that the necessary and sufficient

conditions for explicitly CP-conserving 2HDM scalar potential is the simultaneous

vanishing of the imaginary part of the four I-invariants (The name has been changed

according the conventions here.),

Iµ3λ = Im(λ(1)
ac λ

(1)
eb λbecdµda), (1.37)

I2µ2λ = Im(µabµcdλbadfλ
(1)
fc ), (1.38)

I6λ = Im(λabcdλ
(1)
bf λ

(1)
dh λfajkλkjmnλnmhc), (1.39)

I3µ3λ = Im(λacbdλcedgλehfqµgaµhbµqf ), (1.40)

where λ
(1)
ad =

∑
b,c δbcλab,cd.

1.2.2.5 Spontaneous CPV from Complex Vacuum

The necessary and sufficient condition for the absence of spontaneous CPV from

a complex Higgs vev was stated in Theorem 3 and Theorem 4 in Ref. [139] and

corresponds to the vanishing of the I-invariants in Sec. 1.2.2.4 also the vanishing of

the following three invariants.

J1 = −2v−4Ṽdaµabλ
(1)
bd , (1.41)

J2 = 4v−8ṼabṼdcµbeµcfλeafd, (1.42)

J3 = v−4ṼabṼdcλ
(1)
be λ

(1)
cf λeafd, (1.43)
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or using the minimization conditions in Eq. 1.27,

J1 = v−4ṼdaṼfeλ
(1)
bd λabef , (1.44)

J2 = v−8ṼabṼdcṼhgṼrpλbeghλcfprλeafd, (1.45)

J1,3 are also defined in Ref. [57] but with a different form,

J1 = Im(v∗i v
∗
jµiαµjβλαk,βlvkvl), (1.46)

J3 = Im(v∗i µijλjk,klvl), (1.47)

we need to find the relation between these two sets of J1,2.

For general 2HDM potential,

J1 =
1

4
v8Im(λ̄2

6λ̄
∗
5), (1.48)

J3 = −1

2
v4Im(λ̄6λ̄

∗
7), (1.49)

where relations from minization conditions of potential

µ̄11 = −1

2
λ̄1v

2, µ̄12 =
1

2
λ̄6v

2, (1.50)

were used.

Note that above invariants are all non-zero for the most general type 2HDM

with no restricted form and assumptions of the reality of its parameters. In each

specific model of 2HDM, generally more simpler forms of the model will be defined

and assumptions made to make most parameters real and in such cases, many of the

above invariants will vanish.
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1.3 Electroweak Phase Transition

Sometime in the early universe at T ≈ 100GeV, there should be a phase transition

from the electroweak symmetric phase to the broken phase from which all the par-

ticles in the SM obtain their mass. This EWPT provides one of the three Sakharov

conditions that is the out-of-equilibrium condition for baryon asymmetry generation.

The phase transition starts through formulation of broken phase bubbles in the envi-

ronment of the symmetric phase. These bubbles expand and collide with each other

leaving eventually the universe in the electroweak broken phase. To ensure that the

generated baryon in the broken phase not to be wiped out, the Sphaleron process has

to be suppressed in the broken phase. This requires the EWPT to be strongly first

order and poses strong constraints on the potential.

In this section, a brief introduction of various concepts in this picture is discussed

including a discussion of the finite temperature effective potential, an illustration of

the dynamics of the bubble generation for calculating the nucleation temperature,

nucleation rate, bubble wall profiles. Also the vacuum transition rate, also called the

Sphaleron rate is reviewed briefly.

1.3.1 Electroweak Bubble Nucleation

Below the critical temperature Tc, the bubble of the true vacua will develop. The

picture of this bubble formation is similar to that in inflation. In this picture, small

bubbles are disfavored and only those larger bubble can furture expand. The minimal

energy correspond to the critical bubble which is actually a spherically symmetric

bounce solution minimizing the action

Sb(T ) =

∫
d3x

[
1

2
(~∇φb)2 + V (φb, T )

]
= 4π

∫
r2dr

[
1

2

(
dφb(r)

dr

)2

+ V (φb, T )

]
,

(1.51)

and thus can be solved from the following equation of motion,
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d2φb
dr2

+
2

r

dφb
dr
− ∂V (φb, T )

∂φb
= 0. (1.52)

with boundary conditions

dφb
dr

∣∣∣
r=0

= 0, φb

∣∣∣
r→∞

= 0. (1.53)

It is due to this type of boundary condition that its solution is called a bounce

solution(See Ref. [216] for an introduction). If it is not for the boundary condition,

we can see there are trivial solutions that satisfy the above equation, that is, when φ

are constants taking values of the φ corresponding to the extremum of the potential.

In particular the trivial solution φ = 0 satisfies the above boundary condition but it is

not the bounce solution. The bounce solution requires the value of φ at the origin to

take the value of the field standing at the lower minimum of potential energy and thus

the bounce solutions interpolate between those two minima of the potential. These

two fields are topologically distinct from each other since one can not be deformed

continuously to the other through due to the different fixed boundary values.

This equation is generally a nonlinear ordinary differential equation and numerical

solutions are needed to get a precise solution. Since this bounce solution is important

in many aspects of baryogenesis calculations, we briefly discuss how this kinds of

ordinary differential equations can be solved numerically. By a trivial operation, this

equation can be written as

d2φb
dr2

=
∂V (φb, T )

∂φb
− 2

r

dφb
dr

. (1.54)

If we make the understanding that φb is position x and r as time, then the first

term on the r.h.s represents a force from potential −V (φ) shown in Fig. 1.6 and

the second term acts like a friction force. So the particle moves at t = 0 from

the potential maximum at φ = φ2 and reach φ = φ0 at t = ∞. This forms the
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Figure 1.6: Illustrative understanding of the bounce solution of Eq. 1.52 as a particle
rolls from one maximum to the lower one at origin under potential −V (φ).

basis of the undershooting-overshooting method as used in CosmoTransitions [?] and

many other literatures. Note the relaxation method can also be used for this kind of

problems [125, 126] as discussed in the appendix.

As a specific example, we consider the following simple scalar potential taken from

Ref. [112],

V (φ) =
1

2
φ2 − 1

2
φ3 +

α

8
φ4, α > 0. (1.55)

For α < 1, this potential has two minima φ1 = 0 and φ2 = 3
2α

[1 +
√

1− 8
9
α] and

for α = 1 these two are degenerate. The bounce solution has at its origin φ = φ2

and at infinity φ = 0. As α→ 1 from below, the solution becomes more thin-walled.

This can be seen from Fig. 1.7 where the solutions are obtained numerically using

CosmoTransitions and agree very well with Fig.3 in Ref. [112]. The intercept with

the vertical axis in this figure should correspond to the lower minimum φ2 and these

values have been tabulated in Table. 1.1 in the right column to be compared with

the values direct calcualted from above formula given in the middle column. Note
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Figure 1.7: Numerically solved Bounce solutions corresponding to the topy model in
Eq. 1.55.

that for thin-walled cases the agreement is very good while for the thick wall case like

α = 0.5, there is a noticeable difference between these two values. This discrepancy

has also been observed in Fig.3 of Ref. [112].

It is worth to mention that the shape of the bounce solution looks like that of the

Kink solution in one dimension of a scalar φ4 theory [183]. They both interpolate two

different minima of the potential but the two minima in the Kink solution originates

from the degenerate vacua which have the same potential energy while the bounce

solution describes a tunneling from the higher meta-stable minimum to the more

stable lower minimum. Despite this, due the similarities of the two kinds of solutions,

the Kink solutions are also used in the literature [123] as an approximation to describe

the bubble profiles corresponding to the bounce solution which will be discussed in

the next section.

Once solved, the bounce solutions provide important input for calculations in

EWBG. These include finding out the nucleation temperature(Tnucl) as well as nucle-

ation rate, determining the bubble wall profiles which are essential for baryogenesis

calculations and they also can be used to study the gravitational waves generated
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α φ2 Fig. 1.7
0.50 5.2360679775 4.13871154238
0.90 2.41202265917 2.41187160571
0.95 2.20169260875 2.20169259815
0.96 2.16089194235 2.16089194226
0.97 2.12038807864 2.12038807864
0.98 2.08011885787 2.08011885787
0.99 2.04001539623 2.04001539623

Table 1.1: The φ that gives the lower minimum in the toy model in Eq. 1.55 for
different values of α approaching the ideal thin wall limit α = 1. The middle column
is the theoretical values directly calculated from the potential and the right column
shows the corresponding values(the left end of lines in Fig. 1.7) from numerically
solving the bounce solutions using CosmoTransitions.

from the bubble collision. In the remaining part of this section, we will discuss how

Tnucl and the nucleation rate can be determined from the bounce solutions, the more

detailed discussions of the bubble wall profiles will be discussed in the next section

while a brief discussion of the calculations of gravitation waves will be deferred to a

later section.

The nucleation rate per unit volume per unit time has the same form as the

Sphaleron rate in Eq. 1.63,

Γ

V
= I0T

4exp(−Sb

T
). (1.56)

The prefactor like the case of Sphaleron corresponds to integrating over the fluctu-

ations around the bounce solution and are fluctuation determinants which need to

be evaluated numerically. The exponential is just the action corresponding to the

stationary point: the bounce solution and can be straightforwardly calculated once

the bounce profile φb is solved. For bubbles expanding at the velocity vw, the fraction

of space that is still occupied by the symmetric phase is [189]

fsymmetric = exp

[
−
∫ t

−∞

4π

3
v3
w(t− t′)3I0T

4e−Sb/Tdt′
]
, (1.57)
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where both Sb and T are functions of t′. Accordingly the fraction of space correspond-

ing to broken phase that is occupied by nucleated bubbles is fbroken = 1− fsymmetric.

The nucleation temperature is then defined by the condition that the integral in above

exponential is 1, explicitly,

∫ t

−∞

4π

3
v3
w(t− t′)3I0T

4e−Sb/Tdt′ ≡ ∆(t) = 1. (1.58)

and the Tnucl can be determined implicitly by the following equation,

eSb(Tnucl)/T =
8πv3

wI0

(HTdS/dT )4
, (1.59)

The nucleation temperature solved this way will be changed through the release of

latent heat and more details on corrections due to this effect as well as more detailed

illustration of above discussions can be found in Ref. [189].

1.3.2 Electroweak Bubble Profiles

In this section, we will discuss more about the bounce solutions focusing on the

aspect of wall profile determination. The profile of the Electroweak bubble is an

important concept for the Baryon asymmetry calculations since this is where the CP-

violating interactions generate left-handed charge asymmetries and thus the place

where the CP-violating source terms that enter the Boltzmann equations are gener-

ated. Since there might be multiple scalar fields that couple to the gauge fields, there

will then be correspondingly several coupled set of bounce solutions and we denote

these solutions by vi(z). These solutions can be modeled roughly by the bubble-

wall width(Lw), wall velocity(vw) and ratios of the vevs such as β(z) in 2HDM and

supersymmetric theories both of which have two Higgs doublets. Lw and β can

be determined right from above calculations of the bounce solutions as was done

in MSSM [191] and in 2HDM [125, 126]. Rather than using a perturbative Higgs

effective potential, these quantites have also been calculated on the lattice [100].
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On the other hand, calculations of the wall vellcity vw are more difficult and are

missing in various studies on phenomenology in the literature. This needs a more

detailed study of the dynamics and transport properties of the Higgs condensate in

the plasma [188, 184]. Starting from the classical equation of motion of the Higgs

background fields, the dynamics of the Higgs field can be derived

�φ+ V ′T (φ) +
∑ dm2

dφ2

∫
d3p

(2π)32E
δf(p, x) = 0, (1.60)

where VT (φ) is the finite temperature effective potential, m is the field dependent

particle mass and δf ≡ f − f0 characterizes the deviation from the equilibrium dis-

tribution f0. The main difficulty lies in determining δf which should be solved from

the Boltzmann equation,

∂tf +
pz
E
∂zf + ṗz∂pzf = −C[f ], (1.61)

where the collision term on the r.h.s of above equation needs to include all possible

scattering processes affecting the distribution f . Ref. [188, 184] used a simpler three

parameter fluid ansatz for the form of f and obtained a set of coupled transport

equations for these quantities including also φ which they solved numerically. Values

of vw in the literature range from ≈ 0.01 to ≈ 0.6 [184] depending on the details of

the model. From these we note that the value of vw constitutes a large uncertainties

in the EWBG calculations on phenomenological studies.

1.3.3 Vacuum Transition Rate

At zero temperature, the transition between two topologically different Elec-

troweak vacua happens through tunnelling over the barrier between adjacent vacua.

The rate of this process is characterized by instantons [211, 46] which interpolate

these two vacua with a rate roughly equals exp(−8π2

g2 ) ≈ 10−162 [216] and thus in-

feasible for generating enough baryons. However when temperature is high enough
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to surpass the Sphaleron barrier, this transition can happen classically by hopping

over the barrier instead of tunnelling through it. The rate that this hopping process

happens can be defined classically [27, 28]

Γ = 〈δ(x)pθ(p)〉, (1.62)

and is found to be [27, 28]

Γ

V
= const

(
Esph

T

)3(
mW (T )

T

)4

T 4e−Esph/T , (1.63)

where
ESph

T
≈ A ∗ 4π

g
v(T )
T

with A corresponding the quantity plotted in Fig. 1.5 but

at finite T and taking the value of approximately 2. Note that the validity of above

expression is when above discussions of the Sphaleron is valid, that is, when the Higgs

takes a vev lower than the trivial vacuum. The temperature at which the newly

developed vacuum is dengerate with the trivial one is the critical temperature(Tc)

of the Electroweak phase transition and will be discussed in following sections. For

T < Tc, the new vacuum is lower than the trivial one and a Sphaleron solution can

be found following discussions in previous sections and the rate takes the form as in

above equation. However when T > Tc, the Higgs only has the trivial vacuum and

there is no Sphaleron solution and no energy barrier at all. The rate that the vacua

transition happens in these two different eras take different forms. Calculations above

the critical temperature is plagued by non-perturbative infrared effects and generally

lattice simulations [106, 107, 190] is needed with the rate defined by

Γ′ = lim
V→∞

lim
t→∞
〈[NCS(t)−NCS(0)]2〉

V t
. (1.64)

Note that even though there is no Sphaleron solution in this case, the above vacua

transition rate is still call the Sphaleron rate due to historical reasons. Also the rate

in this regime is much faster than that in the broken phase [107].

32



1.3.4 Sphaleron Decoupling Condition

To maintain the created baryon asymmetry within the broken phase, the Sphaleron

rate has to be suppressed in this phase. This condition is called the Sphaleron decou-

pling condition or Sphaleron bound [207, 208]. A naive way of estimating this bound

is to require that the Sphaleron rate be less than the rate of the expansion of the

universe, that is, Γsph < H. Using Eq. 1.63, this translates into a lower bound on the

Sphaleron energy at finite temperature. From previous calculations of the Sphaleron

energy, we know that the Sphaleron energy is A(T )4πv(T )
g

= A(T )( 4π
αw

)1/2v(T ) with

the prefactor A(T ) varying between roughly 1.6 and 2.7, so the bound on Sphaleron

energy can be expressed as a lower bound on the quantity v(T )/T at a temperature

below the critical temperature. Since this temperature is quite close to the critical

temperature Tc, a further estimation is generally made by setting the lower bound

as [208, 207]

vc/Tc & 1. (1.65)

Care should be taken when using this criteria due to the following reasons. Firstly

this inequality is actually not a gauge invariant condition in the sense of Ref. [195]

and readers are referred to above reference for procedures of implementing a gauge in-

variant Sphaleron decoupling condition. Secondly, this generally adopted criteria for

Sphaleron decoupling in the Electroweak broken phase is actually not universal and it

applies to only the standard Electroweak baryogenesis mechanism with a strong first

oder EWPT. This relation might be changed with modifications of the Electroweak

baryogensis mechanism. For example in a scenario with swifter expansion of the uni-

verse through a non-standard cosmology such as with the kinetic energy domination

of a scalar field over that from radiation until before the nucleosynthesis era [154, 153],

the above bounds on Sphaleron energy as well as on vc/Tc can be relaxed. A more pre-
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cise estimation of the Sphaleron decoupling condition can also be found by analyzing

in more details the dynamics of the bubbles at the phase transition [154, 189].

1.4 Transport Equations

Having discussed the basic ingredients of the EWBG mechanism, we now gather

these altogether in a set of Boltzmann equations to solve for the baryon asymmetry

governed by [174]

∂nB(z̄)

∂t
−DO2nB(z̄) = Θ(−z̄)nLΓwsnL + Θ(−z̄)R nB, (1.66)

Here nL =
∑

i n
L
i is the sum of the left-handed doublet densities in the plasma and

serves as the source of the baryon number through the weak Sphaleron interactions

whose rate Γws is discussed in previous sections. The factor D is the diffusion con-

stant and R characterizes decays of the generated baryon density through the weak

Sphaleron process. Note the Sphaleron process is switched on only in the electroweak

symmetric phase due to the assumption of a suppressed weak Sphaleron rate in the

broken phase given a strongly first order EWPT. The derivative with respect to time

can be substituted as that for z̄, ∂
∂t

= vw
∂
∂z̄

. So this equation becomes a second order

ordinary differential equations with a constant D and Γws which can readily be solved

analytically given nL with nB a constant in the broken phase,

nB(z̄)|z̄>0 =
nLΓws
Dλ+

∫ −∞
0

nL(x)e−λ−xdx, (1.67)

where λ± =
vw±
√
v2
w+4DR

2D
. The only unknown quantity here is the source nL and

requires to write down the transport equations governing all the particle densities in

the plasma. Note that these particle densities can be solved together with Eq. 1.67 as

a single set of coupled transport equations from which nB can be directly obtained.
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The way that we solve nL first and then use above equation to solve for nB is due to

the slow rate of weak Sphaleron process.

1.4.1 Closed Time Path Formalism

As mentioned briefly in the beginning of this chapter, the use of CTP formalism

leads to resonant enhancement of the CP-violating source terms as well as the relax-

ation rates. So in this section, we are going to discuss how these terms are calculated

in this framework. After all the relevant source terms and relaxation rates are calcu-

lated, the resulting coupled transport equations can be solved fully numerically or in

some cases analytically and this will be discussed later.

The non-equilibrium nature of the bubble wall expansion picture makes it inap-

propriate to use equilibrium QFT in solving the particle densities and one need to

resort to non-equilibrium QFT which can be described with the real time formalism.

Among the several formulations of the real time formalism, we follow closely here

the treatment in Ref. [200, 174] by adopting the commonly used closed time path

formalism [204, 179, 34, 35, 160, 86, 102]. In this formalism the time is integrated

in the complex t plane along the contour from −∞ to +∞(≡ C+), from +∞ back

to −∞(≡ C−) and along the negative imarinary time axis. The last segment turns

to be irrevelant and thus can be ignored. The resulting integration over time thus

takes the form of a closed path and the time ordering in the zero temperature QFT

is replaced by a path ordering along this contour. Fields defined along this contour

are labelled by a “+” sign when it is on C+ and a “-” sign if on C−. Due to this

distinction, the Greens function needs four correlators of fields and can be organized

in a 2× 2 matrix form,

G(x, y) =

 G++(x, y) −G<(x, y)

G>(x, y) G−−(x, y)

 . (1.68)
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This Greens function satisfy the Schwinger-Dyson equatons [174],

G(x, y) = G0(x, y) +

∫
d4wd4zG0(x,w)Σ(w, z)G(x, z),

G(x, y) = G0(x, y) +

∫
d4wd4zG(x,w)Σ(w, z)G(x, z)0, (1.69)

where G0 denotes the non-interacting Greens function and Σ is the full interacting

self-energy. Note both G0 and Σ are 2× 2 matrices. The transport equations can be

derived by applying the Klein-Gordon operator on the (1, 2) component of above two

equations at spacetime x and y respectively, take the difference and use the limit

(∂xµ − ∂xµ)G<(x, y)|x=y = −ijµ(x), (1.70)

which then gives for scalar fields

∂n

∂x0

+ O ·~j(x) =

∫
d3z

∫ x0

−∞
dz0[Σ>(x, z)G<(z, x)−G>(x, z)Σ<(z, x)

+G<(x, z)Σ>(z, x)− Σ<(x, z)G>(z, x)],(1.71)

and similarly for fermionic fields,

∂n

∂x0

+ O ·~j(x) = −
∫
d3z

∫ x0

−∞
dz0Tr[Σ>(x, z)S<(z, x)− S>(x, z)Σ<(z, x)

+S<(x, z)Σ>(z, x)− Σ<(x, z)S>(z, x)]. (1.72)

where S is similar Greens function defined for fermionic fields.

Outside the electroweak bubble, the Higgs field has no vev and deep inside the

bubble, the full Higgs vev at finite temperature T is developed. Across the bubble

wall, the Higgs field interpolates between these two phases smoothly. This poses a

problem for calculations since for each step closer into the electroweak bubble, the
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mass eigenstate of various fields at the initial step would no longer be the mass eigen-

state at the coordinate with increased vev. One approximation method is to start with

the fields in the unbroken phase and incorporate the effect of the increasing Higgs vev

perturbatively, known as the vev insertion approximation [200]. Of course, this ap-

proximation works well if the Higgs vev is small and slowly varying. To futher reduce

the uncertainties introduced in this treatment, one need to perform improvement like

the resummation method proposed in Ref [70, 197, 198].

The resulting equations governing the diffusion and scattering of the various par-

ticle species can generally be put into this form [88]

∂µj
µ
i = −T

2

6

∑
X

ΓX(µi + µj + · · · − µk − µl − · · · ) + S
/CP
i , (1.73)

where jµi is the charge current density for particle species “i”, ΓX describes the rate

of the scattering process

i+ j + · · · ↔ k + l + · · · (1.74)

and S
/CP
i is the CP-violating source term that generate the various charge asymmetries

in the plasma. We use the diffusion approximation ~ji ≈ −Di~Oni, then ∂µj
µ
i =

∂ni
∂t

+ ~O · ~ji = ∂ni
∂t
− DiO2ni and the diffusion constant Di can be calculated as in

Ref. [156]. Assuming local thermal equilibrium then the number density ni can be

related to the corresponding chemical potential µi approximately by a linear relation,

ni = gi

∫ +∞

−∞

d3~p

(2π)3

[
1

exp(ωp − µi)∓ 1
− 1

exp(ωp − µi)∓ 1

]
,

=
ki(mi/T )

6
T 2µi +O(

µi
T

)3, (1.75)
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where “+” and “-” is for boson and Fermion respectively, gi is the number of internal

degrees of freedom of particle species “i”, µi is its chemical potential, ω2
p = ~p2 + m2

i

with mi being the effective mass at temperature T and the statistical factor ki is

given by factor

k(mi/T ) = gi
6

π2

∫ ∞
mi/T

dx
xex

(ex ∓ 1)2

√
x2 −m2

i /T
2, (1.76)

which equals approximatley 1 for fermions and 2 for bosons in the massless limit.

So what remains to calculate is the diffusion constants for various particle species

Di, all relevant rates ΓX in the plasma and the sources S
/CP
i . The diffusion constants

can be calculated following the method in Ref. [156, 157] and the calculation of the

relaxation rates and CP-violating source terms will be discussed in the following part

of this section.

1.4.2 Relaxation and CP-violating Source terms

We consider a generic example with Lagrangian

∆L − ψ̄f [gL(x)PL + gR(x)PR]ψh + h.c., (1.77)

Then

∂µf
µ = −

∫
d3z

∫ x0

−∞

Tr
{

Σ>
f (x, z)S<f (z, x)− S>f (x, z)Σ<

f (z, x) + S<f (x, z)Σ>
f (z, x)− Σ<

f (x, z)S>f (x, z)
}
,(1.78)

where the self-energy term is given by

Σ̃f (x, y) = −[gL(x)PL + gR(x)PR]Ŝh(x, y)[g∗L(y)PL + g∗R(y)PR], (1.79)

38



Using this in Eq. 1.78, it gives

∂µf
µ =

∫
d3z

∫ x0

−∞

∑
j=A,B{

[gj(x, z) + gj(z, x)]ReTr[S>h (x, z)S<f (z, x)− S<h (x, z)S>f (z, x)]j
}

+i
{

[gj(x, z)− gj(z, x)]ImTr[S>h (x, z)S<f (z, x)− S<h (x, z)S>f (z, x)]j
}

(1.80)

where the real part of the trace corresponds to the CP-conserving contribution and

gives the relaxation rates while the imaginary part is CP-violating source term. The

subscripts “A” and “B” denotes the two different parts in taking the trace. For

example, for two generic momenta k, q with the following trace,

Tr[(/k +m1)(/q +m2)]A = 4k · q, (1.81)

Tr[(/k +m1)(/q +m2)]B = 4m1m2. (1.82)

For these two terms, the factor gj(x, y) is defined as

gA(x, y) =
1

2
[gL(x)g∗L(y) + gR(x)g∗R(y)], (1.83)

gB(x, y) =
1

2
[gL(x)g∗R(y) + gR(x)g∗L(y)]. (1.84)

The CP-conserving part will generate the terms

SCPCf (x) = Γ+
f (x)(µf + µh) + Γ−f (x)(µh − µf ), (1.85)

and correspond to relaxation terms in the transport equations. Here the relaxation

rates is given by
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Γ±f (x) =
1

2π2T
Im

∫ ∞
0

|~k|2d|~k|
ωfωh

{
hh(εh)∓ hh(ε∗f )

εh − ε∗f

[
(εhε

∗
f − ~k2)(|gL(x)|2 + |gR(x)|2) +mfmh(g

∗
L(x)gR(x) + gL(x)g∗R(x))

]
hh(εh)∓ hh(εf )

εh + εf

[
(εfεh + ~k2)(|gL(x)|2 + |gR(x)|2)−mfmh(g

∗
L(x)gR(x) + gL(x)g∗R(x))

]}
,

(1.86)

where in the drivation the following assumptions were used

gA(x, z) + gA(z, x) ≈ 2gA(x, x) = |gL(x)|2 + |gR(x)|2, (1.87)

gB(x, z) + gB(z, x) ≈ 2gB(x, x) = g∗L(x)gR(x) + gL(x)g∗R(x), (1.88)

The calculation of the CP-violating source terms S
/CP
i basically parallels above

CP-conserving calculations. However the factor gj(x, y) − gj(y, x) that appears in

Eq. 1.80 vanishes at leading order in the expansion of y near x, so we keep the next

order in this expansion and define the expansion coefficients,

gA(x, y)− gA(y, x) = iIm [gL(x)g∗L(y) + gR(x)g∗R(y)] ≡ iHA
µ (y − x)µ + · · · , (1.89)

gB(x, y)− gB(y, x) = iIm [gL(x)g∗R(y) + gR(x)g∗L(y)] ≡ iHB
µ (y − x)µ + · · · , (1.90)

where the coefficients HA
µ and HB

µ need to be evaluated in each specific model. Eva-

luting the traces and inserting the propagators in the equation and it turns out only

the time components contribute under the integral therefore only HA
0 , HB

0 appear in

the final expression. The source from the “A” term is

SCPVf,A (x) =
HA

0

π2

∫ ∞
0

|~k|2d|~k|
ωhωf

Im
{(εhε

∗
f − ~k2)[nF (εh)− nF (ε∗f )]

(εh − ε∗f )2

−(εhεf + ~k2)[nF (εh) + nF (εf )]

(εf + εh)2

}
, (1.91)
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and for the “B” term it is

SCPVf,B (x) = −H
B
0

π2
mfmh

∫ ∞
0

|~k|2d|~k|
ωhωf

Im

{
nF (εh)− nF (ε∗f )

(εh − ε∗f )2
− nF (εh) + nF (εf )

(εf + εh)2

}
,

(1.92)

Note in above expressions, we have removed the terms that are divergent under the

integral and results from the normal ordering of the fields [176].

1.4.3 Analytical Approximations

The transport equations in Eq. 1.73 is a type of coupled set of second order

ordinary differential equations which can generally be solved only numerically as

discussed in detail in the appendix. However there are certain assumptions under

which these equations can be simplified and admit analytical solutions which are

used frequently in the literature.

• If the interaction rate ΓX is sufficiently slow, then the corresponding term can

be dropped from the above equation.

• If the interaction rate ΓX is sufficiently fast, then the corresponding interaction

can reach chemical equilibrium, that is,

µi + µj + · · · − µk − µl − · · · = 0 (1.93)

The resulting solution is then actually a perturbative expansion in terms of Γ
ΓX

where

Γ is typical scales of the other interactions rates much smaller than ΓX . We can

verify the correctness of above statement more precisely by numerically investigating
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a case where such assumptions exist. For this purpose, we study a set of two coupled

transport equations regarding two scalar fields H1 and H2,

D̄HH
′′
1 − vwH ′1 − ΓA(H1 −H2)− ΓB(H1 +H2) + S̄1 = 0,

D̄HH
′′
2 − vwH ′2 − ΓA(H2 −H1)− ΓB(H1 +H2) + S̄2 = 0. (1.94)

The asymptotic behavior of H1, H2 at z → ±∞ is required to be

Hi(±∞) =
∞∑
n=0

ain
zn

with i = 1, 2,

which we can solve at leader order of the z−1 expansion,

 ΓA + ΓB ΓB − ΓA

ΓB − ΓA ΓA + ΓB


 H1

H2

 =

 S̄1

S̄2

 =

 0

0

 ⇒

 H1(±∞) = 0

H2(±∞) = 0

So H1,2(z) both approach 0 as z → ±∞. Now we study a case when Eq. 1.94 has

an analytical solution. We assume that ΓB >> ΓA > 0. Since ΓB constitutes the

largest scale in the transport equations and much greater than the remaining scale,

the transport equations written above can be expanded in power of Γ
ΓB
≡ δ with Γ

some other scale in the equations, in particular

ΓB(H1 +H2) = ΓB [δ +O(δ)] ,

that is, we solve the transport equations perturbatively in powers of δ. In particular

at lead order we have H1 = −H2. Take the difference of the two equations and use

H1 = −H2 at leading order, we obtain here a single equation for H1,

D̄HH
′′
1 − vwH ′1 − 2Γ̄AH1 +

S̄1 − S̄2

2
= 0,
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Figure 1.8: The approach to analytical solution of a set of coupled transport equa-
tions in Eq. 1.94. The left plot shows the input profiles. The right plot shows the
numerically solved solutions of H1(Dashed) and H2(Dotted) where −H1(Solid) is also
plotted. Each color corresponds a fixed r. As r getting larger, −H1 approaches more
closer to H2.

In this case, so in order to have a non-trivial solution, we need S̄1 6= S̄2. If the

relaxation coefficient Γ̄A is a constant of z a step-function, this equation can be

solved analytically and this is the generally considered analytical approximation in

the literature. However near the bubble wall, the relaxation profile is not exactly a

step-function which can be solved analytically and a more precise solution requires

again numerical solutions. To study how large Γ̄B should be such that H1 ≈ −H2,

we choose different ratios r defined by Γ̄B = rΓ̄A, numerically solve the original set of

transport equations in Eq. 1.94 and show H1, H2 and −H1 in Fig. 1.8. In this case,

NDSolve can not give stable results and we show only the profiles obtained using

RelaxEWB whose correctness has been tested in various cases in previous sections.

In this figure, the left panel shows the input profiles and the right panel shows

obtained H1(dashed), H2(dotted) and −H1(solid) for several choices of r taking values

of 3, 10, 50, 104. Here −H1 is to be compared with H2 and we expect for larger r, −H1
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should approach close to H2. This trend is indeed confirmed in the right plot. For the

choices of 104, the difference between −H1 and H2 is barely visible and corresponds

to a much more precise analytical approximation.

44



CHAPTER 2

DARK MATTER

The fact that the majority of the non-relativistic matter in our universe is at-

tributed to dark matter is now well established [209]. A conventional evidence for

the existence of DM is from galaxy rotation curves where the measured velocity of

luminous stars as a function of distance shows that this can not be accounted for by

only the luminous objects and the mass density should include substantial invisible

fractions of the dark matter. Recently Ref. [148] shows similar evidence for dark

matter from our Milky Way galaxy. More precise measurement of its abundance has

been performed by the Planck collaboration from a fit of the base ΛCDM(Lambda

Cold Dark Matter) model to correlations of temperature fluctuations in the Cosmic

Microwave Background(CMB) radiation. Their 2015 result on the cold dark matter

abundance is Ωch
2 = 0.1186± 0.0020 at 68% CL [13].

Weakly interacting massive particles(WIMP) can serve as dark matter candidates

and will be the focus here. DM is detected traditionally in two ways, direct detection

and indirect detection. Direct detection refers to the deep underground experiments

looking for events of signals from dark matter scattering off the atomic nuclei. De-

pending on the types of this interactions, the results are presented as spin-dependent

or spin-independent. Of these experiments, the LUX collaboration put currently the

strongest constraints on dark matter - nucleon scattering spin-independent cross sec-

tions [20]. Indirect detection infers the existence of dark matter through observing

dark matter annihilation products which for example can change the normal cosmic

rays of rare anti-particles like positrons. There can also be monochromatic gamma

45



rays produced through annihilatioins of dark matter through for example the γγ or

γZ final states which can provide a sharp peak on top of the continuum gamma ray

background. It was also proposed in Ref. [135] to search for indirect signals of DM

from merging galaxy clusters such as the Bullet Cluster where the spatial distribution

of DM is directly measurable through gravitational lensing which is substantially dif-

ferent from the distribution of potential astrophysical backgrounds. DM can also be

searched at colliders. For example for an effective interaction like ψ̄ψq̄q, one process

to look at is q̄q → ψ̄ψ with initial state emissions of jets and this leads to the mono-jet

plus missing transverse energy signatures. Searches of this kind of final states have

been performed at ATLAS [2, 4, 1] and CMS [77, 79, 162].

Despite the concrete evidence for DM and the ongoing efforts in various exper-

iments searching for it, the SM of particle physics unfortunately does not have a

DM candidate and we need to resort to new physics to incorporate a DM can-

didate. For example in the supersymmetric version of the SM the lightest neu-

tralino can serve as a dark matter candidate. Explaining the DM using a mecha-

nism similar to the generation of baryon asymmetry has also been studied and is

named asymmetric dark matter [159, 196, 221]. Since a generic UV-complete model

have large parameter space, it is preferred in some cases to use effective field the-

ory(EFT) [68, 47, 33, 115, 133, 84, 220, 85, 83, 199, 178, 218, 134, 121]. But at high

energies as for example at LHC, the conditions for EFT is not generally met and this

in turn motivates the use of simplified dark matter models [22, 10, 181, 143, 61, 150].

Incorporating dark matters in the SM can also be done with a bottom up approach by

opening up portals of interactions of SM particles with dark matter in a minimal way.

For example for simple extensions of the SM with an extended Higgs sector, single

or multiplets of scalars can be added. This procedure can also be done in the 2HDM

and will be studied in detail in later chapters. Due to the increasing strengent upper

limit on the DM nucleon scattering cross sections, there are also scenarios proposed
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with DM quark interactions proceed through loop level diagrams which are gener-

ally suppressed as compared with tree level contributions. I will also discuss such

scenarios in the 2HDM framework and in a model with lepton portal interactions.

In the following, the calculations of DM relic density and direct detection cross

sections are briefly reviewed. While the relic density calculations follow the stan-

dard freezing-out approach [172, 50, 132], the direct detection calculations use the

systematic non-relativistic EFT theory developed in Ref. [115, 120, 119, 24].

2.1 Relic Abundance

The main observable regarding the properties of dark matter is its inferred relic

abundance Ωch
2 from cosmological studies. The calculations of this quantity dark

matter remain standard following works in Ref. [172, 50, 132] where the freezing out

picture is used. In this picture the dark matter remain equilibrium with the SM

particles initially through the assumed portal interactions and when the rate of these

interactions fall below the expansion rate of the universe, the dark matter abundance

freezes around a constant value. Here a brief description is given following above

references. For homogeneous and isotropic universe, phase space density f(~p, ~x, t)

is only functions of energy and time whose evolution is governed by the quantum

Boltzmann equation,

L[f ] = C[f ] (2.1)

where L is the Liouville operator and C denotes the collision terms in the Boltzmann

equation. The integral over momentum space over the L[f ] gives the density change

given by

g1

∫
L[f ]

d~p1
3

(2π)3
= ṅ1 + 3Hn1, (2.2)
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where g1 is the degrees of freedom of particle density “n1”, H is the Hubble constant

and the term on the right hand side of above equation is the dilution of the number

density due to the expansion of the universe. The collision term of the Boltzmann

equation includes all the inelastic scattering processes increasing or decreasing the

DM density while the elastic scattering wont change the density. This gives

g1

∫
C[f ]

d~p1
3

(2π)3
= −〈σvmol〉(n1n2 − neq

1 n
eq
2 ), (2.3)

and then it follows that

ṅ1 + 3Hn1 = −〈σvmol〉(n1n2 − neq
1 n

eq
2 ). (2.4)

where vmol ≡ F
E1E2

= [|~v1 − ~v2|2 − |~v1 × ~v2|2]
1
2 is the Moller velocity, neq

i is the particle

equilibrium distribution and

〈σvmol〉 =

∫
σvmoldn

eq
1 dn

eq
2∫

dneq
1 dn

eq
2

=

∫
σvmolexp(−E1

T
− E2

T
)d~p1

3d~p2
3∫

exp(−E1

T
− E2

T
)d~p1

3d~p2
3 . (2.5)

After evaluating the integrals in the numerator and denominator, the result can be

written as a more compact form,

〈σvmol〉 =
2π2T

∫
σ(s− 4m2)

√
sK1(

√
s
T

)ds[
4πm2TK2(m

T
)
]2 , (2.6)

where the special functions Kn(a) is the modified Bessel function of the second kind,

Kn(a) =

√
π

(n− 1
2
)!

(
1

2
a)n
∫ ∞

1

e−ax(x2 − 1)n−
1
2dx. (2.7)

In the lab frame

〈σvlab〉lab =
2x

K2
2(x)

∫ ∞
0

dε
√
ε(2ε+ 1)K1(2x

√
ε+ 1)(σvlab). (2.8)
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Another quantity Yf = nf/s with s the entropy density of the universe is also generally

used in cosmological characterization of abundances and its relation to Ωf is

Ωf =
ρf
ρcrit

≈ 2.75× 108

h2

mf

GeV
Yf . (2.9)

2.2 Direct Detection

When dark matter scatters off nuclei, the recoil effects can be detected through

the emitting photons and this kind of detection is categorized as the direct detection

of dark matter. For example the LUX experiment can measure the number of pho-

toelectrons produced from prompt scintillation(S1) and from electroluminescence(S2)

of ionization electrons where the requirement of both S1 and S2 is to distinguish the

WIMP-induced nuclear recoil energy signal from the electromagnetic background of

electronic recoils(ERs) [20]. However there is currently no signal for dark matter

discovery from direct detection and upper limits are set on cross sections of the dark

matter nucleon spin-independent(SI) and spin-dependent(SD) cross sections. Here

SI and SD refer to whether the nature of dark matter nucleon interaction is spin-

independent or spin-dependent and these two are the traditionally considered set of

interactions. Even though more complicated spin structures was also considered in

the studies but in a ad hoc way. This picture of dark matter nucleon interactions

are far from complete for example a dark matter with non-zero electric dipole mo-

ments(EDM) or magnetic dipole moments(MDM) can have more complicated spin

interactions with nucleons. Due to the low momentum transfer in this scattering pro-

cess, an effective field theory framework has been constructed in recent years which

incorporates a full set of non-relativistic operators constructed from the Galilean in-

variant physical quantities [120],

i~q, ~v⊥, ~Sψ, ~SN (2.10)
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where ~q is the momentum transfer from nucleon to the fermionic dark matter ψ,

~v⊥ = ~v + ~q
2µN

with ~v = ~vψ,in − ~vN,in, ~Sψ and ~SN are the spins of ψ and nucleon N .

From this definition the relation ~v⊥ · ~q = 0 holds. The list of operator relevant for

spin-0 and spin-1 mediators are [24],

O1 = 1ψ1N

O2 = (v⊥)2

O3 = i~SN · (
~q

mN

× ~v⊥)

O4 = ~Sψ · ~SN

O5 = i~Sψ · (
~q

mN

× ~v⊥)

O6 = (~Sψ ·
~q

mN

)(~SN ·
~q

mN

)

O7 = ~SN · ~v⊥

O8 = ~Sψ · ~v⊥

O9 = i~Sψ · (~SN ×
~q

mN

)

O10 = i~SN ·
~q

mN

O11 = i~Sψ ·
~q

mN

(2.11)

where O1 and O4 are the SI and SD interactions usually considered in the literature.

It is found that starting from above set of non-relativistic operators, the final dark

matter nucleus cross sections can be written in a factorized form [24]

∑
k

Rk(ci)Wk(~q
2) (2.12)

where Rk depends on the coefficients of above non-relativistic operators ci and is

the WIMP response function associated with the k − th nuclear response function

Wk(~q
2). In the analysis of Ref. [24], there is a total of six nuclear response functions.

To use above framework, the following steps should be followed
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• Write down the set of quark level relativistic operators at the scale of typical

momentum transfer O(50MeV).

• Match these quark level operators to nucleon level operators of the form ψ̄ΓAψN̄ΓBN .

• Decompose the relativistically covariant nucleon level operators into non-relativistic

operators in Eq. 2.11.

• Find the WIMP response function Rk using the translation formula in Eq.38 of

Ref. [24].

• Calculate the nuclear response functions using the formulae given in Ref. [120].

• Calculate cross sections and compare with experimental limits.

In the following a study a dark matter with non-zero magnetic dipole moment

and charge radius is performed to see how to use above framework in detail. This

appears in a following project that will be discussed in more detail later. Start from

the following dark matter ψ and quark interactions,

∆Lψq =
∑
q

[
eQqbψψ̄γ

µψq̄γµq + eQqµψψ̄iσ
µνψ

qν

q2
q̄γµq + dqψψ̄ψq̄q

]
, (2.13)

where bψ and µψ are the charge radius and magnetic dipole moment of ψ, Qq is the

charge of quark species “q” and dqψ comes from a t−channel scalar mediation between

ψ and q.

To convert these into Lagrangian at nucleon level, we need a matching condi-

tion by calculating the amplitude using both quark and nucleon degrees of freedom
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where Nucleon matrix elemnts are expressed by form factors. For the scalar operator

〈N |mq q̄q|N〉, it measures the quark contribution to nucleon mass and the form factor

fNTq =
〈N |mq q̄q|N〉

mN

, q=u,d,s,c,b,t (2.14)

is generally used. For light quarks, this can be determined from quark masses and ra-

tios of Bq = 〈N |q̄q|N〉 [44]. Several groups have worked on this and we use the values

tabulated in Table.4 in Ref. [89]. On the other hand, for heavy quarks, it contributes

to DM-gluon interactions through loops and the form factor can be calculated from

QCD trace anomaly and is related to light quark form factors. The relation is

fNTq =
2

27
(1−

∑
q=u,d,s

fNTq) =
2

27
fNTg, q=c,b,t (2.15)

For the vector current, we use the following Gordon identity [136] at low momentum

transfer

〈N |
∑
q

Qq q̄γ
µq|N〉 = 〈N |N̄(QN

Kµ

2mN

− µ̃N
iσµνqν
2mN

)N |N〉, (2.16)

where the q is the momentum transfer from nucleon to DM, QN is charge, µ̃N is half

of the g factor of nucleon, that is, µ̃p ≈ 2.80, µ̃n ≈ −1.91 and Qn = 0, Qp = 1. Then

the nucleon level operators are

∆LψN = CN
h ψ̄ψN̄N + CN

γ ψ̄γ
µψN̄γµN + CN

Q ψ̄iσ
µν qν
q2
ψN̄KµN + CN

µ ψ̄iσ
µν qν
q2
ψN̄iσµνqνN,

(2.17)

with the coefficients of above operators being
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CN
γ = ebψ

∑
q

nqQq = ebψQN ,

CN
h =

6∑
q=1

dqψ
mN

mq

fNTq,

CN
Q =

eµψQN

2mN

,

CN
µ = −eµψµ̃N

2mN

. (2.18)

Here the dimension of bψ, d
q
ψ is -2 and dimension of µψ is -1. So the couplings in

Eq. 2.17 are all of dimension -2. The next step is to do a non-relativistic reduction

of the nucleon level operators, that is to calculate the amplitude for ψN → ψN

with polarized ψ and N and the results can be represented by the operators given in

Eq. 2.11. A convenient reduction table for each relativistic operator has been given

in Table.1 in Ref. [24] where the reduction assumes non-relativistic normalizations of

|ψ〉, |N〉 and we need an extra factor of 4mNmψ here. Then we have

LψN
4mψmN

= CN
γ Q1 + CN

h Q1 +
2mN

q2
CN
Q

[
− ~q2

2mψ

O1 + 2mNO5 − 2mN(
~q2

2mψ

O4 −O6)

]
+(CN

Q + CN
µ )

4

q2
(~q2O4 −m2

NO6) (2.19)

Use the expressions of CN
γ , C

N
h , C

N
Q , C

N
µ , we then have

Lψq =

[
4mψmN(ebψQN +

6∑
q=1

dqψ
mN

mq

fNTq) + eµψQN2mN

]
O1

+8eµψmψµ̃N(O4 − Õlr
6 ) + 8eµψQNmNmψQ̃

lr
5 , (2.20)

and we have defined the long-range operators with a tilde by

Q̃lr
5 =

mNO5

q2
= −mNO5

~q2
,

Q̃lr
6 = −m

2
NO6

q2
=
m2
NO6

~q2
. (2.21)
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As a check, these two long range operators are essentially the same as those defined

in Ref. [89] since the operator O5 needs a factor of mN and minus sign from different

definition of ~q to be the same as in that literature while O6 needs a factor of m2
N .

Keeping only the µψ term, we recover the result in Ref. [89].

With the non-relativistic operators and their coefficients calculated, the cross sec-

tion can be written down in a factorized form in Eq. 2.12 where the coefficients of

the various nuclear responses can be readily obtained from Eq.38 in Ref. [24] which

are functions of the coefficients of above non-relativistic operators.

Finally we can calculate the differential rate with respect to the nuclear recoil

energy ER from the differential cross section. The differential rate(R) with respect

to ER per kilogram of target can be written as an integral over the DM velocity

distribution,

dR
dER

= NT
ρψ
mψ

∫
vmin

vf(~v)
dσ

dER
d3~v, (2.22)

where NT is the number of nuclei per kilogram, f(~v) is the local dark matter velocity

distribution, ρψ is the local DM mass density(≈ 0.3GeV/cm2). Note that above

procedure of inputing the nuclear responses from the set of non-relativistic operators

have been streamlized in a public package [89] and will be used in later analysis.

It should be noted that a global analysis can be performed on the full set of Wilson

coefficients of the non-relativistic operators rather than being restricted to the SI

and SD interpretations of the experimental limits. For example the SuperCDMDS

collaboration has set limits on coefficients of these operators [203] using optimum

interval method. Global analysis in this direction has also been considered in Bayesian

and frequentist framework [72, 26].

54



CHAPTER 3

THE TWO HIGGS DOUBLET MODEL

In this chapter a brief introduction to the two Higgs doublet model(2HDM) is

given since most of the work is set in this model or its extentions. The 2HDM is a

simple extention of the SM with one more repetition of the Higgs doublet and was

originally introduced to provide sources of time reversal violation [175](See [59] for

a review). This model is extensively studied in the literature due to the following

reasons: the Higgs sector of the type II 2HDM is similar to the Higgs sector in

supersymmetric theories, the precision ρ parameter constraint is naturally satisifed

at tree level, there are new sources of CP-violation(equivalent to T-violation from

CPT conservation) which makes this model capable to explain the BAU, etc,.

Define the two Higgs doublets by Φ1 = (ϕ+
1 , (v1 + ρ1 + iη1)/

√
2)T , and Φ2 =

(ϕ+
2 , (v2 + ρ2 + iη2)/

√
2)T where v1 ≡ v cos β, v2 ≡ v sin β, v ≡ 256GeV, ρ1 and ρ2 are

two CP-even scalars, η1, η2 are two CP-odd scalars and ϕ±1 , ϕ
±
2 are two charged scalars

in the gauge eigenbasis. In total there are eight degrees of freedom and three of them

would become the unphysical Goldstones leaving five physical scalars h1, h2, h3, H
±.

The physical particle spectrum can be determined once the potential is given. The

most general renormalizable potential is [59]

VH = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c.)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + h.c.

]
, (3.1)
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where there are 6 real parameters m2
11, m2

22, λ1, λ2, λ3, λ4 and 4 complex parame-

ters m2
12, λ5, λ6, λ7 and therefore a total of 14 real parameters. The minimization

conditions will reduce three parameters. From the minimization with respect to the

direction of ρ1 and ρ2 around the vacuum, the two parameters m2
11 and m2

22 can be

solved as a function of the other parameters,

0 =
∂VH
∂ρ1

⇒ m2
11 = tβRe(m2

12)− 1

2
v2
[
λ1c

2
β + λ345s

2
β + 3λRe

6 sβcβ + λRe
7 s2

βtβ
]
,

0 =
∂VH
∂ρ2

⇒ m2
22 = cotβ Re(m2

12)− 1

2
v2
[
λ2s

2
β + λ345c

2
β + λRe

6 c2
β cotβ +3λRe

7 sβcβ
]
,

(3.2)

while minimizing in the direction of η1 and η2 can only solve one more parameter

since they lead to similar conditions

0 =
∂VH
∂η1

= vsβIm
[
v2
(
sβcβλ5 + c2

βλ6 + s2
βλ7

)
− 2m2

12

]
,

0 =
∂VH
∂η2

= vcβIm
[
v2
(
sβcβλ5 + c2

βλ6 + s2
βλ7

)
− 2m2

12

]
. (3.3)

Note this condition also follows from the requirement that Goldstones get no mass

from the potential, that is, from requiring det(M2
SC) = det(M2

SN) = 0 where M2
SC and

M2
SN are the mass matrix for charged scalars ϕ±1 , ϕ±2 and neutrl CP-odd scalars η1,

η2 respectively. From this condition we can solve for Im(m2
12) if it is non-zero,

Im(m2
12) =

1

2
v2
[
sβcβλ

Im
5 + c2

βλ
Im
6 + s2

βλ
Im
7

]
. (3.4)

Using this in MSC, the mass matrix for charged scalars is

M2
SC =

≡m2
H±︷ ︸︸ ︷{

Re(m2
12)

sβcβ
− 1

2
v2
[
λ4 + λRe

5 + λRe
6 cot β + tβλ

Re
7

]} s2
β −sβcβ

−sβcβ c2
β

 (3.5)
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and from diagonalization of it, the mass eigenstates are

G± = cβϕ
±
1 + sβϕ

±
2 ,

H± = −sβϕ±1 + cβϕ
±
2 ,

(3.6)

where the mass of the charged Higgs is mH± as defined above. For neutral scalars, it

is convenient to isolate the neutral Goldstone boson through the following definition

G0 = cβη1 + sβη2, (3.7)

A0 = −sβη1 + cβη2. (3.8)

where G0 is the Goldstone boson and A0 a CP-odd scalar which is a mass eigen-

state if there is no CPV in the potential. With this definition, the mass matrix for

(G0, ρ1, ρ2, A0) is block diagonal with G0 already a mass eigenstate. The 3× 3 mass

matrix for the remaining scalars (ρ1, ρ2, A0) is given by a real symmetric matrix m̂2

with matrix elements

m̂2
11 = tβRe(m2

12) +
1

2
v2
[
2λ1c

2
β + 3λRe

6 sβcβ − λRe
7 s2

βtβ
]
,

m̂2
22 = cotβ Re(m2

12) +
1

2
v2
[
2λ2s

2
β + 3λRe

7 sβcβ − λRe
6 c2

β cotβ
]
,

m̂2
33 =

Re(m2
12)

sβcβ
− 1

2
v2tβ

[
2λRe

5 cot β + λRe
6 cot2 β + λRe

7

]
,

m̂2
12 = −Re(m2

12) +
1

2
v2
[
λ345s2β + 3λRe

6 c2
β + 3s2

βλ
Re
7

]
,

m̂2
13 = −1

2
v2
[
sβλ

Im
5 + 2cβλ

Im
6

]
,

m̂2
23 = −1

2
v2
[
cβλ

Im
5 + 2sβλ

Im
7

]
, (3.9)

and the minimization conditions have been used in obtaining above expressions.

Clearly, when there is no CPV, that is when λ5, λ6 and λ7 are all real, A0 is a
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mass eigenstate. However generally when there is CPV, A0 would mix with ρ1 and

ρ2. This mass matrix m̂2 can be diagonalized by a rotation matrix R,

Rm̂2RT = diag(m2
h1
,m2

h2
,m2

h3
), (3.10)

and from this definition of R, the physical states h1, h2, h3 is related to the gauge

eigenstates by


h1

h2

h3

 = R


ρ1

ρ2

A0

 . (3.11)

The rotation matrix R can be parametrized by three angles γ, δ, σ,

R(γ, δ, α) = R(~e1,−γ)R(~e2,−δ)R(~e3,−α)

=


cαcδ sαcδ −sδ

sγsδcα − sαcγ sαsδsγ + cαcγ sγcδ

sαsγ + sδcαcγ sαsδcγ − sγcα cγcδ

 , (3.12)

In the absence of CPV, γ = δ = 0 and α is the traditionally defined mixing angle of

the two CP even states ρ1 and ρ2 [138],

R(0, 0, α) =


cα sα 0

−sα cα 0

0 0 1

 . (3.13)

In above definition of the rotation matrix R, h1 is the defined as a CP-even Higgs

scalar and h2 is another CP-even scalar identified as the SM Higgs boson. With h2

defined as the SM Higgs, above definition of α is the same mixing angle as traditionally
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defined angle in the literature if there is no CPV in the potential. It is useful to note

that there exist several different definitions of the rotation angles. The rotation matrix

in Ref. [164] can be obtained using the following replacement γ = αc, δ = −αb, α = α̃

but there mh1 < mh2 < mh3 is defined. So actually the identification α̃ = α + π/2

in the CP-conserving limit connect the two kinds of definitions of α but the thus

obtained heavier CP-even Higgs has a sign difference. The case in Ref. [215] can

be obtained from the identifications γ = α3, δ = −α2, α = α1. From the definition

of the rotation matrix R in Eq.3.10, the potential parameters can be expressed as

functions of the physical parameters including the three neutral scalar masses and

three rotation angles,

λ1 =
1

c2
β

[
Rm

11

v2
− ν̃s2

β +
1

2
λRe

7 s2
βtβ −

3

2
λRe

6 sβcβ

]
,

λ2 =
1

s2
β

[
Rm

22

v2
− ν̃c2

β +
1

2
λRe

6 c2
β cotβ −

3

2
λRe

7 sβcβ

]
,

λ3 =
1

s2β

[
2
Rm

12

v2
− 3λRe

6 c2
β − 3λRe

7 s2
β

]
+ ν̃ − λ4 − λRe

5 ,

λ4 = 2ν̃ − 2
m2
H±

v2
− λRe

5 − λRe
6 cot β − tβλRe

7 ,

λRe
5 = −R

m
33

v2
+ ν̃ − 1

2
λRe

6 cot β − 1

2
λRe

7 tβ,

λIm
5 =

2

sβ

[
−R

m
13

v2
− λIm

6 sβ

]
,

λIm
5 =

2

cβ

[
−R

m
23

v2
− λIm

7 sβ

]
, (3.14)

where in above equations, Rm
ij = [RTdiag(m2

h1
,m2

h2
,m2

h3
)R]ij and the dimensionless

quantity ν̃ = Rem2
12/v1v2 is defined to replace the real part of m2

12. Note the param-

eter λIm
5 can be solved in two different ways as is evident from the last two equations

and this leads to one more condition on the physical parameters and allows to reduce

one more parameter [147]. Of course when there is no CPV in the potential, these

last two equations become trivial since Rm
13 = 0 and λIm

5,6,7 = 0. After the potential

parameters are expressed as functions of physical parameters, the purely scalar in-
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teractions can be obtained straightforwardly by expanding the potential in terms of

physical fields and physical parameters.

With now the scalar spectrum determined from the potential, the Yukawa cou-

plings of these calars can be obtained from the SU(2)L×U(1)Y invariant Lagrangian

which is given generally by

LYukawa = −QL

[
2∑
j=1

ΦjY
D
j

]
DR −QL

[
2∑
j=1

Φ̃jY
U
j

]
UR − EL

[
2∑
j=1

ΦjY
E
j

]
eR + h.c..

(3.15)

Here QL, EL are three vectors in the flavor space with each element being a SU(2)L
doublet, UR, DR, ER are three vectors in the flavor space but SU(2)L singlets, Φ1,2 are

the two Higgs doublets and Φ̃j ≡ εΦj. Furthermore Y U
1,2, Y D

1,2, Y E
1,2 are 3× 3 Yukawa

matrice in flavor space. Diagonalizing the fermion fields, the above Lagrangian written
in terms of physical states is [59]

LYukawa = − UmUU −DmDD − EmEE

+

√
2

v
G+

[
URmUV DL − ULV mDDR − νLmEER

]
+ h.c.

− i

v
G0[URmUUL − ULmUUR +DLmDDR −DRmDDL

+ELmEER − ERmEEL]

+

√
2

v
H+

[
URN

†
UV DL − ULV NDDR − νLNEER

]
+ h.c.

− S1

v

[
UmUU +DmDD + EmEE

]
− S2 + iA0

v

[
URN

†
UUL +DLNDDR + ELNEER

]
+ h.c. (3.16)

where mF is the 3 × 3 diagonal mass matrix for fermions of group “F” and NF

is a 3 × 3 matrix and is completely arbitrary. In above terms, The first line is the

mass terms for quarks and leptons, the following three lines are Yukawa interactions

involving the unphysical Goldstone bosons which remain the same as that in the

SM, the fifth line is interactions involving charged Higgs H± where V is the CKM

matrix and the last two lines give Yukawa interactions of the physical scalars. Here

(S1, S2, A0) are the scalars in the Higgs basis, the two Higgs doublet basis when only
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one doublet has the full vev and the other no vev. This doublets basis can be obtained

from the generic basis doublets Φ1 and Φ2 by a rotation with angle β,

 H1

H2

 =

 cβ sβ

−sβ cβ


 Φ1

Φ2

 , (3.17)

and it follows that

H1 =

 cβϕ
+
1 + sβϕ

+
2

v+cβρ1+sβρ2+i(cβη1+sβη2)√
2

 ≡
 G+

v+S1+iG0√
2

 ,
H2 =

 −sβϕ+
1 + cβϕ

+
2

−sβρ1+cβρ2+i(−sβη1+cβη2)√
2

 ≡
 H+

S2+iA0√
2

 . (3.18)

Then (S1, S2, A0) are related to the physical scalars (h1, h2, h3) by


S1

S2

A0

 =


cβ sβ 0

−sβ cβ 0

0 0 1



=(ρ1,ρ2,A0)T︷ ︸︸ ︷
RT


h1

h2

h3

 ≡ R̃T


h1

h2

h3

 , (3.19)

and a new rotation matrix R̃ is defined for the Higgs basis scalars. For the case of

the CP-consering Higgs potential,

S1 = cβ−αH + sβ−αh, (3.20)

S2 = −sβ−αH + cβ−αh. (3.21)

For β − α ≈ π
2
, we can see from Eq. 3.16 that the couplings of the SM-like Higgs

takes its SM value. This limit is called the SM limit or the alignment limit. In many

following studies, I will take a bottom-up approach by working around this limit and
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open up the non-SM effects gradually to be consistent with all the phenomenological

observations.

Away from the alignment limit, since the matrix NF is completely arbitrary, there

will be flavor changing neutral interactions(FCNI) associated with these scalars at tree

level which are generally dangerous since in the SM these processes can only happen

at loop level and are thus greatly suppressed. These tree level FCNI can be absent at

tree level if NF is diagonal and can be obtained by allowing each UR or DR or ER to

couple to only one of Φ1,2. Fixing up type quarks to couple to Φ2, there are four ways

of assigning couplings of down type quarks and leptons to Φ1,2 with natural flavor

conservation [131, 194] at tree level and this corresponds to the four types of 2HDM

generally encountered in the literature. I follow the convention of Ref. [37, 114] to call

them type I, II, III, IV and note that type III (IV) is also called type Flipped [59] or

Y [25] (Lepton-Specific [59] or X [25]). Defining NF ≡ κFmF with the β dependent

real factor κF given in Table. 3.1 for the four types of 2HDM, we write down explicitly

the Yukawa terms related to S1, S2, A0 in a more intuitive form

Type I II III IV
κU cot β cot β cot β cot β
κD cot β −tβ −tβ cot β
κE cot β −tβ cot β −tβ

Table 3.1: The four types of 2HDM and the corresponding factor κF .

LS1,S2,A0

Yukawa = −1

v

∑
F=U,D,E

∑
a=1,3

mFhaF
[
R̃T

1a + κF R̃
T
2a − iγ5(2I3F )κF R̃

T
3a

]
F

= −1

v

∑
F=U,D,E

∑
a=1,3

mFhaF
[
sβ(cot β − κF )RT

1a + cβ(tβ + κF )RT
2a

−iγ5(2I3F )κFR
T
3a

]
F. (3.22)

The couplings in the other sectors of the 2HDM can be written down straightfor-

wardly. Especially the purely gauge interactions and fermionic kinetic terms are the
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same as in the SM, the gauge-fixing and FP ghost interactions can be obtained di-

rectly from the SM set by substituting S1 for h. The Higgs kinetic interactions and

their interactions with gauge fields are more complicated but can be written down in a

compact form using definitions of several rotation matrices as was done in Ref. [137].

One such example is the “SVV” type interactions which is given by

LSV V = g(mWW
+W− +

mZ

cW

Z2

2
)

3∑
a=1

R̃T
1aha︸ ︷︷ ︸

S1

, (3.23)

where R̃T
1a = cβR

T
1a + sβR

T
2a and the terms in the sum is actually S1. So S1 couples

fully to WW/ZZ and the strength of the h1,2,3 coupling to WW/ZZ depends on their

magnitude of component in S1. This can easily understood by going to Higgs basis

and notice that only the term corresponding to the doublet with nonvanishing vev

can generate such couplings.

63



CHAPTER 4

ELECTROWEAK BEAUTYGENESIS

Currently most of the CPV interactions in existing literature are flavor diagonal

while EWBG induced by flavor off-diagonal interactions is less studied [95, 213, 176].

The flavor off-diagonal scenario is beneficial in that it wont contribute to EDM until

at two-loop order upon properly chosing the Yukawa textures in the weak eigenbasis.

Thus it is less severely constrained by the null search result of EDM for various sys-

tems which generally impose the most stringent constraint on new sources of CPV.

Also there will generally be flavor off-diagonal interactions that provide novel signa-

tures of flavor changing neutral interactions of the Higgs boson. In particular the

lepton flavor violating Higgs decays reported by ATLAS [8] and CMS [163] might be

connected with this scenario. As the Higgs signal strength measurements in various

channels acquire higher precision in the future, this will either confirm or exclude

such scenarios. Along this line, in Ref. [176], we introduced a novel scenario that the

baryon asymmetry is generated by a flavor off-diagonal CP-violating Yukawa inter-

actions in the down quark sector. This scenario is set in the type III 2HDM with

generic Yukawa interactions in the b− s quark system and its connections with CPV

in Bs − B̄s mixing is explored. In this work, we extend our previous analysis by

doing a more detailed study of this flavor off-diagonal EWBG scenario. We found

that the mass matrix texture in the weak gauge eigenbasis is severely constrained

by the bi-diagonalization procedure and we list all possible mass and Yukawa matrix

textures thus allowed by this condition. Furthermore we made a more comprehensive

and detailed analysis of the phenomenological constraints.
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The rest of this paper is organized as follows. In Sec. 4.1, we define our conventions

on the type III 2HDM and discuss CP-violation in the Yukawa sector. We then in

Sec. 4.3 analyze phenomenological constraints on weak eigenbasis and mass eigenbaiss

parameters from experimental measurements of Higgs signal strength measurements,

Bs → Xsγ, B̄s−Bs mixing and electric dipole moments. We calculate in Sec. 4.2 the

baryon asymmetry within the framework of closed-time-path-formula. We then make

a summary.

4.1 Two Higgs Doublet Model

Since our focus is on b− s Yukawa induced CP-violation the details of the 2HDM

potential wont matter so much and we consider the softly broken Z2 symmetric and

CP-conserving Higgs potential [59, 138] which is one of the mostly studied case in

the literature. This means we take λ6 = λ7 = 0 in discussions of chapter 3. Also we

do not impose the accompanying Z2 transformation on the quark sector such that a

type III Yukawa texture can be allowed.

4.1.1 Yukawa Interactions and CP-Violation

At high temperatures when Higgs have not yet developed a nonzero vacuum ex-

pectation value(vev), the quarks and leptons which later gain their mass through

Higgs mechanism are now all massless. The transition from this electroweak symmet-

ric phase to a broken phase occurs during the electroweak phase transition(EWPT)

through bubble nucleation, expansion and coalition. The turbulent bubble boundary

provides a non-equilibrium environment where the CP-violating interactions leads to

a imbalance between left and right handed charge densities which then bias elec-

troweak sphalerons in the symmetric phase to generate a net baryon number. This

baryon number is then captured by the expanding bubble and leads to the baryon

asymmetry we observed.
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The CP-violating interactions that enter this picture add source terms to the

coupled transport equations for the various charge densities and the calculation is

generally based on the vev insertion approximation [200]. In this approximation, the

Higgs vev and its rate of change is assumed to be small and the transition to mass

eigenbasis is treated perturbatively by considering particles scattering off the Higgs

vev using the bilinear mass terms in the weak eigenbasis.

In 2HDM, the SU(2)L⊗U(1)Y invariant Yukawa interactions one can write down

for down type quarks is

L Down
Yukawa = −QL

[
Φ1Y

D
1 + Φ2Y

D
2

]
DR + h.c. (4.1)

where QL and DR denote three families of left-handed doublet and right-handed

singlet quarks and Y D
1,2 are two generic Yukawa coupling matrices. Since our focus

is the b − s system and the down quark mass is negligible, we adopt the following

Yukawa structures with complex Y D
1,2 components

MD(z̄) =
v1(z̄)Y D

1 + v2(z̄)Y D
2√

2

=
1√
2

v1(z̄)


0 0 0

0 (Y D
1 )22 (Y D

1 )23

0 (Y D
1 )32 (Y D

1 )33

+ v2(z̄)


0 0 0

0 (Y D
2 )22 (Y D

2 )23

0 (Y D
2 )32 (Y D

2 )33


 .
(4.2)

Here we have assumed a one dimensional bubble profile for simplicity and z̄ is the

spatial coordinate in the bubble wall rest frame with z̄ > 0 corresponding to broken

phase and z̄ < 0 to unbroken phase. We also assume the Yukawa structures in up-

type quark sector are chosen appropriately to reproduce the CKM matrix when Higgs

field acquires a full vev.
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Some of the phases in the mass matrix can be partly removed via appropriate

quark and Higgs field rephasing. It can be seen that the gauge kinetic term and the

potential is invariant [101] under the following transformations

U(3)QL ⊗ U(3)DR ⊗ U(2)H . (4.3)

More explicitly, we define the transformation to be

D′R = D(DR)DR, Q′L = D(QL)QL, Φ′i = UijΦj, (4.4)

and the Yukawa matrices is transofrmed to

Y D′
i = D(QL)Y D

j D
†(DR)U∗ij. (4.5)

For fields rephasing, the transformation matrices are diagonal

D(QL) = diag(· · · , eiθLa , · · · ),

D(DR) = diag(· · · , eiθRa , · · · ),

U = diag(· · · , eiθHj , · · · ), (4.6)

with here the index a running over the number of generation of quarks and i taking

values of 1 and 2 since there are two Higgs doublets. Defining the phase of Y D
i,ab to be

θYi,ab, then from Eq. 4.5, we have

θ′Yi,ab = θYi,ab + θLa − θRb − θHi︸ ︷︷ ︸
≡ξiab

, (4.7)

and we have defined ξiab to a linear combination of θLa , θ
R
a , θ

H
i for convenience. For the

specific Yukawa structure in Eq. 4.2, we have now eight θYi,ab, eight ξi,ab and a total
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of six of θYa , θ
R
a , θ

H
i . The 8 × 6 transformation matrix from θL1 , θ

L
2 , θ

R
1 , θ

R
2 , θ

H
1 , θ

H
2 to

eight ξiab has rank four, thus only four of ξiab are independent and correspondingly a

maximum of four of θYi,ab can be rendered real by rephasings. The number of ways

that such 4 phases can be removed is 58 but physical observables should only depend

on rephasing invariant representations of CP violation. In our previous study [176],

Y D
1,22, Y D

2,22, Y D
1,23 and Y D

2,23 are set to be 0. For the remaining 4 of θYi,ab, only 3 of ξiab

are independent and the last remaining phase was chosen to be θY1,32.

More generally, if we consider not just fields rephasing but generic transformations

then things become more complicated in finding invariant characterizations of CP

violation. In SM, there is only one such invariant, the Jarlskog invariant [151, 111].

Generalizations to 2HDM have been studied in the past [57] and invariants are

generally constructed by taking traces or determinants of appropriate products of

Y
U/D
i,j . In our calculations, we have expressed the CP-violating source terms in terms

of such invariants. For more generall transformations, the study of the invariant forms

of the result will be postponed to a further study.

In the broken phase when Higgs acquires the full vev (≈ 246 GeV), the diagonal-

ization of the mass matrix in Eq. 4.2 will give the Yukawa interactions in the mass

eigenbasis which has already been summarized in Eq. 3.16. The relation between Y D
1,2

and mD, ND is

mD = ADL
v1Y

D
1 + v2Y

D
2√

2
AD†R , ND = ADL

−v2Y
D

1 + v1Y
D

2√
2

AD†R , (4.8)

and ADL/R are the matrices that diagonalize the quark mass matrix. The diagonal-

ization of the mass matrix is in fact the singular value decomposition of the complex

matrix MD,
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MD = AD†L


0 0 0

0 ms(M
D
ij ) 0

0 0 mb(M
D
ij )

ADR , (4.9)

with unitary matrices ADL/R each of which can be parametrized by N2 (N = 2)real

parameters. The real diagonal mass matrix has N real parameters making the total

number of real parameters on the right hand side 2N2 + N . However the above

decomposition is invariant under the transformation

AD′L/R =


eiθ1 0 0

0 eiθ2 0

0 0 eiθ3

ADL/R (4.10)

and this can be used to eliminate N phases on r.h.s of Eq. 4.9. So we can parameterize

the r.h.s of Eq. 4.9 using 2N2 real parameters, or more explicitly, 2× N(N−1)
2

rotation

angles, N physical masses and 2× N(N+1)
2
−N = N2 phases. The original MD, being a

generic complex matrix, has 2N2 real parameters with N2 magnitudes and N2 phases.

With such parametrization and for appropriately chosen parameter space, we can find

one to one correspondence between these two sets of parameters. In fact physical

masses have known values and therefore we actually have 2N2 −N independent real

parameters. We discuss then the actual procedure of mass diagonalization and these

additional N constraints.

To actually find the map between these two parameters sets, we use the following

diagonalization

ADLMDM
†
DA

D†
L = m2

D, ADRM
†
DMDA

D†
R = m2

D, (4.11)

to find the unitary matrices ADL , A
D
R which in most general case can be parametrized

by
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AD†L =


1 0 0

0 cαL sαLe
iθL

0 −sαLe−iθL cαL




1 0 0

0 eiϕ
L
2 0

0 0 eiϕ
L
3

 , (4.12)

and use the similar definition for AD†R with L → R. The rotation angle αL/R and

phase θL/R are defined by

tanαL =
|MD

22M
D∗
32 +MD

23M
D∗
33 |

λ+ − |MD
22|2 − |MD

23|2
, θL = arg(MD

22M
D∗
32 +MD

23M
D∗
33 ),

and

tanαR =
|MD∗

22 M
D
23 +MD

33M
D∗
32 |

λ+ − |MD
22|2 − |MD

32|2
, θR = arg(MD∗

22 M
D
23 +MD

33M
D∗
32 ), (4.13)

with here λ± being those two eigenvalues of MDM
†
D or M †

DMD relevant for us,

λ± =

1

2

[
3∑

i,j=2

|MD
ij |2 ±

√
(|MD

22|2 + |MD
32|2 − |MD

23|2 − |MD
33|2)2 + 4|MD

22M
D∗
23 +MD

32M
D∗
33 |2

]
.

(4.14)

For the phases ϕ
L/R
i as mentioned earlier, we can determine ϕLi − ϕRi from Eq. 4.9

while ϕLi + ϕRi are redundant and can be rotated away. Equivalently, we can define

ϕLi to be 0 and determine ϕRi from Eq. 4.9 or vice versa. Choosing the former case,

then for each i, we set ϕLi + ϕRi = 0 and solve ϕLi − ϕRi from

mD
i e

i(ϕLi −ϕRi ) = (ADLMDA
D†
R )ii|ϕL/R1,··· ,N=0

, i = 1, · · · , N. (4.15)

When the texture of MD is chosen such that the value on the r.h.s. vanishes automat-

ically then ϕLi − ϕRi should be set to 0 so the number of parameters in the weak and
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mass eigenbasis are the same. Since diagonalized quark masses have known numerical

values ϕLi − ϕRi can be solved for each i when the corresponding quark mass mD
i is

non-zero and in addition we have one real constraint on the parameters in the weak

basis such that the diagonalized quark mass is indeed the numerical value. When for

one i, mD
i is required to be 0, we set ϕLi − ϕRi = 0 and have two more real relations

among the weak basis parameters. In our special case of two quark families, we have

three real relations among parameters from the following two (one real, one complex)

relations,

tr(MDM
†
D) =

3∑
i,j=2

|(MD)ij|2 = m2
s +m2

b ,

det(MDM
†
D) = 0 ∗ |(MD)23(MD)32 − (MD)22(MD)33|2 = 0 ∗m2

sm
2
b . (4.16)

In our following calculations, we take ms = 0 consistently and then the above two

relations become

3∑
i,j=2

|(MD)ij|2 = m2
b and (MD)23(MD)32 = (MD)22(MD)33. (4.17)

From the first relation, we can see the magnitude of all the matrix elements in MD

are set by the scale of b quark mass and the different components in the mass matrix

are competing against each other for magnitude. A larger b → s transition would

make the others to be smaller and on the contrary a larger diagonal element can push

the b→ s element to the corner.

Two more conditions follow from the second equation, that is, the equality of the

phases and magnitudes of the products of two diagonal and two off-diagonal elements.

From these, the number of zeros in MD can take the value of 0, 2 or 3. In the case of

three 3 zeros, the non-vanishing element is (MD)33 and its magnitude is mb. In this

case, there is no CP-violating source terms generated and we do not consider it. If
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allowing 2 zeros, then one should be diagonal and the other off-diagonal and we have

the following four textures


0 0 0

0 0 0

0 × ×

 ,


0 0 0

0 × ×

0 0 0

 ,


0 0 0

0 × 0

0 × 0

 ,


0 0 0

0 0 ×

0 0 ×

 , (4.18)

and the first one is what we considered in our previous work [176]. Here each non-zero

component is a linear combination of corresponding two Y D
i,ab matrix elements from

Eq. 4.2 and it can be shown 3 of the 4 Y D
i,ab can be made real by field rephasing but

the remaining complex number can be any one of them. Physical results however

do not depend on the choice of the phase convention and for convenience we always

choose the off-diagonal Y D
1,ij (i 6= j) to be the only complex parameter. Therefore we

parametrize the off-diagonal mass matrix element in the weak basis after the Higgs

acquires a full vev by

(MD)ij =
vsβ√

2
Y D

2,ij[1 + cot βsgn(Y D
2,ij)rije

iφij ], (4.19)

with here rij =
|Y D1,ij |
|Y D2,ij |

and φij is the phase of Y D
2,ij. On the other hand, due to the

constraint in Eq. 4.17, we solve the magnitude of the diagonal Y D
2,ii by

|Y D
2,ii| =

√
2(m2

b − |MD
ij |2)

v|sβ[1 + cot βriisign(Y D
1,iiY

D
2,ii)]|

, (4.20)

which leads to the requirement mb ≥ |MD
ij |.

4.2 Baryon Asymmetry Calculations

In this section, we write down the set of coupled differential equations for the

various particle densities including the effect of diffusion, particle number changing
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reactions and CP-violating source terms and solve them analytically under reasonable

assumptions to find the baryon number density.

4.2.1 CP-violating Sources

The calculation of the CP-violating source terms S
/CP
i entering above quantum

Boltzmann equation follows closely the treatement in Ref. [200, 174] and we refer the

reader to those references for more details. In our case, the CP-violating source terms

are generated by the bilinear terms in the Lagrangian, that is, the mass term for b

and s,

∆L = −s̄
[
MD

sb (z̄)PR +MD∗
bs (z̄)PL

]
b− b̄

[
MD

bs (z̄)PR +MD∗
sb (z̄)PL

]
s, (4.21)

This then generate the CP-violating source term for “bL” in Eq. 1.73,

S
/CP
bL

=
Ncvw|MD

bs (z̄)|2 ∂θ
D
bs(z̄)

∂z̄

π2

∫ ∞
0

dkk2

ωbLωsR

Im

{
(ε∗bLεsR − k2)

[
nF (εsR)− nF (ε∗bL)

]
(εsR − ε∗bL)2

+
(εbLεsR + k2) [nF (εsR) + nF (εbL)]

(εsR + εbL)2

}
,

(4.22)

where nF = 1
ex+1

is the Fermi distribution, Nc = 3, εa ≡ ωa − iΓa and ω2
a ≡ k2 + m2

a

for particle a. The source term for sR is connected with bL by S /CP
sR

= −S /CP
bL

while for

sL, bR, the corresponding source terms can be obtained from above formula by the

substitution b↔ s. In the above expression, the phase θDij (z̄) is defined by

MD
ij (z̄) =

1√
2

[
v1(z̄)Y D

1,ij + v2(z̄)Y D
2,ij

]
≡ |MD

ij |eiθ
D
ij , (4.23)

and its derivative can be written explicitly by
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y x
hC

fA fA

Figure 4.1: Vev insertion approximations, the subscript “A” and “C” denote chirali-
ties “L” or “R”.

θD′ij (z̄) =
1

2|MD
ij |2

[(|v1|′|v2| − |v1||v2|′)|Y D
1,ijY

D
2,ij| sin(θY1,ij − θY2,ij)

+
1

2

∑
ab

|vavb||Y D
a,ijY

D
b,ij|(θYa,ij + θYb,ij)

′ cos(θYa,ij − θYb,ij)], (4.24)

Here all the derivatives are taken with respect to z̄ and above phase difference and

sum can be written explicitly in a manifestly rephasing invariant way under the

transformations in Eq. 4.6,

θYa,ij − θYb,ij = Arg[
vav
∗
b

v0
av

0∗
b

] + Arg[v0
av

0∗
b Y

D
a,ijY

D∗
b,ij ],

(θYa,ij + θYb,ij)
′ = (Arg[

vavb
v0
av

0
b

])′, (4.25)

where v0
i is the corresponding vev at zero temperature. We note that fields rephasing

only change vi and Yukawa couplings by global phases which are then independent

on z̄. Also the same amount of global phase change in vi will propogate alll the way

to v0
i leaving their ratio unchanged. On the other hand, the quantity v0

av
0∗
b Y

D
a,ijY

D∗
b,ij is

one of the rephasing invariant quantities at zero temperature and is similar in form to

those found in the literature. We note that for real v1 and v2, the derivative reduces

to
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θD′ij =
1

2|MD
ij |2
|Y D

1,ij||Y D
2,ij|(v′1v2 − v′2v1) sin(ϕY D1,ij − ϕY D2,ij). (4.26)

and is just what we used previously in Ref. [176].

4.2.2 Transport Equations and Baryon Asymmetry

We neglect weak sphaleron interactions so we can forget about leptons in the

equations and this also implies global baryon number conservation. Furthermore local

baryon number is also approximately conserved since their diffusion are dominated

by strong interactions. We also assume weak interactions are in thermal equilibrium

then particles in the same isodoublet have equal chemical potential. Thus we define

Q1,2,3, U,D,C, S,B, T,H = H+
u + H0

u − H−d − H0
d corresponding to three families of

left chiral quarks, right chiral quarks and Higgs bosons in which Q1, U, C,D are only

produced in strong sphaleron interactions. We include also top Yukawa and relaxation

processes while neglect others then with all these taken into account we have

Q1 = −2U = −2C = −2D,
3∑
i=1

(Qi + Ui +Di) = 0, (4.27)

which impose constraints among the entire set of 10 charge densities Q1,2,3, U1,2,3,

D1,2,3 and H and leave us 6 which we choose to be Q2, Q3, bR, sR, tR, H.

∂µQ
µ
2 = 2Γssδss + S /CP

sL
,

∂µQ
µ
3 = Γmt(ξT − ξQ3) + Γtδt + 2Γssδss + S

/CP
bL
,

∂µT
µ = −Γmt(ξT − ξQ3)− Γtδt − Γssδss,

∂µH
µ = Γtδt − 2ΓhH,

∂µS
µ = −Γssδss + S /CP

sR
,

∂µB
µ = −Γssδss + S

/CP
bR
. (4.28)
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Here δss ≡
∑3

i=1(ξUi + ξDi − 2ξQi), δt ≡ ξT − ξH − ξQ3 , Γss = 16κ′α4
sT with κ′ ≈ 1

is the strong sphaleron rate [186]. For CP violating source terms here, we have

S /CP
sR

= −S /CP
bL

and S
/CP
bR

= −S /CP
sL

. Also as usual we ignore the bubble wall curvature

and work in the bubble wall rest frame with the coordinate z̄ = x+vwt with vw being

the wall velocity and z̄ < 0 corresponding to unbroken phase while z̄ > 0 associated

with broken phase. Then all the above number densities are functions of z̄. Assuming

also DQi = DUi = DDi ≡ D then we are able to solve the above coupled diffusion

equations analytically order by order in 1
Γss

and 1
Γt

as follows. We define δ2 = Q2 +2S

and δ3 = Q3 + T + S as well as δ = S −B and then we have

∂µδ
µ = S /CP

sR
− S /CP

bR
= S /CP

sL
− S /CP

bL
,

∂µδ
µ
2 = S /CP

sL
+ 2S /CP

sR
= S /CP

sL
− 2S

/CP
bL
,

∂µδ
µ
3 = S

/CP
bL

+ S /CP
sR

= 0, (4.29)

giving nL ≡
∑3

i=1 Qi = −1
2
δsskR. The last remaining equation is about H which we

put in the standard form

T v
2.5

kB 3 kH 4
D 6

T
DH

110
T

κ 20

vw 0.4 Lw
2
T

κ
′

1
∆β −0.05 αs 0.09 αw

1
30

θw arcsin(
√

0.23) Γws 6κα5
wT Γss 6κ

′ 8
3
α4
sT

ΓbL,sR αsT Γh 0 s 2π2g∗T 3

45

Table 4.1: Summary of Inputs

D̄HH
′′ − vwH ′ − Γ̄HH + S̄H = 0, (4.30)

where ′ means derivatives with respect to z̄, then upon neglecting δt and δss terms,

we have
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D̄H =
7DHkH + 6DkR

7kH + 6kR
,

Γ̄H =
7 (2Γh + Γmt)

7kH + 6kR
,

S̄H =
kH(3S

/CP
bL

+ 4S
/CP
bR

+ 6S /CP
sL

+ 4S /CP
sR

)

7kH + 6kR
=
kH(2S /CP

sL
− S /CP

bL
)

7kH + 6kR
. (4.31)

Another thing to notice is that the assmption DL = DR makes coefficients of δ, δ2, δ3

all vanish. Assuming ΓH to be constant of space coordinate, we have the analytical

solution for H in the unbroken phase,

H(z < 0) =

[
1

DHλH+

∫ ∞
0

SH(u)e−λ
H
+udu

]
evwz/DH , (4.32)

where λH± =
vw±
√
v2
w+4D̄H Γ̄H

2D̄H
. Now with H, δ, δ2, δ3 solved at leading order in 1

Γss
and

1
Γt

, nL being proportional to δss can be written down explicitly. Here δss can be

obtained by plugging the leading order solutions back in the diffusion equaiton and

discarding higher order terms,

δss =
∂µQ

µ
2 − S /CP

sL

2Γss
. (4.33)

and Q2 = 2[kH(3δ−δ2−4δ3)+HkR]
7kH

, then we have

δss =
1

14Γss

[
2kR
kH

(vwH
′ −DH ′′)− 3S /CP

sL
− 2S

/CP
bL

]
. (4.34)

We only need nL for z̄ < 0 and since all CP violating source terms vanish, then

nL(z̄ < 0) = −1

2
δsskR

= − k2
R

14ΓsskH
(vwH

′ −DH ′′)

= − k2
R

14ΓsskH

v2
w

DH

(1− D

DH

)H(z̄). (4.35)
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The baryon number density ρB satisfies the equation [71, 94]

∂µρB
µ = −Θ(−z̄)Γws(

15

4
ρB + 3nL), (4.36)

where the weak sphaleron rate is given by Γws = 6κα5
wT with κ ≈ 20. The solution

of ρB in the broken phase is

ρB(z̄)|z̄>0 =
3Γws
Dλρ+

∫ −∞
0

nL(y)e−λ
ρ
−ydy

=
3Γws
Dλρ+

[
− k2

R

14ΓsskH

v2
w

DH

(1− D

DH

)

] ∫ −∞
0

H(y)e−λ
−
ρ ydy . (4.37)

4.3 Phenomenological Constraints

In this section we discuss phenomenological constraints on the parameter space.

We first consider the constraints on the modified SM Higgs couplings from the Higgs

signal strength measurements and then we discuss how FCNC interactions can alter

the precisely measured B0
s − B̄0

s and Bs → Xsγ observables. Finally we consider how

searches of electric dipole moment affect the magnitude of CP violation. In all the

analysis, we have assumed that the CKM matrix can be faithfully reconstructed from

the Yukawa structures we considered by appropriately choosing the up type quark

Yukawa textures.

4.3.1 Higgs Signal Strength

In our model, the only modified SM Higgs couplings are hd̄d′ interactions. Since

we assume no CP violation from the potential, the particle spectrum is the same as

those generally considered in other CP-conserving 2HDM while the Yukawa couplings

differ

hd̄idj : −sβ−α
imdi

v
δij − cβ−α

i

v
[ND′

ij +ND′∗
ji + (ND′

ij −ND′∗
ji )γ5]. (4.38)
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Figure 4.2: Neutral(h,H,A0) and charged (H±) Higgs contributions to Bs → Xsγ by
quark level b→ sγ and b→ sg. The quarks in the loop are of up and down type for
charged and neutral Higgs respectively.

In type I,IV 2HDM, N ′D = cot βmD and in type II, III N ′D = − tan βmD. In our

case, it has non-diagonal terms. Since the couplings from ND′ does not appear in

other channels. Therefore the conclusion that the 2HDM is close to the alignment

limit β − α is only modified minorly and the deviation depends on how precisely the

various Higgs signal strenght are measured. The benefit for BAU is that cos β − α is

small and therefore the effect of a relatively large N ′D can be allowed.

4.3.2 Bs → Xsγ

For type III 2HDM, flavor changing neutral interactions(FCNI) exist in the Yukawa

matrices and therefore contribute to the transition b→ sγ and b→ sg at quark level.

The resulting rare decay Bs → Xsγ places rather strong constraint on new physics

model, so in this section, we see how this would affect our model. Experimentally,

the global average of the brahcing ratio from HFAG [23] is

Br(Bs → Xsγ)expEγ>1.6GeV = (355± 24± 9)× 10−6, (4.39)

while the SM calculations give

Br(Bs → Xsγ)SM, NNLO
Eγ>1.6GeV = (315± 23)× 10−6. (4.40)
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In 2HDM, one loop level exchange of the neutral and charged Higgs in Fig. 4.2

contributes to this branching ratio through the following two dipole operators (See

Ref. [63] for details.)

Q
L/R
7 =

e

8π2
mbs̄ασ

µν(1∓ γ5)bαFµν , Q
L/R
8 =

g

8π2
mbs̄ασ

µν(1∓ γ5)T aαβbβG
a
µν ,(4.41)

and the associated Wilson coefficients are generally denoted by C
L/R
7 and C

L/R
8 . In-

cluding SM NNLO result using the master formula [185, 65, 52, 53, 56], we can

separate new physics contributions from that of SM,

Br(Bs → Xsγ) = BrNNLO
SM + 0.00247

[
|∆CL

7 (µb)|2 + |∆CR
7 (µb)|2 − 0.706Re(∆CL

7 (µb))
]
,

(4.42)

where ∆C
L/R
7 (µb) characterizes new contributions to the Wilson coefficient Q

L/R
7 from

diagrams in Fig. 4.2 at the scale of Bs meson mass and the expressions for C
L/R
7,8 are

summarized in the following. In the running from the 2HDM scale µH to hadronic

scale, we have neglected extra operators induced by FCNC interactions and their

mixing with SM operators.

The four Wilson coefficients CL
7 , CR

7 , CL
8 and CR

8 receive contributions from di-

agrams shown in Fig. 4.2 by mediations of neutral(h, H0, A0) and charged(H±)

Higgs scalars at one-loop. For completeness, we also show the SM contribution from

one-loop exchanges of W±. We have demonstrated explicit cancellation of the gauge

parameter dependence in our calculation and the result here also agrees with Ref. [56].
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C
(0)
7L (µH) = C

(0)SM
7L (µH) + C

(0)H±

7L (µH) + C
(0)H0,h,A0

7L (µH)

=
∑
i=u,c,t

[
(N ′†DV

†)si(V N ′D)ib
3m2

i

F
(1)
7 (xH

±

i )− (N ′†DV
†)si(N

′†
U V )ib

mimb

F
(2)
7 (xH

±

i )

]

−1

6

∑
i=d,s,b

(
(N ′∗D)is(N

′
D)ib

3m2
i

[
s2
β−αF

(1)
8 (xH

0

i ) + c2
β−αF

(1)
8 (xh

0

i ) + F
(1)
8 (xA

0

i )
]

−(N ′∗D)is(N
′∗
D)bi

mimb

[
−s2

β−αF
(2)
8 (xH

0

i )− c2
β−αF

(2)
8 (xh

0

i ) + F
(2)
8 (xA

0

i )
]
) ,(4.43)

C
(0)
7R (µH) = C

(0)SM
7R (µH) + C

(0)H±

7R (µH) + C
(0)H0,h,A0

7R (µH)

=
∑
i=u,c,t

V ∗isVib

[
−1

2
A0(xWi )

]

+
∑
i=u,c,t

[
(V †N ′U)si(N

′†
U V )ib

3m2
i

F
(1)
7 (xH

±

i )− (V †N ′U)si(V N
′
D)ib

mbmi

F
(2)
7 (xH

±

i )

]

−1

6

∑
i=d,s,b

(
(N ′D)si(N

′∗
D)bi

3m2
i

[
s2
β−αF

(1)
8 (xH

0

i ) + c2
β−αF

(1)
8 (xh

0

i ) + F
(1)
8 (xA

0

i )
]

−(N ′D)si(N
′
D)ib

mimb

[
−s2

β−αF
(2)
8 (xH

0

i )− c2
β−αF

(2)
8 (xh

0

i ) + F
(2)
8 (xA

0

i )
]
) ,(4.44)

C
(0)
8L (µH) = C

(0)SM
8L (µH) + C

(0)H±

8L (µH) + C
(0)H0,h,A0

8L (µH)

=
∑
i=u,c,t

[
(N ′†DV

†)si(V N ′D)ib
3m2

i

F
(1)
8 (xH

±

i )− (N ′†DV
†)si(N

′†
U V )ib

mimb

F
(2)
8 (xH

±

i )

]

+
1

2

∑
i=d,s,b

(
(N ′∗D)is(N

′
D)ib

3m2
i

[
s2
β−αF

(1)
8 (xH

0

i ) + c2
β−αF

(1)
8 (xh

0

i ) + F
(1)
8 (xA

0

i )
]

−(N ′∗D)is(N
′∗
D)bi

mimb

[
−s2

β−αF
(2)
8 (xH

0

i )− c2
β−αF

(2)
8 (xh

0

i ) + F
(2)
8 (xA

0

i )
]
) ,(4.45)
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C
(0)
8R (µH) = C

(0)SM
8R (µH) + C

(0)H±

8R (µH) + C
(0)H0,h,A0

8R (µH)

=
∑
i=u,c,t

V ∗isVib

[
−1

2
F0(xWi )

]

+
∑
i=u,c,t

[
(V †N ′U)si(N

′†
U V )ib

3m2
i

F
(1)
8 (xH

±

i )− (V †N ′U)si(V N
′
D)ib

mbmi

F
(2)
8 (xH

±

i )

]

+
1

2

∑
i=d,s,b

(
(N ′D)si(N

′∗
D)bi

3m2
i

[
s2
β−αF

(1)
8 (xH

0

i ) + c2
β−αF

(1)
8 (xh

0

i ) + F
(1)
8 (xA

0

i )
]

−(N ′D)si(N
′
D)ib

mimb

[
−s2

β−αF
(2)
8 (xH

0

i )− c2
β−αF

(2)
8 (xh

0

i ) + F
(2)
8 (xA

0

i )
]
) (4.46)

with here xfi ≡
m2
i

m2
f
. The loop integral functions used above are defined following

conventions of the SuperIso package [180]

A0(x) =
−3x3 + 2x2

2(1− x)4
lnx+

22x3 − 153x2 + 159x− 46

36(1− x)3
,

F0(x) =
3x2

2(1− x)4
lnx+

5x3 − 9x2 + 30x− 8

12(1− x)3
,

F
(1)
7 (x) =

x(7− 5x− 8x2)

24(x− 1)3
+
x2(3x− 2)

4(x− 1)4
lnx,

F
(1)
8 (x) =

x(2 + 5x− x2)

8(x− 1)3
− 3x2

4(x− 1)4
lnx,

F
(2)
7 (x) =

x(3− 5x)

12(x− 1)2
+
x(3x− 2)

6(x− 1)3
lnx,

F
(2)
8 (x) =

x(3− x)

4(x− 1)2
− x

2(x− 1)3
lnx . (4.47)

b̄ s̄

s b

h,H,A0

b̄ s̄

s b

h,H,A0

Figure 4.3: h,H and A0 mediated tree diagram contributions to B0
s − B̄0

s at quark
level.
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4.3.3 B0
s − B̄0

s Mixing

The presence of flavor changing neutral interactions in the Lagrangian associ-

ated with neutral Higgs scalars will contribute to B0
s − B̄0

s mixing through the

treel diagrams shown in Fig. 4.3 at quark level. In SM, the mixing happens first

at one loop through W± mediated box diagrams and includes a single operator

(b̄γµPLs)(b̄γ
µPLs) + h.c. [108, 60]. While for the leading order tree level diagrams

shown in Fig. 4.2, a different set of operators contribute and the effective Hamilto-

nian after integrating out the heavy scalars h,H,A0 is

H∆B=2
eff (µH) = CSLL

1 (b̄PLs)(b̄PLs) + CSRR
1 (b̄PRs)(b̄PRs) + CLR

2 (b̄PLs)(b̄PRs) + h.c. ,(4.48)

Here we follow the conventions of Ref. [64] on classifying the operators using “SLL”,

“SRR” and “LR” and their corresponding Wilson coefficients at 2HDM scale µH is

CSLL
1 = −

∑
i

(κi∗sb)
2

m2
i v

2
, CSRR

1 = −
∑
i

(κibs)
2

m2
i v

2
, CLR

2 = −
∑
i

2κi∗sbκ
i
bs

m2
i v

2
, (4.49)

wherein the sum runs over h,H,A0 with their respective coupling matrices κi given

by

κh = −cβ−α√
2
N ′D, κH =

sβ−α√
2
N ′D, κA0 = −iN

′
D√
2
. (4.50)

Running down to the hadronic scale at Bs mass, the “SLL” operator mixes with the

tensor operator (b̄σµνPLs)(b̄σ
µνPLs), the “SRR” operator mixes with (b̄σµνPRs)(b̄σ

µνPRs)

and these two sets have the same evolution matrix since QCD preserves chirality. Fur-

thermore the “LR” scalar operator mixes with (b̄γµPLs)(b̄γ
µPRs). Including also the
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Figure 4.4: Baryon asymmetries with CP violation in Bs meson system incuded.
The blue regions are allowed regions from fit to the B0

s − B̄0
s parameters, semileptonic

charge asymmetries and CP asymmetries in hadronic Bs decays. Here we have chosen
mA0/mH = 1.002

.

values of the hardonic matrix elements, the final contributions to the B0
s − B̄0

s mass

splitting is captured in this equation [64],

∆Ms = 2|M s
12| = 2〈B0

s |H∆B=2
eff (µb)|B0

s 〉 =
2

3
mBF

2
B[2.46CLR

2 − 1.47(CSLL
1 + CSRR

1 )].

(4.51)

Physically this contribution can be probed in the following observables

∆Γs = ∆SM
s cos(φSM

s + φ∆
s ), ∆ms = ∆mSM

s |∆s|,

asSL =
∆ΓSM

∆mSM
s

sin(φSM
s + φ∆

s )

|∆s|
, 2βs = 2βSM

s − φ∆
s , (4.52)

where ∆ms and ∆Γs are the mass and width difference between the heavy and light

Bs mesons, asSL is the charge asymmetry in semileptonic Bs decays and βs character-
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izes the time-dependent CP asymmetries in the hadronic Bs decays. We thus do a

combined χ2 fit to the D/0, CDF and LHCb measurements.

Even though the generic Yukawa structures give a tree level meson mixing, there

is certain limit when this contribution vanishes. The Higgs signal strength measure-

ments pushes the 2HDM to be close to the alignment limit β − α = π/2 where the

couplings of h reduce to those in SM and does not contribute to the above Wilson

coefficients. Furthermore the contributions of H and A0 to CSLL
1 and CSRR

1 add up

to 0 when their masses are degenerate. On the other hand, CLR
2 can be made 0 if

we keep only one non-diagonal matrix element. In this special situation where all

these conditions are met, new physics contributions to mixing occurs at one loop and

since their masses are much larger than the W± mass, their contributions are much

suppressed. Therefore a large CPV effect for BAU can be quite safe for the mixing.

The final combined plots are shown in Fig. 4.4 where the various phenomeno-

logicall allowed regions are plotted as colored regions. There the dashed lines label

the obtained baryon asymmetries relative to the observed value where for the blue

lines only half of the baryon asymmetry can be obtained, the red lines give the right

amount of baryon asymmetry while the green lines give an over-abundance of the

experimentally measured value. From these analysis, we can see a quark sector CPV

can provide the mechanism for generating the observed baryon asymmetry while at

the same be compatible with the other phenomenological measurements.
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CHAPTER 5

LEPTON FLAVORED ELECTROWEAK BARYOGENESIS

In 2015, the CMS collaboration reported the result [163] of their first direct search

for the lepton flavor violating(LFV) decays of the Higgs boson in the channel h →

τµ and observed a slight excess with 2.4 standard deviation and with a best fit

branching ratio Br(h → τµ) = 0.84+0.39
−0.37% as well as an upper limit Br(h → τµ) <

1.51% at 95% CL. Several months later the ATLAS collaboration also presented

their search [8] of this channel and put an looser upper limit on this branching ratio

Br(h → τµ) < 1.85% at 95%CL. Recently ATLAS updated their result [9] and

reported a more stringent upper limit with Br(h → τµ) < 1.43% at 95%CL. This

LFV process if futrher confirmed would certainly imply new physics since the SM can

not accommodate it. On the other hand if this is indeed the portal where new physics

hides, the chances are high that there will also be CPV with this sector which could

be responsible for the generation of baryon asymmetry during the early universe. It

is also intriguing to see how this CPV that could be origin of the BAU manifests itself

phenomenologically at collider searches and in low energy probes of electric dipole

moments. We thus study a model with an extended leptonic Yukawa sector where

LFV interactions and new sources of CPV exist and study within the framework of

EWBG to see if this CPV can generate the right amount of CPV during the EWPT

and see how this CPV can be detected at collider searches and low energy probes. We

will work in a simple benchmark model, the 2HDM with generic Yukawa interactions

in the lepton sector. It can be seen from previous analysis that this kind of interactions

can be generated if the right-handed leptons couple to both Higgs doublets.
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5.1 Type L Two Higgs Doublet Model.

Since our focus is on CPV in the lepton sector, we assume the potential to be

CP-conserving with parameters chosen to generate a strongly first order electroweak

phase transition (EWPT) [110, 109]. The particle spectrum consists of two CP-even

neutral scalars (h,H), the neutral CP-odd A0, and a pair of charged scalars H±. Here

we take the lighter h as the SM-like Higgs boson. The SU(2)L×U(1)Y invariant weak

eigenbasis lepton Yukawa interaction is

L Lepton
Yukawa = −Ei

L

[
(Y E

1 )ijΦ1 + (Y E
2 )ijΦ2

]
ejR + h.c., (5.1)

where Φ1,2 are the two Higgs doublets with the same hypercharge, Ei
L is the left-

handed lepton doublet in family “i” and ejR is the right-handed lepton singlet in

family “j”. We focus now on the second and third families, neglecting the muon

mass as a first approximation and assuming the Yukawa structures are such that the

relevant up- and down- type quarks have similar couplings as those in SM.

The relevant Jarlskog-like CPV invariant that is the origin of both BAU and

non-vanishing φτ is the imaginary part of the following basis invariant [151, 57]:

JE =
1

v2µHB
12

2∑
a,b,c=1

vav
∗
bµbc

∑
ij=τ,µ

(Y E
c )ij(Y

E†
a )ji , (5.2)

where va =
√

2〈Φ0
a〉; µab is the coefficient of Φ†aΦb in the potential; and µHB

ab the

corresponding value when the Φ1,2 are transformed into the “Higgs basis” [57, 59]

in which 〈Φ0
1〉 = v/

√
2 = 174 GeV while 〈Φ0

2〉 = 0 . The value of JE is invariant

under a U(2) Higgs doublets basis transformation and lepton family transformations;

it is normalized to v2µHB
12 to obtain a dimensionless quantity. Note that JE takes on

different explicit forms in the weak eigenbasis (most convenient for BAU calculations)

and the mass eigenbasis (appropriate for phenomenological analyses).
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In the weak eigenbasis, the (µ, τ) mass matrix is

ME = (v1Y
E

1 + v2Y
E

2 )/
√

2 . (5.3)

At T = 0 it is bidiagonalized to give the physical masses, which constrains the

possible textures for ME in the weak eigenbasis. For illustration, we choose a texture

wherein only the second row elements Y E
j,τµ, Y E

j,ττ (j = 1, 2) are non-vanishing. After

all possible rephasings of the lepton and Higgs fields, only one of the four non-zero

Yukawa matrix elements can be complex, chosen here to be Y E
1,τµ. The resulting

off-diagonal mass matrix element can be parametrized as

ME
τµ =

vsβ√
2
Y E

2,τµ[1 + cot β sgn(Y E
2,τµ)rτµe

iφEτµ ] , (5.4)

with rτµ ≡ |Y E
1,τµ|/|Y E

2,τµ| and tan β = v2/v1. We further assume the non-vanishing

diagonal elements of the two Yukawa matrices to be equal and positive for sim-

plicity giving then ME
ττ = vY E

2,ττ (sβ + cβ)/
√

2. From the diagonalization condi-

tion |ME
τµ|2 + |ME

ττ |2 = m2
τ (neglecting mµ compared to mτ ), we obtain Y E

2,ττ =√
2(m2

τ − |ME
τµ|2)/|v(sβ + cβ)|, which implies that |ME

τµ| ≤ mτ . Under the foregoing

assumptions, the independent weak eigenbasis parameters are |Y E
2,τµ|, φEτµ, rτµ and β.

The other linear combination of the Yukawa matrices, (−v2Y
E

1 +v1Y
E

2 )/
√

2 gener-

ally cannot be simultaneously diagonalized and that couples to the Higgs basis neutral

scalar h2 ≡ − sin βΦ0
1 + cos βΦ0

2 that has no T = 0 vacuum expectation value (vev),

in contrast to the state h1 ≡ cos βΦ0
1 + sin βΦ0

2 whose vev is v/
√

2. The content of

the physical neutral scalars h, H, and A0 is determined by diagonalizing the scalar

potential, assumed here to be CP-conserving, with corresponding mixing angle α.

The resulting couplings to the τ lepton are given by

−1

v
τLτR[h(mτsβ−α +NE

ττcβ−α) +H(mτcβ−α −NE
ττsβ−α) + iA0N

E
ττ ] + h.c., (5.5)
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where the angle (β − α) is invariant under Higgs doublet basis transformations [138]

and the real and imaginary parts of NE
ττ are related to the corresponding parts of JE,

Re(NE
ττ ) =

v2µHB
12 ReJE − 2µHB

11 m
2
τ

2µHB
12 mτ

tanβ=1
=

v2|Y E
2,τµ|2

4mτ

(1− r2
τµ),

Im(NE
ττ ) =

v2ImJE
2mτ

=
−v2Y E

2,τµImY E
1,τµ

2mτ

. (5.6)

Since physical quantities are independent of the choice of Higgs basis and thus tan β,

we will eventually work with tan β = 1 for convenience (indicated by the second

line above) while keeping the following expressions largely general. The off-diagonal

element NE
τµ controls the strength of the Higgs CLFV couplings

−N
E
τµ

v
τLµR(cβ−αh− sβ−αH + iA0) + h.c., (5.7)

and its expression in terms of weak basis parameters is

NE
τµ = eiδ

∣∣∣∣NE
ττ

ME
ττ

ME
τµ

∣∣∣∣ , (5.8)

where δ is an arbitrary, un-physical phase undetermined from the diagonalization

procedure that can be removed by a field redefinition. Finally the charged Higgs

interactions are governed by −
√

2/vH+νiLN
E
ij e

j
R + h.c. .

5.2 Phenomenology and the BAU.

We will express the various phenomenological constraints and implications of the

BAU in terms of the effective hτ̄τ coupling [49]

−mτ

v
(Reyτ τ̄ τ + Imyτ τ̄ iγ5τ)h (5.9)
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with Reyτ ≡ κτ cosφτ and Imyτ ≡ κτ sinφτ . In the transformation from the weak

basis parameters to mass basis parameters, the condition |ME
τµ| ≤ mτ imposes a

strong constraint in the (Reyτ , Imyτ ) plane in Fig. 5.1, allowing only the interior of a

circular region plane centered at Reyτ = sβ−α+cβ−α(1+r2
τµ)/(1−r2

τµ), Imyτ = 0 with

radius 2|cβ−αrτµ/(1 − r2
τµ)|. For rτµ = 1, NE

ττ is purely imaginary and corresponds

to a vertical line at Reyτ = sβ−α. Moreover, for a given rτµ, the three mass basis

parameters are not all independent. For example, inverting Eq. (5.6), we can solve

for |Y E
2,τµ| and sinφEτµ as functions of ReNE

ττ and ImNE
ττ . Eq. (5.8) then implies that

rates for CLFV interactions like h→ τµ and τ → µγ depend on Γ(h→ ττ).

5.3 Higgs signal strength measurement.

Measurements of the Higgs signal strength in the ττ channel, µττ , constrain NE
ττ ,

which enters the h→ τ+τ− decay rate via Eq. (5.5):

Γττ =

√
2GFmh

8π
|mτsβ−α + cβ−αN

E
ττ |2. (5.10)

Experimentally, ATLAS gives µττATLAS = 1.43+0.43
−0.37 [7] while CMS favors a smaller

one µττCMS = 0.78 ± 0.27 [80]. We combine these two measurements by centralizing

the errors of ATLAS, assuming both to be Gaussian distributed, neglecting their

correlations and defining a χ2 to obtain the 95%C.L. limit. The allowed parameter

space from this constraint corresponds to annular regions between the green dashed

lines in Fig. 5.1. A future determination of this coupling that agrees with the SM value

within 10% is plotted as the inner sky blue band. The green regions that correspond

to the intersection of above bands with the two circular regions from |ME
τµ| ≤ mτ are

the µττ constraint for rτµ = 0.9(left) and rτµ = 1.1(right).
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5.4 Constraints from measurement of Br(h→ τµ).

The flavor off-diagonal NE
τµ generates h→ τµ with width

Γτµ =

√
2c2
β−αGFmh

8π
|NE

τµ|2 . (5.11)

ATLAS sets an upper limit on the corresponding branching ratio of Br(h → τµ) <

1.43% at 95C.L. [9], while CMS gives a best fit Br(h → τµ) = 0.84+0.39
−0.37% as well as

an upper limit Br(h → τµ) < 1.51% at 95% C.L. [163]. For a given value of rτµ,

Br(h → τµ) is correlated with Γ(h → ττ) via Eqs. (5.4, 5.6, 5.8). This correlation

is given by the brown arcs in in Fig. 5.1 for rτµ = 0.9 and rτµ = 1.1. The current

ATLAS upper limit 1.43% as well as two prospective future results with upper bounds

1%, 0.5% are labeled as dashed lines while the circular boundaries give zero branching

ratio. Moreover the branching ratio 1.41% is the value at the center of the left circular

region.

5.5 The rare decay τ → µγ.

The flavor off-diagonal couplings (5.7) and their charge changing counterparts also

contribute to the rare decay τ → µγ. The current experimental limit is Br(τ → µγ) <

4.4× 10−8 (90% C.L.) [29]. Theoretically, one has

Br(τ → µγ) =
τταG

2
Fm

5
τ

32π4
(|C7L|2 + |C2

7R|), (5.12)

where ττ = (290.3 ± 0.5) × 10−15s [193] is the τ lifetime and C7L/R are the Wilson

coefficients of the two dipole operators

Q
L/R
7 =

e

8π2
mτ µ̄σ

µν(1∓ γ5)τFµν , (5.13)

defined by the effective Hamiltonian −GF [C7LQ
L
7 +C7RQ

R
7 ]/
√

2[63]. They receive con-

tributions from one loop neutral and charged Higgs mediated diagrams and two loop
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Barr-Zee type diagrams [40]. Results for the latter contributions have been adapted

from the calculations in Ref. [73, 11, 146, 58]. We find that C7L is proportional to

NE ∗
τµ while C7R ∝ NE

µτ , which vanishes for our choice of Yukawa texture. The gray

region in Fig. 5.1 is consistent with this bound and the aforementioned constraints.

5.6 Electric and magnetic dipole moments.

In principle, measurements of the muon anomalous magnetic moment and upper

bounds on the electron electric dipole (EDM) moment provide additional constraints

(those for the τ are less constraining). The one loop contributions to muon dipole

come from exchanges of the neutral scalars and are proportional to the invariant

NE
τµN

E
µτ , which vanishes for our choice of Yukawa texture. The two loop Barr-Zee type

diagrams have similar topology as for the τ → µγ amplitude but their contributions

to the muon dipole moments all vanish due to the vanishing haµ̄µ, H+ν̄µµ couplings

on the lower leg of the diagrams. The two-loop electron EDM is dominated by the

exchange of h, whose coupling to the electron is proportional to ye in the alignment

limit. We find that |de/e| ≈ 1.57 × 10−25 |Imyτ |cm, implying that |Imyτ | < 5.53 in

order to be consistent with the present electron EDM upper bound[39].

5.7 Collider probes of a CP-violating hτ̄τ coupling

. Im JE represents a different source of CPV compared to the case where a CPV

hτ̄τ coupling results from mixing between CP-even and CP-odd Higgs scalars. The

latter would originate from CPV in the potential which is highly constrained by EDM

limits [147]. Studies of collider sensitivities of a CPV hτ̄τ coupling employing the ρ-

meson decay plane method and the impact parameter method show that the phase

φτ can be determined with an uncertainty of 15◦(9◦) at the LHC with an integrated

luminosity of 150fb−1(500fb−1) while ≈ 4◦ with 3 ab−1 can be achieved [49]. At Higgs
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factories, this phase may be measured with ≈ 4.4◦ accuracy with a 250 GeV run and

1 ab−1 luminosity [142].

5.8 Electroweak baryogenesis.

The first order EWPT proceeds via bubble nucleation. CPV scattering from the

bubble walls generates a net left-handed fermion density nL, whose diffusion ahead

of the advancing wall biases the electroweak sphalerons into producing a net baryon

number density, nB. The expanding bubbles capture and preserve this density if the

sphaleron processes are sufficiently quenched inside the bubbles. We compute nL

from a set of quantum transport equations, derived from the equations of motion for

Wightman functions arising in the closed time path formulation of non-equilibrium

quantum field theory by expanding in gradients of the bubble wall profile and chemical

potentials (see Ref. [174] for pedagogical discussions). As with earlier work, we will

employ the “vev insertion approximation”, which provides a reasonable estimation

of the CPV sources (see Ref. [192] for a discussion of theoretical issues associated

with the computation of these sources). Since the weak sphaleron rate Γws [55, 182,

168, 187] is much smaller than the rates for diffusion and particle number changing

reactions that govern nL [87], we first solve for this density and substitute the result

into the equation for nB.

For simplicity, we neglect bubble wall curvature [94], so that the the quantities

entering the quantum transport equations depend only on the coordinate in the bubble

wall rest frame z̄ = z + vwt with vw being the wall velocity, z̄ > 0 corresponding to

broken phase and z̄ < 0 for unbroken phase. Since non-zero densities for the first and

second generation quarks as well as for the bottom quark are generated only by strong

sphaleron processes, the following relations hold: Q1 = Q2 = −2U = −2D = −2C =

−2S = −2B, where Qk denotes the density of left-handed quarks of generation k

and U , D, etc. denote the corresponding right-handed quark densities. In addition,
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Figure 5.1: Allowed regions in the (Reyτ , Imyτ ) plane from h→ τµ(brown, ATLAS
bound Br(h → τµ) ≤ 1.43% at 95%CL), h → ττ(green, 95% CL), τ → µγ(gray,
90% CL) and BAU(pink bands, |∆β| ≤ 0.4) for β − α − π

2
= 0.05, rτµ = 0.9(then

Reyτ . 1) and rτµ = 1.1(then Reyτ & 1). The rτ = 0.9 and rτµ = 1.1 regions are
separated by the vertical dashed line at Reyτ = sin(0.05 + π

2
) ≈ 1. Several branching

ratios of h → τµ: 1.43%, 1.41%(center of left circle), 1%, 0.5% and 0% are shown
with circular dashed lines inside the brown arcs. The inner parts of circular regions
satisfy the diagonalization constraint |ME

τµ| ≤ mτ with their outer boundaries giving
vanishing τ → µγ and h → τµ. The region inside the green dashed lines is allowed
at 95%CL by Higgs signal strength µττ measurements without assuming a specific
Yukawa texture. The inner light-blue band labelled κτ = 1± 0.1 corresponds to the
allowed region for a more SM-like hτ̄τ coupling. The angles φτ = ±15%,±5% are
shown. The other parameters are fixed to be mH = 400GeV, mA0 = 600GeV and
mH± = 500GeV, vw = 0.05, LW = 2/T , Dq = 6/T and T = 100GeV.
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E1 = E2 = eR ≈ 0 since the corresponding leptonic Yukawa interactions are negligible

compared to those retained in our choice of Yukawa texture. Local baryon number

density is also approximately conserved on the time scales relevant to the reactions

that govern nL, so that
∑3

i=1(Qi + Ui + Di) = 0. The resulting transport equations

are

∂µQ
µ
3 = Γmt(ξT − ξQ3) + Γt(ξT − ξH − ξQ3)

+2Γssδss,

∂µH = Γt(ξT − ξH − ξQ3) + Γτ (ξE3 − ξτR − ξH)

−2ΓhξH ,

∂µE
µ
3 = −Γmτ (ξE3 − ξτR)− Γτ (ξE3 − ξτR − ξH)

+S /CP
τL
,

∂µτR
µ = −Γτ (ξH + ξτR − ξE3) + Γmτ (ξE3 − ξτR)

+S /CP
τR
,

∂µT
µ = −Γmt(ξT − ξQ3)− Γt(ξT − ξH − ξQ3)

−Γssδss,

∂µµ
µ
R = S /CP

µR
, (5.14)

where δss = ξT + 9ξB − 2ξQ3 , ξa = na/ka, with ka being the statistical weight [174]

associated with the number density na of species “a” and ∂µ ≈ vw
d
dz̄
−Da

∂2

dz̄2 with Da

being the diffusion constant [156] from the diffusion approximation. The CPV source

terms are

S /CP
τL

= −S /CP
µR

=
v2(z̄)vw

dβ(z̄)
dz̄

ImJE

2π2
I , (5.15)

where I is a momentum-space integral that depends on the leptonic thermal masses

(see Ref. [176]) and dβ/dz̄ characterizes the local variation of tan β(z̄) as one moves
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across the bubble wall. Note that S /CP
τR

= 0 due to the vanishing Yukawa texture in the

first row of Y E
1,2. Furthermore Γss ≈ 16α4

sT is the strong sphaleron rate [130]; Γmt is

the two body top relaxation rate [174]; and Γt/τ is the t/τ Yukawa induced three body

rate [92]. After solving for the densities in Eqs. (5.14), we obtain nL =
∑

i(Qi+Ei) [71]

and nB, which is a constant in the broken phase:

nB =
3Γws

Dqλ+

∫ −∞
0

nL(z̄)e−λ−z̄dz̄ , (5.16)

where Γws ≈ 120α5
wT [55] and λ± = (vw ±

√
v2
w + 15ΓwsDq)/(2Dq).

Assuming a fast τR diffusion [88], we solve the transport equations perturbatively

at the leading order of Γ−1
t , Γ−1

y , Γ−1
τ and Γ−1

ss . We further neglected Γmτ in the

final result as it is generally small compared with Γmt and then nB is proportional

to Imyτ with no dependence on Reyτ . Doing this would allow us to show the generic

constraint from BAU for the whole parameter space without being restricted in the

circular regions corresponding to a specific rτµ. Furthermore in the calculation of nB,

the most important uncertainty is the difference of β(z̄) in the broken and symmetric

phases(≡ ∆β) since the CPV source term and thus nB are both directly proportional

to it. Due to the so far absence of its calculations, we take its maximum magnitude

to be 0.4 and vary it to obtain the bands in Fig. 5.1 where the upper and lower bands

give opposite signs of BAU resulting from the unknown sign of ∆β.

Taking into account the previously discussed phenomenological constraints, a BAU

consistent with all observations can be obtained for |φτ | & 7◦ which can be probed

at colliders as discussed before. One immediate and important implication is that

Br(h→ τµ) . 0.5% and a larger CP-violating hτ̄τ would imply a smaller Br(h→ τµ).

Also since the BAU constrains Imyτ or φτ through the invariant,

ImJE =
2mτ ImN

E
ττ

v2
= 2

m2
τ

v2

Imyτ
cβ−α

, (5.17)
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thus, should future measurements imply that the Higgs leptonic interactions be even

more SM-like with β − α closer to π/2, the minimally required Imyτ or φτ would

become smaller. This in turn needs rτµ to be more closer to 1 to avoid shrinking of

the region |ME
τµ| ≤ mτ .

It needs to mention that there is still relatively large uncertainties with the BAU

calculations [192, 174]. This necessitate in part the need of a dedicated analysis of

the EWPT, precise determinations of the expanding bubble wall profiles [188, 184], a

resummed vev insertion approximation [70, 169, 90, 91, 118], a more comprehensive

definition of the transport equations from a more precise Yukawa texture including a

clear identification of CPV origins incorporating extra CPV invariants [57] and these

will be deferred to future works.
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CHAPTER 6

TAU FLAVORED DARK MATTER

In chapter 6, we discussed the dark matter nucleon interactions with spin struc-

tures other than the SI and SD types and studied how the direct detection signals can

be calculated. In this chapter, we are going to study a lepton flavored dark matter

scenario where such interactions can arise and study its phenomenological implica-

tions. Flavored dark matter has been studied in various contexts [74, 66, 36, 75, 202,

17, 99, 32, 122, 31, 103, 82, 19, 67, 167, 173, 18, 16, 41, 165, 170, 166, 217, 81] and

they can be used to explain the galactic center gamma ray excess [16] observed by

the Fermi-LAT [12]. Moreover a common feature for the lepton flavored dark matter

scenarios is that the dark matter nucleon interactions generally arise from loop level

diagrams and thus have suppressed effect on direct detection cross sections. Thus

these types of interactions can generally easily evade the direct detection null search

limits while still be compatible with relic density requirements. We focus here on

the tau flavored dark matter since this model would change the Yukawa interactions

of Higgs to tau leptons and might explain the the discrepancy of the Higgs signal

strengh in the ττ channel.

6.1 Model

We extend the SM with an inert scalar doublet, a singly charged scalar singlet

and a Dirac dark matter, which is stabilized by a Z2 discrete flavor symmetry, in

which dark matter and the third generation leptons are odd while all other particles
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are even. In the following we first describe scalar interactions, then go to the dark

matter interactions. The scalar potential can be written as

V = −µ2H†H + λ(H†H)2 +m2
1Φ†Φ + λ1(Φ†Φ)2 + λ2(Φ†Φ)(H†H) + λ3(Φ†H)(H†Φ)

+m2
2S

+S− + λ4(S+S−)2 + λ5(S+S−)(H†H) + λ6(S+S−)(Φ†Φ)

+
√

2ΛHT εΦS− + h.c. (6.1)

where HT ≡ (G+, (h + iG0 + v)/
√

2) is the SM Higgs, v = 246 GeV is the vacuum

expectation value (VEV), ΦT ≡ (Φ+, (ρ + iη)/
√

2) is the inert scalar doublet, S± is

the singly charged scalar singlet, Λ is certain energy scale. Assuming that the mass

term of Φ is positive, it develops no VEV. As a result, there is no mixing between h

and ρ. The masses of neutral scalars can be written as

m2
h = 2λv2 , m2

ρ = m2
η = m2

1 +
1

2
(λ2 + λ3)v2 . (6.2)

Due to the last term in Eq. (6.1), there is mixing between Φ+ and S+. The relevant

mass matrix is The corresponding mass eigenvalues are

m̂2
1,2 =

1

2

m2
1 +m2

2 +
1

2
(λ2 + λ5)v2 ±

√[
m2

1 −m2
2 +

1

2
(λ2 − λ5)v2

]2

+ 4(Λv)2

 ,(6.3)

and the relations between physical eigenstates and interaction eigenstates are Φ+ =

cθΦ̂
+ +sθŜ

+, S+ = −sθΦ̂+ +cθŜ
+, where cθ = cos θ and sθ = sin θ, with θ the rotation

angle that diagonalizes the mass matrix in Eq.4.2.

We have the following set of free parameters: mh, mρ, m̂1,2, θ, λi(i = 1, 2, 4, 5, 6),

and Λ. Not all of them are physical and their relations with the physical parameters

are
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Figure 6.1: Feynman diagrams contributing to the dark matter electromagnetic form
factors.

(A)


µ2 = 1/2m2

h

m2
1 = m̂2

1c
2
θ + m̂2

2s
2
θ − 1/2λ2v

2

m2
2 = m̂2

1s
2
θ + m̂2

2c
2
θ − 1/2λ5v

2

(B)


λ = m2

hv
−2/2

Λ = (m̂2
1 − m̂2

2)cθsθv
−1

λ3 = 2v−2[m2
ρ − (m̂2

1c
2
θ + m̂2

2s
2
θ)]

(6.4)

Notice that in the parameter set we have chosen, λ1, λ4, λ6 describe quartic interac-

tions among these extra scalars and are not so relevant for the study in this paper. λ2

and λ5 are relevant for the hγγ and hτ̄τ couplings as will be seen in the next section.

We assume that dark matter only interacts with the new scalars and third gener-

ation leptons which can be written as

−LY = κ1`
3
LΦ̃ψ + κ2ψS

+τR + h.c. , (6.5)

where `3
L is the third generation left-handed lepton doublet and ψ is the Dirac dark

matter. As a result, the dark matter can only annihilate into τ̄ τ and ν̄τντ . For

the benefits of the direct detection, one needs to calculate the electromagnetic form

factors of the dark matter, which arise at one loop level from the relevant penguin

diagrams shown in Fig. 6.1. The induced effective dark matter-photon interactions

are where bψ is the charge radius, cψ is the axial charge radius or anapole moment and

µψ is the magnetic moment. Since there is no CP violation in the dark matter sector,

the electric dipole moment term is absent. We assume the following mass hierarchy
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mτ � mψ < m̂1,2,mρ,η. Besides the typical momentum transfer of DM-Nucleon

interactions is about 50MeV, thus the momentum transfer,
√
−q2, is far smaller than

the τ mass and constitutes the smallest scale. Collecting all the contributing diagrams

and expanding in terms of q2, we obtain

µψ =
2∑
i=1

−emψζi
64π2

∫ 1

0

dx
x(1− x)

∆i

,

bψ =
2∑
i=1

eζi
32π2

∫ 1

0

dx

{
x3 − 2(1− x)3

6∆i

+
(x− 1)3(x2m2

ψ +m2
τ ) + 2(1− x)x4m2

ψ

6∆2
i

}
, (6.6)

cψ =
2∑
i=1

eζ̂i
192π2

∫ 1

0

dx

{
(−3x3 + 6x2 − 6x+ 2)xm̂2

i + (−2x4 + 6x3 − 9x2 + 7x− 2)xm2
ψ

∆2
i

}
,

where mψ is the dark matter mass, ζ1 = c2
θκ

2
1+s2

θκ
2
2, ζ2 = s2

θκ
2
1+c2

θκ
2
2, ζ̂1 = c2

θκ
2
1−s2

θκ
2
2,

ζ̂2 = s2
θκ

2
1 − c2

θκ
2
2, and ∆i = xm̂2

i + x(x− 1)m2
ψ + (1− x)m2

τ . We have ignored terms

proportional to O(m2
τ ) in Eg. (6.6). Note that the limit mψ,mτ � m̂1,2 allows us to

recover the familiar result [74, 141]

bψ =
∑
i

eζ2
i

64π2m̂2
i

(
1 +

2

3
ln
m2
τ

m̂2
i

)
, (6.7)

where mτ serves as an infrared regulator.

Similarly there are also form factors for the effective dark matter-Z boson inter-

actions. The contribution of these interactions to the dark matter-nuclei scattering

cross section is subdominant compared with those arising from electromagnetic form

factors. So we neglect these interactions in our calculation.

6.2 Phenomenology

We will study in this section phenomenologies arising from this model, including

the dark matter relic density, signatures in direct detections, the loop induced τ

lepton mass, the effective coupling of hτ̄τ as well as the Higgs to diphoton decay rate.

Finally we will discuss signatures of our model at colliders.
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Figure 6.2: Dark matter annihilation channels.

6.2.1 Relic density

We have assumed that the dark matter is a Dirac fermion and only interacts

with the third generation leptons in our model. It annihilates into τ̄ τ/ν̄τντ with the

relevant Feynman diagrams shown in Fig. 6.2. The cold dark matter was in local

thermodynamic equilibrium in the early Universe. When its interaction rate drops

below the expansion rate of the Universe, the dark matter is said to be decoupled.

The evolution of the dark matter number density n, is governed by the Boltzmann

equation [132]:

ṅ+ 3Hn = −〈σvM/oller〉(n2 − n2
EQ) , (6.8)

where H is the Hubble constant, σvM/oller is the total annihilation cross section mul-

tiplied by the M/oller velocity with vM/oller = (|v1 − v2|2 − |v1 × v2|2)1/2, brackets

denote thermal average and nEQ is the number density in thermal equilibrium. It

has been shown that 〈σvM/oller〉 = 〈σvlab〉 = 1/2[1 +K2
1(x)/K2

2(x)]〈σvcm〉 [132], where

x = mDM/T and Ki(x) is the modified Bessel functions of the i-th order. To derive

the relic density of the tau flavored dark matter, one needs to calculate the thermal

average of the total annihilation cross section. Analytically one can approximate the

thermal average 〈σv〉 with the non-relativistic expansion 〈σv〉 = a + b〈v2〉 in the lab

frame,
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〈σv〉 =
4∑
i=1

ζ2
i

(
m2
ψ

32π(m2
ψ + m̂2

i )
2

+ 〈v2〉
m2
ψ(−7m4

ψ − 18m2
ψm̂

2
i + m̂4

i )

384π(m2
ψ + m̂2

i )
4

)
+

1

4
s2

2θ(κ
2
1 − κ2

2)2

(
m2
ψ

16π(m̂2
1 +m2

ψ)(m̂2
2 +m2

ψ)
+

〈v2〉∆
192π(m̂2

1 +m2
ψ)3(m̂2

2 +m2
ψ)3

)
≡ a+ b〈v2〉, (6.9)

where

∆ = −m2
ψ

(
7m8

ψ + 16m6
ψ(m̂2

1 + m̂2
2) +m4

ψ(5m̂4
1 + 32m̂2

1m̂
2
2 + 5m̂2

2)

+8m2
ψm̂

2
1m̂

2
2(m̂2

1 + m̂2
2) −m̂4

1m̂
4
2

)
. (6.10)

Here ζ1,2 were defined below Eq. (6.6) and ζ3,4 =
√

2κ2
1. The notation m̂i, where

i = 1, 2, 3, 4, denotes the mass of Φ̂+, Ŝ+, ρ and η respectively.

The present relic density of the DM is simply given by ρDM = mDMnDM =

mDMs0Y∞ [51], where s0 is the present entropy density. The relic abundance can

be written in terms of the critical density

Ωh2 ≈ 2× 1.07× 109

Mpl

xF√
g∗

1

a+ 3b/xF
, (6.11)

where a and b were defined in Eq. (6.9), Mpl is the Planck mass, xF = mDM/TF with

TF being the freezing out temperature of the dark matter, g∗ is the degrees of freedom

at the freeze out temperature and the factor 2 on the right-hand side accounts for the

fact that dark matter in our model is a Dirac fermion.

The dark matter relic density measured by the Planck experiment is Ωh2 =

0.1199±0.0022 [14]. To see its constraints on the parameter space, we plot in Fig. 6.3

(a) contours of the dark matter relic density requiring the relic density to be within

two standard deviations of the measured central value in the κ1−κ2 plane by setting

m̂1 = 400 GeV, m̂2 = 600 GeV and mρ = mη = 700 GeV. The red, yellow, blue,
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Figure 6.3: The contours of the relic density within two standard deviations of the
measured value: In Fig. (a), we show contours in κ1 − κ2 plane with different inputs
of mixing angle θ, by setting mψ = 100 GeV, m̂1 = 400 GeV, m̂2 = 600 GeV and
mρ = mη = 700 GeV; In Fig. (b), we show contours in the κ1 −mall mediators plane
for different dark matter masses, by assuming all mediators have the same mass and
κ1 = κ2; Fig.(c) show contours in the m̂1 - mψ plane for different values of m̂2, by
setting κ1 = κ2 = 1 and mρ = mη = 700 GeV; In Fig. (d), we set κ1 = κ2 = 1 and
plot charged mediator versus neutral mediator masses for several dark matter masses.
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Figure 6.4: LUX limit as a dashed line for each solid relic density contour in the κ1,
κ2 plane for different θ. Relic density contours are within two standard deviations of
the Planck measured central value and regions outside the dashed lines are excluded
at 95% C.L. by the LUX. The other parameters are fixed to be mψ = 100 GeV,
m̂1 = 400 GeV, m̂2 = 600 GeV, mρ = mη = 700 GeV and λ2 = λ5 = 0.

green and pink contours correspond to θ = 0, π/8, π/4, 3π/8 and π/2 respectively.

One has κ1,2 ∈ [−1.5, 1.5] and κ1, κ2 can not both take small values to give rise to

a correct dark matter relic density. By assuming κ1 = κ2 and degenerate mediator

masses, we show in Fig. 6.3 (b) contours of the dark matter relic density, with the

red, yellow, brown, blue, magenta, cyan and orange colored contours corresponding

to mψ = 5 GeV, 10 GeV, 20 GeV, 50 GeV, 100 GeV, 200 GeV and 500 GeV respec-

tively. It shows that the heavier the dark matter is, the larger the annihilation cross

section will be, such that larger mediator masses or smaller couplings will be required

to get a correct relic density. This can also be seen from Fig. 6.3 (c) and (d), where

we show the correlation between the dark matter mass and the charged mediator

masses (Fig. 6.3 (c)) as well as the correlation between the neutral mediator masses

and charged mediator masses (Fig. 6.3 (d)). For the input of other parameters of

Fig. 6.3 (c) and (d) see the caption for details.
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6.2.2 Direct detection

Notice that flavored dark matter models may help to release the tension between

the observed dark matter relic density and constraints from direct detections, which

detect dark matter scattering from nuclei in underground laboratories. In our model,

dark matter couples to nucleons at loop level through induced electromagnetic form

factors of the dark matter as well as loop induced dark matter-Higgs interactions. The

effective interactions of the dark matter with nucleon take the following form [74, 141,

145]

frψ̄γ
µψN̄γµN + fhψ̄ψN̄N + f 1

mψ̄iσ
µνψ

qν
q2
N̄KµN + f 2

mψ̄iσ
αµψ

qαqβ
q2

N̄iσβµN (6.12)

with qµ being the momentum transfer from nucleon to dark matter and Kµ defined as

the summation of momenta of incoming and outgoing nucleon. The Wilson coefficients

are given by

fNr = eQNbψ , fNh = fhψ
mN

m2
hv

( ∑
q=u,d,s

fNTq +
2

9
fNTG

)
, f 1

m =
eQNµψ
2mN

, f 2
m = −eµ̃Nµψ

2mN

,

where QN is the charge of the nucleon, µψ and bψ are the magnetic moment and

charge radius of the dark matter respectively, µ̃N is the nucleon magnetic moment,

that is, µ̃p ≈ 2.80 and µ̃n ≈ −1.91. Finally fhψ is the effective dark matter-Higgs

coupling with the result given by

fhψ =
2∑

ij=1

cijmψ

32π2

∫ 1

0

dx

∫ 1−x

0

dy
1− x

(1− x− y)m̂2
i + ym̂2

j + (x2 − x)m2
ψ

, (6.13)

where c11 ≈ ζ1v(λ2c
2
θ + λ5s

2
θ+2Λsθcθ/v), c22 ≈ ζ2v[λ2s

2
θ + λ5c

2
θ−2Λsθcθ/v)], c12 =

c21 = sθcθ(κ
2
1−κ2

2)[vsθcθ(λ5−λ2) + Λc2θ] and x, y are Feynman parameters. We have

neglected the Z mediated interactions in Eq.(6.12) since it is subdominant compared

with photon mediated processes.
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Figure 6.5: LUX excluded and relic density allowed regions for dark matter with
different masses in the couplings versus mediator mass plane. LUX excluded regions
at 95%C.L. are shown in light blue while light red regions are allowed. The “µψ
only” dashed line is the LUX limit retaining only the contribution of magnetic dipole
moment while “bψ only” corresponds to including only charge radius contribution.
The green contours are relic density allowed regions within two standard deviations
of the Planck central value. In all plots we assume κ1 = κ2, equal mediator masses
and λ2 = λ5 = 0.
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The momentum dependence induced by the magnetic moment term makes it im-

possible to factorize the differential event rate into the product of the elastic cross

section and momentum integration. We therefore need to calculate the differential

rate numerically then translate the cross section into event rate in experiment. One

more complexity arises since the operators shown above go beyond the traditional

spin-independent and spin-dependent characterization of dark matter nucleus scat-

tering and therefore more nuclear responses are involved [136]. The corresponding

classification of the underlying non-relativistic operators responsible for dark matter

nucleon scattering as well as the identification and calculation of nuclear responses

for finite-sized nucleus have been performed systematically in an effective field theory

framework in Ref. [120, 24] following earlier work in Ref. [115]. This framework has

been implemented in the public code [89] together with statistical analysis for each

experiment. We therefore use this code in our analysis and refer the reader to the

above literatures for more details.

We add constraints of the dark matter direct detection to the relic density plot

in Fig. 3 (a), and the new plot is shown in Fig. 6.4. For each relic density contour,

we plot its corresponding limit from the LUX at the 95% C. L., which is shown as a

dashed line with the same color as the relic density contour. We can see that the LUX

allowed maximum magnitude of κ1,2 is 1 ∼ 2 while the corresponding relic density

allowed magnitudes are smaller and thus are allowed by the LUX. Notice that all

direct detection limit lines intersect at four points when |κ1| = |κ2| just like the case

of the relic density contours. This is because µψ and bψ are both independent on the

mixing angle θ in this scenario and the contribution arising from the anapole moment

is velocity suppressed and thus negligible.

We also show representative plots in Fig. 6.5 on the correlations between the cou-

pling strength κ1 = κ2 and the totally degenerate mediator masses, where subfigures

(a), (b), (c) and (d) correspond to taking the dark matter mass as 40 GeV, 200 GeV,
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1 TeV and 5 TeV, respectively. The other parameters are fixed to be λ2 = λ5 = 0,

and Λ = 0 as a result of the assumed degenerate charged scalars. So the effective

dark matter-Higgs coupling is exactly zero in this scenario. Generally the Higgs me-

diated contribution is suppressed by the Higgs mass squared and thus subdominant

compared with contributions of electromagnetic form factors [145]. In each plot, light

blue(red) regions are excluded (allowed) by the LUX at the 95% C. L.; the green

contours represent regions where the dark matter relic density is consistent with the

measured value within 2σ level; the red dot-dashed (blue dashed) line is the LUX

limit when considering only the contribution of charge radius (magnetic moment).

One can see from these figures the roles played by the magnetic moment and the

charge radius in the dark matter direct detections. For a relatively light dark matter,

the charge radius dominates the contribution to the direct detection; while for the

superheavy dark matter, the magnetic moment plays more important role. This is

because the charge radius operator is dimension six while the magnetic moment op-

erator is dimension five. It also shows that the dark matter should be around 50GeV

or heavier to release the tension between the measured dark matter relic density and

constraints from the LUX.

6.2.3 Higgs Couplings

Precision measurement of the Higgs couplings is one of the most important tasks in

the future Higgs factory. The Yukawa coupling between the SM Higgs and tau lepton

pairs was measured by the ATLAS and CMS collaborations, whose results are not so

consistent with the SM prediction: µττ = 1.4 ± 0.4 by the ATLAS collaboration [7]

and 0.78 ± 0.27 by the CMS collaboration [80]. In our model, the tau lepton mass

arises from the Yukawa interaction induced term, i.e., mτ
Y = yτv/

√
2, as well as loop

corrections, mloop
τ , mediated by the dark matter and two charged scalars. The mass

can be written as

109



100 200 300 400 500

100

200

300

400

500

m 1

m
2

-���

-���

�

���

���

150 200 250 300 350 400 450 500

150

200

250

300

350

400

450

500

m 1

m
2

���

���

�

���

���

Figure 6.6: Left panel: Contours of mloop
τ /mτ in the m̂1 − m̂2 plane; Right panel:

Contours of µγγ in the m̂1 − m̂2 plane, the cyan color marked region satisfy the
combined constraint given by the ATLAS and CMS.

mτ ≈ yτv/
√

2 +
cθsθκ1κ2mψ

16π2

[
m̂2

1

m̂2
1 −m2

ψ

ln

(
m̂2

1

m2
ψ

)
− m̂2

2

m̂2
2 −m2

ψ

ln

(
m̂2

2

m2
ψ

)]
, (6.14)

where we have neglected terms proportional to mτ
Y in the calculation of mloop

τ . We

show in the left panel of Fig. 6.6 contours of mloop
τ /mτ in the m̂1 − m̂2 plane by

setting κ1 = κ2 = 1, cθ = 0.6 and mψ = 100 GeV which are consistent with dark

matter constraints. It is clear that mloop
τ can be O(10%) of the total tau mass.

The branching ratio for the Higgs decaying into tau tau can be approximately

written as

BR(h→ ττ) ≈ mh

16πΓtot

∣∣∣yτ +
√

2ξτ

∣∣∣2 (6.15)

where mh is the SM Higgs mass, Γtot = 4.1× 10−3 GeV is the SM Higgs decay width

and the loop induced coupling can be written as

ξτ =
2∑

ij=1

yijmψ

16π2

∫ 1

0

dx

∫ 1−x

0

dz
1

xm2
ψ + zm̂2

i + (1− x− z)m̂2
j − z(1− x− z)m2

h

,(6.16)
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with y11 = κ1κ2cθsθ[(λ2c
2
θ + λ5s

2
θ)v + Λs2θ], y22 = −κ1κ2cθsθ[(λ2s

2
θ + λ5c

2
θ)v − Λs2θ]

and y12 = y21 = 1/2κ1κ2c2θ[sθcθv(λ5− λ2) + Λc2θ]. We plot in Fig. 6.7 the signal rate

µττ associated with Higgs measurements, relative to the SM Higgs expectation, as a

function of the dark matter mass by setting cθ = 0.5, λ2 = λ5 = 0.1, m̂1 = 400 GeV

and m̂2 = 600 GeV as well as κ1 = −κ2 = 1 for the red solid curve and κ1 = κ2 = 1

for the blue dashed curve. The dashed and dotted horizontal lines represent central

values given by the ATLAS and the CMS respectively with light blue and light yellow

bands corresponding to uncertainties at the 1σ level. It should be mentioned that µττ

can be significantly changed for some extreme scenarios and the modification can also

be tiny for other cases (small κ1,2, light dark matter and heavy degenerate charged

scalars).

Due to the existence of charged scalars, the Higgs to diphoton decay width is

slightly modified. The decay rate can be written in terms of couplings of the SM

Higgs with new charged scalars:

Γ(h→ γγ) =
GFα

2m3
h

128
√

2π3

∣∣∣∣∣−6.48 +
2∑
i=1

vcii
2ζim̂2

i

A0

(
4m̂2

i

m2
h

)∣∣∣∣∣
2

, (6.17)

where −6.48 is the contribution of the W and top loops and the second term is

the contribution of two new charged scalars with the definition of the loop integral

function A0(x) following conventions of Ref [69]

A0(x) = −x2

[
1

x
− f(x−1)

]
with f(x) ≡

 arcsin2(
√
x), for x > 1,

−1
4

(
ln 1+

√
1−x−1

1−
√

1−x−1 − iπ
)2

, for x < 1.
(6.18)

We plot in the right panel of Fig. 6.6 contours of µγγ in the m̂1 − m̂2 plane by

setting λ2 = λ5 = 0.5 and cθ = 0.8. The green dashed lines from the left to the right

correspond to µγγ = 0.8, 0.9, 1.0, 1.1, 1.2 respectively. The cyan color marked region

satisfies the current combined bound given by the ATLAS and CMS collaborations,
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Figure 6.7: Signal rate of Higgs to tau tau relative to the SM expectation as a function
of the dark matter mass.

µγγ = 1.15± 0.18, where µγγ = 1.17± 0.27 by the ATLAS [5] and µγγ = 1.14+0.26
−0.23 by

the CMS [161]. It should be mentioned that the future improved measurements of

µγγ may put more severe constraint on couplings of the Higgs to new charged scalars.

Finally, lets comment on the collider searches of this model. The collider signals

of lepton portal dark matter models are events with charged lepton pairs and missing

energy. It was showed in Ref. [17] that these models have clear signals above the SM

background in certain parameter space at the LHC. Searches for signatures of our

model at the LHC and lepton colliders such as CEPC or ILC, which are interesting

but beyond the reach of this paper, will be shown in a future study.

6.3 Concluding remarks

Lepton-flavored dark matter is interesting and appealing for many aspects. In

this paper we focused on the phenomenology of the tau-flavored Dirac dark matter

model. The electromagnetic form factors of the dark matter which are crucial for

the dark matter direct detections, were calculated in the case where there are two
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types of dark matter - third generation lepton Yukawa interactions. Our study shows

that the tension between the observed dark matter relic density and constraints of

dark matter direct detections are highly loosed. Besides, the charge radius dominates

the contributions to the dark matter direct detection for the light dark matter case,

while the magnetic moment plays more important role for heavy dark matter case.

In addition the Yukawa coupling of hτ̄τ can be significantly changed in this model,

since the one-loop induced tau mass can be O(10%) of the total mass. As a result,

the signal rate of hτ̄τ , relative to the SM expectation, measured by the LHC, can be

explained in this model. The Higgs to diphoton ratio is also slightly changed but is

still consistent with the current LHC constraint.
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CHAPTER 7

HIGGS PORTAL FERMIONIC DARK MATTER IN 2HDM

Including a dark matter can be done in a minimal way by considering an extended

Higgs sector with dark matter - Higgs portal interactions. In this case the dark matter

will annihilate into SM particles through these Higgs portal interactions. The simplest

extention of the SM Higgs sector is to add a singlet dark matter scalar through

operator αSΦ†ΦS2 [117, 38] or a fermionic dark matter through αF
Λ

Φ†Φχ̄χ [116] where

Φ is the SM Higgs doublet, S, χ are the scalar and fermionic dark matter respectively

and Λ is a mass scale for the effective interaction. The constraints in the (αS/F ,mS,F )

plane from relic dentiy and direct detection requirements are shown in Fig. 7.1 where

the allowed regions from relic density are shown between the narrow red lines while

the regions above the dashed lines are excluded by the according direct detection

limits. Among the various direct detection limits, the LUX result [20] is the most

stringent one and excluded most of the parameter space of the fermionic dark matter

case except on the SM Higgs resonance when dark matter has mass ≈ 62.5GeV. For

the scalar dark matter, aside from the resonance region, a heavier dark matter with

mass & 100GeV is still viable. In both cases, the resonant enhancement of the S

channel dark matter annihilation cross section need a much smaller αS,F and thus

lead to a direct detection cross section compatible with the null search limits. For the

fermionic extention, the exlucsion limit on the parameter space can be ameliorated

by adding parity-violating interactions [177] since the these terms contribute much

less to the direct detection cross section. To avoid including these parity-violating

interactions, one can also consider models with an extended Higgs sector such as the
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hhh : c1 = −3m2
h

hA0A0 : c2 = 2ν̃v2 −m2
h − 2m2

A

HA0A0 : c3 = 2(m2
H − ν̃v2)/t2β

hHH : c4 = 2ν̃v2 − 2m2
H −m2

h

HHH : c5 = 6(m2
H − ν̃v2)/t2β

hH+H− : c6 = 2ν̃v2 −m2
h − 2m2

H±

HH+H− : c7 = 2(m2
H − ν̃v2)/t2β

Table 7.1: Triple-Higgs Couplings in the alignment limit β − α = π/2. Feynman
rules are obtained by adding the factor i/v.

2HDM with two Higgs doublets and consider adding Higgs portal interactions of the

type
αij
Λ
χ̄χΦ†iΦj where i, j denote the two Higgs doublet indices. In this case, there

will be additional annihilation channels with purely scalar final states and this kind of

interactions do not contribute to direct detection cross section and might reduce the

stringent limit as compared with the simple SM extension. Another way of looking at

this clearly is to go to the Higgs basis with one Higgs doublet H2 taking no vev. If only

the interaction χ̄χH†2H2 is added, then it will contribute to dark matter annihilations

but not to direct detection cross section at tree level while a loop level dark matter

quark interactions are generally suppressed and can potentially lead to a viable dark

matter model.

In the following, we will study this model in detail. In Sec. ??, we will discuss the

model to fix the conventions. In the following section 7.1, the Higgs potal interactions

are introduced with the relic density and direct detection cross sections calculated

where we discuss in detail the mechanism why this model is more viable compared

with the SM case. In Sec. 7.2, we discuss the scenario with no tree level direct

detection signals and study the one-loop induced direct detection signals. In the end,

we make a summary.
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Figure 7.1: Parameter space of Higgs portal scalar(left) and fermionic(right, Λ =
1TeV) dark matter model in simple SM extention. Solid red lines(region) give ob-
served dark matter relic density within three standard deviations. Dashed lines coore-
spond to direct detection upper limits and regioins above these lines are exluded. All
points in above lines are obtained numerically from MicrOMEGAs. From now on we
keep only limits from Xenon100 and LUX in our analysis.

7.1 DM Phenomenology (1): general analysis

Our goal is to study a model with two Higgs doublets and a fermionic DM χ,

which is a gauge singlet and mainly couples to the Higgs bilinears. We work with the

2HDM with a Z2 symmetry under which Φ1 is odd and Φ2 is even. We also include a

soft-breaking term in the Higgs potential with m2
12 non-zero to avoid the cosmological

domain wall problem [219]. Thus the relevant interactions can be obtained directly

from chpater 3 by setting λ6 = λ7 = 0. We will study its phenomenology in this

section, assuming general scalar-type effective interactions of dark matter operator

χ̄χ with the Higgs bilinears Φ†iΦj, while implications of PV effective interactions are

beyond the reach of this paper.

7.1.1 DM Interactions

Assuming the DM is a Dirac fermion χ and only couple to the Higgs doublets, the

effective Lagrangian can be written as
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Higgs Doublet Bilinear Decomposition in Physical Fields
h H h2 H2 A2

0 hH H+H−

(t2β + 1)Φ†1Φ1 v tβv
1
2

1
2
t2β

1
2
t2β tβ t2β

(t2β + 1)(Φ†1Φ2 + Φ†2Φ1) 2tβv (t2β − 1)v tβ −tβ −tβ t2β − 1 −2tβ
(t2β + 1)Φ†2Φ2 t2βv −tβv 1

2
t2β

1
2

1
2

−tβ 1

Table 7.2: Decomposition of the Higgs doublet bilinear Φ†iΦj in terms of physical
fields in the SM limit α = β − π

2
. The only mixing angle left is β, such that above

expansion coefficients are functions of tβ only. In the expansion of these bilinear,
there is a common factor 1

t2β+1
and that is the reason for multiplying the pre-factor

(t2β + 1) with the bilinear Φ†iΦj in the first column.

L = χ̄(i/∂ −M0)χ+
2∑
i

αii
Λ
χ̄χ(Φ†iΦi) +

{α12

Λ
χ̄χ(Φ†1Φ2) +

α21

Λ
χ̄χ(Φ†2Φ1)

}
, (7.1)

where Λ is the cut-off scale and αij are the couplings with α12 = α21. If the Z2

symmetry, imposed on Φi is a good symmetry, terms like Φ†1Φ2 bilinear should not

show up. Since the Z2 symmetry is explicitly broken and adding them will not

affect the physical scalar spectrum, these terms are included in the Lagrangian. We

show in Table. 7.2 the decomposition of the Higgs doublet bilinear Φ†iΦj in terms of

physical fields in the alignment limit. To summarize, we have the following set of free

parameters, mχ, Λ, αij, mH , mA0 , mH± , ν̃ , tβ, α.

7.1.2 Relic density

The DM in the early Universe was in the local thermodynamic equilibrium. When

its interaction rate drops below the expansion rate of the Universe, the DM is said

to be decoupled. The evolution of the DM number density n, is governed by the

Boltzmann equation:

ṅ+ 3Hn = −〈σvM/oller〉(n2 − n2
EQ) , (7.2)
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where H is the Hubble constant, σvM/oller is the total annihilation cross section mul-

tiplied by the M/oller velocity, vM/oller = (|v1 − v2|2 − |v1 × v2|2)1/2, brackets denote

thermal average and nEQ is the DM number density at thermal equilibrium. It has

been shown that 〈σvM/oller〉 = 〈σvlab〉 = 1/2[1 +K2
1(x)/K2

2(x)]〈σvcm〉, where x = m/T

and Ki are the modified Bessel functions of the order ith.

The freeze-out of the cold DM occurred when it was non-relativistic. We can

approximate 〈σv〉 with the non-relativistic expansion 〈σv〉 = a + b〈v2〉 + O(〈v4〉) ≈

a+ 6b/x, where v ≡ vlab. Thus one can calculate the thermal average analytically by

expanding s = 4M2 + M2v2 + 3/4M2v4, in the laboratory frame. More accurately,

〈σv〉 can be calculated numerically using the integral

〈σvM/oller〉 =
1

8m4TK2
2(m/T )

∫ ∞
4m2

σ(s− 4m2)
√
sK1(

√
s/T )ds , (7.3)

where m is the DM mass, Ki(x) are the Bessel functions and T is the temperature.

The relic density of χ is

Ωχ =
mχnχ
ρc

=
mχsY

ρc
, (7.4)

evaluated at present time or temperature T0 = 2.726K, where ρc = 3H2

8πG
is the critical

density with the Hubble constant being H = 100h kms−1Mpc−1, s = heff (T )2π2

45
T 3 is

the entropy density wherein heff (T ) is the effective number of degrees of freedom [210]

and Y is the abundance to be calculated at T0. A good approximation can be made

to the solution of Y0 following Ref[132, 42]

1

Y0

=
1

Yf
+

√
π

45G

∫ Tf

T0

g1/2
∗ (T )〈σv〉dT, (7.5)

where Tf is the freeze-out temperature defined such that Yf = YTf = (1 + δ)Yeq(Tf )

with δ being some small constant.
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Figure 7.2: Representative feynman diagrams contributing to DM two body annihi-
lations.

To derive the analytical expression of the DM relic density, one needs to calculate

the thermal average of annihilation cross sections of χ̄χ into the matter fields in the

2HDM. It is straightforward to calculate the tree level cross section for the 2-body

final states. The relevant Feynman diagrams for the annihilation of the DM are given

in Fig. 7.2. The annihilation cross section of χ̄χ→ ab can be written as

σ(χ̄χ→ ab) = ζ−1
ab F(s,m2

a,m
2
b)|M|

2
, (7.6)

where s is the Mandelstam variable, mi are masses of particles in the final states, ζab =

2 if final state particle are identical and ζab = 1 for any other cases, F (s,m2
a,m

2
b) ≡

1/(16πs)λ1/2(s,m2
a,m

2
b) × λ−1/2(s,m2

χ,m
2
χ) where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy −

2xz − 2yz, |M|2 is the squared amplitude summed over the spin of the final states

and averaged over the spin of the initial states. We list in the following the squared

amplitude for various annihilation processes:

• χ̄χ→ f̄f :

3∑
a,b=1

κaκb
m2
f

v2

s− 4m2
χ

(s−m2
a)(s−m2

b)

[
(R̃a1 + kf R̃a2)(R̃b1 + kf R̃b2)(s− 4m2

f ) + R̃a3R̃b3s
]
(7.7)
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where κa =
∑

ij viαijRaj/Λ. .

• χ̄χ→ WW/ZZ:

3∑
a,b=1

κaκbtatb

(
3 +

s2

4M2
V

− s

M2
V

)
s− 4m2

χ

2(s−m2
a)(s−m2

b)
(7.8)

where ta ≡
∑

i g
2viRai/2 for WW final states and ta ≡

∑
i g

2viRai/2c
2
w for ZZ

final states, wherein cW = cos θW with θW the weak mixing angle.

• χ̄χ→ hahb:

1

2
(s− 4m2

χ)

∣∣∣∣∣κab +
∑
c

κcΓ̃cab
1

s2 −m2
c

∣∣∣∣∣
2

(7.9)

where κab =
∑2

i,j=1
αij
Λ
RaiRbj for neutral Higgs final states, κab =

∑2
i,j=1

αij
Λ
Ui2Uj2

for charged Higgs, U(as well as the following V ) is a matrix defined analogously

as in Ref. [137] and Γ̃cab is the coupling for trilinear Higgs interaction, which can

be found in Table. 7.1. We have neglected t-channel contribution for simplicity.

• χ̄χ→ hcZ:

g2

8c2
W

∑
a,b

κaκbIm(V +V )acIm(V +V )bc
(s− 4m2

χ)[(s−M2
Z)2 − 2m2

c(s+M2
Z) +m4

c ]

M2
Z(s−m2

a)(s−m2
b)

.

(7.10)

• χ̄χ→ H+W−:

g2

8

4∑
a,b

κaκb(V
+U)ac(V

+U)bc
(s− 4m2

χ)[(s−M2
W )2 − 2m2

c(s+M2
W ) +m4

c ]

(s−m2
a)(s−m2

b)M
2
W

(7.11)

and U+V should be used for H−W+ final states.
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Figure 7.3: Relic density dependence on mχ, tβ, αij for fermionic DM. First row is for
type I and second row for type II. In each model, only one of αij is turned on and in
each figure three different values of tβ are used for comparison. All other parameters
are kept fixed, mH = 400, mA = 300, mH± = 500.
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Figure 7.4: The fractions of various channels contributing to DM annihilations for
type I and II 2HDM in the alignment limit. The parameters are fixed to be tβ = 2,
mH = 400GeV, mA0 = 300GeV, mH± = 500GeV and m2

12 = 0.
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Although the DM relic density can be calculated analytically, we carry out numeri-

cal simulation with the help of MicrOMEGAs [43, 44, 45], which solves the Boltzmann

equation numerically and utilizes CalcHEP [48] to calculate the relevant cross sec-

tions. We implement the type-I and -II 2HDM models in LanHEP [206, 205] and

use the generated model files in MicrOMEGAs to do numerical analysis. In both

scenarios, we fix Λ = 1000 GeV to reduce one parameter .

Working in the alignment limit, we show in Fig. 7.3 the relic abundance as a

function of DM mass for the type-I (first row) and -II (second row) 2HDM. For each

model, we show three different plots where only one of the couplings αij is turned on

and fixed to be 1, and for each plot three different choices of tβ are used corresponding

to tβ = 0.2 (dotted line),2 (solid line), 20 (dashed line) respectively. The remaining

parameters are fixed to be mH = 400 GeV, mA0 = 300 GeV and mH± = 500 GeV.

We can see in each scenario, there are two obvious dips at mχ ≈ 62.5, 200 GeV

which are caused by the two resonantly enhanced annihilations mediated by the s-

channel h,H. There is no resonance enhancement arising from A0, which is due to

the absence of CP violation in our scalar potential. In all cases, the relic density

declines as mχ increases since new channels will be opened up and more phase space

is now available. In the aligment limit we are considering, there is no HWW , HZZ

couplings and the differences between the type-I and -II 2HDMs largely come from

how the heavy CP-even H couples to fermions. The trilinear interactions, which arise

from the Higgs potential, are the same for type-I and -II 2HDM as given in Table. 7.1

and are generally much larger than Yukawa couplings. So that as mχ becomes heavier

than scalar masses, the DM will dominantly annihilate into diHiggs. The dependence

of Ωh2 on tβ will become inconspicuous and is model type independent. This type-

independence behavior is obvious when comparing the contour plots in each column

of Fig. 7.3.
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We show in Fig. 7.4 the fraction of various annihilation channels as a function of

the DM mass using the same inputs as these in Fig. 7.3 by fixing tβ = 2. For light

χ, the main channels are b̄b, c̄c, and dibosons will dominate once these channels are

kinematically allowed. For heavy χ, the diHiggs annihilation will generally take over

and dominate. In this case there is little difference between two types of 2HDM since

these interactions have the same couplings as shown in Table. 7.1.

7.1.3 Direct Detection

Should the cold DM exists, it can be detected through their scattering on atomic

nuclei on Earth, by production at particle colliders or through detecting their anni-

hilation products in our galaxy and its satellites. The direct detection registers the

interactions of through-going DM particles. The basic methodology for direct detec-

tion experiments is to search for rare events that might be the signature of WIMP,

namely the recoil energy of the atomic nuclei from the elastic scattering of a DM

off a target nuclei. The calculation of the DM direct detection rate in terrestrial

detectors depends on several factors including the local halo density, velocity distri-

bution in Milky Way, the DM mass and the cross section on the target nuclei. The

effective DM-quark interactions, mediated by the neutral Higgs, naturally induce the

DM-nucleus interaction. The effective Hamiltonian in our model can be written as

H ≡
∑
q

λqχ̄χq̄mqq =


∑

q
Ṽ2aκa
v2m

2
a

(χ̄χ)q̄mqq , Type-I 2HDM∑
q
Ṽkaκa
vqkm

2
a

(χ̄χ)q̄mqq , Type-II 2HDM
(7.12)

where vqk equals to v2(v1) for up(down)-type quarks, with vk the VEV of the Φk, mq

is the mass of the quark q, and ma is the mass of the CP-odd scalars. It should

be mentioned that this effective Hamiltonian is closely correlated with the type of

2HDM.
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Parameterizing the nucleonic matrix element as 〈N |∑qmq q̄q|N〉 = fNmN , where

mN is the proton or neutron mass, and

fp,n =
∑
q

λqf
p,n
q (7.13)

where the nucleon form factors are fpu = 0.020 ± 0.004, fpd = 0.0026 ± 0.005, fps =

0.118 ± 0.062, fud = 0.014 ± 0.003, fnd = 0.036 ± 0.008 and fns = 0.118 ± 0.062 [45],

the cross section for the DM scattering elastically from a nucleus into the momentum

transfer limit is given by

σSI =
µ2

π
[Zmpf

p + (A− Z)mnf
n]2 , (7.14)

where µ = mχMN/(mχ + MN) being the reduced mass of the DM-nucleon system,

with MN the target nucleus mass, Z and (A − Z) are the numbers of protons and

neutrons in the nucleus. If dark matter is Majorana particle, the SI cross section in

Eq. (7.14) should be multiplied by the factor 4.

To find out which scenario can loose the tension between the observed DM relic

abundance and constraints of direct detections, we show in Fig. 7.5, 7.6 and 7.7

the exclusion limit given by the LUX 2015 [20] as well as the contours of DM relic

abundance in the αij−mχ plane with tβ taking the value of 0.2, 2 and 20 respectively.

Other inputs are the same as these in making Fig. 7.3. For each case, the first row is

for the type-I 2HDM, the second row is for type-II 2HDM and the three plots in each

row from the left to the right correspond to α11 6= 0, α12 6= 0 and α22 6= 0 respectively.

In each plot, the region above the red dashed line is excluded by the LUX 2015 result

and the blue contours give the correct relic density within three standard deviations

of the Planck central value. From these figures, we can see in all cases, the behavior of

the relic density contours for heavier dark matter with mχ & 400GeV are similar and

the couplings αij all converge to a value around 1, which follows from the previous
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Figure 7.5: Constraints on the αij − mχ plane for type-I and type-II 2HDM in the
SM limit with tβ = 0.2. The other parameters are fixed to be mH = 400GeV,
mA = 300GeV, mH± = 500GeV and m2

12 = 0. The green solid contours give correct
relic density within three standard deviations and the regions above red dashed lines
are excluded by the LUX 2015 limit.
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Figure 7.6: Constraints on the αij − mχ plane for type-I and type-II 2HDM in the
SM limit with tβ = 2. The other parameters are fixed to be mH = 400GeV, mA =
300GeV, m2

12 = 0 and mH± = 500GeV. The green solid contours give correct relic
density within three standard deviations and the regions above red dashed lines are
excluded by the LUX 2015 limit.
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Figure 7.7: Constraints on the αij − mχ plane for type-I and type-II 2HDM in the
SM limit with tβ = 20. The other parameters are fixed to be mH = 400GeV, mA =
300GeV, m2

12 = 0 and mH± = 500GeV. The green solid contours give correct relic
density within three standard deviations and the regions above red dashed lines are
excluded by the LUX 2015 limit.
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arguments on the 2HDM type and tβ independent behavior for the heavy DM. On

the other hand, the LUX limit depends on the type of 2HDM, tβ as well as αij.

Therefore a looser constraint from LUX for heavy DM can be found by adjusting tβ

and the interaction form of DM with Higgs bilinears. On the contrary for light DM

which mainly annihilates into fermionic final states, both DM annihilations and SI

cross section are controlled by the same factors, such that the conflict between relic

density and direct detection limits as observed in the simple SM extension remains

to prevent a viable dark matter candidate except when mχ ∼ mh,H . This can be seen

most clearly for type-I 2HDM with α11 turned on, which correspond to the top-left

plot in Fig. 7.5, 7.6 and 7.7. The tβ dependent factor can be isolated from the dq for

the type-I 2DHM. By collecting the factors from Eq. (??), Eq. (??), Table. ?? and

Table.7.2, we find

dq ∝
1

t2β + 1

1

m2
h

+
tβ

t2β + 1

1

m2
H

(− cot β), (for α11 6= 0) (7.15)

where the first and second term are from h and H mediated diagrams respectively.

This is a monotonically decreasing function as tβ increases. So as tβ increases, the

direct detection cross section decrease monotonically. Keeping in mind that the an-

nihilation cross section will only decreases as tβ increase in light DM regime, which

leads to a lift of α11 so as to get the correct relic abundance, both the blue contours

and red dashed exclusion limit are lifted higher at approximately the same steps for

light DM as tβ increase. So for light mass regions, the conflict between relic density

and LUX limit still exists. But for heavy mass regions, only LUX limit are lifted

higher while relic density contours remains approximately the same position which

then makes a dark matter viable. In the case when tβ = 20 as shown in the top-left

plot of Fig. 7.7, a DM with mass 200− 1000 GeV is allowed.

Following the same logic as the above case, the behavior of the remaining plot

can be understood. For the top-middle plot corresponding to type I 2HDM with α12
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turned on, going from tβ = 0.2 in Fig. 7.5 to tβ = 2 in Fig. 7.6 leads to no obvious

change of the contours. This can be interpreted from inspecting the dependence of

dq on tβ, which is

dq ∝
2tβ
t2β + 1

1

m2
h

+
t2β − 1

t2β + 1

1

m2
H

(− cot β), (for α12 6= 0) . (7.16)

This function has about the same value at tβ = 0.2 and tβ = 2 since there is a local

maximum at tβ = 0.88 after which dq decreases monotonically. Then as tβ is changed

from 2 in Fig. 7.6 into 20 in Fig. 7.7, both relic density at small mass regions and

the LUX exclusion limit at the whole mass range are lifted higher by about an order

of magnitude and a heavy dark matter with mass 200 − 1000GeV becomes viable.

Finally for type I 2HDM and when α22 is nonzero as shown in the top-right plot, the

one with tβ = 0.2 is viable for heavy DM with mass 500 − 1000GeV, while tβ = 2

and tβ = 20 cases have similar behavior and exclude all mass regions except near

Higgs resonance. This behavior can be understood from collecting the relevant tβ

dependence of dq,

dq ∝
t2β

t2β + 1

1

m2
h

+
tβ

t2β + 1

1

m2
H

(− cot β), (for α22 6= 0) (7.17)

which is a monotonically increasing function, and is negative when tβ < 0.31 and

positive when tβ > 0.31 with the point tβ = 0.31 leading to a complete cancellation

between contributions from h and H diagrams. Due to the closeness to this zero

point, the σSI at tβ = 0.2 takes a much smaller value as comparing with cases at

tβ = 2, 20, thus the DM with mass 200− 1000GeV is available in this case.

For the type-II 2HDM corresponding to the second row of the Figs 7.5, 7.6 and

7.7 , the effective coupling dq is not universal for up- and down-type quarks, the

dependence of σSI on tβ is of a consequence of all the associated competing factors.

σSI is the monotonically decreasing (increasing) function of tβ for α11(α22) 6= 0 case.
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The conclusion as can be seen from these plots is that when tβ = 0.2 with α22 turned

on, there is a viable dark matter starting with mass as low as ≈ 200GeV and when

tβ = 2 with α11 nonzero, a dark matter with mass starting at ≈ 300GeV is available.

For α12 6= 0, σSI gets minimum at tβ = 0.18 and 6.15. It is difficult to get viable

parameter space for this case.

Another ingredient that might potentially mitigate the constraints from direct

detection for lighter DM is the 2 → 4 annihilations induced from the effective inter-

actions χ̄χhihj and χ̄χH+H− via off-shell intermediate scalars. These processes are

not included in MicrOMEGAs but their effects are suppressed by the phase space and

thus negligible with respect to the 2→ 2 annihilations. For a systematic exploration

of the 2HDM parameter space with more phenomenological constraints taken into

account, we defer to a future work.

7.2 DM Phenomenology (2): a special scenario

The invariance of the Higgs kinetic term under the U(2) rotation in the space

(Φ1,Φ2) leaves one the freedom to rotate the two Higgs doublets into any basis suitable

for the study of the problem with model parameters connected by this transformation.

There are two kinds of basis in the Higgs sector: generic basis and Higgs basis.

Interactions of DM with Higgs sector given in Eq. (7.1) are written in the generic

basis. Sometimes it is more convenient and useful to write down the effective DM-

Higgs interactions in the Higgs basis. Assuming Ĥ1 and Ĥ2 are Higgs doublets in the

Higgs basis, where 〈Ĥ1〉 = v/
√

2 and 〈Ĥ2〉 = 0, the relation between the Higgs basis

and generic basis can be written as

 Ĥ1

Ĥ2

 =

 cβ sβ

−sβ cβ


 Φ1

Φ2

 . (7.18)
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We are interested in the case of Higgs portal DM where the direct detection cross

section lies below the current LUX exclusion limit. As was showed that, both the

freeze-in [140] and the “stealth” [76] DM scenarios have negligible direct detection

cross section. In this section, we point out another possibility that may evade con-

straints of direct detection.

We assume the DM only couple to the Higgs bilinear Ĥ†2Ĥ2, where Ĥ2 is the Higgs

doublet that gets no VEV in the Higgs basis. The interaction takes the following form

L 3 α
HB
22

Λ
χ̄χĤ†2Ĥ2 , (7.19)

while the interaction χ̄χĤ†1Ĥ1 reduces to the simple SM extension in Eq. (??) except

that there are more diboson channels where DM may annihilate into. This interaction

collects all the χ̄χSiSj type terms where Si represent scalarsH, A0 andH± in Eq. (7.1)

in the alignment limit. Its coupling αHB
22 is a linear combination of couplings αij in

the generic basis

αHB
22 = α11s

2
β − α12s2β + α22c

2
β. (7.20)

This scenario evades direct detection constraints at the tree level completely and can

serve as a completely viable model easily. We thus study the implication of this

interaction on the relic density. Furthermore, we include one-loop corrections to the

Yukawa couplings of DM operator χ̄χ with CP-even Higgs h,H to study their direct

detection signals.

Written in physical fields, the interactions associated with αHB
22 are

L 3 α
HB
22

Λ
χ̄χ

{
H+H− +

1

2
A2

0 +
1

4
[1 + cos(2δ)]h2 +

1

4
[1− cos(2δ)]H2 +

1

2
hH sin(2δ)

}
(7.21)

where δ ≡ α − β. The absence of terms like χ̄χh(H) in this equation leads to
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Figure 7.8: One loop Feynman diagrams contributing to DM-nucleon interactions.

a negligible σSI at tree level, and effective interactions of DM with quarks in the

nucleon arise at the one-loop level. The relevant Feynman diagrams are given in

Fig. 7.8, where the second one is doublely suppressed by the quark Yukwa couplings

and is thus negligible. The first Feynman diagram generates effective operators Yhχ̄χh

and YH χ̄χH with

Yh =
αHB

22

16π2vΛ

{
c6 ln

(
m2
H±

Λ2

)
+ c2 ln

(
m2
A

Λ2

)
+
c1

2
(1 + cos 2δ) ln

(
m2
h

Λ2

)
+
c4

2
(1− cos 2δ) ln

(
m2
H

Λ2

)}
, (7.22)

YH =
αHB

22

16π2vΛ

{
c7 ln

(
m2
H±

Λ2

)
+ c3 ln

(
m2
A

Λ2

)
+
c5

2
(1− cos 2δ) ln

(
m2
H

Λ2

)
+
c4

2
sin 2δ

[
ln

(
m2
H

Λ2

)
+

m2
h

m2
H −m2

h

ln

(
m2
H

m2
h

)
− 1

]}
, (7.23)

So at one-loop level, we have only one scalar operator χ̄χq̄mqq whose effective coupling

dq takes the following form,

dq =
sβ−α + kqcβ−α

m2
hv

Yh +
cβ−α − kqsβ−α

m2
Hv

YH (7.24)

→ 1

m2
hv
Yh −

kqsβ−α
m2
Hv

YH

where we list in the second row the expression of dq in the alignment limit. This dq

can be compared with the dSM
q . To that end, we show in Fig. 7.9 the ratio dq/d

SM
q

in the tβ − ν̃ plane with dSM
q ≡ αF

Λm2
h

and αHB
22 = αF . Here the parameter ν̃ controls

the size of trilinear Higgs couplings in Table. 7.1. The plot in the left panel applies
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to all quarks in type-I 2HDM as well as up-type quarks in type-II 2HDM, while the

plot in the right panel is for down-type quarks in type-II 2HDM. We can see for

each plot, there is a contour where this ratio vanishes, that is, the one-loop SI cross

section is exactly zero. This contour follows from the fact that both YH and Yh are

linear functions of ν̃. For both cases this contour corresponds to ν̃ ≈ 2.5. Away from

this region, for the left plot, this ratio is not sensitive to tβ for tβ > 1, but sensitive

to tβ for tβ . 1. This is because kq is approaching to 0 for large tβ. The opposite

situation happens for the second plot since now kq = −tβ and becomes dominant as

tβ increases. The left plot shows relatively large one loop coupling around −0.34 for

tβ = 0.2 while for tβ = 2, 20, they are both approximately −0.10. For the right plot,

the ratio is around −0.10 for tβ = 0.2, −0.14 for tβ = 2 and −3.86 for tβ = 20. Due

to the large values of loop corrections in certain parameter space of the model, these

one loop diagrams might be important in DM direct detections even in the generic

basis as given in the previous section. For the impact of these new ingredients and a

full exploration of the 2HDM parameter space, we defer to a future analysis.

We show in Fig. 7.10 constraints from relic density and direct detection. The

leftmost plot shows the allowed regions within three standard deviations of the Planck

central value of Ωch
2. It is done in the alignment limit then this contour applies to

both type-I and -II 2HDM since only the invariant combination β − α appears in

Eq. 7.21. Other inputs are set to be tβ = 2, mH = 400GeV, mA0 = 300GeV,

mH± = 500GeV. In the middle and rightmost plots, we show the σSI with ν̃ = 0 and

ν̃ = 3 respectively. The LUX exclusion regions are colored by light red and the relic

density contours are colored by blue (green) for Type-I(II) 2HDM. We can see the

ν̃ = 0 case has a fraction of parameter space excluded by LUX limits for relatively

light dark matter while for ν̃ = 3, almost all of the parameter space evades the LUX

exclusion limit. As discussed previously, as ν̃ ≈ 2.5 one-loop cross section vanishes,

resulting in null direct detection signals. It would be a completely viable scenario.
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Figure 7.9: The ratio of the effective dark matter quark coupling in 2HDM to that
in the SM dq/d

SM
q for type I, II 2HDM in the ν̃ − tβ plane in the alignment limit.

The left plot applies to all quarks for type I 2HDM and to up type quarks in type
II 2HDM since these Yukawa couplings have the same tβ dependence. The right plot
applies to down type quarks for type II 2HDM. The other parameters are fixed to be
mH = 400GeV, mA0 = 300GeV, mH± = 500GeV.

We finally comment on the DM phenomenology induced by deviations from the

alignment limit and 2 → 4 annihilations. These effects are suppressed by cβ−α and

limited phase space respectively, and would require quite large couplings to obtain

the correct relic density. This however will lead to much larger direct detection cross

section.

7.3 Summary

Accumulated evidences point to the existence of DM, which is claimed as one of

the dark clouds in the sky of the particle physics in the twenty-first century. Since the

discovery of the Higgs boson at the CERN LHC, the simplest Higgs portal fermionic

DM model was almost excluded by the DM direct detection experiments. One needs

extensions to the minimal model (with new interactions or new mediators ) to accom-

modate the tension between the observed DM relic density and constraints of direct
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Figure 7.10: Relic density and LUX 2015 constraints in the SM limit. Left plot
shows allowed regions in the αHB

22 −mχ plane within three standard deviations of the
relic density central value and applies to both type I and type II 2HDM. The middle
and right plots shows dark matter nucleon spin-independent cross sections for type
I and type II 2HDM with ν̃ = 0 and ν = 3 respectively where the coupling αHB

22 is
fixed to satisfy the relic density requirements corresponding to the regions in the left
plot. Also included in the middle and right plots are the LUX 2015 exclusion regions.
The other parameters are fixed to be tβ = 2, mH = 400GeV, mA = 300GeV and
mH± = 500GeV.

detections. In this paper we studied the phenomenology of the Higgs portal DM in

the 2HDM model. In addition to the numerical simulations using the MciroMEGAs,

the DM relic density and direct detection cross section were also calculated analyt-

ically for the benefit of generality. Our studies show that it is possible to get the

observed Ωh2, while satisfying constraints of σSI without introducing PV interactions

in the both the Type-I and Type-II 2HDM. We studied the dependence of σSI on

the tβ in detail, and pointed out the regime that satisfy the latest LUX bound for

each scenario. We further pointed out an interesting scenario where there is no tree

level contribution to the scattering of DM with nucleon. In this case it will be more

promising to detect the DM resorting to the indirect detection or collider experiments,

which, although interesting and important but beyond the reach of this paper, will

be studied in another paper.
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CHAPTER 8

CONCLUSION

The SM falls short in explaining the slight excess of ordinary baryonic matter over

anti-matter as well as not providing a dark matter candidate. These are the two main

reasons from the pragmatic point of view that motivate the studies in beyond SM

explorations in this thesis.

To generate the baryon asymmetry, scenarios where there are new sources of CPV

and where a strongly first order EWPT can be obtained are introduced within the

framework of EWBG and are found to be able to generate the right baryon asymme-

try while at the same time be compatible with other phenomenological constraints.

In the years to come when many beyond SM theories would be subjected to stringent

test from direct searches at the energy frontier and from precision measurements in

the intensity frontier, the requirement as to properly account for the baryon asymme-

try in the universe can be of significant guide on these searches and measurements.

Current uncertainties in the BAU calculations is still relatively large and a systematic

reduction of these uncertainties should be of even more priority as to complement the

activities at the energy and precision frontier.

Dark matter as weakly interacting massive particles are also studied with the hope

that future searches can shed light on this elusive particle people have been after for

decades. Since current direct searches have push the dark matter scattering cross

sections with nucleons to a much lower level without a positive signal, there might

be some mechanism that these rates are indeed that small and we have studied here

several examples with loop suppressed direct detection cross sections. Or it might be
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that our understanding of the micro-dynamics of dark matter interactions is not good

enough. Especially, the the experimental limits on dark matter nucleon scattering

were always limited to spin-independent or spin-dependent cases in the past. However

it might be that the actual reactions have quite different nuclear responses and need us

to reformulate the limits obtained. Effort torwards this direction is being made on the

experimental side while on the theoretical side, this gives interesting new directions

to study. Should new physics exists regarding these two long standing cosmological

puzzles, we would some day have the chance to discover it.
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APPENDIX

NUMERICAL ROUTINES

A.1 Introduction

In calculations of the EWBG framework, we need frequently to solve Sphaleron

profiles, bounce solutions , transport equations, etc,. Fortunately these differential

equations belong to the same class of problems, that is, the non-linear ordinary dif-

ferential equations and their precise solutions can be obtained only using numerical

solutions in most cases. Here we discuss the method used in solving these prob-

lems taking the transport equations as an example. Several specific cases are studied

here and their numerical results are compared with those that can be obtained in

Mathematica to check the correctness code developed.

We want to solve a set of coupled transport equations of the form

∂µJ
µ
r = −

N−1∑
s=0

Γrsns + SCPV
r , 0 ≤ r ≤ N − 1,

with the following simplifying assumptions

∂µJ
µ
r ≈

∂nr
∂t

+ ~O · ~Jr ≈
∂nr
∂t
−DrO

2nr ≈ vw
dnr
dz
−Dr

d2nr
dz2

.

This type of second order ordinary differential equations(SODEs) can be solved ana-

lytically when the coefficients of nr and its derivatives are z-independent. For trans-

port equations, vw andDr are constants while Γr is z dependent. Then these equations

need to be solved numerically.
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These SODEs can be reduced trivially to a set of first order ODEs(FODEs),

n′r = mr, (A.1)

m′r −
vw
Dr

mr −
∑
s

Γrs
Dr

ns +
SCPV
r

Dr

= 0, (A.2)

with 0 ≤ r ≤ N − 1 and n′r ≡ dnr
dz

. Thus numerical solutions to higher order ODEs

are generally reduced to that of FODEs. There are other cases where these kinds

of numerical routines are needed, such as solving Schrodinger equations, Sphaleron

profiles etc,.

The numerical routines here is based on the “relaxation method” and two func-

tions are developed in Mathematica. One function RelaxEWB is dedicated to above

transport equations with specialized input format and the other one RelaxFODE

solves generic coupled FODEs. To check the correctness of these two functions, we

look at the cases where analytical solutions are available and those which can be

solved by the Mathematica built-in function NDSolve for comparison. The examples

are introduced by the simplest single equation with constant profiles and step by step

more features are included with increasing complexities to approach solving a set of

realistic transport equations. We also introduce the generally utilized “analytical ap-

proximation” in solving coupled transport equations and see how this approximation

is approached by full numerical solutions.

A.2 Single Transport Equation with z-independent Profiles

A.2.1 Γ̄H(z < 0) = Γ̄H(z > 0) = const

Most analytical approximation use the fact that coupled transport equations can

be reduced to a single equation about H under various assumptions

D̄HH
′′ − vwH ′ − Γ̄HH + S̄H = 0, (A.3)
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Figure A.1: Comparing numerical solutions of Eq. A.3 using functions RelaxEWB
with exact analytical in Eq. A.4. Left and middle plots are input source and relaxation
profiles. Right plot shows analytical and numerical solutions.

with boundary conditions H(±∞) = 0. Now consider the case when this equation

can be solved analytically corresponding to constant Γ̄H for both z > 0 and z < 0.

Analytically, this equation has an exact solution,

H(z) =

[
c+(0)− 1

λ+ − λ−
1

D̄H

∫ z

0

S̄H(u)e−λ+udu

]
eλ+z,

+

[
c−(0) +

1

λ+ − λ−
1

D̄H

∫ z

0

S̄H(u)e−λ−udu

]
eλ−z, (A.4)

where λ± =
vw±
√
v2
w+4D̄H Γ̄H

2D̄H
with λ+ > 0 and λ− < 0. The two integration constants

c± are determined by the boundary conditions H(±∞) = 0,

c+(0) =
1

λ+ − λ−
1

D̄H

∫ ∞
0

S̄H(u)e−λ+udu, (A.5)

c−(0) =
−1

λ+ − λ−
1

D̄H

∫ −∞
0

S̄H(u)e−λ−udu. (A.6)

This analytical solution can be compared with numerical solutions using function

RelaxEWB or RelaxFODE with the comparison shown in Fig. A.1 where the left

and middle plots are input profiles for source and relaxation terms and the right plot

shows solved H profiles both analytically(green) and numerically(red). We can see

the numerical solution matches the anaytical solution very well.
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A.2.2 0 = Γ̄H(z < 0) 6= Γ̄H(z > 0) > 0

In this case, we consider a more reliastic relaxation profile which is a step-function

centered at z = 0 with Γ̄H = 0 in the symmetric phase(z < 0) and a non-zero yet

constant Γ̄H in the broken phase(z > 0). It follows that one need to solve Eq. A.3

separately in these two regions and match the solutions at z = 0 using continuity

conditions.

Firstly for z < 0, we have λ̄+ = vw
D̄H

> 0 and λ̄− = 0, then

H(z)|z<0 =

[
c+(0)− 1

λ+

1

D̄H

∫ z

0

S̄H(u)e−λ+udu

]
eλ+z +

[
c−(0) +

1

λ+

1

D̄H

∫ z

0

S̄H(u)du

]
,(A.7)

with here c±(0) the two integration constants to be determined. Since S̄H(z < 0) = 0

in the symmetric phase, the above expression is simplified to

H(z)|z<0 = c+(0)eλ̄+z + c−(0). (A.8)

Furthermore the boundary condition H(−∞) = 0 requires that c−(0) = 0, then we

have the solution in the symmetric phase,

H(z)|z<0 = c+(0)eλ̄+z, (A.9)

with c+(0) now still undetermined.

In the broken phase corresponding to z > 0, the generic solution is

H(z)|z>0 =

[
B+(0)− 1

λ+ − λ−
1

D̄H

∫ z

0

S̄H(u)e−λ+udu

]
eλ+z,

+

[
B−(0) +

1

λ+ − λ−
1

D̄H

∫ z

0

S̄H(u)e−λ−udu

]
eλ−z, (A.10)
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Figure A.2: Comparing numerical solution of Eq. A.3 with analytical solution relax-
ation profiles with 0 = Γ̄H(z < 0) 6= Γ̄H(z > 0) > 0. Left and middle plots show
source and relaxation profiles and the right plot shows numerical solution as well as
exact analytical solution.

with here λ± defined similarly as previous case and whereB+(0) is determined through

the boundary condition at +∞,

H(+∞) = 0 =⇒ B+(0) =
1

λ+ − λ−
1

D̄H

∫ ∞
0

S̄H(u)e−λ+udu, (A.11)

leaving two remaining integration constants c+(0) and B−(0) which are now readily

solved from the continuity conditions for the two set of solutions for H(z) at z = 0,

H(0)|z<0 = H(0)|z>0,

Ḣ(0)|z<0 = Ḣ(0)|z>0

=⇒
c+(0) = λ+−λ−

λ+
B+(0),

B−(0) = −λ−
λ+
B+(0).

(A.12)

The comparison of numerical solutions from RelaxEWB with above analytical solu-

tions is shown in Fig. A.2 and again very good agreement is observed.

A.3 Single Transport Equation with Generic Profiles

Using generic z-dependent profiles for source and relaxation terms in Eq. A.3,

we show numerical solutions from the dedicated RelaxEWB and the generic FODE

function RelaxFODE with that from the Mathematica built-in NDSolve in Fig. A.3.
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Figure A.3: Comparing numerical solutions of Eq. A.3 using RelaxEWB and Re-
laxFODE for generic z-depenent profiles respectively with the numerical solution
from Mathematica built-in NDSolve. Left plot shows source(red dashed), diffusion
constant(blue solid) and relaxation(blue dotted) profiles. The middle plot shows nu-
merically solved H(z) profiles from RelaxEWB(red dashed) and NDSolve(cyan). The
middle plot shows numerically solved H(z) profiles from RelaxFODE(blue dashed)
and NDSolve(cyan).

The input profiles are shown in the left plot, the numerical solution from RelaxEWB

as compared with that from NDSolve are shown in the middle plot and the numerical

solutions from RelaxFODE as well as that from NDSolve are shown in the right

plot. We can see the results from RelaxEWB and RelaxFODE agree with that from

NDSolve.

A.4 Two Un-Coupled Transport Equations with Different

Relaxation Profiles

To further test the correctness of the numerical routine RelaxEWB and Relax-

FODE, we go beyond solving the single equation as in Eq. A.3 and study the following

two uncoupled equations with different profiles,

D̄HH
′′
1 − vwH ′1 − Γ̄HH1 + S̄H = 0,

D̄HH
′′
2 − vwH ′2 − 3Γ̄HH2 + S̄H = 0, (A.13)

144



-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
0

2

4

6

8

z

Profiles

SCPV/30

ΓH

DH

-10 -5 0 5
0.0

0.5

1.0

1.5

2.0

z

H1(z), H2(z)

ΓH

3ΓH

NDSolve

RelaxEWB

-10 -5 0 5
0.0

0.5

1.0

1.5

2.0

z

H1(z), H2(z)

ΓH

3ΓH

NDSolve

RelaxFODE

Figure A.4: Numerical solutions of two un-coupled transport equations A.13 with dif-
ferent relaxation profiles using RelaxEWB and RelaxFODE as compared with that of
NDSolve in the middle(for RelaxEWB) and right(for RelaxFODE) plots respectively.
The left plot shows the input profiles.

where the two equations differ by their relaxation profiles with Γ̄H2 = 3Γ̄H1 . The

numerical results for H1(z), H2(z) from RelaxEWB and RelaxFODE are compared

with that from NDSolve in Fig. A.4. From the middle plot we can see the results of

RelaxEWB(red dotted) matches that from NDSolve(cyan) and from the right plot, it

is clear the result from RelaxFODE(red dotted) also mathes that from NDSolve(cyan).

A.5 Two Coupled Transport Equations with Reduced Mix-

ing

Now we move one step forward and consider the two coupled transport equations

with reduced mixing relaxation profiles,

D̄HH
′′
1 − vwH ′1 − Γ̄HH1 − 0.7Γ̄HH2 + S̄H = 0,

D̄HH
′′
2 − vwH ′2 − 3Γ̄HH2 − 0.7Γ̄HH1 + S̄H = 0. (A.14)

The only difference with previous Eq. A.13 is that we added a mixing relaxation

profile for each of two equations but with reduced strength. This different types of
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Figure A.5: Two coupled equations with reduced off-diagonal relaxation rates. As
with previous figures, the left one shows the input profiles of the transport equations
while the middle and the right one give the obtained results using different methods.

equations can further test the correctness of the numerical routine RelaxEWB and

RelaxFODE.

Before showing the numerical results, we study the asymptotic behavior around

z → ±∞ and see if both H1 and H2 admit a solution with vanishing strength. More

precisely we seek the following solutions for H1, H2 at z → ±∞,

Hi(±∞) =
∞∑
n=0

ain
|z|n with i = 1, 2,

which when plugged into Eq. A.14 gives at leading order of |z|−1,

Γ̄H

 1 0.7

0.7 3


 H1

H2

 =

 S̄H

S̄H

 =

 0

0

 ⇒

 H1(±∞) = 0

H2(±∞) = 0

So we are guaranteed that there are solutions of the type we want. Now we show

the numerical results from RelaxEWB and RelaxFODE and compare with result

using NDSolve in Fig. A.5. There the left plot shows input profiles, the middle plot

compares result from RelaxEWB with that of NDSolve and the right plot compares

result from RelaxFODE with NDSolve. We can see both RelaxEWB and RelaxFODE

agree with NDSolve.
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From these above examples we should be pretty confident that the numerical

solutions from RelaxEWB and RelaxFODE are correct.
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