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ABSTRACT

LEVERAGING BACKSCATTER FOR ULTRA-LOW
POWER WIRELESS SENSING SYSTEMS

MAY 2016

PENGYU ZHANG

B.Sc., TSINGHUA UNIVERSITY, BEIJING, CHINA

M.Sc., TSINGHUA UNIVERSITY, BEIJING, CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Deepak Ganesan

The past few years have seen a dramatic growth in wireless sensing systems, with

millions of wirelessly connected sensors becoming first-class citizens of the Internet.

The number of wireless sensing devices is expected to surpass 6.75 billion by 2017,

more than the world’s population as well as the combined market of smartphones,

tablets, and PCs. However, its growth faces two pressing challenges: battery energy

density and wireless radio power consumption. Battery energy density looms as a

fundamental limiting factor due to slow improvements over the past several decades

(3× over 22 years). Wireless radio power consumption is another key challenge be-

cause high-speed wireless communication is often far more expensive energy-wise than

computation, storage and sensing. To make matters worse, wireless sensing devices

are generating an increasing amount of data.

These challenges raise a fundamental question — how should we power and com-

municate with wireless sensing devices. More specifically, instead of using batteries,
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can we leverage other energy sources to reduce, if not eliminate, the dependence on

batteries? Similarly, instead of optimizing existing wireless radios, can we fundamen-

tally change how radios transmit wireless signals to achieve lower power consumption?

A promising technique to address these questions is backscatter — a primitive that

enables RF energy harvesting and ultra-low-power wireless communication. Backscat-

ter has the potential to reduce dependence on batteries because it can obtain energy

by rectifying the wireless signals transmitted by a backscatter reader. Backscatter

can also work by reflecting existing wireless signals (WiFi, BLE) when these are avail-

able nearby. Because signal reflection only consumes µWs of power, backscatter can

enable ultra-low-power wireless communication.

However, the use of backscatter for communicating with wireless sensing devices

presents several challenges. First, decreasing RF power across distance limits the

operational range of micro-powered backscatter devices. This raises the question of

how to maintain a communication link with a backscatter device despite tiny amount

of harvested power. Second, even though the backscatter RF front-end is extremely

power-efficient, the computational and sensing overhead on backscatter sensors limit

its ability to operate with a few µWs of power. Such overhead is a negligible factor of

overall power consumption for platforms where radio power consumption is high (e.g.

WiFi or Bluetooth based devices). However, it becomes the bottleneck for backscat-

ter based platforms. Third, backscatter readers are not currently deployed in existing

indoor environments to provide a continuous carrier for carrying backscattered infor-

mation. As a result, backscatter deployment is not yet widespread.

This thesis addresses these challenges by making the following contributions.

First, we design a network stack that enables continuous operation despite decreasing

harvested power across distance by employing an OS abstraction — task fragmenta-

tion. We show that such a network stack enables packet transfer even when the whole

system is powered by a 3cm×3cm solar panel under natural indoor light condition.
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Second, we design a hardware architecture that minimizes the computational over-

head of backscatter to enable over 1Mbps backscatter transmission while consuming

less than 100µWs of power, a two order of magnitude improvement over the state-

of-the-art. Finally, we design a system that can leverage both ambient WiFi and

BLE signals for backscatter. Our empirical evaluation shows that we can backscatter

500bps data on top of a WiFi stream and 50kbps data on top of a Bluetooth stream

when the backscatter device is 3m away from the commercial WiFi and Bluetooth

receivers.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The past few years have seen a dramatic growth in wireless sensing devices, with

millions of wirelessly connected sensors becoming first-class citizens of the Internet.

Figure 1.1 shows that the number of wireless sensing devices is expected to surpass

6.75 billion by 2017, more than the world’s population as well as the combined market

of smartphones, tablets, and PCs. However, the growth of wireless sensing devices

faces two pressing challenges: battery energy density and wireless radio power con-

sumption.

Figure 1.1. The wireless sensing devices alone will surpass the smartphone, tablet,
and PC market combined by 2017 [1].

Battery energy density looms as a fundamental limiting factor in wireless sensing

devices especially because improvements have been slow over the past several decades.

Figure 1.2 shows that battery energy density has improved by only 3× over the past

1



22 years. Research forecasts, such as Forbes research, also identifies this limitation

and says “Currently, connected devices, such as Pebble and Galaxy Gear, run on batteries, which

have limited shelf life. Given current energy availability, powering these devices will be impossible.

Prolonged battery life that sources energy from unconventional power sources is a must for future

development for the Internet of Things” [8].

Figure 1.2. 3× battery energy density improvement from 1990 to 2012.

Wireless radio power consumption is another key challenge as high-speed wireless

communication is often far more expensive energy-wise than computation, storage or

sensing. Figure 1.3 shows the power consumption of a variety of wireless radios and

other components of a wireless sensing device. Even Bluetooth Low Energy (BLE),

which has the lowest power consumption among these radios, consumes 15mW dur-

ing an active transmission, orders of magnitude higher than the power needed for

computation (MSP430 MCU), storage (SRAM), or in many cases sensing (e.g. ac-

celerometer). Therefore, there is a dire need to design novel wireless communication

techniques to achieve higher data rates while simultaneously minimizing energy con-

sumption.

These challenges raise a fundamental question — how should we power and com-

municate with wireless sensing devices. More specifically, instead of using batteries,

can we leverage other energy sources to reduce, if not eliminate, the dependence on

batteries? Similarly, instead of optimizing existing wireless radios, can we fundamen-

tally change how radios transmit wireless signals to achieve lower power consumption?
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Figure 1.3. Power consumption of several low-power wireless radios.

A possible answer to these questions is backscatter — a primitive that enables

RF energy harvesting and ultra-low-power wireless communication. Backscatter has

the potential to reduce the dependence on batteries because it can obtain energy by

rectifying a wireless signal transmitted by a backscatter reader or an ambient wireless

radio, such as WiFi and Bluetooth. In addition, instead of directly transmitting

high-power wireless signals, backscatter modulates information by reflecting existing

wireless signals. Because signal reflection only consumes µWs of power, backscatter

has the potential to enable ultra-low-power and high-speed wireless connection for

wireless sensing devices.

However, the use of backscatter for wireless sensing devices presents several chal-

lenges. First, backscatter RF power decreases sharply across the distance, which

limits the operational range of micro-powered backscatter devices. This trend is a

result of path loss and can be modeled with the Friis model shown in equation 1.1

(in logarithmic form). In this model, PT is the transmit power of the reader, λ is

the carrier wave length, GT is the transmit antenna gain, GR is the receive dipole

antenna gain of the backscatter device, d is the distance between the reader and the

backscatter device, and LP is the polarization loss. The amount of RF power, PR,

available for harvesting decreases as the distance d increases. As a result, a micro-

powered backscatter device does not have enough energy for operation at a longer

3



distance even though the SNRs of both backscatter reader-to-tag and tag-to-reader

links are still sufficient for data communication.

PR = PT − 20 log(
4πd

λ
) +GT +GR − LPPR ∝

1

d2
(1.1)

Second, computational overheads on backscatter sensors limit their ability to oper-

ate at µWs of harvested power. These overheads include acquiring data from sensors,

migrating sensor data to the radio, and executing network protocols. These overheads

are negligible on platforms where wireless communication is expensive (e.g. WiFi-

based sensors). However, because of the ultra-low power consumption of backscatter

radios, they become the bottleneck on backscatter-based systems and increase power

consumption while limiting throughput. Therefore, there is a dire need to systemat-

ically investigate the sources of these computational overheads and understand how

to eliminate them.

Third, backscatter readers are not yet integrated into commonly used mobile and

wearable devices nor deployed widely in urban settings. An alternative would be to

leverage ambient signals (e.g. WiFi and BLE) that already exist. However, leveraging

ambient signals for backscatter is hard primarily because an ambient signal itself

causes substantial interference to a backscatter receiver. As a result, decoding weak

reflected signal becomes harder. Another challenge comes from the bursty nature of

an ambient signal where it is not always available for backscatter. As a result, we

cannot directly use an off-the-shelf receiver (e.g. WiFi or BLE receiver) to decode

backscattered information.

1.2 Thesis Contribution

My thesis tackles these challenges and seeks to enable the practical adoption of

backscatter for wireless sensing systems.

4



1.2.1 Contribution Summary

Overall, the key systems and contributions of this thesis are:

• QuarkNet – A network stack that tackles the challenge of operating under de-

creasing harvested power across distance by employing task fragmentation. Our

network stack enables packet transfer even when the whole system is powered

by a 3cm×3cm solar panel under the natural indoor light.

• Ekho – A hardware architecture that minimizes the computational overheads

of a backscatter system to enable ≥1Mbps backscatter transmission while only

consuming ≤100µW of power, two orders of magnitude improvement over the

state-of-the-art.

• FS-Backscatter — A system that can leverage ambient WiFi and Bluetooth

signals in an environment for carrying backscattered information. Our system

can achieve 500bps and 50kbps data rate when a backscatter tag is 5m away

from the commercial WiFi and Bluetooth receivers respectively.

1.2.2 Thesis Overview

Figure 1.4 shows an overview of the thesis. It includes three components to tackle

the three key challenges of backscatter systems.

1.2.3 Network Stack for Micro-powered Sensors — QuarkNet

In chapter 3, we present the design of a network stack to tackle the challenge of

operating under decreasing harvested power across distance. Its design is based on the

observation that communication often fails not because energy cannot be harvested

but because packet transfer involves hundreds of instructions and cannot fit into the

available energy budget. To address this problem, we develop a simple but powerful

abstraction — by fragmenting any networking task into its smallest atomic units,
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Figure 1.4. An overview of thesis.

and we can enable the system to scale down to resource impoverished regimes. Our

network stack enables packet transfer even when the whole system is powered by a

3cm×3cm solar panel under natural indoor light condition.

1.2.4 High Speed Ultra Low-power Backscatter — Ekho

In chapter 4, we design a hardware architecture to minimize the computational

overheads on backscatter sensors for achieving high-speed ultra low-power backscat-

ter. A fundamental assumption that has driven the design of sensor networks for

decades is that communication is the most power-hungry component of an individual

sensor system. We argue that this assumption does not hold when it comes to passive

radios such as backscatter, where communication is much cheaper energy-wise com-

pared to computation. Therefore, we overturn the design principle governing wireless

sensor design from one that focuses on minimizing communication to one focuses on

optimizing the computational elements between the sensor and RF interface. We

design a hardware sensing architecture that minimizes computational blocks between

the sensors and the backscatter RF interface. We implement our architecture on an

FPGA and show that we are able to achieve ≥1Mbps backscatter transmission while
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only consuming ≤100µW of power, a two orders of magnitude improvement over the

state of the art.

1.2.5 Leveraging Ambient Wireless Signals — FS-Backscatter

In chapter 5, we introduce FS-Backscatter, a system that can leverage ambi-

ent WiFi and Bluetooth signals for carrying backscattered information. A key fea-

ture of this system is that it enables backscatter decoding using commercial WiFi

and Bluetooth radios. By eliminating the need of deploying backscatter readers,

FS-Backscatter provides a promising solution for deploying backscatter on existing

wireless sensing devices even though radios on these devices are not designed for

backscatter. Decoding backscattered information on top of WiFi and Bluetooth sig-

nals is hard because the signal strength of WiFi and Bluetooth is usually several

orders of magnitude higher than the reflected signal strength. To deal with such

strong interference, we move the backscattered signal to an adjacent clean channel

where the interference from the primary WiFi or Bluetooth channel is smaller. Our

empirical evaluation shows that we can achieve ∼500bps and ∼50bps data transmis-

sion when the backscatter device is 5m away from the commercial WiFi and BLE

receivers.
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CHAPTER 2

BACKGROUND

This thesis discusses how and why a backscatter device experiences limited opera-

tional range, has a significant amount of computational overhead, and cannot obtain

a continuous carrier wave in an ambient environment. All these challenges prevent us

from deploying backscatter devices in the nearby environment. To understand these

challenges, we present background material on backscatter systems to set the context

for our contributions. More detailed related work sections are also provided in the

remaining chapters.

Our background introduction starts from looking at the overall system architec-

ture, which gives us an overview of a backscatter system. We then turn to study the

hardware architecture of a backscatter device, which sets the context about why exist-

ing backscatter devices have a significant amount of computational overhead. We also

investigate the channel model of backscatter communication, which helps us under-

stand why SNR is not the limiting factor of the operational range of a micro-powered

backscatter device. Let us now start from looking at an overview of backscatter

systems.

2.1 Backscatter system overview

Figure 2.1 shows the architecture of a backscatter system. A backscatter reader,

which has a form factor as large as an RFID reader or as small as a wearable device,

sends out a continuous carrier wave. The carrier wave travels through a certain dis-

tance and reaches a backscatter device. A portion of the carrier power is converted

8



by the backscatter device into DC current and is stored locally as harvested energy.

Another portion is reflected back to the backscatter reader by toggling an RF transis-

tor. When the backscatter device toggles the RF transistor, the amount of reflected

signal changes. Such changes can be detected by the reader and is interpreted as the

information transmitted by the backscatter device.

decreasing RF power computational 
overheads

absence of carrier 
wave

network stack 
— QuarkNet

hardware 
architecture 

— Ekho

leverage ambient 
signals

Backscatter reader Backscatter deviceCarrier Wave
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TX AMP

LNARX

logic
RF 

harvester

Figure 2.1. Backscatter system architecture.

2.2 Hardware overview

2.2.1 Backscatter radio analog RF front end

Backscatter radios are designed to enable ultra low power wireless communication.

As shown in Figure 2.2, a reader provides a carrier wave, which can be modulated with

information. To transmit data, a sensor toggles the state of a transistor to detune

its antenna and reflect the carrier wave back to the reader with its information bits.

Because the sensor does not actively generate an RF carrier signal unlike active radio

systems, the power consumption of the backscatter radio is very low. In addition, the

on-off transition overhead of backscatter radios is very low because backscatter radios

do not have to warm up the RF analog circuits for data transmission, unlike active

radio systems. As a result, there is little overhead incurred while transmitting via

backscatter, even when transmitting at a high rate. For example, one key component

of the backscatter analog RF front end of the WISP [18] is a MOSFET transistor

(BF1212WR). Its power consumption follows the equation of 1
2
CV 2F where C is
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the capacitance of the transistor, V is the digital drain-source voltage, and F is the

frequency of operating the transistor. When this transistor is toggled at a slow rate

of 10Hz, it consumes 55pW of power, and even when toggled at a high rate of 1MHz,

it only consumes 5.5µW of power. Thus, backscatter radios consume of the order of

µWs of power, even for high rate data transfer.
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Figure 2.2. Backscatter communication analog RF front end.

2.2.2 RF energy harvesting

In addition to ultra low-power wireless communication, backscatter also enables

wireless energy delivery. As shown in Figure 2.2, the backscatter reader provides a

carrier wave, which can be rectified by the sensor to produce DC voltage. This voltage

is boosted to an appropriate level by a charge pump at the sensor and accumulated in

a small storage capacitor until the voltage reaches an appropriate threshold before any

computation (or sensing) can begin. Once the voltage is sufficient to power the device,

it can begin to receive and transmit data, both of which are done by modulating the

same carrier wave.
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Table 2.1. Parameters used for modeling bi-static and mono-static backscatter.

Explanation
Pt TX antenna transmit power
Gt TX antenna gain
Gr RX antenna gain
Gn Sensor’s backscatter antenna gain
λ Wave length of carrier wave
D Distance between transceiver and sensor
Dt Distance between transmitter and sensor
Dr Distance between receiver and sensor

2.3 Backscatter channel model

2.3.1 Backscatter link budget

Figure 2.3 shows the wireless channel link budget of bi-static and mono-static

backscatter systems across distance. These two types of backscatter have differ-

ent types of wireless channel link budget because they use different mechanisms for

transmission and reception. For mono-static backscatter, TX and RX antennas are

deployed in the same location or are hosted on the same object. In contrast, for

bi-static backscatter, the deployment of TX and RX antennas are geophysically sep-

arated. The mathematical models of mono-static and bi-static backscatter are shown

in equation 2.1 and equation 2.2 respectively. Table 2.1 summarizes the parameters

used in the two models. For both models, the wireless link budget of backscatter

decreases significantly even when the device is slightly further from the carrier wave

transmitter because the strength of the backscattered signal decreases at the fourth

power of distance.

P =
PtGtGrGn

(4π
λ

)4D4
(2.1)

P =
PtGtGrGn

(4π
λ

)4D2
tD

2
r

(2.2)

To illustrate why we prefer bi-static backscatter, we consider the following scenario

where a backscatter device moves away from a mono-static reader and a bi-static
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Figure 2.3. Link budget of bi-static and mono-static backscatter.

reader where the device is always 0.1m away from the RX antenna. We find two

interesting observations from Figure 2.3. First, bi-static backscatter has higher link

budget compared to mono-static backscatter when the sensor is more than 0.5m

away from the carrier wave transmitter. This benefit comes from the geophysical

separation between TX and RX antennas where one of them can be deployed close to

the backscatter device. Second, distance has a larger impact on the signal strength

of mono-static backscatter compared to a bi-static backscatter system. For example,

at 2m, the signal strength of a mono-static backscatter system is 12 dB lower than

a bi-static backscatter system. To make matters worse, this gap becomes larger at

a longer distance. At 10m, this gap is 26 dB, much larger than the 2m case. Both

observations suggest that we should use bi-static backscatter if possible.

2.3.2 Asymmetric forward and backward links

The forward (reader-to-sensor) and backward (sensor-to-reader) links in backscat-

ter communication differ in several ways. First, the path loss is very different for the

two links. The signal to noise ratio (SNR) for typical backscatter communication

decays with the square of distance for the forward link and to the fourth power of dis-

12



tance for the backscatter link. Second, the encoding schemes for the links are different.

In the EPC Gen 2 network stack, reader to sensor communications use pulse-interval

encoding (PIE), which allows easy decoding, whereas sensor to reader communication

uses more complex encodings (FM0, Miller2, Miller4, Miller8). Third, the antenna

sensitivity at the sensor and reader are vastly different. A typical backscatter reader

(e.g. Impinj [14]) uses a mono-static antenna for sending and receiving data, which

has a sensitivity of -80 dBm. In contrast, an RFID-scale sensor (e.g. the Intel WISP

[18]) uses a simple dipole antenna for data transfer, which is significantly less sensi-

tive than the reader antenna. These factors contribute to different link qualities in

the two directions. The forward link uses weaker encoding and is received by a less

sensitive antenna, but has lower path loss. The backward link uses robust encoding

and is received by a highly sensitive antenna, but has much higher path loss.
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CHAPTER 3

PUSHING THE OPERATING LIMITS OF
MICRO-POWERED SENSORS

Existing micro-powered sensors make a slew of design choices that limit the ability

to scale down to severe energy harvesting environment. In this chapter, we address

this issue with QuarkNet, a network stack that is designed to enable continuous

communication even if there is only enough harvested energy to transmit a few bits

at a time.

3.1 Background and Motivation

The idea of networks of perpetual self-powered sensing, communication and ac-

tuation devices that can fly in swarms, swim through the bloodstream, and navi-

gate through pipes and debris has propelled the imagination of science fiction writ-

ers for decades, but reality is finally catching up. While practical instantiations of

self-powered devices have largely been limited to RFID tags, a new generation of

micro-powered devices promises to go beyond simple identification towards computa-

tion, sensing, and actuation. Among the key technology trends enabling this vision

are advances in micro-harvesters that scavenge energy from light, electro-magnetic

waves, vibrations, temperature, and other sources [24]. Such micro-harvesters enable

platforms to cut their reliance on stored energy in batteries, thereby enabling true

miniaturization and perpetual operation [89, 92].

While micro-powered devices present an exciting opportunity, they present tremen-

dous challenges due to the amount of energy they harvest and the sizes of their energy
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reservoirs. The amount of harvested power using a micro-energy harvester is of the

order of nanoWatts to µWatts, which is three to six orders of magnitude lower than

the average power draw of a Mote. At first glance, this seems to suggest that if we

wait long enough, the device can trickle charge to accumulate sufficient energy to op-

erate similar to a battery-powered device. But there are three problems. First, long

delays before performing useful work are often unacceptable, particularly for continu-

ous sensing and communication. Second, the voltage from the incoming energy source

is often low, therefore accumulating energy into an energy reservoir requires boosting

voltage which is wasteful compared to incoming energy (imagine pumping water up a

hill to store for future use). Third, micro-powered platforms often have small energy

reservoirs to reduce form-factor. For example, the Intel WISP [18] and Michigan Mi-

cro Mote (M3) [61] have energy reservoirs that are 4 – 6 orders of magnitude smaller

than a coin cell respectively.

The dual limitations of low harvesting rates and tiny energy reservoirs have pro-

found implications on the design of a network stack for micro-powered devices. Every

communication task needs to be small enough to fit within the available energy in

the reservoir. Enabling communication despite such minuscule energy budgets is akin

to working on a micro-sculpture — optimizations at the granularity of individual in-

structions, bits, on-off transitions, and analog-to-digital conversions are needed. To

compound matters, small short-term variations in harvesting conditions that typically

would be smoothed out by a larger energy reservoir begin to impact system operation,

and can cause an order of magnitude variation in available energy for a task.

These challenges are not addressed by existing protocols such as EPC Gen 2.

RFID tags operate solely on continuous harvested power without buffering energy,

therefore EPC Gen 2 assumes a regime where the tag either has enough power to

operate continuously, or not at all. In contrast, micro-powered devices can buffer
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energy, thereby enabling operation in regimes where there is insufficient power to

operate continuously, but enough power to operate intermittently.

Recent systems such as MementOS [76] and Dewdrop [29] tackle this problem

in different ways. Both these systems use backscatter similar to RFIDs, but the

challenge is fitting the communication stack within the energy budget. MementOS

introduces checkpoints within computation tasks such that it can recover from outages

and continue execution. Dewdrop continually adapts task execution to harvesting

conditions such that the efficiency of execution is optimized. To evaluate the ability

of these systems to scale down, we consider two harvesting conditions — strong light

(2000 lux) and natural indoor light (200 lux), both of which should, in principle,

provide enough energy to operate a micro-powered sensor. But while both Mementos

and Dewdrop operate under strong light, they are inoperable under natural light.

The inability of current systems to scale-down illustrates the central challenge

in designing a network stack for micro-powered devices. A wireless network stack

involves a variety of tasks that are simply too large to fit into the extreme energy

constraints of this regime. Even the core primitive of a network stack — packet

transfer — can involve hundreds of instructions and bits. In this work we ask the

following question — what are the general principles that we, as systems designers,

should use to enable these micro-powered platforms to communicate continuously

despite trickles of energy, tiny energy reservoirs, and dynamic harvesting conditions?

We present QuarkNet, a network stack that embodies a simple but powerful ab-

straction — by fragmenting a backscatter network stack into its smallest atomic units,

we can enable the system to scale down to resource-impoverished regimes. The fun-

damental building block of QuarkNet is the ability to dynamically fragment a larger

packet transfer into µframes that can be as small as a single bit under severe en-

ergy constraints, and as large as the whole packet when sufficient energy is available.

On top of this abstraction, we design a variety of innovative techniques to handle
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dynamic frames that can be abruptly terminated in low energy settings, maximize

throughput by tracking harvesting dynamics in a low-overhead manner, interleave

µframes across nodes to maximize throughput despite different harvesting rates, and

minimize overhead across the entire stack.

Our results on a USRP reader and Moo nodes show that:

• The maximum communication distance achieved by QuarkNet is 21 feet, 3.5×

longer than Dewdrop and 4.2× longer than EPC ID transfer. QuarkNet achieves

close to the maximum achievable range, beyond which decoding even a single

bit fails.

• The minimum illuminance required for QuarkNet to operate is 150 lux, which

is 13× lower than the 2000 lux requirement of 12 byte EPC ID transfer. This

suggests that µframe can operate when a device is powered by natural indoor il-

luminance, dramatically increasing utility of micro-powered devices for practical

deployments.

• The throughput of QuarkNet for node to reader transfer is 18 kbps, 10.5×

higher than EPC Gen 2, 5.8× higher than Dewdrop, and 3.3× higher than Flit.

For reader to node transfer, we obtain throughput of 1.5 kbps, 2× higher than

a battery-assisted device which uses the EPC Gen 2 write command.

• When ten nodes transmit simultaneously to a reader, we achieve a through-

put of 16.5 kbps as a result of variability-aware scheduling and interleaving of

µframes, which is 5.4× higher than the throughput when devices are inventoried

individually. Flit and EPC Gen 2 obtain zero throughput in this case.
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Figure 3.1. Backscatter signaling at PHY.

3.2 Case for µframes

A backscatter radio is designed to both provide power to a passive device as well

as to enable communication. As shown in Figure 3.1, the reader provides a carrier

wave, which can be reflected by a passive device back to the reader with its own

information bits. This makes backscatter a considerably more energy-efficient com-

munication mechanism compared to active radios, and ideally suited to the constraints

of micro-powered devices. The Intel WISP [18] and UMass Moo [96] are examples of

backscatter-enabled sensor platforms.

Despite the energy benefits of backscatter radios, existing network stacks achieve

only short communication range and low throughput. We make an empiric argument

these limitations are, in part, due to the design of the network stack. To do this,

we compare the range and throughput of existing network stacks versus achievable

performance. Our experiment uses a UMass Moo [96] and a USRP reader [30]. Since

combining multiple micro-power sources can enable higher performance, broader op-

erating conditions, and enable wider range of applications, we augment the Moo with

a small solar panel [44, 24, 43]. We vary the distance from the reader by small steps,

and at each step, we vary RF power from 17dBm to 26dBm, while not changing the

light levels (normal indoor light).
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Table 3.1. EPC Gen 2 vs Achievable Performance.

Range(ft) Throughput(kbps) SNR(dB)
Gen 2 3.6±0.8 3.6±0.3 9.6±1

Optimal 18.6±3.3 21.7±3.7 6.9±0.9

To measure the achievable range, we look at the raw backscattered signal at the

reader, and find the distance at which the reader is unable to decode even a single

bit. This would be the edge of the communication range for our hardware platform.

Measuring the maximum achievable throughput is harder since it is influenced by

several system parameters including voltage at the energy reservoir when communica-

tion starts, the length of each transmission unit, and control overheads associated with

the protocol. We brute-force search across all possible voltages and packet lengths to

find the setting that results in the maximum number of transistor flips at the node.

We then convert the transistor flips to a maximum number of bits transmitted us-

ing the default Miller-4 encoding scheme, and assume zero control overhead for each

packet, which gives us an estimate of the maximum throughput.

Table 3.1 shows the range and throughput while executing the EPC Gen 2 stack

(used in Mementos [76], Dewdrop [29], and Blink [100]) versus achievable limits.

We see that the achievable range is 18.6 feet, which is over 5× longer than the

communication range of EPC Gen 2. Surprisingly, we find that EPC Gen 2 ceases to

operate even when its SNR is 9.6dB, 1.4× higher than the optimal case. Similarly, we

see that the achievable throughput is 21.7 kbps, whereas EPC Gen 2 achieves barely

1.7 kbps, an order of magnitude difference.

We now investigate the fundamental factors underlying this performance gap, and

outline the core challenges that need to be addressed to bridge the gap.

3.2.1 Challenge 1: Variable energy per transmission

A key challenge in designing a backscatter network stack is handling variability

in the amount of energy accumulated in the energy reservoir. To understand the
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reasons, let us look at how micro-powered devices work. As shown in Figure 3.2,

micro-powered devices operate in a sequence of charge-discharge cycles since there

is too little energy to continually operate the device. The device sleeps for a short

period during which it harvests energy and charges a small energy reservoir, and then

wakes up and transmits a packet during which the reservoir discharges.

There are several reasons why it is difficult to anticipate how much energy will

be available in each discharge cycle. First, if harvesting conditions are too low, it is

often too expensive to push more energy into a reservoir due to the inefficiencies of

stepping up the voltage. As a result, the maximum amount of energy that can be

accumulated depends on current harvesting conditions. Second, RF energy harvested

by a node depends on how much energy is output by the reader. When a reader is

doing nothing, the RF output power is roughly constant. However when a reader is

communicating, this RF carrier wave is being modulated which changes the amount of

harvested energy. In a multi-node network, the reader is communicating with different

nodes, therefore harvesting rates continually vary at each node. Third, even if the

node were to wait until it has a certain amount of energy prior to communication,

this requires measurement of energy levels using analog-to-digital conversions (ADC).

Each ADC operation consumes 327 uJ on the Moo platform [96], which is equal to the

energy budget for transferring 27 bits of data. Such overhead is far too substantial

on a micro-powered platform.

While choosing a smaller transmission unit might seem like a straightforward

solution to this problem, this over-simplifies the design challenge. As the distance
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Figure 3.3. Factors that impact communication throughput.

between the node and reader increases to the limit of the achievable range in Table 3.1,

the number of bits that can be successfully transmitted reduces. Thus, we need to

use frames that may be as small as one or a few bits in size when the energy levels

are low, which requires a network stack that can scale down to unprecedented levels.

But such scale down often comes at the expense of throughput, which suffers due

to the overheads associated with each transmission, including preambles, headers,

and hardware transition overheads. To simultaneously optimize throughput, it is

important to transmit as large a transmission as is possible given available energy.

Thus, the problem faced by a node is that it needs to scale down its transmission unit

to the bare minimum under poor harvesting conditions, while scaling up to improve

throughput when the conditions allow.

3.2.2 Challenge 2: Variable harvesting rate

The energy harvesting rate has significant impact on the communication through-

put, since higher harvesting rate means that more energy can be used for data trans-

fer. While energy harvesting rate might seem like a characteristic of the harvesting

source, system parameters have a surprisingly high impact. Figure 3.3(a) shows the

empirically measured harvesting rate as we vary the amount of time for which the

node replenishes energy between two transmissions. The results are counter-intuitive
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— while one might expect more energy to be harvested over time, the harvesting rate

drops to zero for longer sleep durations.

This observation can be explained analytically by looking at how capacitors buffer

energy. The charging process of a capacitor follows its charging equation V = Vmax(1−

e−ts/τ ), where ts is the sleep time, τ is the RC circuit time constant, and Vmax is the

maximum voltage to which the capacitor can be charged under the current harvesting

conditions. Its energy harvesting rate follows the equation: H = C × V 2
max× τ−1(1−

e−ts/τ )e−ts/τ . When the harvesting conditions are constant (i.e. Vmax and τ are fixed),

H is a concave function of ts, which is shown both analytically and empirically in

Figure 3.3(a). When harvesting conditions change, both Vmax and τ change, therefore

the maximum operating point changes as well. Thus, to optimize throughput, it

is important to adapt to current harvesting conditions, and continually track the

maximum harvesting point.

One factor that should not be overlooked is keeping the overhead of adaptation

low. Most methods to track the charging rate of batteries and capacitors use analog-

to-digital conversions to obtain the voltage at the energy reservoir. This overhead is

minuscule for most platforms, but a significant part of the harvested energy in our

case. Thus, it is important to minimize such overheads while adapting to harvesting

conditions.

3.2.3 Challenge 3: Time-decaying SNR

A peculiar aspect of backscatter communication is that the signal to noise ra-

tio (SNR) of the received signal at the reader degrades steadily as the size of the

transmission unit increases. Figure 3.3(b) shows that the signal strength of a node

response decreases gradually from 0.18 at 1.5ms to 0.05 at 8ms during the transmis-

sion process. While decoding the initial part of the transmission is straightforward
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due to high SNR, it becomes much more challenging after about 8ms since the SNR

is too low for reliable decoding, resulting in packet losses.

In order to understand why this happens, let us look at how a backscatter radio

works. A backscatter radio provides power to a passive device and enables communi-

cation. The reader provides a carrier wave, which can be reflected by a passive device

back to the reader with its own information bits. The modulation is achieved by tog-

gling the state of the transistor of a backscatter device shown in Figure 3.3(c). Since

the same RF power source is shared by different system components, some fraction

of the incoming power is used to operate the micro-powered device while the rest is

reflected back to the reader for communication. The exact fraction depends on the

state of the energy reservoir C and the state of the matching circuit, which is de-

signed to charge the energy reservoir C when the voltage is low. Therefore, when the

transmission begins, C is fully charged, the antenna resistance is mismatched with

the resistance of other hardware components of the system. As a result, most of the

incoming power will be reflected back to the reader, which receives a strong signal

that can be easily decoded. As the transfer progresses, C slowly discharges, and the

antenna resistance matches the resistance of the system load. Therefore, most of the

incoming power is harvested to operate the system, and less RF power is reflected.

This leads to decreased backscatter signal strength at the reader, and consequently,

packet losses. Thus, to ensure that packets are received successfully, the tag needs to

adapt the size of each packet such that the SNR at the tail of the packet is higher

than the minimum decoding requirement.

3.2.4 Challenge 4: Energy-induced reader to node losses

While time-decaying SNR only presents a problem when a node communicates

with a reader, reader to node communication presents other challenges. The central

issue is that that the energy level on the receiving node might dip below the low
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watermark at any point during the reception, at which point the node has to shut off

its RF circuit and go to sleep to recharge. The reader, however, does not know that

the node has gone to sleep, and only realizes this fact after a timeout.

While such losses can be attributed to small energy harvesting variations at longer

ranges, we observed to our surprise that such losses occur even when a tag is placed

relatively close to the reader — 40% losses at 2 ft. The reason for this behavior is

that data transfer from the reader to tag comes at the expense of RF power being

transmitted to the tag. Since the reader is actively transmitting to the tag, the

carrier wave from the reader to tag is intermittent, causing substantial variations in

RF energy harvesting and consequently variations in energy levels at the tag.

The energy dynamics at the tag makes it difficult to use reader-side estimation to

identify the best transmission unit to communicate with a tag. In addition, explicitly

providing information to the reader about the current energy level has considerable

overhead while not being robust to dynamics. Thus, the challenge we face is that the

reader needs to have a way of knowing the instantaneous energy state at the tag, and

detecting its shut-off point without using cumbersome protocol-level mechanisms to

enable this information exchange.

3.3 Fragmenting packets into µframes

At the heart of QuarkNet is a simple hypothesis — by breaking down packet

transmission into its smallest atomic units, which we refer to as µframes, we can

enable the system to scale down to severely limited harvesting regimes. We address

the challenges in enabling such extreme fragmentation both for node-to-reader and

reader-to-node communication.
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3.3.1 Fragmentation at bit boundaries

The first question we ask is: what are the practical considerations that determine

how we can dynamically fragment a logical transmission unit (packet) into µframes?

Ideally, we would want to insert fragment boundaries at arbitrary positions within a

packet so that we can make µframes as small or large as needed, however, this makes

decoding extremely error-prone.

To understand where to place fragmentation boundaries, we need to give some

more detail about how backscatter modulation works. Figure 3.4 shows a sequence

of backscatter pulses that compose bits in a packet. Backscatter modulation uses

On-Off-Keying (OOK), therefore each bit is composed of a sequence of on and off

pulses. As can be seen, the template for a ’0’ pulse and ’1’ pulse differ only slightly

in the phase information of the pulses within the bit.

The key observation is that placing boundaries at certain points in a packet can be

done without disrupting the phase information required for decoding, whereas other

boundaries would disrupt decoding. For example, suppose that a fragment boundary

is inserted between two adjacent bits, the phase information of each bit is maintained,

thereby not impacting the ability to match the template to the bit. On the other

hand, suppose that a fragment boundary is inserted within a single bit, the phase

information within the bit is disrupted, thereby causing a mismatch at the decoder

between received bit pulses and its template.

This leads us to a general principle for fragmenting a packet into µframes —

µframe boundaries can be inserted between bits but not within a bit. The ability

to fragment at any bit boundary gives us the requisite combination of fine-grained

fragmentation as well as low decoding error.
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3.3.2 Tuning inter-µframe gap

We now have a method for fine-grained fragmentation of larger packets, but how

do we use this to dynamically fragment packets? How do we decide the length of each

µframe and the sleep gap between µframes where the node replenishes energy?

We first answer this question for node-to-reader communication. In this case, we

need to address two of the challenges discussed in §3.2: a) how to optimize throughput

by operating at the optimal harvesting rate, and b) how to ensure the tail of each

µframe transmitted from a node has sufficiently high SNR to be decoded at the reader.

3.3.2.1 Gradient descent algorithm

As can be seen in Figure 3.3(a), the harvesting rate curve is a concave function of

the gap between µframes (under constant harvesting conditions). A fast and effective

method for converging to the optimum of a concave function is to use gradient descent

[9]. The gradient descent algorithm works as follows: first, we start with an initial

guess about the optimal sleep gap. Second, we compute the gradient at this point,

and look for the direction of the positive gradient. Third, we take a step along the

direction of the positive gradient with step size proportional to the gradient. We

repeat this process until convergence (i.e. step is smaller than a threshold). The

algorithm takes large steps when the gradient is steep (i.e. point is far from optimal),

and small as the gradient reduces (i.e. point is near optimal).
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What if the harvesting conditions change and the curve itself shifts to create a new

optimal harvesting point? Our gradient descent-based sleep gap adaptation algorithm

operates continually — once it converges to the optimal, it periodically probes the

gradient at the current optimal, and moves along the positive gradient if the optimal

harvesting rate changes. In this manner, the algorithm seamlessly adapts to such

dynamics.

3.3.2.2 Handling time-varying SNR

We need to add another constraint to to the gradient descent algorithm — the

SNR at the tail of the frame should be higher than the decoding threshold at the

reader, otherwise the frame cannot be decoded. This constraint is easy to add since

it simply translates to a bound on the maximum length of the inter-µframe gap.

Since the length of the gap directly impacts the length of the µframe, capping the

inter-µframe gap ensures that the length of each µframe is lower than the decoding

threshold. The only change to the gradient descent algorithm is that a step cannot

exceed the maximum inter-µframe as determined by the SNR constraint.

3.3.2.3 Duty-cycling the radio

One important aspect of the inter-µframe gap is that we shut off the node’s RF

circuit for this length of time. In a multi-node environment, the reader is constantly

talking to other nodes, so leaving the RF circuit on results in substantial reception

overhead since backscatter is a broadcast-based protocol, and wakes up every node

that has its radio circuit turned on. To avoid these costs, we turn off the RF circuit

during the recharge cycle. Once the node has slept for the intended duration, it

switches on its RF circuit. One side-effect of our decision to turn off the RF circuit

during gaps is that the reader now has to be more careful to avoid transmitting to

a node or scheduling a node for transmission while it is inactive. We return to this

question in §3.4.2.
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3.3.3 Remote interrupts

We now turn to µframe adaptation for communication from a reader to a node.

As described in §3.2, the key challenge is that the reader cannot detect when a node’s

energy level drops below a low watermark, and it should stop transmitting. Similarly,

once a node has gone to sleep, a reader does not know when it will wake up for the next

µframe. Given these constraints, how can we enable reader-to-node communication?

3.3.3.1 Estimating µframe length

Our idea is to use a remote interruption mechanism, where a node issues an in-

band interrupt during reader transmission, and informs the reader that it has reached

a low-energy state. This remote interrupt is generated by toggling its transistor while

receiving the current frame. In other words, the remote interrupt is a signal that is

overlaid on the same time-slot and frequency signal as the message from the reader

to node.

How can the reader decode an in-band interrupt from the node? The key insight

is that the reader modulates the carrier by toggling the carrier wave whereas the node

communicates back to the reader by changing the amplitude of the backscattered sig-

nal. In other words, both can occur simultaneously! Thus, when the reader is sending

an ON pulse, the amplitude of the backscattered signal that it receives depends on

whether the state of the transistor at the node is ON or OFF — the amplitude is

higher when the node’s transistor is ON and lower when it is OFF. When the carrier is

OFF at the reader, then the state of the node’s transistor does not matter since there

is no backscattered signal. The reader can detect the remote interrupt by looking

for a large signal variance in the carrier wave when the reader has the carrier wave

turned on.

Figure 3.5 shows an example signal where toggling the transistor causes a large

variance on the carrier wave, which is monitored by a reader and can be identified
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by tracking the signal variance within a reader pulse. However, the signal variance is

detected only when the carrier wave is on. As shown in the figure, a reader cannot

observe the large signal variance when the carrier wave is off. Fortunately, the carrier

wave is on for 50% of the time when the reader transmits 0s and 75% for 1s. Thus, as

long as a remote interrupt is longer than 50% of the length of a ’0’ bit from a reader,

it can reliably detect the interrupt and pause its transfer.

Finally, an auxiliary benefit of the remote interrupt is that it acts as an inexpensive

µframe ACK from the node, which obviates the need for more explicit protocol-level

mechanisms and reduces our overhead.

One limitation of our current design is that it is not robust to noise spikes in the

frequency band. Such spikes can occur because of multiple readers transmitting to

nodes since backscatter is a broadcast medium and reader-to-node communication

has to be serialized. Robustness against external interference could be improved by

making the remote interrupt longer and encoding the signal, but we do not do this

in our current implementation.

3.3.3.2 Estimating inter-µframe gap

We now have a way for the node to interrupt a reader when it needs to replenish

energy, but how long should the reader wait before initiating the next µframe transfer?

Clearly, this duration should be at least as long as the inter-µframe gap that the node
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is using, otherwise the reader might be trying to communicate to a node that has its

RF circuit turned off. We address this by using a simple probing-based approach at

the reader — for each µframe gap that the reader selects, it knows whether the frame

was received or not by checking the presence of a remote interrupt. If no remote

interrupt is received, the reader knows the node does not receive the frame properly.

The reader continually adjusts the gap to minimize missed frames at the node.

3.4 QuarkNet for multi-node networks

So far, we have focused on communication between a single node and reader. We

now turn to the case where there are several nodes in the vicinity of a reader. The

key difference between a single node and multi-node setting is that in the former, the

reader stays idle during times when the node is asleep to replenish energy, whereas

in the latter, these inter-µframe intervals present an opportunity to schedule another

node’s µframe transfer, thereby ensuring that throughput is maximized.

3.4.1 Design Options

Before launching into the details of our design, lets step back and look at the design

options. Co-ordination mechanisms for backscatter networks are more restrictive

than typical active radio-based networks for two reasons: a) nodes cannot overhear

each other’s transfer, hence carrier sense-based approaches are infeasible, and b) the

stringent resource constraints of nodes render approaches that require complex coding

and synchronization infeasible. As a result, existing proposals have focused on two

classes of techniques — EPC Gen 2 and variants which use a sequence of random-

access slots, and rateless transfer where nodes transfer concurrently, and the reader

simultaneously and successively decodes all transmissions.

While the deficiencies of EPC Gen 2 for severely energy constrained regimes have

been detailed earlier in this chapter, other alternatives and enhancements are surpris-
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ingly poor in dealing with this regime as well. In particular, consider two prominent

recent techniques — Flit [45] and Buzz [86]. Our earlier work, Flit, re-purposes EPC

Gen 2 slots for bulk transfer, thereby amortizing overhead, but it assumes that nodes

are able to sustain a long stream of transfer, which we realized was not the case in

severe harvesting conditions. Buzz uses rateless codes, but in-order to get these codes

to work, it has to use synchronous single-bit slots across nodes. Each single-bit slot

incurs substantial overhead due to slot indicators, and turning on and off the radio,

which dramatically impacts performance. Given that existing approaches are not

well-suited to our nodes, the question is what protocol to use for co-ordinating nodes.

3.4.2 Variability-aware node scheduling

Our scheduler is designed to interleave µframes from different nodes, thereby fully

utilizing the inter-µframe gaps. The reader divides time into variable-sized µslots,

during which it explicitly schedules a single node to transmit its µframe. The length

of each µslot depends on the size of the µframe — a node-to-reader µframe terminates

when the node reaches its low watermark energy level and the reader ACK is received,

and a reader-to-node µframe terminates when the node issues a remote interrupt. In

both cases, there is a maximum bound on the µframe size to deal with nodes that

have plentiful energy.

While the µslot mechanism appears relatively straightforward, the main challenge

is handling the fact that nodes turn off their RF circuit when they are asleep. As a

result, if a node is scheduled too early by the reader, then it may not be awake to

utilize the slot, but if it is scheduled too late, then it is not operating at its maximal

harvesting rate.

To handle this, we use a token-based scheduler to deal with the stochastic nature

of harvesting conditions, while optimizing throughput. For each node, the scheduler

maintains a running estimate of the gap between µslots assigned to a specific node,
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and whether the µslot resulted in a successful transfer. It uses the estimate to select

the inter-µframe gap that ensures a high likelihood of obtaining a node response.

The reader’s estimate of the inter-µframe gap is used as input to a token bucket

scheduler, which assigns tokens to nodes at a rate inversely proportional to its inter-

µframe gap. Once a node has accumulated sufficient tokens, it is likely to have woken

up after sleep, therefore the reader places the node into a ready queue since it is ready

to be scheduled. The ready nodes can be scheduled based on a suitable metric — for

example, the highest throughput node may be selected from the queue to maximize

throughput, or the node that has received least slots may be selected for fairness.

3.5 Implementation

In this section, we describe key implementation details not covered in earlier sec-

tions. We use the USRP reader and UMass Moo for our instantiation of QuarkNet.

The source code of QuarkNet is available at [13].

3.5.1 Platforms

3.5.1.1 USRP Reader

QuarkNet is built based on the USRP software radio reader developed by Buettner

[30] with a ANT-NA-2CO antenna [15]. We modify the signal processing pipeline to

enable variable sized µframe decoding, harvesting-aware tag scheduling, and detection

of in-band remote interrupts. The RFX900 USRP RF daughterboard on our platform

is only able to transmit 200mW of power, which is 5× smaller than the 1W of power

issued by a commercial reader. Therefore, we attach a 3cm×3cm solar panel to each

Moo to increase the amount of harvested energy. The use of hybrid power (RF +

ambient) is known to increase range from a reader, which enhances the regimes where

backscatter can be used [44].

32



3.5.1.2 Backscatter node

The UMass Moo is a passive computational RFID that operates in the 902MHz

∼ 928MHz band. Perhaps the most challenging aspect of our implementation is

debugging under extreme low energy conditions. Traditional methods for debugging

embedded systems, such as using JTAG, supply power to the node and change its

behavior. Instead, we instrument the Moo to toggle GPIO pins at key points during

its execution, and a logic analyzer to record the toggle events. In many cases, however,

it is difficult to insert sufficient instrumentation to have visibility while still working

with tiny energy harvesting levels. Thus, intuition and experience is particularly

important in designing systems for these regimes.

3.5.2 Trimming Overheads

One important aspect of our system is careful measurement and tuning of all

overheads, which impacts our ability to scale-down to severe harvesting conditions.

3.5.2.1 Radio transition overhead

An important source of overhead is transition times for turning on or off the

radio. Fortunately, since hardware timers are responsible for generating the pulses

on the backscatter radio, sleep gaps can be inserted by clearing the hardware timers

and turning the micro-controller into its low power mode. These operations are

inexpensive energy-wise, and consume roughly the same amount of energy as a data

frame of size 3 bits. Note that this observation does not hold for more complex active

radios — for example, a WiFi radio takes 79.1ms to be on, and 238.1ms to be turned

off [53], which is five orders of magnitude higher than the corresponding numbers for

a backscatter radio.
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3.5.2.2 Pilot tone

Each backscatter frame can potentially include a pilot tone in addition to the

payload. A pilot tone is used when a tag changes its baud rate [80]. We focus on a

minimalist protocol that uses a fixed baud rate, therefore we remove the pilot tone.

The total overhead per µframe is 6 bits of preamble, in contrast to the 22 bits overhead

of EPC Gen 2 (and variants such as Flit [45]).

3.5.2.3 Probing energy state

As mentioned earlier, analog-to-digital conversions are expensive, and should be

avoided while tracking the maximum energy harvesting rate. Our key insight is

that rather than measure the voltage on the node, we can leverage the existing low

watermark threshold detector that is already present on such nodes. Such a detector

is common on harvesting-based sensor platforms for two reasons: a) the platform

needs to know when to save state and go to sleep to avoid an outage, and b) the

platform needs to know when to wake up after sleep to continue operation. Thus,

QuarkNet gets an interrupt both when the voltage crosses above the threshold, as well

as when it drops below the threshold, and uses this information as a one-bit proxy

for the actual voltage. The voltage threshold is chosen to be 2V which is slightly

higher than 1.8V, the minimum voltage required for operating a micro controller.

This information is input to a sleep time tracker, which determines how long to wait

after crossing the threshold in the upward direction before initiating transfer. Our

approach is 100× less expensive energy-wise than an ADC conversion.

3.5.3 Protocols and Algorithms

While we do not describe the complete protocol in the interest of space, more

details as well as pseudocode for our algorithms can be found in our technical report

[98].
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3.6 Evaluation

The evaluation consists of three parts: 1) demonstrating the range and through-

put benefit of µframe transmission, 2) benchmarking the performance of our reader-

to-node communication, and 3) evaluating the benefit of interleaving µframes from

multiple nodes.

3.6.1 Benefit of µframes

In this section, we validate our claim that the ability to breakdown packets into

µframes that can be as small as a single bit can allow us to operate under lower energy

conditions and achieve higher operating range. To focus on the effect of the choice of

frame size, we strip off overheads (slot indicators, handshakes, etc) for all protocols

that we compare.

3.6.1.1 Minimum operating conditions

We look at two harvesters — RF and solar — and ask what is the minimum

power requirements for different approaches. We find that the minimum illuminance

required for a 1 bit µframe is 150 lux, which is 13× lower than the 2000 lux budget

of 12 byte packet transmission (the same packet size used by EPC Gen 2, Dewdrop,

Flit, etc). We choose 12 byte packet size for EPC Gen 2-based protocols because

the 12 byte EPC identifier needs to be transmitted in a singulation phase prior to

executing Read or Write commands. Thus, this packet is the bottleneck for operation.

To translate from lux to the typical energy available from indoor energy sources, we

measure the natural indoor illuminance in 30 positions in an office room. We find

that 92% the measured illuminance value is between 150 lux and 1000 lux. This

suggests that µframes can operate in most of natural indoor illuminance conditions

while a canonical 12 byte transfer scheme can almost never operate under natural

indoor light.
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The minimum RF power required for a 1 bit µframe is 13dBm, which is 20×

smaller than the 26dBm budget of a 12 byte packet transmission that is the minimum

needed for EPC Gen 2 and its variants to operate. Both experiments illustrate the

benefits of using tiny µframes.

3.6.1.2 Increased operational range

Our second claim is that we can improve operational range by using µframes.

Figure 3.6 shows the maximum range that is achieved by QuarkNet with 1 bit µframes,

EPC Gen 2 with fixed 12 byte packets, Dewdrop with fixed 12 byte packets, Buzz

with two slot choices, and a battery-assisted node which represents the best-case

scenario. We adjust the RF power of the USRP RFID reader from 17dBm to 25.7dBm,

which represents the range of RF power that can be generated by the USRP RFX900

daughterboard.

The results show that the communication range of QuarkNet is longer than other

schemes across all RF power levels. At the lowest power level (17.5dBm), µframes do

not improve range since the node is not able to decode the reader signal beyond 5ft.

But as the RF level increases, the operational range increases dramatically, and is

about 4× longer than EPC Gen 2 at the highest power. In fact, the performance of 1

bit µframe transfer while using harvested energy almost matches the performance of a

battery-assisted node, which shows that we are able to reach the ceiling of operational

range despite operating on micro-power.

Figure 3.6 also shows that Buzz [86] performs poorly compared to other schemes.

This can be attributed to the fact that each one-bit slot in Buzz has substantial

overhead — the reader sends a pulse, followed by one bit from the node, random

number generation for deciding whether to transfer in the next slot, and a recharge

period. Thus, while Buzz has high range in some settings, the overhead is too high

to scale gracefully.
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Figure 3.6. The maximum range achieved by EPC Gen 2, Dewdrop, Buzz, QuarkNet,
and a battery assisted node. QuarkNet operates at ranges close to the battery assisted
node.

3.6.2 Benefits of µframe adaptation

We now turn to the benefits of adapting the inter-µframe gap to maximize through-

put.

3.6.2.1 Convergence of gradient descent

How well does the gradient-descent algorithm learn the optimal harvesting rate?

Figure 3.7 shows the results for a node placed in three RF+light harvesting combina-

tions that include short and medium range, and low and medium light. In all cases,

we see convergence to close to the optimal point — the best inter-µframe gap ranges

from 1ms for 350lux at 1 foot, 4ms when the node is moved to 6ft, to 12ms when the

light conditions dip further. In all cases, our tracking algorithm converges in very few

steps (≤ 4).

3.6.2.2 Throughput benefits

We now know that QuarkNet picks close to the optimal harvesting rate, but what

are the benefits in terms of throughput? To understand this, we place a node 3 feet
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Figure 3.7. Throughput achieved for different sleep times (inter-µframe gaps). The sleep
time chosen by QuarkNet is within 98% of the optimal.

from a reader, vary RF power from 17dBm to 26dBm in small steps of 0.3dBm, and

inventory the node 2000 times for each scheme. Figure 3.8(a) shows the throughput

achieved by EPC Gen 2, Dewdrop, Flit, and QuarkNet. We find that the throughput

achieved by QuarkNet is higher than EPC Gen 2, Dewdrop and Flit across all RF

power levels. The average communication throughput of QuarkNet is 18kbps, 10.5×

higher than EPC Gen 2, 5.8× higher than Dewdrop, and 3.3× higher than Flit.

While the figure does not show Buzz’s throughput, note that Figure 3.6 already

showed that this number is low since the per-slot overhead dominates. The lowest

slot size we achieved in our implementation of Buzz is 3ms, which means about

0.3kbps throughput.

The previous experiments were done by varying the RF power level. To be sure

that these results translate to the case where nodes are placed at different locations in

front of a reader, we measure the throughput achieved by EPC Gen 2, Dewdrop, Flit,

and QuarkNet at 30 different randomly chosen locations between 2 to 13 ft in front of

a reader. Figure 3.9 shows that the throughput achieved by QuarkNet is higher than

the other three schemes across all locations. The average throughput of QuarkNet is

7.8× higher than EPC Gen 2, 6.4× higher than Dewdrop, and 4.4× higher than Flit.
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Figure 3.8. For micro-powered devices, QuarkNet improves throughput by at least 3.3×
over all other schemes, and even performs better than battery assisted nodes. The benefit
comes from reducing overhead, and adapting µframe sizes to energy and SNR.

In particular, QuarkNet continues to operate in many locations where other schemes

cease to operate.
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Figure 3.9. Throughput achieved by EPC Gen 2, Dewdrop, Flit, and QuarkNet across
30 locations. QuarkNet has at least 4.4× higher throughput than other schemes.

3.6.2.3 Breaking down the benefits

QuarkNet has a variety of optimizations including reduced overheads, variable-

sized µframes, and SNR adaptation. To understand the contributions of these tech-

niques to throughput, we start with the default implementation of Dewdrop, and add

one optimization at a time: a) Dewdrop + adaptive frame, which includes variable-

length µframes, and b) Dewdrop + SNR adaptation which includes the SNR adapta-
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tion. Figure 3.8(b) shows the throughput achieved by the three variants of Dewdrop

vs QuarkNet. Clearly, each of the optimizations plays a major role in the through-

put improvements observed by QuarkNet. The average communication throughput

of µframe is 18kbps, 5.79× higher than Dewdrop, 1.37× higher than Dewdrop with

adaptive µframes, and 1.14× higher than the case when SNR adaptation is included.

In the final step, we replace Dewdrop’s adaptation algorithm with our version that

eliminates ADC conversions to get QuarkNet.

3.6.2.4 QuarkNet vs battery-assisted alternatives

Another interesting question is how QuarkNet performs when compared to battery-

assisted versions of the other protocols (excluding Dewdrop + battery, which is iden-

tical to EPC Gen 2 + battery). Some protocols, such as Flit [45], improve in perfor-

mance when there is more energy since there is more opportunity for bulk transfer.

Would these outperform QuarkNet in battery-assisted scenarios? Figure 3.8(c) shows

that throughput achieved by QuarkNet is consistently better. The average through-

put of QuarkNet is 18kbps, 3.75× higher than EPC Gen 2 + battery, and 1.87× higher

than Flit + battery. This result shows the benefit of reducing per-frame overheads in

QuarkNet.

3.6.3 Reader-to-node communication

We now turn to an evaluation of reader-to-node communication. We begin by

looking at the effectiveness of remote interrupts. We find that remote interrupts are

extremely reliable — the reader detects remote interrupts with 100% accuracy across

all distances where the node can communicate with the reader, and detection rate

directly drops to 0% at roughly 19 – 20 feet where the node cannot detect the signal

sent by the reader. While the accuracy will degrade under external interference, we

plan to extend remote interruption to include encoded bits to improve robustness.
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Next, we look at the throughput of reader-to-node communication when a node is

placed at different distances from the reader. Figure 3.10 shows that the throughput

achieved by QuarkNet is always higher than fixed 100 bit transfer across all distances.

(We chose 100 bits instead of 12 bytes because of the slower baud rate of the reader-

to-node link, as a result of which 12 byte transfer ceases to operate even when the

node is deployed 1 feet from the reader.) The throughput of QuarkNet is higher than

even a battery-assisted EPC Gen 2 node. This shows that the benefit of variable

sized µframes is substantial even for reader-to-node communication.
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Figure 3.10. Throughput of reader-to-node communication. QuarkNet has 2× higher
throughput than battery-assisted EPC Gen 2 Writes.

One trend in the graph that requires a bit more explanation is the fact that

throughput decreases rapidly when the node is close to the reader (less than 4 feet),

and plateaus until about 18 ft after which it quickly drops to zero. This is because

RF-harvesting only works until 4ft (because of the limitations of the USRP reader),

and beyond this distance, indoor light harvesting plays the dominant role.

3.6.4 Evaluating the QuarkNet MAC layer

We now turn to the evaluation of our MAC layer that includes all components

of the protocol including various co-ordination overheads, frame interleaving, and

scheduling. Figure 3.11 shows the communication throughput when we deploy 10
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Figure 3.11. Throughput of 10 nodes is 5.4× higher when interleaved than when indi-
vidually inventoried.

nodes in front of the reader and adjust the RF power from 17dBm to 26dBm. We use

a throughput-maximizing scheduling policy in this experiment. For each RF power

level, we plot the averaged throughput across the ten nodes and the confidence interval

when they are scheduled in an interleaved manner and when they are inventoried

individually. The throughput achieved by other MAC layer designs — EPC Gen 2

and Flit — are close to zero, so we do not plot them.

We find that even at the lowest RF power level, almost all nodes get to transmit

data to the reader, and the average throughput steadily increases with higher RF

power. In addition, the throughput achieved by interleaving the 10 nodes is 5.4×

higher than the throughput when those 10 nodes are inventoried individually. These

results show that our algorithm scales well across a wide dynamic range of harvesting

conditions, and uses gaps between µframes efficiently.

3.6.5 Microbenchmarks

Table 3.2 shows the overhead incurred by different components of QuarkNet. The

biggest system overhead is the switch from inactive mode to transmission mode (47.5

us), to configure several registers associated with transmission, such as the hard-

ware timer register and data register. The overhead of the entire µframe size and
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Table 3.2. Overhead of µframe transmission.

System overhead (us) µframe overhead (us)
TX to inactive 9.9 interrupt config 10.58
inactive to TX 47.5 handle interrupt 9.3

RX to TX 4.08 µframe adaptation 24.3
sleep to wakeup 9.83 voltage detection 3

inter-µframe gap adaptation algorithm (47.2us), is comparable to the total system

overhead, and 10× smaller than the cost of an ADC conversion. Overall, the results

show that our performance tuning measures have substantial benefits — the sum

total of these overheads is smaller than the cost of transmitting 7 bits.

3.7 Discussion

3.7.1 Interoperability with other PHY mechanisms

While our work does not explicitly address co-existence of QuarkNet with other

physical layer and upper layer mechanisms, many of these can be easily layered above

the methods described in this chapter. For example, rate adaptation is widely used to

adapt to wireless channel conditions, thereby maximizing communication throughput.

This method operates at the bit-level, where each bit is composed of several symbols.

Such an approach can be layered above QuarkNet, with gaps introduced between bits.

Similarly, error correction codes or other encoding mechanisms that reduce bit error

rate can be implemented above QuarkNet.

3.7.2 QuarkNets role with evolving technology

As micro-harvesters continue to improve in efficiency, one question is whether

QuarkNet will continue to remain relevant. We argue that QuarkNet’s relevance will

increase for two reasons. First, the maximum harvesting rates are fundamentally lim-

ited by the physics of the harvesting source and form-factor. For example, RF energy

harvesting is limited by the antenna size and the amount power issued by antennas,

solar energy harvesting is limited by the panel size and the intensity of illuminance,
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and thermal energy harvesting is limited by the surface area and the temperature dif-

ferential. Even if micro-harvesters become extremely efficient (say upwards of 80%),

there is still a small amount of energy available, and systems optimizations similar to

QuarkNet are critical to using the energy in an efficient manner. Second, trends in

nano-electronics and low-power embedded systems are resulting in sensing and com-

puting platforms that consume only tens of micro-watts of power [2]. These trends

will make it possible to design many more micro-power based applications such as

implantables and on-body sensors, enhancing the relevance of QuarkNet.

3.7.3 Fragmenting other tasks

While our focus in this chapter is on fragmenting the network stack, the abstrac-

tion of task fragmentation presented by QuarkNet can be potentially used for breaking

down other components of a task such as sensing and computation into smaller atomic

units. In our position paper [99], we presented preliminary results that demonstrated

the ability to fragment an image sensing task such that the entire sensor can oper-

ate with a 3cm×3cm solar panel under natural indoor illuminance. However, many

questions remain to fully enable such fragmentation, requiring a combination of archi-

tectural modifications to the sensing and computing blocks to facilitate fine-grained

fragmentation, systems techniques similar to QuarkNet that can take advantage of

the fragmentation capability, as well as data processing techniques to enable useful

applications over a layer that dynamically fragments sensing tasks.

3.8 Related Work

We have already discussed Dewdrop, Flit, Buzz, and EPC Gen 2, so we focus on

other approaches.
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3.8.1 Computational RFIDs (CRFIDs)

There has been increasing emphasis on CRFIDs in recent years given its poten-

tial for battery-less perpetual sensing. Ambient Backscatter [63] uses the backscatter

of FM signals for short-range communication between tags. This is a severely en-

ergy limited platform, and could leverage QuarkNet when harvested energy is low.

BLINK [100] is a bit-rate and channel adaptation protocol to maximize communica-

tion throughput, which can also leverage QuarkNet for performance. [82] introduces

a power-optimized waveform which is a new type of multiple-tone carrier and mod-

ulation scheme that is designed to improve the read range and power efficiency of

charge pump-based passive RFIDs. [83] presents a system architecture for backscat-

ter communication which reaches 100m communication distance at the cost of slow

bit rate (10 bits per second). Such techniques are complementary to QuarkNet —

each bit transmitted at slow bit rate can be fragmented into several segments where

the information within each bit is still preserved. Also of note is MementOS [76],

which uses non-volatile flash storage for checkpoints within a task such that the it

can continue execution after an outage. Flash checkpointing is useful for outage tol-

erance but is more than the cost of transmitting an entire EPC Gen 2 packet, hence

it has limited utility in our case.

3.8.2 EPC Gen 2 optimizations

Much of the work on backscatter communication is specific to EPC Gen 2 tags, for

example, better tag density estimation [84], better search protocols to reduce inven-

torying time [59], better tag collision avoidance [66], more accurate tag identification

[94], better recovery from tag collisions [21], and more efficient bit-rate adaptation

[100]. None of these tackle the problem of maximizing range and throughput from

RFID-scale sensors, which have the ability to offload sensing data back to a reader.
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EPC Gen 2 supports tag user memory operations in addition to simple EPC

queries including the Read and Write command, however they are second-class citizens

in the protocol since the main goal is to inventory tags. As a result, both are inefficient

primitives for data transfer from tag to reader or vice-versa. In our experiments, we

found that the Read and Write commands simply do not work at all under low energy

conditions.

3.9 Conclusion

In this chapter, we present a powerful network stack, QuarkNet, that can enable

systems to seamlessly scale down to severe harvesting conditions as well as substan-

tial harvesting dynamics. At the core, our approach deconstructs every packet into

µframes, handles dynamics with variable-sized µframes, and maximizes throughput

via low-cost adaptation algorithms and interleaving of µframes. Results show that

QuarkNet provides substantial benefits in pushing the limits of micro-powered de-

vices, and allow them to perform useful work under more extreme environments

than previously imagined possible. Our network stack tolerates such conditions, thus

makes it valuable to a wide range of emerging micro-powered embedded systems and

applications.
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CHAPTER 4

HIGH SPEED ULTRA LOW-POWER BACKSCATTER

Existing sensing architectures incur substantial overhead for a variety of compu-

tational blocks between the sensor and RF front end — while these overheads were

negligible on platforms where communication was expensive, they become the bot-

tleneck on backscatter-based systems and increase power consumption while limiting

throughput. In this chapter, we propose a radically new design that is minimalist, yet

efficient, and designed to operate end-to-end at tens of µWs while enabling high-data

rate backscatter at rates upwards of many hundreds of Kbps.

4.1 Background and Motivation

A fundamental assumption that has driven the design of sensor networks for

decades is that communication is the most power-hungry component of an individ-

ual sensor system. The power consumption gap between communication and other

modules has driven a plethora of design choices in sensor networks, primarily by en-

couraging designers to reduce data at the source, thereby minimizing the amount of

data that needs to be communicated.

We argue that this assumption does not hold when it comes to passive radios

such as backscatter. Backscatter requires extraordinarily simple circuitry since the

carrier wave is generated by a reader, and a sensor only needs to modulate the signal

to transmit information, thereby eschewing power-hungry components of a typical

active radio. The simplicity and inherent efficiency of backscatter means that the
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Table 4.1. Power consumption of accelerometer, audio, ecg, and image sensors.

Accel [4] Audio [5] ECG [6] Camera [47]
Power 6µW 15.3µW 60µW 0.7µW

energy gap between communication and other components of a system has narrowed

dramatically.

These observations have profound implications on the design of next-generation

wireless sensing systems that operate using backscatter. The primary implication is

that the bottleneck in terms of power consumption has shifted away from communi-

cation to computation and sensing. But sensing is often not the bottleneck as well

— the past decade has seen dramatic reductions in the power consumption of sen-

sors such as microphones, cameras, ECG, accelerometers, and others, many of which

consume only µWs of power while sampling at high rates (Table 4.1). Thus, both

backscatter communication and a variety of low-power sensors can operate at µWs

of power, and the key question becomes one of optimizing the rest of the system to

match these numbers. This requires that we re-think every component between the

sensor and RF interface — data acquisition, data processing, buffering, packetizing,

MAC, and many others now become the bottleneck for achieving ultra-low power

operation.

In this chapter, we overturn the design principle governing wireless sensor design

from one that is focused on minimizing communication to one focused on optimizing

the computational elements between the sensor and RF interface. But optimizing

computation is easier said than done, and requires an understanding of every module

of the sensing platform, in-depth analysis of how to eliminate overhead from these

modules, and design of a modified architecture to support an optimized design.

But our efforts to optimize computation raises an unexpected problem. If we do

nothing to reduce data at the source, we need the bandwidth to be able to transfer raw

data from the sensor to infrastructure. While backscatter communication is efficient

in terms of power, throughputs achieved by practical backscatter-based systems have
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been abysmal. Despite several efforts at improving throughputs of backscatter [45,

100, 29, 86, 44], the best case throughput is still only around 20 kbps even when only a

single node is present, and drops dramatically to barely hundreds of bits/second when

there are multiple devices sharing the network. These numbers are not encouraging

— for example, a microphone sampled at 8-44 KHz requires transmit rates upwards

of 704 kbps, a far cry from the throughput that backscatter platforms are able to

support today.

This leads us to the central question that we address in this chapter: how can we

design a backscatter-based wireless sensor system that achieves whole-system power

consumption of µWs, while simultaneously increasing data rates to support raw data

transfer from sensors at several hundreds of kilobits/second. Our goal is aggressive

— as a point of comparison, an existing backscatter-based sensor, the UMass Moo

(or the UW WISP) consumes about 2mW of power while transmitting at a few kilo-

bits/second when there are multiple devices present. Thus, we seek to drop the

system-wide power consumption by more than two orders of magnitude while simul-

taneously enabling two orders of magnitude increase in the data rates.

Our contributions are two-fold. First, we present a novel backscatter-based sen-

sor platform, Ekho, that achieves our design goal to optimize power by eliminating

computational overhead from the sensor to RF pipeline. We start with a deep dive

at what computational modules are present between the sensor and RF interface on

a typical low-power sensor platform, and measure their power consumption, before

launching into a minimalist design that is optimized for power. Our second contri-

bution is a network stack, EkhoNet, that is designed to be minimalist and enable

bandwidth scale up to support data rates of hundreds of Kbps while supporting tens

of nodes. While each Ekho node is minimalist, our MAC layer leverages resources at

the reader to enable utility-energy and channel-aware optimization of bit rates and

slot sizes across nodes.
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Our results on a USRP reader and Ekho nodes show that:

• For operating an accelerometer at 400Hz, Ekho consumes 35µW of power, 7.6×

lower than the 266µW of the Moo and 3.3× lower than the 118µW of WISP5.0.

For operating an audio sensor at 44kHz, Ekho consumes 37µW of power, 76×

lower than the Moo and 13.5× lower than the WISP5.0.

• We show that EkhoNet can scale to a network of several high bandwidth sen-

sors. When a network of ten Ekho nodes equipped with microphones transmit

simultaneously to a reader, we achieve a throughput of 780 kbps as a result of

interleaving the data streams at the MAC layer. We also use an energy-utility-

channel aware scheduler, and show that over 50% of the audio sensors achieve

a median MOS score larger than 2, significantly higher than a baseline scheme

that assigns sampling rates evenly across all nodes.

4.2 Case for Ekho

In this section, we make the case that backscatter communication is extremely

cheap and overturns the widely held premise that communication is more expensive

than computation. We focus on the tradeoff between computation and communication

since many commonly used sensors are already extremely efficient in terms of power.

We begin with a discussion of why backscatter is efficient.

4.2.1 Backscatter radio RF front end

Backscatter radios are designed to enable ultra low power wireless communication.

As shown in Figure 4.1, a reader provides a carrier wave, which can be modulated

with information to enable ultra low power wireless communication. While the carrier

wave can also be rectified by a sensor for energy harvesting, our focus in this chapter

is on backscatter as a low-power radio, whether energy is obtained via harvesting or
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Figure 4.1. Backscatter communication basics.

a battery, hence we focus on the communication rather than harvesting aspects of

backscatter.

To transmit data, a sensor toggles the state of a transistor to detune its antenna

and reflect the carrier wave back to the reader with its own information bits. Because

the sensor does not actively generate RF signal as active radio systems, the power

consumption of the backscatter radio is very low. In addition, the on-off transition

overhead of backscatter radios is very short because backscatter radios do not have

to warm up the RF analog circuits for data transmission unlike active radio systems.

As a result, there is little overhead incurred while transmitting via backscatter, even

when transmitting at a high rate. For example, one key component of the backscatter

analog RF front end of the WISP [18] is a MOSFET transistor (BF1212WR). Its

power consumption follows the equation of CV 2F where C is the capacitance of the

transistor, V is the digital drain-source voltage, and F is the frequency of operating

the transistor. When this transistor is toggled at a slow rate of 10Hz, it consumes

55pW of power, and even when toggled at a high rate of 1MHz, it only consumes

5.5µW of power. Thus, backscatter radios consume of the order of µWs of power,

even for high rate data transfer.
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Figure 2: 1 bit adder and 1 bit shift register circuit.

source prior to communication. Indeed, this tradeo↵ has
been reinforced by performance/power trends over the past
decade — power consumption of embedded processors have
dropped dramatically, while power reduction in active radios
has been relatively slower.

Q
Q
However, backscatter communication challenges this long-

held view. Backscatter is inherently extraordinarily e�cient
since the carrier wave is generated by the reader, and the tag
only backscatters the signal without any additional ampli-
fication. Thus, each bit of backscatter is extremely simple,
and only requires a handful of gates (Figure 2). This implies
that for computation to be cheaper energy-wise, the compu-
tational operations on each bit would have to use fewer gates
than that required to communicate the bit. This is often a
tall order due to the simplicity of backscatter.

Consider, for example, a simple aggregation operation
that sums ten sensor readings before transmitting the aggre-
gate value over the radio. On traditional sensor platforms,
such data reduction would have direct and significant power
benefits since communication dominates power, and our ag-
gregation scheme cuts this cost by a factor of ten. The same
operation on a backscatter-based platform has dubious ben-
efits. Figure 2 shows that the number of gates required for
summing two bits is roughly nine, but only four gates are
needed to transmit the same data via the shift register cir-
cuit of backscatter! As power consumption is proportional
to number of gates, a nine gate adder consumes 2.2⇥ more
power than the a four gate backscatter circuit.

It is necessary to add a few caveats to our simplified com-
parison of computation and communication. The clock rates
of communication subsystems are limited by signal to noise
ratio considerations, whereas the clock rates of processors
can be higher, and thereby reduce power. In addition, low-
power processors use many tricks to reduce power consump-
tion including optimized signal processing circuits, di↵er-
ent power domains, extremely tight duty-cycling, and so on.
Despite these optimizations, the cards are stacked against
computation. Backscatter is so incredibly simple in terms
of circuitry that even matching the e�ciency of backscatter
becomes a challenging architectural design problem.

Thus, the crux of our argument is the following: backscat-
ter drives down the optimal cross-over point between compu-
tation vs communication, such that communication of raw
data may be preferable to computation in a wider spectrum
of real-world scenarios.

Implications on architecture design: This observa-
tion has an immediate implication on the architecture of a
backscatter-based sensor platform. Traditional sensing plat-
forms add a lot of computational modules between the sensor
and the radio for sensor data acquisition, processing, filter-
ing, bu↵ering, etc. The contribution of these components to
overall power consumption of an active radio-based sensor
system is minimal and can largely be ignored. However, on
backscatter-based platforms, these components become the
bottleneck.

This raises an intriguing question — with the power con-
sumption of backscatter being so low, would it in fact be
more e�cient to eliminate all of these modules en-bloc, and
just connect the sensor directly to the radio? In other words,
would it be better to just stream every bit of data that is
sensed directly through the radio?

We take a measurement-driven approach towards answer-
ing these questions. First, we look at the computational
blocks between sensing and the RF interface on existing
backscatter-based sensing platforms to understand how much
power they consume, as well as why they su↵er in terms
of throughput. Second, we build on our empirical study
and design a radically new backscatter-based sensor plat-
form that addresses these limitations.

3. INVESTIGATING EXISTING WIRELESS
SENSING ARCHITECTURES

In this section, we investigate why current backscatter-
based platforms are unable to achieve end-to-end power con-
sumption of µWs for high-rate sensing and transfer. We also
investigate why they are unable to achieve high-data rate
communication, particularly while operating at low power.
To empirically understand these factors, we look at the UMass
Moo/UW WISP class platforms that are equipped with sen-
sors, a low-power MCU (MSP 430 family) and a backscatter
radio.

3.1 Poor energy efficiency
We start with a break down of the power consumed by

three key computational modules on a UMass Moo (Fig-
ure 3): 1) the sensor data acquisition subsystem which han-
dles the protocols for operating sensors, 2) the data handling
subsystem on a micro-controller where sensor data is stored,
processed (if needed), formatted into packet, and sent to the
network stack, and 3) the network stack implemented in a
combination of hardware and software.

3.1.1 Sensor data acquisition
Sensor data acquisition is a relatively simple operation —

some sensors have an on-board ADC, hence data acquisition
is via a protocol such as SPI or I2C, whereas other sensors
just provide an analog signal which is digitized using the
micro-controller’s ADC. Despite its simplicity, even these
operations are not as cheap as one might expect. For exam-
ple, sampling an accelerometer via the SPI bus would require
periodic wakeup of the MCU to fill the SPI bu↵er, sending
the read command and read address to the sensor, as well as
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(b) 1 bit shift register circuits for
backscatter.

Figure 2: 1 bit adder and 1 bit shift register circuit.

source prior to communication. Indeed, this tradeo↵ has
been reinforced by performance/power trends over the past
decade — power consumption of embedded processors have
dropped dramatically, while power reduction in active radios
has been relatively slower.
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However, backscatter communication challenges this long-

held view. Backscatter is inherently extraordinarily e�cient
since the carrier wave is generated by the reader, and the tag
only backscatters the signal without any additional ampli-
fication. Thus, each bit of backscatter is extremely simple,
and only requires a handful of gates (Figure 2). This implies
that for computation to be cheaper energy-wise, the compu-
tational operations on each bit would have to use fewer gates
than that required to communicate the bit. This is often a
tall order due to the simplicity of backscatter.

Consider, for example, a simple aggregation operation
that sums ten sensor readings before transmitting the aggre-
gate value over the radio. On traditional sensor platforms,
such data reduction would have direct and significant power
benefits since communication dominates power, and our ag-
gregation scheme cuts this cost by a factor of ten. The same
operation on a backscatter-based platform has dubious ben-
efits. Figure 2 shows that the number of gates required for
summing two bits is roughly nine, but only four gates are
needed to transmit the same data via the shift register cir-
cuit of backscatter! As power consumption is proportional
to number of gates, a nine gate adder consumes 2.2⇥ more
power than the a four gate backscatter circuit.

It is necessary to add a few caveats to our simplified com-
parison of computation and communication. The clock rates
of communication subsystems are limited by signal to noise
ratio considerations, whereas the clock rates of processors
can be higher, and thereby reduce power. In addition, low-
power processors use many tricks to reduce power consump-
tion including optimized signal processing circuits, di↵er-
ent power domains, extremely tight duty-cycling, and so on.
Despite these optimizations, the cards are stacked against
computation. Backscatter is so incredibly simple in terms
of circuitry that even matching the e�ciency of backscatter
becomes a challenging architectural design problem.

Thus, the crux of our argument is the following: backscat-
ter drives down the optimal cross-over point between compu-
tation vs communication, such that communication of raw
data may be preferable to computation in a wider spectrum
of real-world scenarios.

Implications on architecture design: This observa-
tion has an immediate implication on the architecture of a
backscatter-based sensor platform. Traditional sensing plat-
forms add a lot of computational modules between the sensor
and the radio for sensor data acquisition, processing, filter-
ing, bu↵ering, etc. The contribution of these components to
overall power consumption of an active radio-based sensor
system is minimal and can largely be ignored. However, on
backscatter-based platforms, these components become the
bottleneck.

This raises an intriguing question — with the power con-
sumption of backscatter being so low, would it in fact be
more e�cient to eliminate all of these modules en-bloc, and
just connect the sensor directly to the radio? In other words,
would it be better to just stream every bit of data that is
sensed directly through the radio?

We take a measurement-driven approach towards answer-
ing these questions. First, we look at the computational
blocks between sensing and the RF interface on existing
backscatter-based sensing platforms to understand how much
power they consume, as well as why they su↵er in terms
of throughput. Second, we build on our empirical study
and design a radically new backscatter-based sensor plat-
form that addresses these limitations.

3. INVESTIGATING EXISTING WIRELESS
SENSING ARCHITECTURES

In this section, we investigate why current backscatter-
based platforms are unable to achieve end-to-end power con-
sumption of µWs for high-rate sensing and transfer. We also
investigate why they are unable to achieve high-data rate
communication, particularly while operating at low power.
To empirically understand these factors, we look at the UMass
Moo/UW WISP class platforms that are equipped with sen-
sors, a low-power MCU (MSP 430 family) and a backscatter
radio.

3.1 Poor energy efficiency
We start with a break down of the power consumed by

three key computational modules on a UMass Moo (Fig-
ure 3): 1) the sensor data acquisition subsystem which han-
dles the protocols for operating sensors, 2) the data handling
subsystem on a micro-controller where sensor data is stored,
processed (if needed), formatted into packet, and sent to the
network stack, and 3) the network stack implemented in a
combination of hardware and software.

3.1.1 Sensor data acquisition
Sensor data acquisition is a relatively simple operation —

some sensors have an on-board ADC, hence data acquisition
is via a protocol such as SPI or I2C, whereas other sensors
just provide an analog signal which is digitized using the
micro-controller’s ADC. Despite its simplicity, even these
operations are not as cheap as one might expect. For exam-
ple, sampling an accelerometer via the SPI bus would require
periodic wakeup of the MCU to fill the SPI bu↵er, sending
the read command and read address to the sensor, as well as
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Figure 4.2. 1 bit adder and 1 bit shift register circuit.

4.2.2 Why compute if its cheaper to transmit?

The power consumption of backscatter radio has surprising implications on sensor

system design, and challenges long-held views about communication vs computation

tradeoffs in these systems.

4.2.2.1 Computation vs Communication

A common assumption in designing sensor systems has been that computation is

significantly cheaper than communication, often by many orders of magnitude. This

view has shaped a plethora of efforts for in-network processing, signal compression,

sub-sampling, and other such approaches to reduce data at the source prior to com-

munication. Indeed, this tradeoff has been reinforced by performance/power trends

over the past decade — power consumption of embedded processors have dropped

dramatically, while power reduction in active radios has been relatively slower.

However, backscatter communication challenges this long-held view. Backscat-

ter is inherently extraordinarily efficient since the carrier wave is generated by the

reader, and the tag only backscatters the signal without any additional amplification.

Thus, each bit of backscatter is extremely simple, and only requires a handful of gates

(Figure 4.2). This implies that for computation to be cheaper energy-wise, the com-

putational operations on each bit would have to use fewer gates than that required to

communicate the bit. This is often a tall order due to the simplicity of backscatter.
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Consider, for example, a simple aggregation operation that sums ten sensor read-

ings before transmitting the aggregate value over the radio. On traditional sensor

platforms, such data reduction would have direct and significant power benefits since

communication dominates power, and our aggregation scheme cuts this cost by a fac-

tor of ten. The same operation on a backscatter-based platform has dubious benefits.

Figure 4.2 shows that the number of NAND gates required for summing two bits is

roughly nine (thirty six transistors), but only four NAND gates (sixteen transistors)

and an additional transistor for backscattering the signal are needed to transmit the

same data via the shift-register controlled backscatter RF! As power consumption is

proportional to number of transistors, a nine gate adder consumes 2.1× more power

than the shift-register controlled backscatter RF.

It is necessary to add a few caveats to our simplified comparison of computa-

tion and communication. The clock rates of communication subsystems are limited

by signal to noise ratio considerations, whereas the clock rates of processors can

be higher, and thereby reduce power. In addition, low-power processors use many

tricks to reduce power consumption including optimized signal processing circuits,

different power domains, extremely tight duty-cycling, and so on. Despite these op-

timizations, the cards are stacked against computation. Backscatter is so incredibly

simple in terms of circuitry that even matching the efficiency of backscatter becomes

a challenging architectural design problem.

Thus, the crux of our argument is the following: backscatter drives down the

optimal cross-over point between computation vs communication, such that communi-

cation of raw data may be preferable to computation in a wider spectrum of real-world

scenarios.
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4.2.2.2 Implications on architecture design

This observation has an immediate implication on the architecture of a backscatter-

based sensor platform. Traditional sensing platforms add a lot of computational mod-

ules between the sensor and the radio for sensor data acquisition, processing, filtering,

buffering, etc. The contribution of these components to overall power consumption of

an active radio-based sensor system is minimal and can largely be ignored. However,

on backscatter-based platforms, these components become the bottleneck.

This raises an intriguing question — with the power consumption of backscatter

being so low, would it in fact be more efficient to eliminate all of these modules en-

bloc, and just connect the sensor directly to the radio? In other words, would it be

better to just stream every bit of data that is sensed directly through the radio?

We take a measurement-driven approach towards answering these questions. First,

we look at the computational blocks between sensing and the RF interface on existing

backscatter-based sensing platforms to understand how much power they consume,

as well as why they suffer in terms of throughput. Second, we build on our empirical

study and design a radically new backscatter-based sensor platform that addresses

these limitations.

4.3 Investigating existing wireless sensing architectures

In this section, we investigate why current backscatter-based platforms are unable

to achieve end-to-end power consumption of µWs for high-rate sensing and transfer.

We also investigate why they are unable to achieve high-data rate communication,

particularly while operating at low power. To empirically understand these factors,

we look at the UMass Moo/UW WISP class platforms that are equipped with sensors,

a low-power MCU (MSP 430 family) and a backscatter radio.
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4.3.1 Poor energy efficiency

We start with a break down of the power consumed by three key computational

modules on a UMass Moo (Figure 4.3): 1) the sensor data acquisition subsystem

which handles the protocols for operating sensors, 2) the data handling subsystem on

a micro-controller where sensor data is stored, processed (if needed), formatted into

packet, and sent to the network stack, and 3) the network stack implemented in a

combination of hardware and software.
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Figure 4.3. Computational blocks on existing backscatter-based sensors.

4.3.1.1 Sensor data acquisition

Sensor data acquisition is a relatively simple operation — some sensors have an on-

board ADC, hence data acquisition is via a protocol such as SPI or I2C, whereas other

sensors just provide an analog signal which is digitized using the micro-controller’s

ADC. Despite its simplicity, even these operations are not as cheap as one might

expect. For example, sampling an accelerometer via the SPI bus would require peri-

odic wakeup of the MCU to fill the SPI buffer, sending the read command and read

address to the sensor, as well as providing the clock for the SPI bus. The overall

result is that the MCU is active for about 40% of the time when acquiring data from

an accelerometer sampling at 400 Hz. This acquisition operation, in itself, consumes

84µW of power, 14× higher than the accelerometer (6µW). The cost of acquiring

audio data is equally high — when sampling an audio sensor (ADMP803) at 44KHz,

acquisition consumes 492µW of power, 14.5× higher than the audio sensor (34µW).
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4.3.1.2 Data handling subsystem

The data handling subsystem is the block that processes the acquired sensor data,

formats and packetizes it, and sends it to the network stack. To minimize this over-

head, sensor systems typically operate in a duty-cycled mode where the MCU is

turned on for a minimal amount of time needed to handle the data, before switching

back into sleep mode to conserve energy.

However, this optimization is no longer effective when this subsystem handles

high-rate sensors. Figure 4.4 shows the power consumption for executing the timer

interrupt service routine to handle each acquired audio sample. At high rate, the

MCU is rarely able to switch completely back into the ultra-low power sleep mode

due to frequent interrupts. Thus, the overall power consumption of the data handling

module is roughly the ballpark of active mode power consumption of the MCU (a few

mW), which is several orders of magnitude higher than the power consumed by the

sensor.
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Figure 4.4. Power consumed for handling timer interrupts at 4kHz. The MCU is
unable to switch to sleep mode due to frequent interrupts.

One method to reduce power of the data handling subsystem is to use Direct

Memory Access (DMA), which allows transfer of data from the sensor to memory

without waking up the MCU. This raises the possibility that waking up the MCU
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Figure 4.5. The power consumption of DMA transfer at different frequencies.

can, perhaps, be avoided altogether if the data is transferred directly from the sensor

to the network queue without any processing.

Surprisingly, DMA does not reduce power consumption. Figure 4.5 shows empir-

ically measured power consumption for DMA transfer on an MSP 430, which moves

the sensor data from a sensor to a local memory at different frequencies. We observe

that while DMA is efficient at low rates (e..g below 100Hz), it has high power con-

sumption at high transfer rates — for example, DMA transfer consumes 149.2 µW

of power at 44 kHz, 60× higher than the 2.5 µW of LPM3 sleep mode of the MCU.

This is surprising since one would expect that the MCU is in sleep mode while DMA

operates.

The culprit for high power consumption of DMA turns out to be its tail energy

consumption. Figure 4.6 shows the power consumption of repeated DMA transfer at

100 Hz. This experiment is done with an MSP 430 set to LPM3 sleep mode and a

timer that periodically triggers DMA transfer. When a DMA transfer is initiated, its

power consumption increases to 40µW within 10us, and starts decreasing once the

DMA transfer is done. However, the power consumption decays at a relatively slow

rate compared to the sharp increase, resulting in a long tail of roughly 3.5ms. When

the DMA transfer frequency is high, such as 5kHz shown in Figure 4.5, the long tail
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Figure 4.6. Power consumption of DMA transfer at 100Hz. DMA is slow to return
to sleep mode.

leads to high power consumption. While we are not certain about the cause of this

behavior, one hypothesis is that the system waits for more data before it times out

and switches to a lower power mode. This behavior is common in many power savings

circuits, for example, in smartphone radios [23, 53], and is typically done to amortize

the cost of waking up and shutting down a hardware subsystem.

4.3.1.3 Communication subsystem

The final computational component of a sensor platform is the communication

stack, which includes the PHY, MAC and upper layers. While the RF interface of

backscatter is extremely low-power, the other layers add more overhead. For example,

on the UW WISP or UMass Moo platforms, the backscatter radio is controlled by a

hardware timer which needs to be configured and handled in software. In addition,

the EPC Gen 2 network stack on these devices is implemented in software, and results

in substantial overhead since the MCU needs to handle protocol messages. In fact,

the MCU needs to be on for 67% of the time for processing network stack messages

at the software layer while only 7% of the time is used for data transmission. As a

consequence, the software on UMass Moo platform consumes 2mW of power, which is

three orders of magnitude higher than the power consumption of a low-power sensor.
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As with the data handling subsystem, the software overhead of the network stack

can be reduced by using hardware peripherals to control the radio. One commonly

available hardware peripheral on MCUs is the Universal Asynchronous Receiver and

Transmitter (UART). This is particularly useful for a backscatter radio since UART

generates an ASK signal, which can be directly transmitted via backscatter (which

uses OOK). At the first glance, the UART peripheral has the potential to dramatically

reduce the cost of running the network stack because it can operate when the MCU

stays in deep sleep mode. However, its buffer needs to be filled with sensor data, which

in turn needs to be done with either DMA or software, both of which are expensive

energy-wise. As a result, even the UART-driven backscatter radio consumes roughly

2mW.

4.3.2 Poor transmission efficiency

The second key drawback of existing backscatter-based sensors is the abysmal

throughputs that they achieve. For example, even though there have been many

efforts to improve backscatter throughput, the ceiling is still less than 20kbps for a

single node [45, 100, 29, 86], and drops to hundreds of bits/second in a network with

multiple devices. Clearly, this is far below what is needed for streaming raw sensor

data from high-rate sensors.

One factor that limits the throughput is the poor efficiency in clock utilization.

For example, the UMass Moo and WISP take 48 clock ticks to send a single bit of

data, which causes a 48× reduction of the maximum possible throughput that is

achievable with the system clock. We find three reasons for this inefficiency. First,

both transmission and reception logic is implemented in software which, naturally,

is inefficient in the use of the clock. Although the transmission and reception code

on the Moo and WISP platforms are optimized in assembly instructions, one bit

transmission and reception still has substantial overhead. Second, EPC Gen 2 PHY-
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layer encoding further reduces the clock utilization efficiency. To minimize the DC

components during data transmission, each bit is encoded into a sequence of pulses

using Miller encoding. For example, the Miller-4 encoding used by Moo and WISP

platforms uses eight pulses to encode one bit of data, resulting in further drop of

throughput by a factor of eight. Third, the EPC Gen 2 MAC layer is extremely

inefficient for high bandwidth data transfer. While this is a point that has been

made many times before [45, 100, 29, 86], an efficient alternative that achieves high

throughput using backscatter is lacking.

4.3.3 Summary

Thus, the limitations of the computational blocks on existing backscatter-based

sensor platforms lead us to the following observation. The primary culprit in terms

of power is the MCU’s active mode power consumption, and the fact that many

operations (sensor acquisition, data handling, communication) require execution of

instructions on the MCU. Surprisingly, optimizing the system by leveraging hardware

peripherals such as DMA and UART do not solve the problem, particularly at high

data rates due to tail power consumption, and coupling between different components

of the sensing to communication pipeline. In terms of throughput, the primary issues

stem from inefficient utilization of the clock due to a combination of software over-

heads, encoding overheads, and an inefficient MAC layer standard. In conjunction,

these limitations call for a clean-slate re-design of a backscatter-based sensor platform

from the ground up for extremely low power consumption and high data rates.

4.4 The Ekho platform

Our solution is Ekho, a backscatter-based sensor platform that is optimized for

ultra low power operation and high-speed streaming from sensors. We outline the

platform architecture followed by the MAC layer.
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Figure 4.7. The key components of Ekho.

4.4.1 Eliminating computational blocks

At the platform level, the design of Ekho is minimalist. We simply remove as

many computational blocks between the sensor and RF analog front end as possible

in favor of communicating raw data. Figure 4.7 shows the key components in Ekho.

Ekho reduces the overhead of data acquisition from the sensor by implementing

the SPI and ADC sampling logic on a small CPLD (FPGA). Implementing these

blocks in hardware means that we can make them as fast as needed without incurring

the software overhead of waking up a micro-controller.

Ekho substantially reduces the overhead of handling sensor data by a minimalist

approach that uses a FIFO buffer between the sensors with RF analog front end. The

FIFO buffer is the minimum element that is needed between sensing subsystem and

communication subsystem to deal with short delays in transmitting the data over

the backscatter link, for example, due to intermittent scheduling of a device. In this

manner, Ekho eliminates software and tail energy overhead that was observed on

existing backscatter-based platforms.

The final computational component of the pipeline is the communication subsys-

tem. Unlike EPC Gen 2 that is designed for a broad range of RFID tags, Ekho is

designed solely for streaming sensor data from nodes to a reader. A protocol designed

solely for streaming data from sensors can be quite simple. The reader informs each

node of a timer value that specifies the period with which to transfer data in its FIFO

buffer, and a rate that determines how fast to transfer the data. The only hardware

61



component required for this protocol to work is a timer and shift register. Once the

timer fires, a shift register converts the input sensor data to an ASK signal that is

used to modulate backscatter radios.

In the current instantiation of Ekho, we do not perform any encoding of data.

While the need for encoding to deal with harsh wireless conditions and interference

is well-known, it also makes the hardware more complex, and consequently more

power hungry. For example, the default configuration on the UMass Moo/UW WISP

platforms is Miller-4 encoding incurs overhead of several hundreds of gates. Thus,

while encoding may be useful in some cases, we do not employ it in Ekho.

4.4.2 The EkhoNet MAC layer

We now turn to the second part of our performance puzzle — achieving high

throughputs that are upwards of many hundreds of kilobits/second across different

nodes in the network. A high speed MAC is important for supporting an architecture

where raw data transfer is the norm rather than the exception.

MAC layer designs are very well understood, particularly in cases such as ours

where a central controller performs TDMA-like scheduling of sensor nodes. However,

the key point in our design is two-fold: a) even though the sensor node is designed to

be extremely simple, the decision making logic can be placed at the reader, thereby

enabling surprisingly complex scheduling mechanisms across a network of extremely

simple sensor nodes, and b) our MAC is holistic in that it takes into account utility

of data, channel-awareness, energy consumption, as well as other hardware consider-

ations, in-order to maximize throughput.
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4.4.2.1 MAC Design Considerations

At the heart of EkhoNet is the logic that is used to determine when each node

should transfer, and what rate they should transfer. Before we answer this question,

we need to understand several characteristics of Ekho including: a) how do MAC-layer

parameters impact the energy-efficiency of the platform? b) what are the signal-to-

noise ratios at which data transmitted by Ekho can be successfully decoded? c) what

criteria should we use to decide what sampling rate to use when sufficient bandwidth

is not available? and d) what are the implications of platform considerations such as

clock drift and buffer size? We now empirical examine these considerations in greater

detail, and discuss the implications on selection of MAC layer parameters.

• Bits/Joule: The first question we ask is how energy-efficiency of data transfer

depends on the bit rate. Figure 4.8 shows the efficiency of a shift register

controlled backscatter radio across different bit rates. At low rates, there is a

steep increase in efficiency as bit rate increases due to the fact that constant

power consumption by the system is amortized over more bits being transferred.

However, improvements in efficiency diminish once the bit rate increases beyond

1Mbps since the relationship between power and frequency of the shift register

is roughly linear, hence there are not much improvements possible. The power

curve suggests that, from energy perspective, we should choose the fastest bit

rate possible for data transmission.

• Signal to Noise Ratio: While faster bit rates are preferable due to higher en-

ergy efficiency of transfer, SNR degrades as bit rate increases. Figure 4.9 shows

the SNR when we deploy a transmitter 1 meter from the reader and change its

transmission bit rate. As bit rate increases, the SNR decreases steadily as one

would expect. When the SNR is lower than 10dB, decoding becomes difficult

on our software-defined radio based reader platform, which gives us an upper
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Figure 4.8. Efficiency of backscatter radio (in bits/joule).

bound on the fastest bit rate that can be supported by the system without

losing bits.
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Figure 4.9. SNR at different bit rates when device is placed 1m from a reader.

• Utility of data: Since EkhoNet is designed for high-rate sensors, one question

that needs to be addressed is how to decide on appropriate sampling rates when

the overall data rates at full sampling rates exceed capacity. On our existing

system, we are limited to 1Mbps aggregate transfer rate across all nodes since

the SDR-based reader is only able to support 8M samples per second due to

the limitations of the realtime signal processing logic. This means that we

can easily reach the SDR limit when we operate a network of sensors. For
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example, a network of five audio sensors sampling at 44 KHz, and transmitting

raw data generates an aggregate bandwidth of 3.5Mbps, well above what can

be supported by EkhoNet.

Our solution is to take into consideration the utility of data generated by the

different sensor nodes. Figure 4.10 shows an example of one utility function,

Mean Opinion Score (MOS), which is a commonly used metric for characterizing

the quality of transmitted audio [11]. The MOS score can be used to guide

decisions regarding which node is allocated bandwidth.
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Figure 4.10. Mean Opinion Score (MOS) at different sampling rates for a micro-
phone.

• Clock drift: Another consideration in determining slot sizes is clock drift.

For example, in our implementation of Ekho, we use a crystal oscillator driven

system clock that can drift at upwards of 50 ppm. If two nodes transferred at

1 Mbps, then they would drift by 1200 clock cycles each minute. The reader

can handle clock drift in two ways. First, when assigning slots, it can allocate

guard bands in each slot to allow for some drift. However, guard bands should

be kept to a minimum to reduce bandwidth wastage. Second, the reader has the

luxury of observing how the gap between slots varies as nodes transfer, and can

detect when collision occurs by looking at the constellation plot of the signal
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[86]. Thus, when the reader suspects that slots have bled into each other, it can

send a reset pulse that informs all nodes to reset their timers. Note that this

is possible for backscatter because reader messages are broadcast and received

by all nodes. A reset pulse is simply implemented by shutting off the carrier

for a short, pre-defined duration, which is detected by each node. While reset

pulses can be short, it should be used infrequently since there can be robustness

issues if a node does not receive the pulse. This can result in further collisions

resulting in more reset pulses until the network synchronizes.

• Buffer size: One additional constraint introduced by the Ekho hardware plat-

form is that the FIFO buffer size on the device is limited, hence if the slot sizes

are too long, samples will be lost since the buffer will overflow.

4.4.2.2 Channel-Utility-Energy aware Rate Selection

Given the above constraints, the overall problem that the reader faces can be

described as follows: select the optimal bit rate and slot size such that aggregate

utility of received data is maximized and aggregate energy consumption minimized,

subject to constraints on the buffer sizes, SNR, and guard bands. We formalize this

problem below.

We assume that the following parameters are given:

• The minimum SNR, 10 dB in our system, at which the reader can decode bits

with low bit-error rate.

• The maximum achievable bit-rate ri that is higher than the minimum SNR.

• The maximum sampling rate of each node smax(i).

• The size of each sample in bits, b, bits/sample.

• The fraction of each slot that should be a guard band δ.
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Given these values, we need to choose the sampling rates for each sensor si, and

the fraction of time allocated to each node ti by taking into account the following

objective:

•
∑n

i=1 U(s) which is a measure of the aggregate utility obtained from all sensor

data received from the nodes.

The constraints are the following:

•
∑

i ti ≤ 1, i.e the fraction of time allotted to nodes sum up to at most one (less

than one if the network is operating below its limit).

• si ≤ smax(i), which restricts the sampling rate for a sensor to be below the

maximum.

• (1 − δ)tiri = b si, which ensures that the production of data from the sensor,

and transmission of data from the radio are matched i.e. the node can transmit

what is being sensed. The term (1− δ) is present since there’s a guard band for

each slot.

The overall optimization is shown below (in vector form for compactness). Here,

s and t are the vectors of sampling rates and the fraction of time allocated to each

node, which need to be determined, and r is the vector of bit rates chosen for each

node based on SNR. The symbol � stands for element-wise inequality (i.e. one for

each node).

maximize
s,t

1TU(s)

subject to tT1 ≤ 1

s � smax1

(1− δ)diag(t)r = b s

67



Typically, the utility function is concave, for example in the case of MOS score

(Figure 4.10). Hence, the objective is to maximize the sum of concave utility func-

tions, and the constraints are linear, hence the optimization can be solved by standard

convex optimization methods. Note that the optimization returns the fraction of time

for each node — this can be converted to an actual slot size by scaling by an appro-

priate period such that each node is capable of buffering the data in its local FIFO

buffer.

4.5 Implementation

Figure 4.11 shows the prototype of Ekho, which implements all the design elements

described in section 4.4. The current prototype measures 1.8 by 2.4 inches, but we

believe future revisions can shrink this even further. We now briefly describe the key

sub-components used in the prototype.

4.5.1 Hardware

The first key hardware element is an ultra low power FPGA (Igloo Nano AGLN250)

that manages the various sub-components of the Ekho platform. Most key compo-

nents of the Ekho architecture, including the sensing, data handling, and commu-

nication subsystems, are implemented within the FPGA. The particular FPGA was

chosen because it has low static current consumption and has a 32k bits (2KB) RAM,

which also determines the maximum size of our FIFO buffer.

The next key design element is the backscatter circuit that can operate at high

speed. As the device toggles the state of a transistor that connects to the antenna, an

OOK signal that carries modulated information is generated. However, on existing

backscatter platforms, the static current of the transistor is provided by the harvested

RF energy, which might vary across time. The varying RF power affects the amount

current that is provided to the transistor and leads to unstable edges of the generated
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Figure 4.11. Ekho is implemented as a low-profile printed circuit board with small
form factor.

OOK signal. Therefore, decoding becomes challenging when the data rate is high.

Our backscatter circuit directly provide a small bias current to the transistor and

retains a sharp edge for the generated OOK signal.

A critical element of our hardware design is the clock system which drives the

FPGA logic. The core of our clock system is a 1MHz ultra low power crystal oscillator

that directly feeds into the FPGA. The 1MHz clock is divided to drive different

components of the architecture because sensing, data handling, and communication

subsystems operate at different speeds. Our clock system is different from the Moo

and WISP platforms, where a digital generated clock (DCO) is used. Although the

DCO can also be divided for driving different components, it couples the operational

modes of the system and its clock speed, as a result of which the high speed clock is

only available when the system operates as a whole in a high power mode.

4.5.2 Software defined backscatter reader

We used the USRP N210 mother board and the SBX RF daughterboard to build

our software defined backscatter reader for receiving high speed backscatter signals

from Ekho. We construct a signal processing pipeline that is able to track the am-

plitude of the carrier wave that is used as the reference for decoding the OOK signal

generated by Ekho. Our decoding is different from Moo and WISP platforms where

Miller-4 encoding is used on top of the OOK signal and a decoding template can be
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Figure 4.12. Timeline of Ekho MAC.

used for correlating the received signal and output a bit when the template matches

the received signal. In Ekho, the data is sent directly via OOK and encoding is not

used. Therefore, we need to track the amplitude of carrier wave to determine whether

the received signal is a high or low pulse.

4.5.3 MAC layer protocol

Figure 4.12 shows the timing diagram of the Ekho MAC layer. The first stage

is to inventory the nodes in the network, and obtain information about their SNR

and other sensor-related information. This phase executes very similar to an EPC

Gen 2 singulation phase, where nodes can select a slot to transfer in, and send a

short sequence of bits with the appropriate information. After the singulation phase,

the reader executes the optimization algorithm described in §4.4 and determines the

time period and bit rate for each sensor, which is then relayed to the sensor. The

reader initiates the singulation phase under several circumstances: a) when significant

changes are observed in SNR, which might signify changes in position or orientation,

and b) when collisions are detected, which might signify that a new node is attempting

to join the network.
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Once the reader informs each sensor of its bit rate and period, it initializes slots by

sending a synchronization signal during which it shuts down the carrier for a short 10

µs window. This pulse informs all nodes simultaneously that they should start their

timers, thereby initiating the TDMA schedule. The length of the sync message needs

to be chosen small enough to amortize overhead, but large enough to be detectable

at the sensor, hence our choice of 10µs.

When the reader detects that data transmitted during adjacent slots are overlap-

ping into each other (due to clock drift), it re-issues a synchronization pulse to restart

the timers on all nodes. Overlap between sensors can be detected by looking at the

constellation map of the received signal — if two clusters are present, it indicates that

a collision-free signal is received and if more clusters are present, it indicates that a

collided signal is observed [86]. If multiple synchronization pulses fail to eliminate

collisions, the reader switches back into inventory mode.

4.6 Evaluation

We now evaluate the overall performance of EkhoNet including 1) demonstrating

the power benefit of the Ekho architecture, 2) benchmarking the performance of the

EkhoNet MAC, and 3) evaluating EkhoNet’s ability to support high-rate streams

from many sensors while operating at extremely low power consumption.

4.6.1 Experimental setup

We deploy 10 Ekho nodes 1 feet to 9 feet from a backscatter reader. Our exper-

iments do not cover distances larger than 9 feet because of the poor signal quality

beyond 9 feet. This is a result of the 100mW maximum power issued by the SBX RF

daughterboard, which is 10× smaller than commercial RFID readers.

To understand the power benefits of Ekho, we compare against the UMass Moo

(equivalent of Intel WISP 4.0) and the WISP5.0 platforms. Since the WISP5.0 plat-
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form is not currently available, we evaluate its power consumption with a prototype

that uses the same MCU (MSP430FR5969). Since the MCU is the main power hog

in the system, this provides a good proxy for measuring power consumption.

4.6.2 Ekho power benchmarks

We begin our evaluation by validating the claim that the power optimizations

on Ekho can substantially reduce the overheads incurred by existing platforms. We

follow the organization in §4.4, and show benchmarks for each module — sensor data

acquisition, sensor data handling, and network stack.

Figure 4.13 measure the power of the sensing subsystem when Ekho interacts with

two types of sensors — an accelerometer with on-board ADC that connects to the

MCU via a SPI interface, and an audio sensor where the MCU’s ADC is used to

sample the sensor. We compare Ekho versus a WISP/Mote-class sensor device (i.e.

a device where the sensor connects to an MCU that acquires data). In both cases,

we can see that Ekho reduces power consumption substantially — for sampling the

accelerometer, Ekho reduces power by 1.5× at 400Hz by eliminating the overhead of

software-controlled SPI, and for sampling the audio sensor, Ekho reduces power by

22× by trimming the overhead of running the software-controlled ADC at 44kHz.
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Figure 4.13. Power reduction for sensing subsystem: a) sampling an accelerometer,
b) sampling a microphone.
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Figure 4.14 measures the power consumption of the data handling subsystem of

Ekho, which is composed by a 2kB FIFO buffer for connecting sensors to the RF

analog front end. The 2kB FIFO buffer only consumes 26.5µW of power when data

is written into the FIFO at 500kHz, 14.4× lower than the 384µW consumed by DMA

driven data migration and 92× lower than the 1.5mW consumed by timer driven data

migration.
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Figure 4.14. Power reduction for data transfer to network queue.

Figure 4.15 shows the power consumption of the communication subsystem which

is composed of a shift register and backscatter radio. At 1Mbps, Ekho’s commu-

nication subsystem consumes only 77µW of power, 13.4× lower than a UART con-

trolled backscatter radio implemented on the WISP and 44× lower than a software

controlled backscatter radio implemented on the WISP. For software and UART con-

trolled backscatter radios, we do not measure power at bit rates higher than 6Mbps

because the maximum clock on rate on WISP platform is 24MHz, which limits the

maximum achievable bit rate.

4.6.3 Whole-system power consumption

Having looked at power benchmarks for individual components of Ekho, we turn

to a whole-system power measurement from sensing to transmission. We look at the
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Figure 4.15. The power consumption of operating a backscatter radio.

overall power consumed by Ekho when operating the same two sensors as earlier —

accelerometer and microphone.

We start with a measurement of Ekho with an accelerometer. The sensor has a

built-in ADC and talks via SPI to the sensor platform. Figure 4.16 shows that at 1Hz,

the power consumption of Ekho is higher than Moo and WISP5.0 platforms. This is

because the static current consumption of the FPGA at the core of Ekho is 8.9µA,

much higher than the 0.1µA static current draw of Moo and WISP5.0. However,

when the frequency of operating the accelerometer increases, the power consumed

by Moo and WISP5.0 platforms increases significantly while the Ekho system still

consumes only tens of µW. At 400Hz, the Ekho system consumes 35µW of power,

7.6× lower than the 266µW of Moo and 3.3× lower than the 118µW of WISP5.0.

We now turn to power measurements when Ekho is connected to a microphone.

An external ADC is used to sample the audio sensor, and send a digital signal to the

core platform (Moo, WISP5.0, or Ekho). Figure 4.17 shows the power consumption

of the three platforms. At 44kHz, the Ekho system only consumes 37µW of power,

76× lower than the Moo and 13.5× lower than the WISP5.0.

In conclusion, Ekho is particularly efficient when using higher rate sensors that

sample at frequencies of hundreds of Hz. A crucial observation is that even when the
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Figure 4.16. Whole-system power consumption for operating an accelerometer sen-
sor.

 0
 500

 1000
 1500
 2000
 2500
 3000

 1  10  100  1000 10000

Po
w

er
 (u

W
)

Sampling Rate (Hz)

Moo
WISP5.0

Ekho

Figure 4.17. Whole-system power consumption for operating an audio sensor.

sensing rate increases by two orders of magnitude from the accelerometer at 400Hz to

the microphone at 44kHz, the overall power consumption remains almost the same.

This shows that Ekho scales up very well as sampling rate increases. In addition,

Ekho is able to operate with sensors that use SPI or provide an analog signal while

retaining high efficiency.

4.6.4 Evaluating EkhoNet’s throughput

Having discussed the power benefits of Ekho, we now turn to look at the perfor-

mance of Ekho’s transfer rate.
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Figure 4.18. Comparing throughputs of EPC Gen 2, QuarkNet on Moo vs Ekho
across 30 locations.

We start with the throughput achieved by a single node. Since the Moo and WISP

platforms currently support only a 256Kbps baud rate, we fix Ekho’s clock to operate

at the same rate. We then compare Ekho’s throughput against the Moo executing

EPC Gen 2 [96], and QuarkNet [97]. Figure 4.18 shows the cumulative throughput

across 30 locations. The 30 locations are chosen randomly between 1 feet to 9 feet

from a backscatter reader.

There are two key observations. First, we see that the throughput achieved by

Ekho is 45× higher than Gen 2 and 8× higher than QuarkNet on the Moo. EPC

Gen 2 suffers greatly due to protocol overhead, and therefore achieves abysmal overall

throughput. Although QuarkNet is a highly optimized system that is designed for

micro powered sensors, its throughput is limited by the fact that the PHY layer (en-

coding, etc) is implemented in software on Moo, which reduces throughput. Second,

we see that there are a few locations where our design decision to eschew encoding

hurts us. At those locations, the received signal can still be decoded by EPC Gen

2 and QuarkNet because of the SNR benefit of Miller-4 encoding. However, it can

be seen that this is a small fraction of the overall range of the reader. (Note that if
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encoding is essential, it is possible to add this module to Ekho at the cost of some

additional power consumption and reduced throughput.)

We now turn to the throughput achieved by a network of nodes, and evaluate

the benefits of our energy and utility function aware bit rate selection algorithm.

We deploy 10 Ekho nodes with microphones at three locations (3 feet, 6 feet, and 9

feet from a backscatter reader). The maximum sampling rate of each audio sensor is

44kHz and each sample data is 16 bits. As a result, an audio sensor can generate up

to 706k bits data per second. In contrast, the overall network transmission capacity

of EkhoNet is 1Mbps in our current instantiation since each device is equipped with

a 1Mbps clock. Thus, 10 audio sensors in front a backscatter reader can saturate the

1Mbps network easily, which means that adapting the bit rate as well as the sampling

rate of each sensor is necessary.

When channel is saturated, the selection of bit rate is intuitive because maximum

bit rate which meets the lowest SNR decoding threshold (10dB) should be used. The

selection of sampling rate follows the energy-utility joint optimization we formulated

in §4.4.

Figure 4.19 shows the MOS score obtained by 10 audio sensors at 3 locations. Our

optimization framework attempts to allocate bandwidth such that sensors with higher

SNR can get the bandwidth they need for achieving higher MOS scores. As a baseline,

we compare against a scheme that allocates bandwidth equally across all sensors.

The median and mean MOS scores achieved by EkhoNet is higher than the baseline

scheme — 50% of the nodes have MOS scores higher than two, which is acceptable

audio quality, whereas the uniform allocation scheme has MOS scores of about 1.7,

which means poor audio quality. A breakdown across nodes shows that our algorithm

assigns higher sampling rate to sensor 1 to 5 because they have higher SNR. While

other application-specific utility functions are possible, these results demonstrate that
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Figure 4.19. Boxplot of the MOS scores for 10 Ekho nodes with microphones at 3
locations (3 ft, 6 ft, 9 ft).

despite the simplicity of Ekho platforms, the EkhoNet MAC can be more complex

and optimize network-wide throughput, energy and utility.

4.7 Related Work

4.7.1 Backscatter communication

There has been much recent emphasis on backscatter communication. Some ef-

forts have explored bandwidth limitations of backscatter communication in terms of

throughput including Flit [45], Buzz [86], and Blink [100]. While there are interest-

ing ideas underlying each of these, the overall throughput achieved by EkhoNet is

orders of magnitude higher than the above systems as a result of a clean-slate design.

Other efforts have focused on using harvested power in an efficient manner includ-

ing QuarkNet [97][99] and Dewdrop [29] — these approaches are complementary to

EkhoNet and can be used in conjunction with the ideas in this chapter.

In addition to the above, there have been many interesting ideas on using backscat-

ter for real-world applications. Ambient Backscatter [63] uses the backscatter of FM

signals for short-range communication between tags to enable credit-card transac-

tions. AllSee [58] explores the backscattered signal for gesture recognition. These
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ideas can potentially benefit from an Ekho-like platform that is designed to reduce

power consumption while increasing bandwidth.

Much literature has explored the design of MAC layer protocols for RFIDs, and

several of these approaches specifically address data collection from RFID-scale sen-

sors [30, 45, 86, 97]. Viewed in isolation, our MAC layer protocol is simplistic since

its merely a stripped down version of TDMA, hence it relates to most of the above

protocols. However, our work should be viewed not just as a MAC layer, but a system-

wide re-design to strip computational overhead from backscatter-based sensors, and

thereby achieve higher efficiency.

4.7.2 Optimized sensing platforms

There have been many highly optimized sensor hardware designs proposed over

the past decade. At a high level, these can be separated into two classes — opti-

mized hardware platforms designed for specific applications, and optimized hardware

platforms that are intended as a building block for research and applications. One

example in the former class is the NeuralWISP [50], a wireless neural interface that

operates on harvested RF energy. Some examples in the latter class are the Michigan

M3 [61], an impressive mm3 sensor that operates at low power, and the Epic Mote

[34], which is a modular mote-class platform for enabling low-power wireless sensor

network applications.

EkhoNet differs from these efforts in that it is designed for raw data transfer

from high-rate sensors at extremely low power levels. Thus, it is a general-purpose

platform for sensors similar to the second class of devices, but focused on backscatter

and high-rate sensors. As a result, the underlying design principles and optimizations

are completely different from those that drive the other class of platforms.
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4.8 Discussion

While Ekho provides substantial performance benefits over the state-of-art in

backscatter-based sensor platforms, there are several questions that we have not com-

pletely addressed in our evaluation. We discuss these in this section.

4.8.1 FPGA v.s. MCU

One of the design choices in Ekho is the use of an FPGA rather than MCU —

this choice greatly reduces the computational and data migration overheads between

the sensor and radio, but in the process, it sacrifices ease of programmability. While

FPGA programming has become easier in recent years due to improved IDEs and GUI

interfaces [10], it requires familiarity with logic design at the circuits level. MCUs, on

the other hand, are much more natural to program using commonly used high-level

languages such as C, which is one of the reasons for its wide use on sensor platforms.

We believe that the greater difficulty in programming FPGAs is not as much of an

issue for Ekho as for other platforms. Wireless sensors are designed to be intelligent,

autonomous nodes that can adapt to dynamics in energy levels, channel conditions,

routing changes, and others. In contrast, Ekho is designed to be a “dumb” peripheral

for a powerful reader that simply forwards the raw sensor data over a backscatter

link. Much of the decision-making logic that is traditionally implemented on the

sensor side are performed at the reader. Thus, Ekho can be viewed as just another

sensor, with an interface that allows the reader to set sampling rates and bit rates

(as shown in §4.4).

4.8.2 Power benefits

The results presented in this chapter compare Ekho against existing backscatter-

based sensing platforms such as the WISP, but one question is whether we would

have significant power benefits if we compared against an FPGA implementation of

the WISP. Our evaluation did not address this question since re-implementing the
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entire sensing, computation, and communication pipeline of the WISP on an FPGA

is a substantial effort, but we provide a qualitative comparison.

Existing research work [72] on RFIDs suggests that an EPC Gen 2 tag imple-

mented on FPGA usually consumes 5K to 10K logic gates. Clearly, an EPC Gen 2

tag does not perform any operation related to sensing. Therefore, sensor sampling,

data migration, buffering, and other tasks would incur additional overhead. For exam-

ple, Touhafi and Glesner et al [33, 49] investigate an FPGA (Spartan3-2000) based

sensing platform which consumes 1200K gates, several orders of magnitude higher

than an EPC Gen 2 tag. Our Ekho implementation consumes only 6K gates, which

is comparable to an EPC Gen 2 tag and significantly less than what we would ex-

pect with an FPGA version of the WISP. Since the power consumption of an FPGA

depends on the number of gates used, Ekho should still be significantly more efficient.

4.8.3 Encoding

Another design decision that needs more discussion is that Ekho eschews encoding

in an effort to be minimalist. Unsurprisingly, this can be problematic in scenarios

where the wireless channel is noisy. Figure 4.20 shows a simple experiment where we

place a tag at 20 locations between 1–9 ft in front of a reader, and look at the SNR

with EPC Gen 2’s Miller-4 encoding, and without encoding. The decoding threshold

for our backscatter reader is 10dBm, so any signal lower than this threshold cannot

be decoded correctly. As expected, there is about a 10dB difference between encoded

and uncoded signal. The SNR is higher than 10dB in 80% of the locations for uncoded

data, and higher than 10dB in about 90% of the locations after encoding. This comes

at a high cost, however, since the node consumes 8× more power for achieving the

same bit rate.

Thus, our point is simply that encoding is yet another computation block on a

backscatter-based sensor platform. While the power consumption of techniques like
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Figure 4.20. SNR of transmitting encoded and raw data across 20 locations

encoding are insignificant in most radios, the pros and cons deserve to be examined

more carefully for ultra-low power platforms such as Ekho.

4.8.4 Applications

Finally, this chapter does not focus on applications of Ekho, but we view our

work as an enabler for a variety of applications. While the idea of backscatter-

based sensing is not new [91], many existing efforts are about networking simple,

low rate sensors (e.g. temperature, pressure, etc). But the need for backscatter in

such scenarios is debatable — active-radio based wireless sensors operate for years

on coin cells at low sensing and communication rates. But rich sensors such as

microphones and cameras operate primarily in a tethered manner since data rates

are far too high for continuous communication. Our work seeks to bridge the gap,

and enable camera networks or microphone networks to stream data continuously

in an untethered manner. The benefits of streaming raw sensor data to internet-

connected infrastructure is immense since one can use vast amount of computational

resources to jointly process the data streams and enable smart applications. A simple

example would be continuous speaker recognition and transcription of meeting notes
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by deploying a tethered reader and dozens of untethered Ekho nodes at different

locations in a conference room.

4.9 Conclusion

In this chapter, we present a powerful backscatter wireless sensing architecture,

Ekho, that can sample sensors at tens of kHz and transmit data wirelessly at several

hundreds of kbps, while only consuming tens of µWatts of power. The key observation

in Ekho is that backscatter wireless communication is energy-wise much cheaper than

computation. Therefore, by eliminating the overheads of sensing subsystem, data

handling subsystem, and communication subsystems, we enable the whole sensing-

communication pipeline to operate at extremely low power. Over the Ekho platform,

we design a MAC layer that allocates bit-rates across nodes while taking into ac-

count energy-efficiency, utility of data, and a variety of platform-level considerations.

We believe that EkhoNet can enable new explorations in backscatter-based sensing

systems, and enable new applications that use ultra-low power high-rate sensors.
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CHAPTER 5

ENABLING PRACTICAL BACKSCATTER
COMMUNICATION FOR ON-BODY SENSORS

Deploying backscatter on mobile and wearable devices is hard because of the

lack of an incident carrier for backscatter. Existing mobile and wearable devices

do generate a carrier. However, this carrier is not directly transmitted. Instead,

it is used to modulate a baseband signal before transmission. To make matters

worse, backscatter readers are not already widely deployed. As a result, we cannot

just leverage existing infrastructure for backscatter. In this chapter, we address this

challenge by leveraging multiple ambient wireless signals, such as WiFi and BLE, for

carrying backscattered information. We explore key factors that enable backscatter

using commercial WiFi and BLE radios.

5.1 Introduction

The ultra low-power nature of backscatter communication makes it a compelling

technology for the design of wearable and on-body sensors that operate on tiny energy

budgets. Today, most such sensors use Bluetooth Low Energy (BLE) for low-power

communication, but BLE consumes tens of milliwatts when operating in active mode

i.e. when transmitting data. In contrast, a backscatter tag consumes a few micro-

watts in active mode, and enables the design of on-body sensors that continually

stream data at an end-to-end power budget of tens of micro-watts [101]. The tiny

energy budget combined with the simplicity of the hardware components needed to

design backscatter-based sensors opens up a range of possibilities including micro-
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powered on-body sensors [95], miniature implantable sensors [93], thin and flexible

wearables [69], and others.

But when we attempt to make backscatter practical for on-body sensors, we face

a conundrum. Unlike built environments where backscatter-enabled access points

or readers can conceivably be deployed, we have limited options in a mobile envi-

ronment. We can perhaps modify radio chipsets in smartphones and wearables to

include backscatter support, but this will not be immediately deployable and their

widespread use will hinge on market forces. Ideally, we would leverage existing mobile

and wearable devices that people already use as a source of continuous carrier and

backscatter receiver. But these devices are not designed to support backscatter, and

therefore do not embed crucial building blocks such as self-interference cancelation.

This is particularly problematic when dealing with a link as fickle and sensitive as

backscatter — reverse link path loss and backscatter antenna reflection losses create a

dicey decoding scenario even with perfectly tuned hardware [78], and the constraints

of commercial transceivers on mobile devices only exacerbates the situation.

Consider the case of WiFi Backscatter [57], a recent attempt at resolving this

conundrum. In this technique, a receiving WiFi device looks at the RSSI values for

each packet, and first smoothes these values to remove natural variations in the WiFi

signal. It then uses signal strength variations in the averaged signal to extract a

lower rate backscattered signal. But this approach is difficult to tune precisely in

a mobile scenario where the WiFi signal is continuously changing due to movement

and body blockage variations. This makes it hard to cleanly average away the WiFi

signal variations, and leads to low signal to noise ratio (SNR), and consequently

less performance in terms of range and throughput. Thus, the challenge that we

face is how to use commercial transceivers while also effectively dealing with carrier

interference.
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Our key insight in this paper is that backscatter can be made practical for wear-

ables using a simple but effective trick — if a backscatter tag can shift an incident

WiFi or Bluetooth carrier to a clean WiFi or Bluetooth band, then that the receiver

can see a clean, carrier-interference free backscattered signal in the shifted band. The

tag can perform on-off keying (OOK) at the shifted frequency to transfer information

in the shifted frequency band. This method is practical on devices that many users

already use in mobile settings. For example, a mobile phone can act as a Bluetooth

carrier, an on-body sensor can be a tag that shifts the signal by 20MHz while modu-

lating it, and a Bluetooth receiver on a wristband (like a Microsoft Band) can receive

this shifted signal in the adjacent band.

There are two reasons why frequency shifting allows us to improve backscatter per-

formance. The first is that the receiver sees a clean signal and does not need to deal

with any other interference in the same channel. The lower noise level means that we

can achieve higher performance than methods that try to separate the primary car-

rier from backscatter signal in a single channel without assistance of self-interference

cancelation techniques. The second reason is that the receiver can use the structure

of the primary carrier (i.e. WiFi or Bluetooth packet preamble) to be able to de-

tect the shifted signal at very low SNRs. For example, typical WiFi and Bluetooth

chipsets have receive sensitivity of -90dBm to -95dBm, much lower than the threshold

of detecting the RSSI of a signal with unknown structure. This allows us to oper-

ate at longer ranges than RSSI-based methods, albeit at lower bitrates since we can

modulate information only at the rate at which packets are transmitted. Thus, our

method leverages both the benefits of frequency shifting as well as the high receive

sensitivity of modern radio chipsets.

Frequency shifting also opens up some interesting new possibilities. We often have

multiple portable devices in our vicinity including phones, smartwatches, tablets and

laptops. In these scenarios, we can leverage multiple transmitters and receivers to
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improve the throughput and reliability of the link. This is possible since the tag

simply reflects any incident signal that resonates with its antenna unlike active radios

that need to filter signals into specific bands before transmission.

While frequency shifting has many benefits, it opens up a fundamental challenge

of tag-side power consumption. Shifting to an adjacent WiFi band necessitates a

20MHz oscillator at the tag, whereas existing RFIDs and computational RFID-scale

devices only need slow oscillators that operate at several Kilohertz. High speed os-

cillators typically consume milliwatts of power, which is incompatible with our goal

of operating at micro-watts of power. We tackle this challenge by sacrificing preci-

sion for power — we design a low-power ring oscillator-based clock generator for the

FS-Backscatter tag which operates at tens of micro-watts but also has temperature-

induced frequency variations. However, we show that FS-Backscatter is robust to such

temperature-induced frequency variations that we might expect for on-body sensors.

In summary, our system, FS-Backscatter, has several novel contributions.

• First, we design, implement and evaluate a practical backscatter system for

on-body devices that enables ultra-low power communication while also being

compatible with commercial WiFi and Bluetooth transceivers. We show that

FS-Backscatter can operate up to 4.8m distance and provide throughputs rang-

ing from tens of bits/second to tens of kilobits/second depending on the specific

transmitter – receiver configuration.

• Second, we show that FS-Backscatter can take advantage of the plethora of

radios that are available on portable devices and combine transmitters or re-

ceivers to boost performance. We show that throughputs increases by 25% to

100%, and we can achieve up to 48.7kbps throughput in two transmitter and

two receiver scenarios.
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• Third, we show that an FS-Backscatter tag operates at a power budget of 45µW

through the use of a ring-oscillator based clock design, and is robust to frequency

variations induced by environmental changes.

5.2 Case for FS-Backscatter

Several recent efforts have proposed ways to make backscatter communication

practical by leveraging either existing wireless infrastructure or existing wireless-

enabled devices. The mobile scenario, which is the target of our work, adds an

additional wrinkle in that the method should work on-the-go and not just in built

settings. We discuss prior work from this perspective and understand how they fare

in our problem domain.

5.2.1 Infrastructure-assisted Backscatter

Several existing techniques rely on tethered infrastructure either for carrier gen-

eration or for decoding the backscattered signal or both. Of course, all RFID readers

operate in this manner in that they generate a narrowband carrier, and perform self-

interference cancelation to separate the backscattered signal from the carrier. But

RFID reader infrastructure is not ubiquitous, so a few recent methods have designed

innovative ways to embed reader functionality into existing devices.

BackFi [26] modifies a WiFi Access Point (AP) by augmenting it with the ability

to cancel the OFDM carrier signal. The benefit of this technique is that it keeps

the tag very simple — a simple ASK-transmitting tag can simply backscatter the

AP-generated WiFi signal without worrying about the complexity of the underlying

OFDM signal structure.

BLE-Backscatter [35] flips this method and provides infrastructural support such

that a backscatter tag can communicate with a commodity BLE radio receiver. Here,

the infrastructure component is a simple continuous wave (CW) transmitter, and a
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backscatter tag modulates the CW tone to emulate a BLE transmitter, thereby allow-

ing commodity BLE receivers to receive the modulated signal. The BLE-Backscatter

tag saves power because it no longer needs to generate the carrier, but it emulates a

BLE stack and is therefore more complex and power-hungry than an ASK-modulating

backscatter tag.

Neither of these methods are viable in a mobile context since they use infrastructure-

assistance, and require additional hardware for self-interference cancelation or CW

generation that is not embedded in existing radios.

5.2.2 Infrastructure-less Backscatter

A second class of methods leverages an ambient carrier (e.g. TV or WiFi carrier),

and backscatter this signal so that it can be received at a commodity receiver. Of

these, we do not consider the TV carrier signal used by Ambient Backscatter [63] since

its availability is very spotty and the signal strength decays significantly a few miles

away from a TV tower station. But WiFi Backscatter [57] appears more practical

since it uses a commodity WiFi transmitter and receiver, which is plausible in a

wearable scenario where we might use a phone as the transmitter and smartwatch as

receiver. The tag side retains the simplicity of ASK-based backscatter.

From a signal processing perspective, the key challenge is separating the ambi-

ent carrier from the backscattered information without the benefit of self-interference

cancelation. Instead, these methods rely on the fact that changes in the WiFi or

TV carrier occur at a much higher rate than changes in the backscatter modulation.

Therefore if the received signal is averaged over a long enough window, the backscat-

ter modulated information can be recovered. This averaging can be done using an

envelope detector in the analog domain (used in Ambient Backscatter [63]), or low

pass filter in the digital domain (used in WiFi Backscatter [57]), after which one can

89



 0
 20
 40
 60
 80

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Th
ro

ug
hp

ut
 (b

ps
)

Distance (m)

Directional Ant
Omni-directional Ant

Figure 5.1. Throughput of WiFi Backscatter across distance with 3dBi Omni-
directional [7] and 9dBi directional [17] antennas.

measure how a backscattered signal changes the propagation characteristics of the

incident signal.

While WiFi Backscatter appears practical for the mobile scenario, it is quite dif-

ficult to get the scheme to work in practice. The design presents two issues: a) the

primary exciter is much louder than the backscatter signal and, despite averaging,

reduces signal to noise ratio to such an extent that range is extremely low, and b)

the temporal variations due to typical human movements and corresponding chan-

nel variations in mobile environments requires dynamic tracking of signal and noise

thresholds, which in turn makes decoding sensitive to the chosen thresholds.

To illustrate the downsides to this design, let us empirically measure WiFi Backscat-

ter throughput across distance. We use a bi-static backscatter deployment similar to

that in [57], and place a CC3200 WiFi transmitter 1m away from a backscatter tag

while moving the CC3200 WiFi Backscatter decoder away. The results are shown in

Figure 5.1.

Our first observation is that when a tag is equipped with a standard 3dBi omni-

directional antenna [7], WiFi Backscatter simply does not work, even at close ranges.

We then try to equip the tag with a 9dBi directional antenna [17] to see how perfor-
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mance improves. Indeed, WiFi Backscatter does work, but achieves only up to 0.2m

operational distance and 19bps data rate even with a 9dBi directional antenna. Let

us dig in a bit further to understand why WiFi Backscatter has low performance.

5.2.2.1 Low signal-to-noise ratio

The first key issue is the strong interference from the ambient carrier, which

limits operational range as well as data rate. To measure interference, we set up

a deployment similar to the one in [57], and place a 0dBm WiFi transmitter 3m

away from a backscatter device. One difference is that our tag is equipped with

an omnidirectional antenna, unlike [57] which uses a custom multi-antenna array.

The main reason for this change is that the 18.5cm×15.7cm1 custom multi-antenna

array is too large for on-body sensor tags. We move the WiFi receiver away from

the backscatter tag and measure the TX signal strength as well as the backscattered

signal strength.

Figure 5.2 shows empirically measured SNR and SINR of WiFi Backscatter across

distance. Even when the receiver is 0.1m from the backscatter device, the SINR

measured is -47dB i.e. the transmitted WiFi signal strength is 47dB higher than

the backscattered signal strength. When the receiver is moved further, the SINR

decreases even more. The SINR at 2m decreases to -71dB, which makes backscatter

decoding extremely challenging. As a result, the system can achieve respectable data

rates only at extremely short ranges of a few centimeters, and decoding range is

typically a meter or less while the data rate is reduced to a few bits/second.

5.2.2.2 Mobility-induced dynamics

The second issue is that mobility changes the propagation characteristics of an

incident signal, which makes decoding highly sensitive to the chosen threshold. Fig-

1We can measure the antenna size using the picture shown in [57] because the size of each patch
element is 4.06cm×3.09cm.
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Figure 5.2. SNR and SINR of backscatter across distance.

ure 5.3 shows the CDF of the received signal strength of a WiFi transmitter when

it is placed 1m away from a receiver. When the transmitter and receiver are static,

the environment does not change and we can observe a stable WiFi signal with a

median strength of -35dBm. However, when a person carries both the transmitter

and receiver and moves around, the received signal strength varies significantly from

-80dBm to -20dBm. Such dramatic signal variations will introduce significant decod-

ing errors if the pre-calibrated threshold is not adapted accordingly. But adaptive

re-calibration of the threshold is also very hard due to the large dynamic range of

the variability, and will require complicated channel estimation and adaptation that

is well outside the regime of what can be done on an ultra-low power backscatter tag.

5.2.3 FS-Backscatter: Key Ideas and Challenges

The essential idea underlying FS-Backscatter is quite simple — if a tag can shift-

and-modulate a carrier signal in one frequency band into an adjacent non-overlapping

frequency band where a receiver is listening, then the receiver has a clean channel

within which to recover the modulated backscatter signal. This model is quite differ-

ent from existing methods for backscattering which either use ASK or FSK modula-
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tion; instead, our method involves a fixed frequency shift to a clean band followed by

amplitude modulation.

Why would we expect this method to work well? The first reason is simply that

the backscattered signal is shifted into a clean band where we are no longer affected

by the interference from the carrier. Figure 5.4(a) shows the effect of shifting a WiFi

signal, and Figure 5.4(b) shows the same result for a BLE signal. It is clear that the

shifted signal is quite distinct from the primary carrier.

A second reason is that modern WiFi and Bluetooth receivers are designed to

be extremely sensitive to structured weak signals, such as the preamble in a packet.

For example, the CC2560/CC2564 Bluetooth receivers are able to detect packets at
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-95dBm which allows them to work at a few tens of meters while only consuming tens

of milliwatts. We can leverage this sensitivity to combat signal losses due to reflection

(typically 30dB) and due to path loss on the reverse link. The distance we need to

operate under in typical mobile scenarios is only a couple of meters, which is much

shorter than the receive range of either Bluetooth or WiFi and gives us room to have

additional signal losses due to body attenuation.

While frequency shifting opens up an array of possibilities, it introduces some

practical questions and challenges. The first question is one of practicality - is this

technique viable in practice? If it is viable, how well does it perform? When does it

work and when does it fail? Do commodity radios expose APIs that allow us to tap

into this method? The second is one of power — since non-overlapping WiFi bands

are separated by 20MHz, we need a 20MHz oscillator at the tag. This is substantially

higher than what is needed for simple ASK modulation at a few tens or hundreds of

kilobits/second, and higher frequency clocks incur more power. But how much power

efficiency do we lose at the tag? Are there ways to mitigate the loss of efficiency and

keep it to tens of micro-watts? In the rest of this section, we discuss answers to these

questions.

5.3 Frequency-Shifted Backscatter

In this section, we look at the practicality of FS-Backscatter on existing com-

modity radios and the implications on the design of the tag. We start with single

transmitter to receiver scenarios, then at multiple transmitters to receivers scenarios,

and finally discuss the design of the tag.

5.3.1 FS-Backscatter on Commodity Radios

The first question we ask is: If we take a commodity WiFi or Bluetooth Low

Energy (BLE) chipset operating in broadcast mode, and shift the carrier to the ad-
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jacent frequency band while simultaneously modulating the carrier in this band, can

a receiver listening on the adjacent band decode the backscattered signal?

5.3.1.1 Packet-level FS-Backscatter

Our first set of experiments look at the packet-level RSSI information that most

WiFi and BLE chipsets provide, and see whether this can be used to decode the

backscattered signal.

• WiFi-to-WiFi Backscatter: In this experiment, a CC3200 WiFi transmit-

ter transmits a stream of packets in channel 1, and a WiFi receiver (CC3200)

is configured to listen to packets in the next non-overlapping channel 5. The

transmitter transmits at 1200 packets/second, and a FS-Backscatter tag is con-

figured to shift by 20MHz and then perform on-off keying of its RF transistor

at half the frequency of the transmitter packet rate i.e. 600 bits/second. The

idea is that the WiFi receiver successfully receives a packet when the tag shifts

by 20MHz, and does not receive a packet when the tag does not shift. This

binary sequence of bits is the information being transmitted by the backscatter

tag.

Figure 5.5(a) shows the results when the WiFi transmitter is 1m away from the

tag and we move the receiver away from the tag. The frequency shifted signal

can clearly be decoded by the receiver. FS-Backscatter is able to operate up

to 4.8m when it leverages packet-level RSSI information for decoding and has

average throughput of 627.7bps across all distances.

• Bluetooth-to-Bluetooth Backscatter: The same underlying method for fre-

quency shifting can also be used with a TI CC2650 BLE transmitter and a BLE

receiver listening on the channel that is 20MHz away. The transmitter broad-
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Figure 5.5. FS-Backscatter throughput across distance when leveraging WiFi and
Bluetooth signals.
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casts at 100 packets/second. Figure 5.5(b) shows that FS-Backscatter is able

to operate up to 4.4m, with an average data rate of 45.8bps.

5.3.1.2 Bit-level FS-Backscatter

The above approach shows feasibility, but throughput is quite low since we are

limited to one piece of information (RSSI) per packet. This means that any backscat-

ter modulation scheme is limited by the packet rate on commodity radios — WiFi can

broadcast about 3K packets/second, while BLE only broadcasts∼100 packets/second.

These rates are comparable to what was achieved in WiFi Backscatter, but given that

we have a clean band to work with, we should be able to go a lot faster. But to achieve

this, we need information at a layer lower than packet-level RSSI i.e. we need sub-

packet RSSI information.

To explore this option, we use a commercial TI BLE radio that exposes a slightly

lower level interface [16]. This radio provides an option for bypassing the BLE stack

and directly obtaining RSSI values of the channel at a finer granularity. This physical

layer interface can be used for detecting the presence (or absence) of a backscattered

signal in the band at rates that are considerably faster than packet-level backscatter.

In this experiment, we use a Bluetooth transmitter, and configure an FS-Backscatter

tag to modulate at a rate of 50kbps. We sample RSSI information at 100KHz from

the CC2541 BLE receiver to decode the signal. Thus, each RSSI reading is an average

of the channel readings over a duration of 10µs, and provides a measure of whether

or not the backscattered signal is present in the adjacent channel.

Figure 5.5(c) shows the results. We can see that FS-Backscatter is able to achieve

∼50kbps data rate at close range and can operate up to 3.6m. The range is shorter

than packet-level backscatter since we are not able to exploit structure in the backscat-

tered signal that is used for packet-level decoding. But we are able to take advantage

of the fact that we are working in a clean channel with limited noise, and thereby
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operate much longer than techniques that use ASK backscatter without frequency

shifting.

5.3.1.3 What if no channels are available?

In the previous discussion, we assumed that the channel adjacent to the carrier is

unoccupied, but one question is what if none of the channels are free. Our backscat-

tering method works only when two adjacent non-overlapping channels are available

i.e. the transmitter channel, and either the channel at the next lower non-overlapping

frequency band or the higher non-overlapping frequency band. Note that both are

viable options since frequency shifting shifts the carrier into both adjacent channels.

But it is not unusual for many wireless channels to be occupied, so what happens if

that is the case.

We note that even if there is a significant amount of WiFi traffic, some channels

are highly unlikely to be used for active transmission. 2.4GHz WiFi has 14 allocated

channels, whereas only 11 are used in practice since channels 12 and 13 have strict

requirements regarding emission limits to avoid spilling over to adjacent restricted

frequency bands [32]. However, since the backscattered signal is very weak, it is well

below these emission limits, and hence we can shift the carrier from Channel 9 and

listen in Channel 13.

We verify the emissions from FS-Backscatter in Channel 12 and 13 when a WiFi

transmitter is operating in Channel 9. Figure 5.6 shows that the backscattered signal

strength at Channel 13 is only -85dBm2, 30dB lower than the WiFi carrier signal

and close to the noise level. Therefore, FS-Backscatter will not cause interference to

radios operating close to Channel 13 because its signal strength is too weak.

2Measured at the FS-Backscatter tag antenna.
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Figure 5.6. FS-Backscatter spectrum when leveraging 2.4GHz WiFi channel 13 for
carrying backscattered information.

5.3.1.4 Can we improve robustness by using multiple transmitters or re-

ceivers?

So far, we have discussed the case where there is a single incident carrier and a

single receiver. But in many mobile scenarios, we have the possibility of using more

than two radios. For example, we often have multiple bluetooth-enabled accessories

including tablets and headsets, so we may be able to repurpose these as an addi-

tional backscatter carrier or receiver. These additional radios can potentially be used

as multiple carrier emitters and receivers to improve robustness since backscattered

signals are generally weak and more sensitive to noise.

Can FS-Backscatter leverage more than two radios? One of the benefits of FS-

Backscatter is that it is not limited to backscattering a single carrier. The backscatter

tag’s analog RF front end includes only an RF transistor and antenna, and unlike

other radios, has no filters to limit the band where the radio can operate. As a result,

a backscatter tag is able to reflect multiple incident signals at the same time as long as

these signals can resonate with the backscatter antenna. Since both WiFi, Bluetooth,

Zigbee and many other ISM-band radios share the same 2.4-2.483GHz spectrum, a

backscatter device is able to reflect some combination of these at the same time. This
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feature provides several potential benefits where we can leverage multiple ambient

carriers and multiple receivers to enhance backscatter performance.

We can leverage multiple transmitters and receivers quite easily in FS-Backscatter.

Multiple transmitters can simply turn off carrier sensing and broadcast in the same

band to increase the reflected signal strength. Note that this method would not work

if we use ASK backscatter in the same channel as the carrier, since the additional

transmitter would also add interference. But in FS-Backscatter, the backscatter signal

strength is boosted in the shifted channel.

If we use multiple receivers, we can simply combine the signals to improve decoding

performance. In an ideal scenario, one could combine the analog signals via maximal

ratio combining, but since we operate over a commercial transceiver, we are restricted

to the RSSI information coming from the radio. Thus, in our case, the two receivers

can measure the signal strength (RSSI) of a backscattered bit on each receiver, and

exchange this information. Then, we can simply add the signal strength received by

each receiver for determining the actual bit transmitted by a backscatter tag.

5.3.2 Low-power FS-Backscatter Tag

A major question that remains is the design of the FS-Backscatter tag. The main

consideration is that the tag needs to be able to shift by 20MHz such that it can

shift both WiFi and Bluetooth carriers into a non-overlapping frequency band. This

is a key difference between an FS-Backscatter tag and previous work on RFIDs (and

Computational RFIDs) since previous work focuses either on ASK or FSK modulation

around the center frequency of the carrier, whereas we require the the tag to shift

the carrier by 20MHz prior to modulation. Thus, the question we need to answer

is whether an FS-Backscatter tag can operate at micro-watts of power while shifting

the carrier by such a substantial amount.
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5.3.2.1 What is the power bottleneck?

Intuitively, more power will be consumed when we have to shift the carrier by

larger frequencies. We look at three subsystems on a backscatter tag — RF transistor,

transmission logic and clock generator, to determine which of these consume the most

power as the shifted frequency increases.

• RF Transistor: The RF transistor is a MOSFET transistor with a capacitance

around 2.1pF (ADG902). Its power consumption can be calculated using the

equation 1
2
CV 2F where C is the capacitance of the transistor, V is the gate

voltage, and F is the frequency of operating the transistor. Even when toggled

at a high rate of 20MHz, the RF transistor only consumes 21µW. Thus, the

power consumption of the RF transistor itself is low and has a linear relationship

with F .

• Transmission logic: The second subsystem, transmission logic, is a hardware

module that toggles the backscatter RF transistor based on data transmitted.

We use a digital circuit to implement the transmission logic, and the power

consumption of this module increases linearly with the rate of transmission

[101]. While the precise power consumption depends on the logic, we expect

that this module consumes around 15µW of power given that we can open and

close the transistor via an NAND gate [12], which has a capacitance of around

1.5pF.

• Clock generator: The third subsystem is the clock generator which provides

the clock for timing the whole system. Oscillators are typical sources for gen-

erating clocks. Table 5.1 shows the power consumed by the lowest power com-

mercially available oscillators that we could find at different frequencies and

accuracies. We find that once we begin shifting by several MHz, the power

consumption also rises to a few milliwatts.
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Table 5.1. Power consumed by commercial oscillators operating at different frequen-
cies and different accuracies.

Oscillators Frequency Accuracpy Power
ASH7K 32 kHz ±10ppm 1.48µW

LTC6990 1 MHz ±50ppm 326µW
LTC6900 10 MHz ±40ppm 2.04mW
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Figure 5.7. Backscatter tag power consumption breakdown.

Figure 5.7 shows a power consumption breakdown of the three subsystems. Its

clear from the above breakdown that the clock generator is the highest power con-

sumer in the entire system and consumes two orders of magnitude of more power

compared to the RF transistor and the transmission logic. So we turn our atten-

tion to this component and ask whether there is a way to make our oscillator circuit

operate at µWs of power.

5.3.2.2 Can we shift by 20MHz while consuming µWs?

A key question in designing a low-power oscillator is the precision that we are will-

ing to tolerate. Active radios choose their oscillators based on several considerations

including reducing leakage outside the channel to permitted levels, lowering phase

noise, and minimizing power consumption. But if FS-Backscatter can tolerate less

precision in the oscillator output, we can design significantly lower power oscillators.

In particular, one attractive design for an ultra-low power oscillator is a ring

oscillator, which is used in some integrated digital and communication systems [55]

[79] [60]. Our design of a 20MHz ring oscillator looks as shown in Figure 5.8. A
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Figure 5.8. Ring oscillator circuit diagram.

ring oscillator leverages an odd number of inverters and connects them in a serial

sequence. Since the last stage inverter outputs a signal that has a reversed logic as

the input of the first stage inverter, the whole circuit can oscillate. The frequency of

the ring oscillator is determined by the propagation delay of each inverter. We use

two approaches to control the propagation delay of each stage. First, we use a voltage

controlled inverter where we adjust the gate voltage (Vnc and Vpc) of two PMOS and

NMOS transistors in an inverter to control its propagation delay. Second, we use

an RC circuit between the inverters to add additional delay. We simulate a 20MHz

ring oscillator in HSPICE and see that we are able to achieve 20MHz by tuning the

control voltage Vnc and Vpc and the RC parameters.
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Figure 5.9. Ring oscillator frequency when temperature changes. The normal range
of skin temperatures is fairly tight (typically between 36.6oC and 37.2oC).

While attractive from a power perspective, a ring oscillator is typically not used

in active radios because its frequency can vary a fair bit with temperature variations.

In general, the frequency can vary by a few MHz if there is a significant temperature

swing of more than a few tens of degrees (C). Such variation is typically going to be

a showstopper for many radio designs.

However, a ring oscillator may still be suitable for FS-Backscatter since it is specif-

ically intended for on-body sensors. The normal range of skin temperatures is fairly

tight (typically between 36.6◦C–37.2◦C), and even sweating and physical exercise

only induce small temperature changes of less than 1◦C due to thermal regulation

[28]. Figure 5.9 shows an HSPICE simulation of our ring oscillator design at temper-

atures around the human range. We use our HSPICE implementation of the 20MHz

ring oscillator to measure the effect of such temperature shifts, and find that the

frequency changes by roughly 69∼210kHz. We then modify the shifted frequency of

FS-Backscatter by20MHz ± 250kHz to see its effect on the packet-level and bit-level

decoders described earlier.

Figure 5.10 shows the effect on a packet-level decoder when leveraging a WiFi

signal. When an FS-Backscatter tag experiences a frequency offset that is smaller
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Figure 5.10. Packet-level decoder throughput on a WiFi signal when a tag experi-
ences ±250kHz frequency offset.

than 100kHz, we can achieve similar throughput as the one without any frequency

offset. However, when the frequency offset is larger than 150kHz, FS-Backscatter

throughput starts degrading. When the frequency offset is larger than 250kHz, FS-

Backscatter throughput degrades to zero. While not shown in the figure, we also see

that BLE packet-level decoder is more robust to frequency shifts, and can tolerate

roughly 450kHz frequency shift before the throughput degrades.

Note that even if the packet-level decoder does not work when the sensor is not

attached to the body or when the temperature swing is large, we can still use the

bit-level decoder that uses RSSI information. Bluetooth channels are 2MHz apart, so

a temperature-compensated decoder can listen on the appropriate channel where the

backscattered signal is strongest.

5.3.2.3 Reducing operating voltage

Another optimization that we make is to reduce the voltage range in which the

FS-Backscatter tag operates and thereby reduce power. Let us first look at the voltage

needed for toggling an RF transistor. The minimum voltage needed for powering an

ADG902 RF transistor is VDD = 1.65V . However, it does not mean that we need
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Figure 5.11. FS-Backscatter tag diagram.

to feed a 1.65V signal into the gate of the transistor for opening and closing the

gate. In fact, an ADG902 can be opened and closed by switching between 0.65VDD

and 0.35V. As a result, instead of switching between 1.65V and 0V, we can switch

between 1.0725V and 0.35V to toggle the transistor. Such smaller operational voltage

range will reduce the power consumed for toggling the RF transistor.

Similarly, we do not have to run the ring oscillator and the data modulator at high

voltage either. Instead of running the whole system at 1.65V, we can operate these two

subsystems at 0.8V. Then, we use a 0.3V voltage shifter to move the 0.8V/0V signal

output by the modulator to 1.1V/0.3V, high enough for toggling the RF transistor.

By operating the ring oscillator and modulator at 0.8V, we can significantly reduce

the overall system power consumption. Our final tag design is shown in Figure 5.11.

5.4 Implementation

In this section, we describe our implementation of FS-Backscatter.

• FS-Backscatter Tag: Our prototype of an FS-Backscatter tag is designed to

be flexible in connecting different types of antennas to understand the effect of

antenna gain. The backscatter analog front end that allows us to explore these

design options is shown in Figure 5.12. We use an ADG902 transistor to tune

and detune the antenna. The antenna is connected to the transistor via an SMA
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Figure 5.12. FS-Backscatter radio analog front end

connector, which allows us to directly connect different types of antennas. For

example, we connect to a VERT2450 and a TL-ANT2409A 2.4GHz antenna

for reflecting 2.4GHz wireless signals in our implementation. Our flexibility

comes at a cost, however, since we do not tune matching circuits to the specific

antenna. Hence, we might expect some performance improvement in a more

integrated version.

In addition to the above prototype, we also have a full simulation of FS-

Backscatter in HSPICE, which allows us to evaluate the power and performance

of our ring oscillator circuit and voltage rails optimizations. We use three volt-

age controlled inverters to implement the ring oscillator. The control voltages

for PMOS and NMOS are Vpc = 0.1V and Vnc = 0.75V respectively. We add

one RC circuit (R = 1.008K,C = 1.84pF ) in the second stage of the ring oscil-

lator to introduce additional delay. When we use 0.8V to drive the PMOS and

NMOS inside of the ring oscillator, we are able to obtain 20.006MHz oscillating

frequency, accurate enough for modulating our information. Before feeding the
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20MHz clock into the modulator, we put two additional inverters after the ring

oscillator to shape the signal output by the ring oscillator.

• Active transmitter and FS-Backscatter decoder: Our carrier transmit-

ter and receiver implementations use standard radios with standard antenna

configurations to keep the setup similar to what we can expect in a mobile sce-

nario. The transmitter is simply a Bluetooth/BLE or WiFi transmitter that

continuously broadcasts data in a specified channel. Our packet-level decoders

are implemented on a commercial TI CC3200 WiFi receiver and TI CC2650

BLE receiver. Packet-level reception is designed to work on commercial WiFi

and BLE receivers without modification. Our bit-level decoder is implemented

on a TI CC2541 BLE chipset which, in addition to the normal BLE mode, also

supports a proprietary mode that bypasses the Bluetooth stack and allows us

to directly access channel RSSI. While this API is not widely available on all

BLE chipsets, we note that this mode is only needed at the receiver i.e. only

one endpoint needs modification. So, one potential path to widespread use may

be to have next-generation fitness bands or smartwatches swap BLE chipsets to

use one with low-level channel access (or otherwise provide API access to the

raw channel RSSI values) so that we can also use it as a high-rate backscatter

receiver.

When we observe an incident WiFi signal on the ith channel and a Blue-

tooth/BLE signal on the jth channel, we configure CC3200 and CC2650/CC2541

to detect packets on the i + nth and j + nth channels where n indicates the

number of channels shifted by an FS-Backscatter tag. Signals detected by each

radio are reported to the joint decoder for deciding the actual bit transmitted

by a backscatter tag. CC3200, CC2650, and CC2541 have similar sensitivity

(-95dBm) for detecting a backscattered signal.
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• WiFi Backscatter setup: Since the code for WiFi Backscatter is under license

from UW to a licensee company, we re-implement this scheme using parameters

provided in the paper. We use a 9dBi directional gain antenna at the tag in

experiments where we compare against this scheme because WiFi Backscatter

does not work with a monopole antenna (as described in §5.2). But in all

other experiments, we use a standard 3dBi omni-directional antenna [7] for FS-

Backscatter. The WiFi/Bluetooth transmitter and receivers are equipped with

standard onboard chip or PCB antennas.

5.5 Evaluation

We now turn to an evaluation of the various aspects of FS-Backscatter.

5.5.1 FS-Backscatter: Throughput and BER

Our goals in this experiment are two-fold. First, we want to tease apart the ben-

efits of shifting to a clean band, and leveraging structure of WiFi/Bluetooth packets.

Packet-level decoding allows us to take advantage of both whereas bit-level decoding

only allows us to take advantage of the clean band. Second, we want to understand

the differences in obtained throughput if we use the two types of decoding meth-

ods. Packet-level decoding gets one bit of information per packet, whereas bit-level

decoding can go much faster.

In this experiment, we place a backscatter tag 1m away from a CC3200 WiFi/CC2650

BLE transmitter and then move the backscatter decoder away from the tag. We

show two versions of this experiment — the first with a 9dBi directional antenna

[17] on the tag to ensure that we obtain throughput numbers for WiFi Backscat-

ter, and the second using a more standard 3dBi antenna [7]. We then evaluate the

throughput for FS-Backscatter across distance for packet-level and bit-level decoding

in FS-Backscatter as well as WiFi Backscatter.
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Figure 5.13(a) shows the results. Packet-level decoding generally gives us the high-

est range of ∼5m, demonstrating the benefits of leveraging both a clean band as well

as signal structure. We get this range even when using a more typical monopole an-

tenna, which shows that leveraging both benefits has huge implications on range and

makes backscatter practical even in challenging environments. FS-Backscatter can

achieve 4.8m maximum operational distance, 16× longer than the WiFi backscatter

system. In addition, the average throughput achieved is 627.7bps, 12.5× higher than

WiFi Backscatter. These results clearly show the benefits of moving the backscat-

tered signal into an adjacent clean spectrum rather than trying to separate WiFi

signal variation from the backscatter modulated signal within the same band.

We turn to a comparison of packet-level decoding v.s. bit-level decoding. We use

a BLE transmitter, and show results for the two decoding schemes in Figure 5.13(b).

When bit-level RSSI information is used for decoding, the maximum operational

distance achieved is 3.6m and the throughput increases to 50kbps, 79× higher than

FS-Backscatter when packet-level RSSI is used because intra-packet RSSI detection

allows us to detect the presence of reflected signal faster. The achieved maximum

operational distance is slightly shorter because bit-level RSSI does not leverage the

packet structure for decoding.

Figure 5.13(c) shows the bit error rate (BER) of FS-Backscatter across distance.

We use the same experimental setting as Figure 5.13(b). FS-Backscatter with bit-

level decoder can achieve 10−3 BER at 3.6m with 50kbps data rate and packet-level

decoder can achieve 10−2 BER at 3.2m. When the FS-Backscatter tag is further, bit-

level decoder BER increases to one sharply while packet-level decoder BER increases

gradually. Such difference comes from the fact that packet-level decoder can leverage

the structure of a packet for detecting the reflected signal. As a result, it is more

tolerant to the degradation of reflected signal strength.
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Figure 5.13. FS-Backscatter throughput and BER across distance when leveraging
WiFi and Bluetooth signals.
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Figure 5.14. FS-Backscatter throughput benefit when leveraging multiple active
transmitters and receivers.

5.5.2 Multiple Carriers and Receivers

Let us now look at the benefits of leveraging multiple carrier signals for carrying

backscattered information and multiple receivers for joint decoding. This set of ex-

periments considers scenarios where we might have three or more radios on a phone,

wristband, and tablet, and where multiple transmitters or receivers may be leveraged.

5.5.2.1 Leveraging multiple carriers

First, we investigate the benefit of multiple carriers where two Bluetooth signals

are simultaneously leveraged by FS-Backscatter. We deploy two Bluetooth trans-
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mitters 0.2m away from each other and a FS-Backscatter tag in five locations in

the department building, run a 2-minute experiment at each location, and compute

throughput once every 10 seconds. Figure 5.14(a) shows the cumulative throughput of

FS-Backscatter. When we only leverage a single Bluetooth signal, median throughput

of 15.1kbps is achieved. However, FS-Backscatter is able to achieve 22.3kbps median

throughput when leveraging both transmitters, 1.47× higher than leveraging a single

Bluetooth signal. The throughput improvement is for reasons described in S5.3.1.4

— since Bluetooth transmitters are limited to a maximum output power of 0dBm,

two transmitters naturally increases the signal strength at the decoder.

5.5.2.2 Leveraging multiple receivers

In our second experiment, we look at the case where two receivers are leveraged

for joint decoding. We use two Bluetooth receivers 0.2m away from each other, each

of which is configured to decode by using bit-level RSSI information. We measure

the cumulative throughput and show the results in Figure 5.14(b). When a single

Bluetooth receiver is used, we achieve 39.1kbps median throughput. When we jointly

decode using two Bluetooth receivers, we can achieve 48.7kbps throughput, 1.24×

higher than the single receiver case. We can achieve such throughput improvement

because the reflected signal at one receiver can be strong while the reflected signal at

the other is weak. In these cases, joint decoding is helpful and improves SNR.

5.5.3 Power consumption

Let us now look at the power consumption of an FS-Backscatter tag. We provide

a breakdown of power for each component (ring oscillator, modulator, RF transistor),

as well with and without DC voltage shifting. The results are shown in Figure 5.15.

We first look at the tag power consumption without DC voltage shifting where the

whole system operates at 1.65V, which is the minimum voltage required for toggling

an ADG902 RF transistor. The three hardware components of an FS-Backscatter
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Figure 5.15. Benchmarking the power consumption of a FS-Backscatter tag.

tag: ring oscillator, data modulator, and RF transistor consume 78µW, 11.5µW,

and 57.1µW respectively when transmitting at 50kbps and the overall tag power

consumption is 146.6µW.

We reduce the tag power consumption by configuring the ring oscillator and data

modulator to operate at lower voltage (0.8V) and shift the signal voltage output

by the data modulator before feeding into the RF transistor. In this case, the ring

oscillator, data modulator, and RF transistor consume 20.8µW, 0.1µW, and 24.1µW

respectively with DC voltage shifting. The overall tag power consumption is 45µW,

3.25× lower than the case without DC voltage shifting. As shown, the major power

reduction comes from the ring oscillator, which consumes 3.75× less power when

operating at a lower voltage.

5.5.4 FS-Backscatter vs BLE/Zigbee

In this section, we compare the performance of FS-Backscatter against low-power

active radios such as BLE and Zigbee. Low-power radios for wearable devices need

to be compared along two axes. The first is bits/joule i.e. how many bits can be

transmitted for a fixed amount of energy. This gives a measure of how much data

can be transferred via a particular radio given an energy budget. However, more
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Table 5.2. FS-Backscatter energy efficiency. Pkt refers to packet-level decoding, and
Bit refers to bit-level decoding.

Bits/µJ Peak Power
BLE(CC2650) 54.6 18.3mW(0dBm)
ZigBee(CC2630) 13.7 18.3mW(0dBm)
FS-Backscatter
(Pkt-WiFi)

25.5 45µW

FS-Backscatter
(Pkt-BLE)

2.2 45µW

FS-Backscatter
(Bit)

1100 45µW

powerful radios with higher bitrates will generally have higher efficiency in bits per

joule, but will also consume more power in active mode. To account for this effect,

another metric that is useful is peak power draw of the radio. Higher peak power draw

implies worse lifetime from batteries, since battery decay curves are linked to not just

the average power draw but also the peak power draw [38] [37] [22]. It also means that

tags would need more complex batteries with built-in power management circuits to

be able to sustain the burst during active mode. In addition, higher peak power also

means that operating on harvested power is unlikely since additional voltage boosting

and energy buffering circuits increase quiescent power draw.

Table 5.2 shows the peak power consumption and bits per µJ of a CC2650 BLE

radio, a CC2630 ZigBee radio, and FS-Backscatter operating in three modes. FS-

Backscatter has three orders of magnitude smaller peak power consumption compared

to BLE and ZigBee. Therefore, FS-Backscatter is beneficial when we design a system

that requires small peak power consumption, for example, in energy harvesting-based

tags. When leveraging packet-level decoding, FS-Backscatter has smaller bits per µJ

compared to BLE and ZigBee because its data rate is slow. However, when operating

in bit-level decoding mode, FS-Backscatter energy efficiency significantly improves

and can achieve 1100bits/µJ, 20.3× higher than BLE.

115



 0
 0.2
 0.4
 0.6
 0.8

 1

 10  15  20  25  30  35  40  45  50

C
D

F

Throughput (kbps)

Static
Mobile

Figure 5.16. FS-backscatter throughput in static and mobile deployment.

5.5.5 Mobile and static deployment

We now look at the overall system performance in an on-body sensing scenario

where we place a BLE transmitter in the pocket, a BLE receiver on the wrist, and the

FS-Backscatter tag on the chest. This scenario corresponds to a scenario where a user

has a phone and smartwatch, and wears an on-body sensor. The FS-Backscatter sen-

sor tag transmits data at 50kbps, and a wristband receives and decodes the reflected

signal using bit-level decoding. We look at a static case where the user is static for

10 minutes, and a mobile case where the user moves around for 10 minutes. We plot

CDFs of the throughput numbers taken for each 10 second interval.

Figure 5.16 shows the results. We are able to achieve 48.7kbps and 21kbps median

throughput when the person is static and mobile respectively. These numbers are

very encouraging since many on-body sensors generate data rates far lower than

this number. For example, a 3-axis accelerometer [3] sampled at 100Hz has a data

communication rate requirement of 4.8kbps, whereas a ECG electrode [19] sampled

at 250Hz has data rate requirements of 2kbps.

Between the static and mobile cases, we observe higher and more stable FS-

Backscatter throughput in static deployment, as we might expect. In contrast,

FS-Backscatter throughput is lower in the mobile deployment because body move-
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ment leads to significant channel variations and degrades throughput. However, the

throughput in the mobile case is also quite promising, and worst case throughput

is already more than 10kbps. This means that FS-Backscatter should generally

be able to provide a continuous communication link from an on-body sensor to a

phone/smartwatch combination.

5.5.6 Mutual Interference

One potential issue that we have not touched upon so far is how FS-Backscatter

might interfere or be interfered by active radio traffic. Understanding mutual inter-

ference is important because FS-Backscatter operates in the 2.4GHz ISM band where

spectrum occupancy is high. To answer this question, we first look at the interfer-

ence by a WiFi radio on FS-Backscatter when both operate on the same channel.

We deploy both a BLE transmitter and a FS-Backscatter decoder 1m away from an

FS-Backscatter tag. We then adjust the distance of a WiFi interferer to understand

how WiFi interferes with the FS-Backscatter data transmission. We use the bit-level

decoder in this experiment since this is most likely to be impacted by cross-traffic.

Figure 5.17(a) shows that FS-Backscatter can achieve 49.7kbps median through-

put when the WiFi interferer is not present. However, we observe that throughput

degrades to 31.7kbps and 47.4kbps when the WiFi interferer is 10m and 15m from

the FS-Backscatter decoder. This is because the power of the backscatted signal

is only around -80dBm, whereas the power of the WiFi interferer is at least 20dB

higher at close range. When the WiFi transmitter is 15m away, FS-Backscatter is

able to achieve 47.4kbps throughput, close to the case when the WiFi interferer is

not present. When WiFi transmitter is closer than 10m, FS-Backscatter throughput

degrades to zero because WiFi interference is too strong.

Let us now look how FS-Backscatter interferes on an ongoing WiFi transmission.

In this experiment, we deploy a WiFi transmitter 5m away from a WiFi receiver.
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Figure 5.17. Mutual interference between FS-Backscatter and WiFi.

Figure 5.17(b) shows that WiFi is able to achieve 29Mbps when FS-Backscatter is

not present. When a FS-Backscatter tag is 0.2m from the WiFi receiver, the median

WiFi throughput degrades to 23.9Mbps, 1.21× smaller. When the FS-Backscatter

tag is 1m away, we observe 28.7Mbps median WiFi throughput, close to the case

when FS-Backscatter is not present. Therefore, FS-Backscatter has only a relatively

small interference range, and even then does not seem to have a substantial effect on

WiFi throughput.
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5.6 Related Work

There has been a lot of interest and activity in the area of backscatter-based

communication and sensing in recent years [101, 71, 97, 45, 100, 64, 86, 87, 85, 88, 48,

52, 51, 71]. The interest has been spurred by the booming industry for embedding tiny

sensors in virtually anything that we wear, touch, use or even ingest, ranging from

the Internet of Things, on-body and implantable sensors, wearables, mobile devices,

urban sensing, and others [42, 81, 93, 65, 25].

In particular, our work is inspired by recent progress on enabling backscatter with

commodity radios or with some infrastructure support. Among the earliest efforts

at approaching the problem in this manner is Ambient Backscatter [63] and WiFi

backscatter [57]. More recently, there have been interesting infrastructure-assisted

approaches such as BLE-Backscatter [35] and BackFi [26]. We have discussed these

methods extensively in §5.2, and will not go into the details here. These are terrific

ideas but they do have their limitations either in terms of robustness or practicality in

the mobile environment. We build on these ideas and look at how to make backscatter

practical for on-body devices. We also note that prior work does not look at the

possibility of leveraging multiple incident signals, which we can take advantage of in

FS-Backscatter.

FS-Backscatter is also inspired by previous work on interference cancellation. Re-

cent work has looked at this problem in the context of full-duplex radios[54, 73, 68, 27,

31, 54]. However, these efforts require additional hardware components that are not

present on many existing commercial radios. Other recent work use signal processing

techniques over the analog signal to minimize interference [56, 40, 62, 41, 39, 46].

However, such analog signals are not available on many existing commercial radios.

FS-Backscatter is designed to work on commercial radios and their constraints, and

uses frequency shifting rather than interference cancelation.
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FS-Backscatter tag is also inspired by previous work on RFID tag ASIC designs

[90, 67, 77]. The main difference between an FS-Backscatter tag and an RFID tag

is that FS-Backscatter requires a higher speed local clock for shifting the incident

carrier signal. To achieve this, we leverage ring oscillators designs [70, 36, 75] and

tune the circuit to enable 20MHz oscillating frequency while only consuming ∼20µW

of power.

5.7 Conclusion

In summary, we discuss the design of FS-Backscatter, a system that enables

backscatter communication between on-body sensor tags and commercial WiFi and

Bluetooth radios. The key idea of FS-Backscatter is that we can reduce carrier signal

interference by shifting the backscattered signal to a clean band that does not overlap

with the carrier. We demonstrate that a 20MHz frequency shift is enough for enabling

an FS-Backscatter tag to communicate with commercial WiFi and Bluetooth radios.

Such frequency shift does not come with high power consumption at the tag side

because we leverage a ring oscillator circuit to design a FS-Backscatter tag that only

consumes 45µW. Our empirical evaluation shows that an FS-Backscatter tag is able

to communicate with commercial WiFi and Bluetooth radios up to 4.8m and achieve

50kbps data rate. We believe that FS-Backscatter paves the way toward enabling

practical deployment of backscatter-based low power on-body sensor tags.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Thesis Summary

This thesis explores fundamental factors that limit the range, power reduction, and

deployability of backscatter systems. I have employed a set of techniques, including

hardware design, wireless communication, and operating systems, to significantly

improve the performance of backscatter systems.

We propose a hardware sensing architecture that minimizes computational blocks

between the sensors and the backscatter RF interface. Its design is inspired by study-

ing a variety of computational blocks between sensors and backscatter RF interface.

We find that these overheads were negligible on platforms where communication was

expensive. However, because of the ultra-low power consumption of backscatter ra-

dios, they become the bottleneck on backscatter-based systems and increase power

consumption while limiting throughput. Therefore, we overturn the design principle

governing wireless sensor design from one that is focused on minimizing communi-

cation to one focused on optimizing the computational elements between the sensor

and RF interface. FPGA instantiation demonstrates ≥1Mbps backscatter transmis-

sion while only consuming ≤100µW of power, two orders of magnitude improvement

over the state of the art.

We propose a network stack that fragments any network task into its smallest

atomic units to enable the system to scale down to resource impoverished regimes. Its

design is inspired by the observation that communication tasks executed by micro-

powered sensors are simply too large to fit into the extreme energy constraints of
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this regime. For example, the core primitive of a network stack — packet transfer

— can involve hundreds of instructions and bits. A packet transfer might not be

successfully executed simply because it is too large compared to the extreme energy

constraints of resource impoverished regimes. Therefore, we employ a simple but

powerful abstraction — by fragmenting any network task into its smallest atomic

units, we can enable the system to operate in resource impoverished regimes. The

instantiation enables packet transfer when the whole system is powered by a 3cm×3cm

solar panel under natural indoor light condition.

In the last part, we look at how to deploy backscatter systems on mobile and wear-

able devices. Our key idea is leveraging multiple existing wireless signals for carrying

backscattered information. To achieve the goal, we have to deal with several chal-

lenges, such as strong self-interference, slow data rate, and low power consumption.

Our design follows two rules. First, we leverage existing wireless signals for backscat-

ter since we do not need to deploy additional backscatter readers. Second, we use

commercial radio receiver for decoding backscattered information because these radio

already exist on mobile and wearables. Our empirical evaluation with an FPGA con-

trolled backscatter radio, TI CC3200 WiFi chip, and TI CC2560 BLE chip shows that

our system is able to achieve 500bps throughput and 5m operational distance when

reflecting a WiFi signal respectively. Similar results can be observed when reflecting

a bluetooth signal where we achieve 50kbps throughput and 5m operational distance.

6.2 Future Work

I would like to continue to explore research problems related to wearable and

mobile systems. Below I describe three research directions I will pursue in the near

future.
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6.2.1 Applications enabled by backscatter

Backscatter has the potential to enable low-power video gaming on mobile devices.

Video game applications usually involve complex graphics processing, including object

segmentation and 3D rendering, and thereby require significant amount of computa-

tional resources and energy. For example, running the “Need for Speed” game on an

iPhone consumes 90% of its CPU. To make matters worse, the iPhone cannot last for

more than 2 hours when a user continuously plays the game. With the aid of ultra

low-power backscatter radios, many graphics processing tasks can be offloaded to a

base station which is connected to the cloud. Once graphics processing is done at

the cloud, the computed results will be pushed back to mobile devices via backscat-

ter. Because a mobile device only acts as a display for cloud-computed results, the

proposed scheme will significantly reduce the energy and computational resources

needed for running video gaming. There are several research challenges I will address

to enable this application, including omni directional backscatter, partitioning tasks

between mobile devices and cloud, and providing software and hardware abstractions

for ease of application development.

6.2.2 Passive sensing via backscatter

Backscatter also has the potential to enable passive gesture identification and hu-

man activity recognition. To identify gestures and recognize activities, several recent

research work [74] [20] exploit the key observation that any motion changes the prop-

agation characteristics of backscattered signal. For example, a “wave” gesture will

generate a doppler frequency shift on the received signal of a WiFi AP. [74] detects the

doppler shift via physical layer signal processing, and uses it as the indicator of the

presence of a gesture. However, detecting gestures presented by fingers via backscatter

is challenging. Because of the small movement of fingers, doppler shift introduced is

tiny and hard to detect. Instead, I am going to explore frequency domain features to
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identify fine-grained finger gestures. Specially, I am planning to use Frequency Mod-

ulated Continuous Wave (FMCW) radar. The intuition is that tiny finger movement

will introduce large frequency offset on the backscatter signal received by a FMCW

radar. Therefore, fine-grained finger gesture identification is possible. Realizing this

capability requires research efforts from multiple perspectives, including customizing

FMCW systems on a commercial WiFi AP, distinguishing finger gestures versus multi

path interferences, etc.

6.2.3 Mobile health

Backscatter has the potential to enable ubiquitous and non-obtrusive health mon-

itoring, which is hard to achieve with existing wearable and implantable devices. Let

us look at a specific mobile health application — hearing aids, which grants hear-

ing to people who otherwise would be unable to do so. One type of hearing aids is

cochlear implants. However, existing cochlear implants require a disk-shaped trans-

mitter about an inch in diameter, with a wire snaking down to a joint microphone

and power source around the patient’s ear. We think that backscatter can help signif-

icantly shrink down the form factor of cochlear implants. It provides RF energy for

operating the whole cochlear system. In addition, the measured electrical signal can

be offloaded to a base station via ultra low-power backscatter. By eliminating the

battery, the whole cochlear implant has a smaller form factor and can be encapsulated

into the middle ear. In addition to cochlear implants, many other mobile health ap-

plications will benefit from backscatter as well. For example, an RF-powered glucose

monitoring system can be embedded in a contact lens.
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