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ABSTRACT 
EVALUATING RESISTANCE SURFACES FOR  

MODELING WILDLIFE MOVEMENT AND CONNECTIVITY 

SEPTEMBER 1, 2016 

KATHERINE ZELLER, B.S., TUFTS UNIVERSITY 

M.S., UNIVERSITY OF MONTANA 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Kevin McGarigal 

  

 The continued growth of human populations and associated development in many 

areas of the world is causing persistent fragmentation of natural habitats. In response, 

wildlife corridors are often promoted as essential for the conservation of wildlife species. 

Wildlife corridors allow for the movement of individuals between habitat patches and 

confer many benefits including the maintenance of metapopulations and metapopulation 

dynamics, the maintenance of seasonal migratory routes, genetic exchange, and the 

potential for individuals and populations to shift their ranges in response to climate 

change.  

 Wildlife corridors are modeled across a resistance-to-movement surface where 

resistance represents the willingness of an organism to cross a particular environment, the 

physiological cost of moving through a particular environment, or the reduction in 

survival for the organism moving through a particular environment. Resistance surfaces 

can be estimated using a wide variety of methods yet, to date, there has been no in-depth 
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methodological comparison of these methods and their appropriateness for modeling 

connectivity.  

 My dissertation has two main objectives. The first was to determine the sensitivity 

of species-habitat models, resistance surfaces and corridors for pumas (Puma concolor) 

in southern California to six key factors: (1) data type used (point, step, or path data); (2) 

Statistical models employed; (3) Behavioral state of the individuals; (4) Spatial scale of 

analysis; (5) GPS collar acquisition interval; and (6) Thematic resolution and richness of 

the underlying geospatial layers. The second objective was to determine which 

combination of factors results in the most appropriate resistance surfaces for connectivity 

modeling.  

 I found that species-habitat models, resistance surfaces and corridors were 

extremely sensitive to all six of these factors – to the point where using one scale versus 

another or one data type versus another resulted in conflicting conclusions about habitat 

use and differences in the location of corridors. I recommend that, for modeling 

movement and corridors, path data be used in a context-dependent multi-scale modeling 

framework. I also recommend that many different geospatial layers at different thematic 

resolutions be examined to identify the most appropriate landscape definition for the 

species and study area of interest.  
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CHAPTER 1 

ESTIMATING LANDSCAPE RESISTANCE TO MOVEMENT: A REVIEW 
!

Introduction 

 Understanding animal movement is crucial for developing effective landscape-

level conservation initiatives. Successful movement of animals across the landscape may 

fulfill a number of biological processes, including foraging, mating, migration, dispersal 

and gene flow, and is especially critical in allowing individuals and populations to adjust 

(e.g., redistribute) to a changing environment. However, animal movement is one of the 

most difficult behaviors to observe and quantify. When movement can be assessed, the 

number of individuals being studied is often small, and/or there may be large gaps of time 

between successive point locations along a movement path. Resistance to movement 

values are typically used to fill this gap in movement knowledge by providing a 

quantitative estimate of how environmental parameters affect animal movement. In this 

context, ‘resistance’ represents the willingness of an organism to cross a particular 

environment, the physiological cost of moving through a particular environment, the 

reduction in survival for the organism moving through a particular environment, or an 

integration of all these factors. Resistance estimation is most commonly accomplished by 

parameterizing environmental variables across a ‘resistance’ or ‘cost’ to movement 

continuum, where a low resistance denotes ease of movement and a high resistance 

denotes restricted movement, or is used to represent an absolute barrier to movement. 

‘Friction’ and ‘impedance’ to movement or their inverse, ‘permeability’ and 

‘conductivity’ to movement are also terms used to describe these travel surfaces 

(Singleton et al. 2002; Chardon et al. 2003; Sutcliffe et al. 2003). For simplicity, the term 
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‘resistance surface’ will be used to describe these movement surfaces for the remainder 

of the paper.  

 The use of resistance surfaces in landscape ecology and conservation biology has 

increased over the last decade. In particular, resistance surfaces are used in 

metapopulation and corridor studies to represent the landscape between populations or 

habitat patches. These studies have matured from simple ‘isolation by-distance’ or 

‘isolation-by-barrier’ hypotheses to recognizing that animal movement between 

populations is influenced by the varying environmental conditions an individual 

encounters as it moves through a landscape (Ferreras 2001; Adriaensen et al. 2003). This 

is typically referred to as ‘isolation-by-resistance’ (McRae 2006). Resistance surfaces are 

a quintessential element to contemporary landscape genetics studies focused on assessing 

how landscape structure affects the flow of genes across the landscape (Manel et al. 

2003; Spear et al. 2010).  

 Myriad methods have been used to model landscape resistance to movement. 

Techniques range from very basic and data-light to complex and data-heavy. Moreover, 

no general consensus has been reached regarding the most accurate data sources and 

analytical methods for modeling resistance surfaces (Spear et al. 2010). A summary of 

the methods used and their pros and cons is needed in order to frame the current state of 

knowledge surrounding resistance surface modeling and provide guidance for future 

research. Here, we provide a comprehensive literature review of the data sources and 

analytical methods used for deriving resistance surfaces. We discuss common techniques, 

highlight unique approaches, and consider the strengths and weaknesses of these 

methods. Finally, we discuss directions for future research and methodological 
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improvement.  

Methods 

 We focused our literature review on papers that dealt explicitly with estimating 

resistance to movement values for wildlife. We searched for papers in the ISI Web of 

Science (ISI 2011) with the following search criteria from January 2000 to June 2011: 

Topic = (resistance OR cost OR effective distance OR landscape permeability) AND 

(corridor* OR connect* OR wildlife OR linkage); this resulted in 1,343 papers. We 

refined our results by restricting the search to the following subject areas: Genetics and 

Heredity, Biochemistry and Molecular Biology, Ecology, Environmental Sciences, 

Multidisciplinary Sciences, Environmental Studies, Zoology, Biology, Evolutionary 

Biology, Veterinary Sciences, Biodiversity Conservation, Forestry, Agriculture, Dairy 

and Animal Science, Management, Marine and Freshwater Biology, Entomology, 

Geography, Fisheries, Oceanography, Remote Sensing, and Ornithology. This restricted 

the result to 693 papers, which we further refined by excluding papers which were 

simulation exercises only, did not deal explicitly with wildlife, and/or did not estimate 

resistance values. This resulted in our final sample of 96 papers distributed across 26 

different journals. We purport that, although this is not a full census of papers on 

resistance, the final set of papers we reviewed represent a comprehensive survey of 

current methods used to estimate resistance to movement for wildlife. References for the 

96 papers are provided in Appendix A. 

 To summarize each paper, we recorded the following information: taxonomy and 

number of target species, number and type of environmental variables, grain and extent 

of analysis, type of biological input data, analytical approach, type of resource selection 
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function (RSF), and final range of resultant resistance values. We distinguished among 

five types of biological input data: (1) expert opinion, (2) detection data, (3) relocation 

data, (4) pathway data, and (5) genetic data, as defined below (‘‘Biological data’’ 

section). We refer to ‘analytical approach’ as the analytical method(s) by which the 

environmental variables were interpreted and transformed into a final resistance surface. 

In this regard, we distinguished among three analytical approaches: (1) ‘one-stage expert 

approach’, in which the final resistance surface was derived in a single step based solely 

on expert opinion; (2) ‘one-stage empirical approach’, in which the final resistance 

surface was derived in a single step based on the analysis of biological data; and (3) ‘two- 

stage empirical approach’, in which a set of alternative resistance models were created 

based on expert opinion and/or the analysis of biological data in the first stage, followed 

by model selection based on the analysis of biological data in the second stage. We also 

distinguished among five types of RSFs that were used within the one-stage and two-

stage empirical approaches: (1) point selection function (PSF), (2) home range selection 

function (HSF), (3) matrix selection function (MSF), (4) step selection function (SSF), 

and (5) path selection function (PathSF), as defined below (‘‘Resource selection 

functions’’ section). Lastly, although we reviewed 96 papers, several papers used more 

than one biological input data type or analytical approach. Consequently, we refer to the 

number of ‘instances’ in the text and tables, rather than number of papers, as appropriate.  
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Figure 1.1. Resistance surface methods. Biological!data!types!and!analytical!processes!! !!
! !!!!!!!!!!commonly!used!to!derive!resistance!surfaces.!
!

 

Results and Discussion 

Overview of modeling resistance surfaces  

 We provide a brief outline of the resistance surface modeling process as 

background for interpreting the literature review (Fig. 1.1).  

 In step one of the modeling process, one or more environmental variables are 

selected that are either known or assumed to influence movement of a target species. 

These variables are represented with geospatial layers that are either developed for the 

study area or are readily available. The geospatial layers are then scaled appropriately 

(e.g., resampled to a coarser spatial resolution) to the species/phenomenon of  interest and 
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are represented either as raw data, classified into a desired set of classes (e.g., land cover 

classes), or transformed using various functions (e.g., Gaussian transformation of 

elevation).  

 In step two, biological data on which the estimation of resistance values will be 

based are chosen and may include detection data (i.e., presence-only or presence–absence 

points), relocation data (e.g., capture– recapture), pathway data (i.e., travel paths), genetic 

data (i.e., genotypes of individuals), or a combination of these types. If empirical data are 

lacking, then expert opinion can be used in its place.  

 Once environmental and biological data are in hand, step three involves selecting 

an analytical approach by which to estimate resistance values. If biological data are 

unavailable, then an expert-only approach must be used and there is no analytical process 

per se. If biological data are available, the type of biological data will usually drive the 

selection of the analytical approach. However, the analytical approach may be chosen 

first and then the biological data collected to meet the requirements of the model. In 

either case, the analytical approach usually entails selecting an appropriate RSF given the 

type of biological data and researcher preference. In addition, the approach selected may 

include two stages: first to derive a set of candidate resistance surfaces, and second to 

select the ‘‘best’’ of the candidates.  

 In step four, once the resistance values are estimated, a final resistance surface is 

created by applying the results to the grids of the previously selected environmental 

variables. Depending on the biological data and analytical approach employed and the 

intended use of the resistance surface (e.g., corridor design, population modeling), 
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multiple resistance surfaces (e.g., to reflect model uncertainty) may be retained for use in 

the subsequent application. However, some studies are only interested in assessing the 

degree to which environmental variables may be affecting movement and thus do not 

develop a ‘final’ resistance surface.  

Taxonomic bias  

 Eight taxonomic classes, 25 orders, and 59 families were represented in our 

sample (Table 1.1). The Mammalia class (86 % of studies), the Carnivora order (46 % of 

studies), and the Felidae family (17 % of studies) were the most highly represented. Four 

studies used generic species as a proxy for real species (Adriaensen et al. 2003; Rae et al. 

2007; Pinto and Keitt 2009; Watts et al. 2010). Of the 14 studies that modeled more than 

one species, resistance values were modeled separately for each species in 10 of the 

studies and were combined into a single resistance model in four of the studies. Not 

surprisingly, large and charismatic species of conservation concern were the focus of the 

majority of studies, although amphibians were also represented surprisingly well, while 

birds and invertebrates were less often the focus.  
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Table 1.1. Taxonomic focus (including Phylum, Class, Order and Family) in 96 studies    
        aimed at producing a resistance surface. 

Taxonomic Divisions 

 

 

Number of 
Papers a 

Percentage of 
Papers b 

Phylum Chordata 124 129% 
 Arthropoda 10 10% 
Class Mammalia 83 86% 
 Amphibia 7 18% 
 Aves 16 17% 
 Insecta 8 8% 
 Reptilia 8 8% 
 Arachinidia 1 1% 
 Actinopterygii 1 1% 
 Branchiopoda 1 1% 
    
Order Carnivora 45 46% 
 Artiodactyla 19 20% 
 Rodentia 13 14% 
 Passeriformes 11 11% 
 Anura 10 10% 
 Caudata 7 7% 
 Testudines 4 4% 
 Lepidoptera 4 4% 
 Squamata 4 4% 
 Ephemeroptera 2 2% 
 Proboscidea 2 2% 
 Falconiformes 1 1% 
 Trichoptera 1 1% 
 Erinaceomorpha 1 1% 
 Dasyuromorphia 1 1% 
 Cypriniformes 1 1% 
 Cladocera 1 1% 
 Columbiformes 1 1% 
 Hemiptera 1 1% 
 Tubulidentata 1 1% 
 Ixodida 1 1% 
 Sirenia 1 1% 
 Piciformes 1 1% 
 Strigiformes 1 1% 
 Galliformes 1 1% 
Family Felidae 16 17% 
 Mustelidae 11 11% 
 Cervidae 10 10% 
 Ursidae 10 10% 
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 Bovidae 6 6% 
 Ambystomatidae 6 6% 
 Bufonidae 5 5% 
 Canidae 4 4% 
 Sciuridae 4 4% 
 Ranidae 4 4% 
 Hyaenidae 3 3% 
 Acanthizidae 2 2% 
 Heteromyidae 2 2% 
 Parulidae 2 2% 
 Nymphalidae 2 2% 
 Elephantidae 2 2% 
 Cricetidae 2 2% 
 Colubridae 2 2% 
 Emydidae 2 2% 
 Families represented by 

one paper 
40 42% 

a Number of approaches used is more than 96 since more than one approach was used in some papers.  
b Percentage of approaches used, rounded to nearest whole number.  
 
 

Environmental variables  

Estimates of resistance to movement are predicated on the choice of environmental 

variables, and the choice of both thematic and spatial scale (grain and extent) for 

representing those variables. Despite the universal importance of these choices, there was 

surprisingly little attention given to the selection and representation of environmental 

variables in the majority of the studies reviewed. Thirty-nine different environmental 

variables were used to model resistance (Table 1.2). Land use/land cover was the most 

widely used variable, followed by roads, elevation, hydrology, and slope. In 36 studies, 

only a single environmental variable was used, in 54 studies two to five variables were 

used, and in the remaining six studies, 6–10 variables were used. In these multi-variable 

studies, with one exception (Wasserman et al. 2010), variables were combined after 

analyzing the variables individually or fit simultaneously in the statistical model (e.g., via 

multiple logistic regression) to produce a single resistance surface.  
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 With regards to the choice of environmental variables, ideally only those variables 

that are believed to have an influence on the movement of the target species are included, 

but more often than not, this type of a priori knowledge is lacking. Furthermore, 

environmental variables may be chosen as a proxy for landscape characteristics that an 

individual actually perceives and responds to as it moves through the landscape. For 

example, if understory cover is not available as an environmental layer, secondary forest 

cover may be used as a proxy. However, in a review of least-cost models, Sawyer et al. 

(2011) criticized the use of proxies for landscape features that may affect animal 

movement due to weaknesses in predictive power.  

 In addition, the source and accuracy of environmental data varies widely among 

studies. Spatial data are sometimes collected via GPS units with varying degrees of 

accuracy, but the majority of spatial environmental data come from remotely-sensed (RS) 

satellite or aerial imagery, typically using either a manual ‘‘heads-up’’ mapping approach 

or a semi- automated classification method. Acceptable error rates (if error rates are 

assessed at all) in layers derived from RS imagery are not standardized (Loveland et al. 

2000), and although the target of most classifications is 85 % correct classification, many 

fall short of that goal (Foody 2002). Because image interpretation takes specialized 

software and training, the majority of papers reviewed chose to use extant environmental 

data. Unfortunately, these extant data are typically derived from imagery that is years, if 

not decades, old. In study areas where the environmental variables have remained mostly 

constant during this time-lag, this may not be a problem, but in more dynamic study 

areas, temporal appropriateness of the data must be scrutinized. When using RS data to 

derive habitat characteristics, seasonality must also be considered, especially in areas that 
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have pronounced wet and dry seasons, or with species that exhibit distinct ecological 

differences from one season to the next. Although the availability of timely and 

affordable RS images and associated environmental layers is increasing, this will likely 

remain an issue for layers that are only periodically updated like roads, housing, and 

census data.  

 To avoid errors associated with RS and GPS spatial data, one approach is to limit 

data layers to those with consistent and high accuracy rates. In the papers reviewed, nine 

studies restricted environmental variables to topographic variables like slope (Epps et al. 

2007), aspect (Clark et al. 2008), bathymetry (Flamm et al. 2005), or elevation (Vignieri 

2005) that were presumably more accurate than interpreted variables like vegetation 

cover. Another approach is to evaluate the environment within a buffer around each 

animal detection or movement pathway, where the buffer encompasses the positional 

error of the data (Adriaensen et al. 2003; Braunisch et al. 2010). Though these 

inaccuracies cannot, at the moment, be avoided, they should at least be acknowledged in 

studies of this type (Beier et al. 2008).  

 With regard to the choice of thematic scale for representing environmental 

variables, 65 of the papers reviewed used only categorical variables, 24 used a 

combination of categorical and continuous variables, and seven used only continuous 

variables (Table 1.2). In many cases, the thematic scale chosen differed from the scale of 

the raw data. There are myriad ways to transform the scale of the raw data to more 

appropriately represent how the target species perceives an environmental attribute. For 

example, discrete data such as points (e.g., houses) and lines (e.g., roads) can be 

transformed into a continuous surface by calculating the distance to the nearest feature or 
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computing a kernel density estimate of the feature (Cushman and Lewis 2010). 

Categorical data can be altered by aggregating similar categories into a reduced number 

of classes (O’Brien et al. 2006). Continuous data can be converted into categorical data 

by binning it into ranges, although this should be done with caution as this can lead to 

bias and introduce artificial boundaries not perceived by the target species (McGarigal 

and Cushman 2005; Cushman and Landguth 2010). Lastly, continuous environmental 

data can be transformed using various mathematical functions (e.g., Gaussian, linear or 

power functions), often to reflect nonlinear relationships between the species and the 

environmental gradient (Cushman et al. 2006). Despite the myriad ways to transform the 

thematic scale of environmental data, in the studies reviewed, transformations were 

generally applied arbitrarily and without explicit consideration of their potential influence 

on the results. Indeed, only a handful of the studies in our review objectively compared 

alternative thematic scales of the same environmental variable.  

 With regards to the choice of spatial scale (grain and extent) for representing 

environmental variables, there was extreme variability among the studies reviewed; grain 

size ranged over four orders of magnitude (1 m to 50 km) (Table 1.2). Many studies 

simply adopted the grain of the source data (e.g., 30 m for land cover derived from 

Landsat imagery) without explicitly considering whether the grain should have been 

coarsened for the application. Ideally, grain size should be determined based on the scale 

at which the target species perceives and responds to heterogeneity in the environment 

(Wiens 1989). Estimates of this functionally relevant scale are typically based on expert 

opinion and/or previous autecological studies (Cushman et al. 2010), but objective 

methods can be used to determine the optimum grain size—at least above the lower limit 
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set by the source data—when biological data are available (Thompson and McGarigal 

2002). Surprisingly, only six of the papers reviewed adopted this approach (McRae and 

Beier 2007; Rae et al. 2007; Broquet et al. 2009; Koscinsky et al. 2009; Murphy et al. 

2010; Nichol et al. 2010), and they often reached different conclusions regarding the best 

grain size, illustrating the point that one scale does not fit all species and that the finest 

scale available is not always the best scale for the target species. In addition, species may 

be responding to different environmental cues at different scales (Thompson and 

McGarigal 2002). Therefore, it may be more appropriate to identify the optimum grain 

for each environmental variable separately and to combine the results in the final 

resistance surface, as was done by Jaquiery et al. (2011), rather than try to find a single 

‘‘optimum’’ grain for all variables.  

 Study area extent ranged over six orders of magnitude (2.36 km2 to 3.2 million 

km2) in the studies reviewed (Table 1.2). Study area extent is usually driven by research 

objectives; however, it is worth noting that choice of extent may influence the estimation 

of resistance values. For example, Short Bull et al. (2011) used genetic data to estimate 

resistance for black bears across 12 different study areas with different extents. The 

optimal resistance surface varied by study area. Attention must also be paid to choice of 

study area boundary. Koen et al. (2010) cautioned that the hard edges of study areas may 

cause a bias in the estimate of resistance values and recommended placing buffers at the 

edges of map boundaries to avoid these boundary effects.  
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Table 1.2. Geospatial data. Environmental variables, spatial grain, thematic scale and   
       study area extent used in 96 studies aimed at producing a resistance surface. 

Environmental Variable No. Papersa 

Land cover/land use 

 

80 

Roads and other linear features 37 

DEM; Hydrology 22 

Slope 18 

Human development  

(e.g. Buildings, culverts/weirs) 11 

Percent Canopy cover 6 

Settlements; Aspect 5 

Human population density 4 

Compound Topographic Index; Traffic data; Land   
     management/Zoning 
 

3 

Temperature; NDVI; Topographic exposure;   
     Topographic Ruggedness Index; Precipitation 
 

2 

Already developed habitat/non-habitat map;  
     Anisotropic surface; Bathymetry; Climactic  
     suitability; Current velocity; Depth to bedrock;  
     Distance from presence point; Flow rate; Percent  
     rock; Persistent spring snow cover; Predation risk;  
     Relief; Seral stage based on DBH; Soil density;  
     Solar exposure; Substrate type; Topographic  
     position; Topographic smoothness; Vapor  
     density; Vegetation height; Water depth 
 
 

1 

No. Environmental Variables Used No. Papersa 

1 36 

2 – 5 54 

6 - 10 6 
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Thematic Scale No. Papersa 

Continuous 7 

Categorical 65 

Continuous & Categorical 24 

Grain (m) No. Papersa 

0-1 7 

2-5 8 

6-10 11 

11-20 9 

21-30 22 

31-50 5 

51-100 16 

101-500 11 

501-1,000 7 

1,001-5,000 4 

5,001-50,000 1 

Not provided 8 

  

Study area extent (km2)b No. Papersa 

0-10 10 

11-20 6 

21-50 3 

51-100 8 

101-500 17 

501-1,000 10 

1,001-5,000 23 

5,001-10,000 7 

10,001-20,000 6 
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20,001-50,000 6 

50,001-100,000 6 

100,001-500,000 11 

>500,000 4 

Not provided 2 

a Total number of papers is greater than 96 due to the use of more than one parameter, grain size, or study 
area extent. 
b If study area extent was not provided, where possible, the study area extent was estimated from the figure 
provided.  
 
 

Biological data 

 Perhaps the most obvious difference among the studies reviewed was the type of 

biological data used, which included: (1) expert opinion, (2) detection data, (3) relocation 

data, (4) pathway data, and (5) genetic data (Table 1.3). Note, expert opinion is not 

biological data, but it is often used in place of biological data or in combination with 

biological data, so it is included here. These data types were typically used alone, but in 

some cases they were used in combination in a two- stage approach, as discussed below.  

Expert opinion 

 Expert opinion was used in 76 instances, 33 of these combined expert opinion 

with another biological data type (Table 1.3). We assumed the use of literature to inform 

expert opinion in most cases. Additionally, we classified papers as using expert opinion if 

researcher opinion was used in any part of the estimation procedure. For example, in 

instances where estimation procedures were used that were not able to take advantage of 

full optimization techniques due to computational limitations, the parameter space and/or 

a priori resistance surfaces were based in part on expert opinion.  
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 The main issue with expert opinion data is that, even though experts may be 

drawing from their own previous research, the data are not truly empirical, making it 

difficult to objectively evaluate performance. Expert opinion has generally been shown to 

provide suboptimal parameterization of environmental variables when compared to 

empirical approaches (Pearce et al. 2001; Clevenger et al. 2002; Seoane et al. 2005), and 

thus has been criticized for its use in the development of resistance models (Cushman et 

al. in press). Moreover, because experts are often drawing from experience with habitat 

selection of their target species and not movement per se, these values should be 

considered proxies for movement at best. However, given the paucity of empirical data 

on many species in many places, more often than not expert opinion is the only option 

available on which to base a resistance model, and in many cases the urgency of 

conservation action requires that expert opinion be used as an interim solution until 

empirical data can be obtained (Compton et al. 2007).  
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Table 1.3. Modeling approaches. Analytical approach, type of biological data and type of 
       resource selection function used in 96 studies aimed at deriving a resistance   
       surface. See text for a definition of data type and resource selection functions.  

Analytical Approach Data Type Resource Selection 
Function 

No. of 
approaches a    

(% )b 

One-stage expert Expert none 43c (43%) 

    

One-stage empirical Detection Point 12d (12%) 

 Relocation Home range 3    (3%) 

 Relocation Matrix 1    (1%) 

 Genetic Matrix 5e   (5%) 

 Detection  Matrix 1f   (1%) 

    

Two-stage expert-empirical Expert - Genetic Matrix 20  (20%) 

 Expert - Detection Matrix 6    (6%) 

 Expert - Detection Point 3    (3%) 

 Expert - Relocation Matrix 2    (2%) 

 Expert - Pathway Step 1    (1%) 

 Expert - Pathway Path 1    (1%) 

    

Two-stage empirical Detection - Genetic Point - Matrix 1    (1%) 

 Relocation - Genetic Matrix - Matrix 2    (2%) 

a Number of approaches used is more than 96 since more than one approach was used in some papers.  
b Percentage of approaches used, rounded to nearest whole number.  
c Four of these papers used empirical data to validate the expert-derived resistance surface. 
d Three of these papers used genetic data or a measure of vocal dissimilarity to validate the resistance 
surface derived from detection data.  
e Three of these did not involve optimization of resistance values, but calculated proportion of land cover 
types within a strip between populations and validated with genetic data. Technically, the resistance values 
were empirically derived from the locations of the genetic samples and thus could be classified as detection 
data. 
f This study did not involve optimization of resistance values but calculated proportion of land cover types 
within a strip between populations and validated with detection data. 
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Detection data 

 Detection data are defined by single point locations of unknown individuals. If 

multiple locations of the same individuals are recorded (e.g., via telemetry or capture–

recapture), but the individual locations are treated as independent detections in the 

analysis, then the data are still considered detection data.  

 Detection data were used in 23 instances (Table 1.3) and included both presence-

only data (n = 19) and presence–absence data (n = 4). The main difference between 

presence-only and presence–absence data is that the latter contains observations assumed 

to represent true absences while the former do not, and the methods of statistical analysis 

may differ. In the papers reviewed, detection data were obtained in a wide variety of 

ways, including: sightings (Bartelt et al. 2010), pellet counts (Beazley et al. 2005), nests 

(Kuroe et al. 2011), vocalizations (Laiolo and Tella 2006), traps (Wang et al. 2008), hair 

snares (Cushman et al. 2006; Wasserman et al. 2010), tracks or other sign (Epps et al. 

2011), and telemetry studies (Chetkiewicz and Boyce 2009). Note, presence points 

collected via telemetry studies likely represent locations from fewer individuals than are 

collected through other methods, so the assumption that the samples represent a random 

sample of the entire population is often harder to justify (Manly et al. 2010). Moreover, 

care must also be taken to ensure independence of points from telemetry studies since 

they are intrinsically serially autocorrelated (Cushman 2010). For these reasons, data 

from telemetry studies are probably best treated as pathway data (as discussed below).  

 While detection data are often the most easily- acquired empirical data, there are a 

variety of issues associated with using detection data to parameterize resistance surfaces. 
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Most importantly, detection data are point-specific, meaning that movement is inferred 

instead of directly measured. Also, there is no generally accepted method for translating 

habitat selection indices based on detections into resistance values for movement (Beier 

et al. 2008). Errors can arise from this inference because detections usually represent 

within-home range habitat use patterns and thus may not adequately reflect how 

environments affect animals during movements such as dispersal and migration 

(Cushman et al. in press), although in a recent study on cougar dispersal, it was shown 

that habitat preference of dispersers was similar to habitat preference of resident adults 

(Newby 2011). In addition, if detections are biased towards protected areas where 

individuals are disproportionately found, any measured habitat preferences may not be 

applicable to the matrix between them, especially if the range of environmental 

conditions differs in the matrix, as it is likely to do. This is particularly relevant if 

resistance to movement between protected areas is the focus of the conservation 

application (e.g., corridor design).  

Relocation data 

 Though relocation data are sometimes associated with translocation of animals, 

we are defining relocation data as having two or more sequential locations of the same 

individual, but not at a sufficiently frequent interval to treat each sequence as a 

movement pathway. A commonly used example of relocation data is mark–recapture 

data. With relocation data, the focus is on the matrix between locations rather than the 

specific pathways between locations or the point locations themselves. Clearly, relocation 

data is preferred over static detection data when the focus is estimating resistance to 

movement of individuals through the landscape.  
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 Relocation data were used in only eight instances (Table 1.3). The paucity of 

studies using relocation data reflects the greater difficulty of capturing, marking and re-

capturing or re-sighting individuals compared to detecting species’ presence. Relocation 

data were used in two different ways. In the first approach, relocation data were used to 

compute movement speeds (Stevens et al. 2006), homing rates (Desrochers et al. 2011), 

movement rates (Ricketts 2001), exchange rates (Sutcliffe et al. 2003), or dispersal rates 

(Michels et al. 2001) through various environments or between habitat patches without 

knowing the actual movement paths. In most of these studies, inferred travel routes (e.g., 

least cost paths) between locations were used to calculate resistance values that best 

explained the observed movement rates. However, Stevens et al. (2006) used a controlled 

laboratory experiment to calculate movement speeds of individuals across various 

homogeneous substrates. Caution should be exercised when using movement speed alone 

to infer resistance, as it may not account for all three components of resistance: 

willingness to cross, physiological cost and reduction in survival. The main issue with 

relocation data used in this manner is that the movement paths between points are 

unknown and therefore must be inferred. Thus, there is an added unknown level of 

uncertainty in the final estimates of resistance associated with the method of inferring 

movement paths.  

 In the second approach, relocation data were used to construct home ranges 

(Graham 2001; Kautz et al. 2006; Thatcher et al. 2009). In these studies, travel paths 

between relocations within the delineated home ranges were not inferred at all; rather, the 

composition of the home ranges was compared to that available within the study area to 

assign habitat preferences, which were then transformed into resistance values. A major 
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issue with home range data, like detection data, is that movement is inferred instead of 

directly measured, and there is added uncertainty due to variability in the method of 

home range determination. Additionally, home range estimation commonly results in 

including expanses of area that are not actually used by individuals, especially when 

using the Minimum Convex Polygon home range estimator (Worton 1995). However, the 

main issue with the methods used in all of these studies is that there was no formal 

evaluation of alternative resistance values; the final resistance values were merely 

assigned based on the computed habitat preferences.  

Pathway data 

 Pathway data is defined by having two or more sequential locations of the same 

individuals, but at a sufficiently frequent interval to treat each sequence as a movement 

pathway (under the assumption that it represents the true pathway). Here, the focus is 

squarely on the specific connections between locations rather than the ambiguous matrix 

between locations or the point locations themselves. Pathway data is much preferred over 

static detection data and relocation data when the focus is estimating resistance to 

movement of individuals through the landscape.  

 Despite the clear advantages of pathway data, it was used in only two instances 

(Cushman and Lewis 2010; Richard and Armstrong 2010). The paucity of studies using 

pathway data reflects practical and economic tradeoffs associated with obtaining 

relocations at frequent intervals, but also may reflect unfamiliarity with the methods for 

analyzing movement paths by researchers.  

 To obtain meaningful movement pathways and thus meet the implicit assumption 
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of both step and path analyses (see below), the interval between point locations must be 

relatively short to reduce the uncertainty associated with the interval between locations. 

Unfortunately, there is no consensus on how short is short enough, because it depends on 

the species’ vagility. For example, if a species has the ability to move 1 km in 1 h, and 

the spatial resolution of the environment is 100 m, then a fix interval of 1 h is probably 

far too long because there are too many possible pathways through the landscape that the 

species could take between two points say 500 m apart. However, a 10 min interval 

would likely capture the exact pathway at the resolution of 100 m. Because of this issue, 

pathway analyses are probably best suited to animals that can be monitored frequently, 

typically via GPS telemetry. Indeed, the advent of GPS telemetry has enabled the 

acquisition time interval between fixes to be dramatically reduced, enabling movement 

pathways to be generated for both short- and far-ranging species.  

 Using the entire pathway may confound different types of movement such as local 

movements within resource patches, movements between resource patches within home 

ranges, migration movements, and dispersal movements. This may translate to the final 

resistance surfaces if environmental variables confer different levels of resistance to 

different types of movement. Therefore, we recommend attempting to decouple these 

behaviors before the paths are used for estimating resistance to movement. While this 

issue is particularly evident with pathway data, it is an important issue in all resistance 

modeling studies regardless of the type of biological data used.  

Genetic data 

 Movement need not refer to the movement of individuals directly; it can also refer 



! 24!

to the movement of genes—by individuals over generations. Genetic data were used in 28 

instances to derive resistance surfaces, plus an additional five instances to validate a 

resistance surface (Table 1.3). Genetic data consist of genetic samples collected at 

multiple locations and, in contrast to relocation and pathway data, genetic data does not 

require resampling individuals over time. Genetic data are used to measure the genetic 

distance between locations, either between individuals (Cushman et al. 2006) or between 

populations (Emaresi et al. 2011), and thus infer rates of gene flow, or to estimate gene 

flow directly (Wang et al. 2009). Genetic distance or estimates of gene flow are then 

evaluated against measures of geographic distance under alternative resistance models to 

find the best estimates of resistance. Of the 28 instances, 14 used a between-population 

measure of genetic distance, 12 used a between-individual measure, and two used a direct 

measure of gene flow between populations. Despite their prevalence, population-based 

methods have been criticized because individuals must be assigned to discrete 

populations even if the population is continuously distributed, and because they assume 

an island-matrix population structure that may be inappropriate for certain species or 

study areas (Shirk et al. 2010). Cushman and Landguth (2010) found that genetic 

distances between individuals provide the most robust estimates of resistance. However, 

population-based approaches may be the most practical means of analysis for some 

species and study areas (e.g., when populations are organized into discrete local 

populations). When migration rates among discrete local populations can be readily 

measured, a direct measure of gene flow, through siblingship and parentage assignments, 

may be the best approach (Wang et al. 2009).  

 In the past, the main issue with genetic data was the difficulty, inaccuracy and 
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high cost of genotyping. However, in recent years these practical constraints have 

lessened dramatically, making genetic data a practical option in most cases. 

Consequently, the use of genetic data for parameterizing resistance surfaces appears to be 

on the rise (Spear et al. 2010). However, there are other issues with the use of genetic 

data. One issue is that estimates of gene flow may be temporally mismatched to the 

current landscape of interest (Landguth et al. 2010). Another is that resistance to 

movement of individuals (who are carrying genes across the landscape) is not measured 

directly, in contrast to relocation and pathway data. Estimates of gene flow between 

locations, whether inferred or not, reflect the movement of many individuals over many 

generations, presumably travelling along many different pathways. This makes genetic 

data appealing, since it effectively integrates the movements of many individuals over 

time and thus leads to a more synoptic measure of landscape resistance. Moreover, since 

gene flow reflects only successful movements, it integrates the movements that matter 

most to the species – those that result in successful breeding.  

Analytical approaches 

 A wide variety of analytical approaches were used among the papers reviewed, 

which made any classification of approaches extremely challenging. Nevertheless, we 

found it useful to group papers into three categories: (1) ‘one-stage expert approach’, (2) 

‘one- stage empirical approach’, and (3) ‘two-stage empirical approach’ (Fig. 1.1). 

Strictly speaking, the one- stage expert approach is not analytical, but it is in fact the most 

common approach used for deriving resistance surfaces, so it is included here.  

One-stage expert approach 
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 In the ‘one-stage expert approach’, expert opinion is used to derive the final 

resistance surface in a single step; no statistical modeling is used in the process. If 

biological data are used at all, it is used merely to inform expert opinion (Zimmermann 

and Breitenmoser 2007) or to validate the derived surface (Coulon et al. 2004).  

 A one-stage expert approach was used in 43 instances (Table 1.3). In these 

studies, experts were typically asked to provide numerical resistance values to each 

environmental layer from a bounded parameter space (e.g., 0–10 or 0–100) that would 

reflect resistance to movement during home range use, migration or dispersal. A final 

resistance surface was created by applying the resistance values to each environmental 

layer and summing the values. If weights were being used to reflect the relative 

importance of each environmental variable, these were incorporated via a weighted 

product (Singleton et al. 2002) or a weighted geometric mean (Beier et al. 2008). In some 

cases, experts were asked to derive a habitat suitability index from the environmental 

variables, and the inverse of the habitat suitability values were taken as the resistance 

values (LaRue and Nielsen 2008).  

 Because experts come from varying backgrounds and research experiences, they 

likely have diverging opinions regarding resistance or habitat suitability values (Johnson 

and Gillingham 2004). Consequently, various methods can be used to reduce the 

variation in expert opinion. For example, responses can be smoothed by simply averaging 

the submitted values or applying a trimmed mean by omitting the highest and lowest 

values (Compton et al. 2007). Variation can also be addressed through expert consensus, 

either by gathering the experts in one place or by using an iterative process where 

resistance values are re-compiled until a consensus is reached (Freeman and Bell 2011). 
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A more structured method of dealing with variation in expert opinion is to use an 

analytical hierarchy process (AHP) (Saaty 1980), where the assigned values are 

standardized through the use of decision-making trees. An advantage of the AHP process 

is that it produces an index of consistency. If consistency scores are below 0.1, then the 

responses among experts are deemed consistent; whereas, if they are above 0.1, then re-

assessment may take place to reduce variability (Magle et al. 2009). Because 

environmental variables may differ in the magnitude of their influence on species 

movement, experts can be asked to weight variables in terms of their influence (Beier et 

al. 2009), or the weighting can be completed in the AHP process. For example, Estrada-

Pen ̃a (2003) applied time weights to the resistance surface by increasing weights as a 

function of distance to emulate tick feeding time on hosts. Experts can also be asked to 

identify landscape attributes that are barriers to movement or to estimate the cumulative 

resistance value that would result in a barrier to movement (Rabinowitz and Zeller 2010).  

 A one-stage expert approach is perhaps the least quantitatively rigorous of the 

approaches used, because there is no way to objectively parameterize resistance surfaces. 

However, a one-stage expert approach should not be too easily dismissed, as it allows 

experts to synthesize knowledge about complex habitat relationships obtained from 

disparate studies that may otherwise be difficult to incorporate into a resistance surface.  

One-stage empirical approach 

 In a ‘one-stage empirical approach’, a statistical model is confronted with 

biological data to find the optimum resistance surface given the data; usually, some 

combination of expert opinion and previously published research is used to select 
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environmental variables, their scale, and the functional form of the relationship between 

each variable and resistance (e.g., Gaussian, linear, power).  

 A one-stage empirical approach was used in 22 instances; however, in seven of 

these instances the biological data were not used to optimize the resistance surface (Table 

1.3). Most of the analytical studies developed a RSF based on detection data and then 

used the inverse of the selection index to obtain resistance values, but there was a wide 

variety of statistical methods used to create the RSF, including logistic regression 

analysis (Pullinger and Johnson 2010), maximum entropy and ecological niche factor 

analysis (Wang et al. 2008; Kuemmerele et al. 2011), and a variety of other less 

conventional approaches (e.g., Ferreras 2001; Flamm et al. 2005; Kindall and VanManen 

2007; Kuroe et al. 2011). In three instances, relocation data were used to construct home 

ranges, which were the basis for a simple RSF that assigned resistance values based on 

measured habitat preferences without optimizing the surface (Graham 2001; Kautz et al. 

2006; Thatcher et al. 2009). In five instances, genetic data were used to derive the RSF; 

however, three of these cases used a strip-based approach (where proportion of 

environmental features within a rectangular strip between populations were used) to 

estimate resistance values and no optimization was performed (Emaresi et al. 2011). Two 

studies developed RSFs based on genetic data and attempted to optimize resistance 

values in a single stage (Wang et al. 2009; Shirk et al. 2010).  

 These latter two studies are unique in their attempts to use landscape genetic 

techniques to sample the full parameter space. While the optimization of resistance based 

on detection data is relatively straightforward and computationally efficient using 

conventional statistical methods, this is not the case with movement data such as 
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relocation data, pathway data, and genetic data. Because of the exponentially large 

number of possible resistance surfaces in multivariate analyses, and the computational 

demands of analyzing movement paths (either inferred or observed), a full optimization 

of all environmental parameters has not yet been achieved. However, Wang et al. (2009) 

and Shirk et al. (2010) have used two different landscape genetics techniques to 

successfully perform a constrained optimization. Wang et al. (2009) created a range of a 

priori resistance surfaces using three environmental variables. One parameter was always 

assigned a blanket resistance value of 1 (since resistance values are relative) and the other 

two layers were assigned every possible combination of  resistance values from 1 to 10 in 

0.1 unit increments. The relative least-cost distances between population pairs were 

compared with the 95 % confidence interval of relative rates of gene flow estimated from 

the molecular data. All resistance surfaces whose relative least-cost distances between all 

population pairs fell within their expected ranges, based on the molecular analysis, were 

considered to be biologically accurate. Shirk et al. (2010) developed a framework that 

allows for interactions among variables and non- linear responses using a quasi-

unconstrained parameter space. First, they performed a univariate optimization of each of 

four environmental variables by systematically increasing and decreasing the resistance 

values until a unimodal peak of support (using genetic data) was reached. Then, they 

obtained a multivariate model by summing all the optimized univariate surfaces and 

systematically optimizing the parameters for one variable while holding the other layers 

constant, and iteratively repeating this process until the parameter estimates stabilized.  

Two-stage empirical approach  

 In a ‘two-stage empirical approach’, expert opinion and/or biological data are 
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used to derive a suite of alternative resistance surfaces in the first stage, which are 

confronted with biological data and a model selection procedure in the second stage to 

select the best resistance surface. Note, given the ubiquitous involvement of experts in all 

approaches, such as selecting environmental variables and choosing the functional form 

of the relationship between each variable and resistance, the distinction between this 

approach and the one-stage empirical approach is perhaps a matter of degree and not an 

absolute dichotomy.  

 A two-stage empirical approach was used in 36 instances, 33 of which used expert 

opinion in stage one to derive the alternative resistance surfaces (Table 1.3). In the 

majority of these studies (n = 28), expert opinion was used to derive a limited, often 

small, set of alternative resistance surfaces (i.e., candidate models) based on specific 

hypothesized relationships between the environment and resistance to movement—in the 

spirit of model selection and multi-model approaches to statistical inference (Burnham 

and Anderson 2002). This approach was combined with detection data (Chardon et al. 

2003), relocation data (Desrochers et al. 2011), pathway data (Richard and Armstrong 

2010) and genetic data (Koscinsky et al. 2009) in the second stage to select the best 

surface. In the remaining studies (n = 8), expert opinion was used to constrain the 

resistance parameter space, from which a priori resistance surfaces were constructed in 

sufficient number and distribution to effectively sample that parameter space. Here, 

expert opinion was used mainly to determine the range of plausible resistance values for 

each environmental variable; the candidate models or resistance surfaces were derived 

merely as a practical solution to model optimization within the constrained parameter 

space. This approach was combined with detection data (Janin et al. 2009), relocation 
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data (Sutcliffe et al. 2003), pathway data (Cushman and Lewis 2010) and genetic data 

(Cushman et al. 2006) in the second stage to select the best surface. Finally, it should be 

noted that in both cases, expert opinion is used to select the environmental variables and 

the functional form of the relationship between each variable and resistance; thus, both 

are clearly expert-guided approaches.  

 Surprisingly, only three papers used empirical data to develop a suite of resistance 

surfaces, which were then subjected to model selection through the use of an independent 

empirical data set of a different data type (Table 1.3).  

Resource selection functions 

 In the context of resistance surface modeling, we consider a RSF to be any model 

that yields estimates of environmental resistance or habitat selection based on patterns 

observed in biological data (Fig. 1.2).  

Point selection function (PSF)  

 A PSF seeks to find the combination of environmental parameters that best 

explains the distribution of detections based on presence-only or presence– absence 

points. Importantly, it is the characteristics of the point locations themselves and not the 

connections between points that are assessed in a PSF. Resistance is typically given as 

the inverse of the final selection index.  

 A PSF was used in 16 instances (Table 1.3). In most of these cases (n = 12), the 

PSF was derived from detection data and optimized using an objective statistical 

procedure such as logistic regression (Chetkiewicz and Boyce 2009). However, in a few 
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of these cases, alternative parameterizations of the PSF were derived by experts a priori 

and the detection data were used simply to select the parameters with the most biological 

support (Janin et al. 2009).  

 An important issue with any PSF derived from presence-only points is 

determining what constitutes the ‘‘available’’ environment. Regarding this, there appears 

to be no accepted standard, but methods such as paired logistic regression (also referred 

to as ‘conditional logistic regression’ and ‘case-controlled logistic regression’) that 

compare each presence point to what is locally available within a meaningful ecological 

neighborhood seem to us to be superior to other methods (Pullinger and Johnson 2010). 

Of course, a PSF derived from presence–absence points does not suffer this issue and 

seems to us to be superior than one derived from presence-only data. The main issue with 

any PSF is the need to infer resistance to movement from resource selection at point 

locations.  

Home range selection function (HSF)  

 A HSF seeks to find the combination of environmental variables that best explains 

the distribution of home ranges derived from relocation data. Importantly, it is the 

characteristics of the home ranges and not the specific connections between relocations 

that are assessed in a HSF. Resistance is typically given as the inverse of the final 

selection index.  

 A HSF was used in only three instances (Table 1.3). None of these cases involved 

optimizing the HSF based on the home range data; in two of these cases they compared 

the composition of the home ranges to that of the study area in order to assign a habitat 
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preference index to each environmental condition and then assigned resistance as the 

inverse of the preference index (Graham 2001; Kautz et al. 2006).  

Figure 1.2. Resource Selection Functions used to derive resistance surfaces. 
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The issues with a PSF also apply to a HSF. However, at least conceptually, a HSF is 

closer to the ideal of addressing resistance to movement than a PSF because a home 

range includes the area an individual moves through to meet their local resource needs. 

Despite this conceptual advantage, however, a HSF does not overcome the fundamental 

limitation of having to infer resistance to movement from point data.  

Matrix selection function (MSF)  

 A MSF seeks to find the combination of resistance parameters that best explains 

the movement of individuals or their genes between locations, but without knowing or 

assuming the actual movement paths between locations. Specifically, a MSF derives from 

a measure of the ecological distance between two points separated by a resistant matrix, 

where the ecological distance increases as the geographic distance and resistance between 

points increases. A MSF seeks to find the resistance parameters that maximize the 

correlation between the ecological distance and the frequency of movement of 

individuals or their genes between locations.  

 A MSF was used in 38 instances, making it by far the most commonly used RSF 

(Table 1.3). In most of these cases (n = 28), alternative parameterizations of the MSF 

were derived by experts a priori and either detection data (n = 6), relocation data (n = 2) 

or genetic data (n = 20) were used to select the parameters with the most biological 

support. The cases involving detection data seem contrary to the idea of a MSF; however, 

in these cases the MSF was used in the context of a metapopulation model to explain 

observed patch occupancy (or presence). In only three cases was the MSF optimized 
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(within constraints) in a one-stage empirical approach using an objective statistical 

procedure based on either relocation data (n = 1) or genetic data (n = 2).  

 A MSF has several important features. First, a MSF evaluates environmental 

resistance directly, as opposed to a PSF that evaluates habitat selection directly and 

produces an index that must be translated into resistance post hoc. Second, a MSF 

evaluates the environmental resistance between locations without requiring information 

on the actual movement paths, which are required by both step and PathSFs (see below). 

Third, a MSF does not require the arbitrary designation of ‘available’, which is a 

challenge that confronts all other selection functions. Lastly, A MSF is the only selection 

function suited to multiple types of biological data, including detection data, relocation 

data and genetic data.  

 The main issue with any MSF is choosing a measure of ecological distance, and 

there are several, including: (1) least cost distance, which is equal to the cumulative cost 

along the least cost path between points (Epps et al. 2007); (2) least cost path length, 

which is equal to the geographic distance along the least cost path between points 

(Koscinsky et al. 2009); (3) least cost corridor, which is equal to the cumulative cost 

within the least cost corridor between points (Savage et al. 2010); (4) resistance distance, 

which is equal to the cumulative resistance of the matrix between points based on circuit 

theory (McRae 2006; Klug et al. 2011); and (5) resistant kernel distance, which is equal 

to the kernel-weighted (e.g., Gaussian) least cost distance between points (Compton et al. 

2007). Currently, there is no one preferred measure of ecological distance. McRae and 

Beier (2007) compared how least cost distance and resistance distance performed and 

found resistance distance to be better, while Schwartz et al. (2009) found the opposite. 
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Savage et al. (2010) found the least cost corridor measure to outperform least cost 

distance. Foltete et al. (2008) did not find any difference between the least cost distance 

and least cost path length. In the studies reviewed, there were 23 instances of least cost 

distance, eight of least cost path length, one of least cost corridor, and four of resistance 

distance. Many studies used more than one measure of ecological distance. Regardless of 

the measure of ecological distance chosen, care must be taken to address the inherently 

high level of correlation with straight geographic distance (Cushman and Landguth 

2010). Another issue with the MSF approach, as stated above, is that they are very 

computationally demanding which has, to date, prevented a full optimization of 

resistance estimates.  

Step selection function (SSF)  

 A SSF seeks to find the combination of resistance parameters that best explains 

the movement of individuals between locations, and is derived from pathway data where 

specific movement paths can be meaningfully assigned and decomposed into discrete 

segments or steps between sequential locations. A SSF derives from a measure of the cost 

distance along each segment compared to the cost distance along random segments of 

equal length. Note, here the cost distance is measured along each segment of the observed 

pathway rather than along an arbitrary modeled path as in a MSF.  

 A SSF was used in only one instance, making it one of the two least commonly 

used types of RSF (Table 1.3). In this case, alternative resistance surfaces were derived 

by experts a priori and the pathway data were used to select the surface that best 

discriminated between observed and random segments (Richard and Armstrong 2010).  
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 A SSF is one of the most powerful selection functions for deriving resistance 

surfaces, because it derives directly from observed movement pathways. As with any 

selection function that compares use to availability, one of the main issues with any SSF 

is choosing the spatial (and temporal) constraints on availability. For example, should the 

beginning point of each random segment be the same as the paired observed segment or 

should it be shifted by a random distance and direction and, if so, how far? The 

implications of these decisions on the final parameter estimates are unknown. Another 

issue arises when available steps are chosen close to the observed step, making the 

available steps highly correlated and representative of only habitat near the observed step. 

This runs the risk of omitting from the analysis important landscape characteristics that 

an individual is actually avoiding, making the analysis result in a gradient of resistance 

for preferred habitat types.  

Path selection function (PathSF)  

 A PathSF is similar to a SSF except that the entire movement path is assessed as a 

single pathway as opposed to a series of steps. A PathSF was also used in only one 

instance (Table 1.3). In this case, alternative resistance surfaces were derived by experts a 

priori and the pathway data were used to select the surface that best discriminated 

between observed and random paths (Cushman and Lewis 2010).  

 A PathSF is arguably the most powerful selection function for deriving resistance 

surfaces, because inferences are made directly from observed movement pathways. One 

advantage of using the entire path as the observational unit rather than the individual 

segments is that fine-scale habitat selection can be captured and pseudoreplication and 
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autocorrelation issues can be avoided by preserving the topology of the entire path 

(Cushman 2010). Another advantage is that a PathSF allows inferences to be made about 

environmental features between observed points. Despite these advantages, however, a 

PathSF cannot escape the issue of arbitrariness in the designation of ‘available’. In 

Cushman and Lewis (2010), studying black bears (Ursus americanus) in northern Idaho, 

available paths were randomly shifted a distance between 0 and 20 km (based on a black 

bear’s average dispersal distance) in latitude and longitude, and randomly rotated 

between 0° and 360°. An alternative to the approach used by Cushman and Lewis (2010) 

is to simulate individual movement paths by drawing from empirical distributions of 

number of steps, step length, step orientation and total path length (B. Compton and K. 

McGarigal, unpublished report). This approach is a trade-off between preserving the 

exact topology of the observed paths and representing the underlying ‘population’ from 

which the observed paths were drawn, but an empirical comparison of these two 

approaches has not been done.  

Conclusions and recommendations  

 In this review, we assessed current practices for deriving resistance surfaces and 

have arrived at several conclusions in three overarching categories: (1) selection and 

definition of environmental variables, (2) use of biological data and analytical processes, 

and (3) evaluation of resistance surfaces. First, not surprisingly, there was tremendous 

variety of environmental variables used across studies owing to differences in the species 

and ecological systems under investigation (Table 1.2). In some cases, researchers used 

model selection procedures to select the number and combination of variables used to 

derive the resistance surface that best explained observed biological data. However, in 
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most cases, little or no attention was paid to the sensitivity of the results to the choice 

and/or number of environmental variables used to construct the resistance surface. In 

addition, we discovered very few studies that evaluated choices for representing each 

environmental variable in terms of the measurement scale (continuous or categorical) and 

spatial resolution (i.e., grain size). For example, of the 22 papers that used elevation, none 

compared the representation of elevation as a continuous surface (or a continuous 

function of elevation) versus discrete elevation classes. Likewise, while there is no 

inherently correct spatial resolution for representing an environmental attribute, since it 

varies among species and ecological processes and is usually unknown to the researcher 

prior to the analysis, our review identified only a handful of studies that evaluated how 

spatial resolution affected the optimization of the resistance surface (McRae and Beier 

2007; Rae et al. 2007; Broquet et al. 2009; Koscinsky et al. 2009; Murphy et al. 2010; 

Nichol et al. 2010). Indeed, this may not be as important as choice of thematic 

representation of environmental variables since the grain size may have little effect on the 

relative cumulative cost of a corridor (Cushman and Landguth 2010). However, given the 

almost unlimited number of ways to represent the environment in terms of the number 

and choice of variables and the spatial and thematic scale, there is a need for more 

comparative studies to determine sensitivity of results to these choices and to recommend 

robust methods for finding the optimal representation given that it cannot be known a 

priori.  

 Second, the papers reviewed used a wide variety of data types and analytical 

methods to reach the same goal—estimating resistance to movement (Table 1.3). Despite 

heavy criticism, expert opinion was used in 80 % of the papers reviewed and was the 
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only source of information in 43 % of the papers. Reliance on expert opinion is likely to 

continue in the future as there are many species and/or systems for which empirical data 

do not yet exist and yet conservation concerns demand immediate action. Genetic data 

were the second most heavily used data type (38 % of papers) and its use appears to be 

increasing due to the increased ease, accuracy, and affordability of genotyping. The 

increasing appeal of genetic data may also be that it provides a measure of functionally 

relevant movement between populations or sites—movement that results in successful 

breeding. Detection data (consisting of both presence-only and presence– absence data) 

was the third most common data type (23 % of papers), despite the fact that resistance to 

movement must be inferred from detection data. Due to the prevalence of detection data 

in wildlife studies, it is likely that methods based on detection data will continue to figure 

prominently in resistance modeling in the foreseeable future. Since estimating resistance 

to movement was a putative goal of the studies reviewed, we found it alarming that 

movement data in the form of relocations (8 % of papers) or pathways (2 % of papers) 

was the least used data type. The paucity of individual movement data in such studies is 

likely due to the practical, logistical and/or economic difficulties of collecting movement 

data. However, with the increased availability of GPS telemetry, it is likely that the use of 

movement data will increase in the future.  

 Despite the dramatic differences among data types, there have been few attempts 

to critically and objectively evaluate these differences. Clevenger et al. (2002) found that 

empirical data generally outperformed expert opinion, Shirk et al. (2010) found that their 

optimized resistance model was superior to the expert-based model and Cushman and 

Lewis (2010) found that that using genetic distances between individuals resulted in a 
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similar resistance surface to one developed using movement paths. Clearly, there is an 

urgent need for more comprehensive comparative studies that seek to clarify the tradeoffs 

associated with each data type.  

 Third, not surprisingly, given the variety of types of biological data used, a variety 

of RSFs were used to estimate resistance values. Indeed, one of the most challenging 

aspects of this review was trying to understand and organize the myriad analytical 

approaches used by researchers to derive the final resistance surface. We offer an 

organizational scheme that distinguishes among five basic types of RSFs, and we 

encourage future researchers to adopt this scheme. Each selection function corresponds to 

a different analytical framework for estimating the final resistance values, and each has 

inherent issues (discussed previously) that should be considered in every application. 

Two of these issues are particularly noteworthy. First, all of the selection functions 

except the MSF require the researcher to designate what constitutes ‘available’ for 

comparison with the ‘use’ data. This adds a degree of arbitrariness to the analysis that to 

our knowledge has not been addressed in the context of resistance surface modeling, but 

needs to be. Second, while PSFs derived from detection data have been over-utilized in 

resistance surface modeling, in our opinion, PathSFs derived from pathway data have 

been under-utilized. Pathway data are the only data type that provide unambiguous 

spatial representation of how animals move through the environment to meet their local 

resource needs and they may be constructed to assess within home range movements, 

dispersal or migration depending on the source data. MSFs derived from genetic data are 

complementary to PathSFs because they can assess multi-generational movement of 

effective dispersers (i.e., those that disperse and reproduce), albeit at the cost of having to 
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infer resistance to movement through a matrix based on a chosen measure of ecological 

distance.  

 A pervasive issue in resistance surface modeling studies is that these methods rely 

on the assumption that animals make movement decisions based on the same preferences 

they use in selecting habitat. This may not be an issue if this assumption is true. 

However, if animals are driven by something other than resource selection during 

movement events, the two behaviors need to be separated when estimating resistance 

values. This issue is perhaps most apparent with pathway data. Because the use of local 

resources (e.g., food and cover) and movement through the environment to find and 

obtain those local resources are typically difficult to discern in pathway data, it is 

challenging to parse out environmental conditions associated with local resource use 

from those conferring resistance to movement. Moreover, the movement data may 

confound local movements within resource patches, movements between resource 

patches within home ranges, migration movements between seasonal use areas, and 

dispersal movements between natal and breeding sites or among breeding sites. There is 

no reason to assume that the environment will affect resource use and different types of 

movement the same. While this issue is most notable with pathway data, it also applies to 

other data types, with the possible exception of genetic data, which generally deals 

principally with movement associated with successful reproduction. We are not aware of 

any attempts to address this issue in resistance modeling studies and recommend that it be 

a priority in future studies.  

 Given the myriad sources of uncertainty in the modeling process and the 

propagation of errors from imperfect environmental data to the collection and analysis of 
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the biological data, model sensitivity and uncertainty should be assessed in any study that 

uses resistance surfaces, especially when expert opinion is involved (Rae et al. 2007; 

Beier et al. 2009). Less than a third of the papers reviewed performed sensitivity 

analyses, either on corridor location resulting from the analysis (Rayfield et al. 2010) or 

on statistical differences between the resistance surfaces themselves (Compton et al. 

2007). The incorporation of uncertainty into resistance models was much less common, 

with only a few papers creating models based on the probability distribution of parameter 

estimates (Kuroe et al. 2011). Performing sensitivity analyses or incorporating 

uncertainty in parameter estimates are especially important for research that will result in 

conservation recommendations or conservation action. Presumably, much of the research 

that seeks to estimate resistance will use the resultant resistance surfaces in connectivity 

modeling and these connections or corridors will be promoted to planners and land 

managers for implementation. Presenting the full range of possibilities for proposed 

actions adds transparency to the process and increases the likelihood of buy-in from land 

managers and the public alike.  

 Applying the resistance estimates in connectivity modeling was not the focus of 

this review, but it is worth mentioning that the use of these resistance estimates to 

identify corridors may have far-reaching consequences. Conservation and public 

resources may be used to implement wildlife corridors based upon resistance surfaces. To 

this end, we recommend more comparative research into each step of the resistance 

estimation process—the selection and definition of environmental variables, the choice of 

biological data type, and the analytical process. This will help to assess the relative 

influence of each step in the process and its influence on the accuracy of resistance 
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estimates. Ultimately, comparative analyses will lead to filling in gaps in our knowledge 

around resistance surface modeling and lead to more effective and successful 

conservation measures.   
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CHAPTER 2 

!

SENSITIVITY OF LANDSCAPE RESISTANCE ESTIMATES BASED ON POINT 

SELECTION FUNCTIONS TO SCALE AND BEHAVIORAL STATE:  PUMAS 

AS A CASE STUDY 

Introduction 

 Estimating landscape resistance to animal movement is the foundation for 

connectivity modeling and the identification of conservation corridors. In this context, 

‘resistance’ represents the willingness of an organism to cross a particular environment, 

the physiological cost of moving through a particular environment, the reduction in 

survival moving through a particular environment, or an integration of all these factors. 

As reviewed in Zeller et al. (2012), methods for empirically estimating resistance to 

movement use either point locations collected independently or extracted from telemetry 

data, steps or paths derived from telemetry data, or genetic markers. Typically, when 

points, steps, or paths are employed, a resource selection function is developed and then 

used to predict probability of use across the area of interest. The inverse of this 

probability is then used as an estimate of resistance. The assumption here is that low 

resistance areas are preferred while high resistance areas are avoided.  

 Resource selection functions based on points, or point selection functions (PSFs), 

are widely used to analyze wildlife-habitat relationships (Boyce et al. 2002) and, although 

PSFs do not explicitly represent movement, they are one of the most common ways to 

empirically estimate resistance to movement for a species (Zeller et al. 2012). At the core 
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of any PSF, and resource selection functions in general, is a ‘used’ versus ‘available’ 

design where ‘preferred’ habitats are used in greater proportions than their availability 

and vice versa (Manly et al. 2002). Use of PSFs in ecology have traditionally been based 

on one or two scales of analysis (Wheatley and Johnson 2009), and inferences are made 

across all data points regardless of the behavioral state of an individual. However, PSFs, 

particularly those based on GPS telemetry data, have the potential for examining a range 

of scales and behavioral states to model increasingly realistic relationships between 

individuals and their environments through ‘context-dependent’ modeling.  

 Context-dependent modeling acknowledges that an animal’s interaction with its 

environment depends on its location, its surroundings, and its behavioral state (Dalziel et 

al. 2008), and thus accounts for the landscape and behavioral context of an individual. A 

simple, but effective way to model context-dependent PSFs is to use conditional logistic 

regression. Conditional logistic regression, also called case- controlled or paired logistic 

regression, pairs each used point or area with a relevant available area (Compton et al. 

2002). The available area is often defined based on the acquisition interval of GPS 

collars. For example, with a 1-h acquisition interval, the extent of the available area is 

defined as some upper quantile of the distribution of step lengths at 1-h (Boyce 2006). 

However, in conditional logistic regression, the chosen extent of available habitat also 

determines the scale of the analysis (ignoring grain size), and the collar acquisition 

interval is rarely chosen with a priori knowledge of the scales at which a species responds 

most strongly to its environment (following Holland et al. (2004), we use the term 

‘characteristic scale’ to reference this strongest scale of response). Furthermore, there 

may be different characteristic scales for each habitat type or landscape feature. 
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Therefore, using a single scale may result in inaccurate estimates of selection and 

resistance (Wheatley 2010; Norththrup et al. 2013) and a continuum of scales should be 

examined so as to capture the true characteristic scale(s). If multiple characteristic scales 

are found, a multi-scale model may be more appropriate to model context-dependent 

resource selection (Meyer and Thuiller 2006; DeCesare et al. 2012; Martin and Fahrig 

2012).  

 Historically, PSFs were modeled using all data points, regardless of the behavior 

of the animal at the time the points were collected. However, it is reasonable to assume 

that selection of habitat for feeding or denning, for example, may be different than 

selection of habitat for movement between resource patches. Combining data from 

different behavioral states in a single analysis almost certainly biases inferences about 

resource selection and estimates of landscape resistance. Fortunately, the availability of 

high resolution GPS data now allows for approaches that incorporate different behavioral 

states. Distance, or rate of movement, and turning angle have been the primary criteria 

used to discern between two main behavioral states, variously defined as active versus 

resting (Squires et al. 2013), or static versus traveling (Dickson et al. 2005). While a few 

studies have begun to compare resource selection during different behavioral states (e.g. 

Dickson et al. 2005; Squires et al. 2013), there are no comparative studies on how 

behavior influences resistance estimates.  

 We investigated the influence of scale and behavioral state on context-dependent 

PSFs and the resistance estimates derived from these PSFs using GPS collar data from 

pumas (Puma concolor) in southern California. The GPS collars were programmed at a 

high sampling intensity (5-min intervals), allowing us to empirically examine a 
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continuum of scales, from a very fine scale to the scale of a typical home range for a 

puma in the region (Dickson and Beier 2002). First, we hypothesized that PSF inference 

would be sensitive to the extent of available habitat and that pumas would have different 

characteristic scales for different land cover types. Second, we hypothesized that using all 

data points or partitioning points based on behavioral state (resource use versus 

movement) would influence interpretation of how pumas were responding to their 

environment. Third, we hypothesized that resistance estimates based on context-

dependent PSFs would be sensitive to both scale and behavioral state. Fourth, we 

hypothesized that a multi-scale model would be more appropriate for modeling resistance 

to movement than a single-scale model. Lastly, we hypothesized that results from a 

context-independent model would differ from the results of our context-dependent 

models, both in model performance and estimates of resistance.  

Methods  

Study area and data collection  

 The study area encompassed 4,089 km2 in the Santa Ana Mountains and 

surrounding lowlands in southern California, including portions of Orange County, 

Riverside County and San Diego County. The Santa Ana mountains are a coastal range 

with elevation ranging from sea level to 1,734 m and a Mediterranean climate defined by 

hot dry summers and mild wetter winters.  

 Eight pumas (five female and three male) were collared between October 2011 

and February 2012 and were fit with Lotek 4400 S GPS collars programmed to acquire 

locational fixes every 5 min (Lotek Wireless Inc., Canada). Collar duration ranged from 
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12 to 71 days (median = 24). Long-term collar accuracy from manufacturer tests is 5 to 

10 m, though vegetation types and topographical conditions may decrease accuracy 

(Chang, personal communication). Therefore, two- dimensional fixes with a PDOP [ 5 

were removed to avoid the use of data that may have large spatial errors, as 

recommended by Lewis et al. (2007), resulting in a mean data loss of 2.96 %. Missed 

fixes from failure of the collar to record a GPS location resulted in a mean data loss of 

15.87 %, bringing our total mean data loss to 18.83 %. Citing various studies, Frair et al. 

(2010) have cautioned that coefficients of selection become statistically different when 

there is a 10–25 % loss of data from positional or habitat bias. However, our losses were 

relatively consistent across individuals and if biases were introduced, they were likely 

uniform in nature. The final data set consisted of 61,115 fixes across the eight individuals 

(range 1,650–20,433; median = 5,846). Due to the low number of individuals, sexes were 

pooled in the analyses, and a mixed-effects model was used to account for inter-

individual differences (see ‘‘Statistical analysis’’ section).  

 We used land cover types from the California Wildlife Habitat Relationship 

database as independent variables in our PSFs. The Wildlife Habitat Relationship data 

were obtained from the CalVeg geospatial data set (USDA Forest Service 2007) in vector 

format at the 1:24,000 scale, which we rasterized at a 30-m resolution. There were 25 

mapped land cover types present in the study area, but many types had very low 

occurrence (<1 %). In order to avoid issues with data sufficiency, we aggregated these 25 

types into nine classes based on provided descriptions from the California Department of 

Fish and Game (1988). The final land cover classes and their percentages of the study 

area were as follows: chaparral (45 %), urban (19 %), coastal scrub (14 %), annual 
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grassland (6 %), coastal oak woodlands (5 %), agriculture (5 %), riparian areas (3 %), 

perennial grassland (2 %), and naturally barren or open areas (1 %).  

Used and available habitat  

 All data analysis was performed using R software (R Core Team 2013). Our used 

and available habitat were defined in a paired design to allow for the use of conditional 

logistic regression (Compton et al. 2002). For each telemetry point, we designated ‘used’ 

habitat as a 30-m fixed-width buffer around the pixel where a point was located. We 

calculated the proportions of land cover types across these nine pixels. This definition of 

used habitat allowed us to meet two goals: (1) it provided a buffer that helped to account 

for small locational errors in the telemetry points (Rettie and McLoughlin 1999), and (2) 

it allowed us to incorporate the immediate environment around each point into the area of 

used habitat. The latter goal was based on the assumption that an individual may not only 

be selecting habitat at the used pixel, but may be selecting a particular pixel because of its 

immediate surroundings. This may be especially important for puma that are known to 

utilize edge habitats (Laundre ́ and Herna ́ndez 2003; Laundre ́ and Loxterman 2007).  

 ‘Available’ habitat for each used point was defined as follows. We calculated the 

straight-line distances between consecutive points, which gave us a distribution of 

displacement distances. Breaks in the data due to poor fixes or missing fixes were taken 

into account in the calculation of these distances. We then fit a generalized Pareto 

distribution to the empirical distribution of displacement distances using the POT 

package (Ribatet 2012). The Pareto distribution fit the empirical distribution well due to 

its characteristic steep curve and long right tail (Fig. 2.1). We then placed a Pareto kernel 
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over each used point, thresholded this kernel at the 97.5 percentile of the Pareto 

distribution or the maximum observed displacement distance, whichever was smaller, 

calculated the intensity of each land cover type, and converted these intensities to 

proportions. Our approach allowed us to census the entirety of land cover types within 

the available area in their correct proportions, as opposed to what is commonly done in 

PSFs where a random sample of points are selected within the available area. This 

alleviates issues with selecting a sample size for available points and associated biases in 

inference (Norththrup et al. 2013). In addition, the use of the Pareto kernel allowed us to 

weight land cover within an ecological neighborhood (sensu Addicott et al. 1987) around 

each used point based on probability of use. To explore the effect of acquisition interval 

and associated extent of available habitat on PSF inference and estimates of resistance, 

we implemented 36 additional extents as defined by acquisition intervals from 10- to 

360-min at 10-min intervals. For each new acquisition interval, we calculated the 

displacement distances by subsetting the 5-min data at that interval and calculating the 

straight-line distance between consecutive points. We then fit a new Pareto distribution to 

each empirical distribution, defined a maximum threshold and calculated the proportion 

of available habitat within the Pareto kernel as described above (online Appendix A). It is 

important to note here that all of the original 5-min points were used in the PSF analyses 

for each of our 37 scales; the subsetting of points was performed only to acquire the 

distributions of displacement distances for the additional 36 scales.  

 GPS collars programmed at a high sampling intensity produce data that are 

autocorrelated, making it difficult to meet the independence assumption inherent to 

logistic regression. When this assumption is violated, the standard errors of the parameter 
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estimates may be deflated resulting in inflated type 1 error rates (Legendre 1993) and the 

parameter estimates themselves may or may not be biased (Dormann et al. 2007; 

Hawkins et al. 2007). However, because we were primarily concerned with the predictive 

ability of the models, and were not testing the significance of the parameters in a 

traditional hypothesis testing framework, we opted not to alter our data structure or our 

models to account for autocorrelation in our data (though see ‘‘Behavioral states’’ section 

where some correlation may be addressed in our parameterization of resource use points).  

Figure 2.1. Pareto distribution.!Distribution of displacement distances and fitted Pareto   
         distribution (blue line) at the 5-min acquisition interval. Displacement      
         distances were calculated as the straight-line distance between consecutive   
         points. Pareto distributions were fit to the data at each of our 37 acquisition   
         intervals.  
 

 
 

 

 

 

 

 

 

 

 

Behavioral states  

 We distinguished between two behavioral states: (1) resource use, and (2) 

movement. A static or slow and tortuous trajectory more likely reflected resource use, 
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such as acquiring food and seeking and using day beds, than a faster and more direct 

trajectory, which more likely reflected purposeful movement through the landscape 

between resource use patches. Because we did not know, a priori, if a telemetry point was 

recorded during a movement or resource use behavior, we used a range of definitions for 

each behavioral state based on the distances between locations. Distance thresholds were 

defined along a geometric progression from 12.5 to 200 m with a common ratio of two 

(Table 2.1). The largest distance threshold was capped at 200 m due to an insufficient 

number of data points beyond this distance. At the 12.5 m distance threshold, any point 

12.5 m or closer to the previous point was identified as a resource use point and any point 

further than 12.5 m from the previous point was identified as a movement point. 

Consecutive resource use points within the 12.5-m threshold distance of each other were 

considered part of the same resource use cluster. This same procedure was performed for 

each distance threshold.  

 Our range of definitions for each behavioral state ran the continuum from least 

conservative to most conservative. The 12.5-m distance threshold required resource use 

points to be very close to one another and the definition of resource use at this threshold 

likely did not include any true movement points. Therefore, this was considered our most 

conservative definition of resource use. Conversely, the 12.5-m distance threshold was 

considered our least conservative definition for movement since there were likely many 

true resource use points included with the designated movement points. At the opposite 

end of our continuum, 200 m, the movement points were considered to be relatively pure. 

For the remainder of the paper we will refer to resource use and movement points along 

this continuum as follows: RU1 and M1 are the resource use and movement points, 
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respectively, based on the least conservative definition for each behavioral state (RU = 

200 m; M = 12.5 m), whereas RU5 and M5 are based on the most conservative 

definitions (RU = 12.5 m; M = 200 m).  

Table 2.1. Behavioral states, alternative definitions of behavioral states, and associated   
       attributes used in the PSF analyses.  

Behavioral State Alternative 
definition 

Distance Threshold 
(meters) 

Number of data 
points 

Number of 
clusters 

All behaviors  0 61,115 - 

Movement  M1 12.5 17,614 - 

 M2 25 12,436 - 

 M3 50 8,800 - 

 M4 100 4,212 - 

 M5 200 507 - 

Resource Use  RU1 200 60,608 268 

 RU2 100 56,903 1,382 

  RU3 50 52,315 1,933 

 RU4 25 48,679 2,381 

 RU5 12.5 43,501 3,892 

 

Statistical analysis  

 At each scale and for all definitions of each behavioral state, as well as for all 

points regardless of behavioral state, we conducted a conditional mixed-effects logistic 

regression with individual cat as a random effect. We performed both simple regressions 

for each land cover type and multiple regressions including all land cover types. For the 

multiple regressions, we used the land cover type with the weakest effect in the simple 

regressions as the reference class. In conditional logistic regression, there is no model 

intercept, therefore the reference land cover type was simply omitted from the analysis. 
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We confirmed that correlation among our predictor variables was relatively low prior to 

performing the multiple regressions (maximum Pearson correlation coefficient = -0.48). 

We also created a multi-scale model using the characteristic scale for each land cover 

type as identified from the simple regressions (see below).  

 We used the lmer (or glmer) function in the lme4 package (v. 0.999999-2, Bates 

et al. 2013) for performing conditional mixed-effects logistic regression in R. The use of 

lme4 requires the differences between the used and available for each variable to be 

calculated at each point prior to analysis and that the response variable equals one for 

each data point [as described in Agresti (2002)]. The full model specification in R is 

provided in online Appendix B. Online Appendix B also provides a discussion of other 

options for conditional mixed-effects logistic regression in R along with an example of 

the R code used to conduct this analysis.  

 For the movement data, each point was given equal weight in our models. For the 

resource use data, each point in a cluster was down-weighted by its proportional 

contribution to that cluster. For example, in a cluster with 10 points, each point was 

assigned a weight of 0.1 and thus each cluster, regardless of the number of points, 

received an effective weight of one.  

 We defined the characteristic scale for each land cover type as the scale with the 

largest absolute regression coefficient and/or largest deviation from an odds ratio of one. 

To evaluate the predictive performance of the models, we performed a tenfold cross- 

validation using the methods recommended by Johnson et al. (2006). These methods are 

based on the Hosmer–Lemeshow approach, but are adapted for use with RSFs. For each 
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model, we calculated the utilization value for each RSF bin using the Pareto kernel that 

corresponded to the extent of available for that model (results were similar when we used 

a uniform kernel). We quantified predictive performance of the models using Lin’s 

(1989) concordance correlation coefficient (CCC). For a good model, the predicted 

observations should fall close to the expected observations on a line originating at 0 with 

a slope of 1 (Johnson et al. 2006). The CCC statistic measures how correlated two points 

are based on their deviance from this 45-degree line. We based the interpretation of 

results on the square of the CCC statistic.  

 To determine if results from context-dependent models differ from context-

independent models, we focused on the multi-scale models since we assumed they might 

be more appropriate than the single-scale models. To derive the context-independent 

model, we ran a mixed-effects logistic regression in an unpaired framework using lmer 

with all data points. We compared model performance amongst our context- dependent 

multi-scale models and the context-independent multi-scale model.  

Estimation of resistance  

 Resistance estimates from PSFs are typically calculated by taking the inverse of 

the predicted probability of presence. These estimates are often truncated at some upper 

value or re-scaled to a range, say from 1 to 10 or 1 to 100 (e.g., Ferreras 2001; Pullinger 

and Johnson 2010). Truncation and rescaling may alter the relative relationships between 

resistance estimates by introducing unnecessary subjectivity. To avoid this subjectivity, 

we used the inverse of the predicted probability of presence as our resistance estimates 

without any data standardizations. Because estimating a complete resistance surface for 
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the full factorial of models was computationally prohibitive, we generated 20,000 random 

points across the study area, predicted the probability of presence across these points, and 

used the inverse of these values as our estimates of resistance.  

 To determine how sensitive resistance estimates were to the choice of scale, we 

calculated the absolute proportional difference in resistance estimated at each scale from 

that estimated at the 5-min/250-m scale. Similarly, to determine how sensitive resistance 

estimates were to behavioral state, we calculated, at each scale, the absolute proportional 

difference in resistance estimates based on the most conservative definition of each 

behavioral state (RU5 and M5) from that estimated based on all points and from each 

other. We explored how different the single-scale estimates of resistance were from the 

multi-scale estimates by calculating the absolute proportional differences in resistance 

estimated by each single-scale model from that estimated by the multi-scale model. 

Finally, we calculated the absolute proportional difference in resistance estimates 

between our multi-scale contextindependent model and our context-dependent models.  

Results  

Characteristic scales  

 The simple conditional mixed-effects logistic regression models revealed different 

characteristic scales among land cover types, including four general patterns of response: 

(1) a fine-scaled response where the strongest response occurred at the finest scale(s) 

(e.g., Fig. 2.2a); (2) a unimodal response where the strongest response occurred at an 

intermediate scale (e.g., Fig. 2.2c); (3) an asymptotic threshold response, where the 

response was weak at fine scales, and became stronger and eventually reached an 
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asymptote as scale increased (e.g., Fig. 2.2h); and (4) a coarse-scaled response where the 

strength of response increased with scale without reaching an asymptote (e.g., resource-

use curves, Fig. 2.2e). This last pattern may be due to the true characteristic scale being at 

a coarser scale than we examined. The multiple regression models showed the same 

patterns.  

 Despite pronounced differences in effect size, characteristic scale, regardless of 

preference or avoidance, remained relatively consistent across behavioral states for 

several land cover types (Fig. 2.2). For example, across most definitions of each 

behavioral state, grassland had its strongest effect at the 5-min/ 250-m scale (Fig. 2.2a); 

coastal oak woodland, coastal scrub, and perennial grassland types had their strongest 

effects at the 10-min/530-m scale (Fig. 2.2c, f, g, respectively); barren had its strongest 

effect at the 40-min/2,350-m scale (Fig. 2.2b); and agriculture had its strongest effect at 

the 360-min/9,890-m scale (Fig. 2.2e). In contrast, some cover types exhibited marked 

differences in characteristic scale between behavioral states. For example, chaparral 

exhibited a fine-scale response for all movement states, but an increasingly coarse-scale 

response for the more conservative resource use states (Fig. 2.2d). Conversely, riparian 

exhibited a fine-scale response for all resource use states, whereas the response was 

weakest at the finest scales for all movement states (Fig. 2.2i).  
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Figure 2.2 Simple Regressions. Beta estimates and odds ratios from simple conditional   
       mixed-effects logistic regressions for each land cover type across scales and   
       behavioral states. Movement and resource use 1 were the least conservative   
       definitions of those behavioral states and movement and resource use 5 were   
       the most conservative.   
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Figure 2.2 Continued 

 

Behavioral states  

 Behavioral state had a strong but variable influence on the magnitude and nature 

of the effect attributed to each land cover type. In some cases, the effect was consistently 

positive (i.e., exhibiting selection for the land cover type) or negative (i.e., exhibiting 

selection against the land cover type), but the magnitude of effect (i.e., effect size) varied 
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markedly between definitions of the two behavioral states. For example, with agriculture 

and urban, there was a consistent negative effect and the effect size was greater for the 

resource use state compared to movement, but the effect size generally increased as the 

definition of the resource use state became more conservative, whereas it generally 

decreased as the definition of the movement state became more conservative (Fig. 2.2e, 

h). In other cases, the effect was relatively similar across behavioral states (e.g., coastal 

oak woodland, Fig. 2.2c, and riparian, Fig. 2.2i), indicating that selection for or against 

some land cover types may not be that sensitive to choice of behavioral state. 

Importantly, in some cases, using movement points versus resource use points led to 

opposite conclusions regarding habitat selection. For example, with annual grassland, the 

strength of effect weakened but remained negative as the behavioral state moved along 

the continuum from the most conservative definition of resource use (RU5) to the least 

conservative (RU1)(Fig. 2.2a). However, for the movement states, the response was still 

weakly negative for the least conservative definitions, but became increasingly positive 

for the most conservative definitions. We observed a similar pattern of reversal in habitat 

selection between behavioral states for barren and chaparral land cover types (Fig. 2.2b, 

d).  

 Lastly, models based on all data points (i.e., that did not distinguish between 

behavioral states) tended to reflect the average relationship observed across the 

continuum of definitions of the resource use behavioral state (Fig. 2.2). This was perhaps 

not too surprising given the disproportionate sample sizes attributed to resource use 

versus movement (Table 2.1), but it has serious implications for the development of 
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resistance surfaces intended to reflect resistance to movement for purposes of 

connectivity modeling.  

Model performance  

 Regardless of scale or behavioral state, all the models performed reasonably well 

(Fig. 2.3). The lowest squared CCC was 0.39, or a CCC of 0.62. In general, the resource 

use models performed better (mean squared CCC of 0.924) than the movement models 

(mean squared CCC of 0.820). We also observed an increase in model performance with 

scale, such that at the coarsest scale all the models (across all behavioral states) had a 

squared CCC of 0.75. However, both trends were not entirely consistent.  

Figure 2.3. Concordance Correlation Coefficient (CCC). Squared CCC across scales and    
         behavioral states. A high squared CCC indicates good model performance.  

 

 The multi-scale model generally performed as well or better than any single-scale 

model in modeling selection during resource use or both behaviors combined; however, 

for movement data, the single- scale models at coarser scales tended to perform better 

than the multi-scale model (Fig. 2.3). The squared CCC for the context-independent 
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multi-scale model was 0.564. Therefore, the context-dependent multi-scale models 

clearly outperformed the context-independent model for all points and all definitions of 

each behavioral state with the exception of M5, where model performance was roughly 

equivalent (squared CCC of 0.527).  

Sensitivity of resistance estimates  

 Resistance estimates were highly sensitive to scale. Holding behavioral state 

constant, proportional differences in resistance ranged from 0 to 245 (or 24,500 %) across 

scales (Fig. 2.4). In Fig. 2.4, each plot represents either all points or a subset of the points 

selected to represent a particular behavioral state. Within each plot (i.e., holding 

behavioral state constant), the x-axis represents the extent of available habitat assessed 

(representing the data acquisition interval and corresponding extent of available) and the 

y-axis represents various percentiles of the distribution of absolute proportional 

difference in resistance values between the reference surface (the 5-min/250- m scale as 

an arbitrary reference) and the surface estimated at each of the remaining scales. The 

color intensity in each cell represents the magnitude of the absolute proportional 

difference (on a natural log scale) between each surface and the reference surface. This 

figure reveals two important patterns. First, regardless of scale and behavioral state, the 

extreme differences in resistance were in the upper 20 % of the distribution, meaning that 

a relatively small portion of the landscape was most sensitive to the choice of scale. 

Second, estimates of resistance based on the most conservative definitions of each 

behavioral state were somewhat more sensitive than those based on the least conservative 

definitions. Thus, restricting the data to points clearly representing either movement or 

resource use resulted in estimates of resistance that were highly sensitive to scale.  
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Figure 2.4.  Resistance differences among scales. Log proportional differences        
          in resistance estimates as measured from the smallest scale (5 min/ 250 m)     
          for models using all points and Movement 1, Movement 5, Resource Use 1,   
          and Resource Use 5 points. The y-axis represents a range of percentiles for   
          the distribution of proportional differences. The legend represents the log   
          proportional differences. Warmer colors indicate larger differences. Please   
          refer to ‘‘Sensitivity of resistance estimates’’ section for an in-depth       
          description of this plot.  

 

 

 

 Resistance estimates were also highly sensitive to behavioral state. Holding scale 

constant, proportional differences in resistance ranged from 0 to 245 (or 24,500 %) 

between behavioral states (Fig. 2.5). The interpretation of Fig. 2.5 is similar to Fig. 2.4, 

but the reference surface is either all points (Fig 2.5a, b) or M5 (Fig. 2.5c). Figure 2.5 

indicates that, across all scales, estimates of resistance differed more between all points 
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and movement points than between all points and resource use points, and in both cases 

the sensitivity was greatest at the upper quantiles. Also, estimates of resistance based on 

the most conservative definitions of the two behavioral states were more different from 

each other than either one was from all points. This pattern was generally consistent 

across all scales and most evident at the upper quantiles. Considering both scale and 

behavioral state, we found resistance estimates to be slightly more sensitive to scale than 

behavioral state.  

 Given the results from the regression analyses, it seemed intuitive that the multi-

scale model would be more appropriate for the PSFs and, thus, for the resistance 

estimates. Therefore, we evaluated the sensitivity of resistance to the choice of multi-

scale versus single-scale models for all points and the data subsets based on the most 

conservative definitions of movement (M5) and resource use (RU5). As expected, 

resistance estimates were sensitive to the choice of single- versus multi-scale modeling 

approaches regardless of data subset (Fig. 2.6). The greatest differences in estimates of 

resistance were between the multi-scale model and the finer single-scale models and at 

the upper quantiles. In addition, estimates of resistance for the movement points were 

more sensitive than either all points or the resource use points.  

 Lastly, we compared resistance estimates between the multi-scale context-

independent model and the multi-scale context-dependent model for all points, M5 and 

RU5, and observed that resistance estimates were sensitive to whether context-dependent 

or - independent inference was used. As seen in the other resistance results, differences in 

resistance estimates between the two methods were greatest at the upper quantiles of the 

resistance distributions (online Appendix C).  
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Figure 2.5. Resistance differences among behavioral states. Log proportional differences   
         in resistance at each scale between models using a) all points and Movement   
         5, b)  all points and Resource Use 5, and c) Movement 5 and Resource Use    
         5. The y-axis represents a range of percentiles for the distribution of       
         proportional differences. The legend represents the log proportional        
         differences. Warmer colors indicate larger differences.  
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Figure 2.6. Resistance differences among model framework. Log proportional       
        differences in resistance between the multi-scale model and each single scale   
        model for models using all points, Movement 5 and Resource Use 5 points.   
        The y-axis represents a range of percentiles for the distribution of       
        proportional differences. The legend represents the log proportional      
        differences. Warmer colors indicate larger differences. Please refer to   
        ‘‘Sensitivity of resistance estimates’’ section for an in-depth description of         
         this plot.  

 

 

 

 

 

 

 

 

 

 

 

Discussion  

 Our findings highlight the utility of context-dependent modeling for PSFs and 

resistance estimation. With such modeling, both scale (spatial and temporal) and 

behavioral state (e.g. resource use versus movement) can be used to produce a more 
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detailed, context- dependent estimation of resource selection and resistance to movement 

(Dalziel et al. 2008). It has long been recognized that species respond to their 

environment at different scales and that no single scale can capture the relationship 

between a species and its environment (reviewed in Levin 1992). Instead, it is more 

realistic to assume there are multiple characteristic scales along the continuum from 

feeding site to species range, and that adopting Wien’s (1989) ‘domains of scale’ concept 

allows for more flexibility in modeling the true scales at which a species responds to its 

environment. By examining a range of scales, we found multiple characteristic scales 

across land cover types. For example, pumas in the study area responded more strongly to 

annual and perennial grassland, coastal oak woodland, coastal scrub and riparian areas at 

fine scales (250–530 m), to barren areas at mid scales (2 km), and to agricultural and 

urban areas at coarse scales (7.6–9.9 km). This suggests a mostly bi- modal scale of 

habitat selection; pumas appear to be selecting certain land cover types in their immediate 

perceptual range, while avoiding large agricultural and urban areas, reflecting what has 

been published in the literature on puma resource selection in coastal mountain habitat of 

California (Dickson and Beier 2002; Sweanor et al. 2008; Burdett et al. 2010; Wilmers et 

al. 2013).  

 In addition to identifying a single characteristic scale for each land cover type, we 

observed a dramatic effect of scale on the effect size (i.e., the magnitude of the regression 

coefficient and corresponding odds ratio) for most land cover types. For example, based 

on the simple regression model using data representing the most conservative definition 

of movement (M5), the odds ratio for annual grassland was roughly 10 when the scale 

was 10 min/530 m and decreased to roughly 2 when the scale was 360 min/9,890 m (Fig. 
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2.2a). Thus, the inferred preference for annual grassland during movement was 

dramatically greater at finer scales than coarser scales. This has implications for 

estimating resistance (and modeling connectivity), since this would translate into 

dramatically lower resistance to movement if the resistance surface were derived from 

finer-scale data than if it were derived from coarser-scale data. Similar sensitivities to 

scale were observed for most land cover types.  

 One of our more startling findings was a reversal from preference to avoidance of 

some land cover types as the scale varied. For example, based on a simple regression 

using data representing the most conservative definition of movement (M5), the odds 

ratio for agriculture was close to zero (indicating strong avoidance) at the finest scales, 

increased to roughly 1.3 (indicating a weak preference) at the 30-min/ 1,590-m scale, but 

then decreased to less than one (indicating avoidance) at scales beyond 60 min/ 2,820 m 

(Fig. 2.2e). These results have important implications for inferences regarding habitat 

selection (preferred vs. avoided), and, by extension, estimates of resistance.  

 Given the above findings, we suggest that context- dependent modeling should 

involve an exploration of multiple scales, echoing previous recommendations by 

Wheatley (2010) and Martin and Fahrig (2012). Though many GPS collar studies may 

not be intensive enough to acquire an empirical distribution of movement distances at the 

5-min sampling intervals we had in our study, it should not prevent the examination of 

multiple scales. Whether the scales are empirically- derived or not, a continuum of scales 

should be used to approximate the true characteristic scale of response.  
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 Though our definitions of behavioral state were relatively simplistic, since they 

relied solely on displacement distances, our findings provide evidence that resource use 

and movement behaviors are likely to be confounded in most PSF studies. For our study 

animals, this appeared to be less of an issue for resource use inference than movement 

inference since, when all points were used, results were often similar to those obtained 

via resource use points only. However, differences were readily apparent when 

evaluating movement behavior. This has ramifications when modeling resistance to 

movement since, if all points are used, it may be concluded that a species routinely 

avoids a habitat type, when in fact that type may be tolerated, or even preferred, during 

movement events. This may lead to artificially inflated or deflated resistance estimates 

for certain land cover types. By decoupling resource use from movement, we found that 

pumas had notably different responses to annual grassland, barren and chaparral land 

cover types depending on their behavioral state. For example, pumas had a negative 

response to annual grassland and barren areas during resource use behaviors, but had a 

positive relationship to these land cover types with our most conservative definitions of 

movement. Published RSF studies on pumas have shown only that they avoid these two 

habitat types (e.g., Dickson and Beier 2002). The opposite trend was observed for 

chaparral, where for our two most conservative definitions of resource use, chaparral was 

preferred, likely due to its use for day beds, but it was strongly avoided for our two most 

conservative definitions of movement. Chaparral habitat is notoriously difficult for 

humans to travel through and it is not unrealistic to assume the same difficulty would be 

faced by a puma. Our results based on resource use points may be biased toward day bed 

locations, especially for models based on RU5 points. Parsing out daybed locations, from 
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resource use, from movement may reveal further important puma-habitat relationships. 

Though we removed GPS points that are prone to large spatial errors, small errors may 

have introduced some bias in our behavioral state definitions, particularly for RU5.  

 Regardless of behavioral state, we found that our study animals largely avoided 

agricultural and urban areas. However, these areas were avoided more strongly during 

resource use behavior than movement behavior. As in previous studies, we found that 

pumas preferred coastal oak woodland and riparian areas and avoided coastal scrub 

(Burdett et al. 2010; Wilmers et al. 2013), and the use of these three land cover types did 

not appear to be sensitive to the choice of behavioral state. In the same study area, 

Dickson et al. (2005) compared resource selection functions for pumas between static 

points and travel points and found that although there were no statistical differences in 

habitat selection between the two behavioral states, that chaparral and riparian vegetation 

types were used more often as resting locations than during travel. Our results reflect 

these behavioral differences across all scales for chaparral and across fine scales for 

riparian habitat. Though many of our findings regarding behavioral state are intuitive, 

they demonstrate that resource selection depends on the behavioral state of the study 

animal. Our findings point to a need for more attention to be paid to the behavioral 

context of study animals for future PSF and resistance analyses.  

 Failing to use the appropriate behavioral state for the question at hand may be due 

to the paucity of empirical definitions for different behavioral states. Knowing when an 

individual is using resources or moving, or simply moving slowly to acquire resources, 

may mostly be guesswork, so there is a need for methods that will aid in the identification 

of different behavioral states. Previous studies have modeled moving versus resting or 
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resource use states based on movement distance and turning angles (Morales et al. 2004; 

Squires et al. 2013) or fractal dimensions (Fritz et al. 2003). State space models, as 

described in Patterson et al. 2008 have also been used to distinguish behavioral states. For 

pumas in particular, there have been studies that have attempted to identify states of 

predation and feeding (Ruth et al. 2010; Wilmers et al. 2013) and denning and 

communication behaviors (Wilmers et al. 2013) through cluster sampling. Though these 

studies are highly informative, more research on this topic is needed. The increased use 

of accelerometers on GPS collars may aid greatly in this effort (Brown et al. 2012).  

 We found resistance estimates were also sensitive to scale and behavioral state. 

This sensitivity was especially evident at the upper quantiles of the differences in 

resistance values, indicating that choice of scale and behavioral state has the largest effect 

on *20 % of the landscape. In addition, estimates of resistance were more sensitive when 

attempting to decouple movement points from all points than when decoupling resource 

use points from all points. These results have important implications for modeling 

connectivity, because in most cases the objective is to estimate resistance to movement 

rather than resource use.  

 Though our results are specific only to pumas in southern California, we believe 

the lessons learned herein can be applied to other species and study areas. Context-

dependent models allow for habitat selection and resistance to be estimated at each cell 

across the study landscape based on its location, surrounding environment, and the 

behavioral state of the individual. Thus, the resistance assigned to a particular cover type 

will vary across the landscape depending on the local context. Most current methods for 

estimating resistance are context-independent and resistance estimates are static for each 
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landscape feature (e.g. land cover type), regardless of its landscape context. Using 

context-dependent models to estimate a resistance surface is more computationally 

intensive than context-independent methods since they require a unique resistance value 

to be calculated for each grid cell in a landscape. Our results provide empirical evidence 

that context-dependent models generally outperform context-independent models 

indicating the extra computational time is warranted. For future habitat selection and 

resistance models based on PSFs, we recommend context-dependent models that explore 

a continuum of scales and consider using the appropriate behavioral state for the question 

at hand.  

 Step or path data may be more appropriate than point data for modeling resistance 

since it explicitly represents animal movement. Resource selection functions from these 

data would likely be sensitive to scale and behavioral state as well. However, further 

research is needed into this topic to determine the degree of sensitivity. A further concern 

with step and path data is the GPS collar acquisition interval. Step and path data 

incorporate information along the straight line between consecutive telemetry points. 

Short intervals may be adequate to represent resource use for an individual, but as 

intervals increase, the straight line between points may be too coarse to truthfully reflect 

resource use during movement. We are currently exploring these questions and the utility 

of step and path data for estimating resistance.  

 In closing, although our findings indicate that inferences regarding habitat 

selection and landscape resistance derived from PSFs are highly sensitive to both the 

choice of scale for assessing availability of habitat and the choice of data filters for 

decoupling behavioral states, the following challenges remain regarding the implications 
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of these findings for modeling connectivity. First, while we can confirm that estimates of 

habitat selection and landscape resistance derived from PSFs vary among scales and 

behavioral states, it is unclear how best to determine which scale(s) and/or behavioral 

state is the most ecologically meaningful for purposes of modeling connectivity, since it 

will undoubtedly depend on the objective and method of modeling connectivity. 

However, it seems likely that decoupling movement from resource use will be important 

in most applications, since the former is typically the focus for connectivity modeling, 

and that adopting a multi-scale approach will lead to the most robust inferences. Second, 

our findings indicate that while most of the landscape exhibits some sensitivity to the 

choice of scale and behavior, only a relatively small portion of the landscape exhibits 

extreme sensitivity, and it is unknown how this will affect measured connectivity given 

the differences among methods such as least- cost path modeling to identify corridors 

between a set of well-defined nodes and a more synoptic modeling approach based on 

resistant kernels in which connectivity is evaluated from every location to every other 

location. Lastly, our results were based on a single categorical predictor (land cover) at a 

single resolution. Choice of thematic content and resolution and the spatial grain of the 

predictor variables will likely also have a large effect on PSF inference and resistance 

estimates.  
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Appendices 

Appendix A. Acquisition intervals and associated radii of Pareto kernels used to 

define available habitat for PSFs 

 

Acquisition 
interval 
(minutes) 

Radius of Pareto 
kernel (meters) 

5 250 
10 530 
20 1250 
30 1590 
40 2350 
50 2470 
60 2820 
70 3345 
80 3450 
90 4040 
100 4250 
110 4475 
120 4623 
130 4725 
140 5115 
150 5236 
160 5500 
170 5676 
180 6180 
190 6214 
200 6538 
210 6678 
220 6882 
230 7029 
240 7162 
250 7345 
260 7586 
270 7843 
280 8041 
290 8229 
300 8565 
310 8873 
320 9012 
330 9228 
340 9490 
350 9677 
360 9890 



! 101!

Appendix B. Conditional mixed-effects logistic regression models in R and example 

R code 

We were aware of three main options for performing conditional mixed-effects 

logistic regression in R. Though no examples were found in the published literature, one 

option was to use the lme4 package (v. 0.999999-2, Bates et al. 2013). Within this 

package, the lmer (or glmer) function can be used, specified as described in Agresti 

(2002).  This specification is equivalent to a conditional generalized linear model with a 

binomial probability distribution.   

 Lme4 model formulation is as follows:  

lmer(Y ~ −1+diff100+…(-1+diff100+…|Individual), data=data, family=‘binomial’) 

where Y equals one for each data point, −1 specifies a no-intercept model, diff100 equals 

the difference between the proportion of used and available for a land cover type at each 

data point, the expression in parentheses specifies a random slope effect with Individual 

as the unique identifier for each animal, data references the data set to use, and the family 

argument identifies the probability distribution, in this case, the binomial. Note, this 

model formulation with more recent versions of lme4 (v. 1.0-4 and above) will result in 

an error. Archived versions of lme4 can be accessed here: http://cran.r-

project.org/src/contrib/Archive/lme4/. 

A second option was to use the coxme function from the package by the same name 

(Therneau 2012). Coxme is based on the Cox proportional hazards model (Cox 1972) 

which models individual survival based on the amount of time that passes before an event 

occurs. Time to event is related to one or more covariates. By setting time equal to 1 for 
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all data points, the Coxme function performs as a conditional mixed-effects regression 

(Therneau pers. comm.; Elliot et al. submitted).  

Finally, there was the approach used by Craiu et al. (2011), which uses a two-step 

approach to execute a conditional mixed-effects logistic regression. The R package, 

called TwoStepCLogit (Craiu et al. 2013), implements a fixed effects logistic regression 

for each individual in the first step, which are then combined in the second step through a 

restricted maximum likelihood estimation procedure.  

Due to interpretation difficulties with the two-step approach, we ran the models with 

lmer and coxme. For the simple regressions, and for multiple regressions including up to 

four variables, the results from the two approaches were comparable, if not identical. 

However, we were unable to successfully run coxme with greater than four variables, 

likely due to model complexity or idiosyncrasies of our data set. Therefore, we used lmer, 

as specified above, for all our conditional mixed-effects logistic regression models.  

! !
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Program R code and description. 

## This R software code allows for the estimation of used habitat via 
## a fixed-width buffer around each telemetry point, the estimation of 
## available habitat via a Pareto-weighted kernel around each telemetry 
## point. These data are then used in a conditional mixed-effects  
## logistic regression to model resource selection.  
 
library(sp) 
library(raster) 
library(rgdal) 
library(POT) 
library(lme4) 
library(gridio)  
## This last library (gridio) was developed by Ethan Plunkett and is available upon  # 
request from the UMASS Landscape Ecology Lab  
# http://www.umass.edu/landeco/index.html). Please put 'gridio' in the  
# subject line of these communications. Gridio requires running the 32-bit version #of R, 
among other requirements. The code using Gridio functions is subject to  
# change with updates to the gridio library. Gridio is only needed if a non-uniform  
# kernel is desired (e.g. a Gaussian kernel or a Pareto kernel as used below).  
#Otherwise, the raster library may be used to estimate a uniform kernel (in other  
# words, to estimate the available habitat as proportions in fixed-width buffer  
# around each used point). 
 
##  SOURCE THE PARETO KERNEL FUNCTION OR RUN SCRIPT PROVIDED 
BELOW 
source('make.pareto.kernel.5.r') 
 
## DEFINE THE DATA PROJECTION  
dataproj<-"+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs" 
 
## READ IN DATA and prep data frame for input from 9 different habitat types. The  
# following code assumes: 
# 1) That all individuals are in a single data frame 
# 2) That the data frame has an ID field with a unique identifier for each individual 
# 3) That the time and distance between points has been calculated and added to  
#       the data frame. In addition, an 'mpermin' field is also needed that represents,  
#       for each point (except the first point for each individual) the meters moved per  
#       minute from the previous point. 
# 4) That for each point there is a LongitudeUTM and LatitudeUTM field with the  



! 104!

#      lat/long in UTM 
 
used<-paste0('used', (seq(100,900,by=100))) 
cats[ ,used] 
 
avail<-paste0('avail', (seq(100,900,by=100))) 
cats[ ,avail] 
 
diff<-paste0('diff', (seq(100,900,by=100))) 
cats[ ,diff] 
 
## READ IN LAND COVER LAYER 
# read in ascii land cover and convert to raster object 
 
habitat<-readGDAL("habitat.asc") 
habitat<-raster(habitat) 
projection(habitat)<-dataproj 
 
## CALCULATE USED HABITAT AROUND EACH POINT 
# create spatial points object from cats 
 
cats.xy<-cats[,c("LongitudeUTM","LatitudeUTM")] 
cats.xy<-SpatialPoints(cats.xy,CRS(dataproj)) 
 
# extract used habitat a from a 30m buffer around each telemetry point  
usedhabitat<-extract(habitat,cats.xy,buffer=30) 
 
# place 0 or 1 in used column for appropriate habitat type 
for (i in 1:length(usedhabitat)){ 
  cats$used100[i]<-length(which(usedhabitat[[i]]==100))/length(usedhabitat[[i]]) 
  cats$used200[i]<-length(which(usedhabitat[[i]]==200))/length(usedhabitat[[i]]) 
  cats$used300[i]<-length(which(usedhabitat[[i]]==300))/length(usedhabitat[[i]]) 
  cats$used400[i]<-length(which(usedhabitat[[i]]==400))/length(usedhabitat[[i]]) 
  cats$used500[i]<-length(which(usedhabitat[[i]]==500))/length(usedhabitat[[i]]) 
  cats$used600[i]<-length(which(usedhabitat[[i]]==600))/length(usedhabitat[[i]]) 
  cats$used700[i]<-length(which(usedhabitat[[i]]==700))/length(usedhabitat[[i]]) 
  cats$used800[i]<-length(which(usedhabitat[[i]]==800))/length(usedhabitat[[i]]) 
  cats$used900[i]<-length(which(usedhabitat[[i]]==900))/length(usedhabitat[[i]]) 
} 
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## CALCULATE AVAILABLE HABITAT FOR EACH POINT 
# Calcualte shape and scale parameters for the Pareto kernel 
move.rate.pareto<-fitgpd(cats$distance[-1],0.01) # the 0.01 sets the minimum  
# allowable movement distance 
pareto.scale.cats<-move.rate.pareto$param[[1]]  
pareto.shape.cats<-move.rate.pareto$param[[2]]  
 
# Initialize the gridio package and read in a separate grid for each habitat type. To   # 
calculate the Pareto kernel, each habitat type must be binary (1s in grids where    # the 
habitat is present and 0s elsewhere) 
gridinit() 
habitat100<-read.ascii.grid("habitat100.asc",as.matrix=F) 
habitat200<-read.ascii.grid("habitat200.asc",as.matrix=F) 
habitat300<-read.ascii.grid("habitat300.asc",as.matrix=F) 
habitat400<-read.ascii.grid("habitat400.asc",as.matrix=F) 
habitat500<-read.ascii.grid("habitat500.asc",as.matrix=F) 
habitat600<-read.ascii.grid("habitat600.asc",as.matrix=F) 
habitat700<-read.ascii.grid("habitat700.asc",as.matrix=F) 
habitat800<-read.ascii.grid("habitat800.asc",as.matrix=F) 
habitat900<-read.ascii.grid("habitat900.asc",as.matrix=F) 
 
habitatlist<-list(habitat100, habitat200, habitat300, habitat400, habitat500, habitat600, 
                  habitat700, habitat800, habitat900) 
 
cellsize<-habitat100$cellsize 
 
# Make and calculate pareto kernel 
(max.r = qgpd(0.95,scale=pareto.scale.cats, shape=pareto.shape.cats)) # check to be sure 
this is reasonable 
 
pareto.kern<-make.pareto.kernel(scale=pareto.scale.cats, shape=pareto.shape.cats,  
                                max.r = max.r, cellsize=cellsize) 
for (j in 1:nrow(cats)){ 
  for (k in 1:length(habitatlist)){ 
    hab<-habitatlist[[k]] # note that this is a raster with 0s and 1s 
    cats[j,25+k]<-calc.kernel(hab, pareto.kern, x=cats$LongitudeUTM[j], 
y=cats$LatitudeUTM[j]) 
  } 
} 
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## DIFFERENCE USED AND AVAILABLE  
cats$diff100<-cats$used100-cats$avail100 
cats$diff200<-cats$used200-cats$avail200 
cats$diff300<-cats$used300-cats$avail300 
cats$diff400<-cats$used400-cats$avail400 
cats$diff500<-cats$used500-cats$avail500 
cats$diff600<-cats$used600-cats$avail600 
cats$diff700<-cats$used700-cats$avail700 
cats$diff800<-cats$used800-cats$avail800 
cats$diff900<-cats$used900-cats$avail900 
 
## SIMPLE AND MULTIPLE MIXED-EFFECTS LOGISTIC REGRESSIONS 
# Simple regressions (GLM was used to get starting values for mixed-effects model) 
 
cats$status<-1 
mod1<-glm(status~-1+diff100,data=cats,family='binomial') 
mod2<-glm(status~-1+diff200,data=cats,family='binomial') 
mod3<-glm(status~-1+diff300,data=cats,family='binomial') 
mod4<-glm(status~-1+diff400,data=cats,family='binomial') 
mod5<-glm(status~-1+diff500,data=cats,family='binomial') 
mod6<-glm(status~-1+diff600,data=cats,family='binomial') 
mod7<-glm(status~-1+diff700,data=cats,family='binomial') 
mod8<-glm(status~-1+diff800,data=cats,family='binomial') 
mod9<-glm(status~-1+diff900,data=cats,family='binomial') 
 
mod1<-lmer(status~-1+diff100+(-
1+diff100|Lion),data=cats,family='binomial',start=mod1$coef) 
mod2<-lmer(status~-1+diff200+(-
1+diff200|Lion),data=cats,family='binomial',start=mod2$coef) 
mod3<-lmer(status~-1+diff300+(-
1+diff300|Lion),data=cats,family='binomial',start=mod3$coef) 
mod4<-lmer(status~-1+diff400+(-
1+diff400|Lion),data=cats,family='binomial',start=mod4$coef) 
mod5<-lmer(status~-1+diff500+(-
1+diff500|Lion),data=cats,family='binomial',start=mod5$coef) 
mod6<-lmer(status~-1+diff600+(-
1+diff600|Lion),data=cats,family='binomial',start=mod6$coef) 
mod7<-lmer(status~-1+diff700+(-
1+diff700|Lion),data=cats,family='binomial',start=mod7$coef) 
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mod8<-lmer(status~-1+diff800+(-
1+diff800|Lion),data=cats,family='binomial',start=mod8$coef) 
mod9<-lmer(status~-1+diff900+(-
1+diff900|Lion),data=cats,family='binomial',start=mod9$coef) 
 
# Multiple regression. One habitat type was left out 
model.full<-lmer(status~-
1+diff100+diff200+diff300+diff400+diff500+diff700+diff800+diff900+ 
              (-1+diff100+diff200+diff300+diff400+diff500+diff700+diff800+ 
                 diff900|Lion),data=cats,family='binomial') 
 
 
## PREDICT PROBABILITY OF USE AT RANDOM POINTS (or a whole surface) 
#  Random points (or a point for each grid cell across the desired area) must have  
#  been generated prior to this step. In addition the 'used', 'available', and ‘difference’ #  
between used and available must have been calculated for these points prior to  
#   prediction.  
 
rand.points<-read.csv('rand.points.csv') 
mn = model.matrix(terms(model.full),rand.points) 
newrand = mn %*% fixef(model.full) 
pred<-plogis(newrand)  
 
## CALCULATE RESISTANCE 
resist<-1/pred 
 
 
## MAKE PARETO KERNEL FUNCTION TO RUN PRIOR TO THE SCRIPT 
ABOVE OR  
#    TO SOURCE 
 
make.pareto.kernel<-function(scale, shape, max.r = 100,  
                              cellsize = 1) { 
  require("POT") 
  max.r.cells <- max.r/cellsize 
  size = ceiling(max.r.cells) * 2 + 1 
  center = ceiling(max.r.cells) + 1 
  kernel <- new("matrix", 0, size, size) 
  for (i in 1:size) for (j in 1:size) { 
    r = sqrt((i - center)^2 + (j - center)^2) * cellsize   
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    if (r <= max.r)  
      kernel[i, j] <- dgpd(r,scale=scale,shape=shape,log=FALSE) 
  } 
   
  kernel[center, center] <- 1/scale   
   
   
  kernel <- kernel/sum(kernel) 
  # This last part deletes the cells at the edge if they are all zero 
  if (all(kernel[1, ] == 0, kernel[, 1] == 0,  
          kernel[nrow(kernel),] == 0, kernel[, ncol(kernel)] == 0)) 
    kernel <- kernel[2:(nrow(kernel) - 1), 2:(ncol(kernel) - 1)] 
  return(kernel) 
} 
!
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Appendix C. Log proportional differences in resistance between the multi-scale 

context-dependent model and the multi-scale context independent model for models            

using all points, Movement 5 points, and Resource Use 5 points 

The y-axis represents a range of percentiles for the distribution of proportional 
differences. The legend represents the log proportional differences. Warmer            
colors indicate larger differences. 
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CHAPTER 3 

!

USING STEP AND PATH SELECTION FUNCTIONS FOR ESTIMATING 

RESISTANCE TO MOVEMENT: PUMAS AS A CASE STUDY 

Introduction 

 Given increasing human development and the frag- mentation of natural habitats, 

wildlife populations are becoming ever more isolated. Wildlife corridors can mitigate this 

isolation by maintaining the exchange of individuals and their genes between populations 

(Crooks and Sanjayan 2006). Modeling corridors often requires resistance-to-movement 

surfaces where ‘resistance’ represents the opposition an organism may encounter as it 

moves through a landscape, either in terms of movement ability, survival or both.  

 Though resistance is commonly estimated with static detection points, the use of 

observed movement steps or paths is considered more appropriate as the these data 

explicitly represent passage through the landscape (Richard and Armstrong 2010; Zeller 

et al. 2012). Movement may be defined as the straight-line steps between consecutive 

points (Fortin et al. 2005), or the entire pathway of an individual (Cushman and Lewis 

2010; Elliot et al. 2014). These are referred to as step selection functions (SSFs) and path 

selection functions (PathSFs), respectively. Both methods are derived from classic 

resource selection functions (RSFs) that employ a ‘used’ versus ‘available’ design to 

estimate species–habitat relationships (Manly et al. 2002), and are analogous to modeling 

selection at Johnson’s third order of habitat selection (selection of habitat patches within 

the home range; Johnson 1980). In SSFs, the ‘used’ data are the landscape variables 
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measured along each step between consecutive points. ‘Available’ data are obtained by 

generating random steps (drawn from the empirical distribution of step lengths and 

turning angles) from the start point of each used step (Fig. 3.1a). Landscape variables are 

then measured along these random steps. In PathSFs, the entire path is used to calculate 

the ‘used’ data and that same path is randomly shifted and rotated from the used path to 

generate ‘available’ paths (Fig. 3.1b). SSFs and PathSFs are modeled in a conditional 

(a.k.a. case- controlled) logistic regression framework where each used step or path is 

paired with those that are randomly generated (Agresti 2002; Fortin et al. 2005). This 

framework allows for a realistic comparison between used and available (Compton et al. 

2002; Fortin et al. 2005) and allows for context-dependent modeling (Zeller et al. 2014). 

The regression models are then used to predict the relative probability of movement 

across a study area at each grid cell, the inverse of which is used as the resistance surface. 

It is important to note that, though these predictions are made using the regression 

coefficients from the conditional logistic regression models, they are applied to the study 

area in an unpaired framework (more on this below).  

 For SSFs, the acquisition interval of the GPS collar determines the temporal scale 

of analysis, which, in turn, is inextricably tied to the spatial scale of analysis (Thurfjell et 

al. 2014). For example, at a 1-h acquisition interval, the distribution of random steps will 

represent movements only ranging as far as the steps achieved over that hour-long period. 

The sampling of the landscape at this 1-h interval becomes the spatial scale of the 

analysis (ignoring grain size), regardless of whether this matches the strongest scale, or 

‘characteristic scale’ (Holland et al. 2004) of response of the target species. The current 

SSF framework only allows for the examination of a single scale and thereby runs the 
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risk of missing the true scale, or scales, of response. In turn, this may lead to inaccurate 

estimates of selection and resistance (Wheatley and Johnson 2009; Norththrup et al. 

2013). This issue also affects most PathSFs, in that only a single coarse scale is 

examined. However, Elliot et al. (2014) shifted the random paths at varying distances 

from the used path to explore various scales and construct multi-scale models. This is an 

improvement to the single-scale PathSF, but it does not allow for examination of scales 

that are smaller than the radius of the path, which can be quite large, and precludes 

investigating finer spatial scales to which an individual may be responding. Given the 

importance of multi-scale modeling for habitat selection and resistance, SSFs and 

PathSFs would be much improved if various scales, from fine to coarse, could be 

examined and included in the models.  

 Using SSFs and PathSFs to estimate resistance first involves predicting the 

relative probability of movement across the study area. In current SSF and PathSF 

applications, relative probability of movement has been predicted across a surface 

through the following formula (following Manly et al. 2002):  

!! ! = !exp!(!!!! + !!!!! !+ !!!!! +!…!+!!!!!)!!! ! ! ! (1)!

Here, the regression coefficients are those derived from the conditional logistic regression 

models, which are multiplied by the predictor variables (x) as measured at each pixel in 

the landscape. Though the regression coefficients are estimated from assessing what is 

along each used step or path and what is available around each step or path, the 

predictions are made in the absence of available data—in an unpaired framework. This 

results in each pixel of a given landscape feature (e.g., forest) having the same relative 
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predicted probability of movement, regardless of its surroundings. By incorporating the 

available data around each pixel in the landscape, probability of movement can be 

estimated in a truly paired context- dependent framework. This allows for a unique 

probability of movement to be estimated for each pixel in the landscape, where the value 

of a pixel reflects the attributes of that pixel as well as the attributes surrounding that 

pixel (e.g., a pixel of forest surrounded by an urban area would likely have a much 

different relative probability value than a pixel of forest surrounded by forest). To 

determine the utility of a paired framework for predicting movement and estimating 

resistance for wildlife, this approach should be explored and compared to the unpaired 

framework.  

 SSFs and PathSFs have become more accessible due to the increased use of GPS 

telemetry collars and their ability to acquire relatively accurate, consistent, and frequent 

locations. However, GPS collar acquisition intervals can vary widely, from less than 5 

min to 6 h and beyond. Fortin et al. (2005) and Coulon et al. (2008) state that SSFs do not 

assume an individual follows the straight line between points, but rather test whether 

selection of steps is related to what lies between these points. Still, predictor variables are 

most-often measured on the straight line, or a buffered area around the line (Thurfjell et 

al. 2014). Therefore, SSFs and PathSFs may be subject to bias when the acquisition 

interval is too long to accurately reflect movement for a species. Though no studies to 

date have examined the potential bias introduced by acquisition intervals for SSFs and 

PathSFs, studies focused on movement distance and home range size have found that as 

sampling intervals increase (1) paths of individuals become less tortuous and 

exponentially shorter in length (Mills et al. 2006), (2) movement rates decrease (Joly 
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2005), (3) minimum convex polygon home range estimates become smaller (Mills et al. 

2006; Brown et al. 2012), and (4) areas utilized by an individual may be 

underrepresented, while areas avoided by an individual may be overrepresented (Brown 

et al. 2012). This final finding is of particular concern for inference from SSFs and 

PathSFs, and further research is needed to determine how sensitive movement models, 

resistance surfaces and corridors are to GPS collar acquisition interval.  

 Our objective is to explore these potential issues of scale, prediction framework, 

and GPS collar acquisition interval when using SSF and PathSFs for modeling movement 

and resistance. We use GPS collar data from pumas (Puma concolor) in southern 

California acquired at 5-min intervals, to (1) present a novel SSF/PathSF method that can 

examine movement at multiple scales, (2) use this new method to identify the 

characteristic scale(s) of response of pumas and create both single and multi-scale 

models, (3) predict probability of movement and resistance across our study area in a 

both a paired and an unpaired framework, and (4) investigate whether acquisition 

intervals greater than 5 min introduce bias in habitat selection and resistance results. We 

also determine the sensitivity of resistance surfaces to scale, prediction framework, and 

acquisition interval. Finally, as an illustration of how differences in scale, prediction 

framework, and acquisition interval may affect conservation decisions, we use circuit 

theory to model connectivity across a subsection of our study area for several scales of 

analysis including multi-scale models.  
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Figure 3.1. Step and path selection functions. Conceptual illustration of (a) used and   
        available steps for a traditional step selection function, (b) used and available   
        paths for a traditional path selection function, (c) our proposed multi-scale    
        method for step and path selection functions, using a kernel to estimate   
        different scales of available habitat and (d) the true 5-min path used by an   
        individual over an hour-long period and the pseudopath over that same time   
        period. The pseudopath represents the path that one would obtain with a 60-    
        min GPS collar fix interval. 
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Methods  

Study area and data collection  

 The study area, as previously described in Zeller et al. (2014), was located in the 

Santa Ana Mountains of southern California (Fig. 3.2). Between October 2011 and 

March 2014, ten pumas (six female and four male) were fitted with Lotek 4400 S GPS 

collars programmed to acquire locational fixes every 5 min (Lotek Wireless, Inc., 

Canada). Collar duration ranged from 9 to 71 days (median = 29). Long-term positional 

accuracy of the GPS collars from manufacturer tests is 5–10 m, though accuracy may 

decrease with certain vegetation types and topographical conditions (Chang personal 

communication). Two-dimensional fixes with a positional dilution of precision [5 were 

removed to avoid the use of data that may have large spatial errors, as recommended by 

Lewis et al. (2007). The final data set consisted of 75,716 fixes across the 10 individuals 

(range = 1650–18,464; median = 7147). Due to the low number of individuals, sexes 

were pooled in the analyses.  

 We used land cover types from the California wildlife–habitat relationship 

database as independent variables in our RSFs. These categorical habitat data were 

obtained from the CalVeg geospatial data set (USDA Forest Service 2007) in vector 

format at the 1:24,000 scale, which we rasterized at a 30 m resolution. Though there were 

25 mapped land cover types present in the study area, many types had very low 

occurrence (<1 %), therefore, we aggregated these 25 types into nine classes based on 

descriptions from the California Department of Fish and Wildlife (1988). The aggregated 

land cover classes and their percentages of the study area were as follows: chaparral (45 

%), urban (19 %), coastal scrub (14 %), annual grassland (6 %), coastal oak woodlands (5 
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%), agriculture (5 %), riparian areas (3 %), perennial grassland (2 %), and naturally 

barren or open areas (1 %) (Fig.3.2). There has been little vegetation change in the study 

area between the time the CalVeg data set was produced and the time the puma data was 

collected. Though the Santiago Fire affected portions of the western flank of the Santa 

Ana Mountains, the vegetation types remained the same pre- and post-fire.  

Figure 3.2. Study area in southern California showing land cover types used in the   
         analysis.  

  

 

Multi-scale SSF and PathSF method  

 SSFs and PathSFs traditionally use random steps or paths for estimating 

‘available’, thus constraining the available area to the longest step/path lengths observed. 
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When we free ourselves from using random steps and paths, we have more flexibility to 

explore multiple scales. Specifically, if we use a density kernel around the step or path 

we obtain a census of the proportion of available land cover types and avoid issues of 

selecting a certain number of steps or paths from the random sample (Norththrup et al. 

2013). The density kernel may be weighted by an appropriate distribution; in our case, we 

used an empirically- derived Pareto distribution as our kernel (as described in Zeller et al. 

2014), representing different distances traveled over specific time intervals (e.g., 5, 60 

min, etc.). At the 5-min interval, the radius of the Pareto kernel was small resulting in a 

small available area sampled around each step or path (e.g., Fig. 3.1c). The radii of the 

Pareto kernel increased with increasing time intervals (e.g., Fig. 3.1c), thereby allowing 

us to sample different scales around each step or path. A more detailed description of our 

method is provided below.  

Used steps  

 All data analyses were performed using R software (R Core Team 2013). We first 

calculated the distance of each step between consecutive points and identified all steps 

that measured 200 m or more; the 200 m distance threshold was to ensure that steps 

represented actual ‘movement’ through the landscape rather than local ‘resource use’ (see 

Zeller et al. 2014). We buffered each movement step by a 30 m fixed-width buffer to 

account for GPS error (Rettie and McLoughlin 1999) and incorporate the immediate 

environment around each step. We calculated our ‘used’ data for the SSFs as the 

proportion of land cover types along each buffered step.  

Used paths  
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 Because we only had 10 individuals, using the entire path for our path analysis 

would have resulted in an insufficiently small sample size. Therefore, we subset the 

entire path of each individual into 24-h paths, which resulted in a more reasonable sample 

size of n = 315. As with the steps, we buffered the paths by a 30 m fixed- width buffer 

and calculated the proportion of land cover types within this buffer. This was the ‘used’ 

data for our PathSFs. Because inferences about habitat use and resistance might be 

affected by the time of day at which a 24-h path begins, we ran 12 subsets; the first subset 

started at midnight, the next subset started at 2 a.m., etc. We ran a PathSF model (more 

on this below) for each subset separately and we averaged the regression coefficients 

across all 12 subsets to obtain a final model.  

Available areas/scales of analysis  

 As described above and in Zeller et al. (2014), we estimated ‘available’ using a 

Pareto-weighted kernel around each step or path. To model multiple scales, we increased 

the time interval over which the Pareto distribution parameters were estimated and 

calculated available areas for each interval/scale separately. We estimated the parameters 

of the Pareto distribution as follows:  

(1) We selected 19 different time intervals over which to empirically estimate the Pareto 

kernel. These intervals consisted of the 5-min time interval, the 20-min interval, and then 

every 20 up to 360 min (6 h).  

(2) We subset the 5-min data at these different time periods and calculated the 

displacement distance between each point. This provided us with the distribution of 

displacement distances for each time period.  
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(3) We then fit a generalized Pareto function to the distribution of displacement distances 

for each time interval using the gpd.fit function in the gPdtest package (Estrada and Alva 

2011). We set the radius of the available area at the 97.5 percentile of the Pareto 

distribution, or the maximum observed displacement distance, whichever was smaller.  

 Hereafter, we refer to the radius of each Pareto kernel as the scale of analysis. Our 

scale reflects the size or extent of the ecological neighborhood (as defined by the kernel) 

around the step/path, not the spatial grain of the data, which we held constant at 30 m for 

all analyses. These scales ranged from 532 to 7390 m (Appendix A). To obtain a kernel 

around a step or path for a scale, we distributed points uniformly along each step or path 

at a distance determined by the radii of the Pareto kernel for that scale. We then placed 

the Pareto kernel over each point and calculated the proportion of land cover types 

weighted by the Pareto kernel. The available data for each step or path at each scale was 

obtained by calculating the mean proportion of land cover types across all the Pareto 

kernels distributed along its length. Note, because the available areas are weighted by the 

Pareto distribution, they more heavily weight areas closer to the used step or path and the 

scales should not be thought of as a uniform buffer around each used step or path.  

Statistical analysis  

 We provide a flow chart summarizing our statistical analyses procedure in 

Appendix B.  

 For the step and path data we paired each used step or path with the available area 

for that same step or path at a scale and ran conditional logistic regression models. We 

specified the conditional logistic regression models as described in Zeller et al. (2014), 
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using the differences in the proportion of each land cover type between each used step or 

path and its corresponding available area as the predictor variables. In this specification, 

the response variable is always 1 and there is no model intercept (Agresti 2002). Because 

we are using the proportion of each land cover type as predictor variables, we do not have 

a single land cover variable with the categories coded as dummy variables, but instead 

have a single predictor variable for each of our nine land cover types.  

 We ran simple conditional logistic regression models at each scale for each land 

cover type separately. We also ran multiple conditional logistic regression models at each 

scale using the land cover type with the weakest effect in the simple regressions as our 

reference class. Correlation among our predictor variables was relatively low (maximum 

Pearson correlation coefficient = -0.48), allowing us to retain all predictor variables in 

our models. We attempted to run conditional logistic mixed effects logistic regression 

models, using individual puma as the random effect, but our models often failed to 

converge. Therefore, we did not use the mixed effects framework and simply used the 

glm function in R for our modeling.  

 To develop the conditional multi-scale logistic regression models, we identified 

the characteristic scale of response from the simple conditional logistic regression models 

as the scale with the largest absolute regression coefficient. We then used the 

characteristic scale for each land cover type to construct a multi- scale, multiple logistic 

regression model for our step and path data.  

Model performance  
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 For each of our single- and multi-scale multiple logistic regression models, we 

performed a 10-fold cross validation using the methods recommended by Johnson et al. 

(2006) and evaluated the predictive performance of the models using Lin’s (1989) 

concordance correlation coefficient (CCC) as applied in Zeller et al. (2014). Because the 

SSFs and PathSFs had different sample sizes, we could not use an information criterion 

approach for model selection across all step and path models. Within the SSFs and 

PathSFs, however, we did have the same sample sizes and therefore calculated Akaike’s 

information criterion (AIC; Burnham and Anderson 2002) for SSFs and PathSFs 

separately.  

Predicting probability of movement and resistance  

 As noted in the ‘‘Introduction’’ section, previous SSFs and PathSFs that have 

used the have predicted the relative probability of movement values across an area of 

interest in an unpaired framework, using only the attributes at each pixel. This method 

does not consider the attributes of surrounding pixels. In order to predict probability of 

movement in the fully paired framework that was used to develop the models, we first 

calculated the proportion of land cover types in a 30-m fixed-width buffer at each pixel in 

our study area (which is akin to the ‘used’ data in the regression models). For a scale of 

interest, we then placed a Pareto kernel around each pixel and calculated the proportion 

of land cover types within this kernel (which is akin to the ‘available’ data in the 

regression models). We calculated the differences in the proportion of land cover types 

between each focal pixel and the surrounding kernel and used these as our predictor 

variables. Incorporating the information around each pixel allowed us to predict a unique 

probability of movement for every pixel across the study area using all the information 
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that went into building the model. We also predicted the relative probability of movement 

in the traditional unpaired framework for comparison.  

 For our paired and unpaired probability of movement surfaces, we calculated 

resistance by taking the inverse of the probability of movement values. We did not 

rescale or truncate these values because we did not want to introduce any unnecessary 

subjectivity into the resistance surfaces. We chose to estimate resistance instead of 

conductance (which would simply be the raw predicted surface) because resistance 

surfaces are one of the most popular ways to estimate connectivity and model corridors 

(Zeller et al. 2012). We estimated paired and unpaired resistance surfaces at the 532, 

2618, 3505, 4296, 5275, and 7390 m scales as well as for the multi-scale models for steps 

and paths.  

Acquisition interval bias/pseudo paths  

 To investigate possible bias introduced by longer acquisition intervals, we subset 

the 5-min data so that it only contained point locations every 60 min. These data 

represent the steps/paths one would obtain with an hourly GPS collar acquisition interval. 

We refer to the 5-min data as the true steps/paths and the 60-min data as our pseudo 

steps/paths (Fig. 3.1d). We calculated used and available for the pseudo steps and paths, 

ran simple and multiple conditional logistic regressions for SSFs and PathSFs, and 

predicted resistance in the paired framework as described above. We considered the paths 

from the 5-min data as our truth and assessed bias by calculating the mean absolute 

difference between the regression coefficients obtained from the models using the 5-min 

paths and those using the pseudo paths for each land cover type at each scale as well as 
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for the multi-scale model. We then averaged the differences across cover types at each 

scale to measure overall bias.  

Sensitivity of predicted resistance surfaces and corridor locations to scale, prediction 

framework, and acquisition interval  

 We visually assessed the resistance surfaces from our different scales, prediction 

frameworks, and acquisition intervals and noted disparities. We also compared the 

distribution of resistance values between resistance surfaces.  

 To get a cursory sense of how differences in resistance surfaces might translate to 

differences in corridors, we performed a connectivity analysis in the Temecula corridor 

region within our study area. This area has received much attention as the last viable link 

between the Santa Ana puma population and populations in the Peninsular Range of 

southern California (Ernest et al. 2014; Vickers et al. 2015). Although there is no 

standard way to evaluate congruence among predicted corridors, recent conservation 

attention has been paid to identifying locations for road crossing structures across 

interstate 15 (I-15), the major barrier in this linkage. Therefore, we chose locations where 

modeled corridors cross I-15 as a simple but meaningful way to compare model 

predictions (Cushman et al. 2014). We used CircuitScape (McRae et al. 2013) to create 

current density maps (McRae et al. 2008) between protected areas on either side of I-15. 

We then identified the top 20 pixels along I-15 with the most current flow that might be 

considered as locations for road crossing structures. In this context, ‘current flow’ 

represents the number of random walkers that would move through a pixel as they passed 

between protected areas. We noted the location of each of these pixels for each resistance 
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model as well as differences in these locations between resistance models. We recognize 

there are myriad methods for modeling connectivity across resistance surfaces (Cushman 

et al. 2013), but as this was not the focus of our paper, we only selected the one method 

as an illustrative example of how differences in resistance surfaces may translate into 

differences in connectivity.  

Results  

Characteristic scales of response and step versus path selection functions  

 The regression coefficients were sensitive to scale. Although puma response to 

most land cover types was consistently positive or negative across scales, annual 

grassland and agriculture resulted in a change of sign with scale (Fig. 3.3).  

 For both SSFs and PathSFs, pumas responded most strongly to annual grassland, 

barren, chaparral, coastal scrub, and perennial grassland at finer scales and to agriculture 

and urban at coarser scales (Fig. 3.3). Despite these general similarities, the exact 

characteristic scale between SSFs and PathSFs differed for every cover type except 

chaparral (Fig. 3.3). The land cover types that exhibited the greatest difference in 

characteristic scales between SSFs and PathSFs were coastal oak woodland and riparian 

(Fig. 3.3).  

 The simple conditional logistic regression models from the SSF and PathSFs 

resulted in different regression coefficients (Fig. 3.3). These differences could be 

pronounced, as evidenced by riparian and urban land cover types. With the exception of 

annual grassland, the PathSFs generally resulted in much larger (positive or negative) 

regression coefficients than the SSFs.  
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Figure 3.3 Simple regression results. Regression coefficients for land cover types used in 
        the simple conditional logistic regression SSF and PathSF models across the   
        19 scales of analysis. 
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Model performance  

 Both SSFs and PathSFs performed well across scales, with the exception of the 

PathSF model for the 532 m scale (Fig. 3.4). Model performance for both SSFs and 

PathSFs tended to increase as scale increased and with the exception of the finest scale, 

the PathSFs outperformed the SSFs (Fig. 3.4). The best model performance for the SSFs 

was achieved at the 6555 m scale (0.976) and for the PathSFs at the 7390 m scale (0.992). 

Interestingly, the multi-scale models did not have the highest CCC value, though for both 

SSFs and PathSFs they were similar to the best model (0.943 and 0.982, respectively). 

We also calculated AIC values for the models. Because the SSFs and PathSFs had 

different sample sizes, we could not compare AIC values between the two methods, but 

within SSFs and PathSFs, AIC values decreased with increasing scale (Appendix C). The 

multi-scale model had the lowest AIC value for the SSFs and the 6555 m scale had the 

lowest AIC value for the PathSFs.  

Acquisition interval bias  

 Our 60-min pseudo data (representing GPS data collected at an hour-long 

acquisition interval) resulted in biased regression coefficients compared with our 5-min 

data (Fig. 3.5; Appendix D). As expected, biases were higher for the PathSFs than the 

SSFs (Fig. 3.5). Appendix D provides the regression coefficients for each land cover type 

for the SSFs using the true step data and using the 60-min pseudo steps. In general, for 

land cover types that were preferred, the pseudo steps crossed these cover types less 

frequently, resulting in smaller regression coefficients and sometimes resulting in a 

change in sign from preference to avoidance. In fact, for the annual grassland and barren 
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cover types, the true steps show a consistent preference for these types across scales 

while the pseudo steps show a consistent avoidance across scales. The opposite effect 

was generally seen for land cover types that were avoided. For these, the pseudo-steps 

crossed more of these cover types than were actually used, resulting in reduced 

avoidance, and in the case of coastal scrub, preference.  

Figure 3.4. Concordance Correlation Coefficient (CCC). Predictive performance, as   
         measured by CCC, of multiple conditional logistic regression SSF and   
         PathSF models at all scales and for the multi- scale model. 
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Figure 3.5. Bias in regression coefficients at a 60-min acquisition interval. Bias was   
        calculated by taking the mean absolute difference between the regression   
        coefficients obtained from the multiple SSF and PathSF models using the true 
        5-min data and those using the 60-min pseudo data for each land cover type   
     at each scale and for the multi-scale models. We then averaged the differences   
     across cover types at each scale. 

 

Sensitivity of predicted resistance surfaces and corridors to scale, prediction framework, 

and acquisition interval  

 There were notable differences in the ranges of resistance values between SSFs 

and PathSFs, among scales, and among prediction frameworks (e.g., paired and unpaired; 

Fig. 3.6; Appendices E, F). In keeping with the regression coefficient results above, 

resistance values derived from PathSFs tended to be higher than those derived from SSFs 

(Fig. 3.6; Appendices E, F). Also, resistance values at finer scales were generally smaller 

than resistance values at coarser scales. Increasing resistance with scale can be explained 

by the generally increasing strength of avoidance with scale. As avoidance of a land 

cover type increased, the relative predicted probability of movement decreased. Taking 
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the inverse of these small values to predict resistance resulted in high resistance values. 

Note that increasing selection with scale does not result in dramatic changes to the 

resistance surface since, using the method described above, the lowest value possible will 

always be 1.  

 The maximum resistance values from predicting resistance in the paired 

framework tended to be larger than those obtained from predicting resistance in the 

unpaired framework (Appendix E). The other notable difference between the frameworks 

was that, since the unpaired framework was not context-dependent, it resulted in the same 

resistance value for a cover type regardless of its context. Because urban, comprising 19 

% of the study area, was the most avoided land cover type and resulted in the highest 

resistance values, the 91st–100th quantiles for the unpaired surfaces were the same 

(Appendix E). We can visualize the consistency among cover types in the first columns 

of Fig. 3.6 (SSF results) and Appendix F (PathSF results). The resistance surfaces from 

the paired frameworks are context dependent and rely not only on what is at each pixel, 

but what is surrounding each pixel. For example, when a puma is in a pixel that is 

comprised of coastal oak woodland, a land cover type they prefer, moving from coastal 

oak woodland to less optimal habitat will result in an increased resistance. This is seen in 

the second columns of Fig. 3.6 and Appendix F in the southeastern part of the study area 

where coastal oak woodland patches have the lowest resistance but are surrounded by a 

band of high resistance. Another example is in urban areas. Moving into an urban area 

has a high resistance, however, once inside an urban area, there is no difference between 

the proportion of urban in the used and available and thus, the resistance is not as high. In 

general, the resistance surfaces derived from the paired models are characterized by much 



! 138!

greater spatial heterogeneity in resistance and a much greater range of resistance values 

(Fig. 3.6; Appendix F).  

 From the CircuitScape current density surfaces, we identified the top 20 pixels 

along I-15 that had the most current, or greatest flow of individuals. These locations are 

shown, along with the current surfaces in Fig. 3.7 (SSFs) and Appendix G (PathSFs). 

Locations varied among SSFs and PathSFs and among scales. Locations were more 

similar at the same scale across methods (SSFs vs. PathSFs) and frameworks (unpaired 

vs. paired) than within the same method or framework across scales, indicating scale is a 

major factor in connectivity differences.  

 Using the 60-min pseudo paths in the SSFs and PathSFs resulted in sometimes 

markedly different resistance surfaces and biased the road crossing locations (last 

column, Figs. 3.6, 3.7; Appendices F, G). For example, resistance surfaces tended to be 

biased high, particularly for SSFs. In addition, for the SSF models, crossing locations for 

the biased SSFs (based on the pseudo steps) tended to miss potential crossing locations in 

the middle section of I-15 that were picked up with the models based on true paths. These 

biased SSFs also identified crossing locations that were not present in any of the models 

that used the true paths (Fig. 3.7).  
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Figure 3.6. Resistance surfaces from the SSF models. The first column contains        
        the resistance surfaces predicted in the unpaired framework, the second    
        column contains resistance surfaces predicted in the paired framework, and   
        the last column contains resistance surfaces predicted with pseudo steps in the 
        paired framework. The first row contains the resistance surfaces from the   
        smallest scale model, the middle row the mid-scale model, and the last row   
        the multi-scale model. Resistance surfaces for the PathSFs are provided in   
        Appendix E. 
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Figure 3.7. Road crossing locations from the SSF models. CircuitScape current density   
        surfaces (log10 transformed) and road pixels with the highest current      
        densities. The vertical line represents interstate-15, the black dots represent   
        the top 20 pixels along I-15 with the highest current density. The first column 
        contains current maps resulting from predicting resistance in the unpaired   
        framework, the second column contains maps predicted in the paired        
        framework, and the last column contains maps predicted with 60-min pseudo   
        steps in the paired framework. The first row contains the current maps from   
        the smallest scale model, the middle row the mid- scale model, and the last   
        row the multi-scale model. Current density maps for the PathSFs are provided 
        in Appendix F.  

 

Discussion  

 We found that pumas have multiple characteristic scales during movement events. 

In our population, pumas exhibited a mostly bi-modal response to scale; characteristic 

scales were at a coarse scale for urban and agriculture, and at a fine scale for the 

remaining cover types, highlighting the importance of modeling movement at multiple 
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spatial scales. We found regression coefficients to be extremely sensitive to scale. For 

example, for the PathSFs, regression coefficients ranged from -10 to -30 for the urban 

cover type, and -4 to -15 for the chaparral cover type. Regression coefficients also were 

prone to sign changes for some cover types, indicating different conclusions may be 

reached regarding habitat preference or avoidance with different scales. We found that 

regression coefficients from the PathSF models were generally greater than those from 

the SSF models and that characteristic scales differed between the SSFs and the PathSFs, 

indicating that choice of method may influence inference about movement and resistance 

(more on this below).  

 With the exception of the finest scale, SSF and PathSF models performed well 

across all scales (CCC [0.8) and PathSF models outperformed SSF models. Though the 

multi-scale models performed extremely well, they did not outperform some of the 

coarser, single-scale models.  

 Resistance surfaces differed between SSFs and PathSFs, with the PathSFs having 

higher resistance values than the SSFs. This was undoubtedly due to the greater 

avoidance of some cover types in the PathSFs compared with the SSFs.  

 Resistance surfaces also differed across scales. The finest scale produced the 

lowest range of resistance values, especially for the SSFs, and resistance generally 

increased with scale. This is again a reflection of the coefficients becoming more 

negative for certain cover types as scale increased. Increase in selection or avoidance 

with scale may be attributed to the fact that more of the landscape is sampled at larger 

scales. For example, when smaller scales are used, the available areas are more similar to 
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the used areas and the models do not have much power to discern between selection and 

avoidance, resulting in weak regression coefficients. As scales broaden, the available 

areas represent a wider pool of conditions, enabling the model to more powerfully reflect 

differences in selection choices made by individuals.  

 The greatest conceptual difference in resistance surfaces was seen between 

predicting resistance in the unpaired versus the paired framework. In the unpaired 

resistance surfaces, it is evident that each cover type had a single resistance value 

regardless of its landscape context, whereas in the paired framework, each pixel had a 

unique value depending on its landscape context. This created more heterogeneous 

surfaces (more on this below). We found these differences among SSFs and PathSFs, 

scale, and prediction framework carried through to estimates of connectivity and road 

crossing locations.  

 Lastly, we found that regression coefficients, resistance surfaces, and corridors 

were sensitive to GPS collar acquisition interval. There was a consistent 3–4- fold 

difference in regression coefficients between the true 5-min steps/paths and the 60-min 

steps/paths. For some land cover types, using a longer acquisition interval resulted in a 

change of sign in the regression coefficient. Not surprisingly, CircuitScape current maps 

and road crossing locations were different between models that used the true paths versus 

those that used the pseudo paths. Therefore, a mismatch between GPS collar acquisition 

interval and species vagility may ultimately bias corridor conservation planning when 

using SSFs and PathSFs.  
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 There is ample literature demonstrating that organisms select habitat at multiple 

spatial scales (see review by McGarigal et al. accepted). These multi- scale relationships 

have traditionally been modeled using RSFs based on point, or detection, data (e.g., 

DeCesare et al. 2012; Martin and Fahrig 2012; Zeller et al. 2014), not movement data. 

We believe this is due to the fact that methodological limitations with SSFs and PathSFs 

have constrained the exploration of scaling relationships and multi-scale models. 

However, there has been some exploration of scales with PathSFs. After Cushman et al. 

(2010) presented the first PathSF methodology which, involves shifting and rotating 

random paths to sample available habitat (Fig. 3.1b). Reding et al. (2013) was the first to 

incorporate more than one scale. Their paper on bobcats used buffers of two sizes around 

both the used and available paths in order to compare selection at these scales and 

combine the two scales into a single model. Elliot et al. (2014) used the original Cushman 

et al. (2010) method but changed the extent to which paths were shifted in order to 

explore multiple scales and construct multi-scale models. However, the Elliot et al. 

(2014) method does not allow for examination of fine scales. Here, we offer an 

improvement to SSF and PathSF methods for modeling habitat selection during 

movement at multiple scales and with multi-scale models. Our method is easily 

reproducible and can accommodate any number of biologically justified scales.  

 With our method, we found that individuals were not always operating at a single 

scale during movement and that multi-scale responses may be present. For some land 

cover types, we obtained stronger responses at coarser spatial and temporal scales. This is 

similar to Elliot et al. (2014) who found that lions in southern Africa select preferred 

vegetation types at fine spatial scales, and avoided anthropogenic risk, such as urban 
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areas, at broad spatial scales. For our pumas, the coarse-scale response to urban and 

agricultural areas may be due to knowledge of the landscape including the location of 

large areas of human development. We used data from pumas that had established home 

ranges; however, results may vary with data from pumas that are dispersing in areas 

previously unknown to them. For dispersing individuals, it would not be surprising to 

find that habitat selection during movement occurs at much finer scales, since an 

individual may be reacting only to what is in their immediate perceptual range, not prior 

knowledge. Further research is needed to determine if characteristic scales for pumas 

differ between resident and dispersing individuals.  

 When estimating resistance, detection data is the most often-used data type, 

mainly due to the fact that it is relatively easy to acquire compared with movement data 

(Zeller et al. 2012). However, using step or path data to estimate resistance is 

conceptually more appealing since it explicitly represents movement. When step data is 

available, path data is typically available as well since it is simply a series of steps and 

one is left to select one approach over the other. Cushman et al. (2010) promoted PathSFs 

as being superior to SSFs given the fact that spatial and temporal autocorrelation of 

observations can be avoided, while maintaining the biologically important spatial patterns 

of movement. Given the larger regression coefficients and better model performance of 

PathSFs compared to SSFs, our results also support the use of PathSFs over SSFs. The 

differences in regression coefficients and resistance surfaces between SSFs and PathSFs 

may reflect the different types of movement these two approaches represent. We used a 

distance threshold for our step data so that the steps in our SSF explicitly represented 

movement events. Conversely, our paths represent all the behaviors in which an 
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individual was engaged throughout the course of a day. Though the paths, as a trajectory 

of movement over a time period, are a representation of movement, they capture both the 

directed movement an individual may take when traveling between resource use patches 

as well as the slow, more tortuous movement an individual may take while acquiring 

resources. For estimating resistance, it may be argued that, as an individual moves about 

the landscape, they may be making directed movement as well as acquiring resources, 

again indicating that PathSFs may be the method of choice.  

 To our knowledge, this was the first study to conduct a PathSF for pumas and 

only the third to conduct an SSF. Dickson et al. (2005) and Dickson and Beier (2007) 

used an SSF approach to estimate habitat selection during movement for pumas in our 

same study area. Their steps were at 15-min intervals and they used a compositional 

analysis to rank cover types (from most to least preferred) as riparian, scrub, chaparral, 

grassland, woodland, and urban. With the exception of scrub and chaparral, these results 

agree with what we found in our SSFs. Differences may be due to different sample sizes, 

or the fact that compositional analyses cannot be conducted in the conditional logistic 

regression framework used herein. As noted in Dickson et al. (2005), previous research 

using point data found pumas avoid grasslands, apparently due to lack of stalking cover. 

However, during movement pumas may prefer grassland for increased mobility. 

Similarly, we found pumas to prefer naturally barren areas during movement. These 

results highlight the importance of accounting for behavioral state in modeling habitat 

selection since inferences based on movement can be different from those based on 

resource use (Squires et al. 2013; Elliot et al. 2014; Zeller et al. 2014). As this paper was 

aimed at testing various considerations for running SSF and PathSF models, we wanted 
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to simplify the models and results by using only land cover classes as predictor variables. 

Future analyses for pumas in this study area could be improved by using other geospatial 

layers known to affect puma habitat selection including slope, topographic ruggedness, 

and roads (Burdett et al. 2010; Kertson et al. 2011; Wilmers et al. 2013).  

 The conditional logistic regression models allow for a biologically relevant 

comparison between used and available (Compton et al. 2002; Fortin et al. 2005) and the 

potential for using a context-dependent modeling approach (Zeller et al. 2014). For these 

reasons, extending the conditional framework to predicting the relative probability of 

movement and resistance is attractive. In previous studies, conditional logistic regression 

has been used to estimate the regression coefficients for the independent variables in a 

model, however these regression coefficients are then used in an unpaired framework to 

predict the relative probability of movement across a study area. We incorporated the 

available area around each pixel in the study area in our predicted surfaces for a truly 

paired approach to modeling resistance. In such a surface, resistance was estimated from 

each location on the landscape, putting the individual in the context of their surroundings. 

These surfaces are clearly applicable for individual-based modeling where individuals are 

making choices as they move through the landscape. However, using the paired approach 

needs further exploration. These surfaces may pose problems for modeling connectivity 

in certain landscapes because they may not adequately account for the absolute fitness 

costs of making any particular decision. For example, in the paired resistance surfaces the 

difficulty of entering an urban area (a strongly avoided land cover type) from an adjacent, 

preferred habitat reflects not only the relative fitness tradeoffs of moving into the urban 

area (i.e., the relative cost of moving into the urban area is high compared to moving 
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away from the urban area), but also perhaps the ‘‘absolute’’ fitness costs of making that 

decision (i.e., moving through urban land cover confers a high fitness cost). However, 

once an individual moves inside the urban area, the context-dependent resistance is low 

because the relative cost of moving to another cell of urban is relatively low since the 

tradeoffs are all the same, even though the absolute fitness costs of moving through any 

cell of urban is still very high. The paired surface also produced concerning rings of high 

resistance around urban areas which, for moving into an urban area makes biological 

sense, but does not make biological sense for moving out of an urban area. In general, the 

paired resistance surfaces capture the relative fitness costs of making context-dependent 

decisions, whereas the unpaired surfaces capture the absolute fitness costs of making any 

decision. Given these issues, the utility of these surfaces used singly or in combination 

for corridor modeling is an area ripe for further research.  

 GPS collar acquisition intervals are often selected by weighing the desire to 

collect fixes at regularly short intervals against the desire for a long-lasting collar. We 

found, for studying movement in the context of SSFs and PathSFs, that collecting fixes at 

short intervals was critical in reducing bias in regression coefficients and resistance 

estimates. In previous SSFs, acquisition intervals have ranged from 1 min (Potts et al. 

2014) to 1 day (Richard and Armstrong 2010) for birds, 1 h (van Beest et al. 2012) to 6 h 

(Coulon et al. 2008) for ungulates, and 30 min (Squires et al. 2013) to 4 h (Roever et al. 

2010) for carnivore species. More research is needed to determine the appropriate 

intervals for studying movement for a species, but in general the optimal interval will be 

short (no more than a few minutes) for highly vagile species that do not travel on straight 

paths. Indeed, it is possible that an interval \5 min would be better for pumas than the 5-
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min data used in this paper. Thurfjell et al. (2014) recommended performing pilot studies 

to determine the appropriate acquisition interval and highlighted the relative ease with 

which this may be done given remote options for downloading data and programming the 

GPS collars. Employing SSFs and PathSFs as we have done here, by calculating 

predictor variables along the step or path, should be done with great caution if it is 

suspected that the acquisition interval is too infrequent to capture true movement paths. 

Investigating the use of Brownian bridge models between points (Thurfjell et al. 2014) 

may alleviate bias, but at the cost of diluting specific species–habitat relationships along 

true movement paths.  

 The method we present for conducting SSFs and PathSFs is promising for 

modeling multi-scale species–habitat relationships during movement. It is also promising 

for estimating resistance, since using movement data in the form of steps or paths (vs. 

static point data) may be the most appropriate way to build resistance surfaces. However, 

many questions remain. First, like previous research teams, we have assumed that the 

inverse of the predicted relative probability of presence from RSFs translates directly to 

resistance, but there is no empirical evidence that this is the case. Second, more inquiry is 

needed to determine whether predicting resistance in the paired framework is superior to 

the unpaired framework, or whether some hybrid of these two resistance surfaces, 

representing a combination of relative and absolute fitness costs, is more appropriate. 

Related to these two points, methods are needed to compare amongst resistance surfaces 

derived via different data types and methods (Beier et al. 2008). Cushman et al. (2014) 

provide a robust method to compare the ability of resistance surfaces to predict actual 

crossing locations of individuals, however, methods are needed to assess the performance 
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of entire resistance surfaces (not just road crossing locations). Third, more research is 

warranted to determine the appropriate GPS collar acquisition interval for species so as to 

reduce bias. Finally, more research is needed to determine how species respond to 

landscape features at different scales during movement.  

 We hope the results provided herein will be useful for further inquiry into how 

wildlife respond to landscape features during movement events. We provide a novel 

method for modeling movement at multiple scales within SSFs and PathSFs. Given our 

results, when there is a choice, we recommend PathSF models be used over SSF models. 

Due to the sensitivity of movement models and resulting resistance surfaces to scale, 

prediction framework and GPS collar schedule, much care should be used when 

modeling corridors for conservation purposes using these methods.  
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Appendices 

Appendix A. Time-intervals and associated radii of Pareto kernels used to define 

available habitat for the SSFs and PathSFs 

We fit a Pareto distribution to the empirical distribution of displacement distances at each 
time-period and defined the maximum radii of the Pareto distribution by either using the   
97.5 quantile of the distribution, or the maximum observed displacement distance, 
whichever was smaller. 

Time-interval 
(minutes) 

Radius of Pareto 
kernel (meters) 

  

5 532 

20 1351 

40 2117 

60 2618 

80 3027 

100 3278 

120 3505 

140 3834 

160 4185 

180 4296 

200 4717 

220 5064 

240 5275 

260 5486 

280 5579 

300 5802 

320 6327 

340 6555 

360 7390 
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Appendix B. Flow chart depicting the statistical analysis procedure for our step data 

The same procedure was followed for our path data. For further information please refer 
to the methods section of the main paper.!!

!

 

  

Calculated ‘used’ 
for each step

With the ‘used’ and 
‘available’ for one scale, 
ran a multiple 
conditional logistic 
regression model with 
all land cover types

Using the model 
developed for each 
scale, predicted the 
probability of movement 
across the study area in 
a paired framework

Took the inverse of the 
predicted probability of 
movement surface for 
each scale to get a 
resistance surface

Single-scale models

Ran 19 simple conditional 
logistic regression models 
for each land cover type 
(one for each scale)

Identified the characteristic 
scale of response for each 
land cover type

Ran a multiple conditional 
logistic regression model 
using the characteristic 
scale for each land cover 
type

For each multiple 
regression model, 
recorded the AIC value 
and performed a 10-fold 
cross validation as 
recommended by 
Johnson et al. 2006. 
Calculated CCC statistic 
as described in Zeller et 
al. 2014

Calculated ‘used’ 
for each step

Multi-scale models

Calculated 
‘available’ for each 
step at each of 19 
scales

Calculated 
‘available’ for each 
step at each of 19 
scales

Repeated for 
each of 19 scales

Using the model 
developed for each 
scale, predicted the 
probability of movement 
across the study area in 
an unpaired framework

Took the inverse of the 
predicted probability of 
movement surface for 
each scale to get a 
resistance surface

Using the multi-scale 
model, predicted the 
probability of movement 
across the study area in 
a paired framework

Took the inverse of the 
predicted multi-scale 
probability of movement 
surface to get a 
resistance surface

For the multi-scale, 
multiple regression 
model, recorded the AIC 
value and performed a 
10-fold cross validation 
as recommended by 
Johnson et al. 2006. 
Calculated CCC statistic 
as described in Zeller et 
al. 2014

Using the multi-scale 
model, predicted the 
probability of movement 
across the study area in 
an unpaired framework

Took the inverse of the 
predicted multi-scale 
probability of movement 
surface to get a 
resistance surface



! 152!

Appendix C. AIC values for the single scale and multi-scale multiple regression 

SSFs and PathSFs 

Note, AIC values between the SSFs and PathSFs cannot be compared due to different 
sample sizes.  
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Appendix D. Regression coefficients for the simple paired logistic regression SSF 

models across the 19 scales of analysis for the true steps and the 60-min pseudo steps 
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Appendix E. Quantiles of (a) SSF and (b) PathSF resistance surfaces predicted in 

the paired and unpaired frameworks at select scales 

a)!

Q
ua

ni
tle

   
   

   
   

 
 Resistance Value 
 SSF Paired 

Scale (m) 
SSF Unpaired 

Scale (m) 
 

532 2618 4296 7390 
Multi-
scale 532 2618 4296 7390 

Multi-
scale 

1% 1.64 1.12 1.05 1.01 1.01 1.07 1.04 1.04 1.06 1.06 
5% 1.79 1.23 1.13 1.05 1.06 1.16 1.06 1.1 1.12 1.09 
10% 1.88 1.34 1.21 1.11 1.13 1.21 1.15 1.2 1.26 1.22 
25% 1.99 1.65 1.51 1.35 1.38 1.31 1.35 1.6 1.8 1.78 
50% 2 2.14 2.11 1.98 1.95 1.33 2.35 2.58 2.74 3.19 
75% 2.02 2.58 2.88 3.24 3.18 2 3.25 5.4 22.79 21.98 
90% 2.11 3.39 5.14 13.66 12.95 2.32 10.91 43.03 864 855 
95% 2.24 4.15 7.63 32.19 30.33 2.32 10.91 43.03 864 855 
99% 2.61 6.5 15.41 134 125 2.32 10.91 43.03 864 855 
100% 7.3 36.68 168 3897 3923 2.32 10.91 43.03 864 855 
           

!

b)!

Q
ua

ni
tle

   
   

   
   

   
   

   

 
 Resistance Value 
 PathSF Paired 

Scale (m) 
PathSF Unpaired 

Scale (m) 
 

532 2618 4296 7390 
Multi-
scale 532 2618 4296 7390 

Multi-
scale 

1% 1.03 1 1 1 1 1 1 1 1 1 
5% 1.19 1 1 1 1 1 1 1 1 1 
10% 1.41 1 1 1 1 1 1 1.01 1.03 1.13 
25% 1.9 2.15 1.05 1.05 1.07 1.03 1.44 2 2 2.32 
50% 2 2.64 2.58 2.37 3.12 2 4.6 4.6 4.6 3011 
75% 2.2 10.6 31.97 29.09 33.91 4.6 7470 5.8xe4 7.8xe5 3.0xe4 

90% 3.08 123 113 1034 606 6.59 4.1xe7 1.6xe9 3.1xe10 3.0xe7 

95% 5.34 632 1.1xe4 9849 3570 6.59 4.1xe7 1.6xe9 3.1xe10 3.0xe7 
99% 42.17 1.3xe4 5.9xe5 5.1xe5 9.3xe4 6.59 4.1xe7 1.6xe9 3.1xe10 3.0xe7 
100% 2.8xe4 1.1xe10 2.6xe12 3.3xe11 1.4xe11 6.59 4.1xe7 1.6xe9 3.1xe10 3.0xe7 
           

!

! !
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Appendix F. Resistance surfaces obtained from the PathSF models 

The first column contains the resistance surfaces predicted in the unpaired framework, 
the second column contains resistance surfaces predicted in the paired framework, and 
the last column contains resistance surfaces predicted with  pseudo paths in the paired 
framework. The first row contains the resistance surfaces from the smallest scale model, 
the middle row, the mid-scale model, and the last row the multi-scale model., and the last 
row the multi-scale model.  
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Appendix G. PathSF CircuitScape current density surfaces (log10 transformed) and 

road pixels with the highest current densities 

The vertical line represents Interstate-15, the black dots represent the top 20 pixels along 
I-15 with the highest current. The first column contains current maps resulting from   
predicting resistance in the unpaired framework, the second column contains maps 
predicted in the paired framework, and the last column contains maps predicted with the 
60-min pseudo paths in the paired framework. The first row contains the current maps 
from the smallest scale model, the middle row, the mid-scale model, and the last row the 
multi-scale model.  
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CHAPTER 4 

SENSITIVITY OF RESOURCE SELECTION AND CONNECTIVITY MODELS 

TO LANDSCAPE DEFINITION 

 

Introduction 

 Assessing species-habitat relationships and modeling connectivity require 

creating a spatially-explicit landscape model as a formal representation of (1) the types of 

landscape features that may affect habitat use and movement, (2) the spatial 

heterogeneity of those landscape features, and (3) the spatial scale of those landscape 

features. This ‘landscape definition’ is the basis for all habitat use and connectivity 

models (Cushman et al. 2013), yet the sensitivity of these models to landscape definition 

has received scant attention in the literature.  

 Landscape ecologists have long been aware that observed pattern-process 

relationships are highly sensitive to the spatial scale of the landscape model (Weins 1989; 

Wu 2004). Spatial scale is the marriage of two components: extent and grain. Wildlife 

biologists have traditionally been more focused on the former of these two scale 

components, the spatial extent, for wildlife-habitat inference (McGarigal et al. 2016). 

Here the most common approach is to summarize landscape features within buffers or 

kernels of varying size (aka ‘ecological neighborhoods’; sensu Addicott et al. 1987) in 

order to determine the characteristic spatial scale of selection for a landscape feature 

(e.g., Holland et al. 2004). It is increasingly recognized that failure to identify the 

characteristic spatial scale of selection with regards to both grain and extent may bias 

wildlife-habitat inference (McGarigal et al. 2016).  
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 Wildlife biologists are just beginning to examine the effects of spatial grain (also 

often referred to as "resolution") on species-habitat models. Varying the grain size of the 

geospatial layers has been used to both determine the characteristic scale of selection for 

a landscape feature (Thompson & McGarigal 2002) and to determine how spatial grain 

affects overall model performance (Karl et al. 2000; Seoane et al. 2004; Venier et al. 

2004; Guisan et al. 2007; Cushman & Landguth 2010a; Gottshcalk et al. 2011). In 

general, these studies have found model performance decreases with increasing grain 

size, though the effect of grain size on model predictive performance remains equivocal 

(Tobalske 2002; Seoane et al. 2004; Guisan et al. 2007).  

 Thematic resolution of the geospatial layers used for a landscape definition has 

received far less attention than spatial scale in modeling species-habitat relationships. 

Thematic resolution refers to the level of heterogeneity of the geospatial layers. In many 

cases landscape features can be represented as a continuous gradient, which is thought to 

more closely mimic real world landscapes and reduce subjectivity (McGarigal & 

Cushman 2005; Cushman et al. 2010b). With continuous gradients, the thematic 

resolution is at its greatest given the precision of the raw data. However, landscape 

features can also be represented categorically, as in the classic patch-mosaic model of 

landscape structure (Forman 1995). When categorical layers are used, decisions must be 

made regarding the number and breakpoints of the classes. Lawler et al. (2004) found that 

species distribution models had similar fit between different thematic resolutions, but that 

predictions in various geographic locations differed. Seoane et al. (2004) found that finer 

thematic resolutions resulted in better predictive performance of species distribution 

models. Cushman & Landguth (2010a) found that the strength of the relationship 
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between gene-flow and landscape features increased as the thematic resolution of the 

layers increased from the lowest resolution of two classes to the highest resolution 

(continuously scaled layers). They also found that thematic resolution was the dominant 

factor over spatial grain and spatial extent in defining the landscape for landscape genetic 

analyses.  

 Selecting the spatial grain and thematic resolution of the geospatial layers are not 

the only decisions one must contend with when defining the landscape. The layers 

themselves must be selected (i.e., thematic content; e.g., elevation, land cover type, etc.) 

along with the data source of each layer. Selection of geospatial layers is often 

determined a priori given previous knowledge of the target species or through model 

selection procedures such as Akaike’s Information Criterion (AIC; Akaike 1973; 

Burnham & Anderson 2002). In addition, multiple data sources may be available for the 

chosen layers. For example, there may be multiple data source options for land cover type 

that have similar accuracy, but trade-offs may exist across the study area such that one 

data source may be very good at representing riparian areas but not as good at 

differentiating scrub from grassland, while another source may be very good at 

representing forested areas but not meadows. Source of the data layers in species-habitat 

models is often not discussed, though when layers from different sources have been 

compared (e.g., Seoane et al. 2004; Chust et al. 2004; Cushman et al. 2010a), the 

comparison is often confounded with spatial grain. For example, one data source will be 

available at 30m grain (e.g., Landsat) and another at 250m grain (e.g., CORINE; 

European Environmental Agency). Therefore, the effect of these choices on species-

habitat models remains unclear.  
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 Defining the landscape for modeling species-habitat relationships is not a 

straightforward task and one is faced with many choices, all of which may affect the 

resulting models and conclusions about species-habitat use. We are not aware of any 

studies that have looked at how species-habitat models are affected by all four of these 

landscape definition choices: (1) spatial grain, (2) thematic resolution, (3) which and how 

many geospatial layers to include in a definition, and (4) which data source to include for 

each geospatial layer.  

 Because our collective interest is in modeling wildlife movement and 

connectivity, we used GPS data from pumas (Puma concolor) in southern California to 

explore the sensitivity of multi-scale Path Selection Function (PathSF) models (Cushman 

& Lewis 2010; Cushman et al. 2010b; Zeller et al. 2015) to landscape definition. We 

hypothesized that model performance (as defined below) would be sensitive to landscape 

definition and, specifically, that model performance would increase with (1) decreasing 

spatial grain, (2) increasing thematic resolution, and (3) increasing number of geospatial 

layers, provided all the layers are true drivers of habitat selection. We also predicted that 

some data sources would improve model performance measures more than others.  

Methods 

Study Area and puma data 

 Our study area (4,089 km2) includes the Santa Ana Mountains of southern 

California and surrounding lowlands. This coastal mountain range experiences a 

Mediterranean climate with hot dry summers and mild wetter winters. Between October 

2011 and March 2014, we fit ten pumas (six female and four male), with Lotek 4400S 

GPS collars programmed at a 5 min acquisition interval (Lotek Wireless, Inc. Canada). 
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Manufacturer tests indicate that long-term positional accuracy of the GPS collars is 5–10 

m, though this may vary with certain vegetation types and topographical conditions 

(Chang, personal communication). To avoid the use of data that may have large spatial 

errors, we removed two-dimensional fixes with a PDOP > 5 (Lewis et al. 2007). This data 

filtering resulted in a final data set of 75,716 fixes across the 10 individuals (range = 

1,650–18,464; median = 7,147). We pooled sexes in the analysis due to the low number 

of individuals. Daily paths were constructed for each puma by connecting consecutive 5-

min points with straight-line segments over a 24-h period. This resulted in 315 daily 

paths for use in the PathSFs (see Statistical Analyses section below).  

 

Geospatial data 

 We used the following seven geospatial layers which have been shown to 

influence puma habitat use: (1) elevation (Alexander et al. 2006; Allen et al. 2014; 

Burdett et al. 2010; Wilmers et al. 2014), (2) percent slope (Dickson & Beier 2006; 

Dickson et al. 2005; Wilmers et al. 2014), (3) terrain ruggedness (represented as total 

curvature; Burdett et al. 2010), (4) land cover type (Burdett et al. 2010; Wilmers et al. 

2014), (5) percent vegetative cover (Holmes & Laundré 2006; Kissling et al. 2009), (6) 

roads (Dickson et al. 2005; Wilmers et al. 2014; Gray et al. 2016), and (7) human 

development (represented here as percent impervious surface; Burdett et al. 2010; 

Wilmers et al. 2014). We derived Percent slope and Terrain ruggedness from the National 

Elevation Dataset (USGS 2009) using the Percent slope and Total Curvature tools in the 

DEM Surface Tools Extension for ArcMap (Jenness 2013).  

 Some of the geospatial layers were available across our study area from multiple 
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sources. To examine the possible effect of data source in our analyses, we selected three 

different sources for land cover type and percent vegetative cover, and two different 

sources for roads. We assumed most available elevation layers would have little error and 

be very similar to each other. Therefore, we selected only one data source for elevation 

and its derived layers (percent slope and terrain ruggedness). All geospatial layers and 

their sources are provided in Table 4.1. 

 We represented layers that were available in a continuous format (elevation, 

percent slope, terrain ruggedness, percent vegetative cover, and percent impervious 

surface) with four thematic resolutions: continuous, 3 classes, 4 classes, and 5 classes. 

Class breakpoints were determined using the Jenks optimization method (Jenks 1967). 

This method identifies breakpoints that minimize the within-class variance and maximize 

the between-class variance. Classifications of each continuous layer are provided in 

Appendix A. We represented land cover type, a categorical-only layer, using five or eight 

classes. These classes were determined based on the dominant vegetative classes in the 

study area and earlier resource selection functions conducted on pumas in the study area 

(Zeller et al. 2014; Zeller et al. 2015). We represented roads, another categorical-only 

layer, with two, three, or four classes. This allowed us to represent (1) primary and 

secondary roads only, (2) primary, secondary and tertiary roads only, and (3) all roads. 

Classification crosswalks for each categorical layer are provided in Appendix B. We 

recognize that vector features such as land cover and roads may be represented 

continuously by using moving windows to summarize each feature within a window. 

However, our PathSF analysis summarizes data within a weighted kernel around each 

used and available area — making an initial smoothing or weighting of the surface an 
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extra, unnecessary step. 

 All raster layers were available at a 30m spatial grain size and we rasterized all 

vector layers to a 30m grain size. To examine a suite of spatial grains, we upscaled each 

30m layer to 60m, 120m, 180m, and 240m using the majority rule for categorical layers 

and the focal mean for continuous layers. Each landscape definition was restricted to a 

single spatial grain.  

 

Table 4.1. Data source and year of geospatial data layers used to model puma movement  
       in southern California. County roads data were merged across the four        
       counties in our study area to create a single coverage. Raster or vector indicate 
       the original format of the data. 

Geospatial data layer 
 
Source 
 

Year Citation 

 
Elevation 

 
National Elevation Dataset (raster) 

 
2009 

 
USGS 2009 

 
Percent Slope 

 
Calculated from the National Elevation Dataset 

 
- 

 

 
Terrain Ruggedness 

 
Calculated from the National Elevation Dataset  

 
- 

 

 
Percent Impervious Surface 

 
National Land Cover Database (raster) 

 
2011 

 
Jin et al. 2013 

 
Land Cover Type 

 
CalVeg (vector) 

 
2014 

 
USDA 2007 

 LandFire, Existing Vegetation Type (raster) 2012 LandFire 2012b 
 National Land Cover Database (raster) 2011 Jin et al. 2013 
 
Percent Vegetative Cover 

 
LandFire, Existing Vegetation Cover (raster) 

 
2012 

 
LandFire 2012a 

 Landsat, Vegetation Continuous Fields (raster) 2005 Sexton et al. 2013 
 National Land Cover Database (raster) 2011 Jin et al. 2013 
 
Roads 

 
Open Street Map (vector) 

 
2014 

 
Open Street Map 

 County Roads Data   2014 
     Orange County (vector) 2011 OCTA 2011 
     Riverside County (vector) 2013 Riverside GIS 2013 
     San Bernadino County (vector) 2014 San Bernadino 

2014 
     San Diego County (vector) 2013 SanGIS 2014 

 

Landscape definitions 

 Varying the data source, thematic resolution, and spatial grain provided multiple 

representations of each geospatial layer. For example, elevation had a single data source, 
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four different thematic resolutions and five different spatial grains, for a total of 20 

different representations (Fig. 1). Likewise, percent slope, terrain ruggedness, and percent 

impervious surface also had 20 representations each. Percent vegetative cover had three 

data sources for the same combination of thematic resolutions and spatial grains, for a 

total of 60 representations. Roads had two data sources, three thematic resolutions and 

five spatial grains, for a total of 30 representations. Land cover type had three data 

sources, two thematic resolutions and five spatial grains, for a total 30 representations.  

 The ultimate landscape definition for puma could consist of a single geospatial 

layer or any combination of geospatial layers represented at any of the available spatial 

grains, thematic resolutions and data sources, all of which are plausible and realistic 

alternatives for modeling puma movement. Given the vast number of layer 

representations and combinations, analyzing a full factorial of landscape definitions 

(N~58) was not possible. Therefore, we performed a random selection procedure that we 

assumed would capture the general patterns of how landscape definition affects inference 

about puma movement. To generate a single landscape definition we:  

(1) randomly selected the spatial grain (30m, 60m, 120m, 180m, 240m) for all layers 

included in the landscape definition;  

(2) randomly selected the number of layers to include (1-7); 

(3) randomly selected, without replacement, which layer(s) to include (elevation, 

percent slope, terrain ruggedness, land cover type, percent vegetative cover, roads, 

percent impervious surface); 

(4) randomly selected the data source for each layer, as appropriate; and 

(5) randomly selected the thematic resolution of each layer. 
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We repeated this process 2,000 times to generate 2,000 unique landscape definitions.  

 

Figure 4.1. Twenty possible representations of elevation in a subset of the study area.   
        Elevation was represented at four thematic resolutions (continuous, three   
        classes, four classes, and five classes) and each thematic resolution was   
        represented at five different spatial grains (30m, 60m, 120m, 180m, 240m).  
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Statistical Analyses 

 We conducted all statistical analyses in the R software environment (R Core 

Team 2013). We used multi-scale Path Selection Functions (PathSFs) as described in 

Zeller et al. (2015) to model landscape use and connectivity for pumas in our study area. 

PathSF’s are analyzed in the ‘used’/‘available’ framework typical of resource selection 

functions where the proportion of used to available for a landscape feature indicates 

preference or avoidance of that feature (e.g., Cushman and Lewis 2010). For each of our 

layer representations, we calculated the used data within a 30m fixed-width buffer around 

each daily path. Available data were calculated using a Pareto-weighted kernel around 

each daily path (Zeller et al. 2015). If a layer had a categorical representation, we 

calculated the proportion of each category within the used or available area. If a layer had 

a continuous representation, we calculated the mean. Therefore, all predictor variables in 

the statistical models were continuous in nature. If a geospatial layer was continuous, it 

was included in the model as a single variable. If a geospatial layer was categorical, the 

number of categories equaled the number of variables it contributed to the model (since 

each category was treated as a separate variable). This is worth noting since we later take 

a closer look at the number of layers used in each landscape definition, which varied from 

1-7 (elevation, percent slope, terrain ruggedness, percent vegetative cover, percent 

impervious surface, land cover type, and roads) versus the number of variables in each 

landscape definition, which varied from 1-24.  

 Pumas in our study area select different landscape features at different scales 

(Zeller et al. 2014), therefore we developed multi-scale PathSF models (Zeller et al. 

2014, 2015). To represent different scales, we varied the radii of the Pareto kernel at 10 
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different spatial extents from 500m to 7500m (Zeller et al. 2014). To compare scales, we 

ran univariate conditional logistic regression models for each layer representation at each 

scale. To identify the characteristic scale of selection we identified the scale with the 

lowest corrected AIC value (AICc; Akaike 1973; Burnham and Anderson 2002; 

Appendix C). This scale was then used in building the multivariate conditional logistic 

regression models for each of our 2,000 landscape definitions.  

 For a single landscape definition, we took each layer that comprised that 

definition and calculated used and available data (at the appropriate scale) for the puma 

paths. If there were multiple layers for a definition and correlations ≥0.7 were found 

between layers, we dropped the first from each pair of correlated layers. We then ran a 

conditional logistic regression model. Occasionally models produced complete separation 

warnings or convergence errors. When this was encountered we dropped the model from 

the analysis, a new unique landscape definition was generated, and the model was re-run. 

This was repeated for all 2,000 landscape definitions, resulting in 2,000 fitted models.  

 We calculated AICc for each model to compare overall model performance and to 

select the top models. We calculated percent deviance explained (D2) to compare the 

strength of the overall fit of the models (Franklin 2009), and we used the concordance 

correlation coefficient (CCC; Lin 1989) to evaluate the calibration of the predictive 

models. For a well-calibrated model, the predicted observations should fall close to the 

expected observations on a line originating at 0 with a slope of 1 (Johnson et al. 2006). 

The CCC statistic measures how correlated two points are based on their deviance from 

this 45-degree line, with CCC values closer to 1 indicating better calibrated models.  

 We determined the sensitivity of model selection, model fit, and prediction 



! 175!

calibration to landscape definition by modeling the corresponding performance criteria 

(AICc, D2, and CCC) as a function of the following landscape definition options: (1) 

spatial grain (30m, 60m, 120m, 180m, 240m), (2) number of layers used in the model (1-

7), (3) number of variables (1-24), and (4) whether the variables were all represented 

continuously, all represented categorically, or whether a mix of continuous or categorical 

representations were present. Specifically, we conducted Likelihood Ratio Tests 

comparing the full model with each of these four definition options left out in turn. Note, 

because roads and land cover class could only be represented categorically, we omitted 

landscape definitions with these variables to assess thematic resolution. We wanted to 

compare only models where a layer could be represented both categorically and 

continuously. We also produced mean and standard error plots to assess the relative 

influence of each of these four definition options on each of the performance criteria.  

 Using AICc values, we identified the top landscape definitions for pumas in our 

study area. We calculated odds ratios for the top model variables by predicting the 

probability of movement for each variable at the 25th and 75th percentile of the variable 

distribution while keeping the other variables in the model at their means and taking the 

ratio of the 75th percentile predicted probability to that of the 25th percentile.  

 To assess the importance of layer representations and determine whether some 

layer representations influenced model performance more than others; we identified 

paired models with and without each layer representation. We subtracted the AICc of the 

model with the layer representation from that of the model without the layer 

representation and took the mean of this difference across model pairs. The greater the 

mean value, the more important that layer representation is for modeling pumas in our 



! 176!

study area. We also used this layer importance metric to determine whether some layer 

sources influenced model performance more than others. Note, we found it uninformative 

to use AIC weights to assess variable importance due to only having four models with 

any AIC weight.  

 To determine the sensitivity of probability of movement values (and thus inferred 

habitat selection) obtained from the different landscape definitions, we randomly sampled 

1,000 pixels throughout the study area and predicted the probability of movement at each 

pixel for each of our 2,000 models. We then used various data exploration metrics 

(standard deviation, coefficient of variation, range, interquartile range) to determine the 

sensitivity of predicted values to landscape definition.  

 

Modeling Connectivity and Road Crossing Locations 

 To provide a cursory example of how landscape definition may affect 

connectivity and corridor modeling, we selected landscape definitions across the model 

performance continuum at the 0th, 25th, 50th, 75th and 100th percentile of AICc values. We 

predicted the relative probability of movement from each of these five models across our 

study area as described in Zeller et al. (2015). We assumed that this relative probability 

of movement could be used as a proxy for landscape conductance (McRae et al. 2008). 

For example, a pixel with a high probability of movement would have high conductance 

and vice versa. We visually examined the probability of movement/conductance surfaces 

to highlight differences.  

 We modeled connectivity across the Temecula corridor region, which is a subset 

of our study area. This region has been identified as the last viable, though highly 
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threatened, link between the Santa Ana Mountain and the Palomar Mountain puma 

populations (Ernest et al. 2014; Vickers et al. 2015). An eight-lane highway, Interstate 15 

(I-15), bisects the two mountain ranges and recent conservation attention has been paid to 

identifying locations for road crossing structures along its length. Therefore, as an 

example of how landscape definition might affect conservation agendas, we sought to 

identify road-crossing locations for each of the five selected models. First, we used 

CircuitScape (McRae et al. 2013) to create current density maps (McRae et al. 2008) 

across each conductance surface between nationally protected lands on either side of I-

15. We then identified the top 10 pixels along I-15 with the most current flow, which 

might be considered preferred locations for constructing road-crossing structures. In this 

context, ‘current flow’ represents the number of random walkers that would move 

through a pixel as they passed between protected areas. We noted the location of the 

road-crossing pixels for each of our five landscape definitions as well as differences in 

these locations among landscape definitions.  

 

Results 

 Delta AICc, D2 and CCC of the 2,000 conditional logistic regression models 

varied widely with landscape definition (Fig 4.2). The top model had only one competing 

model within 4 AICc units and two others within 10 AICc units; all other models were 

greater than 10 delta AICc units from the top model. Thus, only 4 (<1%) of the models 

were at all competitive out of the 2,000 evaluated, and the great majority of models were 

vastly inferior with delta AICc values greater than 100. D2 followed similar patterns, and 

even though the vast majority of models explained an ecologically meaningful percent of 
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the deviance, the range in absolute explanatory power among models extended from 

0.002 to 0.887. CCC was much less sensitive to landscape definition than AICc and D2, 

with most models having well-calibrated predictions, but nonetheless revealing that many 

models had unacceptably poorly calibrated predictions.  

 

Figure 4.2. Model performance. Histograms of (a) delta AICc, (b) percent deviance   
    explained (D2), and (c) concordance correlation coefficient (CCC) across our 
    2,000 landscape definitions associated with modeling puma movement in   
    southern California. The first and second vertical dashed lines in (a) represent a 
    delta AICc of 4 and 10 respectively.  
 

 

  

 Likelihood ratio tests indicated that spatial grain significantly influenced both 

AICc and D2 values (AICc: df=4, X2=534.18, p<2.2e-16; D2: df=4, X2=519.45, p<2.2e-

16), with finer spatial grain resulting in better AICc and D2 values (Figs. 4.3a-4.4a; 

Appendix Ea).  The number of layers included in a landscape definition also significantly 

influenced both AICc and D2 (AICc: df=6, X2=456.69, p<2.2e-16; D2: df=6, X2=437.79, 

p<2.2e-16), with greater number of layers resulting in better AICc and D2 values (Figs. 

4.3c-4.4b, Appendix Ec). The number of variables in a landscape definition significantly 

influenced D2, but not AICc (AICc: df=26, X2=22.08, p=0.684; D2: df=26, X2=42.75, 

p=0.021), with greater number of variables resulting in higher D2 value (Fig. 4.3d, 
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Appendix Ed). This was expected as adding more variables will improve D2, but the 

addition of weak and/or spurious variables will be penalized using AICc. Similarly, 

model form significantly influenced D2, but not AICc (AICc: df=2, X2=5.26, p=0.072; 

D2: df=2, X2=6.65, p=0.0.036), indicating landscape definitions with a mix of continuous 

and categorical layers resulted in higher D2 values than landscape definitions with only 

continuous or only categorical layers (Figs. 4.3b-4.4c; Appendix Eb). None of the 

definition options significantly affected CCC (Appendix D & F).  

 

Figure 4.3. Mean and standard error in model AICc as a function of spatial grain,      
        variable form, number of geospatial layers, and number of variables in a   
        landscape definition associated with modeling puma movement in southern   
        California.  
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Figure 4.4. Model performance by definition option. AICc, percent deviance explained  
    (D2), and concordance correlation coefficient (CCC) values for Path      
    Selection  Function models derived with 2,000 different landscape definitions 
    associated with modeling puma movement in southern California.      
    Histograms are color-coded according to (a) the spatial grain of the landscape 
    definition (30m, 60m, 120m, 180m, 240m), (b) the number of geospatial   
    layers included in a landscape definition (1-7), and (c) the form of the   
    variables in the landscape definition (whether they are represented      
    continuously, categorically, or both). 
 

 

 

 The top four models (based on delta AICc: 0, 2.85, 8.82, 9.81) and their 

associated landscape definitions and variable odds ratios are provided in Table 4.2. These 

top four models had D2>0.86 and CCC> 0.95, and thus all four of these models had 

exceptionally strong explanatory power and well-calibrated predictions. These top-ranked 
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models included 4-5 geospatial layers and a mix of continuous and categorical layer 

representations for a total of 5-10 variables per model. All four of these models were at a 

spatial grain of 30m and included percent slope defined continuously. All four of these 

models also included roads defined with two classes (primary and secondary roads); 

however, the source of the roads data varied among models. Elevation, terrain 

ruggedness, percent impervious surface and percent vegetative cover were included in 

various forms in some but not all of these models. Only land cover type was not included 

in any of the top four models. The exact interpretation of these models requires coupling 

the characteristic scale of each variable (Appendix C) with the corresponding regression 

coefficient or, preferably, the odds ratio (Table 4.2). Briefly, across these top four 

models, pumas strongly avoided areas with steep slopes evaluated over intermediate 

scales (1500 m). Pumas showed weak preference for lower elevations evaluated over 

intermediate scales (1500-2000m). Pumas generally avoided less rugged terrain at 

intermediate scales (1500m) and strongly avoided more rugged terrain at very coarse 

scales (7500m). Pumas showed very weak preference for increasing percent vegetative 

cover evaluated over coarse scales (6500m). Pumas strongly selected areas with the 

lowest percentage of impervious surfaces (0 – 12%) evaluated over coarse scales 

(7500m). Lastly, pumas showed strong avoidance of primary and secondary roads 

evaluated over coarse scales (7500m).  

 

 

 



! 182!

 

Table 4.2. Top four landscape definitions, as indicated by AICc values, for modeling   
       puma movement in southern California and the associated geospatial layers,   
       thematic resolutions, thematic class (variables in the model) and associated   
       odds ratio. All geospatial layers were at a 30m spatial grain. NLCD=National   
       Land Cover Database. OSM=Open Street Map. Note, some landscape      
       definitions do not contain the full set of classes for a layer because the absent   
       variables were highly correlated (>=0.7) with other variables in the same   
       model.  

Layer  
Thematic 
Resolution Class 

  Model 1 
  Odds     
  Ratio 

Model 2 
Odds 
Ratio 

Model 3 
Odds 
Ratio 

Model 4 
Odds 
Ratio 

Percent Slope Continuous -   0.004 0.07 0.006 0.067 
Elevation Continuous -  0.99 0.91  
Elevation Four Classes 1   1.16    
  3   1.0    
  4   0.99    
Elevation Five Classes 1    1.0 
  3    0.99 
  4    0.99 
  5    1.0 
Terrain Ruggedness Three Classes 1   0.64    
  2   0.99    
  3   0.0007    
Terrain Ruggedness Four Classes 1   1.01  
  2   1.06  
  3   1.01  
  4   0.003  
NLCD Percent Vegetative Cover Continuous -    1.01 
NLCD Percent Vegetative Cover  Three Classes 1   0.99  
  3   1.0  
Percent Impervious Surface Four Classes 1  17.16  7.19 
OSM Roads  Two Classes 1   0.0005 0.098  0.61 
  2   0.0011 0.077  0.13 
County Roads Two Classes 1   0.002  
  2   0.17  

 

 Our layer importance results indicate that most geospatial layer representations 

improved model performance (positive values, Table 4.3, Mean difference in AICc). 

However, some layer representations resulted in worse model performance (negative 

values, Table 4.3, Mean difference in AICc). We expected the layer representations 

present in our top four models to also have high importance as judged by our criterion, 

but this expectation was not consistently supported. For example, the most important 

layer representation (LandFire land cover represented with five classes) was not present 
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in any of our top four models. In addition, one layer representation that was present in our 

top four models even had a negative average importance value (terrain ruggedness 

represented categorically with three classes). We believe these results are due to the fact 

that our top-ranked models were outliers in the distribution of our 2,000 model 

definitions, and that these results more closely reflect the relative importance of layer 

representations in the center of the model distribution. 

 Similarly, we expected some geospatial data sources to improve AICc values 

more than others. However, we did not see any consistent improvement in model 

performance due to data source (Table 4.3). For example, the LandFire data source for 

land cover type was associated with both the most important layer representation 

(represented with 5 classes) and the 32nd most important layer (represented with 8 

classes) out of the 40 representations.  

 Probability of movement/conductance values at the 1,000 randomly selected 

pixels varied widely across the 2,000 landscape definitions (Fig. 4.5). The interquartile 

range at a pixel ranged from 0.2 to 1, with most of the pixels varying between 0.5 – 0.65. 

This indicates that probability of movement/conductance values are highly sensitive to 

the landscape definition used in the model.  
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Table 4.3. Relative importance of geospatial layer representations across spatial grains in 
       generalized linear models predicting puma movement in southern California.  
   

Layer Thematic 
Resolution 

Mean 
Difference in 
AICc 

LandFire Land Cover Type 5 Classes 73 
Percent Impervious Surface 4 Classes* 67 
LandFire Percent Vegetative Cover 4 Classes 41 
NLCD Percent Vegetative Cover 3 Classes* 38 
Landsat Percent Vegetative Cover 3 Classes 32 
NLCD Percent Vegetative Cover 4 Classes 31 
NLCD Percent Vegetative Cover Continuous* 27 
County Roads 2 Classes* 25 
Percent Slope 5 Classes 25 
Percent Slope 4 Classes 24 
Terrain Ruggedness 4 Classes* 22 
Percent Impervious Surface Continuous 22 
Percent Slope Continuous* 21 
LandFire Percent Vegetative Cover 5 Classes 20 
Landsat Percent Vegetative Cover 4 Classes 19 
Landsat Percent Vegetative Cover 5 Classes 18 
Landfire Percent Vegetative Cover Continuous 17 
Terrain Ruggedness 5 Classes 16 
Elevation 5 Classes* 13 
CalVeg Land Cover Type 5 Classes 12 
Terrain Ruggedness Continuous 12 
Elevation Continuous* 11 
OSM Roads 2 Classes* 10 
OSM Roads 3 Classes 9 
NLCD Land Cover Type 8 Classes 8 
LandFire Percent Vegetative Cover 3 Classes 6 
County Roads 3 Classes 4 
Percent Slope 3 Classes 4 
Elevation 4 Classes* 4 
Elevation 3 Classes 3 
CalVeg Land Cover Type 8 Classes 1 
LandFire Land Cover Type 8 Classes -1 
OSM Roads 4 Classes -1 
Percent Impervious Surface 5 Classes -2 
Terrain Ruggedness 3 Classes* -4 
NLCD Land Cover Type 5 Classes -7 
NLCD Percent Vegetative Cover 5 Classes -14 
Percent Impervious Surface 3 Classes -22 
County Roads 4 Classes -33 

* Indicates a layer representation that was present in one of the top four models 
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Figure 4.5. Interquartile range of probability of movement values. Empirical distribution    
        plot of the interquartile range of probability of movement (or conductance)   
        values across the 2,000 models of puma movement in southern California for   
        1,000 randomly selected pixels across the study area.  
 

 

 

 

 

 

 

 

 

 Probability of movement/conductance surfaces for the top model and the 25th, 

50th, 75th, and 100th percentile of AICc values also varied widely visually (Fig. 4.6). 

Probability of movement/conductance was relatively evenly distributed across the study 

area in the top model. The 25th percentile model showed stark contrast between areas 

with high and low conductance, with fairly high conductance immediately surrounding 

(but not in) urban areas and lower conductance in the more natural mountainous areas. A 

similar pattern was observed in the 50th percentile surface. Most of the 75th percentile 

surface showed a medium to high conductance relatively evenly distributed across the 

study area, while most of the 100th percentile surface showed a very low conductance 

throughout the study area except in a few locations. The model results of these five 

example landscape definitions are included in Appendix G. 
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Figure 4.6. Probability of puma movement/conductance surfaces for a subset of the study 
        area in southern California for the top-ranked model and models with the   
        25th, 50th, 75th, and 100th percentile of AICc values.  
 

 

 

 CircuitScape current density surfaces and the locations of the top 10 pixels along 

I-15 that had the most current, or greatest inferred flow of individuals, differed markedly 

according to landscape definition (Fig. 4.7). 

 

 

 

 

 



! 187!

Figure 4.7. Road crossing locations. CircuitScape current density surfaces associated   
        with modeling puma movement in southern California and the point locations 
        along I-15 with the 10 highest current densities.  

 

Discussion 

 As landscape ecologists we are keenly aware of the importance of scale in 

wildlife-habitat inference and the preeminent importance of landscape definition in any 

landscape ecological analysis. As such, we conducted this study with the full expectation 

that puma habitat selection during within-home range movements in southern California 

would be somewhat sensitive to landscape definition. What our study revealed in this 

regard, however, was quite startling -- that inferred habitat selection, probability of 

movement/conductance surfaces and resultant connectivity models were exceptionally 

sensitive to landscape definition. Indeed, despite all 2,000 of the alternative landscape 

definitions evaluated being plausible and realistic given our current understanding of 
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pumas in southern California, the weight of empirical evidence (based on AICc) was 

overwhelmingly in support of only a few of the alternative models. Moreover, the 

absolute explanatory power (based on percent deviance explained, D2) of the alternative 

models varied widely. Interestingly, despite the dramatic differences among alternative 

models in their relative and absolute explanatory power, the vast majority of the 

alternative models produced predictive surfaces very well calibrated to the landscape 

(based on the concordance correlation coefficient, CCC). Overall, these results suggest 

that there may be many alternative ways to define the landscape that will produce well-

calibrated predictive surfaces that individually are significantly better than random, but 

that there may be very few clearly superior ways to the define the landscape. Indeed, 

there are a vast many more ways to define the landscape relatively poorly than there are 

to "get it right", even though all definitions seem plausible a priori.  

 These findings naturally extend to probability of movement/conductance surfaces 

and connectivity modeling. In our case study of pumas, the relative predicted probability 

of movement/conductance values, for most pixels, ranged nearly from 0 to 1 across 

alternative landscape definitions, indicating that different landscape definitions may 

result in polar opposite conclusions regarding probability of movement/conductance for 

the same location. This can have profound implications for connectivity modeling that is 

based on surface conductance. Indeed, predicted road crossing locations from various 

landscape definitions in our connectivity modeling exercise were strikingly different. Our 

findings align with those of Cushman et al. (2010a) who predicted road-crossing 

locations for black bears with two different resistance surfaces (one derived from genetic 

data and one derived from path data). Despite the fact that both resistance surfaces 
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included the same variables and were very highly correlated, they produced very different 

road crossing locations. Consequently, recommended locations for constructing wildlife 

road crossing structures strongly depends on the chosen landscape definition. 

 We conducted this study with the expectation that some geospatial layers and 

digital representations of them (e.g., at certain spatial grains and thematic resolutions 

based on one particular data source) would marginally outperform others. Specifically, 

we hypothesized that model performance would increase with (1) decreasing spatial 

grain, (2) increasing thematic resolution and (3) increasing number of geospatial layers, 

and (4) that some data sources would improve model performance more than others. 

Consistent with our first hypothesis, our puma model performance was most sensitive to 

the spatial grain of the landscape definition, with finer spatial grains resulting in better 

model performance. These findings agree with other studies that have examined the 

effect of spatial grain on performance of species-habitat models (Karl et al. 2000; Seoane 

et al. 2004; Venier et al. 2004; Guisan et al. 2007; Cushman and Landguth 2010a; 

Gottshcalk et al. 2011). In contrast to model performance, we found the calibration of our 

predictions to be insensitive to spatial grain, similar to Guisan et al. (2007) who found no 

effect of spatial grain on the predictive performance of their species distribution models. 

Though Seoane et al. (2004) and Tobalske (2002) found an increase in predictive 

performance of species distribution models with decreasing spatial grain. Landscape 

definitions at our coarsest grain size (240m) generally resulted in poorer performing 

models, which is noteworthy because this spatial grain is very close to many freely 

available data platforms such as MODIS and CORINE (both 250m). Overall, our results 

indicate that finer-grained geospatial data are superior for modeling puma movement in 
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southern California; however, we cannot say whether this finding is generalizable to 

other contexts.  

 Support for our second hypothesis regarding thematic resolution was equivocal. 

The best performing models tended to have a mix of layers defined continuously and 

categorically. Based on our previous work we expected models with all continuous layers 

to outperform categorical-only and mixed definition models (McGarigal and Cushman 

2005; Cushman et al. 2010a; Cushman et al. 2010b; Cushman & Landguth 2010a). 

Moreover, we generally expected finer thematic resolutions to have greater model 

performance than coarser resolutions of that same layer, as in Cushman & Landguth 

(2010a) and Seoane et al. (2004). Perhaps our results differed from the previous studies 

because pumas in our study area are responding to more broadly defined landscape 

patterns, which are sometimes better reflected as categorical layers, than more finely 

detailed landscape structure. Another possibility is that pumas are responding to some 

variables in a non-linear, step-wise form and the categorical nature of some variables 

better captured this relationship than continuous variables. The issue of thematic 

resolution was first addressed in McArthur et al. (1966) who found that bird species in 

one location appeared to respond to a higher number of vegetation classes than bird 

species in another location. Given the many decades that have passed since this paper 

was published it is surprising that more research has not been conducted on how thematic 

resolution of geospatial layers affects species-habitat models. The equivocal results of 

thematic resolution on model performance found here and by Lawler et al. (2004) 

indicate that this is an area ripe for further research.  

 In support of our third hypothesis, our puma model performance was very 
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sensitive to the number of geospatial layers in the landscape definition, with increasing 

number of layers resulting in better model performance. However, there was no clarity in 

our variable importance results in terms of which layers and associated layer 

representations were better than others. While the results likely reflected layer importance 

for the bulk of the model distribution, they did not adequately capture the layers in the 

top models. These results further highlight that our top models were outliers in our suite 

of landscape definitions.  

 With regards to our last hypothesis, we did not find an effect of data source on our 

puma model performance. This is in contrast to previous studies (Chust et al. 2004; 

Seoane et al. 2004). However, these studies confounded data source with spatial grain, 

indicating that spatial grain may have been more influential than the actual sources of 

data. Though not wildlife-specific, Cushman et al. (2010a) evaluated the ability of 

different land cover maps to predict the distribution of plant species. In their analysis, 

they did not confound grain and data source and found large differences in the 

explanatory power of the different data sources. For pumas in our study area, other 

landscape definition options were more influential than data source, though weighing the 

pros and cons of different data sources is surely an important consideration when 

selecting geospatial layers.  

 Our comprehensive empirical evaluation of alternative landscape definitions for 

modeling puma movement in southern California allowed us to identify clearly superior 

landscape definitions among the pool of viable candidates, which we contend led to 

stronger inference about puma habitat selection during movement in the study area than 

had we a priori selected a single landscape definition. We learned from our top-ranked 
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models that slope was better represented as a continuous variable and that pumas showed 

a strong avoidance of steep slopes, as has been previously documented (Beier 1995; 

Dickson et al. 2005; Dickson & Beier 2006; Wilmers et al. 2013). All top-ranked models 

also included at least one of the other two topographic variables, elevation (represented 

either continuously or categorically) and terrain ruggedness (better represented 

categorically), indicating that pumas are strongly influenced by topography, as has been 

previously documented (Alexander et al. 2006; Allen et al. 2014; Burdett et al. 2010; 

Wilmers et al. 2014). Our top-ranked models also indicated a strong avoidance of 

primary and secondary roads by pumas, echoing previous research (Dickson et al. 2005; 

Wilmers et al. 2014). Two of our top-ranked models also included percent impervious 

surface represented categorically and indicated that pumas strongly selected for the 

lowest class of imperviousness (0-12%; Burdett et al. 2010).  

 One of our most noteworthy findings with regards to puma habitat selection was 

the apparent lack of strong selection for vegetation composition and structure in the top 

models, which was the sole basis for defining the landscape in our previous modeling 

work in this system (Zeller et al. 2014, 2015). Only one of our top-ranked models 

included any type of vegetative characteristic and, moreover, selection was weak, with 

pumas slightly avoiding areas with low percent cover and slightly preferring areas with 

high percent cover. Land cover type (actually, the relative abundance of individual land 

cover types) was not in any of the top-ranked models. Overall, our results suggest pumas 

in our study area respond more strongly to topographic variables and human development 

in the form of roads and other impervious surfaces than other landscape characteristics 

related to the composition and structure of vegetation. This finding aligns somewhat with 
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recent findings by Gray et al. (2016) that showed that distance from roads (as a proxy for 

human development) could be used to accurately model puma occurrence and landscape 

permeability. The similarities to our findings may be due to the fact that both our study 

areas had relatively high levels of human development. However, these results are also 

similar to other studies on large felids. Elliot et al. (2014) showed vegetation was much 

weaker than roads, towns, and agricultural lands in predicting lion movement and 

Krishanmurthy et al. (in press) showed agricultural areas and villages were more 

important for predicting tiger movement than natural vegetation. Importantly, our 

findings do not mean that pumas during within-home range movement do not select for 

vegetation composition and structure, but rather that, comparatively, selection is much 

stronger for terrain and human development than vegetation. Note, it is also possible that 

vegetation cover attributes were not selected in the top-ranked models because 

topographic variables served as a proxy for vegetation cover types, as has been observed 

in previous studies (Burrough et al. 2001; Beier & Brost 2010). To examine this 

hypothesis further, we conducted a variance partitioning using the ecospat package in R 

(Broennimann et al. 2015) to portion the explained variance in the top model (with land 

cover type added as a predictor) between the terrain and human development predictors 

and land cover type predictors. Terrain and human development independently accounted 

for 8.7% of the explained variance, land cover independently accounted for 5.7% of the 

explained variance, and these predictors jointly accounted for 86% of the explained 

variance. Thus, the vast majority of the explained variance was confounded between the 

two sets of predictors and we are therefore unable to say whether terrain is acting as a 

proxy for vegetative characteristics or vice versa. 
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 In summary, our findings have tremendous implications for both research and 

conservation planning. First, we had expected to find that our alternative landscape 

definitions would produce only slight differences in model performance in our case study 

on pumas in southern California. Instead, we found massive differences in model 

performance among the alternatives, with only a handful of competing landscape 

definitions among the 2,000 models evaluated. If we were able to run the full factorial of 

landscape definitions, we may have found that there were indeed a greater number of 

competing models and perhaps an even better performing top model. However, most 

researchers will only be able to compare a limited set of landscape definitions. Our 

results indicate that, at least for PathSFs, researchers may need to evaluate many different 

landscape definitions to find the optimal landscape representation for a study area and 

target species. Evaluating habitat and movement relationships with thematic resolution, 

thematic content, and grain that do not match the organisms’ ecology and perceptions can 

greatly reduce model performance and the interpretations gained from models of 

landscape conductance.  

 This finding is relevant in consideration of Type I and Type II errors and the issue 

of affirming the consequent (Cushman & Landguth 2010b), in which a result that is 

consistent with a hypothesis is incorrectly accepted as demonstration that the hypothesis 

is true. Specifically, high sensitivity of model performance to variable grain and thematic 

resolution that we observed suggest elevated risk of Type II errors (failing to see an effect 

when it is present) when using variables at suboptimal definition. In addition, the high 

inherent correlation among variables increases the difficulty of distinguishing effects 

such that the risk of affirming spurious correlations and making Type I errors is elevated. 
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The practice of dropping variables from correlated pairs reduces variance inflation and 

Type I error rate in the full model, but can result in affirming spurious correlations if the 

incorrect variable is dropped. The high dependence of variable influence on landscape 

definition compounds the challenge of resolving this. 

 Second, given that many resource selection functions are used to predict the 

relative probability of use across a study area to identify resource use areas for 

conservation purposes, the wide differences among predicted values at the same pixels 

across landscape definitions is very disconcerting, and indicates different landscape 

definitions result in huge differences in predicted quality of locations for movement. In 

our case study on pumas we were specifically modeling probability of within-home range 

movement, which may be more sensitive to landscape definition than modeling 

probability of use, but further research is needed to determine this. Additionally, previous 

studies have found that dispersal of individuals is less constrained by landscape features 

than home-range use (Elliot et al. 2014; Mateo Sánchez et al. 2014), which might suggest 

that connectivity estimates derived from dispersal data would be less sensitive to 

landscape definition than within home-range data.  

 Differences in the predicted probability of movement /conductance surfaces also 

translated into differences among modeled connectivity surfaces (derived using 

CircuitScape) and the optimal road crossing locations, again in agreement with Cushman 

et al. (2010a). It was reassuring that our top model identified road crossing locations that 

have been approached by pumas in our study area and that were also identified by a 

consensus of road ecology and puma experts (Vickers et al. unpublished report). 

However, the alternative landscape definitions were highly variable in identifying 
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optimal road crossing locations, in some cases agreeing with the top model and in other 

cases indicating very different locations. Thus, had we a priori selected only a single 

landscape definition, there is a very good chance we would have produced a very 

different probability of movement/conductance surface, derived very different optimal 

road crossing locations, and possibly inspired a multi-million dollar crossing structure in 

a suboptimal location.  

 Lastly, the way the landscape is represented is at the heart of all species-habitat 

models. Landscape definition will ultimately affect inference about species-habitat 

relationships, probability of use surfaces, and connectivity estimates. Therefore, defining 

the landscape to the best of our ability is of utmost importance. To our knowledge, this is 

the first study to assess model performance across all of the following four landscape 

definition choices: (1) spatial grain, (2) thematic resolution, (3) number of geospatial 

layers, and (4) source of geospatial layers. More research is needed to determine the 

effect of landscape definition on other species-habitat models such as point and step 

selection functions, species distribution models, and occupancy models. Research is also 

needed to more effectively tease apart the effects of thematic resolution and layer source 

on species-habitat models. Regardless, our results demonstrate the profound effect of 

landscape definition on species-habitat models. When possible, we recommend that 

researchers examine a variety of landscape definitions and at the very least put a great 

deal of thought into how the landscape is defined for their species and question of 

interest.  
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Appendices 
!

Appendix A. Classes and class breakpoints for all continuous geospatial layers 

(elevation, percent slope, terrain ruggedness, percent impervious surface, and 

percent vegetative cover). 

Continuous layers were represented continuously and with 3, 4, or 5, classes. Value 
ranges of classes were determined with the Jenks optimization method.  

Elevation 
Number of Classes Class Value Range  

(meters) 
  From To 
3 Classes 1 0 327 
 2 327   783 
 3 783  1,871 
4 Classes 1 0  275 
 2 275  570 
 3 570  974 
 4 974 1,871 
5 Classes 1 0  260 
 2 260  504 
 3 504  775 
 4 775  1,158 
 5 1,158  1,871 

 
Percent slope 

Number of Classes Class Value Range  
(percent) 

  From To 
3 Classes 1 0  17 
 2 17  43 
 3 43 179 
4 Classes 1 0 12 
 2 12 30 
 3 30  55 
 4 55  179 
5 Classes 1 0 10 
 2 10  25 
 3 25  41 
 4 41  64 
 5 64  179 
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Terrain Ruggedness 
Number of Classes Class Value Range  

(total curvature) 
  From To 
3 Classes 1 0  0.011 
 2 0.011 0.042 
 3 0.042  0.42 
4 Classes 1 0 0.008 
 2 0.008  0.027 
 3 0.027  0.065 
 4 0.065  0.42 
5 Classes 1 0  0.006 
 2 0.006  0.022 
 3 0.022  0.044 
 4 0.044  0.086 
 5 0.086  0.42 

 

Percent Impervious Surface 
Number of Classes Class Value Range  

(percent) 
  From To 
3 Classes 1 0  20 
 2 20  50 
 3 50  100 
4 Classes 1 0  12 
 2 12  38 
 3 38  64 
 4 64 100 
5 Classes 1 0 10 
 2 10 30 
 3 30 50 
 4 50 70 
 5 70 100 

 

Percent Vegetative Cover 
Number of Classes Class Value Range  

(percent) 
  From To 
3 Classes 1 0  10 
 2 10 25 
 3 25 100 
4 Classes 1 0  7 
 2 7 20 
 3 20 30 
 4 30 100 
5 Classes 1 0  7 
 2 7 17 
 3 17 25 
 4 25  40 
 5 40 100 
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Appendix B. Crosswalks for categorical geospatial data (roads and land cover type). 

There were two data sources for roads, Open Street Map and County roads                
(across 4 counties). There were three data sources for land cover type                
(National Land Cover Data Base, LandFire, and CalVeg). Original roads               
data were classified into 2, 3, or 4 categories. Original land cover data were             
classified into 5 or 8 categories.  

Roads 

Open Street Map 
Road Type Road Classification; 2-

categories 
Bridleway Unpaved/Trail (Category 4) 
Construction Tertiary (Category 3) 
Cycleway Unpaved/Trail (Category 4) 
Footway Unpaved/Trail (Category 4) 
Living street Tertiary (Category 3) 
Motorway Primary(Category 1) 
Motorway link Primary(Category 1) 
Path Unpaved/Trail (Category 4) 
Pedestrian Tertiary (Category 3) 
Platform Tertiary (Category 3) 
Primary link Secondary (Category 2) 
Primary Secondary (Category 2) 
Residential Tertiary (Category 3) 
Rest area Tertiary (Category 3) 
Road Tertiary (Category 3) 
Scale Unpaved/Trail (Category 4) 
Secondary Secondary (Category 2) 
Secondary link Secondary (Category 2) 
Service Tertiary (Category 3) 
Tertiary Tertiary (Category 3) 
Tertiary link Tertiary (Category 3) 
Track Unpaved/Trail (Category 4) 
Trunk Secondary (Category 2) 
Trunk link Secondary (Category 2) 
Unclassified Tertiary (Category 3) 
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County Roads 
 
San Diego 

Road Type Road Classification 
Freeways and ramps Primary(Category 1) 
Light, 2 lane collector Tertiary (Category 3) 
Rural collector Tertiary (Category 3) 
Major 4-lane road Secondary (Category 2) 
Primary arterial Primary(Category 1) 
Private street Tertiary (Category 3) 
Recreational parkway Tertiary (Category 3) 
Rural mountain road Tertiary (Category 3) 
Alley Tertiary (Category 3) 
Class I bike path Unpaved/Trail (Category 4) 
4-lane collector Secondary (Category 2) 
2-lane major road Tertiary (Category 3) 
Expressway Primary(Category 1) 
Freeway Primary(Category 1) 
Local road Tertiary (Category 3) 
Military road Unpaved/Trail (Category 4) 
6-lane road Secondary (Category 2) 
Transit way Tertiary (Category 3) 
Unpaved road Unpaved/Trail (Category 4) 
Pedestrian Unpaved/Trail (Category 4) 

 

San Bernadino 
NS_Code Road Classification 
4 Tertiary (Category 3) 
5 Tertiary (Category 3) 
6 Tertiary (Category 3) 
7 Secondary (Category 2) 
9 Secondary (Category 2) 
A Unpaved/Trail (Category 4) 
C Tertiary (Category 3) 
E Primary(Category 1) 
F Primary(Category 1) 
L Tertiary (Category 3) 
P Tertiary (Category 3) 
R Tertiary (Category 3) 
S Tertiary (Category 3) 
T Primary(Category 1) 

 

Riverside 
Road Definition Road Classification 
Interstate Primary(Category 1) 
Interstate ramp Primary(Category 1) 
State highway Primary(Category 1) 
State highway ramp Primary(Category 1) 
Expressway Primary(Category 1) 
Expressway ramp Primary(Category 1) 
Major road Secondary (Category 2) 
Arterial road Secondary (Category 2) 
Collector road Tertiary (Category 3) 
Residential road Tertiary (Category 3) 
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Orange 
Road Definition Road Classification 
Collector Secondary (Category 2) 
Major Secondary (Category 2) 
Primary Secondary (Category 2) 
Secondary Tertiary (Category 3) 
Principal Secondary (Category 2) 
Freeway Primary(Category 1) 

 

Land Cover Type 

CalVeg 
Type Classification; 8-categories Classification; 5-categories 
Urban Urban Urban/Agriculture 
Deciduous orchard Agriculture Urban/Agriculture 
Annual grassland Grassland Grassland 
Chamise redshank chaparral Chaparral Chaparral 
Eucalyptus Agriculture Urban/Agriculture 
Valley foothill riparian Riparian Woodland/Riparian 
Montane riparian Riparian Woodland/Riparian 
Coastal oak woodland Woodland Woodland/Riparian 
Saline emergent wetland Riparian Woodland/Riparian 
Freshwater emergent wetland Riparian Woodland/Riparian 
Barren Natural barren Natural barren/Scrub 
Pasture Agriculture Urban/Agriculture 
Evergreen orchard Agriculture Urban/Agriculture 
Perennial grassland Grassland Grassland 
Coastal scrub Scrub Natural barren/Scrub 
Mixed chaparral Chaparral Chaparral 
Closed cone pine cypress Chaparral Chaparral 
Lacustrine Natural barren Natural barren/Scrub 
Desert riparian Riparian Woodland/Riparian 
Crop Agriculture Urban/Agriculture 
Montane hardwood conifer Woodland Woodland/Riparian 
Vinyard Agriculture Urban/Agriculture 
Montane chaparral Chaparral Chaparral 
Sagebrush Scrub Natural barren/Scrub 
Desert wash Natural barren Natural barren/Scrub 
Sierran mixed conifer Woodland Woodland/Riparian 
Montane hardwood Woodland Woodland/Riparian 
Wet meadow Riparian Woodland/Riparian 
Desert scrub Scrub Natural barren/Scrub 
Juniper Chaparral Chaparral 
White fir Woodland Woodland/Riparian 
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National Land Cover Database 
Code:Type Classification; 8-categories Classification; 5-categories 
11: Open water Natural barren Natural barren/Scrub 
21: Developed, open space Urban Urban/Agriculture 
22: Developed, low intensity Urban Urban/Agriculture 
23: Developed, medium intensity Urban Urban/Agriculture 
24: Developed, high intensity Urban Urban/Agriculture 
31: Barren Natural barren Natural barren/Scrub 
41: Deciduous forest Woodland Woodland/Riparian 
42: Evergreen forest Woodland Woodland/Riparian 
43: Mixed forest Woodland Woodland/Riparian 
52: Shrub/scrub Scrub Natural barren/Scrub 
71: Grassland/herbaceous Grassland Grassland 
81: Pasture/hay Agriculture Urban/Agriculture 
82: Cultivated crops Agriculture Urban/Agriculture 
90: Woody wetlands Riparian Woodland/Riparian 
95: Emergent herbaceous wetlands Riparian Woodland/Riparian 

 

LandFire 
Code:Type Classification; 8-

categories 
Classification; 5-categories 

3002: Mediterranean California Sparsely 
Vegetated Systems 

Natural barren Natural barren/Scrub 

3004: North American Warm Desert Sparsely 
Vegetated Systems 

Natural barren Natural barren/Scrub 

3014: Central and Southern California Mixed 
Evergreen Woodland 

Woodland Woodland/Riparian 

3015: California Coastal Redwood Forest Woodland Woodland/Riparian 
3019: Great Basin Pinyon-Juniper Woodland Woodland Woodland/Riparian 
3027: Mediterranean California Dry-Mesic 
Mixed Conifer Forest and Woodland 

Woodland Woodland/Riparian 

3028: Mediterranean California Mesic Mixed 
Conifer Forest and Woodland 

Woodland Woodland/Riparian 

3029: Mediterranean California Mixed Oak 
Woodland 

Woodland Woodland/Riparian 

3034: Mediterranean California Mesic Serpentine 
Woodland and Chaparral 

Chaparral Chaparral 

3082: Mojave Mid-Elevation Mixed Desert 
Scrub 

Scrub Natural barren/Scrub 

3087: Sonora-Mojave Creosotebush-White 
Bursage Desert Scrub 

Scrub Natural barren/Scrub 

3088: Sonora-Mojave Mixed Salt Desert Scrub Scrub Natural barren/Scrub 
3092: Southern California Coastal Scrub Scrub Natural barren/Scrub 
3096: California Maritime Chaparral Chaparral Chaparral 
3097: California Mesic Chaparral Chaparral Chaparral 
3098: California Montane Woodland and 
Chaparral 

Chaparral Chaparral 

3099: California Xeric Serpentine Chaparral Chaparral Chaparral 
3105: Northern and Central California Dry-
Mesic Chaparral 

Chaparral Chaparral 

3108: Sonora-Mojave Semi-Desert Chaparral Chaparral Chaparral 
3110: Southern California Dry-Mesic Chaparral Chaparral Chaparral 
3112: California Central Valley Mixed Oak 
Savanna 

Woodland Woodland/Riparian 

3113: California Coastal Live Oak Woodland 
and Savanna 

Woodland Woodland/Riparian 

3118: Southern California Oak Woodland and 
Savanna 

Woodland Woodland/Riparian 

3128: Northern California Coastal Scrub Scrub Natural barren/Scrub 
3129: California Central Valley and Southern 
Coastal Grassland 

Grassland Grassland 
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3130: California Mesic Serpentine Grassland Grassland Grassland 
3131: California Northern Coastal Grassland Grassland Grassland 
3135: Inter-Mountain Basins Semi-Desert 
Grassland 

Grassland Grassland 

3138: North Pacific Montane Grassland Grassland Grassland 
3152: California Montane Riparian Systems Riparian Woodland/Riparian 
3155: North American Warm Desert Riparian 
Forest and Woodland 

Riparian Woodland/Riparian 

3163: Pacific Coastal Marsh Systems Riparian Woodland/Riparian 
3181: Introduced Upland Vegetation-Annual 
Grassland 

Grassland Grassland 

3182: Introduced Upland Vegetation-Perennial 
Grassland and Forbland 

Grassland Grassland 

3183: Introduced Upland Vegetation-Annual and 
Biennial Forbland 

Grassland Grassland 

3184: California Annual Grassland Grassland Grassland 
3258: North American Warm Desert Riparian 
Herbaceous 

Riparian Woodland/Riparian 

3292: Open water Natural barren Natural barren/Scrub 
3294: Barren  Natural barren Natural barren/Scrub 
3295: Quarries-Strip Mines-Gravel Pits Urban Urban/Agriculture 
3296: Developed-Low Intensity Urban Urban/Agriculture 
3297: Developed-Medium Intensity Urban Urban/Agriculture 
3298: Developed-High Intensity Urban Urban/Agriculture 
3299: Developed-Roads Urban Urban/Agriculture 
3900: Western Cool Temperate Urban Deciduous 
Forest 

Urban Urban/Agriculture 

3901: Western Cool Temperate Urban Evergreen 
Forest 

Urban Urban/Agriculture 

3902: Western Cool Temperate Urban Mixed 
Forest 

Urban Urban/Agriculture 

3903: Western Cool Temperate Urban 
Herbaceous 

Urban Urban/Agriculture 

3904: Western Cool Temperate Urban Shrubland Urban Urban/Agriculture 
3910: Western Warm Temperate Urban 
Deciduous Forest 

Urban Urban/Agriculture 

3911: Western Warm Temperate Urban 
Evergreen Forest 

Urban Urban/Agriculture 

3912: Western Warm Temperate Urban Mixed 
Forest 

Urban Urban/Agriculture 

3913: Western Warm Temperate Urban 
Herbaceous 

Urban Urban/Agriculture 

3914: Western Warm Temperate Urban 
Shrubland 

Urban Urban/Agriculture 

3921: Western Cool Temperate Developed 
Ruderal Evergreen Forest 

Agriculture Urban/Agriculture 

3922: Western Cool Temperate Developed 
Ruderal Mixed Forest 

Agriculture Urban/Agriculture 

3923: Western Cool Temperate Developed 
Ruderal Shrubland 

Agriculture Urban/Agriculture 

3924: Western Cool Temperate Developed 
Ruderal Grassland 

Agriculture Urban/Agriculture 

3926: Western Warm Temperate Developed 
Ruderal Evergreen Forest 

Agriculture Urban/Agriculture 

3927: Western Warm Temperate Developed 
Ruderal Mixed Forest 

Agriculture Urban/Agriculture 

3928: Western Warm Temperate Developed 
Ruderal Shrubland 

Agriculture Urban/Agriculture 

3929: Western Warm Temperate Developed 
Ruderal Grassland 

Agriculture Urban/Agriculture 

3946: Western Warm Temperate Undeveloped 
Ruderal Evergreen Forest 

Agriculture Urban/Agriculture 
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3947: Western Warm Temperate Undeveloped 
Ruderal Mixed Forest 

Agriculture Urban/Agriculture 

3948: Western Warm Temperate Undeveloped 
Ruderal Shrubland 

Agriculture Urban/Agriculture 

3949: Western Warm Temperate Undeveloped 
Ruderal Grassland 

Agriculture Urban/Agriculture 

3960: Western Cool Temperate Orchard Agriculture Urban/Agriculture 
3964: Western Cool Temperate Row Crop Agriculture Urban/Agriculture 
3965: Western Cool Temperate Close Grown 
Crop 

Agriculture Urban/Agriculture 

3966: Western Cool Temperate Fallow/Idle 
Cropland 

Agriculture Urban/Agriculture 

3968: Western Cool Temperate Wheat Agriculture Urban/Agriculture 
3980: Western Warm Temperate Orchard Agriculture Urban/Agriculture 
3984: Western Warm Temperate Row Crop Agriculture Urban/Agriculture 
3985: Western Warm Temperate Close Grown 
Crop 

Agriculture Urban/Agriculture 

3986: Western Warm Temperate Fallow/Idle 
Cropland 

Agriculture Urban/Agriculture 

3987: Western Warm Temperate Pasture and 
Hayland 

Agriculture Urban/Agriculture 

3988: Western Warm Temperate Wheat Agriculture Urban/Agriculture 
!
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Appendix C. Characteristic scale of variables for each geospatial layer 

representation. 

Scales were determined by creating univariate Path Selection                        
Function models with each layer representation and examining AICc              
values for a layer representation across scales. The model and associated              
scale with the lowest AICc value was considered the characteristic scale of              
selection. These scales were then used in the multiple regression models              
for the 2,000 landscape definitions. Ten scales were evaluated ranging              
from 500m to 7,500m. 

   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

County roads 2 classes 30m  7,500 7,500       
County roads 2 classes 60m  7,500 7,500       
County roads 2 classes 120m  7,500 7,500       
County roads 2 classes 180m  6,500 7,500       
County roads 2 classes 240m  6,500 7,500       
County roads 3 classes 30m  7,500 7,500 7,500      
County roads 3 classes 60m  7,500 7,500 7,500      
County roads 3 classes 120m  3,000 7,500 7,500      
County roads 3 classes 180m  6,500 7,500 7,500      
County roads 3 classes 240m  6,500 7,500 7,500      
County roads 4 classes 30m  7,500 7,500 500 500     
County roads 4 classes 60m  7,500 7,500 7,500 1,500     
County roads 4 classes 120m  3,000 7,500 7,500 2,000     
County roads 4 classes 180m  6,500 7,500 7,500 500     
County roads 4 classes 240m  6,500 7,500 7,500 2,000     
OSM roads 2 classes 30m  7,500 7,500       
OSM roads 2 classes 60m  7,500 7,500       
OSM roads 2 classes 120m  6,500 7,500       
OSM roads 2 classes 180m  6,500 7,500       
OSM roads 2 classes 240m  6,500 7,500       
OSM roads 3 classes 30m  7,500 7,500 7,500      
OSM roads 3 classes 60m  7,500 7,500 7,500      
OSM roads 3 classes 120m  7,500 7,500 7,500      
OSM roads 3 classes 180m  7,500 7,500 7,500      
OSM roads 3 classes 240m  7,500 7,500 7,500      
OSM roads 4 classes 30m  7,500 7,500 7,500 500     
OSM roads 4 classes 60m  7,500 7,500 7,500 1,500     
OSM roads 4 classes 120  3,000 7,500 7,500 2,000     
OSM roads 4 classes 180  6,500 6,500 6,500 500     
OSM roads 4 classes 240m  6,500 6,500 6,500 2,000     
CalVeg Land 
Cover 

5 classes 30m  1,500 3,500 500 2,000 7,500    

CalVeg Land 
Cover 

5 classes 60m  500 3,500 1,500 500 6,500    

CalVeg Land 
Cover 

5 classes 120m  500 7,500 2,000 500 6,500    

CalVeg Land 
Cover 

5 classes 180m  500 7,500 1,500 500 6,500    

CalVeg Land 
Cover 

5 classes 240m  2,000 6,000 2,000 500 6,500    

CalVeg Land 
Cover 

8 classes 30m  500 3,000 7,500 500 7,500 7,500 7,500 7,500 
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   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

CalVeg Land 
Cover 

8 classes 60m  500 500 7,500 1,500 7,500 2,000 7,500 3,000 

CalVeg Land 
Cover 

8 classes 120m  500 500 7,500 2,000 7,500 500 7,500 5,500 

CalVeg Land 
Cover 

8 classes 180m  500 2,000 7,500 500 6,500 500 6,500 6,000 

CalVeg Land 
Cover 

8 classes 240m  2,000 1,500 7,500 2,000 6,500 500 7,500 6,000 

LandFire 
Land Cover 

5 classes 30m  1,500 3,500 1,500 1,500 7,500    

LandFire 
Land Cover 

5 classes 60m  500 7,500 1,500 2,000 7,500    

LandFire 
Land Cover 

5 classes 120m  500 7,500 7,500 500 6,500    

LandFire 
Land Cover 

5 classes 180m  500 7,500 7,500 500 7,500    

LandFire 
Land Cover 

5 classes 240m  500 7,500 2,000 7,500 6,500    

LandFire 
Land Cover 

8 classes 30m  1,500 3,500 500 500 7,500 1,500 7,500 6,500 

LandFire 
Land Cover 

8 classes 60m  500 500 7,500 2,000 5,500 1,500 7,500 6,500 

LandFire 
Land Cover 

8 classes 120m  500 500 3,500 7,500 2,000 2,000 7,500 6,500 

LandFire 
Land Cover 

8 classes 180m  2,000 1,500 7,500 7,500 7,500 500 7,500 6,000 

LandFire 
Land Cover 

8 classes 240m  500 1,500 7,500 7,500 5,500 7,500 7,500 6,000 

NLCD Land 
Cover 

5 classes 30m  3,000 3,500 7,500 500 7,500    

NLCD Land 
Cover 

5 classes 60m  3,000 3,500 7,500 7,500 7,500    

NLCD Land 
Cover 

5 classes 120m  6,500 3,500 7,500 7,500 7,500    

NLCD Land 
Cover 

5 classes 180m  500 4,500 7,500 6,500 7,500    

NLCD Land 
Cover 

5 classes 240m  6,500 4,500 7,500 6,500 6,500    

NLCD Land 
Cover 

8 classes 30m  3,000 2,000 500 7,500 7,500 7,500 7,500 500 

NLCD Land 
Cover 

8 classes 60m  3,000 1,500 3,500 7,500 7,500 1,500 7,500 5,500 

NLCD Land 
Cover 

8 classes 120m  6,500 1,500 3,500 7,500 7,500 7,500 7,500 3,500 

NLCD Land 
Cover 

8 classes 180m  500 1,500 4,500 7,500 7,500 7,500 7,500 3,500 

NLCD Land 
Cover 

8 classes 240m  6,500 1,500 3,000 7,500 7,500 7,500 6,500 3,500 

NLCD 
Percent 
Impervious 
Surface 

Continuous 30m 7,500         

NLCD 
Percent 
Impervious 
Surface 

Continuous 60m 7,500         

NLCD 
Percent 
Impervious 
Surface 

Continuous 120m 7,500         

NLCD 
Percent 
Impervious 
Surface 

Continuous 180m 7,500         
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   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

NLCD 
Percent 
Impervious 
Surface 

Continuous 240m 7,500         

NLCD 
Percent 
Impervious 
Surface 

3 classes 30m  7,500 7,500 7,500      

NLCD 
Percent 
Impervious 
Surface 

3 classes 60m  7,500 7,500 7,500      

NLCD 
Percent 
Impervious 
Surface 

3 classes 120m  7,500 7,500 7,500      

NLCD 
Percent 
Impervious 
Surface 

3 classes 180m  7,500 7,500 7,500      

NLCD 
Percent 
Impervious 
Surface 

3 classes 240m  7,500 7,500 7,500      

NLCD 
Percent 
Impervious 
Surface 

4 classes 30m  7,500 7,500 7,500 7,500     

NLCD 
Percent 
Impervious 
Surface 

4 classes 60m  7,500 7,500 7,500 7,500     

NLCD 
Percent 
Impervious 
Surface 

4 classes 120m  7,500 7,500 7,500 7,500     

NLCD 
Percent 
Impervious 
Surface 

4 classes 240m  7,500 7,500 7,500 7,500     

NLCD 
Percent 
Impervious 
Surface 

5 classes 30m  7,500 7,500 7,500 7,500 7,500    

NLCD 
Percent 
Impervious 
Surface 

5 classes 60m  7,500 7,500 7,500 7,500 7,500    

NLCD 
Percent 
Impervious 
Surface 

5 classes 120m  7,500 7,500 7,500 7,500 7,500    

NLCD 
Percent 
Impervious 
Surface 

5 classes 180m  7,500 7,500 7,500 7,500 7,500    

NLCD 
Percent 
Impervious 
Surface 

5 classes 240m  7,500 7,500 7,500 7,500 7,500    

LandFire 
Percent 
Vegetative 
Cover 

Continuous 30m 3,500         
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   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

LandFire 
Percent 
Vegetative 
Cover 

Continuous 60m 3,500         

LandFire 
Percent 
Vegetative 
Cover 

Continuous 120m 3,500         

LandFire 
Percent 
Vegetative 
Cover 

Continuous 180m 3,500         

LandFire 
Percent 
Vegetative 
Cover 

Continuous 240m 3,500         

LandFire 
Percent 
Vegetative 
Cover 

3 classes 30m  3,500 7,500 3,500      

LandFire 
Percent 
Vegetative 
Cover 

3 classes 60m  7,500 7,500 3,500      

LandFire 
Percent 
Vegetative 
Cover 

3 classes 120m  7,500 7,500 3,500      

LandFire 
Percent 
Vegetative 
Cover 

3 classes 240m  7,500 2,000 7,500      

LandFire 
Percent 
Vegetative 
Cover 

4 classes 30m  3,500 3,000 7,500 3,500     

LandFire 
Percent 
Vegetative 
Cover 

4 classes 60m  3,500 6,500 6,500 3,500     

LandFire 
Percent 
Vegetative 
Cover 

4 classes 120m  

7,500 500 1,500 7,500 

    

LandFire 
Percent 
Vegetative 
Cover 

4 classes 180m  

7,500 3,500 1,500 7,500 

    

LandFire 
Percent 
Vegetative 
Cover 

4 classes 240m  

7,500 7,500 1,500 7,500 

    

LandFire 
Percent 
Vegetative 
Cover 

5 classes 30m  

3,500 3,000 7,500 7,500 3,500 

   

LandFire 
Percent 
Vegetative 
Cover 

5 classes 60m  

7,500 6,000 7,500 7,500 3,500 

   

LandFire 
Percent 
Vegetative 
Cover 

5 classes 120m  

7,500 500 1,500 2,000 3,500 
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   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

            
LandFire 
Percent 
Vegetative 
Cover 

5 classes 180m  

7,500 3,500 1,500 1,500 6,000 

   

LandFire 
Percent 
Vegetative 
Cover 

5 classes 240m  

7,500 7,500 1,500 500 6,000 

   

Landsat 
Percent 
Vegetative 
Cover 

Continuous 30m 500         

Landsat 
Percent 
Vegetative 
Cover 

Continuous 60m 500         

Landsat 
Percent 
Vegetative 
Cover 

Continuous 120m 500         

Landsat 
Percent 
Vegetative 
Cover 

Continuous 240m 3,500         

Landsat 
Percent 
Vegetative 
Cover 

3 classes 30m  500 

7,500 3,500 

     

Landsat 
Percent 
Vegetative 
Cover 

3 classes 60m  500 

6,500 500 

     

Landsat 
Percent 
Vegetative 
Cover 

3 classes 120m  

6,500 6,500 2,000 

     

Landsat 
Percent 
Vegetative 
Cover 

3 classes 180m  

6,500 6,500 7,500 

     

Landsat 
Percent 
Vegetative 
Cover 

3 classes 240m  

6,500 6,500 7,500 

     

Landsat 
Percent 
Vegetative 
Cover 

4 classes 30m  

500 7,500 

500 500     

Landsat 
Percent 
Vegetative 
Cover 

4 classes 60m  

6,500 7,500 3,500 6,500 

    

Landsat 
Percent 
Vegetative 
Cover 

4 classes 120m  

6,500 7,500 

500 

6,500 

    

Landsat 
Percent 
Vegetative 
Cover 

4 classes 180m  

6,500 7,500 

500 

6,500 

    

Landsat 
Percent 
Vegetative 
Cover 

4 classes 240m  

6,500 7,500 

500 

6,500 
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   Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Cont-
inuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

Landsat 
Percent 
Vegetative 
Cover 

5 classes 30m  

500 7,500 

500 

3,500 6,500 

   

Landsat 
Percent 
Vegetative 
Cover 

5 classes 60m  

6,500 7,500 6,500 500 6,500 

   

Landsat 
Percent 
Vegetative 
Cover 

5 classes 120m  

6,500 7,500 

500 

2,000 6,500 

   

Landsat 
Percent 
Vegetative 
Cover 

5 classes 240m  

7,500 7,500 3,500 

500 

4,500 

   

NLCD 
Percent 
Vegetative 
Cover 

Continuous 30m 6,500         

NLCD 
Percent 
Vegetative 
Cover 

Continuous 60m 6,500         

NLCD 
Percent 
Vegetative 
Cover 

Continuous 120m 6,500         

NLCD 
Percent 
Vegetative 
Cover 

Continuous 180m 6,500         

NLCD 
Percent 
Vegetative 
Cover 

Continuous 240m 6,500         

NLCD 
Percent 
Vegetative 
Cover 

3 classes 30m  

6,500 6,500 6,500 

     

NLCD 
Percent 
Vegetative 
Cover 

3 classes 60m  

6,500 6,500 6,500 

     

NLCD 
Percent 
Vegetative 
Cover 

3 classes 120m  

6,500 6,500 6,500 

     

NLCD 
Percent 
Vegetative 
Cover 

3 classes 180m  500 500 

6,500 

     

NLCD 
Percent 
Vegetative 
Cover 

3 classes 240m  

2,000 2,000 6,500 

     

NLCD 
Percent 
Vegetative 
Cover 

4 classes 30m  

6,500 6,500 6,500 6,500 

    

NLCD 
Percent 
Vegetative 
Cover 

4 classes 60m  

6,500 6,500 6,500 6,500 
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Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Conti-
nuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

NLCD 
Percent 
Vegetative 
Cover 

4 classes 120m  

6,500 6,500 6,500 6,500 

    

NLCD 
Percent 
Vegetative 
Cover 

4 classes 240m  

4,500 1,500 4,500 6,500 

    

NLCD 
Percent 
Vegetative 
Cover 

5 classes 30m  

6,500 7,500 6,500 6,500 7,500 

   

NLCD 
Percent 
Vegetative 
Cover 

5 classes 60m  

6,500 6,500 6,500 6,500 1,500 

   

NLCD 
Percent 
Vegetative 
Cover 

5 classes 120m  

6,500 6,500 6,500 6,500 7,500 

   

NLCD 
Percent 
Vegetative 
Cover 

5 classes 180m  

4,500 6,500 4,500 6,500 7,500 

   

NLCD 
Percent 
Vegetative 
Cover 

5 classes 240m  

6,500 6,500 6,500 6,500 7,500 

   

Elevation Continuous 30m 1,500         
Elevation Continuous 60m 3,000         
Elevation Continuous 120m 3,000         
Elevation Continuous 180m 3,500         
Elevation Continuous 240m 3,500         
Elevation 3 classes 30m  4,500 4,500 1,500      
Elevation 3 classes 60m  4,500 4,500 500      
Elevation 3 classes 120m  4,500 4,500 2,000      
Elevation 3 classes 180m  4,500 4,500 500      
Elevation 3 classes 240m  4,500 4,500 500      
Elevation 4 classes 30m  2,000 1,500 7,500 1,500     
Elevation 4 classes 60m  2,000 2,000 7,500 1,500     
Elevation 4 classes 120m  3,000 3,000 7,500 1,500     
Elevation 4 classes 180m  3,000 500 7,500 1,500     
Elevation 4 classes 240m  500 500 7,500 4,500     
Elevation 5 classes 30m  2,000 1,500 6,500 1,500 5,500    
Elevation 5 classes 60m  2,000 2,000 6,500 4,500 5,500    
Elevation 5 classes 120m  3,000 3,000 6,500 500 6,000    
Elevation 5 classes 180m  3,000 500 6,500 500 7,500    
Elevation 5 classes 240m  3,500 7,500 6,500 1,500 7,500    
Percent Slope Continuous 30m 1,500         
Percent Slope Continuous 60m 1,500         
Percent Slope Continuous 120m 1,500         
Percent Slope Continuous 180m 3,000         
Percent Slope Continuous 240m 500         
Percent Slope 3 classes 30m  1,500 500 1,500      
Percent Slope 3 classes 60m  1,500 500 1,500      
Percent Slope 3 classes 120m  1,500 7,500 6,500      
Percent Slope 3 classes 180m  7,500 7,500 6,500      
Percent Slope 3 classes 240m  7,500 7,500 7,500      
Percent Slope 4 classes 30m  1,500 7,500 1,500 1,500     
Percent Slope 4 classes 120m  2,000 7,500 1,500 7,500     
Percent Slope 4 classes 180m  2,000 7,500 500 7,500     
Percent Slope 4 classes 240m  7,500 7,500 3,500 7,500     
Percent Slope 5 classes 30m  1,500 7,500 1,500 1,500 6,500    
Percent Slope 5 classes 60m  1,500 7,500 2,000 1,500 7,500    
Percent Slope 5 classes 120m  2,000 1,500 7,500 1,500 7,500    
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Percent Slope 5 classes 180m  2,000 500 6,500 6,500 7,500    
    

Characteristic Scale (m) 
Geospatial 
layer 

Thematic  
Resolution 

Spatial  
Grain 

Conti-
nuous 

Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

Percent Slope 5 classes 240m  7,500 500 6,500 7,500 7,500    
Terrain 
Ruggedness 

Continuous 30m 7,500         

Terrain 
Ruggedness 

Continuous 60m 7,500         

Terrain 
Ruggedness 

Continuous 120m 7,500         

Terrain 
Ruggedness 

Continuous 180m 7,500         

Terrain 
Ruggedness 

Continuous 240m 7,500         

Terrain 
Ruggedness 

3 classes 30m  
1,500 

500 
7,500 

     

Terrain 
Ruggedness 

3 classes 60m  
500 

500 
7,500 

     

Terrain 
Ruggedness 

3 classes 120m  
1,500 1,500 7,500 

     

Terrain 
Ruggedness 

3 classes 180m  500 500 
6,500 

     

Terrain 
Ruggedness 

3 classes 240m  500 500 
7,500 

     

Terrain 
Ruggedness 

4 classes 30m  500 
7,500 7,500 7,500 

    

Terrain 
Ruggedness 

4 classes 60m  500 
500 7,500 7,500 

    

Terrain 
Ruggedness 

4 classes 120m  500 
6,500 7,500 7,500 

    

Terrain 
Ruggedness 

4 classes 180m  500 
6,500 7,500 7,500 

    

Terrain 
Ruggedness 

4 classes 240m  
3,000 6,500 6,500 2,000 

    

Terrain 
Ruggedness 

5 classes 30m  500 
7,500 

500 
7,500 7,500 

   

Terrain 
Ruggedness 

5 classes 60m  500 
7,500 

500 
7,500 7,500 

   

Terrain 
Ruggedness 

5 classes 120m  500 
7,500 1,500 6,500 7,500 

   

Terrain 
Ruggedness 

5 classes 180m  500 
6,500 500 7,500 6,500 

   

Terrain 
Ruggedness 

5 classes 240m  
6,500 7,500 3,000 7,500 2,000 
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Appendix D. Likelihood Ratio Test Results. 

AICc, D2, and CCC for the 2,000 landscape definitions were modeled as a function of 
four landscape definition options (1) spatial grain (30m, 60m, 120m, 180m, 240m), (2) 
number of layers used in the model (1-7), (3) number of variables (1-24), and (4) whether 
the variables were all represented continuously, all represented categorically, or            
whether a mix of continuous or categorical representations were present.              
Likelihood Ratio Tests were performed comparing the full model with each            
of these definition options left out in turn.  

AICc    D2    CCC    
Grain 
Size    

Grain 
Size    

Grain 
Size    

df LL X2 p df LL X2 p df LL X2 p 
40 -10690   40 1072   40 582.5   

36 -10957 534.2 <2.2e-16 36 812 519.5 <2.2e-16 36 579.7 5.7 0.226 

No. of 
Layers    

No.  
of 
Layers    

No. of 
Layers    

#df LL X2 p #df LL X2 p #df LL X2 p 
40 -10690   40 1072   40 582.5   
34 -10919 456.7 <2.2e-16 34 853 437.8 <2.2e-16 34 581.2 2.7 0.841 
Var 
Form    

Var 
Form    

Var 
Form    

#df LL X2 p #df LL X2 p #df LL X2 p 
40 -10690   40 1072   40 582.5   
38 -10691 1.26 0.534 38 1071 1.8 0.411 38 582.4 0.3 0.88 
No. of 
Vars    

No. of 
Vars    

No. of 
Vars    

#df LL X2 p #df LL X2 p #df LL X2 p 
40 -10690   40 1072   40 582.5   
14 -10701 22.1 6.84E-01 14 1051 42.8 2.05E-02 14 571.7 21.7 0.06 
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Appendix E. Mean and standard error in model percent deviance explained as a 

function of spatial grain, variable form, number of geospatial layers, and number of 

variables in a landscape definition associated with modeling puma movement in 

southern California. 
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Appendix F. Mean and standard error in the concordance correlation coefficient as 

a function of spatial grain, variable form, number of geospatial layers, and number 

of variables in a landscape definition associated with modeling  puma movement in 

southern California. 
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Appendix G. To predict probability of movement / conductance surfaces, we 

selected landscape definitions across the model performance continuum at the 0th, 

25th, 50th, 75th and 100th percentile of AICc values. Model results for these five 

landscape definitions are provided below. 

Top model (Mod 3993; AICc = 66.6). All layers had a spatial resolution of 30m.  

Geospatial Layer Thematic 
Resolution 

Class Coefficient 

OSM Roads 2 class 1 -530.0 
  2 -494.8 
Elevation 4 class 1 18.3 
  3       2.0 
  4     -8.9 
Terrain Ruggedness 3 class 1   -13.3 
  2     -5.7 
  3   -21.7 
Percent Slope continuous -     -0.5 

 

25th percentile of AICc Model (Mod 569; AICc =161.2). All layers had a spatial 
resolution of 30m.  

Geospatial Layer Thematic 
Resolution 

Class Coefficient 

Elevation 3 class 1 -530.0 
  3 -494.8 
LandFire Percent Vegetative Cover Continuous - 0.3 
Percent Impervious Surface Continuous - -1.0 

 

50th percentile of AICc Model (Mod 2700; AICc =219.1). All layers had a spatial 
resolution of 60m.  

Geospatial Layer Thematic 
Resolution 

Class Coefficient 

LandFire Land Cover Type 8 class 1 8.3 
  2 5.1 
  3 2.4 
  4 2.8 
  6 -2.7 
  7 -14.0 
  8 23.9 
Elevation Continuous - -0.01 
Terrain Ruggedness Continuous - -62.4 
NLCD Percent Vegetative Cover 4 class 1 -11.4 
  2 4.1 
  4 66.1 

 



! 217!

75th percentile of AICc Model (Mod 5845; AICc =288.5). All layers had a spatial 
resolution of 30m.  

Geospatial Layer Thematic 
Resolution 

Class Coefficient 

Percent slope Continuous - -0.4 
Terrain Ruggedness Continuous - 58.0 

 

100th percentile of AICc Model (Mod 4963; AICc =424.8). All layers had a spatial 
resolution of 180m.  

Geospatial Layer Thematic 
Resolution 

Class Coefficient 

NLCD percent vegetative cover 4 class 1 6.5 
  2 7.4 
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