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ABSTRACT

Motivation: Genomic analyses of many solid cancers have demon-

strated extensive genetic heterogeneity between as well as within

individual tumors. However, statistical methods for classifying

tumors by subtype based on genomic biomarkers generally entail an

all-or-none decision, which may be misleading for clinical samples

containing a mixture of subtypes and/or normal cell contamination.

Results: We have developed a mixed-membership classification

model, called GLAD, that simultaneously learns a sparse biomarker

signature for each subtype as well as a distribution over subtypes

for each sample. We demonstrate the accuracy of this model on

simulated data, in-vitro mixture experiments, and clinical samples

from the Cancer Genome Atlas (TCGA) project. We show that many

TCGA samples are likely a mixture of multiple subtypes.

Availability: A python module implementing our algorithm is available

from http://genomics.wpi.edu/glad/

Contact: pjflaherty@wpi.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 21, 2013; revised on August 4, 2014; accepted
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1 INTRODUCTION

Genomic analyses of many solid cancers have demonstrated

extensive genetic heterogeneity between (Bonavia et al., 2011;

Parsons et al., 2008) as well as within individual tumors

(Dexter et al., 1978; Heppner, 1984). Microdissection and

DNA sequencing have recently validated at high resolution the

existence of intratumor heterogeneity (Gerlinger et al., 2012).

Characterizing such heterogeneity is important because it may

be a contributing factor to mono therapy treatment failure

(Gerlinger et al., 2012). Accurately detecting subtypes in an

individual tumor may lead to improved combinatorial therapies.
Many cancers have been classified into distinct genetic subtypes

that develop by means of activation or repression of different

driver pathways. These tumor subtypes are commonly identified

and characterized by clustering the genomic data from hundreds

of samples (Eisen et al., 1998; Hofree et al., 2013). In an effort to

disambiguate driver from passenger mutations, the genomic sig-

natures associated with each subtype are sparse and comprised

only of those aberrations that are thought to be involved in onco-

genesis. New tumors are then classified based on their similarity to

the centroids or signatures of those subtypes. However, this clas-

sification approach makes an all-or-none assumption about the

primary tumor that is incorrect for heterogeneous tumors.

Mixture models have been used extensively to analyze gene

expression patterns in complex experiments. Gasch and Eisen

(2002) used fuzzy k-means clustering to identify functionally

co-regulated transciptional networks. Brunet et al. (2004) took

a less heuristic non-negative matrix factorization (NMF)

approach to decompose the gene expression data matrix into a

product of a meta-gene matrix and a sample weight matrix.

The NMF approach was extended to allow for sparseness in

either of the factor matrices (Hoyer, 2004).
Mixed-membership models have emerged in recent years

as a tool for data where the all-or-none clustering assumption

is inappropriate. In text classification, the topic-modeling

framework, which includes mixed-membership models, cap-

tures the structure in large document corpora, where each

document may exhibit a mixture of topics (Blei et al., 2003).

Mixed-membership models have been used in population genetics

(Falush et al., 2007), social network analysis (Airoldi et al., 2008),

and elsewhere (Erosheva et al., 2004;Wang andMcCallum, 2006).
Our model achieves the dual purposes of (i) representing each

sample as a mixture of genomic subtypes, and (ii) representing

each subtype signature as a sparse set of genomic features that

delineate driving oncogenic pathways. Our model provides a

more general framework for representing mixed samples than

all-or-none classification methods and we show that we obtain

a more accurate estimate of mixture proportions than a mixed-

membership model without subtype sparsity. We demonstrate

our model on RNA expression data from primary glioblastomas

(GBM), comprising thousands of genomic features and hundreds

of samples. There we show that we recover known subtypes with

a sparse set of driving aberrations, and we give evidence that

many of the primary samples are mixed.

2 MODEL STRUCTURE

We are given a data matrix y 2 R
M�N, where the element yji is

an observation of feature j in sample i. We would like to

*To whom correspondence should be addressed.
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represent each column of y as yi = x�i, where x 2 R
M�K is a

matrix of K cluster centroids and �i 2 "
K�1 is the ith sample’s

distribution over the K clusters. Furthermore, we would like x to

be sparse, for purposes of cluster interpretability and generaliz-

ability to test cases. In the specific case of cancer subtyping, yji is

a possibly normalized gene expression measurement for gene j in

sample i.

2.1 Generative process

We introduce GLAD, a Gaussian–Laplace–Dirichlet model for

mixed-membership data where the underlying clusters have a

sparse representation. The name refers to the component distri-

butions comprising the joint model. The generative process for

the observed data involves unobserved cluster centroids and un-

observed mixing proportions, as follows:

(1) Draw the elements of the M�K cluster-centroid matrix x

as iid Laplaceð�Þ variables.

(2) For each sample i=1; . . . ;N, independently:

(a) choose a distribution over clusters, �i�Dirichletð�Þ;

(b) draw yi j �i;x�Normalðx�i;SÞ.

This process involves several hyperparameters: �, a non-negative

scalar governing the Laplace prior on the elements of x; �,
a K-vector of non-negative values controlling the possibly asym-

metric Dirichlet prior on each sample’s mixing proportions; and

S 2 R
M�M, the conditional covariance matrix for the normally

distributed components of the gene expression vectors.
GLAD has two levels of latent-variable sampling: global and

local. Globally, the cluster centroids are chosen once in advance

for the entire dataset. Locally, the expected value of each

observed vector is chosen as a mixture of cluster centroids,

with different mixing weights for different observed vectors.

Figure 1 depicts GLAD as as a graphical model.

The Laplace distribution over the xjk enforces sparsity in the

subtype matrix (Kab�an, 2007). The automatic relevance deter-

mination method similarly uses a Laplace prior over features to

induce sparsity (MacKay, 1992). The Laplace prior is also used

to create sparsity in the multinomial inverse regression model for

text sentiment analysis (Taddy, 2012).
As �i has a Dirichlet distribution, it provides, for each sam-

ple, a distribution over the K clusters. For simplicity, we set

S= �2IM from now on. The development of the model is similar

for anisotropic or non-diagonal S, though some regularization

may be required.
Under the GLAD model, the joint distribution of observed and

latent variables for the ith observed sample, also called the com-

plete likelihood, is as follows:

p x; �i; yi;�; �; �
2

� �
= p x; �ð Þ p �i;�ð Þ p yi j x; �i; �

2
� �

=
YM
j=1

YK
k=1

1

2�
exp �

jxjkj

�

� �" # �
XK
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 !

YK
k=1
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��k�1ki
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2��2
� �� 1

2 exp �
1

2 �2
yji � xj�i
� �2� �2

4
3
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ð1Þ

Integrating over the latent variables x and �i yields the marginal

likelihood of a sample,

p yi;�; �; �
2

� �
=Z

x

p x; �ð Þ

Z
�i

p �i;�ð Þ p yi j x; �i; �
2

� �
d �i dx:

ð2Þ

Finally, under the independent-samples assumption, the likeli-

hood of the full dataset is as follows:

p y; �; �; �2
� �

=

YN
i=1

Z
x

p x; �ð Þ

Z
�i

p �i; �ð Þ p yi j x; �i; �
2

� �
d �idx:

ð3Þ

The inference algorithms in Section 3 focus on the maximum

likelihood estimate, that is, maximizing Equation (3) with respect

to the hyperparameters �, �, and �2.

2.2 Comparison with other clustering and topic models

GLAD differs from other gene expression clustering models.

A classical clustering mixture model would sample a Dirichlet

once for the entire dataset. The resulting probabilities would

be used to assign each expression vector to one cluster. This is

the assumption of the PAM50 method (Parker et al., 2009) and

other all-or-none clustering approaches (Koboldt et al., 2012).

Also, our method does not require side information, such as

biochemical network structure, though this information may be

incorporated into a structured sparsity parameter (Hofree et al.,

2013).
GLAD also differs from other topic models. A standard topic

model chooses from a Dirichlet distribution once for each sample

as we have done here. But then, given that Dirichlet draw, a

number of additional per-sample latent variables are drawn,

rather than just one as we have done in GLAD. Particular

instances of this alternative structure are latent Dirichlet alloca-

tion (Blei et al., 2003), where many additional multinomial

random variables are drawn, and latent process decomposition

(LPD) (Rogers et al., 2005), where additional Gaussians

are drawn. The sparseTM model for text classification also

uses additional multinomial random variables, with another

type of sparsifying prior (Wang and Blei, 2009).

x

N

yi

θi

αλ

σ

Fig. 1. Graphical model representation of the GLAD statistical model
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2.3 Interpretation as matrix factorization

Many statistical models have corresponding matrix factorization

interpretations (Singh and Gordon, 2008). Principal component

analysis, NMF and latent semantic indexing have both linear-

algebraic and probabilistic formulations. GLAD is different from

standard decomposition approaches because of the constraint

that �i form a distribution over the columns of x. In particular,

the negative complete log likelihood, retaining only terms invol-

ving x and �, is as follows:

�LL x; � j yð Þ=
XM
j=1

XN
i=1

1

2 �2
yji � xj�i
� �2

+N
XM
j=1

XK
k=1

j xjk j

�

�
XK
k=1

�k � 1ð Þ
XN
i=1

log �ki;

ð4Þ

with the simplicial constraints �>i 1=1 and �i � 0 (elementwise)

for each i. As we explain in Section 3, approximately minimizing

Equation (4) is the main ingredient in the GLAD inference

procedure.
To see the connection to matrix factorization, set

�2 = 1
2 ; �= 1, and �=1, leaving the objective function as fol-

lowing:

f x; � j yð Þ=
XN
i=1

XM
j=1

yji � xj�i
� �2

+N
XM
j=1

XK
k=1

jxjk j : ð5Þ

The first term in (5) can be viewed as a loss function for the

difference between the fitted value ŷi = x�i and the actual obser-

vation yi. The second term is a sparsifying regularizer, wherein

setting xjk to a non-zero value has a cost proportional to the

magnitude of xjk. Viewing Equation (5) as a Lagrangian function

where only the terms involving x and �= ½�1 . . . �N� have been

retained, the matrix factorization problem corresponding to

GLAD can be written as follows:

minimizex;� jj y� x� jj22

subject to jjx jj 1 � b

�T1K = 1N

� � 0:

ð6Þ

The inequality on � is element-wise. The optimization problem

(6) is biconvex in x and �. It bears some resemblance to sparse

coding (Lee et al., 2006), with interesting differences: in sparse

coding, x is dense and � is sparse and non-negative, whereas in

(6), x is sparse and � is dense and simplicial.

3 INFERENCE AND PARAMETER ESTIMATION

Inference in GLAD focuses on the posterior distribution over

latent variables

p ð�; x j y; �; �; �2Þ=
p ð�;x; y; �; �; �2Þ

p ðy;�; �; �2Þ
: ð7Þ

As exact inference is intractable, we have developed a

non-conjugate variational inference algorithm (Wang and Blei,

2013) to estimate the posterior distribution p ð�;x j y; �̂; �̂; �̂2
Þ.

Supplementary Section S1 provides a complete derivation of the
procedure; here we summarize it briefly.
We start by defining a family of candidate approximate

posterior distributions, each of which has the same partially

factorized structure:

qð�;xÞ=
YM
j=1

q ðxjÞ
YN
i=1

q ð�iÞ: ð8Þ

In Equation (8), each qðxjÞ approximates the posterior distribu-

tion of the jth gene’s values across all subtype signatures. Each
qð�iÞ approximates the posterior distribution of the ith sample’s
subtype-mixing weights. This family of approximate posteriors

imposes mutual independence between the xj’s and �i’s. We do
not use a fully factorized ‘mean-field’ approximation, which
would treat the components within each xj and �i as independent
as well. Factorizing the variational distribution q (x) across fea-
tures allows the algorithm to update each K-dimensional feature
distribution qðxjÞ in parallel while allowing qðxjÞ to incorporate

dependencies across subtypes. Factorizing the variational distri-
bution across samples in qð�iÞ accomplishes the same goals.
Next, we use a variational expectation-maximization (EM)

procedure (Jordan et al., 1999) to choose the best approximate

posterior in the family just described. The procedure also pro-
duces approximate maximum-likelihood estimates of the hyper-
parameters �̂ : = f�̂; �̂; �̂2

g. Variational EM maximizes a global

lower bound Lðq; �Þ on the true likelihood, by alternating be-
tween maximization over q (the variational E-step) and maxi-
mization over � (the M-step).

The variational E-step is carried out via coordinate ascent: we
cycle through the factors qðxjÞ and qð�iÞ, maximizing in turn over
each one with all others held fixed, until no more progress on
Lðq; �Þ can be made. The optimal coordinate update for qðxjÞ is

known, but intractable to compute (Bishop, 2006). So, following
Wang and Blei (2013), we invoke the idea of the Laplace ap-
proximation to find a good qðxjÞ in the family of normal distri-

butions. The Laplace approximation is not related to the Laplace
prior. For qð�Þ, whose optimal update is also intractable, we
choose as an approximation a Dirichlet distribution, as in

latent Dirichlet allocation (Blei et al., 2003).
The M-step involves closed-form updates for �̂ and �̂2, with

numerical optimization applied for �̂. Algorithm 1 summarizes

the GLAD inference procedure in pseudocode.

Algorithm 1 GLAD variational Laplace inference

1: Initialize qðx; �Þ and �̂

2: repeat

3: repeat

4: for j=1 to M do

5: //fðxj; �̂Þ is E�j½log pðy; xj;x�j; �Þ�.

(See Supplementary Section S1)

6: Set x̂j  arg max xj fðxj; �̂Þ

7: Approximate qðxjÞ 	 N x̂j;�r
2fðx̂j; �̂Þ

� �
8: end for

9: for i=1 to N do

10: Optimize Lðq; �̂Þ over qð�i; � iÞ=Dirð� iÞ
11: end for

12: until change in Lðq; �̂Þ is small

13: Set �̂  arg max � Lðq; �Þ

14: until change in Lðq; �̂Þ is small
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3.1 Estimating the number of subtypes (K)

Choosing the number of clusters for any clustering method is

challenging (Milligan and Cooper, 1985). Methods include the

silhouette measure (Rousseeuw, 1987), information theoretic

measures (Sugar and James, 2003), and cross-validation

(Wang, 2010). Non-parametric Bayes methods enable posterior

inference about K (Teh et al., 2006). Prediction accuracy on held-

out data has been used in the context of document topic models

(Erosheva et al., 2004). Here, we use the Bayesian information

criterion (BIC) (Hansen and Yu, 2001; Schwarz, 1978), choosing

K to minimize the following:

BICðq; �Þ= � 2 � Lðq; �Þ+ K � ðM+N+1Þ+2ð Þlog ðNÞ: ð9Þ

We count one parameter for each element of x and �, as well as
for �, �2 and �.
We expect that this method, although simple, should guide

selection toward a reasonable value of K. As it is intractable

to evaluate the exact likelihood, we instead use the maximized

variational lower bound. We show results of this metric on tissue

mixture data in Section 4.2.

4 RESULTS

4.1 Simulation study

We used simulated data with known parameter values to assess

the performance of GLAD as sample size is increased, in compari-

son to LPD (Rogers et al., 2005).
We constructed a suite of simulations as follows. We set

the number of subtypes to two (denoted ‘A’ and ‘B’), and

the number of features to 500. We used sample sizes N=30,

300, 3000 and 6000. In all simulations, the expected value for

the first 20 features is +2 for subtype A and –2 for subtype B;

the remaining features have an expected value of zero for both

subtypes. For each simulated dataset, the first N/3 samples are

100% subtype A, the next N/3 samples are 100% subtype B and

the last N/3 samples are a 50/50 mixture of the two subtypes.

Thus, to simulate a dataset, we drew observations independently

from a Gaussian distribution with mean parameter correspond-

ingly set to subtype A’s signature, subtype B’s, or the average of

the two. We set the Gaussian standard deviation to one.

We fit GLAD and LPD to each simulated dataset and estimated

the subtype proportions for each sample. Figure 2 shows

boxplots of the estimated fraction of subtype A in each

sample. The sizes of the datasets are on the x-axis. The three

panels in the figure correspond to the three different kinds of

sample in each dataset: pure subtype A (top), pure subtype B

(middle) and 50/50 mix (bottom). The boxplots show the distri-

bution over samples of Eð�Ai j yiÞ, the posterior mean fraction of

subtype A detected in each sample. We show the data points for

the N=30 dataset because each boxplot is constructed from

only 10 samples.

Figure 2 shows that in pure samples, as the sample size

increases, GLAD’s mixing proportion estimates concentrate at

the true values. For the smallest sample size of 30, LPD’s

mixing proportions are more accurate than GLAD’s on pure sam-

ples but much less accurate on mixed samples—in real tumors,

subtype mixing is liable to be the rule rather than the exception.
At N=30, the GLAD posterior underestimates the amount of

subtype A for the 100% A samples and overestimates it for the

100% B samples as a consequence of the Dirichlet prior for small

N. But GLAD improves quickly with more data; at N=300, pure

mixing proportions are well resolved, and this continues to hold

on the larger datasets.
The bottom panel of Figure 2 shows that GLAD is accurate

across a wide range of sample sizes for mixed samples. The

median estimate is close to the true value of 0.5, and

the spread of the estimates is small. In contrast, LPD has a

large variance across a range of sample sizes, and it appears to

exhibit some bias, which does not disappear even at N=6000.
Both models use empirical Bayes in their estimation proced-

ures. This causes some degree of smoothing in the predictions.

The amount of smoothing owing to hyperparameter-fixing

decreases as the sample size increases, as can be seen from the

estimates for the pure samples in Figure 2. The GLAD posterior

expectations are closer to 0.5 than they should be for small

sample sizes, but the degree of smoothing decreases for

larger sample sizes. Although empirical Bayes may appear to

over-smooth the training-set predictions, this same smoothing

often improves performance on test data (Efron, 2010).

4.2 In vitro tissue mixture data

Simulated data are useful to obtain performance metrics with

known ground truth under idealized conditions. But simulated

variability is not the same as variability in real gene expression

data. Shen-Orr et al. (2010) performed an in vitromixture experi-

ment that yields a good dataset on which to test our algorithm,

while still providing a true-positive control. They independently

isolated RNA from rat lung, liver and brain tissue. Then they

mixed those samples at varying fractions and measured the levels

on microarrays with replicates. This dataset gives us known mix-

ture fractions and a known number of subtypes with real gene

expression microarray data variability.

The initial dataset contains 42 samples and 31 099 features.

The measurements are the RMA-normalized microarray inten-

sities on a log 2 scale. We preprocessed the probes to select only

those that have a coefficient of variation420%, yielding a data

matrix that is 1198� 42 in size.

100% Subtype A

100% Subtype B

50/50 Mixture

Su
bt

yp
e 

A
 F

ra
ct

io
n

Fig. 2. Comparison of sample classification by LPD and GLAD for a

range of sample sizes. Data points for N=30 dataset shown for clarity
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We used the BIC approach to estimate K. Figure 3 shows that

the BIC method chooses a value of K=5, roughly in keeping

with the correct value of K=3.

For the remainder, we set K=3, the true value, and ran vari-

ational inference for GLAD to focus the results on the inference

algorithm and model. An analysis of the results for K=5 is

provided in Supplementary Section S2. The results are qualita-

tively similar for both K=3 and K=5. Figure 4 shows true

values of � and point estimates �̂ for the three subtypes, across

all 42 samples. GLAD evidently identifies both pure and mixed

samples in the dataset.

This dataset has many samples containing higher fractions of

brain tissue than the other tissue types. The empirical Bayes

estimate of � reflects this, which in turn influences the subtype

fraction estimates for the pure samples. In applications where

one would prefer uniform subtype predictions a priori, � can

be fixed to a scalar multiple of the ones vector. Fixing � to

small positive values reduces the regularization, and thus, the

underestimation of pure samples (Supplementary Section S5).

However, the estimated � values do provide information about

the distribution of subtypes across the entire dataset.
Many of the non-zero genes within each subtype signature are

known to be associated with the corresponding tissue type.

Figure 5 shows the top 10 genes ranked by the absolute value

of xj for the three subtypes. All of the top 10 genes are

over-expressed in the subtype indicated. We have labeled each

subtype with the most closely matching tissue type. In the liver

signature, there are genes associated with blood components

(ITIH4, FGA, MUG1, FGB and PZP) and genes that are

associated with liver regeneration (A1BG) and molecule uptake

(FABP1). In the brain subtype, the top component is MBP—a

myelin sheath component. The signature also includes VSNL1—

a neuronal calcium sensor, SNAP25—a synaptic vesicle dicing
protein and PLP1—a transmembrane myelin protein. Finally,

the lung signature contains SLC34A2, which if defective causes

pulmonary alveolar microlithiasis and SFTPD, which plays a

role in defense response in the lung.

4.3 TCGA GBM tumor classification

We applied the GLAD model to microarray measurements of

RNA expression levels in GBM tumors obtained as part

of The Cancer Genome Atlas (TCGA) project (McLendon

et al., 2008; Verhaak et al., 2010). We used the unified filtered

sample matrix provided in the Supplementary Materials

(Verhaak et al., 2010). These data have been normalized and

filtered for the most differentially expressed genes leaving a

data matrix with 1740 features and 202 primary tumor samples.
Previous work showed four canonical subtypes: classical (CL),

proneural (PN), neural (NL) and mesenchymal (MES) (Verhaak

et al., 2010). As these are biopsy samples, we expect that there

is some normal cell contamination in the samples. Normal

contamination was also observed by Verhaak et al. (2010) and

clustered within the NL subtypes. As such, we expect that mix-

ture fractions of the NL subtype may represent normal cell con-

tamination in our model.
We applied the BIC model selection method to this dataset

and found the optimal value of K=6. Briefly, one subtype is

enriched for gene in the immune response process and another
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Fig. 4. Posterior estimates for mixture fractions for in vitro mixed tissue

samples. True mixture fractions are shown as circle markers, and esti-

mated mixture fractions are shown as cross markers, for each tissue type

across 42 samples (x-axis)

Fig. 3. BIC metric for estimating the number of clusters. The minimal

BIC indicates an optimal number of clusters

Fig. 5. Top 10 genes in biomarker signature for each subtype (tissue).

The top genes correspond to the function of the cells in each tissue

subtype

229

GLAD

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/31/2/225/2365684 by guest on 24 February 2020

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu618/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu618/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu618/-/DC1


shows genes enriched for cell cycle processes. These findings cor-

respond to analysis by Yoshihara et al. (2013) using a supervised

learning approach to estimate tumor purity. A full analysis with

K=6 is reported in the Supplementary Sections S3 and S4.

Here, we proceed with K=4 to directly compare our results

with those obtained by Verhaak et al. (2010).

Figure 6 shows the distribution over subtypes for each sample
in the GBM dataset. We have labeled the subtypes based on their
similarity to the reported subtypes in Verhaak et al. (2010).

They found that the two normal samples in their dataset were
classified as NL. As expected, there is a considerable mixing
between the NL subtype and other subtypes in our analysis,

possibly due to normal cell contamination. We also see signifi-
cant mixing among the other subtypes, indicating that the
samples are indeed generally not pure.

Figure 7 shows the genes involved in the four subtypes identi-
fied by GLAD. Like topic models, each subtype has coefficient
values for all features. However, the Laplace prior has the

effect of regularizing uninformative coefficients toward zero,
yielding a sparse signature. We report only the top 15 candidates
for the signature here; the full table is available in the supple-

mentary information. Genes in green are upregulated in the
subtype, and genes in blue are downregulated. Genes in bold

were also identified by Verhaak et al. (2010) for that subtype,
except UGT8, which was associated with NL-like, whereas we
associated it with PN.

Upregulation of DKK1 and POSTN is associated with the
MES subtype in our analysis. DKK1 plays a role in inhibition
of the Wnt signaling pathway and the presence of bone lesions in

multiple myeloma patients (Tian et al., 2003). Although the
entire function of perstonin (POSTN) is not known, it is
frequently upregulated in cancers and has been associated with

adhesion and differentiation of osteoblasts (Kudo et al., 2007).
These markers, in combination with collagen-specific genes,
COL1A1 and COL1A2, point to the role of these genes in the

precursor to bone and cartilage development for this subtype’s
MES-like genomic character.
The classical subtype has only one highly upregulated gene—

EGFR. Verhaak et al. (2010) observed this association at both
the mRNA and DNA levels in 97% of classical-like cells indicat-
ing its strong association. The PN actin and microtubule-related

genes TMSL8 and DCX are over-expressed in the PN subtype
(Brown et al., 2003). Finally, the NL-like subtype contains the

central nervous system water channel AQP4 and other genes
associated with normal NL cells.

5 DISCUSSION

We have presented GLAD, a new statistical model for the genomic
classification of solid tumors. The model does not make an

all-or-none classification for each sample; instead, it estimates
a per-sample distribution over subtypes. Simultaneously, the

model estimates a sparse expression signature for each subtype.
We provide an interpretation of the model as a regularized form
of matrix factorization.

We compared GLAD with LPD, another clustering and classi-
fication model, using simulated data. At small dataset sizes, we
found that GLAD overestimates the amount of mixing for pure

samples, whereas LPD is quite imprecise for any particular
sample; in our view, one should expect heterogeneity to be the
norm in applications. As we increased the simulated sample size,

the performance of GLAD improved quickly, owing to the
decreased weight of the prior in the inference about �i. GLAD is
able to identify gene expression patterns associated with different

tissue types from real microarray data, even when the sample is a

PN NL CL MES

0.1 0.2 0.3 0.4 0.5 0.6 0.7

TCGA
Grouping

GLaD Subtype

PN

NL

CL

MES

Undefined

Fig. 6. Subtype distributions for each of 202 GBM samples. The esti-

mated subtype (columns) for each sample (rows) corresponds with the

assessment of the TCGA group. The GLAD algorithm also classified sam-

ples that the previous analysis left undefined

DKK1 EVI2A POSTN AGXT2L1
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CKB MBP MOXD1 TMSL8
PTX3 TOP2A

POSTN VSNL1 CHI3L1

NCAN DYNC1I1
C1orf61 MS4A4A EMP3 CENPF

COL1A2 UGT8 C21orf62 PLP1
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Mesynchemal (MES) Classical (CL) Proneural (PN) Neural-like (NL)

Fig. 7. Sparse subtype signatures for GBM data. Upregulated genes are

shown in a lighter shade (green), and downregulated genes are in a darker

shade (blue). Genes identified by the TCGA analysis are shown in bold.

There is high concordance between this sparse subtype signature and the

more dense TCGA signatures (color online)
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heterogeneous mixture. An analysis of TCGA GBM data shows

that there is significant heterogeneity in those clinical samples.

Our Laplace variational inference algorithm provides a fast

method for statistical inference using GLAD. However, it is an

approximation. A Markov-Chain Monte Carlo approach has

potential to reduce bias, at the expense of possibly much

higher computational cost. Our variational approximation is

also one of many possible factorizations of the model. We are

actively testing other ways of approximating the posterior distri-

bution that retain the computational advantages while improving

the quality of the approximation.

When fitting GLAD, we optimize a non-convex objective

function by coordinate ascent. As such, we are only able to iden-

tify a local maximum in the variational auxiliary function, not

necessarily a global maximum. Restarting the algorithm using

random initializations can help, and we found it important to

do so.
Estimating the number of clusters, K, is a universal problem

for clustering algorithms. Our approach, using the BIC, provides

only a rough guideline. However, this approach may require

much more data for accurate parameter estimation than

needed in the current model. Another alternative is to choose

K by cross-validation. This shifts the problem from choosing K

to choosing an appropriate cross-validatory accuracy metric.
Recent studies in breast cancer (Curtis et al., 2012) and colon

cancer (De Sousa E Melo et al., 2013) have suggested different

subtypes, which show distinct survival outcomes. As more sam-

ples are analyzed a clearer picture of cancer subtypes and

number of subtypes develops.
We can extend GLAD in several directions. Other data

types such as imaging, DNA copy-number variation and

DNA methylation may be incorporated as additional x and y

outcomes. Structured sparsity may be incorporated into the �
hyperparameter. Finally, a hierarchical Dirichlet process may

be incorporated into � to learn the number of subtypes K.
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