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  EPIGRAPH 

 

“A Negroni, Signor Barone?” asked Mr. Cipriani. 

But the good lion had flown all the way from 

Africa and Africa had changed him. 

“Do you have any Hindu trader sandwiches?”  

he asked Cipriani. “No, but I can get some.” 

“While you are sending for them make me a  

very dry martini.” He added, “With Gordon’s gin.” 

“Very good,” said Cipriani. “Very good indeed.” 

Now the lion looked about him at the faces 

 of all the nice people and he knew that he was at 

 home but that he had also traveled. He was very happy. 

 

Ernest Hemingway, The good Lion.  

 

 

 

 

 

“Considerate la vostra semenza: 

fatti non foste a viver come bruti,  

ma per seguir virtute e canoscenza 

 

Call to mind from whence ye sprang:         

Ye were not form’d to live the life of brutes, 

But virtue to pursue and knowledge high.” 

 

Dante Alighieri, The Comedy, Hell 

Canto XXVI 118-120. 
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ABSTRACT 
 
 

SPERM CAPACITATION ASSOCIATED INCREASE IN TYROSINE PHOSPHORYLATION: 

KINETIC OF THE INCREASE AND NOVEL CANDIDATES INVOLVED IN THE PROCESS. 
 
 

SEPTEMBER 2016 
 
 

ANTONIO ALVAU, B.Sc. UNIVERSITÀ DEGLI STUDI DI FIRENZE 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by Professor Pablo E. Visconti 
  
 
 
 

Sperm capacitation is a post-ejaculatory maturational event required for 

successful fertilization. Specific molecular events are induced during 

capacitation: a cAMP-dependent activation of protein kinase A (PKA) leading 

downstream to the increase of tyrosine phosphorylation. Activation of PKA 

and tyrosine phosphorylation was shown to occur on different time scale. 

Here we showed that phosphorylation events during capacitation are tightly 

regulated over time, with fast activation of PKA and a late and continuous 

increase in the level of tyrosine phosphorylation to guarantee a pool of 

capacitated sperm at the right time/site of fertilization. 

Despite several studies on tyrosine phosphorylation, the identity of the 

tyrosine kinase(s) that mediate these increases has not been conclusively 

demonstrated. Recently a role for focal adhesion kinases (PYK2 and FAK) 

was proposed in stallion, based on the use of PF431396, a small molecule 

inhibitor directed against this kinase family, but critical loss of function 

experiment have not been reported.  We used both pharmacological tools and 

genetically modified mice models to investigate the identity of the tyrosine 



 ix 

kinase(s) mediating the increase of tyrosine phosphorylation in human and 

mouse sperm. PF431396 blocks the capacitation-associated increase in 

tyrosine phosphorylation in both human and murine. On the other hand, Pyk2–

/– mice showed a physiological capacitation-associated tyrosine 

phosphorylation and the specific inhibition of FAK by PF573228 showed no 

decrease in the levels of tyrosine phosphorylation, indicating that focal 

adhesion kinases are not responsible for this phosphorylation process. Here 

we show that PF431396 can also inhibit the tyrosine kinase FER and that 

sperm from mice targeted with a kinase inactivating mutation in FER failed to 

undergo capacitation-associated increases in tyrosine phosphorylation. While 

these mice are fertile, their sperm displayed normal levels hyperactivation but 

have reduced ability to fertilize metaphase-II arrested eggs in vitro.   

 

 

Keywords: Sperm Capacitation, Tyrosine phosphorylation, Tyrosine Kinases, 

FER. 
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CHAPTER 1 

INTRODUCTION: SIGNALING PATHWAYS REGULATING SPERM 
CAPACITATION 

 
 

1.1 Spermatogenesis 
  

Spermatozoa are highly specialized and motile germ cells, and represent the 

final product of male gametogenesis, known as spermatogenesis, which 

occurs in the testis. Testis has both endocrine and reproductive functions, it 

responds to stimuli from anterior pituitary producing androgens, finally 

stimulating male gametogenesis (Weinbauer et al., 2001). Spermatogenesis 

occurs in the functional unit of the testis, the seminiferous tubules. 

Seminiferous tubules are composed by a germinal epithelium, mostly formed 

by the Sertoli cells which function not only as a barrier to protect haploid 

sperm from the attack of the immune system but also to provide essential 

paracrine factors (cytokines, proteins, growth factors and steroids) selectively 

up-taken by germ cells to produce mature spermatozoa (Weinbauer et al., 

2001). When sperm reach their structural maturation, they are released from 

the germinal epithelium into the rete testis, where spermatozoa are 

concentrated before moving toward the epididymis. Although morphologically 

mature, these spermatozoa have not reached full fertilizing competence and 

need to transit through epididymis and vas deferens in order to acquire 

motility and later fertilizing ability.  
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1.2 Epididymal Maturation 
 

Mammalian spermatozoa produced in the testis leave the rete testis and 

slowly transit through the efferens ducts, ultimately reaching the epididymis. 

The epididymis is a long, convoluted tube that covers a fundamental role in 

post gonadal maturation of male gametes and is divided in three portions: 

caput (proximal), corpus (medial) and cauda (distal) (Hinton and Palladino, 

1995; Jones and Murdoch, 1996; Robaire and Viger, 1995; Yeung et al., 

1993). Spermatozoa slowly transit across the epididymis in order to acquire 

motility, ability to respond to the female environment, and fertilizing ability. 

The prominent feature of epididymal lumen is a highly specialized epithelium 

(Da Silva et al., 2007). Primary function of epithelial cells is to secrete a 

luminal fluid to create the optimal environment for sperm maturation during 

epididymal maturation.  Low levels of bicarbonate ions (HCO3
–) and pH typical 

of the luminal fluid (Kirichok et al., 2006; Levine and Kelly, 1978; Levine and 

Marsh, 1971) ensure the maintenance of spermatozoa in a quiescent state 

(Acott and Carr, 1984; Carr et al., 1985; Kirichok et al., 2006). Furthermore, 

interactions between epididymal factors and gametes are further facilitated 

due to high levels of water reabsorbtion. At the end of their transit through the 

epididymis, immotile spermatozoa finally reach the cauda, where they are 

stored in a quiescent state before ejaculation.  
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1.3 Sperm Capacitation 
 

1.3.1 Definition and General Description 

Ejaculated spermatozoa are motile but, before becoming fully competent for 

fertilization, they must reside in the female reproductive tract for a certain 

amount of time: the combination of physiological changes that occur to 

spermatozoa during the transit across the female reproductive tract and that 

prepare spermatozoa to interact with the egg is defined as Capacitation.  

Dr. Austin and Dr. Chang independently introduced the term capacitation in 

the early fifties (Austin, 1951; Chang, 1951). Since then, several studies have 

focused their interest on understanding features and regulatory mechanisms 

of sperm capacitation.  

Physiologically, capacitation occurs after ejaculation, during the transit toward 

the oocyte, and is characterized by a series of maturational events that render 

spermatozoa able to appropriately swim through the fallopian tubes, to bind to 

the oocyte’s extracellular matrix, to penetrate egg vestments and to fuse with 

the egg (Aitken and Nixon, 2013). Both functional and molecular modifications 

are typical of sperm capacitation and both are necessary to render 

spermatozoa fully capacitated (Yanagimachi, 1994a). 

Two major functional changes characterize capacitated spermatozoa: the 

acquisition of hyperactive motility (Suarez, 1996, 2008) and the ability to 

undergo the acrosomal reaction (Breitbart, 2003; Florman et al., 2008). When 

spermatozoa transit through the female tract, it responds to the various 

environmental signals by modifying their motility pattern: ejaculated 

spermatozoa show progressive motility, which is characterized by a high 
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flagellar beat frequency and low bend angle, which helps mature sperm to 

swim out from the seminal plasma and to rapidly move through the vaginal 

and uterine environments, toward the oviducts. By the time sperm reach the 

utero-tubal junction (UTJ), they must acquire hyperactive motility; reduced 

flagellar beat frequency, increased bending angle and higher propulsive force 

distinguish hyperactive motility (Suarez and Ho, 2003). Hyperactive sperm are 

therefore slower but able to pass the UTJ and swim through the high viscosity 

medium typical of the fallopian tubes, detaching from the tubes epithelium to 

finally reach the oocyte. 

Another functional change characterizing capacitated sperm and that is 

necessary for fertilization is the ability to undergo to the acrosomal reaction. 

The acrosome is a large secretory vesicle located on the tip of the sperm 

head and its lumen is filled with both soluble and particulate components 

called acrosomal matrix (Buffone et al., 2014a). Mostly proteases, 

glycosidases and several binding proteins form the acrosomal matrix (Buffone 

et al., 2008) and when capacitated spermatozoa reach the oviducts, release 

their acrosomal content in response to signals produced by the zona 

pellucida, in a process called Acrosomal Reaction (AR). This exocytotic event 

allows spermatozoa to digest and penetrate egg vestments and, at the same 

time to expose molecules present on the sperm membrane that mediate 

sperm-egg binding and fusion.  In order to be fully competent for fertilization, 

sperm must develop a functional acrosome and to be able to release its 

contents with the appropriate timing (Buffone et al., 2008; Florman et al., 

2008). 
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Besides the functional changes described above, molecular and biochemical 

events must also take place during capacitation. These changes must not be 

considered as single events but as a series of somehow connected and 

sequential phenomena that ultimately render spermatozoa fully competent for 

fertilization (Salicioni et al., 2007). Biochemical events include: loss of 

cholesterol from sperm plasma membrane, fluxes of Ca2+, K+, HCO3
– and 

other extracellular ions, changes in the cAMP levels, increased sperm plasma 

membrane potential and increased levels of Tyrosine Phosphorylation (PY). 

Modifications associated with capacitation occur both in the sperm flagellum 

and in the sperm head rendering spermatozoa competent for fertilization 

(Ickowicz et al., 2012; Salicioni et al., 2007; Visconti et al., 2011). 

Although investigating mechanism of sperm capacitation in vivo is 

challenging, sperm capacitation can be mimicked in vitro by exposing 

epididymal or ejaculated spermatozoa to a standard culture media with a 

limited number of ions (Na+, K+, Cl–, HCO3
–, Mg2+, Ca2+ and PO4

3–), energy 

metabolites (pyruvate, lactate and glucose) and cholesterol acceptors (usually 

Serum Albumin) (Bavister, 1973; Edwards et al., 1969; Lee and Storey, 1986). 

Historically, the ability to capacitate spermatozoa in vitro has represented a 

milestone not only to pinpoint the relevance of female factors during 

fertilization (Yanagimachi, 1994a) but to finally develop reproducible methods 

to fertilize metaphase-II arrested oocytes in vitro in humans (Steptoe and 

Edwards, 1978) and other mammalian species (Chang, 1959). 

Furthermore, eliciting sperm capacitation in vitro, easily has allowed 

researchers to study behavior and mechanisms of regulation of sperm during 

capacitation. 
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1.3.2 Importance of the cAMP/PKA cell signaling pathway 

 
Due to the relatively easy conditions of stimulation in vitro, different molecular 

mechanisms associated with sperm capacitation have been characterized. 

Studies over the past 20 years have clearly shown that capacitation is 

associated with the activation of the cAMP/PKA pathway in several species 

(Esposito et al., 2004; Vijayaraghavan et al., 1997; Xie et al., 2006).  

In order to induce capacitation in vitro, the presence of a cholesterol acceptor 

(usually Bovine Serum Albumin [BSA]), Ca2+ and HCO3
– are required. BSA 

induces loss of cholesterol (Visconti, 2009) and an increased membrane 

fluidity, producing elevation of the intracellular pH (pHi), activation of the 

Na+/HCO3
– co-transporter (Demarco et al., 2003) and a rapid collapse of the 

asymmetry of the sperm plasma membrane (Gadella and Harrison, 2000; 

Signorelli et al., 2012). Increased levels of intracellular HCO3
– and 

Ca2+`promotes the activation of the unique soluble Adenyl Cyclase expressed 

in sperm, ADCY10 (sAC) (Buck et al., 1999). The presence of ADCY10 has 

been shown to be necessary for fertility. In fact, sAC null mice are infertile and 

show defects associated with capacitation and with the acquisition of inducing 

a hyperactive motility pattern (Esposito et al., 2004; Xie et al., 2006). In turn, 

sAC activation induces an elevation of the intracellular levels of cAMP. The 

role of cAMP in the pathway conducive to sperm capacitation has been 

elucidated over the years by both biochemical and pharmacological 

approaches: increased cAMP levels promote the release of the CII catalytic 

subunit of the Protein Kinase A (PKA) from the regulatory subunits stimulating 

the activity of the kinase (Nolan et al., 2004). Therefore, also PKA was shown 

to be a necessary element for sperm capacitation in vivo: animals lacking the 
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PKA catalytic subunit CII are indeed not fertile, despites a normal mating 

behavior (Nolan et al., 2004).  

The increase of cAMP levels and activation of PKA are considered early 

events of sperm capacitation: cAMP levels increases within 60 seconds with a 

full activation of the kinase in less than 90 seconds (Salicioni et al., 2007; 

Visconti et al., 1995a; Visconti et al., 1995b). Upon activation, PKA induces 

the phosphorylation of target proteins on Serine and Threonine residues, 

modulating their activity, thus initiating several signaling pathways 

downstream. The early activation of cAMP/PKA is also a necessary step to 

stimulate the phosphorylation of a number of protein substrates on tyrosine 

residues, a late event also considered a hallmark of sperm capacitation in 

several species (Baldi et al., 2002; Ficarro et al., 2003; Harrison, 2004; Jagan 

Mohanarao and Atreja, 2011; Roy and Atreja, 2008; Visconti et al., 1995a). 

Aforementioned studies using sAC and PKA null animals revealed the 

necessity of this pathway for sperm capacitation: spermatozoa with a 

defective cAMP/PKA pathway are infertile and their ability to undergo 

capacitation is lost (Esposito et al., 2004; Hess et al., 2005; Nolan et al., 

2004). Therefore the early activation of cAMP/PKA is necessary not only to 

induce early events as the acquisition of progressive motility, membrane 

depolarization, activation of cAMP/PKA pathway and intracellular 

alkalinization but to also coordinate, in some yet unknown way, later events 

such as increased tyrosine phosphorylation levels, acquisition of hyperactive 

motility (Suarez, 2008) and chemotactic behavior, ability to undergo to AR (in 

response to zona pellucida, progesterone or other biological agonists in vitro) 
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(Breitbart, 2003; Florman et al., 2008), and ability to fertilize metaphase II-

arrested oocytes in vitro.  

 

1.4 Capacitation-associated Tyrosine Phosphorylation (PY) 
 

1.4.1 Post-translational modifications and Phosphorylation in sperm 

 
Spermatozoa are transcriptionally and translationally silent cells, therefore 

sperm functions mostly relies on different post-translational modifications. 

Ubiquitination was detected in different regions of human spermatozoa, where 

appears to negatively correlate with semen quality (Sutovsky et al., 2001), in 

contrast different results suggested ubiquitination being important for 

physiological sperm function (Haraguchi et al., 2007; Muratori et al., 2005; 

Sutovsky, 2003). Small ubiquitin-like modifiers (SUMO), another type of post-

translational modification, are also present in human and murine sperm, 

where it has been localized to different subcellular sperm compartments 

(Rogers et al., 2004; Vigodner et al., 2006; Vigodner and Morris, 2005).  

Marchiani et al have shown a negative correlation between sumoylation and 

progressive motility in human spermatozoa (Marchiani et al., 2011). Several 

proteins were also shown to be the target of nitrosylation in human sperm 

(Lefievre et al., 2007). Finally histones acetylation and methylation are known 

to regulate histone-protamines replacement process, therefore promoting 

chromatin remodeling and compaction in sperm (Baker, 2016).  

Although several types of post-translational modifications regulate different 

events associated with sperm function, most detailed studies have been 

focused on regulation of phosphorylation/dephosphorylation of pre-existing 
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proteins during capacitation (Naresh and Atreja, 2015). Earlier studies by 

Visconti et al have shown that the presence of HCO3
–, Ca2+ and BSA in the 

capacitating media not only promote the PKA-mediated phosphorylation of 

proteins on Ser/Thr residues and the acquisition of a hyperactive motility and 

AR, but that they also stimulate tyrosine phosphorylation (PY) of several 

protein substrates in mouse sperm (Visconti et al., 1995a; Visconti et al., 

1995b). Subsequent studies have confirmed occurrence of PY during 

capacitation in several species like stallion (Pommer et al., 2003), boar 

(Flesch et al., 1999), bull (Galantino-Homer et al., 1997) and human (Aitken et 

al., 1996). Recent investigations have shown that also Na+, Cl– and glucose 

are required to stimulate PY and ultimately capacitation (Hernandez-Gonzalez 

et al., 2006; Urner et al., 2001; Wertheimer et al., 2008). 

Elevation of tyrosine phosphorylation levels during sperm capacitation was 

shown to be a downstream event respect to the activation of cAMP/PKA. 

cAMP agonists in fact are able to induce PY even when elements necessary 

for capacitation (Na+, Cl–, glucose, HCO3
–, Ca2+ and BSA) are lacking 

(Wertheimer et al., 2008). In addition, pharmacological inhibitors of PKA as 

H89 and PKI, besides affecting cAMP/PKA activation, are also effective in 

inhibiting the increase of tyrosine phosphorylation associated with 

capacitation (Visconti et al., 1995b). Even though increased tyrosine 

phosphorylation levels are known to be necessary for capacitation, a precise 

relationship between tyrosine phosphorylation status of mammalian 

spermatozoa and their ability to fertilize has not been ultimately established 

yet (Naresh and Atreja, 2015).  
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Besides the fundamental role covered by tyrosine phosphorylation during 

sperm capacitation, other types of phosphorylation/dephosphorylation events 

were shown to be associated with sperm capacitation. Phosphorylation on 

serine/threonine (ser/thr) was also reported during capacitation. Besides the 

well known role of PKA-mediated phosphorylation was shown for human 

(Moseley et al., 2005; O'Flaherty et al., 2004) and boar (Harrison, 2004), also 

ser/thr kinases different from PKA were show to be present in sperm: Protein 

Kinase C (PKC) (Breitbart et al., 1992; Kalina et al., 1995), Protein Kinase 

B/Akt (PKB/Akt) (Nauc et al., 2004), glycogen synthase kinase 3 (GSK3) 

(Vijayaraghavan et al., 1996), mitogen-activated kinases (MAPKs) (O'Flaherty 

et al., 2005; Thundathil et al., 2002) and extracellular signal-regulated kinase 

1/2 (ERK1/2) (de Lamirande and Gagnon, 2002; Luconi et al., 1998a). Other 

studies also reported proline-directed ser/thr phosphorylation during 

phosphorylation of murine spermatozoa. This type of phosphorylation, known 

to be important for cell homeostasis, proliferation and differentiation it 

depends in sperm on the presence of BSA (or other cholesterol acceptors as 

-cyclodextrins) (Jha et al., 2006). The onset of proline-directed 

phosphorylation occurs earlier (after ~15 min in capacitating conditions) 

compared to PY increase, but does not depend on the presence of HCO3
– 

(Jha et al., 2006). It is therefore essential to understand how these different 

post-translational mechanisms are regulated and whether they are inter-

connected in order to finally promote sperm capacitation. 
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1.4.2 Substrates phosphorylated on Tyrosine residues during Capacitation 

Sperm flagellum appears to be the major site of tyrosine phosphorylation in 

most of mammalian species (Leclerc et al., 1997; Naz et al., 1991; Urner et 

al., 2001) except for boar (Petrunkina et al., 2001; Tardif et al., 2001). 

Mammalian spermatozoa modify their motility pattern during capacitation to 

vigorously swim through the oviduct (Luconi et al., 2006), therefore requiring 

high levels of ATP, mostly produced by glycolysis occurring in the principal 

piece of the sperm tail (Fraser and Quinn, 1981; Miki et al., 2004). 

Different studies using 2-dimensional (2D) gel electrophoresis, together with 

tandem mass spectrometry, (MS/MS) have unveiled the identity of various 

substrates phosphorylated on tyrosine during capacitation in different species. 

The first identified proteins being phosphorylated on tyrosine belong to the 

family of A-kinase anchor protein (AKAPs). AKAP3 and AKAP4 were found 

being phosphorylated in murine (Moss et al., 1999), human (Ficarro et al., 

2003) and hamster sperm (Jha and Shivaji, 2002). In addition, AKAPs 

members are activated by direct interaction with PKA (Carr et al., 1992) and 

localize within organized super-molecular structures in different cells (Luconi 

et al., 2011). AKAPs family members are also important during 

spermatogenesis, where some members regulate the assembly and stability 

of the sperm flagellum (Lin et al., 1995). The sperm flagellum, like other types 

of cilia, is organized in a typical 9+2 microtubular arrangement (axoneme) and 

is surrounded by 9 Outer Dense Fibers (ODFs); two opposite ODFs fuse with 

two surrounding longitudinal columns, which are connected throughout the tail 

by semilunar ribs forming the fibrous sheet, a cytoskeletal structure unique to 

the sperm flagella (Li et al., 2010; Luconi et al., 2011). Miki et al. showed that 
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spermatozoa lacking AKAP4 have a normal number of spermatozoa but fail to 

show progressive/hyperactive motility, they are infertile and they display an 

underdeveloped fibrous sheet and a short flagellum (Miki et al., 2002). 

Additional studies also showed that reduced tyrosine phosphorylation of ODF-

2 and tektin-2 results in circular motility in hamster sperm (Mariappa et al., 

2010), supporting the idea that PY and other changes in sperm motility are 

indeed associated events. 

Studies from Naaby-Hansen et al. (Naaby-Hansen et al., 2002) also showed 

that CABYR, a calcium binding protein present in sperm, known to be 

associated with the fibrous sheet, is regulated by phosphorylation during 

capacitation. Interestingly, CABYR, a highly polymorphic protein shown to be 

phosphorylated both on tyrosine (Naaby-Hansen et al., 2002) and on 

serine/threonine during capacitation (Ficarro et al., 2003), shares high 

similarity with the human PKA regulatory domain (RII), and appears to 

directly interact with AKAP3 in human spermatozoa (Li et al., 2011).  The 

presence of CatSper 1-4 in the membrane of the principal piece, where also 

CABYR localize, further supports the hypothesis that CABYR plays a role in 

the cross-talk between calcium signaling and tyrosine phosphorylation (Li et 

al., 2010). CatSper proteins are in fact calcium-selective channels unique to 

spermatozoa that were recently shown to regulate the spatio-temporal 

occurrence of PY during capacitation (Chung et al., 2014). 

Besides the abovementioned proteins associated with tail structure and 

motility, other substrates fundamental for cell metabolism are regulated by 

phosphorylation during capacitation. ATP produced by spermatozoa to 

support motility changes and capacitation is mostly produced by Glycolysis 
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(Miki et al., 2004), leading to the idea that PY also regulates the energetic 

state of spermatozoa during capacitation: pyruvate dehydrogenase (Arcelay 

et al., 2008; Jagan Mohanarao and Atreja, 2011), dihydrolipoamide 

dehydrogenase (Mitra et al., 2005a; Mitra and Shivaji, 2004) and two testis-

specific Aldolase A isoforms, present in mature sperm (Vemuganti et al., 

2007), are indeed phosphorylated on tyrosine during capacitation.  

Although sperm flagellum appears to be the major site of tyrosine 

phosphorylation, tyrosine-phosphorylated substrates were also known to be 

present in the sperm head: various studies revealed that heat shock protein 

60, 70 and 90 (HSP-60, HSP-70 and HSP-90) are localized on the sperm 

head in humans and are phosphorylated during capacitation (Asquith et al., 

2004; Mitchell et al., 2007). Molecular chaperones have an important role in 

basic cellular processes as protein folding and degradation, intracellular 

transport or membrane translocation and are usually activated under 

conditions of stress like elevated temperatures or osmotic and oxidative stress 

(Lund, 1995). In mature spermatozoa, heat shock proteins are somehow 

involved in the sperm-oocyte recognition, binding to the zona pellucida and 

the phosphorylation of these chaperones on tyrosine during capacitation 

regulates conformational changes on the sperm head facilitating sperm-egg 

recognition (Cole and Meyers, 2011; Dun et al., 2012; Ecroyd et al., 2003; 

Huszar et al., 2000; Mitchell et al., 2007; Naresh and Atreja, 2015). Valosin-

containing protein (VCP/p97) is another member of the chaperone family 

known being phosphorylated on tyrosine during sperm capacitation. This 

protein was shown to translocate from the sperm neck to the head during 
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capacitation of human sperm, highlighting a possible role as a connecting 

player between capacitation and AR (Ficarro et al., 2003).  

Recently, Mohanarao & Atreja have shown that actin is another important 

cytoskeletal protein phosphorylated during sperm capacitation in buffalo 

sperm (Jagan Mohanarao and Atreja, 2011). Various studies showed that 

during capacitation actin cytoskeleton remodeling occurs in the sperm head of 

different species (Brener et al., 2003), facilitating the occurrence of acrosomal 

reaction. Finally, inhibition of actin polymerization in human and guinea pig 

prevent sperm penetration of zona-free hamster oocytes (Rogers et al., 1989), 

highlighting the role of this structural protein as important player during sperm-

egg interaction and fertilization. Other important cytoskeletal proteins like 

different tubulins (Kadam et al., 2007), spectrin (Dvorakova et al., 2005) and 

dynein (Travis et al., 2001) are also tyrosine phosphorylated during 

capacitation. Proacrosin binding protein/p32 is likely to be involved in the 

regulation of AR and capacitation; it is localized both on the acrosomal cap 

and in the mid piece and its phosphorylation was reported in boar (Dube et 

al., 2005), mouse (Arcelay et al., 2008), human (Kumar et al., 2006; 

Schumacher et al., 2013) and buffalo (Jagan Mohanarao and Atreja, 2011). 

Similarly, membrane channels appear to be post-translationally regulated 

during sperm capacitation. Recent studies in fact show that Voltage-

Dependent Anion Channels (VDAC) are tyrosine-phosphorylated in different 

species (Arcelay et al., 2008; Ficarro et al., 2003; Jagan Mohanarao and 

Atreja, 2011). VDACs in sperm are largely localized in proximity of ODFs on 

the flagellum of bovine sperm (Hinsch et al., 2004) and murine models lacking 

VDAC gene are infertile and show reduced motility (Sampson et al., 2001). 
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These results further support the importance of proteins present in the 

principal piece for the regulation of sperm motility.  

Protein phosphatases are another essential group of proteins regulated by 

phosphorylation on tyrosine during capacitation. Changes in the 

phosphorylation status during sperm capacitation (as in any other system) are 

tightly regulated by the balanced activity of kinases and phosphatases, 

therefore accounting for phosphatases activity during capacitation. 

Phosphatases were known to have a significant role during sperm maturation 

(Chakrabarti et al., 2007a; Mishra et al., 2003; Vijayaraghavan et al., 1996), 

with data revealing an important function in regulating sperm motility (Fardilha 

et al., 2011; Hoskins et al., 1983; Smith et al., 1996).  Four isoforms of PP1 

(PP1, PP1, PP11 and PP12) were shown to be present in mammalian 

sperm (Chakrabarti et al., 2007b), with PP12 being the most abundant. This 

isoform has been detected in hamster, mouse, bull, primates and human 

(Smith et al., 1996) and has a major role in regulating sperm motility (Mishra 

et al., 2003). A different phosphatase found in mammalian sperm is PP2, 

which has been described in human, bovine and fowl spermatozoa; and PP2B 

(calcium/calmodulin-dependent phosphatase, calcineurin) found in dog, goat, 

pig, bovine, mouse and human sperm (Ashizawa et al., 2006; Vijayaraghavan 

et al., 1996). Importantly, recent data highlight a role for phosphatases in 

regulating the activity of PKA during capacitation: Goto and Harayama in 2009 

first showed that the PP1/PP2 inhibitor cyclosporine-A (CL-A) increases the 

phosphorylation pattern of PKA during capacitation, with a decrease in the 

progressive motility and an increase in hyperactive population (Goto and 

Harayama, 2009). Later studies by Krapf et al., 2010 have proposed that 
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PP2A could be the phosphatase inhibiting the activity of PKA, and that its 

activity would be regulated by Src family kinases (SFK) (Krapf et al., 2010). 

Although these studies helped elucidating the role for certain phosphatases 

during capacitation, the precise relationship between phosphatases activity, 

tyrosine phosphorylation and capacitation has not been elucidated yet. 

Proteins involved in the regulation of oxidative stress are also phosphorylated 

during capacitation. Glutathione-S-transferase (GST) is located in the 

principal- and end piece of the flagellum, where it is involved in maintaining 

the oxidative balance and promoting detoxification (Naresh and Atreja, 2015). 

GSTmu5 isoform was found in murine (Arcelay et al., 2008) and hamster 

sperm (Ashrafzadeh et al., 2013), whereas GSTmu3 was found in buffalo 

(Jagan Mohanarao and Atreja, 2011, 2012) and human (Kumar et al., 2006) 

with both isoforms phosphorylated on tyrosine during capacitation. 

Finally, other phospho-proteins have been described in sperm during 

capacitation including tyrosine kinase c-yes (Leclerc and Goupil, 2002), alpha 

enolase, succinate dehydrogenase and glutamate synthase (Jagan 

Mohanarao and Atreja, 2011, 2012). 

Although several studies revealed the identity of different proteins 

phosphorylated on tyrosine, the relationship between phosphorylation, time 

and specific functions of each of these substrates during capacitation requires 

further investigation.  

 

1.4.3 Kinases mediating capacitation-associated Tyrosine Phosphorylation 

It is well established that in mammals, elevated levels of phosphorylated 

tyrosine observed during sperm capacitation are stimulated in vitro by the 
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same components promoting the activation of the cAMP/PKA pathway 

[HCO3
– and a cholesterol acceptor, usually BSA (Hernandez-Gonzalez et al., 

2006; Urner et al., 2001; Visconti et al., 1995a; Wertheimer et al., 2008)]. In 

addition, calcium is known to be necessary for capacitation (Visconti et al., 

2002; Yanagimachi, 1994b) acquisition of hyperactive motility and AR (Santi 

et al., 2010), with recent data showing that extracellular Ca2+ negatively 

regulates PY, possibly controlling its time of occurrence (Navarrete et al., 

2015). Since PKA is a serine/threonine kinase and does not promote 

phosphorylation on tyrosine residues directly, it is reasonable to think that 

PKA induces the increase of tyrosine phosphorylation through a protein 

kinase cascade [reviewed by (Salicioni et al., 2007)]. Furthermore, the cAMP-

dependent increase of tyrosine phosphorylation has not been reported in cell 

types other than spermatozoa (Leclerc et al., 1996). Therefore, another 

fundamental and long-standing question in the field of male reproduction, 

particularly in studies on sperm capacitation, is to identify the (one or more) 

Tyrosine Kinase(s) that participate(s) in this process, and to ultimately 

comprehend how these kinase(s) are being regulated.  

Protein tyrosine kinases (TKs) are divided in two major groups: non-receptor 

tyrosine kinases (PTK) and receptor tyrosine kinases (RTK), and both were 

shown to be present in mammalian spermatozoa (Gangwar and Atreja, 2015). 

Recent studies have reported that besides PKA-dependent tyrosine 

phosphorylation, a different subset of phosphorylated proteins is present on 

the membrane of capacitated spermatozoa (Nixon et al., 2010).  Early studies 

on tyrosine phosphorylation were focused mostly on receptor tyrosine kinases 

expressed on cell surface. EGF receptor was found to be present on the 
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membrane of human, murine, rabbit (Naz and Ahmad, 1992) and bovine 

spermatozoa, where somehow promote the occurrence of acrosome reaction 

(Lax et al., 1994); p190 c-met tyrosine kinase receptor was also found to be 

localized in both human sperm tail and head, and to be phosphorylated on 

tyrosine upon activation (Herness and Naz, 1999); the Insulin growth factor 

receptor I (IGF-IR) has been identified in human (Naz and Padman, 1999) 

and bovine sperm. In addition, bull seminal plasma carry a high concentration 

of Insulin growth factor (IGF), (mostly produced in the testis and epididymis) 

(Henricks et al., 1998). IGFR, upon activation phosphorylates itself (auto-

phosphorylation) and other adaptor proteins downstream: one of these 

adaptor protein is c-ras, shown to be present in human spermatozoa (Naz et 

al., 1992). The role of c-ras in different cell systems is well established: this 

adaptor protein promotes the activation of the mitogen-activated protein 

kinase (MAPK) cascade. Besides c-ras, other MAP kinases were found in 

sperm: ERK2 (p42ERK), which localizes in the head of human (Luconi et al., 

1998b) and fowl (Ashizawa et al., 1997) spermatozoa. Nixon et al. showed 

that inhibitors of ERK1/2 kinases promote a decrease of tyrosine 

phosphorylation of membrane proteins in murine (Nixon et al., 2010) and boar 

sperm (Piehler et al., 2006) but not in human, hypothesizing different 

mechanisms of regulation between different species (Mitchell et al., 2007). It 

has been shown that ERK1/2 inhibitors are not able to completely suppress 

increased membrane tyrosine phosphorylation levels during capacitation, 

opening the possibility of a cross-talk between cAMP/PKA and MAP kinase 

cascades during capacitation of murine spermatozoa.  
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Although tyrosine phosphorylation could be mediated by receptor tyrosine 

kinase(s) in the sperm head, the major cascade of signaling events inducing 

the increase of tyrosine capacitation in the sperm tail during capacitation is 

dependent on the cAMP/PKA pathway. sAC and the CαII catalytic subunit of 

PKA are both essential for fertilization, as the loss of each of these genes 

produce a sterile phenotype with defects associated with capacitation: knock-

out (KO) mice do not show any increase of PY and do not acquire hyperactive 

motility (Burton and McKnight, 2007; Xie et al., 2006). In this regard, it is of 

great importance to identify the protein tyrosine kinase(s) activated 

downstream of cAMP/PKA and that stimulate the increase of tyrosine 

phosphorylation. Since Visconti et al report in 1995 (Visconti et al., 1995a; 

Visconti et al., 1995b), several studies tried to reveal the identity of the 

kinase(s) activated during capacitation and different candidates were 

proposed over the years. 

 

1.4.4 The case of c-Abl tyrosine kinase 

In somatic cells, c-Abl is a proto-oncogenic non-receptor tyrosine kinase that 

localizes both in the nucleus and in the cytoplasm, is ubiquitously expressed 

and plays a central role in different cellular processes as differentiation, 

proliferation and apoptosis. Since its presence was showed in human 

spermatozoa, tyrosine kinase c-Abl was considered as a possible candidate 

playing a role during sperm capacitation (Naz, 1998).  Recent studies from 

Baker et al suggested a role for this kinase during the onset of PY associated 

with capacitation. c-Abl was found to be present in both the tail and the head 
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of murine spermatozoa and the CII catalytic subunit of PKA in vitro was 

shown to induce c-Abl phosphorylation (Baker et al., 2009). c-Abl inhibition 

during in vitro capacitation, on the other hand, slightly affects PY increase 

(Baker et al., 2009), suggesting that c-Abl probably plays a marginal role in 

PY-dependent signaling during sperm capacitation.  

 

1.4.5 The role of Src Family Kinases 

Several studies point out to different Src Family Kinases (SFKs) to be 

responsible for the capacitation-associated increase in tyrosine 

phosphorylation. Leclerc and Goupil in 2002 (Leclerc and Goupil, 2002) first 

proposed c-yes: this tyrosine kinase was found in both sperm membrane and 

cytosol and its activity was up regulated by cAMP and down regulated by 

calcium. Although up regulation of c-yes by cAMP was in accordance with the 

paradigm of tyrosine phosphorylation, the fact that this kinase is negatively 

regulated by increased Ca2+, (which is known to augment during capacitation) 

suggested that a different kinase was involved in regulating tyrosine 

phosphorylation (Leclerc and Goupil, 2002). Another proposed candidate 

belonging to Src family was Fyn, but analysis of fyn-null spermatozoa showed 

defects associated with morphology and fertilizing ability but no difference in 

the pattern of tyrosine capacitation was observed compared to wild type, 

suggesting a role during sperm development in the testis (Luo et al., 2012). 

The major body of investigation on SFKs during capacitation was done on the 

role of c-Src. Baker et al in 2006 first proposed c-Src as the key tyrosine 

kinase regulating PY during capacitation: c-Src was found to be present in 
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murine sperm and to physically interact with the catalytic subunit of PKA 

(Baker et al., 2006). The phosphorylated active form of c-Src (c-Src PY416) 

was detected only after capacitation, and found to be sensitive to H89 

(specific inhibitor of PKA). In addition, the presence of SFKs inhibitor SU6656 

in the capacitating media inhibited tyrosine phosphorylation (Baker et al., 

2006). Studies conduced in human spermatozoa confirmed that tyrosine 

phosphorylation was sensitive to SU6656 but, different from previous data in 

mouse, c-Src failed to immunoprecipitate with the C2 catalytic subunit of 

PKA and no changes in hyperactive motility were observed (Varano et al., 

2008). This set of results supported a possible role for c-Src during the 

increase of tyrosine phosphorylation but raised a question about the PKA 

direct activation of SFKs during capacitation (Varano et al., 2008). Later, 

studies from our lab (Krapf et al., 2010) provided further evidence on the role 

of SFKs during murine sperm capacitation indicating that, although SFKs 

inhibitors such as SU6656 do not affect the activity of PKA in vitro, the same 

concentrations of the inhibitor in vivo cause a decrease in the level of 

phosphorylation of the PKA substrates (Krapf et al., 2010), suggesting that the 

inhibition of tyrosine phosphorylation is due to a down regulation of the 

cAMP/PKA pathway upstream and not to a direct effect on the activity of c-Src 

or other tyrosine kinases. To further confirm that c-Src is not the unique 

tyrosine kinase involved in the pathway, levels of tyrosine phosphorylation 

were measured in a murine model lacking the c-src gene (Src null mice). Both 

sperm from c-Src null and their respective wild type littermates showed no 

differences in tyrosine phosphorylation levels after capacitation (Krapf et al., 

2010). Based on the fact that the inhibitory effect of SFKs inhibitors on the 
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phosphorylation of PKA substrates and tyrosine during capacitation was 

abolished when inhibitors of serine/threonine phosphatases were added 

during capacitation, Kraft et al. proposed an alternative mechanism of 

regulation: SFKs are part of a parallel pathway that promote the full activation 

of PKA through the inhibition of serine/threonine phosphatases, which are 

known to be present in murine sperm, as mentioned above. More recently, 

our group has provided evidence for a similar mechanism of regulation of PKA 

activity mediated by SFKs through the down regulation of the serine/threonine 

phosphatases in human spermatozoa (Battistone et al., 2013). Although these 

later studies have represented a great advance in studies on sperm 

capacitation revealing the presence of another pathway parallel to cAMP - the 

involvement of SFKs and phosphatases in the activation of the PKA-, the 

original question of which tyrosine kinase(s) promote tyrosine phosphorylation 

during capacitation remains still open. 

 

1.4.6 Role of Focal Adhesion Kinases 

Recently, Gonzalez-Fernandez et al have proposed a different mechanism of 

PY stimulation mediated by calcium and pH in stallion (Gonzalez-Fernandez 

et al., 2013): they showed that in stallion sperm the capacitation-associated 

increase of tyrosine phosphorylation is lost in the presence of Ca2+ at 

physiological pH ~7.4 (Gonzalez-Fernandez et al., 2012), leading them to 

hypothesize that, beside cAMP/PKA cascade, calcium may also regulate 

tyrosine phosphorylation in order to prevent a premature occurrence of PY 

(and capacitation) (Gonzalez-Fernandez et al., 2012). . In this study, the 
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authors open the possibility that a different calcium-dependent tyrosine 

kinase(s) is activated during capacitation in stallion sperm: Focal Adhesion 

Kinases. This kinase subfamily includes two members, FAK (PTK2) and 

PYK2 (PTK2B): both are non-receptor tyrosine kinases that, although sharing 

high similarity in structure, exhibit clear differences in their functions and 

mechanisms of regulation in different cells types such as fibroblasts, 

osteoblasts, osteoclasts and others in the immunological compartment. Both 

FAK members mediate phosphorylation of targets downstream, but also act 

as scaffolding proteins (Hall et al., 2011). FAK localizes to focal adhesion 

contacts where it responds to integrin clustering, growth factors and 

mechanical stimuli, ultimately regulating survival (Gilmore et al., 2009), 

proliferation (Assoian and Klein, 2008) and motility through the regulation of 

the actin cytoskeleton (Schaller, 2010). PYK2 shares a high degree of 

structure similarity and localization with FAK, yet it is regulated by integrin 

clustering, environmental stress and growth factors. Different from FAK, PYK2 

responds to extracellular stimuli to regulate Rho activity (Okigaki et al., 2003), 

thus controlling actin cytoskeleton, finally promoting cell motility (Owen et al., 

2007a; Sun et al., 2011), cell processes formation (Gil-Henn et al., 2007) and 

phagocytosis (Owen et al., 2007b). PYK2 also regulates mitogenic and 

hypertrophic response upstream the functionality of various ion channels 

(Lakkakorpi et al., 1999; Lev et al., 1995), and its full activity depends on the 

presence of Calcium (Wu et al., 2006).  

Gonzalez-Fernandez et al showed that both members of FAK family are 

present in stallion spermatozoa. In addition, the use of the Focal Adhesion 

Kinase specific inhibitor PF431396 reduced both activity of the active 
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phosphorylated forms of FAK and PYK2 and the occurrence of tyrosine 

phosphorylation associated to sperm capacitation in stallion (Gonzalez-

Fernandez et al., 2013).  

Recent studies also investigate the role of both FAK members in oocytes from 

different species: Sharma and Kinsey showed that in zebra-fish oocytes, 

fertilization is associated with a rapid (~2 minutes) accumulation of PYK2, with 

an increase of the active phosphorylated form of PYK2 (PYK2-PY579) (Sharma 

and Kinsey, 2013).  PYK2-PY579 increases at the site of sperm-egg binding. A 

similar role for PYK2 during sperm-egg interaction was also confirmed in 

mammals: both FAK and PYK2 are found in murine oocytes. After fertilization 

FAK retain its punctate localization but PYK2 appear to concentrate in 

proximity to the region where sperm head bound to the oocyte (McGinnis et 

al., 2013). Furthermore PYK2 plays a role either during sperm-egg fusion or 

sperm engulfment into the cytoplasm (Luo et al., 2014).  

These results altogether highlight the role of Focal Adhesion Kinases as 

players during fertilization, which has lead us to hypothesize for a role for 

PYK2 / FAK in regulating the timing and occurrence of Capacitation-

associated Tyrosine Phosphorylation in human and murine sperm. 
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1.5 Spatio-temporal considerations and Kinetics of Sperm Capacitation            

Signaling Events  

Different from the antigen mediated T-cell activation, or cell signaling that 

takes place upon hormone-receptor binding, sperm capacitation signaling is 

not initiated by the binding of a ligand to a specific receptor. Moreover, unlike 

most of fast signaling cascades, also timing of sperm capacitation appear to 

be tightly regulated: when incubated in capacitating conditions, sperm reach 

their full fertilizing ability only after several minutes or even hours, depending 

on the species (Salicioni et al., 2007). It is important to note that, when 

studying the process of sperm capacitation from a kinetics point of view, an 

immediate paradox stands out: although the so-called ‘triggers’ of capacitation 

– the sAC-mediated increase of cAMP levels and the activation of PKA – are 

described as fast events, spermatozoa show macroscopic features of 

capacitation (hyperactive motility and acrosomal reaction) only minutes or 

even hours later. Furthermore, cAMP may regulate, either directly or 

indirectly, different biochemical events associated with capacitation: 

intracellular alkalinization (Zeng et al., 1996), membrane lipid remodeling 

(Gadella and Harrison, 2000) and hyperpolarization of the sperm plasma 

membrane (De La Vega-Beltran et al., 2012; Escoffier et al., 2012; Zeng et 

al., 1995). Although in the last years several advances have been made in 

understanding mechanisms mediating capacitation, little is known about how 

the early triggers of capacitation may coordinate events occurring later on in 

order to ensure the presence of a pool of capacitated spermatozoa able to 

reach the oocyte at an appropriate time. As previously stated, the increase of 

tyrosine phosphorylation (PY) associated with capacitation is also activated by 
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the initial rise in cAMP but it was shown to occur on a different time in different 

models. In murine sperm, increased levels of PY are observed only 45 

minutes after the beginning of capacitation in vitro, reaching their maximum at 

60 minutes, and remaining steady thereafter (Visconti et al., 1995a). In 

bovines, PY levels start to rise after 3 hours with a full increase at 5 hours 

(Galantino-Homer et al., 1997); a similar time course is also observed for 

humans (Liu et al., 2006). Using a chemical-genetic approach that allows to 

specifically inhibit sperm PKA without affecting off-target kinases, Morgan et 

al 2008 showed that, although the activation of PKA during capacitation is a 

fast event, the activity of this ser/thr kinase must be sustained for at least 30 

minutes in order to promote the increase of PY and finally capacitation 

(Morgan et al., 2008). Recent data also showed that the activity of c-Src, a 

tyrosine kinase that promotes activation of PKA through down regulation of 

ser/thr phosphatases (Krapf et al., 2010), is tightly regulated over time. Krapf 

further showed that auto-phosphorylation (and activation) of cSrc is 

dependent on the activation of PKA and that begins only 15 minutes after 

capacitation (and PKA activation) has started, finally reaching its maximum 

after 60 minutes (Stival et al., 2015). Therefore c-Src activation is delayed 

compared to the activation of PKA but precede the onset of tyrosine 

phosphorylation. Altogether, these results suggest that the activities of the 

different kinases involved in capacitation are tightly regulated over time. 

Therefore it is critical to investigate the spatio-temporal occurrence of the 

different hallmarks of capacitation for a full comprehension of the process. 

Due to the importance of different phosphorylation events during capacitation, 

it is of great importance to investigate the possible role of protein 
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phosphatases in regulating the temporal occurrence of the events linked to 

sperm capacitation. Our efforts in the fourth chapter of this dissertation will be 

focused on investigating and understanding the kinetics of phosphorylation 

events during capacitation in murine spermatozoa. 

 

1.6 Hypothesis and specific aims 

 

The purpose of this project is to contribute elucidating molecular events that 

participate in the process of sperm capacitation in murine spermatozoa. Our 

working hypothesis is that a protein tyrosine kinase downstream of PKA is 

responsible for the onset of tyrosine capacitation.  

This hypothesis gives rise to some basic questions: 1. What is the tyrosine 

kinase that promotes the increase of tyrosine phosphorylation? 2. Does the 

increase in tyrosine phosphorylation depend on the presence of a single 

specific tyrosine kinase? 3. What is the temporal relationship between 

tyrosine phosphorylation and the upstream activation of PKA? 

In order to elucidate the questions mentioned above, we propose two specific 

aims. 
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1.6.1 Specific Aim 1: Investigate the role of focal adhesion kinase during 

capacitation in human and murine sperm. 

The focal adhesion kinase specific inhibitor PF431396 was shown to inhibit 

capacitation-associated PY in stallion sperm (Gonzalez-Fernandez et al., 

2013). No evidence so fare were given about a possible role of this family in 

regulating tyrosine phosphorylation during capacitation.  

 

1.6.2 Specific Aim 1: Investigate the role of FER tyrosine kinase during   

capacitation in human and murine sperm. 

 
Recently phospho-proteome analysis of capacitated mouse sperm showed 

that the tyrosine kinase FER is present and phosphorylated (Chung et al., 

2014). However no studies were focus on investigating the role of FER kinase 

during sperm capacitation. 

 

1.6.3 Specific Aim 2: Determine the kinetic of phosphorylation events 

associated with capacitation. 

A study in murine showed that the activity of PKA have to be sustained to 

induce tyrosine phosphorylation during capacitation (Morgan et al., 2008). 

Beside this publication, no studies so far focused on the temporal requirement 

for phosphorylation events in order to guarantee a pool of capacitated sperm.  
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CHAPTER 2 

INVESTIGATING THE ROLE OF FOCAL ADHESION KINASES DURING 
SPERM CAPACITATION 

 

2.1 Analyzing the activity of Focal Adhesion Kinases during sperm capacitation in 

human spermatozoa. 

 

Focal adhesion kinase family represents a class of protein tyrosine kinases 

involved in the control and regulation of cell migration. This coordinated event 

requires both a fast regulation of the dynamics of actin cytoskeleton and the 

continuous assembly and disassembly of adhesion sites (Brakebusch and 

Fassler, 2003) to promote the generation of membrane processes and traction 

forces that allow cells to migrate (DeMali et al., 2003). Extracellular stimuli that 

control cell migration are transduced to intracellular signals through the activation 

of integrins. Several extracellular signals induce the formation of integrins 

heterodimers and the assembly of intracellular dynamic protein complexes named 

focal contacts, which promote the activation of biochemical signaling downstream 

(Mitra et al., 2005b). Focal adhesion kinases (fak) are present at focal contacts, 

where rapidly respond to different stimuli activating their tyrosine kinase activity. 

FAK family includes two members: FAK (PTK2) and PYK2 (PTK2B). The 

structures of both members of the family show high similarity. FAK and PYK2 

indeed share the FERM, FAT and kinase domains as well as the presence of 

three proline-rich regions (PRRs). FERM domain mediates interaction with 

receptor tyrosine kinases (EGFR or PDGF) as well as with G-protein couple 

receptors (GPCRs), promoting the activation of FAK and other non-receptor 

tyrosine kinase; FAT on the other hand is the domain that regulate the interaction 
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with other integrin-associated proteins of the focal contact including paxilin and 

talin (Schlaepfer et al., 2004); the PRR domains function as binding sites for Src 

Homology domains 3 (SH3) containing proteins, promoting FAK’s function as 

adaptor protein (Chodniewicz and Klemke, 2004; Hanks et al., 2003). The kinase 

domain both promotes the phosphorylation of specific substrates and auto-

phosphorylation: auto-phosphorylation of Tyr397 on FAK and of Tyr402 on PYK2 

induces the formation of a recognition motif for protein with SH2 domains, finely 

regulating the activity of the kinase (Toutant et al., 2002; Wu et al., 2006). 

Although both FAK and PYK2 shares high similarity and can bind to Src Family 

Kinases (SFKs) (Calalb et al., 1995), these kinases cover different cellular roles 

due to different binding affinity to the FERM and FAT domains. Furthermore 

PYK2, different from FAK, which always localize at focal contact, have a 

perinuclear distribution and its activity is dependent on intracellular Ca2+ (Klingbeil 

et al., 2001; Wu et al., 2006). Finally these two kinases are differentially 

expressed with FAK mostly widely express compared to PYK2, which is mostly 

restricted to cell of the endothelium, the central nervous system and 

hematopoietic lineage (Mitra et al., 2005b). Recent data showed that both 

members of focal adhesion family are present in stallion spermatozoa, where 

have been suggested to regulate the onset of tyrosine phosphorylation associated 

with capacitation (Gonzalez-Fernandez et al., 2013). 

 

2.1.1 Presence of Focal Adhesion Kinase members in human spermatozoa 

 
 Focal Adhesion Kinases were shown to be present in stallion sperm where 

appear to regulate the increase of PY associated with capacitation (Gonzalez-
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Fernandez et al., 2013). These results led us to investigate whether FAK 

members were present in human sperm and if these kinases cover a similar role 

in regulating mechanisms conducive to sperm capacitation. The presence of both 

FAK members was tested by Western blotting together with the use of specific 

antibodies directed against either total levels of FAK or PYK2. We showed that in 

total cell lysates from human sperm, only one member of the Focal Adhesion 

Kinase family was present, PYK2 (Fig 2.1A). In fact, antibodies directed against 

total levels of FAK did not detect any band correspondent to the molecular weight 

of FAK in human spermatozoa (Fig 2.1B). 

 

2.1.2 Effect of PF431396 on capacitation-associated phosphorylation events in 

human spermatozoa 

 
To further investigate whether PYK2 play a role in regulating PY during sperm 

capacitation in human sperm, we tested the effect of a small molecule inhibitor of 

FAK kinase members, PF431396 (Buckbinder et al., 2007; Han et al., 2009). This 

inhibitor in stallion was shown to negatively affect PY increase associated with 

capacitation (Gonzalez-Fernandez et al., 2013). Ejaculated spermatozoa were 

incubated for 6 hours in a complete BWW media alone (in presence of HCO3
–) or 

in presence of increasing concentrations of PF431396 (0–30M): the inhibitor 

cause a slight increase in the levels of phosphorylation of PKA substrates 

(pPKAs) (Fig 2.2, upper panel) but induce a significant decrease in the level of 

tyrosine phosphorylation (PY) associated with capacitation (Fig 2.2, lower panel) 

with a clear decrease in PY levels observed at 3M. The result suggests a role for 
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the FAK member PYK2 during capacitation of human spermatozoa, most likely 

being involved in the induction of tyrosine phosphorylation. 

 

 

2.1.3 PYK2 phoshorylation/activation and effect of PF431396 during capacitation  

 
In order to gain further insights on the possible role of PYK2 during capacitation in 

human, the activation status of this kinase was tested by western blot: data in the 

literature showed that in different cellular systems, upon activation, PYK2 is 

trans/auto phosphorylated on tyrosine 402 (PYK2-PY402) (Avraham et al., 2000). 

We used antibodies directed against the phosphorylated form of PYK2 (anti-

PYK2-PY402) to investigate the kinetic of activation of PYK2 during capacitation. 

The phosphorylated form of PYK2 is not detected in fresh ejaculated sperm, but 

the signal appear only after two hours incubation in complete BWW media, and 

PYK2-PY402 phosphorylation reach its maximum after 6 hours incubation in 

capacitating conditions (Fig 2.3A, upper panel). On the other hand, levels of total 

PYK2 remained constant during the same time of incubation (Fig 2.3A, lower 

panel). The similarity between the kinetics of PY and PYK2 during capacitation 

further supports a role for the FAK member as regulator of PY during capacitation 

(Liu et al., 2006). To test a possible relationship between PYK2 activity and 

tyrosine phosphorylation during capacitation, we examined whether the activity of 

PYK2 is affected by the presence of PF431396. Sperm were incubated in BWW 

media, in absence or presence of PF431396, and after 6 hours the 

phosphorylation level of PYK2 (PYK2-PY402) was analyzed. Phosphorylated PYK2 

appear only in presence of bicarbonate (complete BWW media), and the signal is 
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lost when the sperm population is incubated with 5M PF431396 (Fig 2.3B, higher 

panel), no change in the levels of total PYK2 were observed (Fig 2.3B, lower 

panel).  Additionally, the kinetics of activation of the enzyme and PY are very 

similar, with a slow increase over time when sperm are incubated in capacitating 

conditions. Altogether, these results suggest that PYK2 is activated during 

capacitation and that its activity correlate with the occurrence of PY.  

 

2.1.5 Effects of PF431396 on capacitation-associated events in human sperm  

 
In order to investigate whether PYK2 have a function in regulating the occurrence 

of late capacitation-associated events, we next tested the effect of PF431396 on 

two well-known functional events associated with sperm capacitation: motility and 

acrosomal reaction (AR). When sperm were incubated in presence of PF431396, 

increasing concentrations of the inhibitor negatively affect several parameters 

associated with sperm motility (all except linearity [LIN] and straightness [STR]), 

indicating that PYK2 is somehow involved in the regulation of sperm motility (Fig 

2.4). Furthermore, the presence of PF431396 negatively affect both progressive 

motility and hyperactive motility in capacitating conditions: in presence of the 

inhibitor in fact, the percentage of hyperactive sperm is reduced from ~12% in the 

capacitated sperm to ~2% in sperm treated with PF431396 (both 10 and 30M), 

similar decrease was also shown for progressive motility (from 86% to 25%)  (Fig 

2. 4) No effect on total motility was observed (data not shown). The effect of 

PF431396 on the in vitro progesterone-induced AR was also tested and was 

shown to negatively affect the occurrence of acrosome reaction: 10 and 30M 

PF431396 added during capacitation cause a significant decrease in the number 
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of progesterone-reacted spermatozoa without affecting the rate of spontaneous 

AR (Fig 2.5). Observations discussed in this paragraph strongly suggest that the 

focal adhesion kinase PYK2 in human sperm, play a role downstream to 

cAMP/PKA during capacitation and appear to regulate the onset of slow events of 

capacitation as onset of PY, hyperactive motility and AR. 

 

2.2 Analyzing the activity of Focal Adhesion Kinases during sperm capacitation in 

murine CD1 sperm. 

 
Results showed in the above section highlight a role for the focal adhesion kinase 

PYK2 in the regulation of PY during sperm capacitation in human spermatozoa. In 

this second section of the chapter, we used both pharmacological and genetic 

approaches to investigate the presence of focal adhesion kinases and whether 

any of these proteins play a role in the regulation of PY during murine 

capacitation, similar to what we suggested in human. 

 

2.2.1 Effect of PF431396 on murine sperm capacitation associated protein 

phosphorylation 

 
In the case of murine spermatozoa, we decided to use a slightly different strategy 

and to test the effect of the fak members-specific inhibitor PF431396 on the 

phosphorylation of both PKA substrates and tyrosine before examining the 

presence of focal adhesion members. When murine sperm are stimulated with 

HCO3
– and BSA in vitro, events associated with sperm capacitation as cAMP-

mediated activation of PKA and a late increase of PY levels are induced (Visconti 
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et al., 1995a; Visconti et al., 1995b). Murine spermatozoa are incubated for 60 

minutes in modified TYH medium containing 15mM HCO3
– and 5mg/mL BSA 

together with different concentrations of PF431396 (1–30M). After 60 minutes of 

incubation, protein extracts were produced and phosphorylation of PKA 

substrates (pPKAs) and of tyrosine (PY) were analyzed using anti-pPKAs and 

anti-PY antibodies, respectively. PF431396 induces a concentration-dependent 

decrease in the levels of PY with an EC50 ~1M with maximum effect observed at 

10M (Fig 2.6, upper panels). On the other hand when the capacitation-

associated levels of pPKAs in presence of the same concentrations were 

examined, no significant decrease was observed compared to non-treated 

capacitated control (Fig 2.6, lower panels). Therefore PF431396 inhibits the 

capacitation-associated onset of tyrosine phosphorylation (PY) in a concentration-

dependent manner, without affecting early events as increase of cAMP levels and 

PKA activation in murine (pPKAs), confirming previous results in human 

spermatozoa (Fig 2.2). In order to confirm PF431396 was not affecting early 

events associated with capacitation, we additionally examined the effect of the 

inhibitor when the signaling was also stimulated by exogenous triggers of pPKAs 

and PY in different species: dibutyryladenosine cyclic monophosphate (dbcAMP) 

and isobuthilmethylxanthine (IBMX) (Esposito et al., 2004). Sperm were co-

incubated with modified TYH media (containing HCO3
– and BSA) together with 

1mM dbcAMP/100M IBMX, both in presence and absence of 10M PF431396. 

The presence of exogenous triggers did not modify the pattern of inhibition of PY 

mediated by PF431396, with a clear decrease in the levels of PY (Fig 2.7, upper 

panels) and no effect on the phosphorylation of PKA substrates (Fig 2.7, lower 

panels).  
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 Src Family Kinases (SFKs) were also showed to have a positive role in the full 

activation of Protein Kinase A during capacitation both in human (Battistone et al., 

2013) and murine (Krapf et al., 2010), by down regulating the inhibitory effect of 

Serine/Threonine phosphatases on PKA, in a parallel pathway to the one 

stimulated by sAC/cAMP. The specificity of the pharmacological approach in use 

was also assessed by examining the effect of PF431396 on PY, in presence of 

different concentrations of the phosphatases inhibitor okadaic acid (OA). The 

SFKs inhibitor SKI606 (50M) induces a decrease in the capacitation-associated 

pPKAs and PY levels and this decrease is rescued in presence of OA (Krapf et 

al., 2010). Different from what was shown for SFKs inhibitors SKI606 and 

SU6656, increasing concentrations of OA (1–100nM) are not able to rescue the 

inhibition of PY mediated by 10M PF431396 (Fig 2.8) consistent with previous 

results in human (Battistone et al., 2014). These data indicate that PF431396 

inhibits the late increase of PY associated with capacitation without affecting the 

parallel pathway mediated by SFKs and phosphatases, which regulates the full 

activation of PKA during capacitation. This result suggests that, similar to what we 

shown in human, focal adhesion kinases could be the target of PF431396 during 

capacitation therefore possibly playing a role in the increase of PY. 

 

2.2.2 Effect of PF431396 on in vitro fertilizing ability of CD1 spermatozoa 

 
The focal adhesion kinase inhibitor PF431396 was shown to abolish the increase 

of PY observed during capacitation (Fig 2.6). Since the well established 

importance of PY increase during capacitation in different species (Baldi et al., 

2002; Ficarro et al., 2003; Liu et al., 2006; Roy and Atreja, 2008; Visconti et al., 
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1995b), we decided to test the effect of the same inhibitor also on the ability of 

CD1 spermatozoa to fertilize metaphase-II arrested oocytes in vitro. We used 

10M PF431396, a concentration showed to abolish tyrosine phosphorylation 

increase in sperm from CD1 mice (Fig 2.6). In presence of PF431396, the ability 

of CD1 epididymal spermatozoa to fertilize metaphase II arrested oocytes in vitro 

is reduced of about 40% compared to untreated sperm (Fig 2.9A). Furthermore 

when the same concentration of the inhibitor was present both during capacitation 

and co-incubation the inhibitor displayed a more pronounced effect with a stronger 

decrease in fertilizing ability (Fig 2.9A). Recent studies showed that the calcium-

dependent activation of PYK2 is required in Zebra-fish oocyte to guarantee 

successful fertilization (Sharma and Kinsey, 2013) and that in murine, PYK2 

somehow mediates sperm-egg fusion and anaphase resumption (McGinnis et al., 

2013). Due to a possible effect of PF431396 on the activation of PYK2 during 

meiotic resumption of metaphase II arrested oocytes (McGinnis et al., 2013) 

during our experimental procedure, we therefore decided to test the effect of 

different concentrations of PF431396 (0.01–1M, carryover concentrations used 

during IVF experiments) only when incubated with metaphase II arrested oocyte: 

after collection, eggs were incubated in presence of PF431396 for 30 minutes and 

then co-incubated with capacitated spermatozoa (not treated with the FAK 

inhibitor) for the following 4 hours in presence of PF431396. We showed that 

concentrations up to 1M have a negligible effect on PYK2 activation in 

metaphase arrested II oocytes (Fig 2.9B), confirming that the decrease of 

fertilization rate observed in Fig 2.9A is the results of the inhibitory effect of 

PF431396 throughout capacitation and not on the meiotic resumption of murine 

oocytes during in vitro fertilization.  
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The reduced ability of PF431396 incubated during capacitation, to strongly inhibit 

fertilization rate in compared to other treatments, is due to a time-dependent 

increase of PY phosphorylation during sperm-oocyte co-incubation the carryover 

concentrations of PF431396 drop to 10nM) (see Fig 4.13). 

Although this observation confirmed that PF431396 negatively affect fertilizing 

ability in vitro, suggesting PYK2 play a role in coordinating later events of 

capacitation, the data does not indicates which functional feature was negatively 

affected by the inhibitor during capacitation. 

 

2.2.3 Effect of PF431396 on sperm motility of CD1 spermatozoa 

 
In order to investigate which functional parameter of capacitation was affected by 

PF431396, we decided to analyze the effect of the inhibitor on motility of murine 

sperm. Mammalian spermatozoa modify their motility behavior during 

capacitation: while ejaculated spermatozoa mostly show a progressive motility 

that allows them to rapidly swim-out from the seminal plasma, capacitated 

spermatozoa in the utero-tubal junction  (UTJ) acquire hyperactive motility, which 

render this cells slower but able to swim through the viscous tubal mucus of 

Fallopian tubes (Fraser, 1977, 2010; Suarez, 1996, 2008; Suarez and Osman, 

1987). Studies also showed that most of the tyrosine phosphorylated substrates 

are located in the sperm tail, suggesting a possible role in regulating motility 

behavior (Carrera et al., 1996; Leclerc et al., 1997; Lewis and Aitken, 2001; Si and 

Okuno, 1999; Urner et al., 2001). 

After collection from epididymis, sperm were incubated in capacitating condition 

for 60 minutes, in absence or presence of 10M PF431396, and motility was then 
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measured using Hamilton-Thorne CASA system (Fraser, 1977, 2010; Suarez, 

1996, 2008; Suarez and Osman, 1987) together with the software CASAnova 

(Goodson et al., 2011). Incubation of murine spermatozoa with 10M PF431396 

during capacitation does not affect motility behavior; the percentage of motile 

spermatozoa in fact is similar between treated and untreated capacitated control 

(Fig 2.10A). Similarly, the acquisition of hyperactive motility during capacitation 

was also not affected by the presence of PF431396, with comparable percentage 

of sperm with hyperactive motility (Fig 2.10B). 

The analysis of other motile subpopulations, also based on the use of CASAnova 

(Goodson et al., 2011) showed no difference between treated sperm and controls 

(data not shown). Different from human spermatozoa (Fig 2.4), here we showed 

that the fak inhibitor PF431396 has no effect on the motility behavior of 

capacitated spermatozoa in mouse. The different sensitivities to PF431396 

between human and murine spermatozoa potentially highlight some difference in 

the regulation of sperm motility between human and mouse. 

 

2.2.4 Presence of Focal Adhesion Kinase members in murine spermatozoa 

 
Because capacitation-associated phosphorylation events in murine spermatozoa 

were shown to be sensitive to the FAK members inhibitor PF431396 in both 

stallion (Gonzalez-Fernandez et al., 2013) and human (Battistone et al., 2014), we 

therefore decided to investigate which of the focal adhesion kinases members 

were present in murine spermatozoa. Detection of fak was performed by western 

blot: epididymal sperm were lysed and both soluble and insoluble protein fractions 

were tested using antibodies directed against total levels of FAK (anti-FAK) and 
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PYK2 (anti-PYK2). Similarly to human, total cell lysates from murine spermatozoa 

probed with anti-PYK2, showed a band at 116kDa, corresponding to the 

molecular weight of murine PYK2 (Fig 2.11A). Different from human, when total 

cell lysates were tested for the presence of the other member of focal adhesion 

kinase family FAK in murine, we also detected a band at 123kDa, corresponding 

to the expected size of FAK   (Fig 2.11B). Although both anti-PYK2 and anti-FAK 

recognized additional bands at different molecular weights, no relationship 

between those bands and our proteins of interest was established. Although the 

presence of both members was in contrast with results previously obtained in 

human (Battistone et al., 2014), the data were consistent with the presence of 

both members in stallion (Gonzalez-Fernandez et al., 2013). We therefore 

decided to test the solubility of both members to the non-ionic detergent Triton X-

100 after 60 minutes incubation in capacitating conditions. Different from the 

analysis of PYK2 solubility in human, both PYK2 (Fig 2.11C, left panel) and FAK 

(Fig 2.11C, right panel) were soluble to Triton X-100. This result again was in 

argument with was shown in human (Battistone et al., 2014), highlighting possible 

differences between species in mechanisms regulating phosphorylation 

associated with sperm capacitation.  

 

2.2.5 Effect of PF573228 on pPKAs and PY in CD1 sperm and Effect of 

PF431396 and PF573228 on the In vitro activities of recombinant FAK and 

PYK2 

 
The presence of both members of the FAK family was an encouraging result to 

support our hypothesis. Although PYK2 and FAK present differential expression 
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and roles, they share high similarity both in structure and function (Mitra et al., 

2005b), PF431396 was shown being able to block both their activities with a 

similar IC50 (Bhattacharya et al., 2012); PF431396 therefore, is not the ideal tool 

to investigate whether PYK2 or FAK is the protein that plays a role in regulating 

the increase of PY associated with capacitation. In order to circumvent this 

limitation, we adopted an alternative pharmacological approach: PF573228 is 

another inhibitor of FAK kinases, but different from PF431396, have higher 

specificity for FAK than PYK2 (IC50 for FAK is one order of magnitude higher than 

for PYK2) (Bhattacharya et al., 2012). We therefore examined the sensitivity of 

phosphorylation events to PF573228 (Fig. 2.12). Epididymal Murine sperm were 

incubated in modified TYH medium in capacitating condition (15mM HCO3
– and 

5mg/mL BSA) and in presence of different concentrations of PF573228. Different 

from what showed for PF431396, PF573228 is not able to completely inhibit the 

capacitation-associated increase of PY to non-capacitated control levels, but only 

cause a small decrease in the level of PY (Fig 2.12B). Levels of pPKAs were not 

affected by the presence of the FAK specific inhibitor PF573228, consistent with 

previous results using PF431396 (Fig 2.12A). The significantly reduced inhibition 

observed in presence of PF573228 suggested that, even if FAK is present in 

murine spermatozoa, is not the kinase responsible for PY increase during 

capacitation. Although these data were consistent with our hypothesis of PYK2 

being the tyrosine kinase responsible for PY increase in murine sperm, further 

investigation were required to elucidate the function of PYK2 in murine sperm 

during capacitation. In the previous section we showed that during in vitro 

capacitation PF573228 has a negligible effect on both early (pPKAs) and late (PY) 

events associated with capacitation. We therefore examine the specificity of both 
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inhibitors on the in vitro activity of His-tagged recombinant forms of FAK and 

PYK2. Recombinant kinases activity was monitored in vitro following radiolabeled 

[32P]-phosphate from ATP to the peptide substrate Poly (Glu:Tyr). Increased 

concentrations of PF431396 negatively affect the activity of both recombinant FAK 

and PYK2 in vitro (Bhattacharya et al., 2012), with similar patterns of inhibition 

and IC50 for both kinases (Fig 2.13A). FAK and PYK2 on the other hand showed 

different sensitivity to PF573228, with FAK being affected at lower concentrations 

(Fig 2.13B).  This observation, together with results showed in the previous 

paragraph, suggests that FAK is not involved in the regulation of PY during 

capacitation. 

 

2.2.7 Analysis of the capacitation-associated phosphorylation events in PYK2–/– 

spermatozoa 

PF431396 pointed out to PYK2 as the member responsible for PY increase during 

mouse sperm capacitation. However, pharmacological inhibitors are known to 

also affect off-targets kinase, therefore results above were not conclusive. Loss of 

function experiments using knock out animals gives the advantage of investigating 

the role of a particular protein in a given process, when the protein under 

investigation is lacking. We therefore decided to investigate whether the lack of 

PYK2 (Pyk2–/–) affect the fertility profile of this murine model. Pyk2–/– animals we 

have been using for our experiments were characterized (Guinamard et al., 2000; 

Okigaki et al., 2003), and kindly donated by Dr. Assoian (Dept. of System 

Pharmacology and Translational Therapeutics, University of Pennsylvania). We 

first validated the model in our hand testing the presence of fak members in total 
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sperm lysate from both Pyk2+/+ and Pyk2–/– animals. Sperm form Pyk2+/+ exhibit a 

band correspondent to the molecular weight of PYK2 (~116kDa), but this band 

was not detected in sperm from Pyk2–/– animals (Fig 2.14A, higher panel). This 

observation validates the use of the knockout model for our studies and confirms 

the specificity of anti-PYK2 antibody in use. The analysis of cell lysates from 

Pyk2–/– animals showed no defect in the expression of the other focal adhesion 

kinase member FAK (Fig 2.14A, lower panel). Since this model appear to be 

suitable for studies on sperm capacitation, we next evaluated events associated 

with capacitation in this model: first we compared the phosphorylation of both PKA 

substrates and Tyrosine in epididymal spermatozoa from Pyk2–/– and Pyk2+/+ 

animals incubated in capacitating conditions (15mM HCO3
– and 5mg/mL BSA) for 

60 minutes. Spermatozoa from Pyk2–/– animals surprisingly showed no differences 

in the levels of tyrosine phosphorylation (Fig 2.14B, left panel) compared to their 

wild type littermates (Fig 2.14B, right panel). No defects in the phosphorylation of 

the PKA substrates after 1 hour capacitation, was observed for Pyk2+/+ animals 

(Fig 2.15, upper panel). These results were in sharp contrast with our hypothesis 

and showed that, at least in the case of mouse sperm, PYK2 is not the kinase 

responsible for the increase of PY associated with capacitation and is not 

necessary for capacitation and fertilization. 

 

2.2.8 Effect of PF431396 and PF573228 on capacitation associated protein 

phosphorylation in spermatozoa from Pyk2–/– animals 

We reasoned that, in animals that lacks Pyk2, a different kinase, is involved in the 

regulation of PY. We hypothesized that this unknown kinase belong to FAK family 
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and therefore is sensitive to PF431396. Consistent with this hypothesis, the 

increase of tyrosine phosphorylation in Pyk2–/– sperm was inhibited by PF431396 

in a concentration dependent manner as showed for wild type littermates (Fig 

2.15B) and CD1 sperm (Fig 2.6). The effect of PF431396 on PKA substrates 

phosphorylation upstream was negligible (Fig 2.15A). These observations opened 

the possibility that, when PYK2 is lacking, a compensatory mechanism regulates 

the capacitation-associated increase of PY and due to the ability of PF431396 to 

inhibit both fak members, this result highlight the other member FAK as the most 

likely candidate in compensating the lack of PYK2. If this is the case, Pyk2–/– 

animals should be also sensitive to the FAK specific inhibitor PF573228, as 

shown for PF431396. Caudal epididymal spermatozoa from both Pyk2–/– and 

Pyk2+/+ animals were exposed to different concentrations of PF573228 and sperm 

lysates collected after 1 hour. Analysis of the phosphorylation profile associated 

with capacitation showed that PF573228 have no effects on pPKAs 

phosphorylation (Fig 2.16A). Surprisingly, the FAK specific inhibitor only induce a 

slight decrease in the levels of PY associated with capacitation also in Pyk2–/– 

animals (Fig 2.16B) but is not able to abolish the PY signals to non-capacitated 

levels, as shown for PF431396 (Fig 2.15B). Moreover, FAK protein levels are not 

increased in Pyk2–/– sperm compared to wild type (Fig 2.14A, lower panel). The 

results indicate that FAK, in absence of PYK2, is not the kinase that mediates the 

increase of PY and therefore is not compensating for the lack of PYK2. These 

observations were in conflict with our original hypothesis, and different from what 

we proposed in human, we showed that fak members were not involved in the 

regulation of PY during capacitation in mouse sperm. Although we ruled out the 

involvement of fak members on regulation of PY during capacitation, the 
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conserved effect of PF431396 on tyrosine phosphorylation in Pyk2–/– 

spermatozoa raised some concerns about the specificity of PF431396. The 

catalytic subunit of protein kinases is a conserved domain even in kinases 

belonging to different families, therefore although specificity claimers, potentially 

any pharmacological inhibitors of kinases could affect the activity of different off-

target kinases (Bain et al., 2003; Bain et al., 2007; Davies et al., 2000). Results 

obtained in Pyk2–/– animals with PF431396, suggests that in murine spermatozoa, 

another kinases sensitive to PF431396 and that not belong to the fak family 

regulate increase of PY during capacitation 

 

 

 

 

 

 

 

 

. 

 

 



 

 46 

CHAPTER 3 

INVESTIGATING THE ROLE OF TYROSINE KINASE FER DURING SPERM 
CAPACITATION 

 

3.1 FER tyrosine kinase: a novel candidate for studies on capacitation-associated 

PY in murine sperm. 

 
Results in the previous chapter demonstrated that focal adhesion kinases (fak) do 

not play a unique role in regulating phosphorylation events associated with 

capacitation in murine sperm. Therefore, we concentrated our efforts in the 

identification of the tyrosine kinase(s) affected by the pharmacological tool in our 

hand during mouse sperm capacitation. We assume that PF431396 is affecting 

different kinase(s) not belonging to fak family. Recently using Tandem Mass 

Spectrometry (MS/MS), Chung et al revealed the identity of several proteins 

phosphorylated on tyrosine during capacitation in murine (proteins of the sperm 

head, signaling, structural and mithocondrial proteins as well as uncharacterized) 

(Chung et al., 2014). Of all the signaling proteins identified in the study, only few 

kinases were found to be phosphorylated on tyrosine and only one member was 

an appealing candidate for our research: the tyrosine kinase FER. Chung showed 

the auto-phosphorylation activation loop of FER is phosphorylated in murine 

capacitated sperm (Chung et al., 2014). FER is a non-receptor tyrosine kinase 

that belongs to the Fps/Fes family (fps, Fujinami poultry sarcoma; fes, Feline 

sarcoma)(Shibuya et al., 1980; Snyder and Theilen, 1969). First described as 

proto-oncogene, the activated version of this kinase is shown to induce cellular 

transformation (Roebroek et al., 1985; Wilks and Kurban, 1988). Fps/Fes and 

FER shared close structural similarity indicating they might cover similar, if not 
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redundant biological functions (Shibuya et al., 1980). Growth factors, cytokines 

and immunoglobulin induce the activation of FER and Fes, which have been 

implicated in the regulation of cell-cell and cell-matrix interactions (Greer, 2002). 

Somatic FER has a molecular weight of 94kDa  (p94-FER) and its structure 

includes 4 different domains: 1. The carboxy-terminal Kinase domain mediates 

the phosphorylation of SH2-containing substrates on tyrosine (Maru et al., 1995); 

2. SH2 (Src-homology 2 domain) is a non-catalytic domain that both modulates 

the activity of the kinase and regulates protein-protein interactions (SH2 domains 

are known to mediate interactions with cortactin, EGF/PDGF receptors as well as 

insulin receptor 1) (Hjermstad et al., 1993; Iwanishi et al., 2000; Kim and Wong, 

1995, 1998); 3. The presence of three coiled-coiled domains is also typical of 

FER, these domains regulate FER oligomerization (trimerization) and appear to 

also mediate the interaction of FER with adherent junctions (through p120catenin) 

(Craig et al., 1999); 4. The amino-terminal FCH domain was shown being 

implicated in the regulation of cytoskeletal re-arrangements, vesicular transport 

and endocytosis (Modregger et al., 2000; Qualmann and Kelly, 2000; Tian et al., 

2000; Yeung et al., 1998). 

The genomic locus of FER express a different splicing variant during the first 

meiotic prophase in pachytene spermatocytes, called FERT (Fischman et al., 

1990). Different from somatic FER, FERT has a lower molecular weight of 51kDa 

(p51-FER) and this isoform looses both the FCH and coiled-coiled domains but 

retains the SH2 domain and kinase activity. Studies in rat spermatids revealed 

this protein appear to be important during spermatogenesis where is involved in 

the formation of acrosome-acroplaxome-manchette complex (Chen et al., 2003; 

Kierszenbaum et al., 2008).  
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 The aim of our study was to investigate whether any of the isoforms of FER was 

present in murine spermatozoa and if this tyrosine kinase takes part in 

phosphorylation pathways conducive to sperm capacitation. 

 

3.1.1 Expression of the Tyrosine Kinase FER in murine spermatozoa  

 
In order to elucidate a possible role of FER in regulating phosphorylation events 

(pPKAs and PY) during sperm capacitation in mouse sperm, we decided to first 

examine the presence of the kinase in mouse sperm. Total protein extracts were 

collected from epididymal spermatozoa and proteins were separated by 1D gel 

electrophoresis, transferred to PVDF membranes and tested using antibodies 

directed against total levels of FER protein (anti- FER). As shown in Fig 3.1A, 

antibody against FER detected a band at ~50kDa, correspondent to the molecular 

weigh described for the testis specific isoform FERT (p51-FER) (Hazan et al., 

1993). We therefore analyzed the solubility of FER to the non-ionic detergent 

Triton X-100 in capacitated spermatozoa and compare it with the solubility of the 

substrates phosphorylated on tyrosine. Results depicted in Fig 3.1B, show that 

the testis specific isoform of FER is present in both Triton X-100 soluble and 

insoluble fractions and it appear that during solubilization FERT is post-

translationally modified. A detailed analysis of the same blot showed a faint band 

around 100kDa, suggesting that both testis-specific (p51-FER) and somatic (p94-

FER) isoforms of FER are present in mouse sperm. Interestingly, different from 

what we shown for PYK2 and FAK, FER is present in both soluble and insoluble 

fraction, in some way correlating with PY signal in sperm, which is present only in 

the insoluble fraction of capacitated spermatozoa (Fig 3.1C). 
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This preliminary result confirmed the presence of the sperm specific variant FERT 

in murine sperm and showed that somatic FER is also present in mouse sperm, 

even if at lower concentration compared to the testis specific isoform. These 

observations represented a promising result and support our new working 

hypothesis of FERT playing a role in the regulation of PY during capacitation.  

 

3.1.2 Effect of PF431396 on the activity of recombinant FER in vitro 

 
We therefore decided to further investigate the function of FERT during 

capacitation in murine spermatozoa. In order to further support our hypothesis, we 

next examined the in vitro sensitivity of the commercially available recombinant 

form of FER to the fak inhibitor we have been using throughout this study, 

PF431396. Similar to the analysis of recombinant PYK2 and FAK in the previous 

chapter, the activity of FER was monitored following the transfer of 32P 

phosphate from ATP to the peptide substrate of FER Poly(Glu:Tyr). The activity of 

the kinase was tested in absence and in presence of different concentrations of 

PF431396 (0.1–30M). Results in Fig 3.2 indicate that the activity of tyrosine 

kinase FER in vitro is sensitive to increasing concentration of PF431396, with an 

IC50 of  ~1M, and a complete abolition of FER activity at 10M. Worth to notice, 

the pattern of inhibition of FER activity was comparable to the one observed for 

recombinant PYK2 in vitro. Our concerns about the specificity of PF431396 

toward focal adhesion members were therefore confirmed. In addition, we showed 

that the activity of recombinant FER in vitro and the levels of PY during in vitro 

capacitation are sensitive to PF431396 with a similar IC50/EC50 (~1M) (Compare 

Fig 2.1 and Fig 3.2), supporting a possible role for tyrosine kinase FER in the 



 

 50 

regulation of capacitation-associated PY. Despite this result support our 

hypothesis, does not conclusively demonstrate the function of FER during 

capacitation.  

 

3.1.3 Analysis of capacitation-associated phosphorylation events in FerDR/DR 

spermatozoa 

In order to further investigate the role for FER during capacitation, we decided to 

analyze the capacitation events in a murine model that express non functional 

copies of Fer gene. Since murine models in which the fer gene is knockout are 

note viable, due to the importance of this kinase in regulating cell-cell and cell-

matrix interactions, Dr. Greer at Queen’s University developed a murine model 

that include an inactivating point mutation (D743R) in the catalytic loop of the 

kinase, FerDR/DR (Craig et al., 2001). FER expression is not affected but in this 

model the kinase activity of the enzyme is abolished. The kinase inactivating 

mutation abolishes not only the activity of somatic FER but also affect the testis-

specific isoform FERT (Craig et al., 2001). Therefore FerDR/DR represents a 

suitable tool to investigate the function of FER during capacitation. We therefore 

decided to examine phosphorylation events associated with capacitation in 

animals lacking FER activity. Spermatozoa from FerDR/DR animals and their wild 

type littermates (Fer+/+) were incubated in modified TYH medium in capacitating 

conditions (15mM HCO3
– and 5mg/mL BSA) and level of phosphorylation of PKA 

(pPKAs) substrates and tyrosine (PY) were checked after 60 minutes. When 

Fer+/+ spermatozoa were capacitated in vitro, pPKAs levels were physiologically 

increased compared to the non-capacitated sperm population (Fig 3.3A, higher 
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panel), and similarly a normal increase in the level of tyrosine phosphorylation 

(PY) was observed (Fig 3.3A, lower panel). The increase of tyrosine 

phosphorylation levels is observed at 60 minutes and remains elevated for the 

following hour (Fig 3.3A, lower panel). On the other hand, when FerDR/DR 

spermatozoa are incubated in capacitating conditions, although no defects in the 

levels of phosphorylation of PKA substrates (pPKAs) were detected (Fig 3.3B, 

higher panel), no increase in PY levels was showed compared to non-capacitated 

controls (Fig 3.3B, lower panel). In order to rule out the possibility that the lack of 

FER was inducing only a delay in the onset of capacitation-associated PY, we 

decide to extend the time of incubation in capacitating condition to 120 minutes. 

At all the time points examined (between 60 and 120 minutes) we did not 

observed any increase in the levels of PY compared to non-capacitated control 

(Fig 3.3B, lower panel). This observation represent a groundbreaking result 

toward the investigation of phosphorylation events associated with capacitation. 

We demonstrated for the first time that there is a unique kinase that regulates the 

onset of tyrosine phosphorylation associated with capacitation in murine 

spermatozoa and that this kinase is the testis-specific isoform of the tyrosine 

kinase FER (FERT). The absence of the tyrosine kinase does not have any effect 

on the activation of elements that are known being activated upstream, the cAMP-

dependent phosphorylation of PKA substrates is indeed not affected in FerDR/DR . 

This result assign for the first time a role to a specific kinase (FERT) a unique role 

in inducing the onset of PY associated with capacitation. 
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3.1.4 Analysis of FER localization in FerDR/DR animals 

Results above confirmed that a band corresponding to the testis-specific isoform 

FERT, similar to tyrosine phosphorylated substrates, is found in the fraction 

insoluble to Triton X-100, suggesting a possible co-localization of FER with PY 

signal (Fig 3.1B, C). In order to gain further insight about the localization of FER in 

murine sperm, we performed an immunocytochemical analysis (ICC) of FER in 

FerDR/DR animals. According to Craig et al the D743R mutation only affect the 

activity of the kinase without affecting its expression (Craig et al., 2001; Khajah et 

al., 2013; Kierszenbaum et al., 2008). Before analyzing FER localization by ICC, 

we decided to test the use of FER antibody by western blot on total sperm lysate 

from both FerDR/DR and Fer+/+. Surprisingly, the band correspondent to the testis-

specific isoform of FER at 50kDa (FERT) was not detected in lysate collected 

from FerDR/DR sperm (Fig 3.4A). On the other end the band correspondent to 

FERT is present in sperm from wild type animals of the same strain (Fer+/+). We 

therefore reasoned that due to the difference in length and therefore structure 

between somatic and testis-specific FER, in the latter the D743R mutation not 

only affect the kinase activity but could also affect protein folding, somehow 

disrupting the FERT epitope recognized by the antibody in our hand. This result 

shows on one hand that in sperm from FerDR/DR animals, not only the activity but 

also the presence of FERT is lacking and, on the other hand represent an 

unexpected validation of the antibody in use to further examine the localization of 

FER in murine sperm. Analysis of FER localization by ICC showed that tyrosine 

kinase FERT is localized in the tail of murine spermatozoa. The antibody both 

labels the mid- and the principal piece (Fig 3.4B). Semi quantitative analysis of 

FERT signal confirmed the difference showed by ICC, with a strong reduction in 
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signal corresponding to FER in FerDR/DR compared to activity (Fig 3.4C). The 

result suggests co-localization of PY and FERT and further supporting a role for 

tyrosine kinase FER in regulating capacitation-associated tyrosine 

phosphorylation.  

 

3.1.5 Analysis of FER and PY signaling through STORM microscopy 

Immunocytochemistry results showed that FER signal is localized to the tail of 

murine spermatozoa (Fig 3.4B), a previously shown for proteins phosphorylated 

on tyrosine (Carrera et al., 1996; Leclerc et al., 1997; Lewis and Aitken, 2001; Si 

and Okuno, 1999; Urner et al., 2001). The use of light or confocal microscopy is 

restricted to the diffraction limit of ~200nm (which depend on wavelength and on 

the numerical aperture of the objective), therefore limiting the accuracy of spatial 

observations on a smaller scale. We therefore take advantage of Stochastic 

Optical Resolution Microscopy (STORM) to investigate the localization of FER 

and PY signals in murine spermatozoa. This technique allows the detection of 

single fluorescent molecules that are closer than the resolution limit, with higher 

resolution than confocal microscopy both in the x-y and the z planes. Moreover 

the analysis of tyrosine phosphorylation signal during murine sperm capacitation 

through STORM showed that PY signal is restricted to the tail and that in the 

principal piece of sperm flagellum is restricted to the axoneme (Chung et al., 

2014).  Results in Fig 3.5D, G and H were consistent previous studies showing 

the distribution of PY signal within the sperm flagellum (Chung et al., 2014), 

confirming the validity of STORM technique to investigate the localization of FER 

in sperm. When the 3D spatial distribution of FER was examined, the signal 
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corresponding to FER was detected throughout both the mid- and principal piece 

(Fig 3.5A) and the analysis of cross-sections of mouse sperm tail showed that 

FER signal, similar to PY was localized within 250nm from the center in the mid-

piece (Fig 3.5A, B, D, E and G). Observations on the spatial distribution of FER in 

the principal piece showed that the signal is restricted to the axoneme and 

overlaps with signal corresponding to PY (Fig 3.5A, C, D, F and H), as shown in 

the mid-piece. These last observation, further confirmed previous ICC 

observations in FERDR/DR animals (Fig 3.4B), supporting the role of tyrosine 

kinase FER in regulating tyrosine phosphorylation during murine sperm 

capacitation. 

 

3.1.6 Analysis of in vitro fertilization capability of FerDR/DR animals 

 
Once the localization of FER and its role in inducing tyrosine phosphorylation 

were established, we next decided to evaluate whether the absence of FERT 

affect the ability of spermatozoa to fertilize metaphase II arrested oocytes in vitro. 

Epididymal spermatozoa from FerDR/DR and wild type animals were capacitated in 

vitro for 60 minutes and then co-incubated with metaphase II arrested oocytes 

collected from 8 weeks old CD1 females. After 4 hours of co-incubation, the 

sperm in excess was washed out and the oocytes that reached two polar 

bodies/two cells stages were counted as fertilized after 24 hour. Different from 

what was shown in vivo (Craig et al., 2001), spermatozoa from FerDR/DR animals 

have a limited capability to fertilize oocytes in vitro: fertilization rate for wild type 

animal was ~35%, which is in accordance with data showed for the 129/SVJ 

murine strain (Kawai et al., 2006). On the other hand, FerDR/DR spermatozoa 
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showed a very limited capability to fertilize metaphase-II arrested eggs in vitro (Fig 

3.6). This observation suggests that FER activity and PY are required for fertilizing 

capability in vitro. The fact that in vivo these mice are fertile, suggest that during 

natural mating, either PY increase is not required for fertilization and therefore 

sperm without increased levels of PY are fertile or that during the transit through 

the female reproductive tract certain unknown mechanism compensate the lack of 

FER, inducing the increase of PY.  

 

3.1.7 Analysis of functional parameters associated with capacitation in FerDR/DR 

animals 

 
The results above determined the role of FER in inducing the increase of PY and 

in regulating the fertilizing ability of murine sperm in vitro. We therefore decided to 

examine whether functional parameters associated with capacitation were 

affected in absence of FER and tyrosine phosphorylation. We therefore tested the 

motility profile of FerDR/DR spermatozoa compared to wild type. Ejaculated 

mammalian spermatozoa once deposited into the vagina, acquire progressive 

motility in order to quickly swim-out from the seminal plasma (that contains 

several de-capacitating factors) and to finally begin their journey toward the 

oviduct. Once capacitated spermatozoa reach the utero-tubal junction, sperm 

must acquire a different patter of motility characterized by slow speed and higher 

propulsive force, the hyperactive motility: this motility pattern allow them to swim 

through the thick viscous mucus of Fallopian Tubes (Fraser, 1977, 2010; Suarez, 

1996, 2008; Suarez and Osman, 1987). Epididymal sperm from FerDR/DR and 

Fer+/+ animals were incubated with 15mM HCO3
– and 5mg/mL BSA for 60 
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minutes. After capacitation, an aliquot of sperm was diluted and motility was 

assessed using Hamilton Thorne Computer Assisted Semen Analysis (CASA), the 

analysis of different motile populations was measured through the software 

CASAnova (Goodson et al., 2011). Results in Fig 3.7A showed that, the 

percentage of FerDR/DR motile spermatozoa is comparable to the motile population 

of Fer+/+. This observation was expected as several studies showed that the onset 

of motility in ejaculated/epididymal sperm is dependent on sAC activation and 

cAMP pathway (Esposito et al., 2004). Surprisingly, when populations of 

spermatozoa with hyperactive motility were compared between FerDR/DR and 

Fer+/+, no difference between the two strains was observed (Fig 3.7B). This 

observation, although in argument with previous studies showing a relationship 

between PY increase and hyperactive motility (Mahony and Gwathmey, 1999; Si 

and Okuno, 1999), clearly showed that FerDR/DR sperm although lacking tyrosine 

phosphorylation acquire hyperactive motility.  

Studies on sperm capacitation in different species suggested a relationship 

between tyrosine phosphorylation and later functional events of capacitation as 

the ability to undergo to AR in response to extracellular agonists (Asquith et al., 

2004). Results showed in the previous section, showed that the absence of FERT 

kinase does not have any impact on neither total nor hyperactive motility. We 

therefore decided to examine the ability of these cells to undergo to acrosome 

reaction in vitro. Epididymal sperm collected from FerDR/DR and Fer+/+ animals, as 

previously showed for other experimental methods, were capacitated in vitro for 

60 minutes and then incubated with the Ca2+ ionophore A23187 [shown to induce 

Acrosomal Reaction in vitro (Balao da Silva et al., 2013)] or DMSO (as control) for 

the following 30 minutes. The percentage of acrosome reacted spermatozoa was 
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then assessed by PNA-Alexa488 staining. Although significant differences were 

observed between control and sperm treated with A23187, results in Fig 3.7C 

revealed no difference between FerDR/DR and their wild type littermates in the level 

of reacted sperm in response to the A23187. As shown for motility, this 

observation is in sharp contrast with previous data in the literature showing a 

relationship between the occurrence of PY and Acrosomal Reaction (Asquith et 

al., 2004). Lack of positive correlation between tyrosine phosphorylation and the 

regulation of functional parameters in FerDR/DR model highlight the possibility that 

different pathways present in murine sperm, bypass through certain unknown 

mechanisms the lack of PY in order to guarantee, the occurrence of capacitation.  

To summarize the evidences presented in this section, we demonstrated that 

tyrosine kinse FERT is present in mouse sperm, where regulates the occurrence 

of PY during capacitation. Although capacitated FerDR/DR sperm in vitro showed 

hyperactive motility and acrosome reaction, their ability to fertilize metaphase 

arrested II eggs in vitro is reduced compared to Fer+/+ sperm.  On the other hand 

FerDR/DR animal are fertile at mating, delivering viable and healthy offspring.  
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CHAPTER 4 

INVESTIGATING THE KINETIC OF PHOSPHORYLATION EVENTS 
ASSOCIATED WITH CAPACITATION 

 

4.1 Analysis of the Kinetics of phosphorylation events associated with 

Capacitation in murine sperm: the chemical-genetic approach. 

 
Different from other signaling pathways, capacitation is not a rapid signaling event 

triggered by ligand-receptor binding. Mammalian spermatozoa need to reside in 

the female tract for a certain amount of time and to respond to different 

modulators promoting the occurrence of capacitation in a time-dependent fashion 

(Ickowicz et al., 2012). It is therefore fundamental to examine the time relationship 

between phosphorylation events and the occurrence of capacitation in murine 

spermatozoa. 

In this third section, our effort is focused on understanding the kinetic of 

occurrence phosphorylation of PKA substrates and PY during capacitation in 

order to gain further insights about the time dependent mechanisms of regulation 

during capacitation. We have used both pharmacological and chemical-genetic 

strategies to elucidate the temporal requirements of these signals during sperm 

capacitation. 

 

4.1.1 Time of occurrence of pPKAs and PY during capacitation in CD1 mice 

 
The presence of ADCY10 and of the CII catalytic subunit of PKA are known to 

be necessary requirements to guarantee the occurrence of capacitation in murine 

sperm (Esposito et al., 2004; Nolan et al., 2004), moreover the presence and 
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activation of PKA are also necessary to induce one of the hallmark of sperm 

capacitation, the increase of tyrosine phosphorylation  (PY) levels (Visconti et al., 

1995a; Visconti et al., 1995b). Further studies revealed that, although regulated 

by cAMP/PKA pathway, PY occurs on a different time scale compared to PKA 

activation (Arcelay et al., 2008; Visconti et al., 1995b). In order to set the ground 

for studies on kinetic of capacitation, we decided to first examine the time 

dependent activation of PKA and PY phosphorylation during capacitation. 

Epididymal spermatozoa, after collection were challenged with 15mM HCO3
– and 

5mg/mL BSA in order to stimulate capacitation. Spermatozoa were then collected 

at different time points (1 through 60 minutes) during capacitation and the level of 

phosphorylation of PKA substrates and PY was tested using anti-pPKAs and anti-

PY antibodies. Activation of PKA and the increase of PY levels occur at different 

time: phosphorylation of PKA substrates already reach its maximum after 1 

minute and it is shown to last for the following hour (Fig 4.1A); on the other hand, 

onset of tyrosine phosphorylation is delayed compared to pPKAs: a subtle rise in 

the level of PY is first observed after 30 minutes of incubation with a full increase 

observed at 45 minutes (Fig 4.1B), confirming previous observation in murine 

sperm (Arcelay et al., 2008). The delay in the rise of PY levels compared to 

pPKAs could be explained by either a slow accumulation of second messengers 

or by a down regulation of the activities of protein phosphatases, showed to be 

present in murine sperm (Signorelli et al., 2012). We therefore try to gain further 

insights on the possible mechanisms regulating the times of occurrence of these 

phosphorylation events using different approaches. 
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4.1.2 Effect of the broad inhibitor H89 on pPKAs and PY during capacitation 

Before the advent of knockout genetic models, studies on sperm capacitation 

strongly relied on pharmacological approaches. Together with cAMP analogues 

and phosphodiesterases (PDE) inhibitors, pharmacological inhibitors of PKA were 

broadly used to demonstrate the requirement of cAMP/PKA pathway to induce 

sperm capacitation in different species. H89, is a small inhibitor that bind to the 

catalytic subunit of Protein Kinase A (PKA) (including the sperm-specific subunit 

CII) and studies on sperm showed its ability to negatively affect the activity of 

PKA with a good degree of specificity (Vijayaraghavan et al., 1997; Visconti et al., 

1995b). We therefore decided to first examine the concentration-dependent effect 

of this inhibitor on pPKAs and PY phosphorylation: Epididymal spermatozoa, were 

challenged with different concentrations of H89 for 5 minutes in absence of HCO3
– 

and BSA and then incubated in capacitating conditions in presence of the same 

concentrations of the inhibitor for the following hour. Phosphorylation of pPKAs 

and PY were tested as previously shown. As expected, H89 is effective in 

inhibiting capacitation-associated pPKAs (Fig 4.2A) and PY (Fig 4.2B) as 

previously showed, with an EC50 in murine spermatozoa of ~10M. Consistent 

with previous data in the literature (Visconti et al., 1995b), when sperm are 

capacitated in presence of H89, the phosphorylation of PKA substrate is inhibited 

in a concentration-dependent manner and similarly, downstream events regulated 

by PKA activation as tyrosine phosphorylation are as well hampered. Our results 

were consistent with previous published data showing that during sperm 

capacitation, the late onset of PY is dependent on the early activation of PKA. 

Similar conclusions were also drawn by loss of function experiment using 

knockout models of sAC (Esposito et al., 2004) and CII (Nolan et al., 2004) as 
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well as gain of function experiments using exogenous cAMP agonists (Visconti et 

al., 1995b). 

 

4.1.3 Limits of competitive kinase inhibitors and the chemical-genetic strategy 

 
As described in the previous section, H89 is a broad competitive kinase inhibitor 

with high specificity against Protein Kinase A (PKA) and was used in different 

studies to elucidate the role of PKA in different systems (Krapf et al., 2010; 

Visconti et al., 1995b). Although several efforts over the years were made to 

improve the specificity of competitive kinase inhibitors, the conserved nature of 

the ATP binding site between different classes of kinases represent a limiting 

factor to develop potent inhibitors with a high degree of specificity (Dar and 

Shokat, 2011). In order to circumvent this issue Dr. Shokat developed a chemical-

genetic strategy that allow to inhibit specific classes of kinases with minimum off-

target effect: the principle is to render the kinase of interest sensitive to a specific 

inhibitor rather than create inhibitors that are specific for the kinase of interest. 

The method include the introduction of a point mutation within the gatekeeper 

amino-acid within the kinase catalytic domain of interest, the mutation causes a 

conformational change of the catalytic subunit that render the kinase sensitive to 

specific bulky inhibitors, without affecting the activity of the kinase (Bishop et al., 

2000). Based on this strategy, Niswender identified a point mutation (M120A) that 

render the CII catalytic subunit of Protein Kinase A sensitive to a series of C-3 

derivatized pyrazolo[3,4-d]pyrimidine-based inhibitors (Niswender et al., 2002) 

and a knock-in murine model that express the CII-M120A mutation only after 

Cre-mediated recombination in vivo was created by Morgan et al (Morgan et al., 
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2008). The mutation did not affect the activity of PKA, therefore CII-M120A 

animals were viable and fertile. Using a bulky pyrimidine based inhibitor (1NM-

PP1) the activity of PKA can be specifically down regulated during capacitation 

without affecting the activity of other kinases present in sperm (therefore avoiding 

off-target effects). We therefore decided to test whether this tool is suitable to 

examine the kinetic of phosphorylation events during capacitation, together with 

the broad inhibitor H89. 

 

4.1.4 Effect of 1NM-PP1 on pPKAs and PY in sperm from CII-M120A animals 

The first step towards the investigation of sperm capacitation kinetic was to test 

whether CII-M120A model was suitable for our studies on sperm signaling. 

Spermatozoa from both CII-M120A and their wild type littermates (CII-WT) 

were collected by swim out from epididymis and then incubated in capacitating 

conditions (15mM HCO3
– and 5mg/mL) for the following 60 minutes. Levels of 

pPKAs and PY phosphorylation were then tested using anti-pPKAs and anti-PY 

antibodies, as previously showed. After 60 minutes in capacitating condition both 

sperm from M120A and WT animals, in absence of 1NM-PP1 showed 

physiological increased level of both pPKAs and PY phosphorylation similar to 

CD1 sperm (Fig 4.3). This preliminary result confirmed that in sperm the activity of 

PKA is not affected by the presence of the mutation and that phosphorylation 

events associated with capacitation are not affected. We also tested the effect of 

different concentrations of 1NM-PP1 (3 – 30M) on pPKAS in both CII-WT and 

CII-M120A animals. 1NM-PP1 negatively affect the phosphorylation of pPKAs in 

a concentration dependent manner only in CII-M120A animals (Fig 4.3A, left 
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side), on the other hand CII-WT are not sensitive to the same concentrations of 

1NM-PP1 (Fig 4.3A, right side). The same blot was stripped and probed again 

with anti-PY antibodies (Fig 4.3B). Similar to what we previously shown for 

pPKAs, the increase of PY levels was also sensitive to increasing concentrations 

of 1NM-PP1, displaying similar EC50 (~3M) (Fig 4.3B, left side), with no effect 

observed on PY signals in CII-WT animals (Fig 4.3B, right side). These data 

confirmed that sperm from CII-M120A animals are sensitive to 1NM-PP1, and 

that in presence of the inhibitor, phosphorylation events associated with sperm 

capacitation are depleted. We therefore use this engineered knock-in murine 

model to investigate the kinetic of phosphorylation events associated with sperm 

capacitation. 

 

4.1.5 Effect of H89 and 1NM-PP1 on the in vitro activity of PKA from CD1 mice 

 
Preliminary results in the previous section showed that when CD1 sperm were 

incubated with increasing concentrations of H89, pPKAs phosphorylation is 

reduced in a concentration dependent manner. Although the use of anti-pPKAs 

antibody is an established technique to monitor the activity of PKA during 

capacitation and in other signaling, it still remains an indirect method of analysis of 

PKA activity that only mirrors the kinase behavior. We therefore decided to test 

the effect of the pharmacological tools in our hand to (H89 and 1NM-PP1) on the 

activity of Protein Kinase A in homogenates collected from CD1 murine 

spermatozoa. Sperm Homogenates containing PKA were challenged with 

different concentration (1–100M) of both H89 and 1NM-PP1. The transfer of 

radiolabeled phosphate from 32P-ATP to the peptide substrate of PKA kemptide 
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(Leu-Arg-Arg-Ala-Ser-Leu-Gly) was used to monitor the activity of PKA in vitro 

(Visconti et al., 1997). Results depicted in Fig 4.4 showed a concentration 

dependent effect of H89 on the in vitro activity of PKA from CD1 mouse sperm, 

with an IC50 of 3M (Fig 4.4, black line).  

To test whether 1NM-PP1 has any effect on the activity of CD1 PKA activity, we 

also examined the in vitro activity of PKA from CD1 sperm homogenates, in 

presence of increasing concentration of the other PKA inhibitor, 1NM-PP1. 

Different from H89, 1NM-PP1 has a negligible effect on the activity of PKA at the 

lower concentrations tested, with a slight decrease of PKA activity in presence of 

very high concentrations of 1NM-PP1 (Fig 4.4, gray line). These results are 

consistent with previous observations, where H89 was affecting the 

phosphorylation of PKA substrates during in vivo capacitation (Fig 4.2A). The 

effect of 1NM-PP1 is specific to CII-M120A animals and does not affect the 

activity of PKA in sperm from CD1 mice. 

 

4.1.6 Effect of 1NM-PP1 on in vitro activity of PKA in sperm from CII-M120A 

animals 

 
Results in Fig 4.3 showed that the pPKAs and PY phosphorylation levels 

associated with capacitation are negatively affected by increasing concentration of 

1NM-PP1 in sperm from CII-M120A but no effect is observed in sperm from 

CII-WT littermates. To further confirm that the effect on pPKAs and PY is caused 

by a reduction in the activity of PKA, we decided to directly examine the activity of 

PKA in homogenates from CII-M120A and CII-WT in response to increasing 

concentrations of 1NM-PP1 (1–30M). As shown in the previous section, the in 
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vitro activity of the PKA was monitored following the transfer of radiolabeled 

phosphate from 32P-ATP to the peptide substrate of PKA kemptide. Consistent 

with data obtained during in vitro capacitation (Fig 4.3), PKA activity in 

homogenates from CII-M120A animals was sensitive to increasing 

concentrations of 1NM-PP1 with an IC50 of ~3M, and is abolished at 10M (Fig 

4.5, gray line). On the other hand, PKA activity in homogenates from CII-WT 

animals (not including CII-M120A mutation) was not sensitive to 1NM-PP1, with 

a slight reduction of the activity observed only at 30M (Fig 4.5, black line). This 

observation confirmed that CII-M120A mutation render PKA sensitive to 

increasing concentration of 1NM-PP1, with a with IC50 ~2M and 30M are shown 

to reduce completely the activity of the kinase. As previously shown during in vitro 

capacitation the effect is specific to M120A animals, with no effect on sperm WT 

animals. We therefore confirmed that the chemical-genetic tool we have been 

using is suitable for studies on phosphorylation events associated with 

capacitation. 

 

4.1.7 Effect of 1NM-PP1 on the kinetic of pPKAs and PY during capacitation 

 
In order to elucidate the kinetic of phosphorylation events during capacitation, we 

used the CII-M120A mouse model to investigate the possible relationship 

between the kinetic of activation of PKA and the onset of PY during in vitro 

capacitation. We previously showed that pPKAs and PY phosphorylation occur on 

a different time scale during capacitation (Fig 4.1), we were therefore interested in 

understanding whether the time-dependent activation of PKA affects the later 

onset of PY during capacitation. Epididymal spermatozoa from both CII-M120A 
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and CII-WT animals, after swim-out were incubated in capacitating conditions for 

90 minutes, 30M 1NM-PP1 was added to the incubation media at different time 

points (1 through 89 minutes) and at 90 minute, sperm lysates were produced and 

the levels of phosphorylation of pPKAs and PY were tested by western blot. The 

inhibitory effect of 1NM-PP1 on pPKAs in CII-M120A is maintained even after 

the onset of capacitation and not only when sperm are treated with 1NM-PP1 prior 

to the incubation in capacitating conditions, indicating a good degree of specificity 

of the inhibitor (Fig 4.6A). Down regulation of pPKAs levels mediated by 1NM-PP1 

occurs rapidly, as shown when the inhibitor is added at later time points (minute 

89) (Fig 4.6A). 

Consistent with previous results (Fig 4.3), the effect of 1NM-PP1 is specific to 

CII-M120A and did not affect pPKAs phosphorylation in sperm from WT 

littermates (see Fig 4.7A). Interestingly, when levels of PY phosphorylation were 

examined in the same conditions, we observed a time dependent effect of 1NM-

PP1: if 1NM-PP1 was added at early time points during capacitation (between 1 

and 45 minutes), the onset of PY is inhibited. On the other hand, if 1NM-PP1 

inhibitor was added at later time points (after 45 minutes), the inhibitor have a 

negligible effect on tyrosine phosphorylation and we still observed physiological 

increase in the levels of PY associated with capacitation (Fig 4.6B). As shown for 

pPKAs, the effect of 1NM-PP1 is specific to sperm collected from CII-M120A 

animals with no inhibitory effect observed on PY for 1NM-PP1 at any of the time 

points examined in sperm from WT animals (see Fig 4.7B). These results indicate 

that in order to guarantee the onset of PY during capacitation, the activity of PKA 

upstream have to be sustained for at least 30/45 minutes to induce the onset of 

PY associated with sperm capacitation. Sustained activation of PKA is therefore a 
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key element in the regulation of the late increase in tyrosine phosphorylation 

during capacitation.  

 

 

4.1.8 Effect of SKI606 on the kinetic of pPKAs and PY during capacitation in CD1 

mice 

 
As described in previous sections of this dissertation, besides the prominent role 

of sAC and cAMP, the full activation of PKA during capacitation also require Src-

mediated down regulation of phosphatase activity and this mechanism of 

regulation was suggested being present both in murine and human sperm 

(Battistone et al., 2013; Krapf et al., 2010). These studies revealed that 

phosphorylation of PKA substrates and PY were inhibited in presence of the Src 

Family Kinase (SFK) inhibitor SKI606. We therefore decided to examine what was 

the impact of a time-dependent down regulation of the parallel pathway mediated 

by the SFK/phosphatases on pPKAs and PY phosphorylation during capacitation. 

Because the inhibition mediated by SKI606 is directed against SFKs and not 

directly on PKA, we analyze the effect of SKI606 on sperm collected from CD1. 

After swim-out, epididymal spermatozoa were incubated in capacitating conditions 

and the SKI6060 was added at different time points during incubation in 

capacitating condition, sperm were then harvested after 60 minutes and pPKAs 

and PY levels were tested by western blot, as previously described. Analysis of 

the data in Fig 4.8A showed that SKI606 abolish the phosphorylation of PKA 

substrates when sperm are challenged with the inhibitor prior to capacitating 

conditions or at early time points (0 to 10 minutes). On the other hand, when 
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SKI606 was added at later time points during capacitation (15 to 59 minutes), 

phosphorylation of PKA substrates was not affected and showed level similar to 

capacitated control. Consistent with results on pPKAs, the analysis of tyrosine 

phosphorylation in similar conditions confirmed a clear inhibition of PY when 

sperm were incubated with the inhibitor at early time points (1 to 15 minutes), and 

the effect is lost when sperm were incubated with SKI606 at later time points (Fig 

4.8B). These observations, together with previous results showing time dependent 

effect of 1NM-PP1 in CII-M120A animals further support the importance of the 

time dependent activation of PKA during capacitation: an early and sustained 

activation of PKA is a fundamental event of capacitation required for the late onset 

of PY. Furthermore, the parallel pathway regulated by SFKs and phosphatases 

and that control PKA full activation, also appear to be time dependent. 

 

4.1.9 Effect of PKA inhibitors (H89 and 1NM-PP1) on pPKAs and PY on 

capacitated sperm 

 
Besides the importance of an early activation of PKA during capacitation, our 

results also showed that the level of tyrosine phosphorylation (PY) are affected by 

the presence of PKA inhibitors (H89 and 1nM-PP1) only during early time points. 

We therefore hypothesized that when sperm reach full capacitation (at late time 

points) the upstream activity of PKA is no more required to induce PY 

phosphorylation downstream. In order to support our hypothesis, we took 

advantage of both pharmacological and chemical-genetic strategies to analyzed 

phosphorylation kinetics after full capacitation occurred:  caudal epididymal 

spermatozoa are incubated in capacitating conditions for 1 hour. At 60 minutes, 
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30M H89 were added to the capacitated sperm populations, protein extraction 

was then performed at different time points between 60 and 120 minutes. Sperm 

were harvested after 2 Hours, sperm lysates were produced and examined with 

anti-pPKAs and anti-PY antibodies western blotting. 30M H89 even when 

incubated with capacitated spermatozoa, retain its ability to effectively inhibit 

pPKAs signal. Analysis of the kinetic of pPKAs inhibition show a fast inhibition 

mediated by H89 with a significant decrease in the level of pPKAs substrates 

already after 10 minutes and a full decreased observed after 30 minutes (Fig 

4.9A). When the same blot was re-probed with anti-PY antibodies, any significant 

change in the level of tyrosine phosphorylation was observed: PY levels in fact 

remains elevated throughout the 2 hours incubation with no effect observed for 

H89 (Fig 4.9B). To further confirm these observations, a similar experiment was 

performed using sperm from CII-M120A and CII-WT animals, together with 

10M 1NM-PP1.  Consistent with its effect during early time of capacitation, 1NM-

PP1 affects the pPKAs in CII-M120A sperm also when added after 1 hour. 

Furthermore 1NM-PP1 showed a faster kinetic of inhibition compared to H89 (Fig 

4.10A). We reasoned that the more rapid effect of 1NM-PP1 compared to H89 

could be due to the M120A mutation in CII subunit of PKA. Similar to what 

observed for H89, 1NM-PP1 only affects pPKAs phosphorylation without having 

any impact of PY signal (Fig 4.10B). As previously showed, 1NM-PP1 does not 

affect neither pPKAs (Fig 4.11A) nor PY phosphorylation in CII-WT animals (Fig 

4.11B). Similar experiments were also performed extending the time of incubation 

(to 180 minutes) of capacitated sperm with both inhibitors, and similar results 

were obtained, with a rapid inhibition of pPKAs signal with no effect on PY (data 

not shown).  Altogether these two sets of results suggest that, once the 
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capacitation process is fully accomplished, the inhibition of the cAMP/PKA 

signaling pathway has a negligible effect on PY phosphorylation and possibly on 

other end points of capacitation.  

 

4.1.10 Time dependent effect of H89 during capacitation on fertilization rates in 

vitro 

 
Results in the above section suggest that not only the presence of CII catalytic 

subunit is required to promote phosphorylation events associated with 

capacitation (Nolan et al., 2004) but also that its time dependent activity appear to 

be a key element. Although the onset of PY during capacitation is considered a 

fundamental requirement for capacitation, we wanted to investigate whether time-

dependent PKA activation affect the ability of spermatozoa to fertilize metaphase 

II arrested oocytes in vitro.  

Epididymal spermatozoa, after swim out were incubated in capacitating conditions 

(TYH- 25mM HCO3
– and 4mg/mL BSA) for 60 minutes. PKA inhibitor H89 was 

added either before incubation in capacitating conditions or during the last 10 

minutes of incubation. Aliquots containing 105 sperm were then co-incubated with 

metaphase II arrested oocytes and 24 hours after, the fertilization rate was 

calculated. Similar to what observed for PY signal, when H89 is present 

throughout the whole capacitation, the ability of sperm to fertilize metaphase II 

arrested was strongly reduced compared to untreated control. On the other hand, 

when the PKA inhibitor was added only at late time points of capacitation, 

although a significant decrease in the fertilization rate was observed, the effect 

was much less pronounced and several spermatozoa were able to fertilize the 
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oocytes in vitro (Fig 4.12) despite the fact that the inhibitor affected 

phosphorylation of PKA substrates (Fig 4.9) This observation is consistent with 

previous results, showing that PY is not affected during late PKA inhibition and 

supports the hypothesis that PKA activity covers a fundamental role during early 

time points of capacitation but that later on is less necessary. 

 

4.1.11 Reversibility of the effect of PF431396 on PY during sperm capacitation 

 
As a next step toward the investigation of kinetic of phosphorylation signaling 

associated with capacitation, we decided to use the pharmacological inhibitor of 

PY (PF431396), described in previous chapters of this thesis, to further examine 

the relationship between PY and pPKAs phosphorylation. We previously showed 

that an early activation of PKA is necessary to induce capacitation-associated PY. 

We therefore wanted to investigate whether PKA is able to induce PY even after 

tyrosine phosphorylation was inhibited during the first hour of capacitation: 

epididymal spermatozoa were incubated in capacitated conditions in the presence 

of 10M PF431396, concentration shown to affect PY with no effect on pPKAs. 

After 1 hour, PF431396 was washed out and spermatozoa were incubated in 

capacitated media for another 60 minutes. Sperm were collected at different time 

points, and pPKAs and PY phosphorylation levels were then examined by 

Western blot. The presence of PF431396 during the first our in CAP conditions 

has no effect on pPKAs, as shown in the second chapter of this dissertation (Fig 

2.9). PY levels, after 60 minutes incubation in presence of PF431396 are 

depleted. When the inhibitor is removed from the incubation media, increased 

level of PY appear only if sperm are incubated in capacitating conditions for at 
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least 30 additional minutes or longer (Fig 4.13B). This observation was consistent 

with the kinetic observed for PY during in vitro capacitation in absence of any 

inhibitor (Fig 4.1B), with a later increase in PY levels that are then maintained 

throughout the whole incubation. Results showed above confirmed once again the 

different kinetic of onset of PY during capacitation, even when cAMP/PKA is fully 

active and suggest that although PKA induce the onset of PY, the activation is not 

direct but is mediated by a different player downstream of PKA and that might 

also regulate the time of occurrence of PY. Overall these data confirmed the key 

importance of time during capacitation, underscoring again difference compared 

to classical agonist-receptor signaling in other systems. 

 

4.1.12 Kinetic of inhibition of PF431396 on pPKAs and PY phosphorylation in 

capacitated sperm 

 
The recent data confirmed that the onset of PY during capacitation is a slow event 

that require long incubation (30/45 minutes) in presence of HCO3
– and BSA, next 

we wanted to investigate the kinetic of inhibition of PY when both pPKAs and PY 

levels had reached their maximum levels. We took advantage of the specificity of 

PF431396 in inhibiting only the tyrosine phosphorylation without affecting PKA 

activity. Sperm, after swim out were incubated with 15mM HCO3
– and 5mg/mL 

BSA for 60 minutes, in order to induce full increase of PY levels. At minute 60, 

10M PF431396 was added to capacitation media. Sperm were then harvested at 

different time points during the second hour of incubation and pPKAs and PY 

were tested by western blot. As expected PF431396 has no effect on the 

phosphorylation of PKA substrates at any of the time point examined (Fig 4.14A). 
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When added after 1 Hour capacitation, PF431396 is still able to induce a 

decrease in the levels of PY, but with a slow kinetic of inhibition (Fig 4.14B). 

Sperm indeed have to be incubated in presence of the inhibitor for at least further 

30 minutes to induce a significant decrease in the level of PY, with a depletion of 

PY signal observed only after 60 minutes. Similar to PY increase, this result 

showed that also the kinetic of inhibition of PYF431396 on PY is a slow event that 

required a certain amount of time. This observation suggests that level of PY 

during capacitation does not only depend only on the activity of tyrosine kinase 

downstream of PKA, but could also require the down regulation of phospho-

tyrosine phosphatases that maintain PY levels in a quiescent state in the early 

phase of capacitation. All these elements could cooperate together to guarantee 

the occurrence of capacitation at the appropriate time during mating.  
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CHAPTER 5 

DISCUSSION 
 

Capacitation is the ensemble of physiological changes that occurs to 

spermatozoa during their transit through the female tract and that render 

spermatozoa fully competent for fertilization (Austin, 1951). The independent 

discovery of capacitation by Dr. Austin (Austin, 1951) and Dr. Chang (Chang, 

1951) represented a revolutionary step not only for studies on fertilization but 

also for setting the ground for the advent of Artificial Reproductive 

Techniques. The birth of Louis Joy Brown (Steptoe and Edwards, 1978) 

almost three decades later would not have been possible without thez works 

of Dr. Austin and Dr. Chang on sperm capacitation.  

Capacitated sperm shows hyperactive motility to swim through and interact 

with the oviduct (Suarez and Ho, 2003) and has the ability to release their 

acrosomal content (Buffone et al., 2008; Buffone et al., 2014a). In vitro 

incubation in a normal culture media supplemented with HCO3
– and BSA 

induce sperm capacitation (Buffone et al., 2014b) and molecular events 

associated with it: increase of membrane fluidity (Ickowicz et al., 2012) and of 

intracellular pH (pHi) (Parrish et al., 1989; Zeng et al., 1996); 

hyperpolarization of the plasma membrane (Escoffier et al., 2012; Zeng et al., 

1995); and increase in intracellular Ca2+ levels (Baldi et al., 1991; Carlson et 

al., 2007; Marin-Briggiler et al., 2003).  

Sperm capacitation is associated with the activation of ADCY10 (Buck et al., 

1999), an atypical soluble Adenyl Cyclase  (sAC) stimulated by intracellular 

HCO3
–. Increased cAMP levels induce the activation of PKA. The presence of 
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sAC and PKA is required for the onset of sperm capacitation (Esposito et al., 

2004; Nolan et al., 2004). Also the increase of PY levels, another hallmark of 

capacitation, also depend on the activation of cAMP/PKA (Visconti et al., 

1995a; Visconti et al., 1995b). Although correlated these events occur at 

different times during capacitation. Following studies confirmed the 

importance of PY in other species (Baldi et al., 2002; Ficarro et al., 2003; 

Harrison, 2004; Jagan Mohanarao and Atreja, 2011; Roy and Atreja, 2008; 

Signorelli et al., 2012). Although the identity of several substrates of 

phosphorylation were revealed (Ickowicz et al., 2012; Naresh and Atreja, 

2015; Visconti et al., 2011), still there is a limited knowledge about roles and 

mechanisms regulating each of these substrates (Visconti et al., 2011). 

Different studies focus on unveiling the identity of the tyrosine kinase(s) that 

induce PY increase during capacitation. Baker proposed a role for Src 

tyrosine kinase, based on tandem mass-spectrometry data showing its 

presence in murine sperm, on the interaction of Src with the CII PKA subunit 

and on the sensitivity of PY to Src inhibitors (Baker et al., 2006). Similar 

results were shown also in human sperm (Varano et al., 2008). ON the other 

hand, later studies were in contrast with Baker’s model and an alternative role 

for the kinase was proposed (Krapf et al., 2010): Src induces full activation of 

PKA down regulating phosphatases activity during capacitation (Krapf et al., 

2010). 

Recently a different candidate tyrosine kinase family was proposed to regulate 

PY in stallion: focal adhesion kinases (Gonzalez-Fernandez et al., 2013). We 

therefore used a pharmacological approach to investigate role of FAK 

members during capacitation in human. The focal adhesion kinase (fak) 
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members’ inhibitor PF431396 induced a concentration-dependent decrease in 

the level of PY, without affecting the phosphorylation of PKA substrates and, 

only one member of the FAK family was detected in human: PYK2 (Battistone 

et al., 2014). PYK2 auto-phosphorylation/activation occurs after 2 hours 

incubation in capacitating conditions, and is sensitive to increasing 

concentration of PF431396 (Battistone et al., 2014). We also showed the 

effect of PF431396 is specific to events downstream of PKA (Battistone et al., 

2014). As part of this manuscript as well as the one in horses, our group 

suggested that fak members have a role in regulating PY during capacitation. 

However, these results were based on pharmacological loss of function 

experiments. To be more conclusive, our hypothesis was tested in mouse 

spermatozoa, due to the possibility of using knockout mice models to test the 

function of our protein of interest.  

We showed that in murine, the fak kinase PYK2 is not the responsible for PY 

increase during capacitation. Pyk2–/– animals showed no defect in the 

capacitation-associated levels of PY and a possible compensatory role played 

by the other fak member FAK, which we found to be present in murine sperm 

was also rule out due to a lack of inhibition of PF573228 (specific inhibitor of 

FAK) on PY levels. 

Therefore, we search for other tyrosine kinase candidates. One of them was 

the tyrosine kinase FER, which is present in murine sperm as a testis-specific 

isoform (FERT). First, PF431396, which block the increase of tyrosine 

phosphorylation without affecting phosphorylation of PKA substrates during 

capacitation, was shown to block FER activity in vitro. Second, sperm from 

animals lacking FER activity showed no increase in the levels of PY during in 
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vitro capacitation. This genetic loss of function approach strongly suggested 

that FER was indeed the tyrosine kinase involved in the capacitation-

associated increase of tyrosine phosphorylation. This is an important step-

forward in understanding molecular events associated with capacitation. 

Although assigning an unambiguous role to FERT only represents a starting 

point to further investigate events that downstream of PKA induce PY 

increase. A direct mechanism of activation of FERT mediated by PKA is 

unlikely. PKA only induces phosphorylation on serine and threonine and FER 

activity depends on phosphorylation on the activation loop at Tyr715 (Greer, 

2002).  FERT retain the Src homology 2 (SH2) and the tyrosine kinase 

domains (Greer, 2002); SH2 domain mediates interactions between several 

classes of proteins, promoting both interaction with activators upstream and 

substrates downstream (Songyang et al., 1995). Phosphorylation/activation of 

FER was shown in response to different signals as EFG or PDGF (Craig et 

al., 2001; Kim and Wong, 1995). Although the identity of the kinases 

promoting FER phosphorylation was not clear, Src family kinases (SFKs) 

were candidates. In murine Src appears to be a connecting player between 

PKA and membrane hyperpolarization (Stival et al., 2015). 

While FerDR/DR animals lacking the increase of PY associated with 

capacitation showed no functional defects, physiological levels of total and 

hyperactive motility were similar to controls. 

Given the high correlation between PY and capacitation, the lack of a 

functional phenotype associated with capacitation was surprising. 

An interesting study in rat showed that during spermatogenesis FERT co-

localize with cortactin (Kierszenbaum et al., 2008), a protein known to be 
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activated by tyrosine phosphorylation and to regulate actin dynamics (Head et 

al., 2003). Our results suggest that FERT cover no function during 

spermatogenesis in mouse, but future works should focus on a possible 

FERT-mediated phosphorylation of cortactin during capacitation and whether 

this has a possible outcome in controlling actin dynamics. 

Similarly to PYK2, FAK tyrosine kinase includes a recognition motif for SH2 

domain (Mitra et al., 2005b). Whilst we showed FAK has not a unique role in 

regulating PY is present in mouse sperm, a recent study in suspended 

hepatocytes showed that FER kinase promote the phosphorylation of FAK on 

different tyrosine kinase residues (Oh et al., 2009). It is therefore possible that 

FAK in sperm could function as substrate of FERT. Further investigations 

should be done to test this possibility. 

The observation that FerDR/DR showed no defects associated with AR, also 

argue with a previous study in rat, where FERT has been suggested to play a 

role during acrosome-acroplaxome complex development, ultimately 

contributing to the formation of a functional acrosome and of head shape 

(Kierszenbaum et al., 2008). Sperm collected from FerDR/DR animals showed 

no defect in sperm morphology compared to WT littermates, arguing against a 

role of FERT during acrosome formation in mouse sperm. A plausible 

explanation could be due to different mechanism of regulation of acrosome 

development between different species. 

We also examined the ability of FerDR/DR sperm to fertilize metaphase II 

arrested oocytes in vitro. Our results indicate that sperm lacking FER kinase 

activity shows a strong decrease in their fertilizing ability compared to wild 

type.  Few oocytes reach the 2-cell developmental stage when incubated with 
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FerDR/DR sperm. On the other hand FerDR/DR animals are fertile and produce 

viable and healthy offspring following natural mating (Craig et al., 2001). 

Analysis of our results in vitro is in accordance with the current paradigm of 

sperm capacitation, tyrosine phosphorylation in vitro is required for fertilizing 

ability (Naresh and Atreja, 2015; Visconti et al., 2011).  In vivo results show 

that the fertilizing ability of these mice is not affected by the absence of FER 

activity despite the clear lack of PY. These data challenge the current 

paradigm of sperm capacitation. 

This discrepancy between could be explained by separate mechanisms that 

control PY occurrence between in vitro fertilization and natural mating. To 

further elucidate the mechanisms underlying this difference, PY analysis of 

both WT and FerDR/DR sperm recovered from the oviduct after copula will 

therefore be necessary, opening to possible new scenarios in the field of 

sperm capacitation. If FerDR/DR   sperm recovered from the oviduct does not 

show any increase of PY, the current paradigm of sperm capacitation will be 

changed, somehow downsizing the necessity of PY for full capacitation after 

mating. In this case, it will be necessary to investigate what are the different 

mechanisms that regulate capacitation in vivo and in vitro.  Although unlikely, 

this is still an open possibility.  

On the other hand if the recovered sperm showed a physiologic increase in 

the level of PY, it will be then fundamental to understand what are the 

mechanisms that in vivo, in absence of FERT cause the onset of PY. One 

possibility is that different kinases are activated between in vivo and in vitro 

capacitation. Different tyrosine kinases are present in sperm (Signorelli et al., 

2012). Although the cAMP/PKA/FER pathway in vitro is the pathway of 
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election that induces PY, we cannot rule out the possibility that during in vivo 

capacitation other unknown pathways are activated. It is fundamental to 

remember that the occurrence of sperm capacitation in vivo is a time 

dependent event most likely regulated by several different factors 

encountered during the transit through the different female environments 

(vaginal, uterine and tubal). Finally, an alternative possibility is that PY gives a 

competitive advantage to certain spermatozoa during capacitation. 

Although some of our results raise some concerns about the absolute 

requirement of tyrosine phosphorylation increase during sperm capacitation in 

vivo, we decided to investigate the in vitro kinetic of phosphorylation events 

during capacitation. We confirmed that the increase of PY depends on the 

cAMP/PKA signaling pathway. However, both phosphorylation types occur on 

a different time scale. Phosphorylation of PKA substrates is in fact a rapid 

event immediately induced when sperm are incubated in capacitating 

conditions (in presence oh HCO3
– and BSA), PY increase on the other hand 

requires longer time of incubation in capacitating conditions. As part of this 

thesis, we showed that the continuous activation of PKA at the beginning of 

capacitation is required to induce the slow increase of PY. This result was 

consistent with previous publication (Morgan et al., 2008).   

These observations suggest that the time of different phosphorylation events 

associated to capacitation is tightly coordinated.  

We also showed the time of inhibition of cAMP/PKA is a key element to 

regulate in vitro fertilizing ability. Only the early inhibition of cAMP/PKA 

strongly affects the in vitro fertilization rate of this sperm.  
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The effect of different inhibitors added at later times of capacitation was also 

examined. We showed that, at these later time periods, inhibitors of PKA 

rapidly inhibit pPKAs signal but have a negligible effect on PY levels, even if 

incubated for longer periods. Furthermore when sperm are incubated with PY 

inhibitor after capacitation has occurred, we observed a slow kinetic of 

inhibition, with a full reduction only showed after 60 minutes of incubation.  

These results support our idea of tyrosine phosphorylation having a high 

correlation with occurrence of sperm capacitation. Other functional events that 

require longer times of incubation in capacitation media are the preparation 

for the acrosome reaction and the onset of hyperactive motility (Salicioni et 

al., 2007).  

To explain our data, one possibility is that the late occurrence of PY during 

capacitation is due because of a slow (30/45 minutes) down-regulation of 

protein phosphatases activity.  

In order to test this hypothesis, future works will include the use of 

phosphatases inhibitors to examine any changes in the kinetic of PY signals. 

As far of our knowledge, a limited body of work was done in investigating the 

time dependent PY phosphorylation, it will be therefore also beneficial to 

study the time course of phosphorylation of some of the substrates known 

being tyrosine phosphorylated as AKAP family kinases, CABYR or heat shock 

proteins. To fully understand the mechanism underlying late PY occurrence, it 

would also be fundamental to examine the time dependent activity of FERT 

during capacitation. 

To conclude, we showed that in mouse sperm the testis specific isoform of 

tyrosine kinase FER, induce the increase of PY associated with capacitation. 
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Despite our finding showed that the increase of tyrosine phosphorylation 

levels associated with sperm capacitation is not an absolute requirement for 

capacitation and fertilizing ability, it is fundamental to underline difference 

between in vitro and in vivo capacitation. In vivo capacitation in fact include 

the transit of spermatozoa through different environment and, although not its 

occurrence is absolutely required, we cannot rule out the possibility that 

tyrosine phosphorylation give a competitive advantage to certain sperm 

subpopulations. If this is the case, it is reasonable that these competitive 

differences will only be evident when sperm capacitation is stimulated in 

competitive conditions.  
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CHAPTER 6 

MATERIALS & METHODS 

 
 

6.1 Materials 

 
 Reagents used for our project were obtained from various sources. Sodium 

bicarbonate (NaHCO3), bovine serum albumin (BSA, fatty acid free), dibutyryl 

cAMP (Bt2cAMP), 3-isobutyl-1-methylxanthine (IBMX), adenosine 

triphosphate (ATP), magnesium chloride (MgCl2), manganese chloride 

(MnCl2), aprotinin, leupeptin, sodium orthovanadate (NaVO4), p-nitrophenyl 

phosphate (NPP), -glycero phosphate (GP), β-mercaptoethanol, Poly 

(Glu:Tyr)(1:4), Pisum sativum agglutinin coupled to fluorescein isothiocyanate 

(PSA-FITC) (cat# L0770), gonadotropin from pregnant mare serum (PMSG) 

(cat# G4877), human chorionic gonadotropin (hCG) (cat# C1063), and 

PF431396 were purchased from Sigma-Aldrich (St Louis, MO). SU6656, H89 

and Triton X-100 were obtained from Cayman Chemical (Ann Harbor, MI), 

okadaic acid (OA) and SKI606 were bought from LC Laboratories (Woburn, 

MA). PF573228 was obtained from Selleck Biochem (Houston, TX). HEPES 

was purchased from Roche (Basel, Switzerland) and paraformaldehyde (PFA) 

from Electron Microscopy Science (Hatfield, PA). Phosphorous 32 

Radiolabeled adenosine triphosphate (-32P-ATP) was obtained from Perkin 

Elmer (Waltham, MA). Mouse monoclonal anti-total PYK2 (clone 5E2) (Tang 

et al., 2002), rabbit polyclonal anti-PYK2PY402 (cat#3291), rabbit polyclonal 

anti-FAK (cat# 3285) (Battistone et al., 2014), rabbit monoclonal anti-

phospho-PKA substrates (clone 100G7E)  (anti-pPKAs) (Navarrete et al., 
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2015) and mouse monoclonal anti-FER (cat#4268) (Greer, 2002) were 

purchased from Cell Signaling (Danvers, MA). Mouse monoclonal anti-

phospho tyrosine (anti-PY) antibody (clone 4G10) (Navarrete et al., 2015) was 

purchased from EMD Millipore (Billerica, MA). Peroxidase/conjugated anti-

mouse IgG were obtained from Jackson Immunoresearch (West Grove, PA) 

and peroxidase conjugated anti-rabbit IgG from GE Healthcare (Pittsburg, 

PA). AlexaFluor647-conjugated anti-mouse secondary antibody was 

purchased from Invitrogen (ThermoFisher Scientific) (Grand Island, NY). His-

Tag recombinant PYK2, FAK and FER were purchased from Invitrogen 

(Grand Island, NY). 

 

6.2 Methods 
 

6.2.1 Mouse Sample Preparation 

 
Animals were culled following the guidelines of the Animal Care and Use 

Committee (IACUC) at University of Massachusetts, Amherst. Caudal 

epididymal murine spermatozoa were collected from CD1 retired male 

breeders (Charles River Laboratories, Wilmington, MA), from young adult C57 

(7–8 week-old mice), Pyk2–/– (Shen et al., 2011), FerDR/DR (Craig et al., 2001) 

mice and their respective wild type littermates. After collection, each cauda 

epididymis was placed in 500 l of a modified Krebs-Ringer medium (TYH’s 

HEPES-buffered medium) (Kito and Ohta, 2008): NaCl (100 mM), KCl (4.7 

mM), KH2PO4 (1.2 mM), MgSO4 (1.2 mM), Glucose (5.5 mM), Pyruvic acid 

(0.8 mM), CaCl2 (1.7mM), HEPES (20 mM (concentrations given in 
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parenthesis). Collection of sperm in this medium does not promote the onset 

of capacitation. Following 10 min incubation at 37°C (swim-out), tissue debris 

from epididymis were removed, and cells suspension were adjusted to a final 

concentration of 1–2107 cells/ml in non-capacitating medium before dilution 

of four times in the corresponding medium. Sperm were then incubated at 37 

°C for the length of times indicated in each r experiment, either in the absence 

(NON) or in the presence of 15 mM NaHCO3 and 5 mg/ml BSA (CAP). The 

effect of various inhibitors was tested on sperm incubated under the 

capacitating conditions described above together with increasing 

concentrations of the various inhibitors used, as indicated for each 

experiment. For time dependent analysis of phosphorylation events 

associated with capacitation (pPKAs and PY), sperm were incubated in 

capacitating condition in presence or absence of various inhibitor for different 

amount of time as described for each experiment in the results. For in vitro 

fertilization (IVF) assays, sperm were first incubated in modified TYH medium 

(without HEPES) containing 25 mM NaHCO3 and 4 mg/ml BSA. The medium 

was previously equilibrated in a humidified atmosphere of 5% CO2 at 37°C 

(Wertheimer et al., 2008).  

 

6.2.2 Human Samples Preparation 

 
15 healthy donors (20–35 yearls old) with no fertility issues were included in 

the study. Ejaculated semen was collected by masturbation and all samples 

were treated in accordance to World Health Organization reccommendations 

(Organization, 2010). After liquefaction motile spermatozoa were collected by 
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standard swim-up technique in absence of HCO3
– and diluted to a 

concentration of 1×107cells/ml.  Sperm were then incubated in modified 

Biggers, Whitten and Whittingham medium (BWW) in absence (NON) or 

presence (CAP) of bicarbonate at 37C, 5% CO2. BWW use in the study 

include: NaHCO3 (25mM), NaCl (94.5mM), KCl (4.8mM), CaCl2 (1.7mM), 

KH2PO4 (1.17mM), MgCl2 (1.22mM), Na-Pyruvate (0.3mM), Na-lactate 

(25.7mM), glucose (5.5mM) and HEPES (10mM) supplemented with BSA 

(2.6% p/v). Time of incubation vary between experiments, as described in the 

figure legend.  

 

6.2.3 SDS-PAGE and Immunoblotting 

 
Human and murine sperm were harvested by centrifugation, washed in 1 ml 

of phosphate buffer solution (PBS), re-suspended in Laemmli sample buffer 

(Laemmli, 1970), boiled for 4 min and centrifuged one more time. 

Supernatants were then supplemented with 5% β-mercaptoethanol and boiled 

again for 3 min. Protein extracts equivalent to 1–2 106 sperm were loaded in 

each lane, subjected to SDS–PAGE and electro-transferred to PVDF 

membranes (Bio-Rad, Waltham, MA) at 250 mA for 90 min on ice. 

Immunoblotting with either anti-pPKAS antibodies (clone 100G7E) or with 

anti-PY (clone 4G10) was carried out as previously described (Krapf et al., 

2010). For immunodetection of murine PYK2, PYK2-PY402, FAK and FER, 

PVDF membranes were blocked with 5% fat-free milk in TBS containing 0.1% 

Tween 20 (T-TBS) and the respective antibodies used at 1:1,000 final 

concentration. Secondary antibodies were diluted in T-TBS (1:10,000) and an 
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enhanced chemioluminescence ECL plus kit (GE Healthcare) was used for 

signal detection. Hexokinase, a protein known being constitutively 

phosphorylated on tyrosine residues in mouse sperm, was used as a loading 

control (Porambo et al., 2012; Visconti et al., 1995a). When necessary, PVDF 

membranes were stripped at 65 °C for 20 min in 2% SDS, 0.74% β-

mercaptoethanol, 62.5 mM Tris, pH 6.5, and then washed six times for 5 min 

each in T-TBS prior to re-probing with a different antibody. For the analysis of 

western blot results, molecular masses are expressed in kDa. Image analysis 

was conducted using ImageJ (http://imagej.nih.gov/ij). The vertical bar on the 

left side of the each blot represents the regions of interest (ROI) used for 

quantification. In all cases, results were normalized arbitrarily considering the 

CAP lane as the unit value. Images shown are representative of experiments 

repeated three times (n=3) using different animals. 

 

6.2.4 Analysis of Kinases Solubility 

 
The solubility of the various tyrosine kinases (PY, PYK2, FAK and FER) under 

investigation `was assessed using the non-ionic detergent Triton X-100. After 

10 minutes swim-out in TYH-HEPES media, sperm samples were pelleted by 

centrifugation at 1,500 RPM for 5 minutes and re-suspended in 1% Triton X-

100/PBS buffer containing protease and phosphatase inhibitors for 30 min on 

ice. Both supernatant (Triton X-100-soluble fraction) and the remaining pellets 

(Triton X-100-insoluble fraction) were produced by centrifugation at 14,000 

RPM at 4C for 2 min and then examined by western blot. Figures represents 

experiments repeated at least three times (n=3) using different animals. 
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6.2.5 Recombinant Kinase Assay 

 
The activity of GST-tagged recombinant kinases PYK2, FAK and FER 

(60ng/reaction) were assayed in a buffer containing: 25 mM HEPES (pH 7.2), 

10 mM MgCl2, 10 mM MnCl2, 10 M aprotinin, 10 M leupeptin, 100 M 

NaVO4, 5 mM Nitro Phenyl Phosphate (NPP), and 40 mM -Glycero 

phosphate (GP), with 40 M ATP and 100 M Poly(Glu:Tyr)(1:4) used as 

substrate for 20 minutes in presence of 1 Ci of -32P-ATP. Reactions were 

stopped adding 60% trichloric acid (final concentration 30%), the samples 

were then chilled on ice for 20 minutes and centrifuged at 10,000 X g for 3 

minutes. Thirty microliters (30 L) of from each reaction tube were transferred 

to phosphocellulose paper (Whatman P81, Millipore, Bedford, MA) (2 cm x 2 

cm). Papers were then immediately incubated with 5 mM phosphoric acid and 

washed seven times using the same solution. After washes, papers were 

rinsed for 5 min with 100% ethanol and air-dried (15/20 min). Incorporated 

counts (cpm) were evaluated using a Beckman counter LS6500 (Beckman, 

Brea, CA) in vials containing the spotted papers together with 2.5 mL of 

scintillation fluid. Values represent average of three independent experimental 

replicates (n=3). 

 

6.2.6 Analysis of in vitro activity of PKA  

 
The activity of PKA was measure using previously described methodology 

(Hao et al., 2004; Visconti et al., 1997), After PKA extraction from mouse 
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spermatozoa (CD1, CII-WT and CII-M120A), its activity was measured 

quantifying the amount of 32P transferred from -32P-ATPs to the peptide 

substrate of PKA kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly). The activity of 

PKA was then assayed in absence and in presence of different concentration 

of various inhibitors, as described in the results section.  

 

6.2.7 Human Sperm Motility Assay  

 
Capacitated spermatozoa were loaded on pre-warmed 20m slides (Leja 

Slide, Spectrum Technologies, Healdsburg, CA, USA), placed on pre-warmed 

microscope stage and examined using CEROS computer-assisted semen 

analysis (CASA) (Hamilton Thorne Research, Beverly, MA) (Mortimer et al., 

1998). A minimum of 20 field and 200 cells for each experimental group were 

analyzed. Parameters taken into account include the following: average path 

velocity (VAP, mm/s), curvilinear velocity (VCL, mm/s), straight linear velocity 

(VSL, mm/s), linearity (LIN, %), amplitude of lateral head displacement (ALH, 

mm) and straightness (STR, %) as previously described (Battistone et al., 

2013). Analysis of progressive and hyperactive motility was based on already 

established criteria (Mortimer and Mortimer, 1990). Four independent 

experiments per treatment were performed (n=4). 

 

6.2.8 Murine Sperm Motility Assay 

 
Sperm suspensions (30 l) were loaded into pre-warmed chamber 100 m 
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slides (Leja slides, Spectrum Technologies, Healdsburg, CA) and placed on a 

pre-warmed (37°C) microscope stage. Sperm movements were examined 

using the CEROS computer-assisted semen analysis (CASA) system 

(Hamilton Thorne Research, Beverly, MA). Default settings used for the 

analysis of murine sperm included the following: frames acquired: 90; frame 

rate: 60 Hz; minimum cell size: 4 pixels; static head size: 0.13–2.43; static 

head intensity: 0.10–1.52; and static head elongation: 5–100. Sperm with 

hyperactive motility, defined as motility with high amplitude thrashing patterns 

and short distance of travel, were sorted using the CASAnova software with 

already established criteria (Goodson et al., 2011). At least 20 microscopy 

fields corresponding to a minimum of 200 sperm were analyzed in each 

experiment.  

 

6.2.9 Mouse Eggs Collection and IVF Assays 

6–8-week old CD1 and C57BL/6 female mice (Charles River Laboratories, 

Wilmington, MA) were super ovulated using PMSG and hCG. Metaphase II-

arrested eggs were then collected 12 Hours after hGC intra-peritoneal 

injections as previously described (Wertheimer et al., 2008). Cumulus-oocyte 

complexes (COCs) were transferred to a dish with 500 l of TYH media 

(without HEPES) previously equilibrated in an incubator with 5% CO2 at 37°C. 

Murine sperm (2.5 105 cells for each experiment) were incubated in 

capacitating condition for 1h and 20 minutes and then co-incubated with 

metaphase II arrested oocytes (25–40 eggs per experiment) for 4 h. The eggs 

were washed to remove sperm in excess and moved to fresh TYH media, 
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fertilization rate was then evaluated 24 h post-insemination. Eggs were 

considered fertilized, when cells were able to reach the two-cell stage of 

development. Values represent average of three independent experimental 

replicates (n=3), using different animals 

 

6.2.10 Genotype of Pyk2–/– and FerDR/DR 

 
Genotype of Pyk2–/– was performed based on Shen et al (Shen et al., 2011) 

using the following primers Pyk2 wild type forward, 5’- 

GGAGGTCTATGAAGGTGTCTACACGAAC-3’; Pyk2 mutant forward, 5’- 

GCCAGCTCATTCCTCCCACTCAT-3’; Pyk2 reverse, 5’- 

CCTGCTGGCAGCCTAACCACAT-3’. Genotype of FerDR/DR was evaluated as 

described by Craig et al (Craig et al., 2001). 

 

6.2.11 Genotype of CII animals 

 
The following primers were used for the genotype analysis of CII animals: 

lox1 Forward: 5’-TCTTTGCTCAGGGCGGACTG-3’; CaREC10-2 Reverse: 5’-

ACCAGGAGGATTGTGAGCCTAAGAC-3’. The analysis of the genotype for 

each animal was performed as previously described (Morgan et al., 2008). 
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6.2.12 Indirect Immunofluorescence 

 
Sperm were collected by swim-up in TYH-HEPES medium, were washed 

once and re-suspended in PBS (1–2 106 sperm/ml), and seeded on 

coverslips. Sperm was air-died and fixed with 4% PFA freshly made in PBS 

for 10 min at room temperature, washed with PBS, and permeabilized for 5 

min with 0.5% Triton X-100. After permeabilization, sperm were blocked using 

10% BSA/T-PBS for 1 h at room temperature and then incubated with the 

anti-PY antibody (1:1000) diluted in 1% BSA/T-PBS overnight at 4 °C. After 

primary incubation, sperm were washed thoroughly with T-PBS to eliminate 

antibody in excess and incubated with the corresponding Alexa 555-

conjugated secondary antibody (1:200) diluted in T-PBS containing 1% BSA 

for 1 h at room temperature. Incubation with the secondary antibody was 

followed by four washes in T-PBS. Slides were then mounted using 

Vectashield H1000 (Molecular Probes, Eugene, OR). Epifluorescence 

microscopy was performed using a TE300 Eclipse microscope ( 60) (Nikon). 

Differential Interference Contrast (DIC) images were taken in parallel and 

served as control for sperm morphology. Negative controls using either 

normal serum or secondary antibody alone were used to check for antibody 

specificity. 
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6.2.13 Sample Preparation and Immunostaining for Super-resolution 

Microscopy  

 
After capacitation, sperm were centrifuged at 800 X g for 5 min., the pellet 

was fixed in 4% paraformaldehyde for 10 min at room temperature and then 

centrifuged at 800xg for 5 min. The cell pellet was resuspended in PBS and 

50 µl of this suspension were placed onto polylysinated coverslips and 

allowed to set for 10 min. Non-bound cells were removed by washing with 

PBS. Sperm cells were then permeabilized with 0.5% Triton X-100 in PBS for 

5 min and blocked with 3% BSA in PBS for 1 h at room temperature. Primary 

antibodies were diluted in 1% BSA, and incubated with cells overnight at 4°C 

in a humidified chamber. Anti-PY antibody (clone 4G10; final concentration 

1:1000), and anti-FER (clone 5D2) at a dilution 1:50 were used. After primary 

antibody incubation, cells were washed with T-PBS (0.5% Tween-20 in PBS) 

three times for 5 min each, and then stained with Alexa Fluor 647-conjugated 

anti-mouse secondary antibody diluted in PBS containing 1% BSA (1:1000 for 

pY and 1:500 for FER) at room temperature for 1 h. Cells were then washed 

with T-PBS three times for 5 min each and incubated with 50 nm gold 

nanoparticles (Nanopartz, Loveland CO) that were used as fiducial markers 

for drift correction. After washing, cells were immediately mounted. The 

STORM imaging buffer was 50 mM Tris-HCl (pH 8.0), 10 mM NaCl, 10% 

glucose, 0.56 mg/ml glucose oxidase, 34 g/ml catalase, 10% glucose, and 

1% β-mercaptoethanol.  
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6.2.14 STORM Imaging 

 
Image stacks were acquired using Andor IQ 2.3 software in a custom-built 

microscope equipped with an Olympus PlanApo 100×/1.45 objective (Weigel 

et al., 2011). Alexa Fluor 647 was excited with a 638 nm laser (DL638-050, 

CrystaLaser, Reno, NV) under continuous illumination. Initially the photo-

switching rate was sufficient to provide a substantial fluorophore density. 

However, as fluorophores photo-bleached, a 405 nm laser was introduced to 

accelerate the photo-switching rate. The intensity of the 405 nm laser was 

adjusted to control the density of active fluorophores. A cylindrical lens with a 

focal lens of 1 m was placed in the detection path in order to achieve 3D 

resolution as previously described (Huang et al., 2008). The images were 

acquired in a back-illuminated electron-multiplied charge coupled device 

(EMCCD) camera (Andor iXon DU-888) operated at −85°C at a rate of 23 

frames/s. Fifty thousand (50,000) frames were collected to generate a super-

resolution image.  

 

6.2.15 Super-resolution Image reconstruction and analysis 

 
Single-molecule localization, drift correction using gold fiducial markers and 

reconstruction were performed with ThunderSTORM, an ImageJ plugin 

(Ovesny et al., 2014). In order to find the molecular radial distributions, we 

selected regions of interest of the flagellum that were found to lie in a straight 

line, and the center of the flagellar cross section was calculated in MATLAB 

with a custom written algorithm. The coordinates of the localized molecules 
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were then transformed into cylindrical coordinates (Chung et al., 2014), from 

which the distribution of radial localization was computed. 

 

6.2.16 Statistics 

 
Statistical analyses were performed using the software Infostat 2011 (Di 

Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., TabladaM., Robledo 

C.W. InfoStat version 2011. Grupo InfoStat, FCA, Universidad Nacional de 

Cordoba, Argentina). All data were verified to accomplish the parametric 

assumptions: homogeneity of variances and normality. For Western blotting 

experiments, experiments were repeated at least 3 times and comparison 

between groups was performed by analysis of variance (ANOVA) in blocks. 

Data from each Western analysis was considered as a block and all 

treatments were applied to it. When the ANOVA tests were significantly 

different between groups (p<0.05), multiple comparisons were performed by 

the Tukey’s test. For the IVF experiments, data was analyzed by the Chi-

square test. P values (p< 0.001, p<0.01 or p<0.05) were considered to be 

significant as indicated in the Figure legends. 
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