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ABSTRACT

SERVICE IMPROVEMENT AND COST REDUCTION
FOR AIRLINES: OPTIMAL POLICIES FOR MANAGING
ARRIVAL AND DEPARTURE OPERATIONS UNDER

UNCERTAINTY

SEPTEMBER 2016

HENG CHEN

B.Sc., HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Senay Solak

Annual U.S. air travel demand has been growing steadily by 4-5% over the last

decade, and it is estimated that the demand will nearly double in the next twenty

years. It has also been estimated by the International Civil Aviation Organization

that global demand for commercial aircraft will increase at an average annual rate of

4.1% by 2034 (IATA, 2014). However, airport expansions and aviation infrastructure

upgrades have not kept pace with the increase in air traffic demand, as only 3% of

all the new airport projects around the world are planned in the U.S. (CAPA, 2015).

Thus, the operation rates at existing airports are likely to increase significantly, imply-

ing a greater need to increase the utilization of currently available runway capacity.

With steadily increasing demand in air traffic and limited airport capacity, delay

in air traffic is ubiquitous. Approximately 25% of flights experience delays of at
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least 15 minutes each year, resulting in significant passenger service issues and costs

to airlines and society in general. Delays constitute the top service complaint for

airlines, which has implications for the society as a whole - both economically and

environmentally. Flight delays also increase airline costs directly, due to associated

additional fuel, crew and maintenance costs. Recent studies show that the estimated

cost of air transportation delay to the American economy ranges from $32.9 billion

to $41 billion a year, of which, $8 billion are direct costs to airlines (Ball et al.,

2010; Ferguson et al., 2013). Noting that more than 60% of delay is due to airport

operations (Balakrishna et al., 2010), this thesis aims at helping reduce delay through

better management of arrival and departure operations at airports, which can create

relevant and significant value for the airlines and for the society.

Arrival and departure operations inherently involve significant uncertainty. When

an aircraft is approaching the runway, many factors affect its trajectory, such as

weather, wind conditions, pilot behavior, aircraft weight, as well as the differences in

types of aircraft and flight management systems. When an aircraft arrives at the gate,

operating conditions, such as unplanned security checks, varied durations of deplan-

ing and boarding, as well as the maintenance and fueling involved, could contribute to

variations of actual departure time for the next flight. All of these stochastic factors

involve uncertainty and they need to be taken into account while making operational

decisions. On the other hand, stochastic treatment of such operational problems has

not been common in the literature due to difficulties associated with the characteri-

zation of uncertainty and the computational tractability. I argue in this thesis that,

with recent advances in computing power and data analysis tools, such stochastic

treatments are more amenable for practical use.

To this end, I study four novel operational problems related to flight arrivals and

departures at airports under the uncertainty of operating conditions, and demonstrate

the potential value that can be generated through stochastic models within the con-
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text of airline and airport operations. The problems I study involve both strategic

and tactical decisions for airline service improvement and cost reduction. The first

two problems consider managing arrival operations at airports, while the last two

problems focus on departure operations.

In the first and second problems, I focus on arrival operations in the context of

optimized profile descent (OPD), which is a novel arrival procedure for the Next

Generation Air Transportation System.

In the first problem, I identify policies for managing arrival operations at the tacti-

cal level by developing a stochastic dynamic programming framework to manage the

sequencing and separation of flights. I find that simple calculation based measures

can be used as optimal decision rules during such operations, and that the expected

annual savings can be around $29 million if such implementations are adapted by

major airports in the U.S. Of these savings, $24 million are direct savings for air-

lines due to reduced fuel usage, corresponding to a potential savings of 10-15% in

fuel consumption over current practice. I also find that optimal spacing of OPD

flights is much more important than optimal sequencing of these flights. Further-

more, there is not much difference between the environmental costs of fuel-optimal

and sustainably-optimal spacing policies. Hence, an airline-centric approach in im-

proving OPD operations is likely to be not in conflict with objectives that might be

prioritized by other stakeholders.

In the second problem, I study the optimal design of arrival traffic management

systems at airports at the strategic level. I claim that implementation of OPD oper-

ations requires effective metering configurations at airports due to the increased role

of uncertainty in aircraft trajectories during descent. I develop stochastic models to

further increase the value of OPD operations over conventional arrival procedures by

optimizing metering point configurations, which include identification of the optimal

number and locations of metering points to use. I provide numerical results based
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on actual traffic information at major U.S. airports, which indicate that the total

potential savings in the top ten major airports could be up to $22 million per year

if the proposed policies are implemented. I also find that the optimal metering con-

figurations are mostly robust under different operating conditions. In addition, my

results suggest that early spacing adjustments near the top of descent (TOD) are of

more value for larger volumes of air traffic.

In the third and fourth problems, I study optimal departure operations at airports

under the context of departure metering, which is an airport surface management

procedure that limits the number of aircraft on the runway by holding aircraft at a

predesigned metering area.

More specifically, in the third problem, I develop a stochastic dynamic program-

ming framework for tactical management of pushback operations at gates and for

determining the optimal number of aircraft to be directed to the runway from the

metering areas. I introduce four easy-to-implement practical departure metering poli-

cies and implement a comparative analysis between these practical policies and the

optimal numerical solutions. I also implement sensitivity analysis of the departure

metering policies over state variable values.

In the fourth problem, I study the optimal metering area capacity at the strategic

level. Building on the dynamic programming framework mentioned in the third prob-

lem, I identify the optimal metering area capacity using marginal analysis to minimize

expected overall costs. Numerical simulations are implemented and potential savings

are identified for sample U.S. airports based on varying capacity levels. The optimal

metering area capacity is then determined based on the numerical implementations

to further improve overall efficiency and sustainability of departure operations. I also

analyze the benefits to airlines in terms of annual savings due to such policies, and

find that the annual savings could be $31 million if the optimal departure metering

policies are implemented at the top ten major airports in the U.S.
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Overall, as one of the few studies on stochasticity in arrival and departure oper-

ations, I derive both tactical and strategic policies to improve efficiency and sustain-

ability for airlines and the society, which can enhance service quality and strengthen

market position for the airlines involved.
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CHAPTER 1

INTRODUCTION

Annual U.S. air travel demand has been growing steadily by 4-5% over the last

decade, and it is estimated that the demand will nearly double in the next twenty

years. It has also been estimated by the International Civil Aviation Organization

that global demand for commercial aircraft will increase at an average annual rate

of 4.1% by 2034 (IATA, 2014). However, airport expansions and aviation infrastruc-

ture upgrades have not kept pace with the increase in air traffic demand, as only

3% of all the new airport projects around the world are planned in the U.S. (CAPA,

2015). Furthermore, governments and the public are paying more attention to the

environmental impact of airline operations due to noise and emissions issues. The

noise and emissions pollution caused by aircraft landings and take-offs at airports

is provoking strong public opposition to further airport expansions, which is likely

to limit future available capacity. Hence, there is a significant need to improve the

efficiency of airport operations for airlines due to the conflict created by increased

runway operations and the limited capacity. This is because delay in air traffic has

become ubiquitous with steadily increasing demand in air traffic and limited airport

capacity. Approximately 25% of flights experience delays of at least 15 minutes each

year, resulting in significant passenger service issues and costs to airlines and society

in general. Delays constitute the top service complaint for airlines, which has impli-

cations for the society as a whole - both economically and environmentally. Flight

delays also increase airline costs directly, due to associated additional fuel, crew and

maintenance costs. Recent studies show that the estimated cost of air transportation
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delay to the American economy ranges from $32.9 billion to $41 billion a year, of

which, $8 billion are direct costs to airlines (Ball et al., 2010; Ferguson et al., 2013).

Noting that more than 60% of delay is due to airport operations (Balakrishna et al.,

2010), this thesis aims at helping reduce delay through better management of arrival

and departure operations at airports, which can create significant service and cost

related value for the airlines and for the society.

Arrival and departure operations for airlines inherently involve significant uncer-

tainty. When an aircraft is approaching the runway, many factors affect its trajectory,

such as weather, wind conditions, pilot behavior, aircraft weight, as well as the differ-

ences in types of aircraft and flight management systems. When an aircraft arrives at

the gate, operating conditions, such as unplanned security checks, varied durations

of deplaning and boarding, as well as the maintenance and fueling involved, could

contribute to variations of actual departure time for the next flight. All of these

factors involve uncertainty and they need to be taken into account while making

operational decisions. On the other hand, stochastic treatment of such operational

problems has not been common in the literature due to difficulties associated with

the characterization of uncertainty and computational tractability. I argue in this

thesis that, with recent advances in computing power and data analysis tools, such

stochastic treatments are more amenable for practical use.

To this end, we study four novel operational problems related to flight arrivals and

departures at airports under uncertainty, and demonstrate the potential value that

can be generated through stochastic models within the context of airline and airport

operations. The problems we study involve both strategic and tactical decisions for

airline service improvement and cost reduction. The first two problems consider man-

aging arrival operations at airports, while the last two problems focus on departure

operations.
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We also note that, while several stakeholders are involved in the airline industry,

such as government agents, passengers and airlines, we investigate the problems pri-

marily from the perspective of the airlines, aiming at reducing costs and improving

services for the airlines.

In the remainder of this chapter, we first provide a brief introduction to the key

methodologies we utilize as part of the mathematical modeling of the operational

problems we address in this thesis. We then provide specifics on the practical context

of our study through a detailed discussion on the arrival and departure processes at

airports.

1.1 Methodologies

The problems that we study in this thesis involve uncertainty. Hence, the quantita-

tive approaches that we utilize to address these problems involve methods for decision

making under uncertainty. While there are a number of methods for stochastic deci-

sion making, two most common ones in this area are stochastic dynamic programming

and stochastic mathematical programming. We provide some brief introductions on

these methods, and also discuss some references as follows:

1.1.1 Stochastic Mathematical Programming

Stochastic mathematical programming (SP) is a framework for modeling and solv-

ing optimization problems that involve uncertainty. Dantzig introduced the first SP

recourse model in 1955 where the solutions can be determined and adjusted based on

the outcome of some random events involved (Dantzig, 1955). After that, stochastic

programming has grown to become an important tool for tackling practical optimiza-

tion problems, given that most real world problems involve some type of uncertainty.

Similar to the deterministic mathematical programming models, a stochastic pro-

gramming model consists of an objective function and a set of constraints in the
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form of equalities or inequalities. The main difference is that some parameters of

the stochastic programming problem are characterized as random variables, where

probability distributions of these variables are assumed to be known. The objective

of a stochastic programming model is to obtain some feasible policy that maximizes

or minimizes the expected value of the objective function over all the possible realiza-

tions of the uncertain parameters. The most popular and widely studied stochastic

programming models are two-stage recourse models. In a two-stage SP problem, the

decision maker takes actions at the beginning of the first stage without knowing the

possible realizations of the random parameters. At the beginning of the second stage,

after observing the realized values of these parameters, a decision can be made to

compensate the effects caused by the first stage actions. An optimal policy for a two-

stage model includes an optimal first stage decision and a collection of second stage

recourse decisions for each possible realization of the stochastic parameters. Multi-

stage stochastic programming models are a generalization of the two-stage model,

where decisions are made sequentially at the beginning of each stage after observa-

tions of the realized values of random parameters in the previous stage. There are

many references that discuss the theoretical and practical aspects of stochastic math-

ematical programming. Hence, for detailed discussions on these issues, we refer the

reader to these references, such as Wets (1983), Kali and Wallace (1994), Wallace and

Ziemba (2005), Birge and Louveaux (2011) and Shapiro et al. (2014).

1.1.2 Stochastic Dynamic Programming

Stochastic dynamic programming, which is also referred to as Markov Decision

Process (MDP), is also a mathematical framework for sequential decision making

in situations where the outcomes are uncertain but can be adjusted by the decision

maker. The history of MDP dates back to the 17th century, but the books by Bellman

(1957) and Howard (1960) made the concept of MDP popular.
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A stochastic dynamic programming model consists of decision epochs, states, ac-

tions, rewards, and transition probabilities. At each decision epoch, the decision

maker observes the state of the system and takes an action. An immediate reward

is granted, and the system moves to random state value in the next decision epoch,

where the probability of moving to a specific state is defined by the transition proba-

bilities. A policy for the problem is a sequence of actions to be used for each state at

each decision epoch. The objective of an MDP problem is to identify the policy that

maximizes the expected long-run reward.

Different from stochastic mathematical programming, stochastic dynamic pro-

gramming models generally involve many decision epochs and mostly less number

of constraints in the problem. Hence, stochastic dynamic programming is preferred

when the problems involve multiple decision epochs and the number of states, actions

and constraints is small, while stochastic mathematical programming is preferred

when fewer decision epochs are involved with more complicated problems considered

in each period. In addition, stochastic dynamic programming can be used to obtain

policy-type analytical solutions. Many references in the literature provide a compre-

hensive introduction to the theories and practical applications of stochastic dynamic

programming which readers can refer to, including Bertsekas (1995), Sennott (2009),

Puterman (2014) and Ross (2014).

1.2 Arrival and Departure Operations at Airports

In this section, we introduce the practical context of our research by describing

the processes involved in the arrival and departure operations by airlines at airports.

1.2.1 Arrival Operations

To ensure the safe and efficient arrival of each aircraft, airlines are regulated to

follow a published procedure when approaching a destination airport. As part of this
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procedure, a set of way points is defined from the top of descent to the runway to serve

as guides during the transitions along the descent trajectory. At these way points,

specific requirements might exist for the pilot to follow, such as altitude, speed, and

time window requirements. In addition, aircraft pairs are required to meet the ver-

tical and horizontal separation standards issued by Federal Aviation Administration

(FAA) during the descent process to ensure the safety. To achieve these requirements,

different procedures are utilized, such as speed control and vectoring where aircraft

fly off the pre-designed trajectory. Air traffic controllers are involved closely during

this process, where they issue altitude clearances, speed advisories and separation

requirements to maintain safety and efficiency in the arrival process. At the final

stage of the arrival procedure, the aircraft lands on the runway, and is directed to the

scheduled gate.

In this thesis we focus our research on arrival operations in the context of the

optimized profile descent (OPD) procedure, which is also referred to as the continuous

descent arrival or continuous descent approach (CDA). OPD is a distinct arrival

procedure proposed for aircraft landings at airports, which involves a synchronized

idle descent by flights that are landing on a runway. Given the fact that OPD is well

integrated into the Next Generation Air Transportation System (NextGen) proposed

by FAA and is widely implemented by airports and airlines, we claim that managing

arrival operations under OPD is representative for the general arrival procedures.

OPD has been proposed for air traffic flow management in response to the need

for improved efficiency and sustainability in aviation. Different from the conventional

stair-step procedure, OPD flights descend continuously from the top of descent (TOD)

and attempt to reduce level stay, as shown in Figure 1.1(a). The main advantage of

OPD, compared to an aircraft that uses the conventional approach, is that an OPD

flight will stay at a higher altitude for longer time which in turn will reduce noise,

emissions and fuel burn. Flight tests at several airports have shown that OPD can save
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(a) Comparison of OPD with the conventional
stair-step approach to aircraft landings.

(b) Aircraft merge and descend following an OPD
trajectory with spacing adjustment commands is-
sued at metering points.

Figure 1.1. Graphical description of the OPD procedure.

between 25-50 gallons of fuel during descent, while reducing noise and emission levels

by around 30% (Clarke et al., 2013, 2004). In the U.S., OPD capability has been added

to 28 airports in the last five years, and several additional capability improvements are

underway as part of the Next Generation Air Transportation System (FAA, 2012d).

In Europe, the OPD implementation plan aims to have the procedure utilized in more

than 100 airports, with implementations completed in at least 50 airports by 2014

(Eurocontrol, 2009).

The airline industry has been keen on implementing OPD for their arriving flights

due to savings in fuel and other costs. For example, Delta Airlines and U.S. Air-

ways have been using OPD at several major airports, e.g. in Atlanta and Charlotte

(Croft, 2012), while American Airlines, U.S. Airways, and JetBlue Airways have been

collaborating on developing OPD procedures in the Florida airspace (FAA, 2012b).

Similarly, United Airlines, U.S. Airways, and Southwest Airlines have been testing

OPD procedures for the three major airports near Washington, D.C. with the aim

of bringing down the fuel costs and environmental impacts of their flights (Croft,

2011). In addition, global aviation companies, such as Boeing, Airbus, and General
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Electric are in the process of developing technologies and air traffic management tools

to facilitate the implementation of OPD by airlines (Airbus, 2012; Bloomberg, 2012;

BusinessWire, 2012).

However, the management of OPD flights is more difficult for controllers due to the

reduction of stay in level segments, resulting in increased uncertainty in the descent

trajectories of flights. As introduced above, such management is performed through

a set of or metering points as shown in Figure 1.1(b), where the spacing between

flights is adjusted as necessary to ensure safety and efficiency during the approach to

the runway. Safety is ensured by maintaining the minimal separation requirements

between flights, while efficiency relates to reduced fuel consumption and increased

utilization of the runway.

Overall, a key concern in OPD operations is how to sequence and space the landing

aircraft such that efficiency is improved while throughput is being maintained, where

efficiency is defined as a function of fuel costs, emissions, noise and runway utilization.

This is the tactical problem on arrival operations, which is studied in Chapter 3.

On the other hand, the configuration of the metering points would greatly affect

the variance in flight trajectories. As the distance between two consecutive metering

points increases, the deviation from the target trajectory by a given aircraft during

that flight segment would also increase. This would imply a larger spacing adjustment

in the next metering point, resulting in larger costs. Thus, the number and locations

of the metering points have a significant role in defining the realized maneuvering

costs during OPD operations.

For a more practical description, consider an airport with one or more arrival

runways utilizing OPD procedures. At each airport, there exist several predefined

waypoints that can be used for guidance and direction purposes along the trajectory

during an OPD implementation, as illustrated by the operational chart for Hartsfield-

Jackson Atlanta International Airport (ATL) shown in Figure 1.2. Dark circles,
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Figure 1.2. Instrument approach procedure chart illustrating the waypoints for
Hartsfield-Jackson Atlanta International Airport (Clarke et al., 2007). The dark
circles represent navigation aids, which correspond to some physical devices on the
ground that transmit radio signals. The triangles and stars show the waypoints
which are fictional geographical points on the surface of the earth. Certain regulatory
altitude and speed requirements are implemented on the star waypoints. Both the
navigation aids and waypoints can be used for monitoring and navigating purposes.
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triangles and stars along the trajectories in the figure represent waypoints. Some

of these locations can be used as metering points where the aircraft is controlled so

that the spacing between consecutive aircraft is ensured at desired levels at a given

metering point to meet the safety requirements and to improve the utilization of the

airspace and the runway.

Current location information for certain metering points at ATL and the Los An-

geles International Airport (LAX) are also shown in Appendix A.5, where a selected

number of most common used waypoints are displayed with their distances to the run-

way. These metering points are positioned to ensure separation from airspace bound-

aries and crossing air traffic, and do not result from optimization procedures (AOPA,

2008). Our motivating hypothesis is that significant fuel savings can be obtained by

optimally selecting the number and locations of these control points. Moreover, given

that the existing way point locations at airports are basically virtual locations in air,

modification of these locations are not likely to require huge infrastructure changes

or costs.

Given these observations, in this thesis we also seek answers to the following

research questions: what is the optimal number of OPD metering points, and what are

their optimal locations such that all relevant costs are minimized, while maximizing

runway utilization? These questions are strategic problems involved in managing

arrival operations, which are discussed in Chapter 4.

1.2.2 Departure Operations

As the scheduled departure time for a flight approaches, the pilot and crew mem-

ber will check if all the pre-departure requirements are satisfied. If all requirements

are met and the runway is clear, then a pushback decision can be issued to the aircraft

to depart from the gate and taxi out to the runway for departure. During the depar-

ture process, permission must be received from ground traffic controller before any
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movement can be made. While the pushback time is usually scheduled more than an

hour prior to the actual departure time, any change in weather and runway usage can

affect the actual pushback time. In addition, due to congestion at the taxiway and/or

the runway caused by potential weather impacts, the ground traffic controller might

issue a gate hold to an aircraft which might have already been scheduled for push-

back. The uncertainty involved in the pushback operations can cause long queues and

excessive waiting on the runway. Departure metering procedure was proposed and

has been proven to reduce the runway queue and improve the efficiency of departure

operations. In this thesis, we focus on managing departure operations in the context

of departure metering, given that this efficient procedure can be easily integrated into

current departure operations.

To reduce delay and improve efficiency of departure operations, the National Aero-

nautics and Space Administration (NASA) has developed the Airspace Technology

Demonstration-2 (ATD-2) system, aimed at integrating the arrival, departure and

surface activities and developing precise schedules for flights at gates, runways, and

arrival/departure fixes. Departure metering, as a key component of ATD-2, is an air-

port surface management procedure that limits the number of aircraft on the runway

by either holding aircraft at gates or at a predesigned metering area (NATCA, 2015).

Field tests have shown significant fuel benefits and suggested an important role for

this procedure in the Next Generation Air Transportation System (NextGen). The

six-month long departure metering program at John F. Kennedy International Air-

port (JFK) has shown to lower fuel burn costs by $10-15 million, and carbon dioxide

emissions by 48,000 metric tons. In addition, the program is also expected to result

in significant reduction in delays due to reduced taxing hours (Nakahara et al., 2011).

As an example, in Figure 1.3 we provide the numbers of aircraft on the runway before

and after the implementation of departure metering at the JFK airport, showing that
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Figure 1.3. The number of aircraft on the runway before and after departure me-
tering at the JFK airport (Nakahara et al., 2011).

there is a significant decrease in the number of aircraft in the runway queue after such

an implementation.

By holding aircraft at gates or at a predesigned metering area with engine idle,

the departure metering procedure can reduce fuel burn costs for airlines and airports

through shortening runway queues and decreasing unnecessary stops and waits with

aircraft engine on. In addition, by integrating the gate, taxiway, and runway activ-

ities, the procedure can also improve the coordination and communication between

different functions at airports. Several airports are testing these departure metering

procedures. In addition to the implementation at JFK, NASA, the Federal Avia-

tion Administration (FAA), American Airlines and several other stakeholders are

planning to implement departure metering at the Charlotte-Douglas International

Airport (CLT) beginning in 2017 (Lozito, 2016).

However, the departure metering procedure is currently implemented based on

only the experience of air traffic controllers. No optimization procedure has been

proposed or studied in the literature. In addition, arrival and departure operations

inherently involve significant uncertainty. The stochastic arrivals and uncertain push-
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back delays can impact the allocations of aircraft at the airport, which needs to be

taken into account when making traffic management decisions.

Given these observations, we argue that the departure metering procedure can

be further optimized by answering the following operational questions at airports in

near real time: Given the set of aircraft scheduled to arrive and depart at an airport,

which aircraft should be allowed to push back from the gates, which aircraft should be

allocated a gate and which aircraft should be sent to the runway from the metering

area. These questions are the tactical problems on managing departure operations,

which are discussed in Chapter 5.

In addition, from a strategical planning perspective, what is the optimal metering

area capacity, and what is the value of such optimization? These problems involve

the strategic decisions to be made on managing departure operations, which are

also described in Chapter 5. In the chapter we develop a dynamic programming

framework and implement numerical analyses to quantify the potential savings that

can be achieved through the proposed optimal departure policies.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we describe the previous work on optimization of arrival and de-

parture operations as it relates to the problems we study in this thesis. We categorize

the discussion on these problems based on the two types of models that exist in each

area, namely the tactical and strategic models.

2.1 Related Research on Arrival Operations Management

As introduced in Section 1.2.1, we look at both tactical and strategic policies for

the management of OPD-based arrival operations, for which the relevant literature

can be described as follows.

Given that our focus is on OPD-based arrivals only, our discussion of the rele-

vant literature does not include a detailed coverage of the many existing studies on

the classical arrival operation problem, which is the optimization of aircraft landing

scheduling to assure safety and efficiency of air traffic flows. The reader is referred to

Bennell et al. (2011) for a survey on this well-studied problem. On the other hand, we

note that stochastic models for arrival operations are very limited, and our stochastic

approaches in this thesis can also be seen as a contribution to the general arrival

planning problems at airports.

2.1.1 Tactical Models

In this section, we discuss literature on improving OPD-based arrivals through

tactical operational procedures, such as spacing and sequencing policies during de-

scent.
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Tactical models in OPD-based arrival operations refer to decisions that involve

sequencing of flights and their spacings during descent, similar to what we address in

Chapter 3.

Supporting the findings of studies such as Grushka-Cockayne et al. (2008) that

describe the practical value of OPD for airlines and other stakeholders, several papers

exist on improving the efficiency of OPD operations, but relatively few focus on better

spacing of aircraft and analytical models are almost nonexistent. Spacing related

papers include Weitz et al. (2005) and Coppenbarger et al. (2007), where the authors

develop procedures that tailor the OPD trajectories with the help of other existing

advisory tools to narrow the distributions of spacing errors between aircraft. The

concept of using a set of metering points to monitor and adjust aircraft spacings

during OPD, which also forms the basis for our framework in Chapters 3 and 4, was

first discussed by Ho et al. (2007). In that paper, the authors present the checkpoint

concept and use a human factors experiment to evaluate it with respect to not having

any such checkpoints. They conclude that a metering system has significant benefits

for pilots and for the overall efficiency of OPD operations. However, unlike our study,

neither of these studies optimize the OPD trajectory or consider operational efficiency

directly.

From an optimization perspective, Clarke et al. (2008) develop an integer program-

ming approach to sequence and space the aircraft before the top of descent. Unlike

this analysis which focuses on the initial phase of OPD, our analysis in Chapter 3

considers the entire OPD profile, as well as the uncertainties associated with the tra-

jectories. Cao et al. (2011) also use a sequential trajectory based analysis along with

a deterministic integer programming model to determine spacings for OPD aircraft

such that total delay is minimized. As the only stochastic study, Ren (2007) de-

scribes a Monte Carlo simulation model to analyze the relationship between aircraft

separation and runway utilization under uncertainty during OPD operations. Based
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on flight test and simulation data, the author derives probability distributions of final

spacing at the runway under certain predefined conditions. The author then notes

that the target spacing to be achieved at a particular point can be obtained such that

the probability of violation of desired separation is minimized in a static way, but

no optimization model is described. Our dynamic stochastic optimization model in

Chapter 3 utilizes this probability analysis to characterize trajectory uncertainty.

As noted above, the literature on tactical models involving optimization of OPD

operations consists of purely numerical and deterministic approaches. Hence, distinct

and complementary to the existing literature, in this thesis, specifically in Chap-

ter 3, we develop a stochastic dynamic optimization model for OPD operations and

analytically identify optimal spacing and sequencing policies for airlines and other

stakeholders.

2.1.2 Strategic Models

Strategic models in OPD-based arrival operations refer to decisions that optimize

the design of arrival traffic management systems at airports, specifically the design

of metering point configurations, which include identification of the optimal number

and locations of metering points to use during OPD. These problems are similar to

what we address in Chapter 4.

When an aircraft is approaching the runway, many factors affect its trajectory,

such as weather, wind conditions, pilot behavior, aircraft weight, as well as the

differences in types of aircraft and flight management systems. All of these factors

involve uncertainty and such stochasticity needs to be taken into account while mak-

ing operational decisions. This is especially of significance for OPD operations, as the

level flight segments that can be utilized as buffer spaces for conventional arrivals are

reduced, resulting in an increased impact by the stochastic factors described above.

However, the literature on models involving optimization of OPD operations consists
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of mainly deterministic and numerical approaches. As some examples to such ap-

proaches, Weitz et al. (2005) apply the airborne precision spacing concept into OPD

operations in order to decrease the spacing deviation between aircraft at the runway

threshold, while Alam et al. (2010) identify feasible OPD trajectories by proposing a

concentric cylinder configuration for the terminal airspace. Focusing on the en route

stage before arrival to the top of descent by OPD flights, Clarke et al. (2008) propose

the use of sequencing and spacing decisions based on an integer programming model.

Aside from these deterministic studies, there exist a few stochastic models specifical-

ly on OPD operations. These include Ren (2007), where the author identifies the

relationship between aircraft separation and runway utilization for OPD operations

based on Monte Carlo simulations. Using the uncertainty characterizations described

in that research, Chen and Solak (2015) identify optimal spacing and sequencing poli-

cies for a fixed set of metering points based on a dynamic programming framework.

Our work in Chapter 4 adds to the stochastic modeling literature in OPD optimiza-

tion by focusing on a new and relevant problem involving the identification of best

metering point locations for managing OPD operations.

Analyses that specifically focus on metering point locations in the literature are

limited. Levitt et al. (2013) categorize metering point usage in air traffic management

into two types, en route management points and arrival flow management points.

They then use two operational constraints to determine the required accuracy at

these points under a time-based metering concept. While the categorization and

the different required accuracy levels show the impact of the location of a metering

point, Levitt et al. (2013) do not focus on identifying the best locations for these

points. The concept of using a set of metering points to monitor and adjust aircraft

spacing specifically during OPD, which also forms the basis for our framework, was

first discussed by Ho et al. (2007). In that paper, the authors propose a cueing system

where a sequence of altitude and speed checkpoints is added to provide pilots with
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cues about flap schedules to be used. A flight simulator based experiment suggests

significant benefits to OPD operations due to use of such metering points from the

perspectives of both controllers and pilots. While Ho et al. (2007) attempt to find

the number of metering points to use based on their survey data, they do not explore

any optimization based approaches. Vilardaga and Prats (2014), on the other hand,

propose a 4D-trajectory optimization tool for departure operations based on a set

of waypoints where specific speed constraints and requested time of arrivals can be

issued by Air Traffic Control (ATC). Similar to our study in Chapter 4, they utilize a

multi-step algorithm where the number of waypoints determines the number of steps

to be performed. However, their research does not look into the optimal number of

waypoints and the implementation is based on a deterministic control model. Finally,

building upon the novel concept of extended metering, Nikoleris et al. (2012) aim to

find the optimal selections of upstream centers to absorb the delays at terminal areas

using simulation-based experiments. They look for a satisfactory number of upstream

centers and provide speed advisory for flights at these centers. However, the exact

locations of these metering centers are again not explored in their research, which is

the problem we address in Chapter 4.

2.2 Related Research on Departure Operations Management

Most of the existing studies model departure operations at airports using queueing

models, and develop procedures that can improve taxiing operations through reduc-

tion of inefficiencies. To this end, Pujetn (2000) utilizes a queueing model, and shows

that a simple gate holding policy which depends only on the number of taxiing air-

craft, can significantly reduce operating costs and emissions. Similarly, Feron et al.

(1997) also demonstrate that gate holding can reduce the average runway queue time,

decreasing the operating costs for airlines. Idris et al. (2002) aim at providing accurate

estimates of the taxi-out time using a queueing model while Carr et al. (2002) show
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the modeling and control of the departure operations under severe flow restrictions.

While our work does not directly use queueing models due to transient structure in

our decision framework, we include queueing effects in our calculations of the cost

functions and transition probabilities in our stochastic dynamic programming formu-

lation. On the other hand, the papers listed above do not address some additional

decisions that can create value, such as controlling the departure flow through the

use of a metering area, which forms a key component of our approach in Chapter 5.

Given that our work focuses on the concept of departure metering, in the following

sections we explore the literature on departure operations management by focusing

only on tactical and strategic decisions under departure metering. The reader can

refer to Malik et al. (2010) for a review of more general departure planning models.

We note that the literature on departure metering based operations is limited, due

to the fact that the procedure is mostly a newly proposed concept and is not fully

implemented at major airports.

2.2.1 Tactical Models

Most of the existing literature on departure metering focuses on the tactical im-

plementation of this metering method. Brinton et al. (2007) introduce a collaborative

surface metering procedure which aims at providing a just-in-time delivery of aircraft

to the runway from the parking gates under a first come first serve departure rule.

The benefit analysis shows savings of around $75-100 million for nine selected airport-

s. Burgain et al. (2009) present a collaborative virtual queue concept where aircraft

are held at gates in a virtual queue to better manage the departure operations by

also considering fairness issues. Fernandes et al. (2011) introduce a simulation en-

vironment named as the collaborative airport traffic system to monitor and better

understand human factor issues when implementing the departure metering proce-

dures. Nakahara et al. (2011) describe the tactical decisions for departure metering,
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which involve the number of aircraft to be directed to the runway and the number

of aircraft to be held at gates. They also report results of a field test based benefit

analysis for departure metering at New York John F. Kennedy Airport (JFK), which

shows significant decreases in taxi-out times with estimated savings of $10-15 mil-

lion. Shen et al. (2012) perform a comparative analysis of the departure operations

with and without departure metering using queueing theory and simulation. They

estimate the benefits due to departure metering in terms of taxi-out time savings

and gate holding time for top 35 Operational Evolution Partnership (OEP) airports.

Simaiakis et al. (2014) present a field test at the Boston Logan International Airport

where a pushback rate control policy is implemented to reduce the runway congestion,

resulting in a fuel reduction of around 12,000-15,000 kg during eight four-hour tests.

More recently, Aponso et al. (2015) conduct two rounds of surveys on key issues of

integrated arrival, departure and surface operations, which show the need for a depar-

ture scheduling tool that can provide an unimpeded transit for aircraft moving from

gates to the runway through a collaborative decision-making process. Our work also

aims at producing smooth surface operations through providing aircraft allocation

policies at airports. However, different from the above literature, our study considers

the optimization of the departure metering procedures by taking into account the

uncertainty involved in airport operations.

Of the few papers that study optimization of the departure metering procedures,

Jung et al. (2010) and Gupta et al. (2012) integrate two decoupled scheduling op-

timization models to optimize airport surface operations by controlling the number

of aircraft on the runway. One of them optimizes the sequencing and timing of re-

leasing aircraft from the ramp to the movement area to minimize taxi-way delay and

maximize airport throughput, while the other optimizes the runway sequencing and

arriving aircraft crossing decisions to maximize runway utilization. However, they

only consider the problem from a deterministic perspective, while our work direct-
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ly considers the uncertainty brought by arrivals and pushback time delays through

stochastic optimization. Kim and Feron (2014) look at the impact of gate assign-

ment on departure metering decisions. They provide a robust gate assignment policy

in the context of departure metering, which can minimize gate assignment conflict-

s. Different from their research, in this thesis we aim at optimizing pushback rates

at gates during the departure metering process, along with other decisions involving

the departure process. Saraf et al. (2015) study the scheduling of departing flights

and controlling of queue lengths at different control points at airports in a metroplex

system consisting of a major airport and several secondary airports. They integrate

departure operations from aircraft pushing back at gates to aircraft merging into over-

head traffic trajectory while our work considers a time horizon from aircraft landing

at airports to aircraft wheeling off the runway, aiming at integrating both arrival and

departure operations. Their model is also developed in a deterministic setup, and

the uncertainty is accommodated through allowing different queue buffers. Overall,

to the best of our knowledge, our study is the only one that directly captures and

handles the stochasticity in departure metering operations through optimization of

relevant decisions.

2.2.2 Strategic Models

In addition to these tactical models, the literature on strategic models of managing

departure operations through departure metering is very limited given that the proce-

dure is relatively new. These strategic decisions may involve the design of departure

traffic management systems at airports such as airport facility capacity determina-

tions. To this end, Nakahara et al. (2011) describe a surface congestion management

system implemented at JFK, where a specific value is determined as the maximum

number of aircraft to be held on the runway. This is based on a saturation point where

further surface traffic does not increase the departure rate anymore. In Chapter 5 we
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devise an improved version of such a system by considering a predesigned metering

area with an optimal capacity. Overall, our study is a key addition to the limited

literature on strategic models aimed at improving departure metering procedures for

cost reduction and service improvements for airlines.
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CHAPTER 3

TACTICAL MODELS ON ARRIVAL OPERATIONS AT
AIRPORTS

In this chapter we consider tactical management of arrival operations at airports,

specifically focusing on the decisions of sequencing and spacing policies for landing

aircraft under uncertainty. As introduced in Section 1.2.1, our motivating hypothesis

in this chapter is that there is potentially significant value for airlines in using certain

sequencing and spacing policies during an optimized profile descent implementation.

To check the validity of this hypothesis, we analytically study the problem of how to

dynamically maintain optimal sequencing and separation during OPD operations to

increase runway utilization while reducing fuel burn, emissions, and noise. As part of

our analysis, we identify optimal policies for controlling the aircraft during OPD and

quantify the benefits that can be realized through the use of these optimal policies.

The remainder of this chapter is organized as follows. In Section 3.1 we introduce

our modeling framework and describe the components of the stochastic dynamic de-

cision process. In Sections 3.2 and 3.3, we derive optimal policies for managing

the sequencing and spacing of OPD flights, and describe their practical implications

through numerical implementations. Finally, in Section 3.4 we summarize our results

and present our conclusions.

3.1 Model Formulation

As depicted in Figures 1.1(b) and 3.1(a), when the arriving flights approach the

airport for OPD-based landings, they first merge into a sequence and prepare to
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(a) Aircraft are merged into a sequence at the top
of descent.

(b) Spacing may realize differently at next meter-
ing point after target spacing command is issued.

Figure 3.1. Graphical description of the sequencing and spacing procedures in OPD.

descend following a certain trajectory. Each aircraft in the sequence needs to maintain

a certain separation with other flights during the descent due to wake turbulence

effects. This safe distance is defined by the air traffic control authority, and varies

based on the type of aircraft involved. For improved runway utilization, it is desirable

that the spacing between each aircraft upon arrival on the runway is equal to this

minimum safe distance. However, to achieve the desired sequence and spacing, the

aircraft may need to maneuver, which would imply additional fuel burn, emissions

and noise. Our optimal sequencing and spacing policy analysis captures this tradeoff,

which involves stochasticity due to probabilistic deviations in aircraft trajectories

during descent. To deal with this uncertainty, the air traffic control can use a set of

metering points, which correspond to decision epochs, to observe the existing spacing

between two aircraft and request a corrective maneuver if necessary. This procedure

is described in Figure 3.1(b), where the possible set of maneuvers that aircraft can

perform might vary based on altitude. The operational decision problem deals with

the optimal policy to use at these metering points so that the total expected costs of

all maneuvers during descent are minimized, while runway utilization is maximized.

Our initial modeling framework considers two aircraft, and that the maneuvers

will be performed by the trailing aircraft only. We then extend the problem to include
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multiple aircraft. As noted above, when an aircraft is in the air, many factors affect

its ability to achieve the desired or target spacing from another aircraft, such as the

weather, wind conditions, pilot response, aircraft weight, as well as the differences

in types of aircraft and flight management systems. Hence, the identification of an

optimal separation policy, which is later used to determine an optimal sequencing

policy, involves a stochastic dynamic decision problem, where the main decision deals

with the target spacing value to be issued to pilots at each metering point. We note

that while the flight arrival is a continuous time process, the sequencing and spacing

decisions are made over a discrete set of decision epochs at the metering points both

in the current practice and in our model setup.

Given this stochastic dynamic structure, our modeling is based on a finite horizon

Markov decision process (MDP) formulation of the problem, for which we obtain

both analytical and numerical results. The details of the MDP model are described

as follows1.

States and Decisions. Assume that OPD operations at an airport utilize a set of

N metering points. We refer to the top of descent as the first metering point, while

the runway corresponds to the final metering point. Upon arrival of an aircraft at

a metering point t ∈ {1, 2, . . . , N}, the distance based separation st ∈ St from the

aircraft it trails is observed, after which a corrective maneuver to adjust the spacing

can be issued by ATC. Hence, the metering points correspond to decision epochs.

Note that no maneuvering is performed at t = N as it corresponds to the runway,

but a cost is incurred based on the realized spacing at this final ‘metering point’.

For defining the observed spacing values at metering point t, we use a set of discrete

1While the formulation and algorithmic descriptions in this chapter assume a given aircraft type
i, for clarity purposes we omit the aircraft index i in some discussions in the chapter, including
the description of the model components in this section. Also, a summary of the notation used
throughout the chapter is provided in Appendix A.1 for reference purposes.
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intervals St = {[st, st + k), [st + k, st + 2k), . . . , [s̄t − k, s̄t]}, where each interval has

length k. In this definition st and s̄t correspond to the lower and upper limits for

possible observed spacing values at metering point t. The lower limit of the observed

spacing values is based on the separation requirements enforced by ATC and varys

based on aircraft weight classes. The upper limit of these values is used in the model

for tractability purposes, and can be set to any large value. In our implementations

we set this value to 30 nautical miles (nm), and also use a discretization factor of

k = 0.1 nm.

The command issued to an aircraft at metering point t is in the form of a target

spacing value τt ∈ Tt to be achieved at the next metering point, where Tt = {τ t, τ t +

k, τ t+2k, . . . , τ̄t}. Note that the interval lengths used for possible spacing and target

values do not have to be the same, although for clarity of presentation we use the

notation k for both cases. Similar to the separation bounds, τ t and τ̄t correspond

to the lower and upper limits for the target spacing τt. These limits can be defined

based on aircraft dynamics, ATC policies, and locations of the metering points. Based

on these definitions, we denote the target spacing change as ∆t = τt − st, for which

upper and lower bounds can be defined accordingly. The set of possible target spacing

change values ∆t for an observed spacing st is denoted by Ast . Key determinants

for these values are the minimum and maximum allowable speed change, as well as

the requirements on minimum separation at a metering point. In practice, aircraft

can make speed adjustments of ±0.02 Mach without notifying the air traffic control

authority (FAA, 2012a). Noting that the proposed policies are intended to be used by

air traffic control, in our implementations we use speed change limits of ±0.06 Mach.

Transition Probabilities. After a target spacing change value of ∆t is issued,

the observed spacing at the next metering point is determined probabilistically as

P (st+1|st,∆t), which is the conditional probability that given a current spacing st

and a target spacing value ∆t, the spacing at the next metering point is realized as
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st+1. Based on the analysis of flight test data described by Clarke et al. (2004) and

Ren (2007), we conclude that the observed spacing st+1 ∈ St+1 at a metering point

t+1 during OPD operations can be well estimated by a truncated normal distribution

with mean µt+1 = ∆t+st+gt(st, Dt) and standard deviation σt+1 = ht(Dt), where Dt

is the distance between metering points t and t+1, while gt(st, Dt) = otst+ qtDt+ rt

and ht(Dt) = ηtDt + ζt. Here gt(st, Dt) represents a random noise for the pilot not

being able to achieve the exact target spacing value due to the uncertainty along the

trajectory, where ot, qt, and rt are coefficients calculated a priori for metering point t.

The standard deviation on the other hand is well estimated through a linear function

of only the distance between the metering points, where ηt and ζt are also parameters

to be determined a priori. These coefficients used to define the mean and standard

deviation of observed spacing values at a given metering point have been calculated

based on the simulation results reported by Ren (2007). We note that the normal

distribution is truncated such that the lower bound of st+1 is st+1. The transition

probability structure is assumed to be the same for all aircraft types, as the observed

differences in the simulations have been mostly negligible.

Based on the analysis above, the transition probabilities P (st+1|st,∆t) for t =

1, 2, . . . N − 1 are defined according to a truncated discrete normal distribution with

mean µt+1 and standard deviation σt+1 as described above. For a simpler representa-

tion, we further define pt = 1 + ot and thus have µt+1 = ∆t + ptst + qtDt + rt. Note

that the standard deviation is independent of the current state and target spacing

value issued. Moreover, st+1 ∈ St+1, where the set St+1 is defined as described above.

Cost Structures. If the observed spacing at metering point t is st, and a target

spacing change of ∆t is issued to an aircraft for the next metering point, a total

cost cTt (∆t) will be incurred due to the required maneuvering to achieve the desired

spacing. These costs consist of three main components, corresponding to costs for fuel

burn, emissions, and noise. We refer to the latter two as sustainability-related costs,
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and express the overall cost function as cTt (∆t) = cFt (∆t)+c
S
t (∆t), where c

F
t (∆t) is the

fuel burn cost and cSt (∆t) is the sum of emissions and noise costs. These functions are

defined differently for each metering point due to their dependency on the altitude.

The fuel burn costs cFt (∆t) correspond to the fuel consumption required to achieve

the target spacing at metering point t+ 1, and are calculated based on the fuel burn

rates for a given aircraft type at the considered altitude. The fuel burn rates used

in our analyses are based on those provided by Nuic (2012). In addition to the

dependence on altitude, these fuel burn rates also differ based on the flight phase of

the aircraft. Hence, we consider two different fuel burn structures, one for the cruise

phase and the other for the descent phase of the flights. In Appendix A.2, we show

sample fuel burn functions of airspeed for the two flight phases for a specific aircraft

type. We describe later in this section how these costs can be converted to a function

of target spacing.

The sustainability-related costs cSt (∆t) include emission and noise costs. For

emissions, we consider the costs of CO2 and other pollutants such as SO2, NOx,

CO and HC that are emitted to the atmosphere due to required maneuvering of the

aircraft to achieve the desired spacing. The emission rates for each aircraft type can

be calculated using the Boeing Fuel Flow Method 2 (DuBois and Paynter, 2006). The

external costs of aircraft emissions can be based on Sölveling et al. (2011b), where the

emission costs are provided for aircraft in each weight class at different flight phases.

Three levels of estimates, corresponding to low, base and high levels are calculated

for emission costs, which we also utilize in our analyses. For the noise costs, we build

upon the study by Levinson et al. (1999), where the authors estimate the average

cost of noise from an aircraft per kilometer traveled as $0.043. While this value has

only a minimal cost contribution when compared with the emission costs, it is a rel-

evant measure from a sustainability perspective especially at lower altitudes. The

aggregation of the emission and noise costs as a function of airspeed results in the
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sustainability cost curves for each aircraft type, similar to those shown in Appendix

A.2.

The overall cost function cTt (∆t) for a given aircraft type is the sum of the two

cost components at each flight phase, as shown in the airspeed based representation

of the sample functions in Appendix A.2. We now describe how these airspeed based

representations can be converted to functions of target spacing change variable ∆t.

First, we note that for each aircraft type, these airspeed based representations can

be modeled as quadratic functions in the general form of C l
t(vt) = altv

2
t + bltvt + elt,

where vt is the airspeed to be used while achieving the target spacing change ∆t at

metering point t+ 1, and alt, b
l
t, and e

l
t are constants used to model the cost function

C l
t(vt) for l ∈ {F, S, T}. The values for the cost function parameters alt, b

l
t, and e

l
t are

calculated for each aircraft type by fitting a quadratic curve to the cost structures

provided by the data sources described above. Our numerical analyses show that

the approximation error in these quadratic representations is negligible for all cases.

More specifically, we calculate the relative errors due to the quadratic approximations

to be less than 0.6% for the descent cost functions and less than 0.3% for cruise cost

functions. The generic cost representation C l
t(vt) needs to be expressed as a function

of the target spacing change ∆t, as defined through the notation clt(∆t). The following

result shows that it is possible to express clt(∆t) through a compact form based on a

quadratic structure:

Proposition 3.1. Let vtL refer to the speed of the leading aircraft in a two aircraft

OPD implementation, and define λlt = altv
2
tL/Dt, β

l
t = −2altv2tL − bltvtL, and ωt =

altv
2
tLDt + bltvtLDt + eltDt for cost function l = T, F, S. The cost to be incurred for

a target spacing change of ∆t under cost function l can be expressed as clt(∆t) =

λlt(∆t)
2 + βlt∆t + ωlt.

Proof: All proofs are included in Appendix A.3.
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It is important to note two caveats here involving aircraft speeds during descent.

First, the calculation of the cost function clt(∆t) above assumes that the airspeed

of the aircraft between two metering points is constant. On the other hand, the

true airspeed of an aircraft is based on air density, which varies during descent due

to the change in altitude. While this difference is likely to be negligible when the

metering points are closely spaced with minimal change in air density, further analysis

is required prior to implementation for the case when the metering points are not as

closely spaced. As the second caveat, the model implicitly assumes in some cases that

if the desired spacing is achieved at a metering point, then the trailing aircraft might

be asked to fly at the same speed as the leading aircraft, which could indicate a speed

increase for the trailing aircraft. While that is the case in the model, it is common

practice during a descent not to increase the speed of an aircraft immediately after

decreasing speed. Hence, this additional flexibility assumed under such cases may

result in approximation errors in the model with respect to the current practice.

The cost calculations in Proposition 3.1 apply to metering points t = 1, 2, . . . , N−

1. Once the aircraft is in the final approach, no speed command is given to the aircraft.

At the runway, i.e. for t = N , the final spacing cost is defined based on the utilization

of runway and determined according to differences from the minimum required spacing

levels at the runway (Sölveling et al., 2011b). Minimum separation requirements are

determined by ATC, and differ depending on the types of the leading and trailing

aircraft. A table showing these requirements for different weight classes is included

in Appendix A.4. We let sLN denote the minimum separation at the runway for a

given aircraft when the leading aircraft is type L. We also model the final spacing

cost as a convex quadratic function, and define it for given leading aircraft type L as

clN(∆N) = λlN(∆N)
2 + βlN∆N + ωlN , where ∆N = sN − sLN , and λlN , βlN , and ωlN are

constants used to model the final spacing cost for a given pair of aircraft by fitting a

quadratic curve to the data provided by Sölveling et al. (2011b).
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Optimality Equation. The overall objective in this MDP representation is to find

an optimal mapping of states st ∈ St to target spacing changes ∆t ∈ Ast for each

t ∈ {1, 2, . . . , N − 1}. This corresponds to the identification of an optimal policy π∗,

such that the expected total cost V π∗
for the policy π∗ is minimum over all possible

policies. Given this definition, the optimality equations for t ∈ {1, 2, . . . , N−1} based

on a cost function l, l ∈ {F, S, T} can be expressed as follows. Note that in order

to show the dependency of the optimal target spacing changes on the cost structure

used, we append the notation for ∆t through the superscript l and denote it as ∆l
t:

V l∗
t (st) = min

∆lt∈Ast
{λlt(∆l

t)
2 + βlt∆

l
t + ωlt +

∑
st+1∈St+1

P (st+1|st,∆l
t)V

l∗
t+1(st+1)} ∀st ∈ St

(3.1)

where V l∗
t (st) is the optimal expected total cost for a given observed spacing at me-

tering point t under cost function l. Moreover, we have that V l∗
N (sN) = clN(∆N) with

∆N = sN − sLN for all sN ∈ SN , where L denotes the type of the leading aircraft.

In the following sections we utilize our model to derive some optimal policies on

managing the sequencing and separation of arriving flights during OPD implementa-

tions.

3.2 Optimal Policies for Sequencing OPD Flights

We first consider the sequencing problem for two flights that are en route to

the airport for an OPD-based landing, and then generalize it to multiple flights. We

assume that the distances of the aircraft A and B to the initial metering point, i.e. the

top of descent, are given by dA and dB as illustrated in Figure 3.1(a). The distances

are defined such that they correspond to the number of nautical miles remaining on

a direct flight path to the initial metering point. The two aircraft are assumed to

be traveling at their fuel efficient speeds, which is typically different for each aircraft
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type. Given this setup, we state the optimal sequencing rule for any two aircraft A

and B as follows:

Proposition 3.2. For a given cost function l, l ∈ {F, S, T}, let λltA = altAv
2
tB/Dt and

λltB = altBv
2
tA/Dt, where vtA and vtB represent the fuel efficient airspeeds for aircraft

A and B at metering point t = 1, 2, . . . , N − 1. In addition, λlNi and βlNi are the

parameters of the final spacing cost function for i ∈ {A,B}.

If Ψl
ti =

(∏N
t′=t λ

l
t′i

)(∑N
t′=t

[
1/λlt′i

∏N−1
t′′=t′+1 p

2
t′′

])
, αlti = λlNipt

∏N−1
t′=t+1 λ

l
t′ip

2
t′, and

Φl
ti =

(∏N−1
t′=t+1 λ

l
t′ipt′

)(
βlN/2− λlNis

j
N + λlNi

∑N−1
t′=t

[
qt′Dt′ + rt′

∏N−1
t′′=t′+1 pt′′

])
for i, j ∈

{A,B} and j ̸= i, then the optimal sequencing policy based on cost function l, when

dA and dB represent the direct distances of the two aircraft to the first metering point,

is as defined below.

If the following condition is satisfied, then A should be the leading aircraft; other-

wise B should be the leading aircraft:

dA − dB ≤
Ψl

1AΨ
l
2A(Φ

l
1B)

2 −Ψl
1BΨ

l
2B(Φ

l
1A)

2

2Ψl
1AΨ

l
2Aα

l
1BΦ

l
1B + 2Ψl

1BΨ
l
2Bα

l
1AΦ

l
1A

(3.2)

We refer to the right hand side of condition (3.2) as the ‘critical (distance) dif-

ference’ and denote it as δAB. This critical difference is easy to calculate through a

spreadsheet or simple computer program. Moreover, it can be calculated a priori as

it does not involve any dynamic parameters, and provided to air traffic controllers in

the form of a table showing the threshold distances for each pair of aircraft types. We

implement and demonstrate this in our simulations involving ATL in Section 3.2.2

below.

3.2.1 Generalization to Multiple Flights

For the generalization of the sequencing procedure to multiple aircraft, we note

that this can be done through pairwise comparisons of the aircraft based on the result

in Proposition 3.2. We summarize this pairwise comparison algorithm as follows:
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Algorithm 3.1 (Optimal Sequencing for Multiple OPD Aircraft). Given l, l ∈

{F, S, T} and a set of aircraft K = {1, 2, . . . , K} with distances dk, k ∈ K to the

initial metering point:

Step 1: For k = 1 to K − 1: If dk−1 < dk + δk−1,k

Update the current sequence by exchanging the position of k and k − 1 in the

sequence.

Step 2: If at least one exchange has been made in Step 1, then repeat Step 1.

Else, stop.

The optimal sequencing algorithm for multiple OPD aircraft results in a feasible

and near optimal sequence due to the commutative structure that exists in the analysis

framework. It can be shown that if it is optimal for flight B to trail flight A, and

for flight C to trail flight B, then this would imply that flight C should be sequenced

after flight A. We also note that the algorithm can be adapted to account for any

practical limitations in the number of position shifts that can be performed by a flight.

These can be due to fairness related issues or other operational constraints, and can

be implemented by not allowing an exchange that would violate such a constraint.

3.2.2 Practical Implications and Results

Given the optimal policy structures, we perform numerical analyses in this and

subsequent sections to obtain insights on the potential impacts of these policies in

practice. To this end, we conduct simulations based on actual traffic data, where we

implement and compare the optimal policies under different configurations to derive

general policy results.

Our simulations and numerical analyses are based on the OPD implementations at

ATL, as described by FAA (2007) and Clarke et al. (2008) to be reflective of a major
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airport. As part of our simulations, we use four active metering points, in addition

to the top of descent and the runway which are treated as the first and last metering

points, respectively. This configuration is similar to those at other major airports.

For demonstration purposes, the approach configuration and location information for

certain metering points at ATL and LAX are shown in Appendix A.5.

We assume that aircraft arrivals follow a Poisson process, similar to other studies

in the literature (Sölveling et al., 2011b). The aircraft types used in the simulations,

i.e. the fleet mix, are based on the statistical distributions observed in historical

data, which represents more than 90% of arriving flights at ATL and other major

U.S. airports (FAA, 2012c). These aircraft types and the corresponding distribution

are shown in Appendix A.6. The simulations were performed separately for differ-

ent arrival rates, corresponding to 20, 30, 40, and 45 flights/hour. For each case,

random flight arrival times were created based on the Poisson distribution and corre-

sponding arrival rate over a period of 1 hour. The aircraft types for the flights were

defined based on the distribution provided in Appendix A.6. Optimal policies were

implemented on these sets of flights, where 120 replications were performed at each

arrival rate. We use the same simulation configuration described in this section for

the analyses performed in Section 3.3.

3.2.2.1 Structure of Optimal Sequencing Policies

Current ATC policies typically utilize FCFS type sequencing rules due to their

simplicity and relative fairness for airlines. The optimal sequencing rule we identify

through Proposition 3.2 and Algorithm 3.1 has a similar simple structure, as it can

be implemented through a basic computer program or a spreadsheet. In addition, the

proposed policy is flexible and can also be coupled with other rules such as prioritizing

flights that have been delayed more than a certain amount of time. Hence, the level of

fairness in the optimal sequencing policy we propose is not expected to be significantly
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(a) Demonstration of the optimal sequencing pol-
icy on two aircraft with different distances to the
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(b) Value of the optimal sequencing policy per
flight as a function of arrival rate.

Figure 3.2. Demonstration and value of the optimal sequencing policy.

different from the current FCFS policy. In all cases, the optimal policy is expected to

result in savings in the total fuel and delay costs incurred by any given airline. The

only distinction among airlines would be the level of savings, as it would depend on

the fleet mix and the number of inbound flights that an airline operates at an airport.

We quantify these estimated savings through numerical analysis as presented later in

this section.

First, we demonstrate the potential practical implementation of the optimal se-

quencing policy for two aircraft types using Figure 3.2(a). In the figure we show how

each aircraft type becomes the leading aircraft as a function of their distances to the

initial metering point for different cost functions. The figure displays this information

for a specific pair of aircraft for demonstration purposes. Depending on whether the

distance configuration at the time of decision making falls below or above the given

diagonal line, then B737 or CRJx would be the leading aircraft, respectively. Note

that different cost functions result in different critical lines for the sequencing policy

shown in Figure 3.2(a). We observe that the fuel and total cost measures suggest very

similar sequencing rules, while a sustainability based objective implies some difference

in the sequencing policy used. Similar figures can be created for each aircraft type
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Table 3.1. Critical differences δAB in nautical miles for ten most common aircraft at
major U.S. airports based on metering point configuration in ATL. Aircraft A should
be the leading aircraft if dA− dB is less than or equal to the value shown in the table.

Aircraft B
CRJx MD8x B752 B712 B737 B738 DC9x A319 A320 B763

A
ir
cr
af
t
A

CRJx 0
MD8x 4.7 0
B752 4.9 0.2 0
B712 2.6 -2.1 -2.3 0
B737 2.6 -2.1 -2.4 0 0
B738 3.5 -1.2 -1.4 0.9 0.9 0
DC9x 3.9 -0.9 -1.0 1.3 1.3 0.4 0
A319 1.7 -3.0 -3.2 -0.9 -0.9 -1.8 -2.2 0
A320 2.4 -2.4 -2.6 -0.2 -0.2 -1.1 -1.5 0.7 0
B763 6.5 1.8 1.6 3.9 4.0 3.0 2.7 4.8 4.1 0

pair to be used as a reference during sequencing decisions. It is also possible to define

a matrix as in Table 3.1, which can be used by an air traffic controller to determine

the optimal sequence for any pair of aircraft. The matrix in Table 3.1 consists of

entries for the top ten most common aircraft types operating at major U.S. airports.

In the table, each entry corresponds to the critical difference δAB in nautical miles

between two aircraft A and B based on the metering point configuration at ATL. If

dA and dB are the respective distances to the initial metering point at the decision

epoch, the measure δAB indicates that aircraft A should be the first aircraft to arrive

at the initial metering point if dA− dB ≤ δAB. Otherwise, i.e. if dA− dB > δAB, then

aircraft B should arrive at the initial metering point first. The values in Table 3.1

are based on the total cost function measure, but similar matrices can be generated

using the fuel or sustainability based cost functions.

3.2.2.2 Expected Savings for Airlines due to Optimal Sequencing of OPD

Flights

In Figure 3.2(b) we consider different arrival rates and evaluate the value of the

optimal sequencing policy for airlines as a function of the arrival rate of flights. To

this end, we investigate how much savings can be achieved through the utilization
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of the optimal sequencing policy as opposed to the currently implemented first come

first serve policy for OPD operations. There are two main observations that we

make. First, we note that the per aircraft savings value for a set of aircraft optimally

sequenced is not so significant, i.e. between $2-$4. We describe later in Section 3.3

that the value realized through optimal spacing is much higher. Thus, it can be

concluded that the optimal spacing of OPD flights is much more important than

optimal sequencing of these flights. This also implies that the difference between

the proposed sequencing policy and the FCFS policy, which is generally accepted to

be fair, is not that significant, and thus the proposed policy can also be seen as a

relatively fair policy. On the other hand, when these small savings are aggregated,

the total potential annual savings due to the utilization of an optimal sequencing

policy in top ten major airports are around $4 million. The second observation we

make is that as expected, the value of optimal sequencing is higher when the arrival

rate is higher, and this relationship is somewhat linear. In other words, at low arrival

rates the first come first serve policy is quite effective, as resequencing is typically not

of value in such situations due to large initial spacings that exist between arriving

flights. Nonetheless, although not so significant, there is still some expected value for

airlines in using an optimal sequencing policy as part of OPD implementations.

3.2.2.3 Impact of the Sequencing Policies on Slot Assignments at Air-

ports

An important issue in analyzing the practical implications of the proposed policies

involves the impact of the derived sequencing policies on landing slot assignments at

airports, specifically under reduced capacity due to inclement weather. Current slot

assignment procedures at airports are based on a first-scheduled first-served system.

In the case of capacity reduction, a procedure known as Ration-by-Schedule (RBS)

is used to ration and assign the available slots to airlines (Vossen, 2002). In order to
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Table 3.2. Probability that a given number of aircraft will not be assigned slots
under the proposed policy, while they would have been assigned a slot under the
current policy.

Capacity Reduction Level 20% 40% 60% 80% 90%

Arrival Rate Number of
(aircraft/hr) Flights Impacted Probability

20
0 0.962 0.955 0.952 0.949 1.0
1 0.036 0.043 0.046 0.051 -
≥ 2 0.002 0.002 0.002 - -

30
0 0.917 0.914 0.913 0.919 0.921
1 0.077 0.080 0.082 0.075 0.079
≥ 2 0.006 0.006 0.005 0.006 -

45

0 0.807 0.811 0.831 0.879 0.884
1 0.171 0.169 0.151 0.109 0.116
2 0.020 0.018 0.017 0.012 -
≥ 3 0.002 0.002 0.001 - -

estimate the impact of our sequencing policy over the current system, we implement

a set of simulations and probabilistically analyze the differences that our sequencing

policies generate.

To this end, for different arrival rates and capacity reduction scenarios we estimate

probability distributions for the number of aircraft to be negatively affected by our

sequencing policies as opposed to the current system. In Table 3.2 we show these

probabilities over a 15 minute time block. The last five columns show the probability

that the corresponding number of flights will not be assigned a slot based on the

proposed policy, while they would have been assigned a slot under the current policy

for each capacity scenario. The blank entries in the table correspond to aircraft counts

that are not feasible under a given capacity scenario. Based on the simulations, if

the arrival rate of flights is 30 aircraft/hour, then around 92% of the flights will have

the same slot assignment as they would have in the current system, independent of

the capacity reduction scenario. Under the same configuration, there is around 8%

chance that exactly one aircraft will be negatively impacted due to our policy and will

not be assigned a slot. This implies another aircraft being positively impacted and

assigned a slot. In the case that these two flights are operated by the same airline, this
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would not result in any differences from the current system. Hence, the probabilities

in the table assume a worst case scenario where all the impacted flights belong to

different airlines. If the arrival rate is 45 aircraft/hour, the probability of exactly one

flight being negatively impacted over a 15 minute period is around 17%. Similarly,

the probability for two or more aircraft not being assigned slots, while the current

system would assign them a slot, is around 2% even under this maximum arrival rate

case. Thus, it can potentially be assumed that the impact of the proposed sequencing

policies would be relatively minimal on current slot assignment procedures at airports.

3.3 Optimal Policies for Spacing OPD Flights

For optimal spacing policies, we again consider a case with two aircraft first, and

then generalize it to multiple aircraft. We note that once a sequencing decision is

made for a given pair of aircraft, the separation between the two aircraft through

the descent will be maintained by the trailing aircraft, and that the sequence can

not be changed during descent. Based on this, the relevant policy question is what

spacing value should be targeted by the trailing aircraft at each metering point so

that the overall costs are minimized under trajectory uncertainty. The optimal policy

depends on aircraft characteristics and is a function of the observed separation at a

given metering point.

We show through Algorithm 3.2 below that for any cost function, e.g. fuel-based,

sustainability-based or total cost based, the optimal target spacing to be issued to a

trailing aircraft at metering point t for metering point t+1 can be obtained numerically

through backward induction. We then present a tight analytical approximation to this

procedure which allows the derivation of a direct formula to determine the optimal

target spacing change for a given realized spacing value at any metering point. For

clarity in the presentation we skip the aircraft index i in the following discussion, as

the results apply only to the trailing aircraft which performs the spacing adjustments.

39



The only information assumed to be known for the leading aircraft is its type and

speed, which is used to calculate the parameters λlt, β
l
t, and the minimum required

separation sLN :

Algorithm 3.2 (Optimal Spacing for Two OPD Aircraft). Given l, l ∈ {F, S, T},

and the minimum separation sLN at the runway between a given aircraft and a leading

aircraft of type L:

Step 1: Set t = N and V l∗
N (sN) = clN(sN − sLN) for all sN ∈ SN

Step 2: Let t← t− 1

Step 3: For each st ∈ St, calculate the optimal expected total cost V l∗
t (st) using:

V l∗
t (st) = min∆lt∈Ast{λ

l
t(∆

l
t)

2 + βlt∆
l
t + ωlt +

∑
st+1∈St+1

P (st+1|st,∆l
t)V

l∗
t+1(st+1)}

and identify the optimal spacing change ∆l∗
t using:

∆l∗
t = argmin∆lt∈Ast{λ

l
t(∆

l
t)

2 + βlt∆
l
t + ωlt +

∑
st+1∈St+1

P (st+1|st,∆l
t)V

l∗
t+1(st+1)}

Step 4: If t = 1, stop. Else, go to Step 2.

While Algorithm 3.2 can be used to identify an optimal policy that accounts for the

bounds on allowable maneuvers as the minimization in each iteration is performed over

the allowable action set Ast , the optimal target spacing values are not given through

a direct formula. Rather, the calculations are performed for all possible observable

and target spacings through an iterative numerical procedure. Hence, we propose a

more easily implementable policy through an analytical formula that we derive based

on a tight approximation of the problem. As part of this procedure, we first consider

a relaxed version of the problem without including the bounds on the decisions and

identify optimal target spacing values under this setting. If this optimal value is

outside the range of allowable maneuvers, then the aircraft is instructed to implement
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the spacing defined by the bound itself. This results in a relatively simpler formula

that can be evaluated through a basic spreadsheet implementation. We summarize

this approximated optimal policy result as follows:

Proposition 3.3. An approximated optimal target spacing change ∆̃l∗
t at metering

point t for t ∈ {1, 2, . . . , N − 1} and l ∈ {F, S, T} is ∆̃l∗
t = ml

tst + nlt, where m
l
t =

−αlt/Ψl
t, and

nlt = −
2Φl

t + βltΨ
l
t+1 − λlN

(
N−1∏
t′=t+1

λlt′pt′

)(
N−1∑
t′=t+1

[
βlt′/λ

l
t′

N−1∏
t′′=t′+1

pt′′

])
2Ψl

t

If ∆̃l∗
t ≤ ∆t, then the optimal spacing change is ∆t. Similarly, if ∆̃l∗

t ≥ ∆t, then

the optimal spacing change is ∆t.

As part of our analysis of policy implications later in the chapter we compare the

target spacing results obtained through the exact and approximate calculations above.

Indeed, we find that the value generated by the approximated analytical result is very

close to that of the exact procedure, while at the same time the former is much more

amenable to practical use.

3.3.1 Some Characteristics of the Optimal Spacing Policy

In this section we note some characteristics of the optimal spacing policies defined

by Algorithm 3.2 and Proposition 3.3, and describe some further practical insights.

To this end, we first show in Corollary 3.1 below that the target spacing value change

is monotone decreasing with respect to the initial spacing value. This verifies the

somewhat expected result that if the observed spacing is larger, the target spacing

change should be larger as well.

Corollary 3.1. The approximated optimal target spacing change ∆̃l∗
t is monotone de-

creasing with respect to the observed spacing st at metering point t for t = 1, 2, . . . , N−

1 and l ∈ {F, S, T}.
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Figure 3.3. Optimal target spacing change as a function of observed spacing for
B712 trailing B737.

We demonstrate the monotonicity of optimal target spacing changes over the

observed spacing values through the example in Figure 3.3, where we show the optimal

target spacing change at the second metering point at ATL for B712 trailing B737.

The figure includes the optimal policies for different cost functions, i.e. it shows

the corresponding optimal action for any given observed spacing value. Similar to

the sequencing decisions, it can be observed that the optimal policies are very close

when optimization is performed under fuel or total cost measures. The policy differs

for sustainability based cost functions, which suggests more aggressive actions, i.e.

larger spacing reductions for a given observed spacing level, when optimization is

only based on emissions and noise costs. One option for the implementation of model

results could be the creation of plots similar to Figure 3.3 for each aircraft pair at

each metering point, and then using them directly to issue target spacing commands.

In Appendix A.7, we include some additional plots for different aircraft pairs and

metering points to demonstrate the concept.

Another relevant finding deals with the role of the variance of the trajectory

deviations, where the standard deviation was defined as σt+1 = ηtDt + ζt. The

following result states that the optimal spacing policy is independent of this variance:
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Corollary 3.2. The optimal target spacing at a metering point is independent of the

variance of the distribution of trajectory deviations.

This result implies that the expected deviation information is sufficient for OPD

separation optimization under uncertainty. The conclusion is based on the assumption

that variance in the trajectories is independent of the observed spacings, which is in

line with the results of Ren (2007).

We also note that the expected total costs to be incurred during a spacing opti-

mized OPD implementation have a monotone structure with respect to the observed

spacings:

Corollary 3.3. The expected total cost for an observed spacing value of st, denoted by

V l∗
t (st), is nondecreasing with respect to st at metering point t for t = 1, 2, . . . , N − 1

and l ∈ {F, S, T}.

This implies that small initial spacing values will result in reduced overall costs,

even if some additional maneuvering might be required at later stages to maintain

required separation. In other words, if the schedules are denser, i.e. if the arrival rates

are higher, the absolute cost values under an optimal policy will be lower than the

case with less dense schedules. Note that this does not suggest that savings due to

optimal policies will be higher at denser schedules when compared with the baseline

policies. Indeed, the cost reductions from optimal policies with respect to the baseline

policies are actually lower when the arrival rates are high, as we later demonstrate in

Section 3.3.3.2.

3.3.2 Generalization to Multiple Flights

The implementation of the optimal policies over a set of flights scheduled to arrive

at an airport requires an iterative procedure which can be performed in near real-time

through a simple computing tool. First, the optimal sequence of aircraft needs to be

determined, which can be achieved through pairwise comparisons based on Algorithm
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3.1 as described in Section 3.2. Given such a sequence, the optimal spacing policies in

Proposition 3.3 can be utilized dynamically to determine target spacings for aircraft

at each metering point. Before we formally describe this practical procedure, we

note that a more exact implementation for target spacing calculations for a set of

aircraft could involve a direct extension of the dynamic programming formulation of

the two aircraft model to multiple aircraft. However, given that the spacing change

by one aircraft will affect the spacing change by another aircraft, problem size and

complexity for such a model increase exponentially with the number of aircraft, and

more relevantly, analytical results cannot be tractably obtained. In our numerical

implementations, computational problems were observed in instances with three or

more aircraft. Given such intractability, we propose an iterative procedure based

on the two aircraft policies for the multiple aircraft case. This simple algorithmic

procedure is as follows:

Algorithm 3.3 (Optimal Spacing for Multiple OPD Aircraft). Given l, l ∈ {F, T, S}

and a sequence of aircraft 1, 2, . . . , K:

Step 1: Set k = 1 and set speed profile Π1 based on fuel efficient speed of

aircraft 1

Step 2: Let k ← k + 1

Step 3: For t = 1, . . . , N − 1

Given Πk−1, use Proposition 3.3 to identify the optimal spacing policy

decision ∆l∗
tk. Set speed profile Πk based on ∆l∗

tk .

Step 4: If k=K, stop. Else, go to Step 2

The procedure above involves a dynamic implementation where the optimal policy

is utilized sequentially as flights arrive at a metering point. Once optimal target
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spacing is issued to an aircraft, its speed profile is calculated based on these target

spacings. Hence, the optimal policy for the next aircraft in the sequence will be

based on the speed profile defined for the flight that precedes it. This dynamic

implementation preserves the following structural characteristic for the optimal policy

in the multiple aircraft model:

Proposition 3.4. The approximated optimal target spacing change vector ∆̃l∗
t for the

multiple aircraft extension of the spacing model is monotone decreasing with respect to

the observed spacings st at metering point t, t = 0, 1, . . . , N − 1 for any cost function

l, l ∈ {F, S, T}.

The result implies that the larger the spacing between any two flights in the

multiple aircraft model, the larger the optimal target spacing change for the aircraft

involved. This is a generalization of the two aircraft model, and denotes that the

deviation from the optimal target spacings by one aircraft would result in increased

costs for all aircraft considered in the optimization.

3.3.3 Practical Implications and Results

In this section we assume the same simulation configuration described in Section

3.2.2, and implement several numerical analyses to derive insights on the use of opti-

mal OPD spacing policies.

3.3.3.1 Structure of Optimal Spacing Policies

In Figure 3.4 we show the optimal target spacing values for three pairs of aircraft,

namely, B738 trailing A320, A320 trailing B752, and A319 trailing B763, when spac-

ings are realized at their expected values at all metering points. The plots in the

figure show this information for different initial spacing values of 15, 20, and 25 nm,

as well as for the three different cost function structures. These results correspond to

the solution for a single scenario as realizations are assumed to be at expected levels
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(a) B738 trailing A320.
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(b) A320 trailing B752.
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(c) A319 trailing B763.

Figure 3.4. Target spacing values at each metering point for expected observed
spacings.

throughout the planning horizon. First, we observe that the target spacing values

for different initial spacing values follow a similar pattern with mostly equal rates of

change in spacing over the decision epochs. This is especially the case for fuel burn

and total cost function structures. For the sustainability objective, there is some devi-

ation in the observed optimal spacing patterns over different initial spacings. Hence,

it can be concluded that sustainably optimal policies are typically more sensitive to

different spacing realizations, as they show larger variations over different scenarios.

We also observe that the optimal policies may differ for different aircraft types. For

example, the policy structure in Figure 3.4(c) has major differences than the policy

structure shown in Figure 3.4(a). Moreover, it can be observed that the fuel and total

cost based optimal policies are very similar for two of the sample aircraft pairs, while

this does not necessarily hold for the case involving an A319 trailing a B763. This

demonstrates the need to identify the optimal policies separately for each aircraft type

under each cost structure. This issue is also reflected in the optimal policy illustrations

in Appendix A.8, where we illustrate the three dimensional relationship between

target spacing change and observed spacing at each metering point for different cost

structures.
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3.3.3.2 Expected Savings for Airlines due to Optimal Spacing of OPD

Flights

As described in Section 3.1, the optimized OPD runway planning can be based

on three different cost functions, namely the fuel-based, sustainability-based, and

total cost structures denoted respectively as l = F, S, T . As part of our analyses, we

implement all three cost structures in our simulations and compare the expected total

savings achieved through the optimal policies over the first-come-first-serve policy in

each case. More specifically, these savings are with respect to the case where a

first come first serve policy is implemented with target spacing values being equal

to the minimum separation requirements as realized spacing between aircraft occur

probabilistically.

Based on the simulation results, expected savings per flight due to optimal spac-

ing policies are calculated for an arrival rate of 40 flights/hour as shown in Table

3.3. The table also provides value comparisons between implementing the optimal

spacing policies only, as opposed to both sequencing and spacing policies combined.

As previously noted, the value of optimal sequencing is quite minimal when com-

pared to the savings due to optimal spacing, i.e. 15% versus 85% of total savings,

respectively. Another observation is that fuel burn minimization is almost the same

as total cost minimization which involves both fuel burn and environmental concerns.

In both cases, expected total potential savings are around $27 for each arriving flight,

while approximately $4.5 or 17% of this is due to savings related to reduced emissions.

These environmental savings values are calculated using the baseline cost estimates

described in Section 3.1. The average environmental savings value is around $8 if

high cost estimates are assumed. In addition, the fuel cost savings of $23 per flight

correspond to savings of about 6 gallons of fuel per flight. An optimization approach

focused purely on minimizing emissions effects would result in an increased savings of

only $0.5, while reducing the fuel burn related savings by about $2.7. In other words,

47



Table 3.3. Expected potential savings by optimization type per arrival due to op-
timized spacing only and due to both optimized sequencing and spacing of OPD
aircraft.

Optimization Type

Fuel Burn Savings Environmental Savings Total Savings
($/flight) ($/flight) ($/flight)

Spacing Seq+Spac. Spacing Seq+Spac. Spacing Seq+Spac.

Fuel Burn Minimization 19.6 22.9 3.8 4.5 23.4 27.4
Environmental Cost Minimization 17.3 20.2 4.3 5.0 21.5 25.2
Total Cost Minimization 19.5 22.8 4.0 4.7 23.5 27.5

Table 3.4. Expected potential savings by aircraft type per arrival due to total cost
based sequencing and spacing optimization of OPD aircraft.

Aircraft Type
Fuel Burn Savings

($/flight)
Environmental

Savings ($/flight)
Total Savings
($/flight)

CRJx 15.7 4.1 19.8
MD8x 29.7 5.0 34.7
B752 32.9 6.1 39.1
B712 25.6 4.9 30.5
B737 32.9 5.3 38.1
B738 25.8 4.8 30.5
DC9x 20.0 4.4 24.4
A319 24.3 4.6 28.9
A320 28.6 4.8 33.4
B763 59.5 7.6 67.2

in an environmentally optimized OPD framework airlines are expected to incur a

cost of $2.7 for a $0.5 decrease in environmental effects based on the cost structures

assumed. Hence, it can generally be concluded that while optimizing OPD arrivals

solely based on fuel burn minimization is likely to be a more desirable approach for

airlines, such an objective is also not detrimental to the environment, as it would still

achieve a relatively high level of environmental savings.

We also consider the expected savings for each aircraft type due to the optimal

spacing of OPD flights. In Table 3.4 we show the expected potential savings to

be realized per flight based on total costs for different aircraft types. The saving

estimates in the table were calculated as follows. First, for each aircraft type, a two

aircraft configuration is assumed where the trailing aircraft is of the given type. We

then assume that the leading aircraft is one of the types listed in Appendix A.6, and

perform simulations for each such case by considering all possible aircraft types. The
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Table 3.5. Benefit analysis for top 10 traffic volume airports.

Airport
Code

Location

Estimated
Daily
OPD
Flights

Annual
Environmental
Savings($)

Annual Fuel
Burn Savings($)

Annual Total
Saving($)

ATL Atlanta, GA 459 753,912 3,652,285 4,406,197
ORD Chicago, IL 437 717,038 3,473,650 4,190,687
DFW Dallas, TX 321 527,746 2,556,636 3,084,383
DEN Denver, CO 315 517,858 2,508,733 3,026,591
LAX Los Angeles, CA 300 492,750 2,387,100 2,879,850
IAH Houston, TX 263 431,625 2,090,981 2,522,606
CLT Charlotte, NC 268 440,473 2,133,849 2,574,322
PHL Philadelphia, PA 223 365,642 1,771,332 2,136,974
EWR Newark, NJ 207 340,364 1,648,877 1,989,241
PHX Phoenix, AZ 229 376,951 1,826,117 2,203,068
Total 3,022 $4,964,359 $24,049,561 $29,013,919

savings are then calculated by comparing the costs under the optimal sequencing

and spacing policies with those under the baseline policy. Once estimated savings are

obtained for a given trailing aircraft type under possible leading aircraft scenarios, the

expected potential savings are then calculated using the probabilities of the leading

aircraft types provided in Appendix A.6. These values can help estimate the impact

of OPD optimization on an airport based on the fleet mix at that airport. We observe

that savings vary across different types of aircraft. In terms of total savings, CRJx

type aircraft is at the minimum end of the scale with a savings of around $20, while

the most value is achieved for B763 with potential savings more than $67.

We also look at the expected total value of OPD optimization for the U.S., both in

terms of fuel savings and environmental impacts, by considering potential implementa-

tion at all major airports. LAX is one of the few airports that have fully implemented

OPD in the United States (Strater et al., 2010). An estimate of the annual fuel and

environmental savings can be calculated by assuming that other airports implement

OPD at the same ratio of OPD flights to total operations as in LAX. In Table 3.5,

we show the potential savings at top ten busiest airports based on this assumption.

More specifically, using data from FAA (2010) and FAA (2012c) we calculate that

approximately 36% of all arrival operations at LAX are OPD arrivals. Assuming
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that the same percentage would also apply at other airports if OPD were to be im-

plemented fully, we calculate an estimate of the daily OPD flights at each airport as

given in the third column of Table 3.5. To obtain the annual saving estimates shown

in columns four through six, we first assume the fleet mix distribution in Appendix

A.6 and obtain the daily savings by using the per aircraft saving values estimated in

Table 3.4. These numbers are then multiplied by 365 to determine annual savings

estimates for each airport. It can be concluded that potential annual fuel burn related

savings for airlines due to optimized runway planning for OPD can be around $24

million if OPD is fully implemented in these airports. On the other hand, the annual

sustainability-related savings can be around $5 million. In addition, we note that a

detailed analysis by Formosa (2009) categorizes the major U.S. airports into three

classes, referred to as categories A, B and C, corresponding to high relative benefits

from OPD, moderate relative benefits from OPD, and readiness for OPD implemen-

tation, respectively. As part of our analysis, we measure the savings performance

for each of these categories separately, as well as for a list of airports likely to be

prioritized for OPD implementation according to Formosa (2009). These results are

included in Appendix A.9.

Given the low profit margins in the airline industry, the estimated annual savings

of $24 million in fuel costs, or around $23 per flight, can be considered as being

substantial for this sector. In Table 3.6 we estimate the potential impact of these

savings on the net income of top seven major airlines in the U.S. based on profitability

information for years 2009 to 2013 (DOT, 2013; AirlineFinancials, 2014). The percent

impacts are calculated under the assumption that approximately one third of all flights

would be using OPD arrivals. On average, the savings due to proposed policies can

be around 1.5% of the net profit obtained per flight. This impact rate depends on

the overall profitability of the company, and thus varies over time for each airline.
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(a) Fuel burn savings per flight under fuel
burn minimization.
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(b) Environmental savings per flight under
environmental cost minimization.
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(c) Total savings per flight under total cost
minimization.
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(d) Total savings per hour under total cost
minimization.

Figure 3.5. Savings per flight for different arrival rates.
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Table 3.6. Estimated potential impact of proposed policy savings on net airline
income over 2009-2013.

Airline

2009 2010 2011 2012 2013
Net

income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

United -421.2 2.0% 1957.0 0.4% 2374.1 0.3% 1367.3 0.6% 955.0 0.9%

Delta 449.6 1.8% 2430.0 0.3% 2002.3 0.4% 2009.6 0.4% 1785.2 0.5%
Ameri-
can

-467.4 1.8% 47.8 17.3% -707.9 1.2% 245.4 3.4% 1483.9 0.6%

US
Airways

479.5 1.7% 1257.1 0.7% 788.9 1.0% 1134.0 0.7% 1675.9 0.5%

South-
west

246.2 3.4% 907.2 0.9% 604.3 1.4% 732.2 1.1% 958.2 0.9%

JetBlue 1006.8 0.8% 1112.1 0.7% 989.0 0.8% 1052.2 0.8% 1138.1 0.7%

Alaska 1341.4 0.6% 2043.6 0.4% 2219.4 0.4% 2326.3 0.4%
-1083.8

0.8%

AVER-
AGE

1.7 % 3.0 % 0.8 % 1.1 % 0.7 %

In general, however, the estimates suggest a relatively substantial potential value for

airlines, especially if they continue to operate with low margins.

As an additional analysis, we show in Figure 3.5 how the value of optimized

sequencing and spacing under different cost structures varies as a function of the

arrival rate of the aircraft. As expected, the value of OPD spacing optimization for

an individual flight, i.e. the savings achieved through optimal policies, is higher at

low arrival rates. We see that the decrease in the value of optimization is mostly

exponential for all cost structures, except for the sustainability-related costs where

the decrease is linear. Another distinction between different cost functions is that the

decrease in value at highest arrival rates is around 50% for fuel cost based optimization,

while it is minimal and about 5% for the sustainability-based optimization. Overall,

the main observation is that the lower the arrival rate, the higher the value of OPD

spacing optimization.

Another relevant observation is the concave pattern in Figure 3.5(d), where we

show the hourly saving values for different arrival rates. While the per aircraft savings

decrease as the arrival rate increases, the potential hourly savings over all aircraft

initially go up, but then decrease after achieving the maximum hourly savings at
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around 40 flights/hour. For arrival rates lower than 40 flights/hour, the sum of

savings over the number of flights arriving each hour is able to compensate for any

decrease in per aircraft savings due to increased arrival rates. Hence, hourly savings

go up within that range. However, for arrival rates higher than 40 flights/hour,

the marginal decrease in per aircraft savings is larger than the marginal increase in

savings due to having more arrivals, and thus the total hourly savings are decreasing.

This observation suggests that OPD spacing optimization typically has more value

for an individual flight when the arrival rate is not high. However, from a system-

centric perspective, aggregate hourly savings are larger at higher arrival rates. Overall,

an average savings of around $1, 000 per hour can be expected through the use of

optimization based policies in OPD operations.

3.3.3.3 Impact of Using Approximate Analytical Optimal Spacing Poli-

cies

In this section we analyze the difference between the exact numerical and the ap-

proximate analytical policies described above through Algorithm 3.2 and Proposition

3.3, respectively. Recall that the analytical policy is much easier to implement, as it

involves a simple algebraic calculation for any given observed spacing at a metering

point. A relevant question, however, involves the expected lost value when this pro-

cedure is used for OPD spacing optimization. In Table 3.7 we show some numerical

results to answer this question. These results indicate that the lost value is not much,

as it can be observed to be around 3-4% in almost all cases. This percent gap corre-

sponds to about $1 per flight on average, and is quite robust across different arrival

rates.

3.3.3.4 Potential Impact of Pilot Behavior

Although there is no specific empirical analysis on pilot behavior within an OPD

environment, it can be observed in practice that pilots behave differently when they
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Table 3.7. Comparison of the optimal and heuristic policies over different arrival
rates.

Fuel Burn Savings
($/flight)

Environmental Savings
($/flight)

Total Savings ($/flight)

Arrival Rate (flights/hr) Arrival Rate (flights/hr) Arrival Rate (flights/hr)
20 30 40 45 20 30 40 45 20 30 40 45

Numerical Policy 31.4 28.0 22.8 12.2 5.9 5.2 4.7 4.5 37.4 33.2 27.5 16.7
Analytical Policy 30.5 27.9 21.8 11.9 5.7 5.1 4.5 4.3 36.2 33.0 26.3 16.2

%Gap 2.9% 0.4% 4.3% 2.5% 3.9% 1.9% 4.3% 4.4% 3.1% 0.6% 4.4% 3.0%

are close to a desired target versus when they are further away. More specifically, they

can be more aggressive in applying corrective actions to achieve a desired spacing when

the spacing between two aircraft is larger. This would imply that the variance of the

spacing to be observed at metering point t + 1 will be dependent on the observed

spacing at metering point t. This issue was also not addressed by Ren (2007), and

the transition probabilities we define in Section 3.1 do not capture this phenomenon.

In order to assess the robustness of our results in cases of such behavior, we perform a

sensitivity analysis by considering different impact levels on distributions of realized

spacings given a target spacing level.

Note that the transition probabilities P (st+1|st,∆t) are originally defined through

a truncated discrete normal distribution with mean µt+1 = ∆t + ptst + qtDt + rt,

and standard deviation σt+1 = ηtDt + ζt. To account for the dependency of σt+1

on the current spacing st due to potential pilot behavior, we add an error term to

σt+1 which we assume to be a linear function of the current spacing st such that

σt+1 = ηtDt + ζt + ϵtst with ϵt > 0. While it becomes intractable to obtain an

analytical result in this case, a numerical analysis is possible for different values of ϵt

representing different levels of potential impact due to pilot behavior.

In Table 3.8 we show changes in the estimates of savings due to optimal OPD

sequencing and spacing for different values of ϵt. The second column in the table

shows the maximum increase on σt+1 for the corresponding value of ϵt. In all cases,

even when pilot behavior can add two nautical miles to the standard deviation of

the spacing distribution, it is observed that the total saving estimates do not change
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Table 3.8. Sensitivity analysis on estimates of potential savings under different levels
of impact due to pilot behavior.

ϵt (ϵtst)MAX
Fuel Burn Environmental Total

Savings
($/flight)

Percent
diff.

Savings
($/flight)

Percent
diff.

Savings
($/flight)

Percent
diff.

0 0 22.8 0 4.7 0 27.5 0
0.017 0.5 23.3 2.2% 4.9 4.3% 28.2 2.5%

0.033 1.0 23.6 3.5% 5.1 8.5% 28.7 4.4%
0.050 1.5 24.0 5.3% 5.2 10.6% 29.1 5.8%
0.067 2.0 24.2 6.1% 5.2 10.6% 29.4 6.9%

as much, staying within 6-7% of the original estimates. On the other hand, there

is an increase in the savings as ϵt gets larger, highlighting the fact that the value of

proposed policies would be higher if there is more uncertainty in the system due to

pilot behavior.

3.4 Conclusions

In this chapter we considered the management of sequencing and separation

of flights during optimized profile descent operations at airports. We developed a

stochastic dynamic programming framework to identify optimal policies for these de-

cision problems, and found that basic analytical solutions can be used as optimal

decision rules during OPD implementations. This can be done either through simple

spreadsheet based tools, or as part of advanced systems such as the Traffic Man-

agement Advisor tool in the Next Generation Air Transportation System in the U.S.

(NASA, 2013). In addition, while our policies are based on current metering practices,

they can also be used to determine the optimal values for spacings between aircraft

pairs in a potential future fully-automated system.

Using the developed optimal policies, we performed extensive simulations based

on an OPD implementation at ATL to estimate the expected value of these policies.

While these estimations involve some caveats such as the assumptions regarding the

airspeed of an aircraft as described in Section 3.1, overall we concluded that the

expected annual savings for airlines due to these policies can be around $29 million
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if such implementations are adapted by the top ten major airports in the U.S. This

corresponds to a total savings of around $27 per flight, which includes about 6 gallons

of savings in fuel. Approximately 83% of the savings is due to reduction in fuel burn,

while the remainder involves savings in emissions and noise costs. Moreover, the

estimated savings due to the optimal sequencing of OPD flights are not very significant

with respect to the potential savings through optimal spacing policies. The former

constitutes only about 14% or $4 million of the total estimated annual savings.

Through our analysis, we found that utilization of the proposed optimal policies

could add to the value of OPD operations by improving overall efficiency by around

10-15% over the current practice as described by Clarke et al. (2013). Given the need

for cost cutting in the airline industry, the increasing emphasis on environmental

concerns, and the capacity limitations on runways, the estimated savings are likely

to be of value for all stakeholders. This is especially the case for airlines, as most of

the estimated savings are due to reduced fuel consumptions achieved through optimal

policy implementations.
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CHAPTER 4

STRATEGIC MODELS ON ARRIVAL OPERATIONS AT
AIRPORTS

In this chapter we study some strategic models for managing arrival operations

at airports, specifically as they relate to metering point configuration design. As

mentioned in Section 1.2.1, our motivating hypothesis in this chapter is that there are

opportunities to improve the efficiency of OPD implementations through optimizing

the metering point configuration at airports. To this end, we seek answers to the

following research questions: what is the optimal number of OPD metering points,

and what are their optimal locations such that all relevant costs are minimized, while

maximizing runway utilization? In this chapter we develop an algorithmic framework

to answer these questions and reach some conclusions that provide general guidance

on these strategic management problems.

The remainder of this chapter is organized as follows. In Sections 4.1 and 4.3.2

we introduce our modeling framework and describe a two-phase algorithmic solution

structure that also utilizes some results described in Chapter 3. In Section 4.2, we

focus on the stochastic programming model that we develop to optimally locate OPD

metering points as part of the algorithmic structure proposed. In Section 4.2.4, a La-

grangian decomposition method is described for the stochastic programming model in

order to address the resulting computational complexities. In Section 4.4, numerical

implementations of the models on practical instances and their implications are pre-

sented, while we summarize our results and present our conclusions in Section 4.5.
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Figure 4.1. The multi-stage decision process for the metering point optimization
problem.

4.1 A Framework for the Metering Point Optimization Prob-

lem

The general decision framework that we consider in this chapter can be described

as follows: The decision maker, i.e. the air traffic control authority, initially decides

on the number and locations of OPD metering points for a given airport. This is a one-

time decision and applies to all flights, given the fact that the locations of metering

points are loaded into the database of flight management system on a 28-day cycle.

From an implementation perspective, when an aircraft reaches a metering point, the

distance from the aircraft it trails is observed, and any spacing adjustment commands

are issued by the controller. While this process implies an increase in controller

workload, spacing adjustments can be suggested and issued directly by advanced

traffic management tools, which might even reduce the traffic controller’s workload.

The process can continue for each existing metering point until the flight lands at the

runway. As can be seen in Figure 4.1, this framework can be represented through a

multi-stage decision process, where the number and location decisions are made first,

followed by a series of spacing adjustment decisions at the selected metering point

locations after observations on stochastic spacing realizations are made.

4.1.1 Model Setup

For a given airport, we assume that the flight arrival rates and distribution of

aircraft types are known, and serve as inputs to our decision framework. In addition,
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the location of the TOD, i.e. where the aircraft begin their descent, is also predefined

and given by its distance from the runway. Furthermore, the information on trajectory

uncertainty is assumed to be available in the form of a probability distribution as

described by Chen and Solak (2015). In that paper, the realized spacing between

two consecutive aircraft at a given metering point is defined by a normal distribution

where the parameters of the distribution are determined by the observed spacing

and the target spacing value issued at the previous metering point, and the distance

between the two metering points. The costs of maneuvering during different phases of

flight and utilization of runway are also assumed to be predefined in functional form

as we describe later in Section 4.2.1. The overall goal is to find the number and the

corresponding locations of metering points so that the resulting fuel burn and runway

utilization costs are minimized.

This problem setup reflects a stochastic dynamic structure, which can potentially

be modeled using a Markov Decision Process (MDP) type methodology or through

a multi-stage stochastic programming formulation. On the other hand, the problem

involves several complexities that prevent direct implementations of these method-

ologies. Notice that the multi-stage decision structure implies the determination of

the number of metering points first, followed by their locations, and then the re-

quired spacing adjustments at each metering point under different realizations of

trajectory uncertainty for a given flight. Simultaneous consideration of all these deci-

sions reflects an intractable endogenous structure, due to the fact that the number of

metering points is a decision by itself, and that it also determines the number of deci-

sion epochs in a potential MDP or a stochastic programming formulation. Moreover,

even when the number of metering points is fixed, the location decisions can not be

effectively integrated into an MDP model, as it requires discretization of the distances

and target spacing adjustment values. This implies an intractable model, as it would

suffer from the curse of dimensionality. Given these observations, we first develop a
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multi-stage stochastic programming model where the complicating endogenous struc-

ture in the overall problem is removed by assuming a given number of metering points.

We then propose two alternative approaches to deal with this complex problem, both

of which utilize the stochastic programming model developed: (1) an exact approach

involving an enumeration procedure based on the multi-stage stochastic programming

formulation; (2) a faster heuristic that also uses the same multi-stage stochastic pro-

gramming formulation, coupled with a previously developed MDP for the optimal

spacing of flights during OPD arrivals.

Noting that both procedures involve the formulation of a complex multi-stage

stochastic program, as the next step in our analysis, we describe the specifics of this

stochastic programming formulation which represents the decision process when the

number of metering points is fixed.

4.2 Stochastic Programming Model for Optimizing Metering

Point Locations

As described above, with the number of metering points fixed, the location prob-

lem becomes a stochastic dynamic problem that can be represented by a multi-stage

stochastic programming model. The objective of the model involves the minimization

of the sum of three relevant costs during the descent procedure, namely the fuel burn

costs, costs of violation of spacing requirements, and runway utilization costs. The

key constraints include the dynamics of the spacing changes between adjacent meter-

ing points, which involve stochastic parameters defining trajectory uncertainties. In

this section, we describe the development of inputs for this stochastic programming

model, as well as its formulation and structural characteristics.
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4.2.1 Model Inputs

For a given OPD implementation, suppose the distance between the TOD and the

runway is denoted as L, while flights arrive at the airport following a Poisson distri-

bution with rate λ, as similarly assumed in other studies in the literature (Sölveling

et al., 2011b). We assume that there are N + 1 metering points located along the

trajectory and each metering point is indexed as t, where t = 0, 1, 2, ..., N . The first

and last metering points considered are the TOD and the runway, respectively. We

further denote the location of metering point t by yt as the distance of the metering

point from the TOD, where y0 = 0 and yN = L by definition. The distance between

adjacent metering points is defined as dt, such that dt = yt+1 − yt. We note that we

use t as a superscript in defining the variables dt and yt, as opposed to the subscript

t used for other variables that we define below. This is to distinguish that the former

refers to the initial set of decisions on locations of the metering points, while the

latter corresponds to the future dynamic decisions to be made at each metering point

t. We also note here that a summary of the notation used in the chapter is included

in Appendix B.1.

When a trailing aircraft reaches metering point t, the spacing from the leading

aircraft is measured and denoted as st. Then, a target spacing change ∆t for the next

metering point is issued to the pilot by air traffic control, as the maneuvers are to be

performed by the trailing aircraft only. Due to safety concerns and technical limita-

tions, there are upper and lower bounds for ∆t, denoted as ∆̄t and ∆t, respectively.

As a result of the trajectory uncertainties, the actual spacing realized at metering

point t + 1 is likely to deviate from the target spacing change value ∆t. Based on

previous analyses by Ren (2007) and Chen and Solak (2015), the realized spacing st+1

follows a normal distribution based on the spacing st at the previous metering point

and the issued spacing change command ∆t, such that st+1 ∼ N(µt+1, σt+1), where

µt+1 = ∆t+ st+ gt(st, Dt) and σt+1 = ηtd
t+ ζt. Here gt(st, Dt) = otst+ qtDt+ rt rep-
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resents the random noise of not being able to achieve the desired spacing at the next

metering point due to the uncertainty involved in the trajectory. Defining pt = 1+ ot,

we end up with µt+1 = ∆t + ptst + qtDt + rt. In these representations, ot, pt, qt, rt, ηt,

and ζt are coefficients used to express the mean and standard deviation of the realized

spacing. These spacing change dynamics will continue at all metering points until the

aircraft reaches the runway, where due to wake vortex effects, the air traffic control

authority requires a minimal separation requirement for any given pair of aircraft

which we denote as s̄N .

A key component of optimizing the locations of OPD metering points involves the

definitions of the costs in the modeling framework. These costs relate to maneuvering

actions by the aircraft between metering points during the descent, as well as run-

way utilization measures which quantify the efficiency of the arrival operations. We

describe these cost terms in detail in the following paragraphs.

The optimal metering point location model utilizes three types of cost components

as part of the objective function definition. These are fuel burn costs, costs for

potential violation of minimum spacing requirements, and runway utilization costs as

we describe below. We note that while the costs depend on a given aircraft type i,

the aircraft index is omitted in the following discussions for purposes of clarity in the

presentation.

Fuel Burn Costs. This cost component involves the required fuel consumption

by a trailing aircraft to achieve the desired separation change ∆t at metering point

t + 1 given the current spacing st between two aircraft. Note that these costs differ

significantly for different flight phases, as defined by the altitude of the flight, and

different aircraft types. Our representation of the cost structures for the two flight

phases, namely the cruise and descent phases during the landing process, is based on

the analyses by Nuic (2012). However, the representations by Nuic (2012) are defined

using air speed measures, and need to be transformed into a form that accounts for
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metering point configurations and spacing adjustment decisions. In Appendix B.2 we

show how these transformations are achieved. The final versions of the cost functions

we define for our framework are as follows:

First for the cruise stage costs, we let zt = dt −∆t for t = 0, 1, . . . , Nc, where Nc

is the number of metering points in cruise stage, and define the cruise stage fuel burn

cost fcr(y
t, dt, zt) for a given aircraft type as:

fcr(y
t, dt, zt) = c0(c4 + c2y

t)4.26(zt + c1z
2
t /d

t) + c3
1

(c4 + c2yt)4.26z2t

[
(dt)4/zt + c1(d

t)3
]

(4.1)

where cl, l = 0, 1, . . . , 12, are constants defined by Nuic (2012), some of which are

utilized in the relationships to follow. It is important to note that the values of cl

differ for each aircraft type.

The descent fuel burn cost fd(y
t, dt, zt), on the other hand, can be defined for

t = Nc + 1, . . . , N − 1 as fd(y
t, dt, zt) = max{fnom(yt, dt, zt), fmin(yt, dt, zt)}, where

fnom(y
t, dt, zt) = c11

[
(dt)2/zt + c12d

t
][
c5 + c6y

t + c7(y
t)2 + c8(y

t)3
]

(4.2)

fmin(y
t, dt, zt) = (c9 + c10y

t)(dt)2/zt (4.3)

Here fnom(y
t, dt, zt) is the nominal fuel flow for the descent stage, while fmin(y

t, dt, zt)

corresponds to the fuel burn with idle thrust. When the aircraft approaches the

runway, the thrust is typically higher than idle thrust. The fuel flow computation for

the descent stage is based on the nominal fuel flow, but this can not be less than the

cost with idle thrust.

Cost of Violation of Spacing Requirements. Costs for violation of minimum

spacing are used to ensure that the risk of separation requirement violation as a result

of spacing change commands is minimized. This cost, defined as fc(st), is evaluated

based on the very large cost of aircraft colliding with each other and the probability
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of a collision given a spacing st between two aircraft. In this representation, the

cost of a collision is approximated using the mean aviation accident costs in the U.S.

from 1994 to 2001 as studied by Sobieralski (2013). The spacing based probability

distributions for collisions, on the other hand, are developed by Blom et al. (2001)

based on a multi-year study of en-route traffic. This cost function is assumed to be

the same for all aircraft types. Given these, the overall cost of violating required

separation is defined for an observed spacing st at a metering point t = 1, 2, . . . , N−1

as follows:

fc(st) = 950080e(−2.4st−1.34) (4.4)

Runway Utilization Cost. Runway utilization costs are determined by the d-

ifference between final realized spacing and minimal separation at runway, as de-

fined by Sölveling et al. (2011b), and can be approximated in a linear fashion as

fr(sN) = max{0, 72.3(sN − s̄N)}. In this representation, s̄N is the minimal separation

defined by the air traffic control authority to ensure safety between two given air-

craft types due to wake vortex effects. Hence, s̄N varies based on the pair of aircraft

considered.

4.2.2 Model Formulation

Having defined the model inputs and the cost components involved, in this section

we describe our multi-stage stochastic programming model where decisions on the

locations of the metering points and spacing adjustments are made in a sequential

manner.

First, we model the trajectory uncertainty by considering stochastic deviation

parameters based on the variance of realized spacings at each metering point. More

specially, as noted in Section 4.2.1, we assume that, given current spacing st and

the target spacing change ∆t at metering point t, the realized spacing at metering

point t + 1 follows a normal distribution such that st+1 ∼ (µt+1, σt+1), where µt+1 =
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∆t+ ptst+ qtd
t+ rt and σt+1 = ηtd

t+ ζt. The uncertainty along the trajectory can be

modeled through the deviations from the mean realized spacing value µt+1. With a

slight abuse of notation, we represent the realized spacing as st+1 = µt+1+ηtd
t+ζt, and

consider stochastic realizations of ηt and ζt in defining the scenarios for the stochastic

programming model. Let Ψ be the set of all possible scenarios of realized spacing

values with each scenario denoted as ψ, ψ = 1, . . . ,M , where M is the number of

scenarios in the set Ψ. We can then define the corresponding deviation value for a

given scenario ψ as ηψtd
t + ζψt , where ηψt and ζψt vary for each scenario. We further

denote the corresponding probability for each scenario as ρψ.

Given the above scenario definitions, the stochastic programming model to identify

the optimal locations of metering points can be expressed as follows:

min
∑
ψ

ρψ

[ Nc∑
t=0

fcr(y
t, dt, zψt ) +

N−1∑
t>Nc

fd(y
t, dt, zψt ) +

N−1∑
t=1

fc(s
ψ
t ) + fr(s

ψ
N)

]
(4.5)

s.t.

∆t ≤ ∆ψ
t ≤ ∆̄t ∀t : t ̸= N (4.6)

sψt+1 − (∆ψ
t + pts

ψ
t + qtd

t + rt) = ηψtd
t + ζψt ∀t, ψ : t ̸= N (4.7)

yt + dt = yt+1 ∀t : t ̸= N (4.8)

y0 = 0, yN = L (4.9)

zψt = dt −∆ψ
t ∀t, ψ : t ̸= N (4.10)

∆ψ
t = ∆ψ′

t ∀t, ψ, ψ′ : t ̸= N,ψ < ψ′,Rt
ψψ′ = 1 (4.11)

yt ≥ 0, dt ≥ 0, sψt ≥ 0, zψt ≥ 0 ∀t, ψ (4.12)

With the number of metering points N known, the formulation involves a multi-

stage decision structure with N + 1 stages for a given aircraft pair as described in

the algorithmic representation in Section 4.3.2. In the first stage, the locations of

these metering points, defined by the distance yt, t = 0, 1, . . . , N , are identified. The
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later stage decisions consist of dynamic spacing adjustments for each metering point t,

based on the observation of the realized deviation from the expected spacing between

the given aircraft pair, denoted by ηψtd
t + ζψt for scenario ψ. Costs are incurred

due to the spacing adjustments and potential violations of separation requirements

as described in Section 4.2.1. The number of metering points determines the number

of stages in the model, as the dynamic spacing adjustment procedure continues until

the aircraft arrives at the runway. A final spacing sψN is observed for each scenario

ψ in the last stage, and the corresponding runway utilization costs can be calculated

according to the difference between sψN and the minimal spacing requirement on the

runway. It should be emphasized that the first stage decisions are the main relevant

decisions in the model, as the overall goal is to identify the optimal locations based

on possible spacing adjustment scenarios.

For a more specific description of the formulation, we note that function (4.5)

refers to the objective function where the expectation of all the costs introduced

in Section 4.2.1 are minimized over all the scenarios. Constraints (4.6) define the

lower and upper bounds for the spacing adjustments as defined by aircraft dynamics.

Constraints (4.7) are introduced to describe the deviation along the trajectory. On

the left hand side, sψt+1− (∆ψ
t + pts

ψ
t + qtd

t+ rt) is the difference between the realized

spacing and the expected spacing. This deviation corresponds to ηψtd
t + ζψt for a

given scenario, as defined by the right hand side of constraints (4.7). Constraints (4.8)

define the distance between metering points t and t+ 1 as dt, while constraints (4.9)

identify the locations of the first and last metering points as the top of descent and

the runway, respectively. Constraints (4.10) define the auxillary variables zψt , while

constraints (4.11) are the nonanticipativity constraints, which impose the condition

for two scenarios ψ and ψ′ that if they share the same history at metering point t,

then they should have the same spacing adjustment value for that metering point in

the solution. To this end, we introduce the indicator Rt
ψψ′ , where Rt

ψψ′ = 1 if ψ and ψ′
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share the same history at metering point t. We further note that, if constraints (4.11)

are satisfied for a given pair of scenarios, then all the other variable values for the two

scenarios will be the same. The proof for this property is included in Appendix B.3.

Finally, constraints (4.12) represent all the nonnegativity requirements. Note that

∆ψ
t is confined by bounds, but its value can be negative, which would imply that the

spacing at the next metering point needs to be decreased with respect to the current

spacing.

While the above formulation represents the OPD metering point location optimiza-

tion problem, it is a nonconvex nonlinear optimization problem as the cost functions

involve complex products of multiple decision variables. Hence, in the next section,

we aim at convexifying this problem through the linearization of several bilinear terms

for computational tractability.

4.2.3 Convex Reformulation of the Problem

In this section, we develop a convex reformulation of problem (4.5)-(4.11) through

a series of steps that involve piecewise linearization of bilinear terms.

First, we note for the above stochastic formulation that all the constraints are lin-

ear. Thus, the objective function (4.5) determines the convexity of the problem. The

fuel burn cost functions fcr(y
t, dt, zψt ), fnom(y

t, dt, zψt ) and fmin(y
t, dt, zψt ) are noncon-

vex in the decision variables yt, dt, and zψt , as can be observed through their inclusion

of products of these variables. Our approach to deal with this issue involves trans-

forming these expressions through expressions with only bilinear terms, which are

then approximated through piecewise linear terms.

For the cruise stage fuel cost functions represented by equation (4.1), we introduce

four new nonnegative variables Pt, Q
ψ
t , R

ψ
t and V ψ

t , and define them as Pt = (c4 +

c2y
t)4.26, Qψ

t = zψt + c1(z
ψ
t )

2/dt, Rψ
t = 1

(c4+c2yt)4.26(z
ψ
t )

2
, and V ψ

t = (dt)4/zψt + c1(d
t)3.

The cruise stage fuel costs can then be expressed through these four variables, by also
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adding the following inequality constraints to the model: Pt ≥ (c4 + c2y
t)4.26, Qψ

t ≥

zψt + c1(z
ψ
t )

2/dt, Rψ
t ≥ 1

(c4+c2yt)4.26(z
ψ
t )

2
, and V ψ

t ≥ (dt)4/zψt + c1(d
t)3. It can be shown

that, given the minimization objective, the model with these relaxed constraints will

provide the same solutions as the original one. Furthermore, these relaxed constraints

constitute convex constraints for the model. Details of the proof of convexity for all

constraints are provided in Appendix B.3. Thus, the cruise fuel burn cost function

can be written using the summation of two bilinear terms as:

fcr(Pt, Q
ψ
t , R

ψ
t , V

ψ
t ) = c0PtQ

ψ
t + c3R

ψ
t V

ψ
t (4.13)

Similarly, for the descent stage fuel cost functions (4.2) and (4.3), we define four

new variables asXψ
t = (dt)2/zψt +c12d

t,Wt = c5+c6y
t+c7(y

t)2+c8(y
t)3, Ft = c9+c10y

t

and Gψ
t = (dt)2/zψt . Using these new variables, the descent stage fuel burn cost

functions can be expressed as:

fd(Ft, G
ψ
t , X

ψ
t ,Wt) = max{FtGψ

t , c11X
ψ
t Wt}, (4.14)

after adding the following constraints to the model: Xψ
t ≥ (dt)2/zψt + c12d

t, Wt ≥

c5+c6y
t+c7(y

t)2+c8(y
t)3, Ft ≥ c9+c10y

t, and Gψ
t ≥ (dt)2/zψt . Again, these constraints

are convex as shown in Appendix B.3.

While the complex expressions in the objective are defined in a more compact

form based on summations of several bilinear terms through these transformations,

this is still problematic, as the bilinear terms are also nonconvex. In the next section,

we show how we can approximate these bilinear terms using piecewise linearization

techniques.

4.2.3.1 Approximation of Bilinear Terms

For the linear approximation of the bilinear terms, we first build a two dimensional

grid with the axes corresponding to the values of the two variables involved in the
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bilinear terms, and then approximate the values of the bilinear term over this grid

using adjacent four intersection points. Taking PtQ
ψ
t as an example, we utilize a

two dimensional grid where the axes correspond to the values of Pt and Qψ
t . Note

that while we demonstrate the approximation procedure for PtQ
ψ
t only, it is applied

to other bilinear terms in a similar manner. Let the upper and lower bounds of Pt

and Qψ
t be P t, P t, Qt and Q

t
, respectively. We discretize Pt and Qψ

t into S and T

intervals respectively to form the grid. Furthermore, we introduce auxiliary variables

πt,ψ1,m,n,m = 1, . . . , S, n = 1, . . . , T and two specially ordered set of type 2 (SOS2)

variables αt,ψ1,m and βt,ψ1,n. Letting the variable PQψ
t correspond to an approximation of

the value of PtQ
ψ
t , we can approximate the bilinear term PtQ

ψ
t through the following

set of constraints:

∑
m,n

πt,ψ1,m,n = 1 ∀t, ψ : t ≤ Nc (4.15)

Pt =
∑
m,n

(
P t + (P t − P t)

m− 1

S

)
πt,ψ1,m,n ∀t, ψ : t ≤ Nc (4.16)

Qψt =
∑
m,n

(
Q
t
+ (Qt −Qt)

n− 1

T

)
πt,ψ1,m,n ∀t, ψ : t ≤ Nc (4.17)

PQψt =
∑
m,n

(
P t + (P t − P t)

m− 1

S

)(
Q
t
+ (Qt −Qt)

n− 1

T

)
πt,ψ1,m,n ∀t, ψ : t ≤ Nc (4.18)

αt,ψ1,m =
∑
n

πt,ψ1,m,n ∀t,m, ψ : t ≤ Nc (4.19)

βt,ψ1,n =
∑
m

πt,ψ1,m,n ∀t, n, ψ : t ≤ Nc (4.20)

αt,ψ1,m, β
t,ψ
1,n ∈ SOS2 ∀t,m, n, ψ : t ≤ Nc (4.21)

πt,ψ1,m,n ≥ 0 ∀t,m, n, ψ : t ≤ Nc (4.22)

We refer to the set of constraints (4.15)-(4.22) as PQψ. Similarly, we can approximate

the other bilinear terms, Rψ
t V

ψ
t , FtG

ψ
t and Xψ

t Wt through this procedure, and obtain

similar sets of constraints, which we denote by RVψ,FGψ and XWψ for ψ ∈ Ψ.
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4.2.3.2 Summary of the Convex Reformulation of the Model

After expressing the objective function as a sum of several bilinear terms and

further piecewise linearization of these bilinear terms as described above, we can

express the overall convex reformulation of the metering point location optimization

model as follows:

min
∑
ψ

ρψ

[ Nc∑
t=0

(c0PQ
ψ
t + c3RV

ψ
t ) +

N−1∑
t>Nc

Zψ1t +

N−1∑
t=1

950000e(2.4s
ψ
t −1.34) + Zψ2

]
(4.23)

s.t.

(4.6)− (4.12)

Zψ1t ≥ FG
ψ
t , Zψ1t ≥ c11XW

ψ
t ∀t, ψ : Nc < t < N (4.24)

Zψ2 ≥ 72.3(sψN − s̄N ), Zψ2 ≥ 0 ∀ψ (4.25)

Pt ≥ (c4 + c2y
t)4.26, Qψt ≥ z

ψ
t + c1(z

ψ
t )

2/dt ∀t, ψ : t ≤ Nc (4.26)

Rψt ≥
1

(c4 + c2yt)4.26(z
ψ
t )

2
, V ψt ≥ (dt)4/zψt + c1(d

t)3 ∀t, ψ : t ≤ Nc (4.27)

Ft ≥ c9 + c10y
t, Wt ≥ c5 + c6y

t + c7(y
t)2 + c8(y

t)3 ∀t : Nc < t < N (4.28)

Xψ
t ≥ (dt)2/zψt + c12d

t, Gψt ≥ (dt)2/zψt ∀t, ψ : Nc < t < N (4.29)

Pψt , Q
ψ
t , PQ

ψ
t , α

t,ψ
1,m, β

t,ψ
1,n, π

t,ψ
1,m,n ∈ PQ

ψ ∀t,m, n, ψ : t ≤ Nc (4.30)

Rψt , V
ψ
t , RV

ψ
t , α

t,ψ
2,m, β

t,ψ
2,n, π

t,ψ
2,m,n ∈ RV

ψ ∀t,m, n, ψ : t ≤ Nc (4.31)

Fψt , G
ψ
t , FG

ψ
t , α

t,ψ
3,m, β

t,ψ
3,n, π

t,ψ
3,m,n ∈ FG

ψ ∀t,m, n, ψ : Nc < t < N (4.32)

Xψ
t ,W

ψ
t , XW

ψ
t , α

t,ψ
4,m, β

t,ψ
4,n, π

t,ψ
4,m,n ∈ XW

ψ ∀t,m, n, ψ : Nc < t < N (4.33)

The objective function (4.23) is a convex nonlinear one which includes all the four

cost components mentioned in Section 4.2.1. Zψ
1t is introduced as an auxiliary variable

to represent the descent fuel cost, which is the maximum of two bilinear terms, Fψ
t G

ψ
t

and c11X
ψ
t W

ψ
t . Constraints (4.24) are added to show that Zψ

1t is no less than these

two bilinear terms. Zψ
2 is the other auxiliary variable used to represent the runway
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utilization cost fr(s
ψ
N) = max{0, 72.3(sψN − s̄N)} through constraints (4.25). Further-

more, PQψ
t , RV

ψ
t , FG

ψ
t and XWψ

t are decision variables that are used to approximate

the corresponding bilinear terms, PtQ
ψ
t , R

ψ
t V

ψ
t , FtG

ψ
t , and XtW

ψ
t , respectively. Con-

straints (4.26)-(4.29) include the definition of convex terms introduced in Section

4.2.3. As defined in Section 4.2.3, these constraints should have an equal sign relating

both sides. But in a minimization setting, the greater than or equal to relationship

provides a convex constraint structure, while it also ensures that the constraints will

be tight at optimality. Constraints (4.30)-(4.33) provide all the sets of constraints

that involve the piecewise linear expressions in Section 4.2.3.1 as demonstrated for

PQψ through constraints (4.15)-(4.22).

The above formulation is a nonlinear stochastic integer programming model due

to the existence of SOS2 variables, and can be solved directly to obtain the optimal

metering point locations. However, when the number of metering points considered

is increased, the problem becomes difficult to solve due to its complicated structure.

In the next section, we propose a decomposition technique to allow for improved

tractability in the solution of the model.

4.2.4 Solution Through a Lagrangian Decomposition Procedure

In addition to the computational challenges introduced by the multi-stage struc-

ture in the model, the exponential increase in the number of scenarios as a function

of the number of metering points has a major impact on the tractability of the model.

As an example, for a problem with only five metering points and two levels, i.e. a

low and a high level of realizations of uncertain parameters at each stage, the direct

solution of the model requires more than 24 hours of computational time. When there

are six metering points involved, a solution cannot be obtained in reasonable time.

Hence, we utilize a Lagrangian decomposition scheme that allows for tractability in

such practical instances. This scheme, which we describe in detail below, is based on
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the decomposition implementations discussed by Louveaux and Schultz (2003) and

Solak et al. (2010) with some improvement steps added for our problem structure.

We first convert the problem to a form amenable to Lagrangian decomposition

through a reformulation in which the first stage decision variables are defined separate-

ly for each scenario and nonanticipativity constraints are defined explicitly for these

variables. This involves adding a scenario index to metering point location decisions

dt and yt, and denoting them as dtψ and ytψ. Given that enforcing nonanticipativity

conditions on dtψ will also satisfy nonanticipativity on ytψ, we append the original

formulation only with the following constraints which ensure that the locations of

metering points are the same for all scenarios:

∑
ψ′

ρψ′dtψ
′
= dtψ ∀t, ψ : t ̸= N (4.34)

As part of the overall decomposition approach, we define a Lagrangian dual prob-

lem by relaxing the nonanticipativity constraints (4.11) and (4.34), and then solve this

Lagrangian problem through a modified subgradient algorithm. Due to the existence

of integer variables, the optimal solution of the Lagrangian dual problem provides a

lower bound for the original problem. Using this Lagrangian dual solution, we then

introduce a heuristic procedure to identify a good upper bound, and a near optimal

solution for the original problem can be obtained when the gap between the lower

and upper bounds are sufficiently small in a given iteration.

As noted above, the formulation (4.23)-(4.34) is linked in scenarios through the

nonanticipativity constraints (4.11) and (4.34). We let X = {PQψ
t , RV

ψ
t , Z

ψ
1t, s

ψ
t , Z

ψ
2 },

and define g(X) as the objective function (4.23). By relaxing the nonanticipativity

constraints and including them in the objective function, we then form the following

Lagrangian:

L(X, d,∆, δ, ϕ, ) = g(X)+
∑
t

∑
ψ

δψt
(∑
ψ′

ρψ′dtψ
′−dtψ

)
+
∑
t

∑
ψ

∑
ψ′>ψ|Rt

ψψ′=1

ϕψψ
′

t (∆ψ
t −∆

ψ′

t )

(4.35)
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where δψt and ϕψψ
′

t are the Lagrange multipliers. The benefit of using the described

method is that we can decompose the Lagrangian function by scenarios into small-

scale problems. Thus, we express the resulting Lagrangian (4.35) as L(X, d,∆, δ, ϕ) =∑
ψ Lψ(X, d,∆, δ, ϕ), where

Lψ(X, d,∆, δ, ϕ) = gψ(X) +
∑
t

∑
ψ′

δψ
′

t ρψd
tψ −

∑
t

δψt d
tψ

+
∑
t

∑
ψ′>ψ|Rt

ψψ′=1

ϕψψ
′

t ∆ψ
t −

∑
t

∑
ψ′<ψ|Rt

ψ′ψ=1

ϕψ
′ψ

t ∆ψ
t (4.36)

The derivation of the above decomposed expression is provided in Appendix B.3.

Given this, the corresponding Lagrangian dual problem is then:

max
δ,ϕ
{D(δ, ϕ) = min{

∑
ψ

Lψ(X, d,∆, δ, ϕ) : (4.23)− (4.33), except (4.11)}} (4.37)

As problem (4.37) is a concave maximization problem, we can apply subgradient

methods as described in Hiriart-Urruty and Lemaréchal (2013), which require the

solution of D(δ, ϕ) at each iteration to obtain a subgradient. Given that D(δ, ϕ) is

separable, the dual problem can be reduced to solving M problems of manageable

size, each of which corresponds to a minimization problem for a single scenario. Thus,

the solutions for each subproblem can be obtained and components of the subgradi-

ent vector are then determined by
∑

ψ′ δ
ψ′

t ρψd
tψ − δψt dtψ and

∑
ψ′>ψ|Rt

ψψ′=1 ϕ
ψψ′

t ∆ψ
t −∑

ψ′<ψ|Rt
ψ′ψ=1 ϕ

ψ′ψ
t ∆ψ

t , where dtψ and ∆ψ
t are the optimal solutions of the subproblem

for each scenario ψ.

As a well known property of optimization techniques described by Fletcher and

Reeves (1964) and Powell (1976), a weighted function of subgradients from previous

iterations typically provides better convergence rates to optimal solutions than a

gradient direction. Hence, in order to improve the convergence rate of this solution
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procedure, we propose a modified subgradient algorithm, and calculate a new step

direction for updating the dual variables at iteration j as:

Γ̂j = θ0Γ
j + θ1Γ

j−1 + θ2Γ
j−2 (4.38)

The Γ terms in (4.38) refer to the gradients in each iteration, while the θ terms are

the weights, which sum to 1. The best θ values to use can be determined according

to resulting convergence rates for a given problem. We note through experimental

analysis for our problem that best convergence rates are achieved when the weights

are set as θ0 = 0.8, and θ1 = θ2 = 0.1. Based on this, the updates of the multipliers

for the next iteration are performed in a dynamic procedure as follows:

δj+1 = δj −max{ω
j
,
κ(L̄j − Lj)
∥ Γ̂j ∥

}Γ̂j (4.39)

ϕj+1 = max{0, ϕj −max{ω
j
,
κ(L̄j − Lj)
∥ Γ̂j ∥

}Γ̂j} (4.40)

where ω and κ, κ < 2, are constants that can be updated in each iteration during the

implementation of the algorithm. The values of the above parameters are determined

to ensure larger initial stepsizes which can prevent early convergence to non-optimal

solutions.

The overall implementation includes frequent upper-bound calculations during the

iterations of the algorithm, which can help determine the stepsizes efficiently enough

to improve the convergence rate towards optimal solutions. To this end, we utilize

the Lagrangian dual solutions and perform a heuristic procedure to obtain a feasible

solution for the primal problem, which serves as an upper bound for the optimal

objective value. We describe this heuristic procedure as follows.

We note that since the nonanticipativity constraints are only penalized but not

enforced in the Lagrangian dual solutions, they describe some infeasible metering

configuration. Our heuristic procedure is aimed at finding a feasible solution that can

74



be as close as possible to this infeasible structure. Although the optimal solutions

for the primal problems can be significantly different from the values suggested by

the dual solutions, we can still obtain a ‘good’ metering configuration by converting

the dual solution into a feasible solution by minimal value changes of the decision

variables ∆ψ
t and dtψ in the Lagrangian dual solution. The specific steps of this

procedure are listed in the following algorithmic representation:

Algorithm 4.1 (Obtaining Upper Bounds).

Step 1. Initialization: Let < Xj,∆j, dj, yj >, V j
ψ , and < δj, ϕj > respectively

refer to the solution vector, the objective function value, and the dual values

in the Lagrangian dual problem (4.37) in iteration j of the subgradient

algorithm.

Step 2. Scenario Selection: Let ψ̄ = argminψ V
j
ψ , which corresponds to the

scenario that yields the smallest objective value. If there are multiple such

scenarios, select the one with the smallest index.

Step 3. Variable Fixing: Define < X̂j, ∆̂j, d̂j, ŷj > as a feasible solution

to the primal problem. For each t and ψ, let d̂tψ = d∗tψ̄ and ∆̂ψ
t = ∆∗ψ̄

t ,

where d∗tψ̄ and ∆∗ψ̄
t are the optimal values for scenario ψ̄ selected in Step 2.

Step 4. Solution Generation: For each t and ψ, calculate the values of ẑψt , ŷ
t

and ŝψt as

ẑψt = d̂ψt − ∆̂ψ
t

ŷt+1,ψ = ŷtψ + d̂tψ
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ŝψt+1 = (∆̂ψ
t + ptŝ

ψ
t + qtd̂

tψ + rt) + ηψtd̂
tψ + ζψt

for ŷ0ψ = 0 and ŝψ0 known for all scenarios.

Step 5. Upper Bound: Calculate the upper bound VU provided by this solution

as:

VU =
∑

ψ ρψ

[∑Nc
t=0 fcr(ŷ

t, d̂tψ, ẑψt ) +
∑N−1

t>Nc
fd(ŷ

t, d̂tψ, ẑψt ) +
∑N−1

t=1 fc(ŝ
ψ
t ) + fr(ŝ

ψ
N)

]
.

In Step 1, the upper bounding algorithm is initialized based on the obtained

Lagrangian solutions. In Step 2, we identify the scenario with the minimum objective

value among all scenario solutions in the subgradient iteration, while in Step 3 we

aim at identifying a feasible solution defined as < X̂j, ∆̂j, d̂j, ŷj >. We note that

the key decision variables in the problem are the location of metering points defined

by the distance between metering points dtψ and the target spacing change values

∆ψ
t . After fixing the values of these two variables for each scenario, we can calculate

the values of the other variables through the constraints defined in the formulation.

The combinations of the values of decision variables for each scenario form a feasible

solution for the problem, as the nonanticipativity constraints are satisfied due to fixed

dtψ and ∆ψ
t values. With the value of ŝψt , d̂

tψ and ẑψt known for all scenarios, an overall

objective value can be calculated in Step 5 based on function (4.5), and this objective

value is an upper bound for our problem.

The termination criterion for the overall subgradient algorithm is based on the dif-

ference between the lower and upper bounds calculated. The iterations will continue

until the difference is smaller than a prespecified value ϵS.
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4.3 Exact and Heuristic Approaches for Simultaneous Op-

timization of the Number and Locations of Metering

Points

As mentioned in Section 4.1.1, we devise two approaches to deal with the com-

plicated problem of simultaneous optimization of the number and locations of the

metering points. The first one is an exact approach with significant computational

burden, while the second approach is an approximation procedure with much better

computational efficiency. We describe these two approaches in the following sections,

and later compare their performances in Section 4.4.

4.3.1 Exact Solution of the Overall Problem

Notice that the stochastic programming model developed in Section 4.2 identifies

the optimal locations of the metering points, under the assumption that the number

of metering points is predetermined. As a result, the original problem can be solved

through an enumeration procedure. More specifically, we start from one metering

point and identify the optimal location of the metering point using the two-stage SP

formulation developed. Then we keep adding one additional metering point and find

the optimal locations again, this time using a three-stage version of the SP model,

which should result in lower overall costs. This enumerative procedure continues

until the overall cost cannot be further reduced more than a certain threshold level.

The number of metering points used in the last iteration is then identified as the

optimal number of metering points to deploy, and the corresponding locations in

the solution are the optimal locations for these metering points. The procedure is

repeated for different aircraft pairs, and a weighted optimal location value is generated

by considering the statistical distribution of the ten major types of aircraft as provided

in Appendix B.4. We emphasize here that the optimality in our context is based on

the minimization of expected costs, given the uncertainty in trajectories. Hence, any
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reference to an optimal value in the chapter implies an optimal value in the expected

sense.

The disadvantage of this exact solution procedure is the computational burden it

requires, especially when a larger number of metering points is considered, as each

iteration requires the solution of a large scale stochastic integer programming model.

Further information on computational times of such implementations is provided in

Section 4.4.

4.3.2 An Efficient Heuristic for the Overall Problem

While the enumeration procedure can provide an integrated and exact method

to identify the number and the locations of the metering points together, given the

computational challenges involving the multi-stage SP model with a larger number of

metering points, we propose an effective and a much more efficient heuristic approach

to solve the overall problem.

We achieve this through an algorithmic procedure involving two distinct phases

with different optimization models. The two phases of the algorithm are summarized

in Figure 4.2, and are described in detail in the following paragraphs.

In Phase I, we iteratively search for a near-optimal number of metering points

through a Markov decision process (MDP) model based on Chen and Solak (2015). In

most cases, the near-optimal value identified can turn out to be the optimal number

calculated through the exact enumerative procedure described above, as we later

discuss as part of the numerical results in Section 4.4.

We first note that Chen and Solak (2015) develop a stochastic dynamic program-

ming model to obtain optimal sequencing and spacing policies for arriving aircraft so

that associated maneuvering costs are minimized. The analytical policies derived from

that model are directly applicable when there is a fixed number of metering points

with known locations. We utilize the optimal MDP-based policies in that study in de-
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Figure 4.2. Algorithmic framework to identify the optimal number and locations of
OPD metering points at a given airport.
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termining a near-optimal number of metering points for our problem as follows. The

iterative procedure is implemented by assuming a fixed number of metering points

in each iteration, typically starting with one metering point and then increasing this

number in each iteration, and also assuming that the metering points have equal spac-

ings in between. The near-optimal number of metering points is obtained when the

marginal savings become negligible as a larger number of points is considered. While

the equal spacing assumption appears as a major approximation here, numerical tests

have shown that the relative cost reductions in consecutive iterations follow the same

trend independent of the spacing configuration assumed in the implementations. We

provide a comparison of the solutions from the exact methodology, and through the

MDP-based policies under this assumption in Section 4.4.

In each iteration of the first phase of the algorithm, we solve the MDP model for

the given aircraft mix by considering all possible pairs of aircraft types, and obtain

the expected savings for the corresponding number of metering points. We stop after

identifying a sufficiently ‘good’ number of metering points as described above, and

use that as input for the second phase of the algorithm.

In Figure 4.2, we present the steps of Phase I of the algorithm in a more detailed

way. In Step I.1, we first set the arrival rate λ, where the arrivals are assumed to

follow a Poisson distribution. We note here that through examining arrival data of

nine major airports in the U.S., Willemain et al. (2004) conclude that the flight entry

times into terminal spaces can be modeled as a near-Poisson process. Then in Step

I.2, we start by initially considering a single metering point, i.e. by setting N = 1,

and initializing the savings value as S0 = 0. Next, an aircraft pair based on the fleet

type distribution at the airport is generated in Step I.3. For this given aircraft pair, in

Step I.4 we solve the MDP-based optimal spacing problem. All the possible aircraft

pairs are considered as part of the implementation, and in Step I.5 we obtain the

expected savings over all the aircraft pairs. If the savings are sufficiently larger than
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the savings obtained with one less metering point, we continue adding one more point

and return to Step I.3. Otherwise, as the last step, in Step I.6 we set the near-optimal

number of points as the current number of metering points.

In Phase II of the algorithm, we use this given number of metering points and

solve a multi-stage stochastic program (SP) to identify the optimal locations for these

points based on a cost minimization objective, as outlined in Figure 4.2. As part of

the implementation, we again consider all aircraft pairs through Step II.1, and solve

the SP model in Step II.2 for each aircraft pair with randomly generated initial

spacing values. After the optimal locations of metering points for each aircraft pair

are obtained, the ideal locations are calculated in Step II.3 using weights based on

the probability of occurrence for each aircraft pair.

4.4 Numerical Results and Practical Implications

In this section, we implement our models and algorithms on two major airports in

the U.S., for which we determine the optimal or near-optimal metering configurations

and the corresponding fuel savings. We then use these findings to estimate the impact

of the proposed metering configurations on the top ten major airports in the U.S.

We also perform sensitivity analyses to study how the cost savings through optimal

configurations vary over different arrival rates and different pairs of aircraft types.

4.4.1 Experimental Setup

We perform our numerical studies on two major airports, namely ATL and LAX,

which serve as representatives for the busiest OPD airports in the U.S. OPD trajec-

tory data is available for these two airports as OPD has been fully accommodated

at LAX while field tests have been implemented at ATL (Clarke et al., 2008; Strater

et al., 2010). In our simulations, we do not alter the trajectories that the aircraft cur-

rently use for OPD arrivals, but rather consider alternative metering point locations
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along the trajectory to minimize associated fuel burns costs during descent. Flight

arrival time distributions, as well as the distance from TOD to runway are similar for

both ATL and LAX. The main differences between the simulations involving these

two major airports are current metering point configurations and the aircraft type

distributions, which vary for each airport. The wind fields around the two airports

are also similar based on wind data recorded between 2006 and 2016 (Windfinder,

2016). The angular differences between the dominant wind directions and the runway

fall between 30-degrees and 45-degrees for both airports, and the average wind speed

in each month is between 8 and 10 miles per hour. Given that the relevant cost

components differ according to aircraft type, and that the separation requirements

for different aircraft pairs vary, the flight distribution is likely to have an effect on the

optimal metering point configurations, as well as the relative value generated by the

optimization procedure.

We assume that aircraft arrivals follow a Poisson distribution, as noted earlier. For

analysis purposes, three different arrival rates, namely 20, 30 and 40 flights/hour are

considered, representing low, medium and high traffic scenarios for an airport. For

each case, the flight arrival times are randomly generated in a one-hour interval based

on the Poisson distribution assumption. Fleet mix for arriving aircraft at each airport

is assumed to consist of ten major types of aircraft, where their statistical distribution

is obtained from historical data as shown in Appendix B.4. For the sequencing of

flights in the simulations, FCFS policy is assumed as in the current practice, and 120

replications are performed for each arrival rate.

As described in Section 4.3, we first compare the performances of the exact and

the heuristic approaches proposed. After noting through this comparison that the

heuristic approach is very effective and efficient, we conduct the remaining analyses

using this approximation procedure as the main methodology.
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(a) Relative fuel burn savings as a function of
number of metering points at ATL.
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(b) Relative fuel burn savings as a function of
number of metering points at LAX.

Figure 4.3. Comparison of exact and heuristic solution approaches.

4.4.2 Comparison of the Exact and Heuristic Solution Approaches for

the Overall Problem

Notice that both the exact and heuristic procedures aim to identify the optimal

number of metering points as the first decision in the implementations. The exact

procedure achieves this by considering the optimal objective function value of the

stochastic program under different numbers of metering points, and identifying the

number where the reduction in costs, or increase in savings, is negligible. The heuristic

procedure is based on a similar iterative concept, but utilizes a very fast MDP-based

policy to estimate the optimal number of metering points to use. Given the differences

in model structures, the cost or saving values in the heuristic and the exact methods

are not based on the same scale. Hence, for a fair comparison of the rates of change

in the objective values, we standardize these values and study the change in relative

savings under the two approaches.

In Figures 4.3(a) and 4.3(b), we provide these relative fuel burn savings as a

function of the number of metering points for both ATL and LAX using an arrival

rate of 30 flights/hr for demonstration purposes. The relative savings under each case

are calculated as follows. We first define the baseline cost as the fuel burn cost with
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the current metering configuration at each airport utilizing the optimal sequencing

and spacing rules as proposed by Chen and Solak (2015). The curve labeled as ‘SP’

corresponds to the results for the exact approach, while the curve labeled as ’MDP’

refers to the results for the heuristic approach.

In addition, we calculate a third relative savings curve by using the optimal loca-

tion information from the stochastic programming model used in the exact procedure,

but calculating the savings using the MDP-based optimal policies derived by Chen

and Solak (2015). The difference between this curve, labeled as ‘SP+MDP’, and the

heuristic curve is that the latter assumes equal spacings between metering points,

while the former uses the optimal locations obtained through the stochastic program-

ming implementation. In other words, the ‘SP+MDP’ curve can be seen as the ‘true’

value of the results obtained through the exact approach if optimal MDP-based poli-

cies were to be utilized for sequencing and spacing OPD arrivals.

We first observe in Figures 4.3(a) and 4.3(b) that if we utilize the criterion that the

optimal number of metering points can be identified as the point where the marginal

savings are negligibly minimal, i.e. less than 2% in our implementations, then we

can find that the optimal numbers of metering points are 8 for ATL and 7 for LAX

under all three cases. Moreover, the relative savings curve for the heuristic procedure

is generally a good approximation for the ‘true’ value curve, as the rates of change

are relatively close. While such similarity is not as evident for the ‘SP’ curve, the fact

that the optimal or estimated optimal number of metering points is the same under

all settings is an indication of the effectiveness of the heuristic procedure.

On the other hand, the actual value of the heuristic procedure is its computa-

tional efficiency. This is because the MDP problems used to identify the optimal

number of metering points in the heuristic approach are solved by the analytical so-

lutions proposed by Chen and Solak (2015), and the computational time is negligible

as the problems can be easily solved by a spreadsheet based tool. The computa-
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Figure 4.4. Identification of optimized number of OPD metering points at ATL and
LAX based on simulations under different arrival rates.

tional difficulty is mainly due to the multi-stage stochastic program. For efficiency

comparisons of the two approaches, we implemented our simulations on a computer

with 8 gigabytes of system memory and recorded the computational time of both

exact and heuristic approaches for the two airports considered. The computational

times of the exact and heuristic approaches for ATL were 21.3 hours and 2.7 hours

respectively, and the times for LAX were 7.5 hours and 1.2 hours respectively. Hence,

the heuristic provides on average a savings of 84% in terms of computational time,

while identifying the same solutions as the exact procedure.

4.4.3 Estimated Savings due to Optimized Metering Point Configurations

As described above, we implement our algorithmic framework based on OPD im-

plementations at ATL and LAX, and determine estimated savings values that can be

achieved through the use of near-optimal metering configurations, calculated through

the approximation approach devised.

Based on implementations of Phase I of the algorithm, the cost savings per flight

for each arrival rate under different numbers of metering points are shown in Figure

4.4 for the two airports, where the near-optimal numbers are also shown. These cost
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savings values, which help determine the near-optimal number of metering points,

are calculated as follows. Chen and Solak (2015) provide a cost-minimization based

sequencing rule to schedule arriving aircraft at the merging point and an optimal

spacing rule to determine the separation between two consecutive aircraft at a given

metering point. They also define a baseline sequencing and spacing policy by as-

suming a case where FCFS sequencing policy is implemented and the target spacing

values between two consecutive aircraft at the metering points are equal to the min-

imal separation requirements enforced by ATC and varied based on aircraft weight

class. Expected savings for all possible pairs of aircraft are then obtained separately

by comparing the baseline fuel costs with those under the optimal OPD spacing and

sequencing policies. Once the estimated savings are obtained for each possible pair of

aircraft, the overall expected savings are then calculated using the statistical distri-

butions of the aircraft types provided in Appendix B.4. Note, while the savings are

calculated separately for each pair of aircraft, when implementing the simulation, the

interaction between consecutive aircraft pairs is taken into account as follows. Once

the target spacing changes for preceding aircraft are issued, the spacings between the

following aircraft will be updated with these spacing change values. As expected, the

estimated savings increase as the number of metering points increase for both airport-

s, but the marginal savings value for each additional metering point decreases and

eventually becomes negligible. We identify the optimal number of metering points as

the point where the marginal savings are negligibly minimal, i.e. less than 1% in our

implementations. Based on this setting, the results indicate that the optimal number

of metering points for ATL and LAX are 8 and 7, respectively. Using ATL as an ex-

ample, in Figure 4.4(a), we find that when the arrival rates are 30 and 40 flights/hr,

the optimal number is 8, while 7 metering points are sufficient to achieve termination

criteria for the rate of 20 flights/hr. Given that an additional metering point for the

latter case implies a negligible but nonnegative change in the savings, for the overall
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Table 4.1. Ideal locations of OPD metering points at ATL.

Metering point (t) t1 t2 t3 t4 t5 t6 t7 t8

Distance from TOD in nm (yt) 10.2 18.1 28.6 40.3 49.7 87.8 127.4 150

Table 4.2. Ideal locations of OPD metering points at LAX.

Metering point (t) t1 t2 t3 t4 t5 t6 t7

Distance from TOD in nm (yt) 8.5 23.2 56.9 80.6 110.4 128.3 150

setup, 8 metering points represent the ideal configuration for ATL. The findings for

LAX are shown in Figure 4.4(b), where the optimal number is 6 for the arrival rate

of 20 flights/hour and 7 for the other two arrival rates considered. Thus, it can be

concluded that 7 metering points are sufficient to achieve the maximum savings for

LAX.

With the number of metering points determined, the optimal metering locations

for each possible aircraft pair are obtained next as part of Phase II using the stochastic

programming framework described in Section 4.2.3.2. The optimal metering locations

over all aircraft pairs are then calculated through a weighted representation based on

the probability of the aircraft types provided in Appendix B.4. The optimal metering

point locations identified for ATL and LAX through this procedure are shown in

Tables 4.1 and 4.2, as well as by the visual representations in Figure 4.5. It can

be observed for ATL that the first five metering points are more closely distributed

and the distances between them are around 10 nm. The remaining ones have larger

distances from each other. This implies that higher levels of traffic control are more

beneficial at higher flight levels for ATL. For LAX, on the other hand, the metering

points are more closely distributed at the very beginning and the very end of the

descent, as the first two and the last three metering points are located closely.

After finding the ideal locations of the metering points, a comparison is performed

between the setup with the optimized metering point locations and the one with

current practice shown in Appendix A.5. As described above, we apply the optimal
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(a) Proposed approach configuration at ATL.
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(b) Proposed approach configuration at LAX.

Figure 4.5. Approach configurations and location information for proposed metering
points at ATL and LAX.

sequencing and spacing rule proposed by Chen and Solak (2015) to both setups and

compute the fuel savings with respect to the baseline spacing and sequencing policies

for each airport. The difference between the savings under the two cases is the

additional value brought by optimizing the metering point configurations. The specific

calculation is first performed for each pair of aircraft. Once the value of metering

optimization is obtained for all pairs of aircraft, the expected values are again obtained

using the distribution of aircraft types provided in Appendix B.4. This obtained value

is then multiplied with the estimated annual number of OPD arrivals to provide the

potential annual value that can be achieved at ATL and LAX through metering point

optimization. We find that the optimal configurations result in an increased savings

of up to $23/flight for ATL and $19.7/flight for LAX, when compared with current

metering configurations. These imply potential annual savings of $3.8 million at ATL

and $2.2 million at LAX based on the estimated annual number of OPD operations at

these airports. These savings values have significance for airports and airlines, which

we discuss further in Section 4.4.6.
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(a) Ideal locations of OPD metering points at
ATL for different arrival rates.
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Figure 4.6. Optimized locations of OPD metering points at ATL and LAX under
different arrival rate considerations.

4.4.4 Sensitivity Analysis over Different Arrival Rates

In this section, we look at how the optimal locations of metering points and the

corresponding saving values change over different arrival rates. The rates of 20, 30

and 40 flights/hour are utilized for analysis purposes.

In Figure 4.6, the optimized locations of metering points are depicted as nodes

with different shapes over different arrival rates for both ATL and LAX. We observe

that the ideal metering locations vary over different arrival rates, with somewhat

larger variations observed for ATL when compared with that of LAX. For a more

quantitative analysis, for each metering point we consider the difference between

the maximum and minimum distance from the TOD over the three arrival rates.

Considering this deviation as a measure of variation in the optimal metering point

locations over different arrival rates, we find that the mean deviation is around 4 nm

for ATL, while the corresponding value for LAX is lower at 1.5 nm. On the other hand,

the maximum deviations for any given metering point are observed to be 9 nm and

4 nm for ATL and LAX, respectively. Considering that the total distance from the

TOD to the runway is around 150 nm, the deviations of optimal metering locations

for different arrival rates do not appear to be too significant. Hence, we can conclude

89



20 30 40
22

22.5

23

23.5

24

24.5

25

Arrival rate [flights/hour]

F
ue

l s
av

in
gs

 [$
]

(a) Savings by optimizing metering point location-
s for ATL over different arrival rates.

20 30 40
19.5

20

20.5

21

Arrival rate [flights/hour]

F
ue

l s
av

in
gs

 [$
]

(b) Savings by optimizing metering point loca-
tions for LAX over different arrival rates.

Figure 4.7. Savings by optimizing metering point locations over different arrival
rates.

that the optimal metering point locations are not so sensitive to the arrival rate of

flights. Note that an arrival process at an airport during a day can be approximated

as a non-homogeneous Poisson process where the arrival rates can vary during the

day, our results thus indicate that the proposed metering point configurations can be

very robust for practical applications. In addition, we also observe that the spacing

between the initial five metering points tends to decrease as the arrival rate increases.

This implies that earlier spacing adjustments near TOD are of more value for larger

volumes of traffic.

We also consider the per aircraft savings over different arrival rates for both ATL

and LAX. We display in Figure 4.7 the additional fuel savings generated by metering

point optimization with respect to current airport metering configurations assumed.

It can be observed that the saving values at ATL, with a range between $23 and $24.2

per flight, are higher than those at LAX, with a range between $19.7 and $20.6. For

both airports, as the arrival rates increase, the additional value brought by metering

optimization decreases.
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Figure 4.8. Optimized metering point locations for sample aircraft pairs.

4.4.5 Sensitivity Analysis over Different Aircraft Types

In this section, we look at the ideal locations for different aircraft pairs and inves-

tigate how these locations vary from the weighted locations proposed for the overall

system. The aircraft types that we consider for this analysis, namely CRJx, B752,

B737 and B763, represent varying degrees of frequency within the aircraft types oper-

ating at ATL as shown in Appendix B.4. For these aircraft types, we consider three

pairing situations: CRJx trailing B752, B752 trailing B737, and B737 trailing B763.

We then perform simulations for each pair considered, and identify the corresponding

ideal metering locations. These locations are compared with the metering configura-

tion proposed for the overall system, which considers all aircraft pairs in a weighted

form based on their observed frequencies.

We observe in Figure 4.8 that the ideal locations for the sample aircraft pairs

have some differences from the weighted optimal metering locations proposed for

all aircraft pairs. However, these differences do not appear to be in magnitudes

that might result in significant differences in value. For the case of CRJx trailing

B752, the mean deviation from the weighted optimal metering locations is around

1.2 nm with the maximum deviation of 3.1 nm occurring at metering point t6. For

the case of B752 trailing B737, the mean deviation is 0.9 nm and the maximum
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Table 4.3. Benefit analysis for top 10 traffic volume airports.

Airport
Code

Location
Estimated Daily
OPD Flights

Annual Total
Saving($)

ATL Atlanta, GA 459 3,300,460
ORD Chicago, IL 437 3,139,032
DFW Dallas, TX 321 2,310,355
DEN Denver, CO 315 2,267,066
LAX Los Angeles, CA 300 2,157,150
IAH Houston, TX 263 1,889,557
CLT Charlotte, NC 268 1,928,294
PHL Philadelphia, PA 223 1,600,699
EWR Newark, NJ 207 1,490,040
PHX Phoenix, AZ 229 1,650,207
Total 3,022 $21,732,860

deviation is 2.3 nm at metering point t5. For the case of B737 trailing B763, the

mean absolute deviation is 3.9 nm, which is a bit larger than the previous cases.

The maximum deviation in this case occurs at metering point t7 at a value of 8.4

nm. Overall, comparing the three cases, the first two cases have smaller deviations

towards the weighted optimal metering configuration. The third case, although with

greater values of deviation, is still not so significant, especially in light of the 150 nm

distance assumed between the TOD and the runway. Furthermore, the probability

associated with one specific aircraft pair is generally small, implying smaller impacts

by individual pairs to the overall weighted metering locations. Thus, these findings

show a certain degree of robustness in the proposed metering point configurations in

terms of the value generated under different operating conditions.

4.4.6 Generalization to Other Airports

Based on our findings for ATL and LAX, we also develop estimates for the ex-

pected total value of metering point optimization for the top 10 major airports in

the U.S. under the assumption that OPD is fully implemented at these airports. For

our analysis, we note that LAX is one of the few airports that have such full im-

plementation. Approximately 36% of all arrival operations at LAX are performed

through OPD, which corresponds to around 300 OPD flights per day. An estimated

92



savings value due to metering point optimization can be calculated for major airports

by assuming that the other airports would have a similar ratio of OPD arrivals as

LAX. This results in the estimated number of daily OPD flights shown in Column 3

of Table 4.3 for each airport. If we use the lower per-flight savings value estimated

for LAX as a reference savings value for the other major airports, then the annual

savings for these airports can be obtained by multiplying the annual number of OPD

flights with the per-flight savings value. Based on these calculations, the total annual

savings due to metering optimization for the top 10 major airports can be estimated

to be around $21.7 million as shown in Table 4.3.

In addition to this analysis, we develop value estimates for other airports based

on a categorization proposed by Formosa (2009). This categorization assumes three

groups of airports, referred to as categories A, B, and C. Categories A and B re-

spectively correspond to airports with high and moderate expected relative benefits

from OPD, respectively. Category C, on the other hand, refers to those which are

equipped and ready for OPD implementation, but are not considered in Categories A

and B. The estimated fuel savings for airports in these categories, which are calculated

similar to the procedure described above, are provided in Appendix B.5.

The estimated annual savings of $21.7 million, or around $19.7 per aircraft, can

be viewed as being substantial for the airline industry given the low profit margins

in this sector. In Table 4.4, we provide the net income of top seven airlines in

the U.S. based on the profitability information from year 2009 to 2013 (DOT, 2013;

AirlineFinancials, 2014). We further compute the potential impact of the savings

on the net income under the assumption that approximately one third of the flights

would use OPD arrivals. Based on this assumption, the average impact due to the

optimized metering configurations can be up to 1.2%. It is observed that although

airlines have been performing relatively well with relatively higher net incomes over

the recent years, the optimal metering configurations can still provide more than 0.5%
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Table 4.4. Estimated potential impact of proposed policy savings on net airline
income over 2009-2013.

Airline

2009 2010 2011 2012 2013
Net

income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

United -421.2 1.6 1957.0 0.3 2374.1 0.3 1367.3 0.5 955.0 0.7

Delta 449.6 1.5 2430.0 0.3 2002.3 0.3 2009.6 0.3 1785.2 0.4
Ameri-
can

-467.4 1.4 47.8 13.7 -707.9 0.9 245.4 2.7 1483.9 0.4

US
Airways

479.5 1.4 1257.1 0.5 788.9 0.8 1134.0 0.6 1675.9 0.4

South-
west

246.2 2.7 907.2 0.7 604.3 1.1 732.2 0.9 958.2 0.7

JetBlue 1006.8 0.7 1112.1 0.6 989.0 0.7 1052.2 0.6 1138.1 0.6

Alaska 1341.4 0.5 2043.6 0.3 2219.4 0.3 2326.3 0.3
-1083.8

0.6

AVER-
AGE

1.4 % 2.4 % 0.6 % 0.8 % 0.5 %

savings. Given the low profit margins in this sector, this can constitute a relatively

substantial potential value for airlines.

Overall, the savings of $21.7 million can improve the fuel efficiency of OPD opera-

tions by 9%-13.5% over the current practice as described in Clarke et al. (2013). Our

results can also add to the literature of fuel savings through terminal improvement

as discussed in Ryerson et al. (2014), where the authors suggest that the percent fuel

savings from terminal improvements at arrival airports could be around 5%. The

benchmark best case used in that paper is an actual airport operation which is not

optimized, while ours is a near-optimal solution. Hence, our estimates can be used to

suggest that the best practicing airport can improve OPD efficiency by 4-8.5%, which

is the difference between our percent saving values and those reported by Ryerson

et al. (2014). In addition, if these savings were combined with the savings through

optimal spacing policies proposed by Chen and Solak (2015), the overall savings for

the airports and airlines can be even higher, up to 20% more over current practice

based on the discussion by Clarke et al. (2013).
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4.5 Conclusions

In this chapter we consider improving the efficiency of OPD procedures through

optimal metering point configurations, which include identification of the optimal

number and locations for the metering points to use during flight arrivals. To this end,

we develop exact and approximate algorithmic frameworks based on implementations

of a stochastic dynamic program and a nonlinear nonconvex stochastic program to

find the best metering configurations. The stochastic program is further convexified

through piecewise linearization of several bilinear terms in the objective function,

and a Lagrangian decomposition procedure is used to address the computational

challenges in the resulting model.

Using the developed algorithmic frameworks, we perform extensive simulations

based on OPD implementations at ATL and LAX to estimate the expected values

of the optimized metering policies. We first show that the heuristic procedure pro-

posed is very effective and efficient. We then conclude that the optimal/near-optimal

number of metering points to use for ATL and LAX are respectively 8 and 7, while

current metering implementations at these and other airports do not follow a specific

structure and are not based on any optimization procedures. The annual savings

through such optimized metering configurations can be around $3.8 million and $2.2

million respectively for ATL and LAX, suggesting that if OPD is fully implemented

by the top 10 major airports in the U.S., the savings can be around $21.7 million,

which improves the overall fuel efficiency of OPD operations by 9%-13.5% over the

current practice as described in Clarke et al. (2013). Through our analysis, we also

find that the near-optimal metering configurations are mostly robust under different

operating conditions. In addition, our results suggest that early spacing adjustments

near the TOD are of more value for larger volumes of air traffic. Given that metering

points are some predefined geographical positions stored in an updatable database,

95



and that they can be removed, relocated or added to meet operational needs FAA

(2014), our proposed results are likely to represent practically implementable policies.
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CHAPTER 5

TACTICAL AND STRATEGIC MODELS ON
DEPARTURE OPERATIONS AT AIRPORTS

In this chapter we study some tactical and strategic models on managing departure

operations at airports under the departure metering concept, specifically focusing on

the aircraft allocation policies at airports from a tactical perspective and capacity

design of the departure metering area from a strategic perspective. As mentioned in

Section 1.2.2, our motivating hypothesis in this study is that tactical and strategic

policies can be derived to further improve departure operations in the context of

departure metering. To check the validity of this hypothesis, we study the problem of

how to dynamically allocate aircraft during departure operations to increase runway

utilization while reducing fuel burn and emissions. We identify optimal policies for

allocating the aircraft during departure operations and quantify the benefits that can

be realized through the use of these optimal policies. Overall, however, a key concern

in departure operations is how to allocate aircraft such that efficiency is improved

while throughput is being maintained, where efficiency is defined as a function of fuel

costs, emissions, noise, and runway utilization. This is a difficult dynamic problem

where uncertainties of new arrivals and pushback delay need to be taken into account.

In this study, we address this operational problem and identify policies that would

enable improved efficiency for airlines and reduced environmental impacts in flight

departure operations. Furthermore, from a strategic planning perspective, we also

investigate the capacity design of the departure metering area.

The remainder of this chapter is organized as follows. In Section 5.1 we present a

stochastic dynamic framework and describe each component of our model formation.
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In Section 5.2 we introduce four practical heuristic departure metering policies and

implement a comparative analysis between these polices and numerically optimal

solutions. In Section 5.3 we perform some sensitivity analyses for our policies over

state variable values. In Section 5.4 we consider the strategic aspect of departure

metering, and identify the optimal metering area capacity through an enumeration

procedure. Based on the findings above, in Section 5.5 we estimate the value of our

policies by considering their potential implementation at the top ten major airports in

the U.S. Finally, in Section 5.6 we summarize our findings and conclude the chapter.

5.1 Model Formulation

Consider an airport which has a departure metering area to hold aircraft. If the

airport uses gates to hold aircraft for departure metering purposes, these gates can

be assumed to be a departure metering area. When aircraft arrive at the airport,

they are guided to move to gates or stay at the taxiway if there are no available gates

at that moment. When there are such gate conflicts for new arriving aircraft, the

aircraft at the gates can be directed based on the following choices: continue staying

at the gates, move to the metering area, or join the departure queue directly. The

aircraft at the gates are pushed back depending on their departure times and target

departure rates. Some of these pushback aircraft can be directed to the metering

area to reduce the long waiting queue on the runway. Different options can incur

different fuel, environmental and other relevant costs. Under the first come first serve

policy, the flights at the metering area are directed to the runway when there are

departure slots available on the runway, and the aircraft at the gates are pushed back

to the metering area when aircraft are ready and there are empty departure metering

slots. This is a stochastic dynamic decision process as both the number of arrivals

and the actual pushback times of departures at the airport can be uncertain due

to weather/wind conditions, human factors, and other issues. However, there is a
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possibility for the controllers to dynamically reallocate aircraft to different facilities

at airports to obtain a smooth surface traffic flow with lowest costs.

We model this problem using a finite horizon Markov decision process (MDP) as

follows. Assume that the planning horizon considered is T . For modeling purposes,

we discretize the time horizon into discrete time periods, each with a fixed duration

denoted as h. We also assume that the controller observes the distribution of aircraft

and make corresponding decisions at the beginning of each period. We denote the

index of the period as t, where t = 1, . . . , N and N is the total number of periods

considered. We note here that a summary of the notation used in the chapter is

included in Appendix C.1.

States. At the beginning of a period t, the controller observes the distribution of

aircraft at the airport before taking any actions. More specifically, the following state

variables are monitored: the number of aircraft waiting for gates sat, the number of

available gates sgt, the number of aircraft at the metering area smt, and the number

of aircraft on the runway srt. The aircraft waiting for gates include new arrivals and

aircraft already waiting at the taxiway. If there are aircraft on the taxiway moving

from the gates to the metering area or from the metering area to the runway at the

beginning of a period, for modeling purposes, we assume that they are categorized

into the set of aircraft being held at the closest facility to them.

Note that there are upper bounds for these state variables as there are limited

number of gates, metering area slots and runway slots. We further define the max-

imum allowable number of aircraft waiting for gates as NA, the maximum number

of gates that can be available in a period as NG, the number of metering area slots

as NM , and the runway capacity as NR. We write st =< sat, sgt, smt, srt > as the

state variables at period t and define St as the set of all possible states.
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Decisions. After observing the state variables, i.e. the distribution of aircraft at

the airport at time t, the surface traffic controllers have the opportunity to adjust the

distribution of aircraft at different facilities to reduce congestion and ensure efficient

flow of operations. More specifically, the controllers can make the following two

decisions to affect the allocation of aircraft, namely the number of aircraft to be

pushed back to the metering area from the gates, and the number of aircraft to be

directed to the runway from the metering area. We denote these decisions as τ1t and

τ2t. Note that there are upper bounds on these decision variables as well, as the

capacity of the metering area is limited to be NM . We define τt =< τ1t, τ2t >, and

let Ast denote the set of all the possible adjustment decisions for a given state vector

st.

Transition Probabilities. After the decisions regarding the new aircraft distribu-

tion are made, the observed aircraft distribution at the beginning of the next period

is defined probabilistically via P (st+1|st, τt), which is the conditional probability that

the aircraft distribution at the next period is realized as st+1 given the current state

vector st and an adjustment decision value τt. There are two key factors affecting the

actual realization of the aircraft distribution at the next period, namely the actual

number of arrivals and the actual pushback times of departing flights. Because of the

variation in pushback times of departing flights, the number of flights that actually

pushback in a given period is uncertain. We denote the number of arrivals in period

t as at and the realized number of aircraft that pushback as Dt.

The probability distribution for the number of arrivals pA(at) in period t for a given

arrival rate can be calculated based on the mean and standard deviation for arrival

time prediction errors as reported in Sölveling et al. (2011a). The prediction errors are

calculated as the difference between the actual arrival time and the estimated arrival

time depending on the number of remaining flight time before a flight touches the

runway. As an example, considering an arrival rate of 24 flights/hour, it is expected
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Table 5.1. The probability distribution of the number of arrivals in a 5-minute
interval for a flight arrival rate of 24 flights/hr.

Number of arrivals 0 1 2 3 4
Probability 0.01 0.24 0.5 0.24 0.01

Table 5.2. The probability distribution of the number of pushback aircraft in a
5-minute interval for a flight departure rate of 36 flights/hr.

Number of arrivals 0 1 2 3 4 5 6
Probability 0.105 0.268 0.305 0.203 0.088 0.026 0.005

to have 2 aircraft arriving every 5 minutes. We assume that the aircraft arrive evenly

during a given period. The arrival time prediction errors can be approximated by

a triangular distribution with a mean of 0.3 minutes and a standard deviation of 3

minutes as described in Sölveling et al. (2011a). Based on this, the distribution of the

number of aircraft arriving in a 5-minute interval for an arrival rate of 24 flights/hour

can be calculated as shown in Table 5.1.

The probability distribution for the number of aircraft to pushback in period t,

pD(Dt), can also be computed based on the histogram of pushback delay shown in

Sölveling et al. (2011a). The pushback delay is measured as the actual turn time

minus the scheduled turn time for a given departing flight. Using the Bureau of

Transportation Statistics data obtained from the Detroit Metropolitan Wayne County

Airport (DTW), Sölveling et al. (2011a) find that the pushback delay distribution can

be approximated as a shifted lognormal distribution truncated at -25 minutes with a

mean of 26 minutes and a standard deviation of 9.55 minutes. Thus, similar to the

distribution of realized arrivals, we can compute the probability distribution of the

actual number of aircraft to pushback in a 5-minute interval for a departure rate of

36 flights/hr as shown in Table 5.2.

Based on the above setup, we can define the number of aircraft at different fa-

cilities for the next period st+1 given current aircraft distribution status st and the

adjustments τt as follows:

101



Table 5.3. Sample transition probability matrix from state vector st to state vector
st+1 as extracted from a 5070 by 5070 matrix.

st
(4,3,2,2) (4,3,2,3) (4,3,2,4) (5,3,2,0) (5,3,2,1) (6,3,2,0) (6,3,2,1)

st+1

(4,3,2,0) 0.01 0.01 0 0 0 0 0
(4,3,2,1) 0 0 0.01 0 0 0 0
(5,3,2,0) 0.24 0.24 0 0.01 0.01 0 0
(5,3,2,1) 0 0 0.24 0 0 0 0
(6,3,2,0) 0.5 0.5 0 0.24 0.24 0.01 0.01
(6,3,2,1) 0 0 0.5 0 0 0 0
(7,3,2,0) 0.24 0.24 0 0.5 0.5 0.24 0

sat+1 = sat −min{sat, sgt}+ at

sgt+1 = sgt −min{sat, sgt}+min{τ1t, Dt}

smt+1 = smt +min{τ1t, Dt} − τ2t

srt+1 = max{srt + τ2t −NDt, 0}

(5.1)

where NDt is a constant corresponding to the scheduled number of departures in a

period. The above equations correspond to the state transition dynamics for aircraft

waiting for gates, at gates, at the metering area and on the runway, respectively.

Given the above state transition dynamics, the state transition probabilities can

be calculated based on the probability distributions of the number of arrivals and

pushbacks under the assumption that they are independent. Hence, given a current

state vector < sat, sgt, smt, srt > and corresponding decision vector < τ1t, τ2t >, the

realized state for the next period is < sat −min{sat, sgt} + at, sgt −min{sat, sgt} +

min{τ1t, Dt}, smt + min{τ1t, Dt} − τ2t,max{srt + τ2t − ND, 0} > with a probabili-

ty pA(at)pD(Dt). We generate a transition probability matrix that provides all the

transition probabilities for such state transitions. Due to the high dimension of this

matrix, we show in Table 5.3 an adapted sample matrix for demonstration purposes.

Cost Structures. The costs for holding aircraft at different facilities of an airport

are different. For example, holding an aircraft on the runway incurs a higher cost

than holding it at a gate as aircraft engine is off at the gate. By reallocating aircraft
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to different facilities at the airport, the overall operational costs can be controlled. In

this section we present four types of holding costs at different facilities of an airport,

which we utilize in identifying optimal policies for given observed states at the airport.

Cost of holding on the taxiway. This includes the fuel burn cost, maintenance

cost, crew labor cost and other related costs when all the gates are occupied and

the incoming flights need to wait on the taxiway. Cook et al. (2004) provide the

computations for each cost component for different aircraft types based on historical

data, and calculate the 1 minute delay cost at gates for different types of aircraft

under two scenarios: short delay which is shorter than 15 minutes and long delay

which is longer than 65 minutes as shown in Table 5.4. We approximate the cost of

other delay lengths by interpolating based on the costs of short and long delays. Then

according to the distribution of the types of aircraft involved at an airport, we can

get the average per-minute cost of holding on the taxiway for all the aircraft, which

we denote as ctx. We then multiply this with the number of aircraft which cannot be

accommodated due to lack of available gates, i.e. max{sat− sgt, 0} and the duration

of a period h, obtaining the total cost of holding on the taxiway ftx(sat, sgt) as,

ftx(sat, sgt) = h · ctxmax{sat − sgt, 0}. (5.2)

Cost of holding at gates. This includes all costs incurred while an aircraft is staying

at a gate. Cook et al. (2004) also provide the cost of 1 minute of gate delay with

network effects for each type of aircraft under the short and long delay scenarios as

shown in Table 5.5. Based on this, we can calculate the average 1 minute delay cost

at gates based on the distribution of aircraft at a given airport for each of the scenario.

More specifically, we denote the cost of 1 minute delay at gates as cgt, and define the

total holding cost at gates fgt(sgt) as:

fgt(sgt) = h · cgt(NG− sgt). (5.3)
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Table 5.4. Tactical ground delay costs in Euros per minute for sample aircraft in
the base cost scenario: taxi only (with network effect) (Cook et al., 2004).

Aircraft Number of Seats Based on 15 min delay Based on 65 min delay

B737-300 125 4.7 78.2
B737-400 143 4.7 88.1
B737-500 100 4.6 66.4
B737-800 174 4.5 103.1
B757-200 218 5.4 126.9

B767-300ER 240 7.3 148.3
B747-400 406 16 252.9
A319 126 4.2 78.4
A320 155 4.1 93.3
A321 166 4.8 99.2
ATR42 46 0.9 31.7
ATR72 64 1.8 41.9

Cost of holding at the metering area. When an aircraft is at a metering area,

idle thrust is utilized which can lower the fuel consumption. As there is no reported

literature on the cost of holding at a metering area, we approximate it using the same

cost of 1 minute delay at the taxiway in our calculation, as in both situations where

aircraft are held at the taxiway or at the metering area, idle engines are utilized, and

similar maintenance and labor crew costs are incurred. To this end, we denote the

cost of holding at the metering area per minute as cmt, and the total cost as fmt(smt),

which can be computed as follows:

fmt(smt) = h · cmtsmt. (5.4)

Runway holding cost. This is the cost of holding aircraft on the runway, where the

queue effect on the runway results in additional fuel burn costs due to the departure

queue stops, aircraft acceleration and breaking, in addition to the fuel burn cost of

constant-speed travel on the runway. Based on the actual operations at Dallas/Fort

Worth International Airport, Nikoleris et al. (2011) provide detailed fuel burn cost

estimations for departure queue stops, acceleration and breaking for different types of
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Table 5.5. Tactical ground delay costs in Euros per minute for sample aircraft in
the base cost scenario: at-gate only (with network effect) (Cook et al., 2004).

Aircraft Number of Seats Based on 15 min delay Based on 65 min delay

B737-300 125 0.9 74.4
B737-400 143 1 84.4
B737-500 100 0.9 62.7
B737-800 174 0.9 99.4
B757-200 218 1 122.5

B767-300ER 240 1.2 142.2
B747-400 406 2.3 238.8
A319 126 1 75.2
A320 155 0.9 90.1
A321 166 1 95.4
ATR42 46 0.6 31.3
ATR72 64 0.7 40.8

aircraft. In addition, we also obtain the maintenance, crew and other relevant costs

per aircraft on the runway based on the values reported by Underwood et al. (2014).

Putting these together, we denote the average runway holding cost per aircraft as crw,

and define the total runway holding cost as follows,

frw(srt) = crwsrt. (5.5)

The above cost calculations apply to periods t = 1, . . . , N − 1. Once the last

decision period is reached, i.e. for t = N , we assume that there are no future arriving

aircraft and the cost of the last period is associated with handling all the remaining

aircraft at the airport. We denote this cost as fN(saN , sgN , smN , srN), and calculate

it based on the following setup. We assume that the remaining aircraft will be handled

by the controllers for another Ns periods under the assumption that no future arrivals

during these Ns periods will occur. If there are still aircraft remaining at the airport

after these additional periods, i.e. at t = N +Ns, we introduce a penalty cost M per

aircraft for these remaining flights. We then calculate the cost using another MDP

model with the same state and decision variables and the same cost structures as
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mentioned above, except that the transition probabilities are determined only by the

uncertainty brought by the pushback delay, as there are no arrivals in these additional

periods.

Optimality Equations. The overall objective in this MDP representation is to find

an optimal mapping of states st ∈ St to target departure metering policies τt ∈ Ast

for each t ∈ {1, 2, . . . , N − 1}. This corresponds to the identification of an optimal

policy π∗, such that the expected total cost V π∗
for the policy π∗ is minimized over

all possible policies. The optimal policies can be obtained by solving the following

optimality equation numerically through backward induction.

V ∗
t (st) = min

τt∈Ast

{hctxmax{sat − sgt, 0}+ hcgt(NG− sgt) + hcmtsmt + crwsrt (5.6)

+
∑

st+1∈St+1

P (st+1|st, τt)V ∗
t+1(st+1)}, ∀st ∈ St, t = 1, . . . , N − 1

5.2 Practical Heuristic Policies and Comparative Analysis

with Numerically Optimal Solutions

While the optimal policies identified through the solution of the optimality e-

quations above provide the lowest cost policies, air traffic controllers may find these

policies difficult to implement as they are based on numerical solutions and a comput-

erized tool which is necessary for overall implementation. In this section we introduce

four easy-to-implement departure metering policies as an alternative tool, and then

implement a comparative analysis between these practical policies and the optimal

numerical solutions using an experimental setup described in Section 5.2.1. We also

quantify the potential value created by these policies over current practices.

5.2.1 Experimental Setup

Our computational analyses are implemented based on the airport surface opera-

tions carried out at DTW, consisting of two pairs of parallel runways accommodating
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the southwest-bound flow at the airport. For analysis purposes, we consider one of

these runways as the number of runways only adds to the dimension and magnitude of

the components in the stochastic formulation, and policies remain the same. The fleet

mix used in the simulations, i.e. the types of aircraft, is based on the statistical dis-

tributions observed in historical data, representing more than 90% of arriving flights

in the year 2014 at DTW (FAA, 2015). The aircraft types and the corresponding

distribution are provided in Appendix C.2.

A two-hour traffic scenario is considered and discretized into 24 periods where each

period has a duration of 5 minutes. We consider an arrival rate of 24 flights/hr and a

departure rate of 36 flights/hr. First come first serve policy is used as the departure

rule to reflect the current practical setup. The metering area capacity is assumed to

be 4 aircraft and the runway capacity is assumed as being 12 aircraft. We assume

that the time needed to handle all the remaining aircraft after the last decision epoch

t = N is 30 minutes. The penalty cost is $3,000 per aircraft if there are still aircraft

remaining after the additional 30 minutes. We use the same simulation configuration

described in this section for all the analyses described in this section. Notice that

this penalty cost is just an arbitrary value that is used to ensure the departure of all

aircraft at the airport after the last decision epoch.

5.2.2 Practical Heuristic Policies

The four policies we describe in this section are developed by assuming that they

will be easily implementable without a computerized tool or advanced training. The

specific descriptions for each of these policies are as follows:

MaxiRunway Policy. This policy aims to fully utilize the capacity of the runway

by pushing aircraft to the runway to reduce the number of unused runway slots. More

specifically, the aircraft at the metering area will be directed to the runway at each

period until the maximum runway capacity is reached, and the ready aircraft at the
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Figure 5.1. Airport throughput as a function of the number of aircraft taxiing out
or in queue (Nakahara et al., 2011).

gates will be moved to the metering area depending on the available space at the

metering area.

This policy has been widely used at airports, as runways are typically the most

limiting resource and the controllers have the incentive to fully utilize the runway

slots. However, field tests have shown that an airport generally has a saturation

point and the departure rate at the airport cannot be further increased if the number

of the aircraft on the surface is above that saturation point. To better demonstrate

this, in Figure 5.1 we display the change in departure rate as a function of the number

of aircraft taxiing out from gates or in queue on the runway. We can see that as the

number of aircraft taxiing out or in queue increases, the number of aircraft ready for

departure increases, and thus the departure rate also increases. However, when the

number reaches above a certain point, the departure rate becomes saturated, resulting

in a long waiting queue on the runway, as well as more fuel burn and emissions. The

next policy we introduce is motivated by this observation, where the number of aircraft

on the runway is capped by a specific control threshold.

N-Control Policy. Under this policy, the aircraft at the metering area will be

directed to the runway at each period until the controlled threshold Ncon is reached.
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The aircraft at the gates will be pushed back to the metering area depending on

the available spaces at the metering area. In the analysis we test different values of

Ncon and identify the ideal number through an enumeration procedure as described

in Section 5.2.3.

Low-Cost Policy. The intuition in this third policy we introduce is that gates are

the lowest cost facility at airports to hold aircraft. Instead of having excessive aircraft

waiting on the runway and burning more fuel, a controller utilizing this policy will

try to hold the aircraft at gates as long as possible. More specifically, the aircraft at

the metering area will be directed to the runway only when there are departure slots

available. The aircraft at the gates will be pushed back to the metering area only

when there are departure slots and also departure metering spaces available.

(s, S) Policy. This policy is similar to the continuous review control policies used

in the inventory management (Ghiani et al., 2004). If the number of aircraft on the

runway falls below s, then the aircraft at the metering area will be directed to the

runway until the target number S of aircraft is reached. The aircraft at the gates will

be moved to the metering area depending on the available spaces at the metering area.

In Section 5.2.3 we compare the costs of implementing the (s, S) policy with different

combinations of s and S values and identify ideal values for a practical setup.

5.2.3 Structure and Performance of Practical Heuristic Policies

In this section we evaluate the performance of the practical policies we describe

in Section 5.2.2. We provide some insights as to which practical policies can provide

better savings for airlines.

To compare the performance of different policies, we first identify the ideal param-

eter setup for the N-Control policy and (s, S) policy under the airport configuration

considered.
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Figure 5.2. The expected per-hour cost of the N-Control policy under different
allowable number of aircraft on the runway.

Table 5.6. The expected per-hour cost of (s, S) policy under different combinations
of s and S in terms of percentage over the optimal policy.

S
7 8 9 10 11 12

s

4 6.03% 6.03% 6.03% 6.03% 6.03% 6.03%
5 4.40% 4.28% 4.22% 4.22% 4.22% 4.22%
6 2.95% 2.45% 3.27% 3.27% 3.27% 3.27%
7 – 3.40% 3.47% 3.47% 3.47% 3.47%
8 – – 3.59% 3.74% 3.74% 3.74%
9 – – – 3.78% 3.84% 3.84%
10 – – – – 5.50% 5.50%

We identify the ideal target number of aircraft on the runway N∗
con for the N-

Control policy through an enumeration procedure. We calculate the expected per-

hour cost of applying N-Control policy under different Ncon values, and identify the

number that produces the lowest cost as the ideal parameter. In Figure 5.2 we show

the expected per-hour cost as a function of the allowable number of aircraft on the

runway. The cost first decreases and then increases with respect to the allowable

number of aircraft on the runway. We find for our numerical setup that the expected

per-hour cost is lowest when the allowable number of aircraft is 7, i.e. Ncon = 7.
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Table 5.7. Performance of practical policies with respect to the optimal policy.

Policy Expected per-hour cost ($) Percentage over the optimal policy

Optimal 17946 –
MaxiRunway 18960 5.65%
N-Control 18514 3.17%
Low-Cost 19262 7.33%
(s, S) 18385 2.45%

We identify the ideal parameters s and S for the (s, S) policy implementation by

comparing the expected per-hour cost of the (s, S) policy under different combinations

of s and S values. In Table 5.6, we provide the calculated costs as a percentage value

over the optimal cost as calculated through the MDP model for different combinations

of s and S. It is observed that the (6, 8) policy provides the lowest cost for our

numerical setup. Thus, if the number of aircraft on the runway falls below 6, then

the aircraft at the metering area will be directed to the runway until the target number

8 is reached. In other words, s∗ = 6 and S∗ = 8.

After determining the ideal parameters for the N-Control and (s, S) policies, we

implement a cost comparison between the four policies and the optimal numerical

solutions as obtained through our MDP model. In Table 5.7 we provide the ex-

pected per-hour cost and percentage over the optimal cost for the four practical

policies. We can see that of the four practical policies, (s, S) policy provides the

lowest cost. Though the N-Control policy produces considerable savings compared

to the MaxiRunway policy, the (s, S) policy can further improve the hourly savings

by almost an additional 1% compared to the N-Control policy under ideal parameter

settings. The Low-Cost policy actually has the highest cost value. The reason can be

that, by holding more aircraft at gates, the Low-Cost policy may reduce the runway

throughput and thus incurs around $300 more per hour than the MaxiRunway policy.

Overall, comparing all the four policies, it can be concluded that the (s, S) policy is

easy to implement while also providing good savings for airlines.
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5.3 Sensitivity Analysis over State Variable Values

In this section we investigate how the MDP-based optimal departure metering

policies change with respect to different values of the state variables in order to

identify any generic insights and characteristics for such policies. To this end, we

first study how the optimal pushback rate changes as a function of the number of

aircraft at gates and waiting for gates as these two state variables directly impact the

pushback rate. We also investigate how the number of aircraft to be directed from

the metering area to the runway changes over the other two state variables, namely

the number of aircraft at the metering area and the number of aircraft on the runway.

On the other hand, as an initial analysis, we investigate how the optimal policies

change over time. Figures 5.3 and 5.4 depict the optimal departure metering policies

over time for two sample scenarios. The first scenario is studied in Figure 5.3 and

considers a sample low-traffic case when there are 3 arrivals, 1 aircraft waiting for a

gate, 2 available gates, 3 aircraft at the metering area and 2 aircraft on the runway.

We observe that the number of aircraft to be pushed back from the gates to the

metering area is 2 and the number of aircraft to be directed from the metering area

to the runway is 1 for all the decision epochs. Hence, the optimal departure policy

is stationary in this scenario. Similar results are observed for other low arrival rate

scenarios in our experiments. However, the stationarity is lost when arrival rates

increase. Figure 5.4 shows the situation when there are 6 arrivals, 5 aircraft already

waiting for gates, 3 available gates, 3 aircraft at the metering area and 5 aircraft on

the runway. The number of aircraft to be moved to the metering area and the number

of aircraft to be guided to the runway both decrease when the decision epoch is close

to the final decision period. Overall, our tests indicate that, no simple structural

policy can be extracted from the numerically optimal decisions. Hence, in order to

use optimal solutions, the traffic controllers may need computerized lookup tables to

help with their decision making.
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Figure 5.3. Optimal departure metering policies over time for a scenario when the
arrival rate is low.
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Figure 5.4. Optimal departure metering policies over time for a scenario when the
arrival rate is high.
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Figure 5.5. Optimal pushback rate for sample scenarios as a function of the number
of arrivals.

5.3.1 Impact of Number of Aircraft Waiting for Gates on Optimal Push-

back Rates

In this section we investigate how the pushback rate changes as a function of the

number of aircraft waiting for gates. To this end, we consider two sample scenarios

and observe the optimal pushback rates over the number of aircraft waiting for gates

with the other state variable values being fixed as shown in Figure 5.5. The first

scenario has 0 available gates, meaning that all the gates are occupied, 3 aircraft at

the metering area, and 1 aircraft on the runway. We keep changing the number of

aircraft waiting for gates from 0 to 12, and observe how the optimal pushback rates

react to the change. We observe that the number of aircraft to be pushed back to

the metering area first stays at 3 and then jumps to 4 when the number of aircraft

waiting for gates increases to 4. The pushback rate stays at 4 aircraft per 5 minutes

when the number of aircraft waiting for gates becomes larger. The second scenario

has 2 available gates, 3 aircraft at the metering area and 1 aircraft on the runway.

Similarly, we keep changing the number of aircraft waiting for gates, and we can see

that the pushback rate stays at 3 aircraft per 5 minutes. We also test other scenarios,

and overall, we find that as the number of aircraft waiting for gates increases, the
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Figure 5.6. Optimal pushback rate as a function of the number of available gates
for two sample scenarios.

pushback rates to the metering area will increase, until reaching a limit determined

by the number of aircraft at gates and the capacity of the metering area.

5.3.2 Impact of Gate Availability on Optimal Pushback Rates

In this section we investigate how the pushback rate changes as a function of the

number of available gates in a given period. Figure 5.6 shows two sample scenarios

where the optimal pushback rate changes over gate availability. We can see that in the

first scenario where there are 0 aircraft waiting for gates, 3 aircraft at the metering

area, and 1 aircraft on the runway, the number of aircraft to be pushed back to the

metering area is 3 when the number of available gates in the given period is 0, then

decreases to 2 when the number of available gates is 1, and continues decreasing to 0

when the number of available gates is 5. We also observe similar results for the other

sample scenario where there are 2 aircraft waiting for gates, 3 aircraft at the metering

area, and 1 aircraft on the runway. We further perform extensive analysis over other

scenarios and find that as the gate availability increases, the number of aircraft to be

pushed back to the metering area will decrease.
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Figure 5.7. The optimal number of aircraft to be directed to the runway as a
function of the number of aircraft at the metering area for two sample scenarios.

5.3.3 Impact of Metering Area Availability on Optimal Runway Routing

Rates

In this section we investigate how the number of aircraft to be directed to the

runway changes with respect to the number of aircraft at the metering area. Similar

to the experiments above, we test a large number of scenarios and find that as the

number of aircraft at the metering area increases, the number of aircraft to be directed

to the runway will increase, up to reaching to a limit determined by the capacity of

the metering area. We use two sample scenarios to demonstrate this finding in Figure

5.7. In the first scenario, we fix the number of aircraft waiting for gates as 4, the

number of available gates as 1, and the number of aircraft on the runway as 1. We can

see that the number of aircraft to be directed to the runway is 2 when the number of

aircraft at the metering area is 2 or 3, and increases to 3 when the number of aircraft

at the metering area is 4. In the second scenario, we fix the number of aircraft waiting

for gates as 4, the number of available gates as 3, and the number of aircraft on the

runway as 1. We can see that the number of aircraft to be directed to the metering

area increases to 2 and stays at 2 when the number of aircraft at the metering area is

more than 1. Both scenarios, together with a large number of other ones, have proven
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Figure 5.8. The optimal number of aircraft to be directed to the runway as a
function of the number of aircraft on the runway for two sample scenarios.

our finding that the number of aircraft to be directed to the runway will increase as

a function of the number of aircraft at the metering area.

5.3.4 Impact of Runway Availability on Optimal Runway Routing Rates

In this section we investigate how the number of aircraft to be directed to the

runway changes as a function of the number of aircraft on the runway. Two scenarios

as shown in Figure 5.8 are used to demonstrate our analysis. In the first scenario,

there are 4 aircraft waiting for gates, 2 available gates, and 2 aircraft at the metering

area, while the second scenario has 4 aircraft waiting for gates, 2 available gates, and

4 aircraft at the metering area. In both scenarios, we can observe that the number of

aircraft to be directed to the runway decreases to 0 when the number of aircraft on

the runway is more than 2. The extensive analysis of other scenarios shows that as

the number of aircraft at the runway increases, the number of aircraft to be directed

to the runway will decrease.
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5.4 Identification of the Optimal Metering Area Capacity

In this section we identify the optimal capacity of the departure metering area

through an enumeration procedure such that the savings for airlines are maximized.

We first define our baseline as the case where an N-Control policy is implemented. The

savings of the optimal policies are calculated as the difference between the expected

costs of the optimal policies and the baseline policy under a stochastic simulation

setting.

To identify the optimal capacity, we start from one departure metering slot and

identify the savings due to the optimization of departure policies. Then we keep

adding one additional slot to the metering area, and obtain the savings again. This

iterative procedure continues until the overall savings cannot be increased more than

a certain threshold level, i.e. less than 1% in the implementation. Then the number of

departure metering slots used in the last iteration is identified as the optimal capacity

of the departure metering area.

In Figure 5.9, we depict the per-hour savings under different capacities of the

metering area. As can be seen, the savings increase with respect to the capacity

of the departure metering area, ranging from $500 to $650. We observe that the

capacity of 7 aircraft at the departure metering area appears to be the best since the

addition of an eighth departure metering slot produces less than 1% of increase in

savings. In addition, the per-hour savings due to the optimal departure policies and

the optimized metering area capacity is $645 under our experimental setup.

5.5 Expected Savings for Airlines due to Optimal Departure

Metering Policies

In this section we develop estimates of the expected total savings due to our

proposed optimized departure metering policies for the top ten major airports by

assuming that the per aircraft savings at these airports will be around the same as
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Figure 5.9. Cost savings as a function of the departure metering area capacity.

DTW. To this end, as we note in Section 5.4, the per-hour savings at DTW under the

setup considered are $645 and the per flight savings are around $11 for DTW, resulting

in an estimated annual savings of around $2.2 million for DTW. Multiplying the per

flight savings with the annual number of flights at each of the top ten major airports,

we can estimate the total annual savings due to the departure policy optimization for

the top ten major airports in the U.S. This number is around $30.8 million as shown

in Table 5.8. Similarly, we can also calculate the savings of JFK as $2.1 million, which

can improve the fuel efficiency of departure metering operations by 14%-20% over the

practice as described in Nakahara et al. (2011). If these savings are combined with

the savings through the implementation of departure metering procedure, the overall

savings for the airlines can be even higher.

We also note that the (s, S) policy can produce savings of around $7 million

compared to the N-Control policy if the proposed policy is implemented at the top

ten major airports in the U.S., corresponding to a 3-5% fuel efficiency improvement

over the practice as discussed in Nakahara et al. (2011).

We also estimate the impact of the proposed optimal departure metering policies

on airline net profit based on the fuel savings that can potentially be realized. In

Table 5.9, we provide the net income of the top seven airlines in the U.S. based on the
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Table 5.8. Benefit analysis for top 10 traffic volume airports.

Airport
Code

Location
Annual
Flight
Number

Annual Total
Savings($)

ORD Chicago, IL 435,403 4,680,582
DFW Dallas, TX 330,399 3,551,789
DEN Denver, CO 283,503 3,047,657
LAX Los Angeles, CA 285,603 3,070,232
IAH Houston, TX 238,298 2,561,704
CLT Charlotte, NC 260,693 2,802,450
PHL Philadelphia, PA 202,506 2,176,940
EWR Newark, NJ 196,930 2,116,998
PHX Phoenix, AZ 190,218 2,044,844
Total 2,867,492 30,825,539

Table 5.9. Estimated potential impact of proposed policy savings on net airline
income over 2009-2013.

Airline

2009 2010 2011 2012 2013
Net

income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

Net
income
/ flight
($)

%
impact
on net
income

United -421.2 2.6 1957.0 0.5 2374.1 0.5 1367.3 0.8 955.0 1.1
Delta 449.6 2.4 2430.0 0.4 2002.3 0.5 2009.6 0.5 1785.2 0.6

Ameri-
can

-467.4 2.3 47.8 22.5 -707.9 1.5 245.4 4.4 1483.9 0.7

US
Airways

479.5 2.2 1257.1 0.9 788.9 1.4 1134.0 0.9 1675.9 0.6

South-
west

246.2 4.4 907.2 1.2 604.3 1.8 732.2 1.5 958.2 1.1

JetBlue 1006.8 1.1 1112.1 1.0 989.0 1.1 1052.2 1.0 1138.1 0.9

Alaska 1341.4 0.8 2043.6 0.5 2219.4 0.5 2326.3 0.5
-1083.8

1.0

AVER-
AGE

2.2 % 3.9 % 1.0 % 1.4 % 0.9 %

profitability information from years 2009 through 2013 (AirlineFinancials, 2014; DOT,

2013). We also calculate the savings due to departure metering policy optimization

under the assumption that the per aircraft savings of these airlines are the same

as DTW. Based on these calculations, we observe that the average impact due to

the optimized departure metering policies can be up to 1.9%. We can also obtain

that although airline net income has increased over recent years, due to increase

demand and lower fuel prices, the optimal departure metering policies can still provide

around 1% savings. Hence, the savings due to our policies can be considered as being

substantial for the airline industry given the low profit margin.
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5.6 Conclusions

In this chapter we describe a stochastic dynamic programming framework to iden-

tify the optimal departure metering policies that can help minimize expected overall

costs for airlines. We also implement a comparative analysis between four practical

policies and the optimal numerical solutions, and find that the (s, S) policy can pro-

duce considerable savings compared to current practices. We also look at how the

optimal departure metering policies change with respect to different state variables.

Furthermore, we introduce an enumeration procedure to identify the optimal capac-

ity for the departure metering area at a given airport. Using the developed optimal

policies, we perform extensive simulations based on the departure implementation at

DTW. Our findings show that a capacity of 7 aircraft is the best departure metering

configuration at this airport. Savings for airlines due to such policies can be around

$30.8 million if these policies are adapted by top ten major airports in the U.S.

Through our analysis, we find that utilization of the proposed optimal policies

could add to the value of departure metering procedures and improve overall efficiency

by around 14-20% over the current practice as described by Nakahara et al. (2011).

Given the need for smooth and integrated surface operations by airlines and airports,

the proposed optimal departure metering policies can add value to the society by

improving the overall efficiency and sustainability of departure operations.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

In this thesis we study methods for service improvement and cost reduction for

airlines through optimization of flight arrival and departure operations under the un-

certainty of operating conditions. To this end, we consider four operational problems

related to airline operations management, involving both tactical and strategic deci-

sions, and develop stochastic models to obtain optimal policies and potential savings

for airlines. In this chapter we describe practical conclusions and business insights of

our study in Section 6.1, as well as possible future research directions in Section 6.2.

6.1 Practical Conclusions and Business Insights

In Chapter 3 we study the sequencing and spacing policies of arrival flights during

OPD operations at airports from a tactical perspective. Through our analysis, we ob-

tain the following major results. We find that simple calculation based measures can

be used as optimal decision rules during optimized profile descent implementations,

and that the expected total annual savings can be around $29 million if such imple-

mentations are adapted by the top ten major airports in the U.S. Of these savings, $24

million or 83% are direct savings for airlines due to reduced fuel usage, corresponding

to a potential savings of 10-15% in fuel consumption over the current practice used

in optimized profile descent operations. The remaining savings of $5 million are the

expected savings in emissions and noise costs. We also find that most of these savings

will be due to the optimal spacing of OPD flights, as opposed to the optimal sequenc-

ing policies which contribute only about $4 million or 14% to the total estimated
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annual savings. Hence, optimal spacing of OPD flights is much more important than

optimal sequencing of these flights. In addition, we conclude that there is not much

difference between the environmental costs of fuel-optimal and sustainably-optimal

spacing policies. The expected annual difference is only about $0.5 million of addi-

tional environmental savings in sustainably-optimal policies, which can be achieved

at the expense of $2.5 million of additional fuel costs for airlines. This implies that

an airline-centric approach in improving optimized profile descent operations is not

in conflict with objectives that might be prioritized by other stakeholders. The opti-

mized flow of traffic during descent might result in smoother operations in subsequent

phases of the arrival process, as well as during the departure process. Such propaga-

tion of savings, which we do not study in this paper, would imply even further value

for our proposed policies.

To the best of our knowledge, our study in Chapter 3 is the first one that captures

the stochasticity in OPD operations through optimization and derives policies to

improve efficiency and sustainability for airlines and the society. Unlike other similar

studies, the simultaneous consideration of direct airline costs, i.e. fuel burn, as well

as sustainability-related costs, i.e. emissions and noise, allows for an analysis of the

balance in policies with respect to different perspectives. The optimal policies also

consider runway throughput, maximization of which has a direct positive impact on

arrival delays. Another relevant issue involves the argument that controllers can

be forced to increase separation of OPD flights due to workload issues, which in

turn would result in delays for airlines and additional emission impacts. Through

derivation and demonstration of policies that can potentially mitigate such adverse

effects, our study is aimed at helping improve the value of OPD operations for airlines.

Furthermore, the number of operations management models that explore emission

reduction in transportation is limited as specifically emphasized by Kleindorfer et al.
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(2005) and Tang and Zhou (2012). Hence, our research work would be a contribution

to that limited literature as well.

In Chapter 4 we study the optimal design of arrival traffic management systems at

airports at the strategic level from an airline perspective. We develop exact and ap-

proximate algorithmic frameworks based on implementations of a stochastic dynamic

program and a nonlinear nonconvex stochastic program to further increase the value

of arrival operations by optimizing metering point control policies, which include iden-

tification of the optimal number and locations of metering points to use. Overall, our

major findings indicate that there is potentially significant value in metering location

optimization that takes into account trajectory uncertainties. We show that intro-

ducing more metering points result in reduced fuel burn costs up to a certain number

of points, after which the savings level off. We refer to this threshold as the optimal

number of metering points, based on which the optimal locations of the points are

identified through the algorithmic framework developed. Based on numerical studies

for ATL and LAX, we conclude that annual fuel savings of between $2-$3 million

can be achieved at a given major airport, suggesting annual fuel savings of around

$21.7 million for the top 10 major airports in the U.S. if proposed optimal metering

configurations are implemented. We also find that the optimal metering locations are

not sensitive to varying arrival rates, and that while the ideal metering point loca-

tions for different aircraft pairs differ from the weighted locations proposed for the

overall system, the deviations are also not that significant. Hence, proposed policies

are quite robust with respect to such differences in operating conditions.

Our study in Chapter 4 is the first work that addresses cost and efficiency improve-

ment through the optimization of the number and locations of OPD metering points.

Our work adds to the limited literature on stochastic modeling of airport arrival proce-

dures, as trajectory uncertainty and associated dynamic decisions are captured under

a stochastic optimization framework. In addition, a novel algorithmic procedure is
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introduced, which is based on fast and effective solutions of a stochastic dynamic

program and a nonlinear stochastic integer programming model. Associated compu-

tational challenges are addressed through utilization of convex approximation and

Lagrangian decomposition procedures. Given that metering points are some prede-

fined geographical positions stored in an updatable database, and that they can be

removed, relocated or added to meet operational needs FAA (2014), our proposed

results are likely to represent practically implementable policies.

In Chapter 5 we study optimal departure metering policies at airports from both

tactical and strategic perspectives. We develop a stochastic dynamic programming

framework to identify optimal policies, while also studying some near optimal practi-

cal policies for airlines from a tactical perspective. We also implement a comparative

analysis between four practical policies and the optimal numerical solutions, and find

that the (s, S) policy can produce considerable savings compared to current practices.

Furthermore, we introduce an enumeration procedure to identify the optimal capacity

for the departure metering area from a strategic perspective. Using the developed

framework, we identify the optimal capacity of the departure metering configuration

at a selected airport from a strategic perspective. Savings due to such policies can be

around $30.8 million if these policies are adapted by top ten major airports in the U.S.

Through our analysis, we find that utilization of the proposed optimal policies could

add to the value of departure metering procedures and improve overall efficiency by

around 14-20% over the current practice as described by Nakahara et al. (2011).

Our study in Chapter 5 is the first one that captures the stochasticity in de-

parture metering operations through optimization of departure policies and airport

facility capacity to reduce delay and improve departure efficiency at airports. Our

research indicates that significant fuel savings for airlines can be achieved through

optimization of the pushback rates at gates and the capacity of departure metering

area. In addition, several practical departure policies are introduced which are easy
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to implement and still produce considerable savings compared to current practices.

Furthermore, our study also adds to the limited literature on stochastic modeling of

departure operations, as arrivals and pushback delays are captured under a stochastic

optimization framework.

6.2 Future Research Directions

Airline operations inherently involve significant uncertainty, and thus several ex-

tensions of the work in this dissertation are possible.

For example, in the thesis we specify the overall savings due to the optimization

of arrival and departure operations under uncertainty. However, further analysis can

be implemented to calculate the value of utilizing such stochastic methods, i.e. the

difference in savings between using stochastic optimization and deterministic opti-

mization in this context. In addition, building on the overall savings we estimate,

cost-benefit analysis can be performed to investigate the required facility investment

cost and expected returns for each stakeholder involved.

In addition, to further improve the fuel efficiency of airline operations, continuous

climb operations (COO) are introduced where level segments during the climbing

process are removed from the flight trajectories as can be seen in Figure 6.1. Similar

to our research on the OPD operations in Chapter 3 and 4, there are metering points

along the trajectories during the COO process where spacing decisions are made under

uncertainty of operating conditions. Hence, our work on the tactical and strategic

models of arrival operations can be extended to the COO procedure, where we can

potentially apply the methodologies we use in Chapter 3 for spacing optimization and

in Chapter 4 for the metering point location optimization during the COO process.

Moreover, in Chapter 5 we include the arrival uncertainty into the design of depar-

ture policies under the departure metering concept. A research question is whether

we can further integrate the arrival and departure operations. Arrival, departure and
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Figure 6.1. Comparison between current stepped climbs and Continuous climb
operations (COO)(SESAR, 2016).

surface operations share similarities in that they are highly affected by stochastic

factors such as weather/wind conditions and human factors, but control/metering

points can also be added along the trajectories and routes to monitor and aid the

decision process. Thus, a stochastic dynamic process model can be potentially built

to integrate the departure and arrival operations which we consider separately in the

thesis.

Furthermore, while in Chapter 3 we discuss the fairness issue between airlines

when comparing the FCFS sequencing rule and our proposed cost minimization based

sequencing policy, we have not directly included the fairness between airlines and air-

craft into our model formulations. The fairness issue has become even more important

in the context of a collaborative decision making setup where airlines can collaborate

in their arrival and departure operations by exchanging arrival and departure slots.

The future research includes the exploration of arrival and departure rules that take

fairness into consideration while improving airline positions in a collaborative deci-

sion framework. We also plan to capture and model the uncertainty involved in the

collaborative decision making process as we have done in this thesis.
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APPENDIX A

APPENDIX FOR TACTICAL MODELS ON ARRIVAL
OPERATIONS AT AIRPORTS

A.1 Summary of Notation Used

N : number of metering points along the OPD trajectory

t : index of metering point t

St : set of observed spacing values at metering point t

st : observed spacing value at metering point t

s̄t : upper bound for observed spacing value at metering point t

st : lower bound for observed spacing value at metering point t

Tt : set of target spacing values at metering point t for an observed

spacing st

τt : target spacing value for next metering point at metering point t

Ast : set of target spacing changes at metering point t for an observed

spacing st

∆t : target spacing change for next metering point at metering point t

τ̄t : upper limitation on target spacing values at metering point t

τ t : lower limitation on target spacing values at metering point t

k : length of discretized spacing value interval

P (st+1|st,∆t) : transition probability

µt : mean of the transition probability

σt : standard deviation of transition probability
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gt(st, Dt) : random noise as the component of the mean µt

ot, pt, qt, rt : coefficients of the random noise function gt(st, Dt)

ht(Dt) : function of Dt which is used to express the standard deviation σt

ηt, ζt : coefficients of the random noise function ht(Dt)

Dt : distance between metering point t and metering point t+ 1 along

the trajectory

vtL : the speed of the leading aircraft in a two aircraft OPD

implementation

C l
t(vt) : general form of cost functions in terms of the airspeed vt

alt, b
l
t, e

l
t : constants used to model the cost function C l

t(vt) for l = F, S, T

clt(∆t) : cost of achieving target spacing change ∆t for l = F, S, T

λlt, β
l
t, ω

l
t : coefficients of cost functions clt(∆t)

sLN : minimum required spacing at the runway for a given aircraft

when the leading aircraft is type L

clN(∆N) : runway utilization cost for a final spacing difference of ∆N from

the minimum required spacing at the runway for l = F, S, T

π∗ : an optimal policy

V π∗
: optimal expected cost for a given optimal policy π∗

V l∗
t (st) : optimal expected cost for a given observed spacing st

di : distance to the merging point for a given aircraft i

δij : critical distance difference between two aircraft i and j when

making sequencing decisions

K : a set of aircraft in a given OPD instance

K : number of aircraft in a given OPD instance

∆̃l∗
t : approximated optimal target spacing change at metering point t

ml
t, n

l
t : coefficients to define the linear approximated policies

∆t : upper bound for the target spacing change at metering point t
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∆t : lower bound for the target spacing change at metering point t

Cl(π∗
l′) : the expected total cost based on measure l when an optimal

policy based on l′ is implemented for l, l′ ∈ {F, S, T}

st : vector of observed spacing values at metering point t for multiple

aircraft instances

∆t : vector of target spacing change at metering point t for multiple

aircraft instances

Πk : speed profile for aircraft k
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A.2 Sample Cost Functions
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(a) Cruise fuel cost.

460 470 480 490 500
1.55

1.6

1.65

1.7

1.75

1.8

Speed [knots]

C
os

t [
$/

nm
]

(b) Cruise sustainability cost.
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(d) Descent fuel cost.
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Figure A.1. Sample cost structures defining fuel, sustainability and total costs as
a function of airspeed at cruise and descent phases for aircraft type B763, where
the cruise and descent phase costs are based on altitudes of 36,000 ft and 17,500 ft
respectively.
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A.3 Proofs of Analytical Results

Proof of Proposition 1

Proof: Airspeed based cost functions for a given metering point t are defined in

quadratic form as C l
t(vt) = altv

2
t + bltvt + elt in units of $/nm for cost measure

l ∈ {F, S, T}. In order to express the costs as a function of target spacing, we

first define the variable vtL, representing the speed of the leading aircraft in a two

aircraft OPD implementation. Hence, given a distance Dt to fly, if the ATC issues a

command of spacing change ∆l
t, the corresponding true airspeed will be adjusted to

vt = vtL − ∆l
t/ΓtL, where ΓtL = Dt/vtL is the time spent on the trajectory interval.

Hence, we could obtain a cost function clt(∆
l
t) of target spacing change as follows:

clt(∆
l
t) = C l

t(vtL −∆l
t/ΓtL)Dt (A.1)

= [alt(vtL −∆l
t/ΓtL)

2 + blt(vtL −∆l
t/ΓtL) + elt]Dt (A.2)

= (altDt/Γ
2
tL)(∆

l
t)

2 − (2altvtLDt/ΓtL + blt/ΓtL)∆
l
t + (altv

2
tL + bltvtL + elt)Dt

(A.3)

= (altv
2
tL/Dt)(∆

l
t)

2 − (2altv
2
tL + bltvtL)∆

l
t + altv

2
tLDt + bltvtLDt + eltDt (A.4)

Letting λlt = altv
2
tL/Dt, β

l
t = −2altv2tL − bltvtL, and ωlt = altv

2
tLDt + bltvtLDt + eltDt, we

have the following relationship:

clt(∆t) = λlt(∆
l
t)

2 + βlt∆
l
t + ωlt (A.5)

Proof of Proposition 2

Proof: Our proof of the proposed condition is based on a comparative analysis of

the two cases involving whether aircraft A or B would be the leading aircraft in the
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sequence. To this end, we refer to following statement of the optimal value function

at the initial decision stage based on the derivation (A.19) in the proof of Proposition

3:

V l∗
1 (s1) = min

∆l1

{Ψl
1

Ψl
2

(∆l
1)

2

+

2αl1s1 + 2Φl
1 + βl1Ψ

l
2 − λlNi

(
N−1∏
t′=2

λlt′pt′

)
[
N−1∑
t′=2

(βlt′/λ
l
t′)

N−1∏
t′′=t′+1

pt′′ ]

Ψl
2

∆l
1 + F l

1

}
(A.6)

where F l
1 is a constant and can be treated as the fixed flight cost for both the leading

and trailing aircraft.

Given the cost function C l
t(vt) = altv

2
t + bltvt + elt, the cost-efficient speed, i.e. the

minimizer of C l
t(vt) can be expressed as vlt = −blt/(2alt). Noting that βlt = −2alt(vlt)2−

bltv
l
t, the definition vlt = −blt/(2alt) would imply βlt = 0 for t = 1, 2, . . . , N − 1. Thus,

we have:

V l∗
1 (s1) = min

∆l1

{Ψl
1

Ψl
2

(∆l
1)

2 +
2α1s1 + 2Φ1

Ψl
2

∆l
1 + F l

1

}
The value function above is defined for a given pair of aircraft with a set sequence

of designated leading and trailing flights. The non-constant components of the value

function capture the sequencing and spacing costs associated with the given sequence.

Hence, the additional maneuvering to be performed, and thus the associated costs, are

modeled through these components. Substituting dA−dB and dB−dA to represent the

initial observed spacings or states, this implies that A should be the leading aircraft

if the following condition is satisfied:
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min
∆l1A

{Ψl
1A

Ψl
2A

(∆l
1A)

2 +
2α1A(dA − dB) + 2Φ1A

Ψl
2A

∆l
1A

}
≥ min

∆l1B

{Ψl
1B

Ψl
2B

(∆l
1B)

2 +
2α1B(dB − dA) + 2Φ1B

Ψl
2B

∆l
1B

}
(A.7)

⇒ − [αl1A(dA − dB) + Φl
1A]

2

Ψl
1AΨ

l
2A

≥ − [αl1B(dB − dA) + Φl
1B]

2

Ψl
1BΨ

l
2B

(A.8)

⇒ Ψl
1BΨ

l
2B[α

l
1A(dA − dB) + Φl

1A]
2 ≤ Ψl

1AΨ
l
2A[α

l
1B(dB − dA) + Φl

1B]
2 (A.9)

⇒ [Ψl
1BΨ

l
2B(α

l
1A)

2 −Ψl
1AΨ

l
2A(α

l
1B)

2](dA − dB)2

+ (2Ψl
1AΨ

l
2Aα

l
1BΦ

l
1B + 2Ψl

1BΨ
l
2Bα

l
1AΦ

l
1A)(dA − dB) ≤ Ψl

1AΨ
l
2A(Φ

l
1B)

2 −Ψl
1BΨ

l
2B(Φ

l
1A)

2

(A.10)

Since [Ψl
1BΨ

l
2B(α

l
1A)

2 − Ψl
1AΨ

l
2A(α

l
1B)

2](dA − dB)
2 is negligible compared to the

other parts in Equation A.10, we have:

dA − dB ≤
Ψl

1AΨ
l
2A(Φ

l
1B)

2 −Ψl
1BΨ

l
2B(Φ

l
1A)

2

2Ψl
1AΨ

l
2Aα

l
1BΦ

l
1B + 2Ψl

1BΨ
l
2Bα

l
1AΦ

l
1A

Proof of Proposition 3

Proof: The proposed policy is based on the target spacing changes ∆̃l∗
t which corre-

spond to the optimal target spacing changes when the bounds are relaxed. We show

the optimality of ∆̃l∗
t under this condition by induction as follows.

For t = N , we have that V l∗
N (sN) = clN(∆

l
N) = λlN(sN − sLN)2 + βlN(sN − sLN) +ωlN .

For t = N − 1, the value function is defined as follows:

V l∗
N−1(sN−1) = min

∆lN−1

{λlN−1(∆
l
N−1)

2 + βlN−1∆
l
N−1 + ωlN−1 + E[V l∗

N (sN)]} (A.11)
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where E[V l∗
N (sN)] can be expressed as:

E[V l∗
N (sN)] = λlNE[(sN − sLN)2] + βlNE[sN − sLN ] + ωlN

= λlNE[s2N ]− 2λlNs
L
NE[sN ] + βlNE[sN ] + λlN(s

L
N)

2 − βlNsLN + ωlN

= λlN [(∆
l
N−1 + pN−1sN−1 + qN−1DN−1 + rN−1)

2 + hN(DN−1)
2]

+ (βlN − 2λlNs
L
N)(∆

l
N−1 + pN−1sN−1 + qN−1DN−1 + rN−1) + FN

(A.12)

where λlt > 0 and F l
N is the constant term defined similar to the description for

(A.6). Recall that E[sN ] = ∆l
N−1 + pN−1sN−1 + qN−1DN−1 + rN−1 and that E[s2N ] =

E[sN ]2 + σ2
N where σN = ηN−1DN−1 + ζN−1.

Substituting these relationships and inserting expression (A.12) into (A.11), the

value function for t = N−1 can be expressed as a quadratic function of ∆l
N−1. Hence,

∆̃l∗
N−1 can be determined through the first order conditions, which yield:

∆̃l∗
N−1 =−

λlNpN−1sN−1

λlN−1 + λlN
−

2[λlN(qN−1DN−1 + rN−1)− λlNsLN + βlN ] + βlN−1

2(λlN−1 + λlN)

= −
αlN−1

Ψl
N−1

sN−1 −
2Φl

N−1 + βlN−1Ψ
l
N

2Ψl
N−1

= ml
N−1sN−1 + nlN−1 (A.13)

This result implies the following expression for V l∗
N−1(sN−1):

V l∗
N−1(sN−1) =

λlNλ
l
N−1

λlN−1 + λlN
Θ2
N−1 +

(βlNλ
l
N−1 − βlN−1λ

l
N)

λlN−1 + λlN
ΘN−1 + FN−1

=

N∏
t=N−1

λlt

Ψl
N−1

Θ2
N−1 +

(
N∏

t′=N−1

λlt′

)
[βlN/λ

l
N −

N−1∑
t′=N−1

βlt′/λ
l
t′

N−1∏
t′′=t′+1

pt′′ ]

Ψl
N−1

ΘN−1

+ FN−1 (A.14)

where Θt =
N−1∏
t′=t

pt′st +
N−1∑
t′=t

[(qt′Dt′ + rt′)
N−1∏

t′′=t′+1

pt′′ − sLN ] and F l
N−1 is a constant.
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Now, suppose the result holds for t = ṫ, ṫ+1, . . . , N , which implies that for t = ṫ−1

the value function is:

V l∗
ṫ−1(sṫ−1) = min

∆l
ṫ−1

{(λlṫ−1(∆
l
ṫ−1)

2 + βlṫ−1∆
l
ṫ−1 + ωlṫ−1) + E[V l∗

ṫ (sṫ)]} (A.15)

= min
∆l
ṫ−1

{(λlṫ−1(∆
l
ṫ−1)

2 + βlṫ−1∆
l
ṫ−1 + ωlṫ−1)

+

N∏
t′=ṫ

λlt′

Ψl
ṫ

E[Θṫ]
2 +

(
N∏
t′=ṫ

λlt′

)
[βlN/λ

l
N −

N−1∑
t′=ṫ

βlt′/λ
l
t′

N−1∏
t′′=t′+1

pt′′ ]

Ψl
ṫ

E[Θṫ] + F l
ṫ

(A.16)

Note that the expectation E[Θt] can be expressed as follows:

E[Θt] =
N−1∏
t′=t

pt′Est +
N−1∑
t′=t

[(qt′Dt′ + rt′)
N−1∏

t′′=t′+1

pt′′ ]− sLN

=
N−1∏
t′=t

pt′∆
l
t−1 +

N−1∏
t′=t−1

pt′st−1 +
N−1∑
t′=t−1

[(qt′Dt′ + rt′)
N−1∏

t′′=t′+1

pt′′ ]− sLN (A.17)

This results in the following quadratic expression for the value function at metering

point ṫ− 1:

V l∗
ṫ−1(sṫ−1) = min

∆l
ṫ−1

{λlṫ−1
Ψl
ṫ
+ λlN

N−1∏
t′=ṫ

(λlt′p
2
t′)

Ψl
ṫ

(∆l
ṫ−1)

2

+

2αl
ṫ−1
sṫ−1 + 2Φl

ṫ−1
+ βl

ṫ−1
Ψl
ṫ
− λlN

(
N−1∏
t′=ṫ

λlt′pt′

)
[
N−1∑
t′=ṫ

(βlt′/λ
l
t′)

N−1∏
t′′=t′+1

pt′′ ]

Ψl
ṫ

∆l
ṫ−1 + F l

ṫ−1

}
= min

∆l
ṫ−1

{Ψl
ṫ−1

Ψl
ṫ

(∆l
ṫ−1)

2 (A.18)

+

2αl
ṫ−1
sṫ−1 + 2Φl

ṫ−1
+ βl

ṫ−1
Ψl
ṫ
− λlN

(
N−1∏
t′=ṫ

λlt′pt′

)
[
N−1∑
t′=ṫ

(βlt′/λ
l
t′)

N−1∏
t′′=t′+1

pt′′ ]

Ψl
ṫ

∆l
ṫ−1 + F l

ṫ−1

}
(A.19)
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where λl
ṫ−1

Ψl
ṫ
+ λlN

N−1∏
t′=ṫ

(λlt′p
2
t′) = Ψl

ṫ−1
. Considering the first order conditions the

target spacing value that minimizes V l
ṫ−1

(sṫ−1) can be identified as follows:

∆̃l∗
ṫ−1 = −

αl
ṫ−1

Ψl
ṫ−1

sṫ−1 −
2Φl

ṫ−1
+ βl

ṫ−1
Ψl
ṫ
− λlN

(
N−1∏
t′=ṫ

λlt′pt′

)
[
N−1∑
t′=ṫ

(βlt′/λ
l
t′)

N−1∏
t′′=t′+1

pt′′ ]

2Ψl
ṫ−1

= ml
ṫ−1sṫ−1 + nlṫ−1

(A.20)

Hence, the result also holds for t = ṫ − 1 proving the induction hypothesis and

the optimality of ∆̃l∗
t under an unbounded target spacing change assumption for all

t = 1, 2, . . . , N .

Proof of Corollary 1

Proof: The proof follows directly from Proposition 3, which states that ∆̃l∗
t = ml

tst+n
l
t

where ml
t = −αlt/Ψl

t. Given that −αlt/Ψl
t < 0, it follows that ∆̃l∗

t is monotone

decreasing with respect to st.

Proof of Corollary 2

Proof: This result follows from the derivation in the proof of Proposition 3, specifically

through equations A.12 and A.19. Note that in Equation A.12, σN = ηN−1DN−1 +

ζN−1 is a constant with respect to ∆l
N−1. The derivative of σN with respect to ∆l

N−1

will yield zero, implying that it does not affect the value of ∆l∗
N−1. Besides, the

bounds on ∆l
N−1 are also independent of σN . Furthermore, in Equation A.19, σt also

has no effect to the determination of ∆l∗
t−1 since it is a constant with respect to ∆l

t−1.

Thus, the determination of the optimal policy is independent of the variance of the

distribution of trajectory deviations.
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Proof of Corollary 3

Proof: For the result to hold, the following three conditions must be satisfied (Puter-

man 2005):

1. clt(∆
l
t) is nondecreasing in st for all ∆

l
t and t = 1, 2, . . . , N − 1;

2.
∞∑
j=m

P (j|st,∆l
t) is nondecreasing in st for all m, ∆l

t and t = 1, 2, . . . , N − 1; and

3. clN(∆
l
N) is nondecreasing in sN .

Condition 1 is trivial since clt(∆
l
t) is independent of st. Condition 3 is intuitive

since a large final spacing sN will generate large runway utilization cost clN(∆
l
N) where

∆l
N = sN − sLN .

We analyze Condition 2 by showing that
∞∑
j=m

P (j|st,∆l
t) ≤

∞∑
j=m

P (j|(st + k),∆l
t)

for all m, k > 0, ∆l
t and t = 1, 2, . . . , N − 1. Note that P (j|st,∆l

t) ∼ N(µt, σt), where

µt = ∆l
t + ptst + qtDt + rt and σt = ht(Dt). Thus, P (j|(st + k),∆l

t) ∼ N(µt + ptk, σt).

Then,
∞∑
j=m

P (j|st,∆l
t) = ϕ(m−µt

σt
) and

∞∑
j=m

P (j|(st+ k),∆l
t) = ϕ(m−µt−ptk

σt
), where ϕ(x)

is the cumulative distribution function for the standard normal distribution. Note

that pt is positive since pt = 1 + ot where |ot| << 1. Thus m − µt > m − µt − ptk,

implying that ϕ(m−µt
σt

) < ϕ(m−µt−ptk
σt

), which shows that Condition 2 also holds.

Proof of Proposition 4

Proof: It is shown in Proposition 3.3 that for a pair of aircraft, the approximated

optimal target spacing change is ∆̃l∗
t = ml

tst+n
l
t for t = 1, . . . , N−1 and l ∈ {F, S, T}

if ∆̃l∗
t ∈ [∆t,∆t].

Using the procedure in Algorithm 3.3, we can define ∆̃l∗
ti = ml

tisti + nlti, where

i = 1, . . . , K−1 stands for the ith pair of aircraft. LetM = diag(ml
t1,m

l
t2, . . . ,m

l
t,K−1)

and N = [nlt1, n
l
t2, . . . , n

l
t,K−1]. Then we have that ∆̃l∗

t = stM +N , if ∆̃l∗
ti ∈ [∆ti,∆ti]

for i = 1, . . . , K − 1. Given that the above relationship is linear and that ml
ti < 0 for
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all i = 1, . . . , K − 1 and t = 1, . . . , N − 1 as shown in the proof of Corollary 1, the

monotone decreasing property also applies in this case.
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A.4 Aircraft Separation Requirements

Trailing
Heavy B767 Large Small

L
ea
d
in
g Heavy 4 5 5 6

B767 4 4 4 5
Large 3 3 3 4
Small 3 3 3 3

Table A.2. Runway separation requirements in nautical miles at the runway thresh-
old for arrival operations.
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A.5 Approach Configurations at ATL and LAX
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(a) Approach configuration at ATL.
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(b) Approach configuration at LAX.

Figure A.2. Approach configurations and location information for certain metering
points at ATL and LAX.
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A.6 Distribution of Aircraft Types

Table A.3. Top ten most common aircraft types at ATL.

Aircraft Type Weight Class Percentage

CRJx Large 29.1%
MD8x Large 17.9%
B752 Boeing 757 13.1%
B712 Large 11.0%
B737 Large 6.0%
B738 Large 4.2%
DC9x Large 3.3%
A319 Large 2.5%
A320 Large 2.4%
B763 Heavy 2.2%
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A.7 Demonstration of Optimal Spacing Policies for Addition-

al Aircraft Types

Table A.4. Parameters to determine the optimal target spacing values for B738
trailing A320.

Stage
Fuel Sustainability Total

mF
t nFt mS

t nSt mT
t nTt

1 -0.64 4.11 -0.70 1.82 -0.63 3.78
2 -0.37 2.75 -0.47 0.85 -0.34 2.39

3 -0.33 -1.50 -0.60 0.40 -0.30 -1.72
4 -0.08 -1.68 -0.35 -0.66 -0.07 -1.70
5 -0.04 -1.71 -0.31 -0.70 -0.04 -1.76

Table A.5. Parameters to determine the optimal target spacing values for A319
trailing B763.

Stage
Fuel Sustainability Total

mF
t nFt mS

t nSt mT
t nTt

1 -0.58 3.71 -0.71 1.74 -0.57 1.94
2 -0.36 2.32 -0.57 0.87 -0.34 0.70
3 -0.18 -2.54 -0.59 0.29 -0.17 -2.63

4 -0.04 -2.35 -0.28 -1.14 -0.03 -2.87
5 -0.02 -2.58 -0.21 -1.55 -0.02 -3.15

Table A.6. Parameters to determine the optimal target spacing values for A320
trailing B752.

Stage
Fuel Sustainability Total

mF
t nFt mS

t nSt mT
t nTt

1 -0.70 4.24 -0.73 1.99 -0.68 3.92
2 -0.46 3.06 -0.51 1.14 -0.42 2.57

3 -0.31 -1.61 -0.62 0.51 -0.29 -1.80
4 -0.07 -1.79 -0.34 -0.44 -0.06 -1.90
5 -0.04 -2.17 -0.29 -0.71 -0.03 -2.38

In Tables A.4-A.6, we list the parameters to determine the optimal spacing policies

for three different pairs of aircraft for demonstration purposes. In the tables, ml
t and

nlt are the parameters to determine the optimal target spacing change values through

the relationship ∆̃l∗
t = ml

tst + nlt for l ∈ {F, S, T}. These parameters can be used in

a spreadsheet based model or in an automated tool to easily calculate the optimal

target spacings at each metering point.
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Figure A.3. Optimal target spacing change as a function of observed spacing at the
second metering for B738 trailing A320.
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Figure A.4. Optimal target spacing change as a function of observed spacing at the
second metering for A319 trailing B763.

Similarly, in Figures A.3-A.5, we show plots demonstrating the structure of the

optimal spacing policies for the same aircraft pairs.
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Figure A.5. Optimal target spacing change as a function of observed spacing at the
second metering for A320 trailing B752.

A.8 Target Spacing Change vs. Observed Spacing over Me-

tering Points
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(a) Fuel cost based optimization.
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(b) Sustainability based optimiza-
tion.
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(c) Total cost based optimization.

Figure A.6. Target spacing change at each metering point for different observed
spacing scenarios under three cost structures for B712 trailing B737.

We notice that the differences in optimal policies under different cost structures

are not that large in general. On the other hand, when optimization is based on

sustainability related costs, it can be observed that the spacing changes are typically

in larger magnitude especially at initial metering points, as reflected through the

differences in circled areas in Figure A.6. This is because the relative flatness in the
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cost structure over different spacing values allows for a more aggressive maneuvering

policy under a sustainably optimal policy.
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A.9 Estimated Savings Tables due to Optimized OPD Se-

quencing and Spacing

Table A.7. Benefits analysis for top ten Category A airports based on Formosa
(2009).

Airport
Code

Location

Estimated
Daily
OPD
Flights

Annual
Environmental
Savings($)

Annual Fuel
Burn Savings($)

Annual Total
Saving($)

PHL Philadelphia, PA 223 365,642 1,771,332 2,136,974
ORD Chicago, IL 437 717,038 3,473,650 4,190,687
EWR Newark, NJ 207 340,364 1,648,877 1,989,241
LGA New York, NY 184 302,457 1,465,237 1,767,694
IAH Houston, TX 263 431,625 2,090,981 2,522,606
DTW Detroit, MI 220 361,480 1,751,169 2,112,649
DFW Dallas, TX 321 527,746 2,556,636 3,084,383
CVG Cincinnati, OH 81 132,525 642,010 774,535
IAD Washington, DC 180 295,119 1,429,690 1,724,809
DCA Washington, DC 141 232,224 1,124,994 1,357,217

Total 2,256 $3,706,220 $17,954,576 $21,660,796

Table A.8. Benefits analysis for top ten Category B airports based on Formosa
(2009).

Airport
Code

Location

Estimated
Daily
OPD
Flights

Annual
Environmental
Savings($)

Annual Fuel
Burn Savings($)

Annual Total
Saving($)

PWM Portland, ME 28 46,625 225,871 272,495
MSN Madison,WI 42 68,903 333,796 402,699
RNO Reno, NV 43 71,005 343,978 414,983
JAX Jacksonville, FL 49 79,922 387,178 467,100
PVD Providence, RI 39 64,733 313,598 378,331
DAY Dayton, OH 33 54,130 262,228 316,358
RSW Fort Myers, FL 41 67,791 328,408 396,199
MSY New Orleans, LA 61 100,474 486,739 587,213
AUS Austin, TX 88 143,874 696,989 840,862
ROC Rochester, NY 52 85,245 412,965 498,210
Total 477 $782,701 $3,791,749 $4,574,450

We note that even if OPD is not implemented at the busiest airports, but im-

plemented in ten prioritized airports, expected savings are still quite high, with an

environmental value of around $2 million, and fuel savings of $9 million. These val-

ues may be less for some other categorizations shown above, but the expected value

147



Table A.9. Benefits analysis for top ten Category C airports based on Formosa
(2009).

Airport
Code

Location

Estimated
Daily
OPD
Flights

Annual
Environmental
Savings($)

Annual Fuel
Burn Savings($)

Annual
Total

Saving($)

BWI Baltimore, MD 137 225,362 1,091,755 1,317,118
ATL Atlanta, GA 459 753,912 3,652,285 4,406,197
CVG Cincinnati, OH 81 132,525 642,010 774,535
RDU Raleigh-Durham, NC 96 157,441 762,714 920,156
MHT Manchester, NH 32 52,831 255,935 308,766
BUR Burbank, CA 61 100,434 486,549 586,984
BOS Boston, MA 185 304,095 1,473,170 1,777,265
PWM Portland, ME 28 46,625 225,871 272,495
MEM Memphis, TN 155 254,400 1,232,425 1,486,825
PIT Pittsburgh, PA 74 121,396 588,095 709,491
Total 1,308 $2,149,020 $10,410,810 $12,559,831

is visible in all cases, indicating that there is potential for improved efficiency and

effectiveness in OPD operations through the optimal policies proposed.
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Table A.10. Benefit analysis for a prioritized airport list, which is based on a
weighting scheme used by Formosa (2009).

Airport
Code

Location

Estimated
Daily
OPD
Flights

Annual
Environmental
Savings($)

Annual Fuel
Burn Savings($)

Annual
Total

Saving($)

STL St. Louis, MO 95 155,360 752,635 907,995
MHT Manchester, NH 32 52,831 255,935 308,766
PIT Pittsburgh, PA 74 121,396 588,095 709,491
CVG Cincinnati, OH 81 132,525 642,010 774,535
RDU Raleigh-Durham, NC 96 157,441 762,714 920,156
FLL Fort Lauderdale, FL 133 217,950 1,055,849 1,273,799
PHX Phoenix, AZ 229 376,951 1,826,117 2,203,068
MCO Orlando, FL 157 258,673 1,253,126 1,511,798
SAN San Diego, CA 92 151,064 731,820 882,884
SLC Salt Lake City, UT 178 292,890 1,418,887 1,711,777
Total 1,167 $1,917,080 $9,287,188 $11,204,268
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APPENDIX B

APPENDIX FOR STRATEGIC MODELS ON ARRIVAL
OPERATIONS AT AIRPORTS

B.1 Summary of Notation Used

N : number of metering points along the OPD trajectory

t : index of metering point t

SN : expected savings through optimal spacing and sequencing policies

ϵ : a small positive number used as a stopping criterion

st : observed spacing value at metering point t

∆t : target spacing change for the next metering point at metering

point t

µt : mean of the realized spacing value at metering point t

σt : standard deviation of the realized spacing value at metering

point t

pt, qt, rt : coefficients of the mean of the realized spacing value at metering

point t

ηt, ζt : coefficients of the mean of the realized spacing value at metering

point t

dt : distance between metering points t and t+ 1 along the trajectory

s̄N : minimum required spacing at the runway between two aircraft

∆t : upper bound for the target spacing change at metering point t

∆t : lower bound for the target spacing change at metering point t

cl : coefficients used in the cost functions based on BADA
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yt : the distance of metering point t from the top of descent

λ : arrival rate of flights

L : distance between the top of descent and the runway

i : index of the aircraft type

zt : intermediate variables where zt = dt −∆t

Nc : number of metering points in the cruise stages

fcr(y
t, dt, zt) : cruise stage fuel cost function

fd(y
t, dt, zt) : descent stage fuel cost function

fnom(y
t, dt, zt) : nominal fuel cost based on BADA

fmin(y
t, dt, zt) : minimal fuel cost based on BADA

fc(st) : cost of violation of separation requirements

fr(sN) : runway utilization cost

ψ,Ψ : scenario and the set of scenarios

M : the number of scenarios in Ψ

ρψ : probability of scenario ψ

Rt
ψψ′ : Indication parameter which equals 1 if ψ and ψ′ have the same

history at a given decision epoch t, and equals 0 otherwise.

Rt, Q
ψ
t , R

ψ
t , V

ψ
t : intermediate variables used to represent the components of

bilinear terms in the cruise stage cost functions

Ft, G
ψ
t , X

ψ
t ,Wt : intermediate variables used to represent the components of

bilinear terms in the descent stage cost functions

m,n : indices of the two dimensional grid for linearization of bilinear

terms

πt,ψ1,m,n : decision variables used for linearization of bilinear terms

αt,ψ1,m, β
t,ψ
1,n : SOS2 variables for linearization of bilinear terms

PQψ
t , FG

ψ
t , : variables used to represent the approximation of the

XWψ
t , RV

ψ
t corresponding bilinear terms
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PQψt ,RVψ, the set of constraints involved with the bilinear term

FGψ,XWψ : approximations

Zψ
1t : auxiliary variable used to represent the descent stage fuel cost

Zψ
2 : auxiliary variable used to represent the runway utilization cost

L(X, d,∆, δ, ϕ) : Lagrangian function with the nonanticipativity constraints

relaxed

δψt , ϕ
ψψ′

t : Lagrangian multipliers

Γj : the gradient direction at iteration j

152



B.2 Derivation of Cost Functions

Target spacing change ∆t at a given metering point t defines a change in the

airspeed of aircraft, which can incur additional fuel costs. In addition, the locations

of metering points defined by dt can affect spacing realizations, and thus the realized

fuel costs due to the variations along the trajectory. To capture these dependencies,

we transform the fuel cost functions provided by Nuic (2012) into functions that

account for ∆t and d
t.

As part of the general setup, we assume that the aircraft descend at a certain

angle ranging from 2◦ to 4◦, which we denote as φ. Then the height of metering point

t, denoted as Ht, can be expressed using its distance to the airport.

Ht = (L− yt) sinφ (B.1)

In addition, we define VtL as the speed of the leading aircraft in a two aircraft OPD

implementation at metering t and assume it is known. Given the distance between the

two metering point is dt, the time spent by the leading aircraft traveling between the

adjacent metering points can be computed as dt/VtL. If the ATC issues a command

of spacing change ∆t, the corresponding true airspeed for the trailing aircraft will be

adjusted to VtR = VtL − ∆t
dt/VtL

. Further simplification can provide the true airspeed

for the trailing aircraft as:

VtR = VtL(1−∆t/d
t) (B.2)

which we utilize in the derivations below.

Cruise Stage Fuel Cost Functions

According to Nuic (2012), the cruise fuel flow of the trailing aircraft in kg/min

can be expressed as follows:
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fcr =η × Thr × Cfcr (B.3)

= Cf1 × (1 +
VtR
Cf2

)× CDϱV
2
tRS

2
× Cfcr (B.4)

= Cf1(1 +
VtR
Cf2

)
ϱV 2

tRS

2
× (CD0,CR + CD2,CR

4m2g20
ϱ2V 4

tRS
2 cos2 ϕ

)Cfcr (B.5)

= Cf1(1 +
VtR
Cf2

)
ϱ0(T/T0)

4.26V 2
tRS

2
(CD0,CR + CD2,CR

4m2g20
[ϱ0(T/T0)4.26]2V 4

tRS
2 cos2 ϕ

)Cfcr

(B.6)

= Cf1(1 +
VtR
Cf2

)
ϱ0[

T0−1.98/1000H

T0
]4.26V 2

tRS

2

× (CD0,CR + CD2,CR

4m2g20

ϱ20[
T0−1.98/1000H

T0
]8.52V 4

tRS
2 cos2 ϕ

)Cfcr (B.7)

where Cf1, Cf2, CD0,CR, CD2,CR and Cfcr are constants defined by Nuic (2012). E-

quations (B.3) - (B.7) are relationships based on Nuic (2012), where η is the thrust

specific fuel consumption, Thr is the thrust, CD is the drag coefficient, ϱ is the air

density, m is the aircraft mass, g0 is the gravitational acceleration, T0 is the standard

atmospheric temperature at Mean Sea Level (MSL), T is the atmospheric tempera-

ture observed, S is the reference wing surface area and ϕ is the correction for the

flight path angle.

Given (B.1), (B.2), as well as the fuel flow rate (B.7) in kg/min, and the time

spent for the trailing aircraft traveling between the two metering points, which is

defined as dt/VtR, the fuel cost between the two metering points can be expressed in

dollars as:

fcr(y
t, dt, zt) = c0(c4 + c2y

t)4.26(zt + c1z
2
t /d

t) + c3
1

(c4 + c2yt)4.26z2t
((dt)4/zt + c1(d

t)3)

(B.8)

where the constants can be calculated as
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c0 = 30Cf1CD0,CRCfcrϱ0Cr1Cr2SVtL (B.9)

c1 = VTL/Cf2 (B.10)

c2 = 12.03 sinφ/T0 (B.11)

c3 =
4CD2,CRm

2g20
CD0,CRϱ20v

4
TLS

2 cos2 ϕ
(B.12)

c4 = 1− 12.03L sin(φ) (B.13)

In the above definitions, Cr1 is the price of aviation fuel per kilogram in dollars, and

Cr2 is the conversion rate from m/s to nm/hr.

Descent Stage Fuel Cost Functions: Nominal Fuel Cost

Similar to the cruise stage fuel costs, according to Nuic (2012), the fuel cost spent

between the two metering points t and t+ 1 can be expressed as:

fnom = Cf1CTdes,appCTC,1(1+
vtR
cf2

)(1− Ht

CTC,2
+cTC,3H

2
t )[1−CTC,5(∆T −CTC,4)]

60dt

1000VtR
Cr1

(B.14)

where Cf1, CTdes,app, CTC,1, CTC,2, CTC,4, CTC,5 and Cf2 are constants defined by Nuic

(2012) and ∆T is the difference in atmospheric temperature at MSL between a given

non-standard atmosphere and International Standard Atmosphere (ISA).

Using the conversion (B.1) and (B.2), we can obtain the following expression:

fnom(y
t, dt, zt) = c11((d

t)2/zt + c12d
t)[c5 + c6y

t + c7(y
t)2 + c8(y

t)3] (B.15)

where
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c5 = (1− 6076L sinφ

cTC,2
+ 60762CTC,3L

2 sin2 φ)(1 + CTC,4CTC,5 − 12.03CTC,5L sinφ)

(B.16)

c6 = 3.69× 107(1− 6076L sinφ

cTC,2
+ 3.69× 107CTC,3L

2 sin2 φ)CTC,3 sin
2 φ

+ (1 + CTC,4CTC,5 − 12.03CTC,5L sinφ)(
6076 sinφ

CTC,2
− 1.1× 1010CTC,3 sin

2 φ)

(B.17)

c7 = 3.69× 107CTC,3 sin
2 φ(1 + CTC,4CTC,5 − 12.03CTC,5L sinφ)

+ (
6076 sinφ

CTC,2
− 300 · 60762CTC,3 sin2 φ)(6076 · 1.98/1000CTC,5 sinφ) (B.18)

c8 = 4.44× 108CTC,3 sin(φ)CTC,5 sinφ (B.19)

c11 = 0.06cf1Cdes,appcTC,1Crate1/vtL (B.20)

c12 = vtL/Ccf2. (B.21)

Descent Stage Fuel Cost Functions: Minimal Fuel Cost

According to Nuic (2012), the minimal fuel cost between two metering points t

and t+ 1 can be expressed as:

fmin = cf3(1−Ht/cf4)60d
t/VtRCr1 (B.22)

= (c9 + c10y
t)

(dt)2

dt −∆t

(B.23)

= (c9 + c10y
t)
(dt)2

zt
(B.24)

where

c9 = 60Cr1Cf3/vtL(1− 6076L sinφ/Cf4) (B.25)

c10 = 3.65× 105Cr1Cf3/vtL sinφ/Cf4 (B.26)
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B.3 Proofs of Analytical Results

Proposition B.1. If two different scenarios ψ and ψ′ share the same history at stage

t and ∆ψ
t = ∆ψ′

t , then all the required nonanticipativity requirements at stage t are

satisfied.

Proof: We first prove that the statement works for sψt , meaning sψt = sψ
′

t ,∀t, ψ, ψ′ :

Rt
ψψ′ = 1. We note that the initial spacing at the TOD is the same for all the

scenarios, i.e., for any ψ and ψ′, sψ0 = sψ
′

0 . Clearly, the statement works for t = 0.

When t = 1, given our assumption, ψ and ψ′ share the same history at stage 1 and

thus the same history at stage 0. Hence ∆ψ
0 = ∆ψ′

0 , ηψ0 = ηψ′0 and ζψ0 = ζψ′0. We

also know sψ0 = sψ
′

0 . Since sψ1 = (∆ψ
0 + p0s

ψ
0 + q0d

0 + r0) + ηψ0d
0 + ζψ0 for all the

scenarios, it implies that sψ1 = sψ
′

1 . Through mathematical induction, we can prove

that the statement works for all the stages.

In addition, given that zψt = dt −∆ψ
t and that dt is independent of the scenarios,

we have that zψt = zψ
′

t if ∆ψ
t = ∆ψ′

t . Similarly, the other variables are functions of

sψt ,∆
ψ
t , z

ψ
t and dt, thus clearly the statement also works for all the other decision

variables.

Proposition B.2. The Lagrangian subproblem can be expressed for each scenario ψ

as:

Lψ(X, d,∆, δ, ϕ) = gψ(X) +
∑
t

∑
ψ′

δψ
′

t ρψd
tψ −

∑
t

δψt d
tψ

+
∑
t

∑
ψ′>ψ|Rt

ψψ′=1

ϕψψ
′

t ∆ψ
t −

∑
t

∑
ψ′<ψ|Rt

ψ′ψ=1

ϕψ
′ψ

t ∆ψ
t . (B.27)

Proof:
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L(X, d,∆, δ, ϕ, ) (B.28)

= g(X) +
∑
t

∑
ψ

δψt
(∑
ψ′

ρψ′dtψ
′
− dtψ

)
+
∑
t

∑
ψ

∑
ψ′>ψ|Rt

ψψ′=1

ϕψψ
′

t (∆ψ
t −∆ψ′

t ) (B.29)

= g(X) +
∑
t

∑
ψ

δψt
∑
ψ′

ρψ′dtψ
′
−
∑
t

∑
ψ

δψt d
tψ +

∑
t

∑
ψ

∑
ψ′>ψ|Rt

ψψ′=1

(ϕψψ
′

t ∆ψ
t − ϕψψ

′

t ∆ψ′

t )

(B.30)

= g(X) +
∑
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∑
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=
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ψ
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∑
t
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Note that in the transition from equation (B.31) to equation (B.32) above, we

switch the index of ψ and ψ′ for
∑

t

∑
ψ

∑
ψ′>ψ|Rt

ψψ′=1 ϕ
ψψ′

t ∆ψ′

t . As ψ and ψ′ refer

to the same sets, switching them will not have an impact. In the transition from

equation (B.32) to equation (B.33), we maintain the same scenario pair set but express

it differently for
∑

ψ′
∑

ψ>ψ′|Rt
ψ′ψ=1.
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Given the derivations above, it can be observed that L(X, d,∆, δ, ϕ) =
∑

ψ Lψ(X,

d,∆, δ, ϕ), where

Lψ(X, d,∆, δ, ϕ) = gψ(X) +
∑
t

∑
ψ′

δψ
′

t ρψd
tψ −

∑
t

δψt d
tψ

+
∑
t

∑
ψ′>ψ|Rt

ψψ′=1

ϕψψ
′

t ∆ψ
t −

∑
t

∑
ψ′<ψ|Rt

ψ′ψ=1

ϕψ
′ψ

t ∆ψ
t . (B.36)

Proposition B.3. Constraints (4.26)-(4.29) are convex.

Proof: We first show that Pt ≥ (c4 + c2y
t)4.26 constitutes a convex constraint. We

convert it as (c4 + c2y
t)4.26 − Pt ≤ 0. We want to show that (c4 + c2y

t)4.26 − Pt is

convex with respect to both yt and Pt. Note that −Pt is linear and thus convex. It is

sufficient to prove (c4+ c2y
t)4.26 is convex since the sum of two convex term is convex.

Since c2 > 0, c4 > 0 and yt > 0, the first order condition 4.26c2(c4 + c2y
t)3.26 and

the second order condition 13.8876c2(c4 + c2y
t)2.26 are both positive, which prove the

convexity of (c4 + c2y
t)4.26.

For Qt ≥ zt + c1z
2
t /d

t, we first express the constraint as zt + c1z
2
t /d

t − Qt ≤ 0.

Similarly as above, it is sufficient to prove that c1z
2
t /d

t is convex since zt − Qt is

convex. The Hessian H of this function is as follows. We want to prove that H is

positive semidefinite.

HQ =

 2
dt

−2zt
(dt)2

−2zt
(dt)2

2z2t
(dt)3


The matrix HQ is Hermitian since it is symmetric and all of its elements are

real. According to Sylvester’s criterion (Bronson, 1989), proving that a Hermitian

matrix is positive semidefinite is equal to proving that the leading principal minors

are nonnegative, where a leading principal minor of a n × n matrix is defined as
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the determinant of any submatrix obtained by deleting the last k rows and the last

k columns for k = 0, 1, ..., n − 1. We can easily show that the first leading minor

|HQ
1 | = 2/dt and the second leading minor |HQ

2 | = 0. Thus, the matrix is positive

semi-definite and the constraint is convex.

For Rt ≥ 1
(c4+c2yt)4.26z2t

, we want to show that 1
(c4+c2yt)4.26z2t

is convex. The Hessian

matrix HR is computed as follows:

HR =

 22.4076c22
(c4+c2yt)6.26z2t

8.52c2
(c4+c2yt)5.26z3t

8.52c2
(c4+c2yt)5.26z3t

6c22
(c4+c2yt)4.26z4t


Further calculations show that |HR

1 | =
22.4076c22

(c4+c2yt)6.26z2t
and |HR

2 | =
61.8552c22

(c4+c2yt)10.52z6t
.

Both are positive, and thus the constraint is convex.

For Vt ≥ (dt)4/zt + c1(d
t)3, we only need to show that (dt)4/zt is convex. The

Hessian matrix H in this case is given as:

H =

 12(dt)2/zt −4(dt)3/z2t

−4(dt)3/z2t 2(dt)4/z3t


We can easily show that |H1| = 12(dt)2/zt and |H2| = 8(dt)6/z4t . Thus, the matrix

is positive semi-definite and the constraint is convex.

For the constraints Xt ≥ (dt)2/zt+ c12d
t and Gt ≥ (dt)2/zt, it is sufficient to prove

that (dt)2/zt is convex. The Hessian matrix for this function is:

H =

 2
zt

−2dt

z2t

−2dt

z2t

2(dt)2

z3t


We can easily show that |H1| = 2/zt and |H2| = 0. Thus, both constraints are

convex.

Finally for the last two constraints Wt ≥ c5 + c6y
t + c7(y

t)2 + c8(y
t)3 and Ft ≥

c9 + c10y
t. We can easily show that c5 + c6y

t + c7(y
t)2 + c8(y

t)3 and c9 + c10y
t are

convex since they are the sums of convex functions.
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B.4 Distribution of Aircraft Types

Table B.2. Top ten most common aircraft types at ATL.

Aircraft Type Percentage

CRJx 29.1%
MD8x 17.9%
B752 13.1%
B712 11.0%
B737 6.0%
B738 4.2%
DC9x 3.3%
A319 2.5%
A320 2.4%
B763 2.2%

Table B.3. Top ten most common aircraft types at LAX.

Aircraft Type Percentage

B737 17.1%
CRJx 12.8%
B757 11.4%
A320 10.9%
B737 9.4%
E120 6.5%
E135 5.6%
A319 4.7%
B763 4.2%
B744 3.0%
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B.5 Estimated Savings Tables due to Optimized OPD Me-

tering Points

Table B.4. Benefits analysis for top ten Category A airports based on Formosa
(2009).

Airport
Code

Location
Estimated Daily
OPD Flights

Annual Total
Saving($)

PHL Philadelphia, PA 223 1,600,699
ORD Chicago, IL 437 3,139,032
EWR Newark, NJ 207 1,490,040
LGA New York, NY 184 1,324,090
IAH Houston, TX 263 1,889,557
DTW Detroit, MI 220 1,582,479
DFW Dallas, TX 321 2,310,355
CVG Cincinnati, OH 81 580,165
IAD Washington, DC 180 1,291,968
DCA Washington, DC 141 1,016,623

Total 2256 $16,225,007

Table B.5. Benefits analysis for top ten Category B airports based on Formosa
(2009).

Airport
Code

Location
Estimated Daily
OPD Flights

Annual Total
Saving($)

PWM Portland, ME 28 204,113
MSN Madison,WI 42 301,641
RNO Reno, NV 43 310,843
JAX Jacksonville, FL 49 349,881
PVD Providence, RI 39 283,389
DAY Dayton, OH 33 236,967
RSW Fort Myers, FL 41 296,773
MSY New Orleans, LA 61 439,851
AUS Austin, TX 88 629,847
ROC Rochester, NY 52 373,184
Total 477 $3,426,489

We note that even if OPD is not implemented at the busiest airports, but im-

plemented in ten prioritized airports, expected savings are still quite high, with an

annual total savings of around $8.3 million. These values may be less for some other

categorizations shown above, but the expected value is visible in all cases, indicating

that there is potential for improved efficiency and effectiveness in OPD operations

through the optimal metering point configurations proposed.
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Table B.6. Benefits analysis for top ten Category C airports based on Formosa
(2009).

Airport
Code

Location
Estimated Daily
OPD Flights

Annual Total
Saving($)

BWI Baltimore, MD 137 986,586
ATL Atlanta, GA 459 3,300,460
CVG Cincinnati, OH 81 580,165
RDU Raleigh-Durham, NC 96 689,242
MHT Manchester, NH 32 231,281
BUR Burbank, CA 61 439,680
BOS Boston, MA 185 1,331,259
PWM Portland, ME 28 204,113
MEM Memphis, TN 155 1,113,705
PIT Pittsburgh, PA 74 531,443
Total 1308 $9,407,934

Table B.7. Benefit analysis for a prioritized airport list, which is based on a weighting
scheme used by Formosa (2009).

Airport
Code

Location
Estimated Daily
OPD Flights

Annual Total
Saving($)

STL St. Louis, MO 95 680,133
MHT Manchester, NH 32 231,281
PIT Pittsburgh, PA 74 531,443
CVG Cincinnati, OH 81 580,165
RDU Raleigh-Durham, NC 96 689,242
FLL Fort Lauderdale, FL 133 954,139
PHX Phoenix, AZ 229 1,650,207
MCO Orlando, FL 157 1,132,412
SAN San Diego, CA 92 661,324
SLC Salt Lake City, UT 178 1,282,205
Total 1167 $8,392,551
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APPENDIX C

APPENDIX FOR TACTICAL AND STRATEGIC MODELS
ON DEPARTURE OPERATIONS AT AIRPORTS

C.1 Summary of Notation Used

T : total decision time considered

N : total number of decision epochs considered

t : index of decision epoch

h : duration of a decision period

sat : number of aircraft waiting for gates at period t

sgt : number of available gates at period t

smt : number of aircraft at the metering area at period t

srt : number of aircraft on the runway at period t

NA : maximum allowable number of aircraft waiting for gates

NG : maximum number of available gates in a period

NM : number of metering area slots

NR : runway capacity

st : a vector representation of the state variables where st =

< sat, sgt, smt, srt >

St : set of all the possible aircraft distribution st at the airport

τ1t : number of aircraft to be pushed back to the metering area

from the gates

τ2t : number of aircraft to be directed to the runway from the

metering area
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τt : a vector representation of the decision variables where τt =

< τ1t, τ2t >

Ast : set of all the possible aircraft distribution adjustments τt

P (st+1|st, τt) : transition probability

at : number of arrivals at period t

Dt : number of the actual pushback aircraft at period t

pA(at) : probability distribution of arrivals at period t

pD(Dt) : probability distribution of pushback aircraft at period t

ctx : average cost of holding at taxiway per minute

ftx(sat, sgt) : total cost of holding at taxiway

cgt : average delay cost at gates per minute

fgt(sgt) : total holding cost at gates

cmt : average delay cost at the metering area per minute

fmt(smt) : total holding cost at the metering area

crw : average runway holding cost per aircraft

frw(srt) : total runway holding cost

fN(sN) : cost of the last period which is associated with handling of

all the aircraft remaining at the airport

Ns : additional number of periods to handle all the aircraft

remaining at the airport after the last decision period

M : penalty cost per aircraft

π∗ : an optimal policy

V π∗
: optimal expected cost for a given optimal policy π∗

V ∗
t (st) : optimal expected cost for a given state st

Ncon : the target/controlled number of aircraft in a N-Control policy

s, S : the parameters used in a (s, S) policy

165



C.2 Distribution of Aircraft Types

Table C.2. Most common aircraft types at DTW.

Aircraft Type Percentage

CRJ2 26.03%
CRJ7 8.29%
E145 8.21%
B737 7.58%
CRJ9 7.54%
A319 7.46%
A320 6.92%
B757 5.03%
MD88 4.31%
E170 4.03%
B717 2.52%
MD90 2.33%
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