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ABSTRACT

TRANSIT PREFERENTIAL TREATMENTS AT
SIGNALIZED INTERSECTIONS: PERSON-BASED

EVALUATION AND REAL-TIME SIGNAL CONTROL

SEPTEMBER, 2016

YASHAR ZEINALI FARID

B.S., URMIA UNIVERSITY

M.S., TARBIAT MODARES UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eleni Christofa

Efficient public transportation has the potential to relieve traffic congestion and

improve overall transportation system performance. In order to improve transit ser-

vices, Transit Preferential Treatments (TPT) are often deployed to give transit ve-

hicles priority over other vehicles at an intersection or along a corridor. Examples

of such treatments are exclusive bus lanes, queue jumper lanes, and signal prior-

ity strategies. The objective of this study is threefold: 1) perform a person-based

evaluation of alternative TPTs when considered individually and in combination, 2)

develop a bus travel time prediction model along a signalized arterial, and 3) develop

a real-time signal control system, which minimizes total person delay at an isolated

intersection accounting for stochasticity in transit vehicle arrivals. This study first

develops analytical models to estimate person delay and person discharge flow when

v



various spatial and time TPTs are present at signalized intersections with and with-

out near-side bus stops. This part of the research has contributed to the modeling of

traffic along signalized arterials by improving the previous models to evaluate various

TPT strategies with and without nearside bus stops. Next, a robust method to pre-

dict bus travel time along a signalized arterial is developed. This part of the research

contributes to the bus travel time prediction models by estimating the status of traf-

fic signals using automated vehicle location (AVL) data. The model decomposes bus

travel time along signalized arterials and infers trajectories of the transit vehicles.

Finally, the real-time signal control system is developed to provide priority to transit

vehicles by assigning weights to transit vehicle delays based on their passenger oc-

cupancies as part of the optimization objective function. The system optimizes the

movements by minimizing total person delay at the intersection. The system esti-

mates bus arrival time at the intersection stopline and uses the developed analyitical

models in the first part of the research to evaluate the person delay measure. This

part of the research contributes to the real-time signal control systems by providing

a priority window to account for the stochasticity in bus arrival times.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Public transportation helps improve quality of life and is a crucial part of solutions to

address economic, energy, and environmental challenges in urban areas. High quality

public transportation improves mobility for people especially the ones that are unable

to drive (elderly, teenagers, and the disabled), provides access to activity areas (e.g.

work, school, and shopping centers), improves environmental and ecological sustain-

ability, and reduces traffic congestion and fuel consumption. Improvements in transit

performance provide additional incentives for travelers to switch modes and could

potentially reduce traffic congestion. According to the Texas A&M Transportation

Institute report (Schrank et al., 2012), if public transportation were not available in

the urban areas that were studied, congestion related costs would have risen by nearly

$21 billion for 2011.

Public transportation system performance can be improved by giving transit ve-

hicles, which have higher passenger occupancy than cars, priority at the intersections

or along corridors. These strategies may significantly increase the person through-

put of the system. Thus, in recent years, urban traffic management policies have

increasingly differentiated between transit vehicles and cars by providing priority to

the transit vehicles.

In order to provide priority to transit vehicles, transit preferential treatments

(TPTs) are deployed. TPTs give transit vehicles priority over other vehicles at an

intersection or along a corridor. The primary objective of TPTs is to reduce transit
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travel times by shortening or eliminating the time spent by transit vehicles waiting

for a queue clearance or a green signal indication. Substantial delay reductions can

further lead to improved transit operations and service reliability and consequently

increased transit ridership.

Transit signal priority (TSP) is a TPT strategy which adjusts signal timings to

favor transit vehicles approaching a signalized intersection. TSP strategies as well

as other applications of intelligent transportation systems (ITS) including advanced

traveler information systems (ATIS) rely on short-term travel time predictions. Accu-

rate predictions can improve bus service reliability and traffic signal control efficiency

while providing TSP.

Real-time signal control systems is an effective way of providing TSP. Real-time

signal control systems with TSP are responsive to transit requests as well as the

current traffic conditions in real-time. These systems provide priority while optimizing

given traffic performance criteria such as vehicle delay, person delay, and transit

delay. In general, real-time signal control systems with TSP require traffic detection

(both transit and non-transit vehicles) and communication systems, estimation of

appropriate performance measures, estimation of traffic demand and bus arrival time

to stopline, and a decision system.

1.2 Problem Statement

The need for efficient and sustainable management of transportation systems is steadily

increasing due to growing demand in urban networks. Urban congestion, higher fuel

consumption and emissions are major problems of large urban areas, but can be

mitigated by efficient transit systems. Transit preferential treatments are promising

strategies for reducing transit delay and improving transit performance. Some treat-

ments modify roadway segments (space priority strategies) such as dedicated bus
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lanes, queue jumper lanes, and intermittent bus lanes while other treatments provide

priority by adjusting signal timing settings (time priority strategies).

Implementing priority strategies are often expensive, especially space priority

strategies. Pre-evaluation of these strategies would help planners and decision makers

in assessing the advantages and disadvantages of the plans before their deployment.

Currently, most of the agencies evaluate TPT plans using micro-simulation software

packages which require considerable time and money. Accurate and reliable analytical

models could be used for such assessments without the need for expensive simulations.

The analytical models can also be used in real-time signal control systems to evaluate

various performance measures.

Among various transit signal priority strategies, real-time TSP systems can po-

tentially handle traffic movements through an intersection more efficiently, since they

can adjust signal timing plans based on real-time data. Various real-time TSP models

have been developed in recent years. These models often rely on predictions of bus

arrival time. Accurate prediction of bus arrival time at an intersection stopline can

improve the efficiency of the real-time TSP systems. Transit vehicle travel time is

subject to traffic conditions as well as driver behavior. Also, bus dwell times at bus

stops vary due to different factors such as the number of passengers boarding and

alighting, the fare collection system as well as the bus and bus stop design. Variabil-

ity in transit arrival times may affect the quality of priority timings, which in turn

affects the effectiveness of the TSP system. Accurate bus travel time prediction as

well as the stochasticity of bus arrival times and its impact on the real-time TSP

systems require further investigation.

1.3 Research Questions

The question that motivates this research are:
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• What are the impacts of implementing individual or combined TPTs on person

delay and person discharge flows along signalized arterials?

• How bus arrival time at intersection stopline can be estimated more accurately?

• How should real-time signal control systems be designed to minimize person

delay while accounting for stochasticity in bus arrivals?

1.4 Research Contributions

The objective of this study is threefold: First, this study performs a person-based eval-

uation of alternative TPTs when considered individually and in combination. This

study develops analytical models based on kinematic wave theory as well as simu-

lation models in order to perform a person-based evaluation of various spatial and

time TPTs when near-side bus stops are present at signalized intersections. Second,

a robust model to predict bus travel time using low resolution Automated Vehicle Lo-

cation (AVL) data is presented. Finally, this study proposes a real-time signal control

system which minimizes total person delay at an isolated intersection accounting for

stochasticity in transit vehicle arrivals to provide priority to them. The contributions

of this dissertation are as follows:

• Development of analytical models to evaluate various space (e.g., queue jumper

lane and dedicated bus lane) and time (e.g., transit signal priority) priority

strategies along signalized arterials with and without nearside bus stops. The

analytical models evaluate person-based performance measures including per-

son delay and person discharge flow using Kinematic Wave Theory. Vehicles

approaching the signalized intersection are considered to travel within platoons.

• Development of a bus travel time prediction model using data obtained from

AVL systems. The proposed model estimates traffic signal status using the

AVL records of buses and provides more accurate predictions in comparison to
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a simple linear regression model. The proposed model decomposes bus travel

time into its components including running travel time, dwell times at bus stops,

and delays at intersections. Unlike other studies, the developed model in this

research estimates intersection delay for individual buses rather than estimating

an average delay over all buses thus, improves prediction accuracy.

• Development of a real-time traffic signal control with TSP which takes into

account stochasticity in bus arrivals and provides a priority window for buses.

The control system minimizes total person delay at an intersection. The per-

son delay measures are determined using the analytical models developed for

the TPT evaluation. This study is unique since the developed control system

provides a priority window to make sure that buses can pass the intersection

(if arriving during the green phase) considering a certain confidence level to

overcome the randomness in the bus arrival time predictions.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows: In Chapter 2 previous studies on

TPT evaluation, bus travel time prediction, and real-time signal control systems are

reviewed. Chapter 3 presents the formulation of the analytical models for estimating

different person-based measures of various TPT strategies and the model application.

In Chapter 4, the development of the bus travel time prediction model using low res-

olution AVL data as well as the application of the model are presented. In Chapter 5,

a real-time signal control plan development and its application are discussed. Finally,

Chapter 6 includes a summary of the key findings, the dissertation’s contribution,

and future research directions.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews previous studies on transit preferential treatments, bus travel

time prediction, real-time signal control with TSP systems, and stoachasticity in

transit vehicle arrivals. It concludes with the summary of the literature review that

provides insights to motivate research.

2.1 Transit Preferential Treatments

TPTs can be categorized in space and time priority strategies. The impact of both

space and time TPTs on traffic and transit operations has been extensively investi-

gated through field, simulation, and analytical studies. In the field studies, before and

after impacts associated with TPT deployment have been assessed. In the field stud-

ies, typically different measures of effectiveness (MOEs) are used to assess impacts

associated with preferential treatment deployment. These MOEs commonly include

travel time, number of stops, transit delay, schedule adherence, average person delay,

and cross-street delays. Use of simulation models, including VISSIM, INTEGRA-

TION, AIMSUN, and PARAMICS, is the most common TPT evaluation method.

There are only a few studies that have utilized analytical models for TPT evaluation

purposes.

2.1.1 Space Transit Preferential Treatments

Space priority considers special facilities such as dedicated bus lanes (DBL), queue

jumper lanes (QJL), or intermittent bus lanes (IBL) for public transit vehicles that
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allow them to bypass standing traffic queues. Delay due to congestion can be reduced

by mitigating congestion and/or implementing space preferential treatments through

the creation of dedicated space for transit vehicles. These treatments allow transit

vehicles to bypass standing traffic queues, thereby reducing their travel times. Space

priority strategies are often effective in reducing delays due to congestion, however

these solutions can be expensive or even infeasible, especially in dense urban areas,

due to inadequate or expensive urban space.

2.1.1.1 Dedicated Bus Lanes (DBL)

DBLs (also known as exclusive bus lanes, reserved bus lanes or just bus lanes) provide

exclusive right-of-way to buses ensuring that they are not delayed by other traffic (Fig-

ure 2.1). The effectiveness of DBLs in increasing transit speed and improving transit

reliability in arterials has been thoroughly investigated in the literature. However,

in areas with intense commercial and residential developments, allocating a bus lane

per direction could often be very expensive and in some cases infeasible due to space

limitations. Thus, single reversible DBLs are often introduced to reduce deployment

costs and increase in delays.

Figure 2.1: Dedicated bus lane (source: Wikipedia)
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Field Studies

Surprenant-Legault and El-Geneidy (2011) analyzed a DBL that was implemented

on Boulevard Saint-Michelusing, Montreal, Canada. The analysis of real-world data

showed that the DBL had a substantial positive effect on the running time, reliability

and on-time performance of the bus routes. Total running time for the buses decreased

by 1.3% to 2.2%, and schedule adherence improved by 65%.

Sakamoto et al. (2007) evaluated the effects of a bus rapid transit (BRT) line

implemented in Shizuoka City, Japan. The BRT line included a 3 km long DBL and

a bus priority signal system. Before and after analysis indicated that the mean total

bus travel time on the two studied lines dropped by 6.2% and schedule adherence

improved by 17% to 58%.

Reserved lanes have also been implemented for rail transit systems such as trams.

Currie et al. (2013) evaluated the effect of a dedicated transit way on tram perfor-

mance in Melbourne, Australia. In this study regression models were developed using

Automatic Vehicle Monitoring (AVM) data to measure the effect of implementing the

dedicated transit way as well as transit signal priority. Before and after analysis indi-

cate that the dedicated transit way deployment reduced tram run time by 1.6% and

run time variability by 10.2%.

Simulation Studies

Iswalt et al. (2011) developed a micro-simulation model to evaluate a proposed single

reversible DBL implementation on Stevens Creek Boulevard, San Jose, California,

using the VISSIM micro-simulation software. Results of the study show that a single

reversible DBL led to travel time savings of over 10%.

Arasan et al. (2010) analyzed the impact of DBL under highly heterogeneous

traffic condition using the HETEROSIM simulation software. In this study the im-

pact of the volume-to-capacity ratio on the non-transit vehicles level of service (LOS)
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was analyzed. This study also estimated the probability of switching from a personal

vehicle to transit when DBLs are provided.

Analytical Studies

Li et al. (2009) developed an analytical model to evaluate the impacts of a single

DBL versus double DBLs implemented as part of a BRT system. In a single DBL, one

lane is dedicated to buses in both directions. The study presented an optimization

model to minimize the weighted sum of the dwell time and travel time of the buses in

the BRT system. A case study analysis concluded that total travel time of the single

DBL system is similar to that of a BRT system with double DBL when the headway

is longer than 20 minutes. Shorter headways increase bus travel time for the single

DBL system due to higher intersection delays.

2.1.1.2 Queue Jumper Lanes (QJL)

QJLs are intersection-specific treatments that allow buses that operate in mixed-

traffic lanes to bypass the queue at a signalized intersection. This treatment is a short

right-turn lane or a separate bypass lane implemented at the intersection approach.

Two types of queue jumper lanes can be implemented depending on whether or not

an extra bus signal phase is provided. In Type 1 QJLs (Figure 2.2), an advanced

green phase is provided for the buses to pull ahead of through traffic before the signal

phase for the rest of the through vehicles is activated. This type of QJL does not

require an auxiliary lane for acceleration downstream, but it may lead to increases

of through traffic delay. Type 2 QJLs (Figure 2.3), an auxiliary lane on the far-

side of the intersection is available to allow buses to merge with the through traffic

downstream of the intersection. In this case, a separate signal phase is not provided.

Type 2 QJLs are also called queue bypass lanes.
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Figure 2.2: Queue jumper lane - Type 1

Figure 2.3: Queue jumper lane - Type 2

Field Studies

Reductions of 5% to 15% in bus travel time associated with the implementation of

QJLs at intersections have been reported (Danaher et al., 2007) in the following case

studies:

• Lincoln Street at 13th Avenue in Denver, 7- 10 second reduction in bus inter-

section delay;

• NE 45th Street route in Seattle, WA, 27-second, 12-second and 6-second re-

duction in bus travel time along the corridor during the morning peak, and

afternoon peak periods, and across an entire day respectively.

The City of Portland and the Tri-County Metropolitan Transportation District of

Oregon (Tri-Met) conducted the Powell Boulevard Bus priority Pilot Project (Kloos
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et al., 1994). The test was designed to evaluate the application of TSP strategies

as well as a QJL. The QJL was implemented on the 26th Avenue for the eastbound

(EB) buses. It included an advanced green phase to enable the bus to pull in front

of the eastbound through queued traffic (Type 1 QJL). The buses received a short

advanced green phase when they were at the bus stop during a normal eastbound

through red phase. Results indicated that generally bus travel times decreased by 5%

for the inbound morning peak and decreased by 7.8% for the outbound evening peak

directions. Total bus person delay decreased by 12.3%, however, total person delay

did not change significantly. The method used in the study resulted in higher delays

for the through traffic, especially the westbound one.

Simulation Studies

Several studies have investigated the effect of QJLs combined with TSP on transit

performance using micro-simulation software packages. Zlatkovic et al. (2013) used

a VISSIM micro-simulation model to evaluate individual and combined effects of

queue jumper lanes and TSP on traffic performance of a BRT system in West Valley

City, Utah. A QJL was modeled along with an exclusive 8 seconds signal phase at

intersections (Type 2 QJL). The results of the study showed that the QJL combined

with TSP reduced bus travel time by 13%-22% and increased bus speed by 22%.

However, the strategy increased average delay for cross-street traffic by 15%. The

individual QJL scenario reduced bus travel time by 6%-15% and increased cross-

street traffic delay by 8%. The implementation of individual TSP reduced bus travel

times by 9%-11% and increased cross-street traffic delay by 8%.

Lahon (2011) studied the effects of QJL combined with TSP using VISSIM. A

QJL was modeled along with a special signal phase (type 2 QJL). Results indicated

that the QJL with TSP reduced transit travel time by 30%. The author did not
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report the impact of the TPTs on cross street traffic performance.

Anallytical Studies

To the extend of the author’s knowledge, there is no study to-date investigating the

impact of QJLs on person delays using analytical models.

2.1.1.3 Intermittent Bus Lanes (IBL)

Intermittent bus lanes reduce bus delay by temporarily clearing auto vehicle traffic

from a lane for a section under consideration ahead of a bus. When a bus approaches

a section where an IBL is implemented, the subject lane becomes a bus lane, and

after the bus leaves that section, it becomes a mixed traffic lane again (Viegas and

Lu, 2004). An example of IBL implemented in Lisbon, Portugal, is shown in Figure

2.4. The impact of intermittent bus lanes, bus lanes with intermittent priority and

other strategies for sharing a lane between cars and buses on traffic operations has also

been analyzed through field tests and the development of analytical and simulation

models (Eichler and Daganzo, 2006, Viegas and Lu, 2004, Guler and Cassidy, 2012).

Field Studies

Viegas et al. (2007) studied a trial IBL treatment in Lisbon, Portugal (Figure 2.4),

for a period of 6 months starting in September 2005. The study showed that the IBL

treatment increased bus average speed by 20% with very limited impacts on general

traffic operations.

Currie and Lai (2008) reviewed the performance of dynamic fairway (DF), a vari-

ation on the IBL concept, implemented in Melbourne, Australia. The system, which

was initiated in 2001, is shown in Figures 2.5 and 2.6. When a tram approaches,

the pavement lights start flashing and the variable message sign (VMS) changes to

right-turn traffic only sign. When the tram passes, the pavement lights turn off and

12



(a) Vertical signalization- Variable Message
Sign

(b) Horizontal signalization- LED’s on the
pavement

Figure 2.4: Intermittent bus lane (source: Viegas et al. (2007))
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Figure 2.5: Flashing lights of the intermittent bus lane in Melbourne, Australia (Cur-
rie and Lai, 2008)

the VMS reverts to through and right-turn traffic sign. The right turn movements are

allowed to use the IBL unless congestion occurs. The results of the study indicated

that the IBL increased transit speed between 1% and 10%.

Simulation Studies

Zyryanov and Mironchuk (2012) developed a simulation model to evaluate IBL treat-

ment using the AIMSUN micro-simulation software. The study case was Scheboldaev

Street, in Rostov-on-Don, Russia. Results indicate that IBL with TSP increases bus

speed by 8%-10%.

Analytical Studies

Zhu (2010) proposed a two-lane traffic model with an IBL using the cellular automaton

traffic flow model. DBLs strategy, IBLs and ordinary two-lane traffic alternatives

were considered and comparisons were made by numerical simulation. The results

indicated that the IBL strategy is more efficient in improving the bus flow than the

ordinary two-lane traffic alternatives. In the IBL case, bus speed is more than the

ordinary two-lane traffic when density is more than 0.2 veh/site.
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(a) Right-turn traffic only sign when
tram is approaching

(b) Through and right-turn when
tram enters

(c) No through or right turn when
congestion occurs

(d) Right-turn traffic only when
tram is approaching

Figure 2.6: VMS of the intermittent bus lane in Melbourne, Australia (source: Currie
and Lai (2008))
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2.1.1.4 Bus Lanes with Intermittent Priority (BLIP)

BLIPs are similar to IBLs, but they force vehicles already in the bus lane to leave the

lane. In the IBL case, vehicles already in the bus lane are not requested to leave the

lane.

Simulation Studies

Carey et al. (2009) studied potential benefits and disadvantages of the BLIP and

compared BLIP to other TPTs such as no-build, transit signal priority, and exclusive

bus lanes using VISSIM. The study corridor was in Eugene, Oregon. The results indi-

cated that bus travel time decreased by 14% and bus reliability improved by 28%. The

BLIP alternative also showed minimal impact on overall delay and minimal change

to the conflicting movements.

Analytical Studies

Eichler and Daganzo (2006) developed an analytical model using kinematic wave the-

ory to study the feasibility, costs and benefits of BLIPs. In particular they developed

analytical models to evaluate the auto capacity of BLIP systems, and to estimate the

travel time savings of both the auto and bus occupants of an under-saturated BLIP

system. The study has shown that BLIPs can reduce bus travel time, and can also

reduce random fluctuations in travel and arrival times.

Chiabaut et al. (2012) studied the effects of BLIPs using kinematic wave theory.

The study indicated that BLIP activation decreases capacity and increases bus travel

time. The authors argue that the lane drop due to BLIP activation, reduces the

capacity which negatively affects autos and consequently increases bus travel time.

2.1.2 Time Transit Preferential Treatments

In time priority strategies, signal timings can be set to favor approaches with pub-

lic transit. Delay due to traffic signals can potentially decrease if time priority is
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given to buses at intersections through Transit Signal Priority (TSP). TSP strategies

dynamically adjust signal timings to prioritize the movement of transit vehicles and

can be categorized as passive, active, or real-time (i.e., adaptive, traffic-responsive)

strategies (Smith et al., 2005). Real-time signal control systems can be very effec-

tive in providing priority to transit vehicles while minimizing the impact on the rest

of the traffic. TSP strategies often need negligible space for installing the required

equipment and control system but might require signal controller upgrades.

Several studies have evaluated the effects of time priority strategies on the perfor-

mance of different bus and light rail transit modes (Wahlstedt, 2013, Vlachou et al.,

2010). Transit signal priority (TSP) strategies fall into the category of time prefer-

ential treatment and can be further classified in passive, active, and real-time.

2.1.2.1 Passive Priority Strategies

Passive priority strategies are developed based on historical data and do not require

a transit detection system (Smith et al., 2005). Signal settings such as offsets, splits,

and cycle lengths are modified to favor transit vehicles by considering traffic oper-

ations and geometric conditions. Passive priority strategies include adjustment of

offsets, additional green time for the phases serving transit vehicles, and reduction in

cycle length. These strategies can potentially reduce transit travel time with low im-

plementation costs. However, the strategies may negatively affect cross-street traffic

and allocate excessive green time to priority movements. Examples of such strategies

include offset adjustment, longer cycle lengths and etc. Figure 2.7 shows an exam-

ple of offset adjustment for TSP using time-space diagrams of vehicle trajectories

traveling through two signalized intersections.
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(a) Initial signal settings

(b) Adjusted offset

Figure 2.7: Example of passsive TSP: offset adjustment (source: Christofa (2012))
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Field Studies

Oliveira-Neto et al. (2009) studied active and passive bus priority strategies in mixed

traffic arterials. The study evaluated the operational performance of several scenar-

ios with and without priority, during peak and off-peak traffic periods. The 13 de

Maio Avenue in Fortaleza, Brazil, was selected as the case study. A field study of

the various scenarios indicated that passive priority strategies have low effectiveness

either under fixed- or real-time control, on heavy mixed traffic bus corridors. Passive

bus priority under fixed-time scenario changed the mean stopped delay in seconds per

vehicle and per traffic direction by -3.7% to 9.4% in comparison to the well-adjusted

fixed-time scenario.

Simulation Studies

Skabardonis (2000) developed passive priority strategies and determined optimal sig-

nal timings by minimizing a weighted combination of delays and stops offline. Weight-

ing factors accounted for passenger loads and as a result the system favored the buses.

A 6.7 km (4.2 mi) long segment of San Pablo Avenue, in the San Francisco Bay Area,

which includes 21 signalized intersections, was selected as the test site for evaluation

of the proposed strategies. The study site was modeled in TRANSYT and CORSIM.

The optimal signal settings in the passive priority strategy resulted in a 14% decrease

in bus delay without significant negative effect on the rest of the traffic.

Oliveira-Neto et al. (2009) tested passive and active signal priority strategies

on a 1.5 mile long segment of the 13 de Maio Avenue arterial in Fortaleza, Brazil,

that included 10 signalized intersections. The passive TSP strategy was modeled in

TRANSYT. The results of the study did not favor the adoption of the passive priority

techniques for this specific case study. The authors also tested the SCOOT adaptive

control on the same site.
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Analytical Studies

There are no models analyticaly evaluating the impact of passive TSP strategies,

however, analytical evaluation can be performed with existing models that evaluate

delay when fixed-time signal control is in place. In the Highway Capacity Manual

(HCM, 2010), the average delay per vehicle for a lane group is given as the sum of the

uniform delay, random delay, and initial queue delay. Since vehicles are not detected in

real-time to provide passive priority, the method for analytically evaluating MOEs is

the same as for fixed-time signals. The MOEs can be calculated simply by replacing

the calculated signal phases duration with the ones designed for the passive TSP

strategies.

2.1.2.2 Active Priority Strategies

Active priority strategies provide priority to a transit vehicle based on real-time infor-

mation of traffic conditions and transit arrivals. These strategies may change regular

traffic signal settings in response to detection of a transit vehicle. Active TSP strate-

gies use real-time transit vehicle information and consequently are more effective than

passive strategies in improving transit performance. In addition they may cause fewer

negative effect on cross street traffic operations. However, active TSP strategies may

negatively affect signal coordination and require vehicle detection and communication

systems, which are often expensive. Different types of active priority strategies are

as follows:

• Phase extension (green extension): when a transit vehicle is detected to be

approaching an intersection, a phase extension strategy extends the green time

for the phase that serves the transit vehicle to provide the right-of-way to the

transit vehicle as soon as possible (Figure 2.8).

• Phase advance (red truncation): when the signal is red for an approaching

transit vehicle, this strategy may expedite the return to green for the transit
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phase by shortening the non-transit green phases and therefore truncating the

red for the subject transit phase (Figure 2.8).

• Phase insertion: when a transit vehicle is detected, a special phase may be

inserted (Figure 2.9).

• Phase rotation: the order of the signal phases may be rotated to prioritize

transit vehicle movement (Figure 2.9).

Field Studies

The City of Portland and the Tri-County Metropolitan Transportation District of

Oregon (Tri-Met) conducted the Powell Boulevard Bus priority Pilot Project (Kloos

et al., 1994). The test was designed to evaluate the application of phase extension

and phase advance TSP strategies. A 2-mile four-intersection segment of SE Powell

Boulevard between Milwaukie and 50th Avenues in southeast Portland was selected

as the test site. The amount of green extension or early green allowed was up to 10

seconds per cycle during off-peak periods and up to 20 seconds during peak periods.

Overall, the TSP strategy decreased delay for bus passengers by more than 12% and

decreased bus travel times by 5%-8% during the peak period. However, the change

in total intersection person delay was insignificant during the peak periods, although

the person delay did increase slightly in the off-peak period. The TSP’s effect on

total vehicle delay was insignificant.

In Northern Virginia (Rakha and Ahn, 2006) an 8.06 miles long corridor from

Fairfax County Parkway to North King/Shields intersection including 27 signalized

intersections was analyzed. A 10-second green extension resulted in 3% to 6% re-

duction of the overall bus travel time. During peak periods, intersection bus delays

decreased between 9.26% and 23%. Bus delay reduction during off peak hours was

10.17%, while a 13.3% reduction was observed during the entire morning analysis
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(a) Initial signal settings

(b) Phase advance and phase extension

Figure 2.8: Phase advance and phase extension (Christofa, 2012)
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(a) Initial signal settings

(b) Phase insertion/phase rotation

Figure 2.9: Phase insertion and phase rotation (source: Christofa (2012))
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period.

Simulation Studies

Kamdar (2004) used VISSIM to evaluate the impacts of TSP at twenty-six signalized

intersections along U.S. 1 corridor in Northern Virginia during the morning peak pe-

riod. The MOEs used were transit travel time, bus control delay, and queue length

on side streets. The results showed that on the priority approach bus travel time de-

creased by 0.8%-4%, bus control delay decreased by 5%-16% and total queue length

on the side streets increased by about 1.23%.

Analytical Studies

A thorough literature review indicates that very few studies have used analytical

models to evaluate TSPs. Jacobson and Sheffi (1981) developed an approximate

stochastic analytical model to evaluate the bus priority impact on person delay at a

signalized intersection. For simplicity, an isolated intersection with a one-way main

street and a one-way cross-street, where the buses operated only on the main street,

was considered. Both phase extension and phase advance strategies were applied.

Based on the probability density functions and an expression for the mean vehicle

delay, impacts of the priority strategies on the total person delay were estimated.

Liu et al. (2008) developed a model to estimate the impact of the phase exten-

sion and phase advance priority strategies on vehicle delay at an intersection. In

this study it was assumed that TSP implementation does not significantly affect the

randomness of the traffic flow arrivals to the intersection; consequently, the random

delay was assumed to remain unchanged before and after the implementation of the

TSP strategies. Therefore, the impact of TSP was evaluated by assuming determin-

istic arrivals and service rates considering a D/D/1 queuing system. Vehicle arrival
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and departure rates were assumed to be constant. The analytical model results were

compared to the simulation models results obtained using VISSIM.

Abdy and Hellinga (2011) developed an analytical model to evaluate the impacts

of phase extension and phase advance priority strategies on vehicle delay. The model

is applicable to individual intersections. It was assumed that the intersection can

be modeled as a D/D/1 queuing system with constant arrival rates. The results

obtained from the analytical model closely matched those obtained from the micro-

simulation analysis for volume-to-capacity ratios up to 0.8. VISSIM was used for the

micro-simulation modeling analysis.

Overall previous analytical studies did not perform a comprehensive analysis the

impact of TPT alternatives on person delay and person discharge flow when im-

plemented individually or in combination. Also, previous analytical models did not

capture the effect of platooned vehicle arrivals at intersections.

2.1.3 Impacts on Other Traffic

Previous studies have confirmed that TSP implementation will increase the delay

for vehicles traveling on conflicting phases. TSP with IBL implementation increased

cross-street delay by 17% to 58% (2007). Almost all real-time signal control with

TSP studies have considered TSP impacts on other than the priority vehicles in their

mathematical formulations. These formulations mainly consider vehicle delays for

the conflicting approaches. Although delays for traffic on the conflicting phases will

increase, appropriate TSP design may reduce total person-delay of the system.

2.1.4 Near-side Bus Stops Presence

In addition to the implementation of TPTs, the presence of bus stops can play a very

important role in traffic and transit performance. The most common type of bus stop

is the curbside stop where buses block a travel lane while stopping (Fitzpatrick and

Nowlin, 1997). These stops are often located at a short distance from the stop line of
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signalized intersections (so called near-side stops) to eliminate the spillback effect that

occurs when a bus stops at the far side of the intersection and to provide convenient

crosswalk access for passengers (Fitzpatrick et al., 1996). However, buses dwelling

at near-side bus stops may block the through and right-turn lane on the intersection

approach, reducing intersection capacity and potentially disrupting traffic flow.

Several studies have investigated the impact of bus stops on the performance

of signalized intersections. Wong et al. (1998) developed a microscopic simulation

model to investigate the delay at a signalized intersection for near-side bus stops

based on factors such as the distance between the bus stop and the stop line, car

and bus flows, bus dwell time, and signal settings. Furth and San Clemente (Furth

and SanClemente, 2006) modeled the influence of bus stop location and roadway

grade on bus delay based on vehicle characteristics such as acceleration and bus dwell

time. Other studies investigated the effect of bus stops on the capacity of signalized

intersections. Zhao et al. (2007) used a two-lane cellular automaton (CA) model to

evaluate roadway capacity based on factors such as stop location, signal timing and

bus dwell time. Most recently, Gu et al. (2013) investigated the impacts of near-

side bus stops on residual queue length and car delays using kinematic wave theory.

While several studies have examined the impact of bus stops on vehicle delay and

capacity of signalized intersections, there is a gap in determining how the presence of

bus stops affects the performance of TPTs with regard to person-based measures of

effectiveness (MOEs).

2.2 Bus Travel Time Prediction

Short-term travel time predictions include prediction of travel times after a few

seconds to possibly a few hours using current and past traffic information (Vlahogianni

et al., 2014). Several applications of intelligent transportation systems (ITS) rely on

short-term travel time predictions including advanced traveler information systems
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(ATIS) and transit signal priority (TSP) strategies. ATIS provides information to

travelers to decide on their destination and reach them quickly and safely (Noonan

and Shearer, 1998). Inaccurate transit travel time prediction can increase traveler

waiting times at bus stops and therefore, reduce system reliability. When active

and real-time TSP strategies are implemented, the system detects the presence of a

bus approaching the intersection and places a priority request to the traffic signal

controller. By predicting the bus arrival time at the intersection stop line, the signal

controller decides whether to provide priority or not and at what time. Since a few

seconds of green extension or red truncation are provided (e.g., 5 or 10 seconds),

the predicted arrival time at an intersection stop line must be accurate and within

a required strict level of tolerance (e.g., within a 5-second error bound). Inaccurate

bus arrival predictions can restrict real-time signal control systems with TSP from

realizing their full potential in improving car and transit operations (Christofa et al.,

2016).

Automated vehicle location (AVL) systems have been widely adopted by transit

operators since they allow bus tracking and gathering of vehicle location and time

data that can be used for scheduling and management purposes. AVL data sampling

can be categorized in distance/location-based, time-based, and event-based sampling

(Jenelius and Koutsopoulos, 2012). In location-based sampling, data are polled at

fixed locations such as bus stops or intersections while in distance-based sampling data

are sampled at specific distances from the previous record. In time-based polling, data

are stored at fixed-time intervals (e.g. every 1 second or every 60 seconds) and in the

event-based sampling data are polled when specific events occur (e.g., when a stop is

requested).

While AVL systems offer an abundance of information to be used for improved

transit operations and management, they have a number of limitations. Low reso-

lution data sampling often caused by communication constraints, is one of the most
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important challenges when using AVL data. In this case the actual bus trajecto-

ries are not available and should be inferred from sparse data. Inferring trajectories

can be challenging specially in signalized urban arterials due to heterogeneous traffic

conditions.

The literature on travel time prediction models is extensive. Existing models can

be broadly categorized into parametric and non-parametric models. Parametric mod-

els include an assumption about their functional form and unknown parameters are

estimated by fitting the model to the training dataset (James et al., 2013). Func-

tional forms are often determined based on certain theories and then, unobserved

variables are estimated by various techniques including norm approximation such as

least-squares method (Tan et al., 2006), maximum likelihood (Hellinga et al., 2008,

Jenelius and Koutsopoulos, 2013) and Bayesian estimation (Hofleitner et al., 2012).

Parametric models investigated in previous studies include linear regression (Nikovski

et al., 2005, Tan et al., 2006), Kalman filtering (Cathey and Dailey, 2003, Hans et al.,

2014, Kumar et al., 2015, Liu et al., 2012), auto regressive integrated moving aver-

age (ARIMA) models (Ma et al., 2015), and accelerated failure-time survival models

(Gayah et al., 2016).

Non-parametric models have also been used for short-term travel time prediction.

Non-parametric models do not make assumptions about the functional form of the

model, but they try to estimate a functional form that fits the data points as well

as possible (James et al., 2013). Various machine learning techniques have been

used with this type of models including support vector regression (SVR) with non-

linear kernel (Yu et al., 2011, 2012, Hu et al., 2016) artificial neural network (ANN)

(Chien et al., 2002, Jeong and Rilett, 2005, Khosravi et al., 2011, Mazloumi et al.,

2011, Jeong and Rilett, 2004, Ma et al., 2015), k-nearest neighbors (KNN) (Myung

et al., 2011, Baptista et al., 2012, Tak et al., 2014), additive model (Kormaksson

et al., 2014), Gaussian process regression (Idé and Kato, 2009), and ensembles (van
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Hinsbergen et al., 2009, Zhang and Haghani, 2015). Non-parametric models are

powerful tools in predicting bus travel times to specific locations when AVL records are

available at those locations; however, these models might result in inaccurate travel

time predictions of locations where AVL records are not available to train the model.

That is because for such locations in-between records, assumptions need to be made

to estimate arrival times (e.g., travel time is a linear function of traveled distance).

Parametric models can be used to decompose travel time into its components and

provide estimates for each component. As a result, parametric models provide a

more powerful tool for inferring vehicle trajectories between two specific locations for

which AVL records are not available.

The vast majority of previous studies have investigated bus travel time between

fixed locations (e.g., bus stops) with the use of both parametric and non-parametric

models (Jeong and Rilett, 2004, Chen et al., 2005, Lin et al., 2013, Hernandez, 2014).

In the absence of data for a specific location, interpolation is performed to infer travel

time to that point (Sinn et al., 2012). Interpolation is reasonable for relatively high-

resolution data polling; however, reduction in the sampling frequency can significantly

reduce prediction accuracy and precision.

Since the main factors affecting bus travel time uncertainty are dwell times at

bus stops and intersection delays, improvements in the dwell time and intersection

delay estimates can enhance prediction accuracy (Baptista et al., 2012). While most

studies consider bus dwell times in estimating bus arrival time, few studies have taken

into account the intersection delay component. For instance, Bie et al. (Bie et al.,

2011) developed analytical models to estimate bus arrival time at the intersection

stop line, which can be used to estimate bus delay at the intersection. Bus stops were

not taken into account and the model required detailed data on speed and signal

settings. Average intersection delay has been estimated in previous studies (Tan

et al., 2006, Gibson et al., 2015, Farid et al., 2016); however, expected intersection
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delay values over all buses in the training data set were estimated instead of individual

bus intersection delay. Modeling intersection delay by an average value can reduce

accuracy of the models in predicting bus travel time sufficiently accurately for use in

TSP systems.

2.3 Real-time Signal Control Systems with Transit Priority

Real-time signal control systems with transit priority are responsive to transit re-

quests as well as the current traffic conditions in real-time. Real-time signal control

systems with TSP provide priority while optimizing given traffic performance criteria

such as vehicle delay, person delay, and transit delay. In general, real-time signal

control systems with TSP require traffic detection (both transit and non-transit vehi-

cles) and communication systems, estimation of appropriate performance measures,

estimation of traffic demand and bus arrival time to stopline, and a decision system

as shown in Figure 2.10.

Figure 2.10: Simplified real-time signal control architecture

Vehicle detection can be performed at the local level or at the network level. At

the local level, vehicles may be detected approaching an intersection through the use

of various sensing technologies (e.g. inductive loops, active infrared sensors, etc.) that

do not look beyond a certain distance from the intersection (a few hundred feet). De-
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tection at the network level is accomplished through automatic vehicle location (AVL)

system, where vehicles communicate their position to a centralized transit or traffic

management center through the use of Global Positioning System (GPS) or other

automated vehicle location technologies. The communication system is responsible

for linking the detection system to the traffic signal control system.

Macroscopic, mesoscopic, or microscopic models are used to estimate the current

state of traffic conditions based on raw data obtained from the detectors. Vehicle

arrival times at intersections are estimated as well. Finally, optimal values for the

decision variables (green phases, and cycle times) are calculated by optimizing selected

performance measure(s) such as total vehicle delay.

Real-time traffic signal control systems that have incorporated TSP are as follows:

• SCOOT

Split Cycle Offset Optimization Technique (SCOOT) was originally developed

in England (Hunt et al., 1982). SCOOT is a centralized traffic signal control

system which works both on arterials and grid networks and automatically

responds to variations in traffic demand. The performance of SCOOT relies

on traffic flow data obtained from detectors. The system needs a large number

of detectors which should be located at pre-determined upstream locations on

every link (usually at the upstream end of the link). Downstream detectors are

used to determine left turning movements and optimize left turning phase.

The SCOOT algorithm estimates vehicle delays and number of stops on each

link and determines the system’s performance index (PI). The PI is typically

the sum of the average delay and the number of stops at all approaches in

the network. SCOOT incrementally adjusts signal control parameters such as

phase durations, cycle lengths, and offsets of pre-timed signal plans based on

the actual traffic flow fluctuations (Bretherton et al., 2002). The Split optimizer
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equalizes saturation and congestion, offset optimizer minimizes delay, number

of stops and congestion, and cycle optimizer minimizes delay.

Transit signal priority is provided through phase extension or phase advance. In

SCOOT 4.4, different priority levels between 0 and 6 can be provided for buses

based on some mechanisms outside SCOOT. When an AVL system is present,

the priority level can be determined based on the bus headway or timetable

(Bretherton et al., 2002).

In London, SCOOT operation began in early 1984. An assessment of bus pri-

ority field trials in the areas of Camden Town and Edgware Road in London in

1996 showed that SCOOT reduced bus delay by 1% to 71% depending on the

selected strategy (e.g. central extensions, local extensions, etc.) and saturation

ratio (SCOOT, 2015).

• SCATS

The Sydney Coordinated Adaptive Traffic System (SCATS) was developed by

the Roads and Traffic Authority of New South Wales, Australia (Sims and

Dobinson, 1980). SCATS adjusts phase duration and offsets in response to

variations in traffic flow and system capacity, using some predefined plans. For

each intersection, SCATS distributes its computations between the field con-

troller and a regional computer at the operations center. The computer makes

incremental adjustments to traffic signal timings based on minute by minute

changes in traffic flow at each intersection. SCATS divides the network into

smaller sub-networks and designs signal settings for each of them independently.

Data is obtained by detectors which are located at the intersection stop lines.

SCATS has three control levels: central, regional, and local. The central com-

puter is responsible for communications and the database function while the
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regional computer and local traffic controllers handle the strategic and tactical

controls respectively.

In the strategic control, the algorithm selects suitable signal timings on a cycle

by cycle basis for the target area and sub-areas based on average prevailing

traffic conditions. The algorithm uses car equivalent flow, degree of saturation

and signal phase timings information. The tactical control, may modify the

plan provided by the strategic control taking into account the demand.

Slavin et al. (2013) conducted a before and after study of SCATS implemen-

tation with TSP along Powell Boulevard, Portland, Oregon. The study reports

both negative and positive effects of the SCATS implementation on travel speed.

Four tests were conducted at two intersections for both east and west bound

approaches. One of the tests indicated a 22% increase in general traffic travel

speed, however, on the other three tests, general traffic travel speed was reduced

by 7% to 21%. During peak periods, transit travel time in the eastbound direc-

tion was improved, however, in the westbound direction transit travel time did

not improve.

• RHODES

The Real-Time, Hierarchical, Optimized, Distributed, and Effective System for

traffic control (RHODES) was developed at the University of Arizona (Mirchan-

dani and Head, 2001). Using a dynamic programming approach, this system

finds the optimum signal phasing and timing for an intersection while taking

into account delay, number of stops, and queue lengths. RHODES was de-

veloped to estimate arrival of vehicles on all approaches and optimize phase

durations based on the user-defined objectives, such as minimizing average de-

lay or number of stops.
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The intersection control strategy of RHODES treats each vehicle alike by as-

signing an identical weight to it. To predict future arrivals at the intersection,

RHODES uses data obtained from detectors on the approach of each upstream

intersection, and takes into account the traffic state and signal phase timings of

the upstream signals.

RHODES control was studied in a field-test in the City of Tempe, Arizona (Mir-

chandani and Lucas, 2001). The results indicated that RHODES performed as

well as Tempeś existing finely-tuned semi-actuated coordinated control system.

In this study, TSP strategies were not implemented, however, it has been men-

tioned that RHODES can be expanded to include TSP as shown in Figure 2.11.

Figure 2.11: TSP implementation in RHODES (source: Mirchandani and Lucas
(2001))

In RHODES each detected vehicle is treated equally and consequently buses can

not get priority over other vehicles. Mirchandani and Lucas (2004) presented

Categorized Arrivals-based Phase Reoptimization at Intersections (CAPRI) which

integrated TSP and rail/emergency preemption with RHODES. In RHODES-
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CAPRI TSP is provided either by giving each bus a variable weight which

depends on how late the bus is and on the bus passenger occupancy, or by

providing a constraint to set signal phase to a desirable phase at a specified or

scheduled time. A simulation test using CORSIM along an arterial was con-

ducted and the RHODES control was implemented at a single intersection. In

comparison to standard semi-actuated control (SAC), for low cross-street vol-

umes (550 vehicles per hour per direction), RHODES without TSP reduced

bus delay and cross-street delay by 0.23% and 43.69% respectively. RHODES

with TSP (RHODES-BP) decreased bus delay and cross-street traffic delays by

0.66% and 39.77% respectively. For high cross-street volumes (1100 vehicles per

hour per direction), RHODES-BP reduced bus delay by 4.46% and increased

cross-street traffic delay by 4.8%.

• UTOPIA

The Urban Traffic Optimization by Integrated Automation system (UTOPIA)

is an adaptive signal control system that was first developed and implemented

in Italy in 1985. The objective of the system was to integrate real-time traffic

control with transit priority needs. The controllers determine the signal con-

trol settings based on local traffic demands, transit priority, and coordination

requirements (Shepherd, 1992).

UTOPIA can provide absolute, weighted, and selective priority to buses and

trams at signalized intersections and also can be extended to emergency and

very important person (VIP) vehicles. UTOPIA needs detectors only on the

intersection approaches with significant traffic volumes and where traffic fluc-

tuates significantly. UTOPIA was first implemented in a large area in Turin,

Italy (Donati et al., 1984). Field results indicated that both private and public

vehicles’ travel times reduced on the order by about 9%-15%.
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• SPPORT

The Signal Priority Procedure for Optimization in Real Time (SPPORT) is

a rule-based model that provides transit priority. The system evaluates the

individual priority levels of all incoming requests and determines the aggregated

priority level for each phase. A set of possible signal plans is determined for a

planning horizon based on the current signal status. The plan with the lowest

delay is selected for the next implementation period (e.g., 5 seconds). (Yagar

and Han, 1994)

The objective of SPPORT is to minimize total intersection delay. In SPPORT

detectors are located about 150 and 1000 meters upstream from an intersection.

Information on the current queue lengths and the future arrivals of vehicles is

provided by these detectors. Given this information, SPPORT generates a short

term (5 second) plan. This plan is then re-evaluated after a 5-second duration

and a new plan is implemented (Garrow and Machemehl, 1997).

SPPORT was tested through simulation for the Queen and Bathurst Street

intersection in Toronto, Canada. The simulation results indicated that the

delay per person was reduced by about 50% with SPPORT. Delay per vehicle

for both private vehicles and streetcars was also reduced by roughly 50% in

comparison to the existing conditions (Garrow and Machemehl, 1997).

• MOTION

The Method for the Optimization of Traffic Signals In On-line controlled Net-

works (MOTION) is a decentralized and hierarchical signal control system which

was developed in Germany (Bielefeldt and Busch, 1994). The system minimizes

delays and stops in the network by optimizing phase durations and sequences,

cycle lengths, and offsets (Busch and Kruse, 2001). MOTION provides special

priority to public transport vehicles both on the network and the local level. It
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can provide absolute and relative priority. In the absolute priority, bus delay at

all intersections will be zero regardless of the general traffic conditions. In the

relative priority, priority is given to transit vehicles only if the auto delay does

not exceed predefined thresholds. The detectors are located near stopline.

• PAMSCOD

The Platoon-based Arterial Multi-modal Signal Control with Online Data (He

et al., 2012) is a unified platoon-based mathematical formulation which con-

siders multiple travel modes in a vehicle-to-infrastructure communications en-

vironment to perform arterial traffic signal control. Its objective function is to

minimize the sum of slack variables representing the total green rest time as

well as the total weighted delay. Green rest happens when green reaches max-

imal in one ring while the other ring does not reach the barrier which causes

the ring to rest on the barrier. Using mixed-integer linear programming, the

algorithm determines signal timings for four cycles in the future based on the

predicted platoon sizes and locations, current traffic controller status, online

platoon data and priority requests every 30 seconds. Transit signal priority can

be applied using weighting factors which can be adjusted for individual vehicles

based on vehicle characteristics, such as vehicle occupancy. Microsimulation us-

ing VISSIM showed that PAMSCOD was able to improve vehicle and bus delay

at degrees of saturation greater than 0.8 but often experienced higher delays at

saturation rates of less than 0.6.

• Person-based Real-time Signal Control System Christofa et al. (2013)

presented a person-based traffic responsive signal control system for implement-

ing TSP on conflicting transit routes at an isolated intersection. A mixed-integer

nonlinear program was used with the objective of minimizing total person delay.

The proposed method was tested both analytically using deterministic arrival
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tests and with micro-simulation tests (stochastic arrival tests) using Aimsun.

The deterministic test results for the intersection flow ratio of 0.90, indicated

that the person-based optimization in comparison to the vehicle-based opti-

mization reduces total person delay at the intersection by 5% by decreasing bus

delay by 26% and increasing auto delay by 2%. Results from the simulation

test for an intersection flow ratio of 0.6, showed that the person-based approach

in comparison to the vehicle-based approach reduced bus delay by 31%. In an-

other study, Christofa et al. (2013) presented the formulation of an arterial-level

person-based traffic responsive signal control system.

2.4 Stochasticity in Transit Vehicle Arrivals

Early detection of a transit vehicle is key in allowing more time to adjust the signals to

provide priority while minimizing impacts on the rest of the traffic (Smith et al., 2005).

Another critical issue in designing real-time signal control system with TSP is the

ability to accurately predict vehicle arrival times at intersections as well as “optimal”

times to place priority requests (Liu et al., 2007). Efficient real-time signal control

highly depends on the availability and precision of vehicle arrival time estimation (Liu

et al., 2007).

Bus dwell time at a bus stop plays an important role in predicting transit arrival

times. If dwell times were perfectly predictable, transit vehicle arrival times could be

predicted more accurately. However, dwell times generally exhibit some variability,

which creates uncertainty in arrival predictions. Dwell time variability is mainly

because of the variable number of passengers boarding/alighting, the boarding and

fare collection process, etc. Other factors such as traffic conditions and driver behavior

may also affect variability of bus travel time and therefore transit vehicle arrival time.

Regression analysis has been used to estimate bus dwell time at bus stops as a

function of various variables such as passenger loads and bus headway (Kim and
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Rilett, 2005, Tan et al., 2008, Ekeila et al., 2009). Linear regression models are based

on a set of assumptions such as: the error terms are independent of each other, have

a zero mean, and have a constant variance across all values of the predictor variables.

If one or more of these assumptions does not hold, the analysis is invalid (Gujarati,

2003). Also, regression models depend highly on historical data to develop a pre-

diction model, which will reduce their efficiency in real-time predictions, especially

where traffic conditions may change significantly.

Due to randomness in transit dwell time and delay at intersections, transit arrival

time prediction is highly uncertain. To overcome this uncertainty, the arrival time

window concept has been introduced. Signal settings are adjusted so that the transit

phase is green for an arrival time window within which the bus is expected to arrive.

Based on the phases that contain the start and end points of the priority window,

an appropriate TSP strategy, green extension, early green, or phase insertion can be

selected as shown in Figure 2.12.

Figure 2.12: Priority windows for TSP (source: Wen et al. (2012))
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Kim and Rilett (2005) used weighted-least-squares regression modeling to estimate

bus stop dwell time and its arrival time at the stop line. The study proposed a TSP

algorithm which accommodates the bus dwell time as well as its variability. The

algorithm provides a priority phase wide enough to accommodate the 100(1-α)%

estimated interval of dwell time at the nearside stop (Figure 2.13). The proposed

algorithm was tested on an urban arterial section of Bellaire Boulevard in Houston,

Texas, using VISSIM. Results indicated that the proposed TSP algorithm decreased

bus delay without significantly affecting auto delays in comparison to the existing

deployed TSP algorithm.

Figure 2.13: Prediction interval in TSP (source: Kim and Rilett (2005))

Wadjas and Furth (2003) developed a TSP algorithm in which transit vehicles are

detected two to three cycles in advance of their arrival at an intersection stopline,

and the transit-serving phase is green for a 40-second predicted arrival window. The

algorithm was tested on a light-rail system on Massachusetts’ Huntington Avenue

corridor, Boston. The algorithm resulted in 82% of the trains arriving during the green

phase, and substantially improved the transit travel time with negligible impacts on

auto vehicles.
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2.5 Summary of the Literature

Table 2.1 summarizes the MOEs that have been used in TPT (space TPTs and time

TSP) field studies. These studies suggest that TPTs may, depending on the strategy

implemented as well as other factors, decrease transit travel time by 1% to 12% with

minor to major negative impacts on other vehicles travel times. Table 2.2 summarizes

simulation studies that have focused on TPT evaluation. These studies indicate

that the results of the simulation models have been inconsistent and project-specific.

Effects of TPTs on different MOEs vary among studies due to other factors influencing

the effectiveness of TPTs such as traffic conditions, and transit characteristics (e.g.,

bus volume, transit routes, and bus and geometric configuration) (Skabardonis, 2000).

Very few studies have comprehensively evaluated the combined effects of time

priority and space priority strategies on traffic and transit performance. Even the ones

that have studied combined effects (Currie et al., 2013) have not incorporated person-

based MOEs, such as person delay and person discharge flow in their evaluation,

therefore, ignoring the contribution of transit vehicles in serving more people than

private vehicles. In addition, very few studies have developed analytical models for

TPT evaluation in general and none of them have compared TPTs using person-based

measures. A comprehensive person-based evaluation of different spatial TPTs in the

presence of near-side bus stops at intersections is missing.

Effective implementation of the TPTs is highly dependent on accurate bus arrival

time predictions especially when the only available data is low frequency AVL data

sampling. One of the objectives of this study is to develop a model that predicts

bus travel time at signalized urban arterials under the assumption of pre-timed signal

control and existence of dedicated bus lanes. A review of the literature indicates that

the majority of previous studies have studied bus arrival time at fixed locations like

bus stops using location-based or high resolution time-based data sampling protocols.

Very little research has been devoted to estimating bus travel time to any location
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by inferring trajectories using low resolution AVL data. In addition, few studies have

investigated the intersection delay component of the bus travel time and even those

who have taken into account, they have either assumed perfect information about

signal status and timings or have considered average values for intersection delays

over all buses for travel time predictions purposes.

While traditional traffic signal control systems rely on historical data to develop

optimal signal timing plans, recent systems increasingly rely on real-time data to

provide real-time control that automatically adapts to changes in traffic conditions.

Adjustments of signal timings to traffic conditions can potentially improve system

efficiency. Various real-time TSP systems have been designed, however, to the best of

the auhor’s knowledge, no studies have taken into account the stochastic bus arrival

times while providing priority window for buses.
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Table 2.1: Field Studies on Transit Preferential Treatments

Study TPT Transit Test Site Average Cross- Number of Schedule Transit Transit Speed Transit

System Person Street Stops for Adherence Intersection Travel

Delay Delays Transit Delay Time

Seattle, WA TSP Bus Corridor ↓ 0.02 - Not ↑ 3.9%- ↓ 1%-5%

(Zheng et al., 2009) 0.05 s Significant 27.4%

Portland, OR TSP Bus Corridor ↓ 2%-11 %

(Kittelson et al., 2003)

Portland, OR TSP Bus Corridor 5%

(Kimpel et al., 2005) (Total)

Helsinki, Finland TSP Bus Corridor ↓> 40%

(Lehtonen and Kulmala, 2002)

Miami, FL TSP Bus Corridor ↑ 8.3% ↓ 4% ↓ 1.4%

(Pessaro and Van Nostrand, 2011) 12.1%

Shizuoka City, Japan TSP Bus Corridor ↑ 17% - ↓ 6.2%

(Sakamoto et al., 2007) & IBL 58%

Lisbon, Portugal IBL Bus Corridor ↑15% - 25%

(Viegas et al., 2007)

Melbourne, Australia IBL Streetcar Corridor ↑ 1% to 10%

(Currie and Lai, 2008)
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Table 2.2: Simulation Studies on Transit Preferential Treatments

Study TPT Transit Test Site Average Cross- Number of Schedule Transit Transit Speed Transit

System Person Street Stops for Adherence Intersection Travel

Delay Delays Transit Delay Time

Minneapolis, MN TSP Bus Corridor ↓ 4% -15%

(Liao and Davis, 2007)

Arlington, VA TSP Bus Corridor ↑8.7% ↑0.94% ↑2.82%

(Dion et al., 2004) ↓1.64% ↓1.04% ↓3.17%

(Total)

Boston, MA TSP Bus 4 Intersections ↓22 s

(Furth et al., 2010) Network (50%)

Arlington, VA TSP Bus Corridor ↑0.6% ↑3.2%

(Chang et al., 2003)

Fairfax, VA TSP Bus Corridor ↓5%- ↓0.8%-4%

(Kamdar, 2004) 16%

Berkeley, CA TSP Bus Corridor ↓1% ↓2-6 s ↑4%

(Skabardonis, 2000)

Vancouver, Canada TSP Light Intersection Not ↓6%- 8%

(Ekeila et al., 2009) rail Significant

West Valley City, TSP Bus Corridor ↓10%-23% ↓20%- ↑7%-13% ↓6%-14%

(Zlatkovic et al., 2012)

UT & QJL 70%

(Zlatkovic et al., 2012)

Pleasanton, CA TSP Bus Corridor ↓30%

(Lahon, 2011) & QJL

Rostov-on-Don,Russia IBL Bus Corridor 8%-20%

(Zyryanov and Mironchuk, 2012)
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CHAPTER 3

TPT EVALUATION

Extensive literature exists on the impact of transit preferential treatments on traffic

and transit operations, however, very few studies have evaluated TPTs using ana-

lytical models. In addition, there is limited research on investigating the impact of

space and time TPTs, individually and in combination, on traffic and transit oper-

ations. Furthermore, existing studies have used various performance measures such

as: vehicle delay, schedule adherence, travel time and queue length; but, very few

studies have used person-based measures in their evaluation. This chapter presents

an analytical model to evaluate TPTs using person-based measures, which could be

used for such assessments without the need for expensive simulations.

3.1 Transit Preferential Treatment Alternatives

Three types of space TPTs and one type of time TPT have been selected for evaluation

with regards to their impact on person delay and person discharge flow at signalized

intersections. These TPTs are first implemented and evaluated individually. Then,

three space priority strategies are combined with the one time priority strategy to

investigate their impact when implemented together. TPTs that are studied consist

of:

• Space TPTs

– Queue Jumper Lane Addition: Queue jumper lanes are modeled according

to the TCRP Report 19 guidelines (Fitzpatrick et al., 1996). The report
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provides guidelines for locating and designing bus stops in various oper-

ating environments. Right lane near-side and far-side open bus bays are

added for bus deceleration and acceleration on the direction of interest at

all intersections. Right-turning vehicles are allowed to use queue jumper

lanes. The second type of QJL (see section 2.3) is studied as part of this

dissertation.

– Bus Lane Addition: A dedicated bus lane is added on the direction of

interest. The lane’s width is the same as for the rest of the lanes, and

right-turning vehicles are allowed to use it.

– Bus Lane Substitution: The right most existing lane is substituted for

a dedicated bus lane on the direction of interest, which can be used by

right-turning vehicles.

• Time TPTs

– Transit Signal Priority: Phase extension is applied for a chosen transit

movement at all intersections when needed. When a TSP-equipped vehicle

passes the priority request detector during the green phase, the strategy

extends the green time for 10 seconds for that movement. Early green, as

well as phase rotation or insertion, are not considered in this study.

3.2 Analytical Model for Evaluation of the MOEs

The analytical model presented in this chapter is an improvement to a model pre-

viously developed by Christofa et al. (2013). The model estimates vehicle delay

and consequently person delay accounting for passenger occupancy of vehicles at sig-

nalized intersections when vehicles arrive in platoons and when transit vehicles are

present during some of the cycles. In this study, the previously published model is

extended to estimate vehicle discharge flow and therefore, person discharge flow and
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estimate transit vehicles delays when space TPTs are in place. In addition, the current

study addresses shortcomings of the previous research, as the former model could not

evaluate the DBL or QJL performance with respect to various person-based MOEs.

In addition, the impact of nearside bus stops on traffic operations and performance

measures was not accounted for in previous research efforts.

The addition of a QJL, addition of a DBL, and substitution of a mixed-traffic

lane for a DBL are the three spatial TPTs selected for evaluation in this study. For

the base case, no TPTs are considered to be available. Analytical models both in the

presence and absence of near-side bus stops are presented. In cases where bus stops

are available, right lane near-side stops are added at the intersection approaches. For

the existing conditions, a curbside bus stop located near-side the intersection are

considered. When DBLs or QJLs are available, it is assumed that the bus stop is

located within those lanes, not blocking general traffic. The impact of time TPTs

(TSP) is also investigated both individually (implemented on the base case) and

combined with each space TPT alternative.

For the development of the analytical model, it is assumed that vehicle operations

can be described by kinematic wave theory (KWT) (Lighthill and Whitham, 1955,

Richards, 1956) . Since the intersection under consideration is part of a larger sig-

nalized arterial, it is also assumed that autos travel in platoons. Platoon dispersion

is considered negligible, so the autos are served at capacity and arrive at the same

capacity flow at the downstream intersection. Therefore, all vehicle trajectories in a

platoon are parallel, as shown in Figure 3.1(a). It is also assumed that vehicles are

distributed equally between the lanes. In order to estimate the delay for a bus, it

is assumed that it behaves as a platoon of size one after it joins the queue (Figure

3.1(b)). Compared to autos, the estimation of bus delay is different in that its arrival

at the queue depends on the dwell time it experiences at a potential bus stop located

upstream of the subject approach.
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(a) Delay illustration for platooned autos (b) Delay illustration for bus b

Figure 3.1: Vehicle delay estimation for platoon arrivals and transit vehicles

The following list presents the notation utilized for the development of the ana-

lytical model:

C: cycle length [sec];

Dj,T : total delay of autos in lane group j during cycle T [veh-sec];

dj,T : delay of a single vehicle in the platoon in lane group j during a cycle T [sec];

db,T : delay of a single bus b during a cycle T [sec];

db,f : bus dwell time at bus stop f for bus b [sec];

Ge
j : effective green time for the phase that serves lane group j [sec];

j: lane group index (movement);

Kj: jam density [veh/ft];

N i
j,T−1: case i residual queue size of lane group j at the end of the previous cycle

T -1 [veh];

nb,T : position of bus b in the platoon during cycle T [veh];

Pj,T : total platoon size of lane group j during cycle T ;

P i
j,T : case i platoon size of lane group j during cycle T ;

Qj,T : auto vehicle discharge flow during cycle T [vph];

48



R
(1)
j : component of the red time from the beginning of the cycle until the start of

the green time for lane group j [sec];

R
(2)
j : component of the red time from the end of the green until end of the cycle

for lane group j [sec];

sj: total saturation flow of lane group j [vpm];

sij: saturation flow for the vehicles in lane group j that belong to case i [vpm];

T : signal cycle index;

tb,q: time it takes to serve the vehicles that are in queue in front of bus b [sec];

tj,T : platoon arrival time at the intersection of lane group j during cycle T [sec];

tb,T : arrival time of bus b at the intersection during cycle T if the bus does not

dwell at a bus stop [sec];

tDb,T : arrival time of bus b at the intersection during cycle T if the bus dwells at a

bus stop [sec];

tl,T : waiting time before a lane change occurs for vehicles that change lanes during

cycle T [sec];

Xb: bus position from the stopline when it arrives in queue [ft];

Xf : distance of bus stop f from the stopline [ft];

Xqj: queue jumper lane length [ft]; αp: the portion of lanes serving vehicles

associated with platoon p.

To estimate auto and bus delays, various possible cases that may occur are con-

sidered. Possible cases are introduced for each TPT alternative tested. The vehicle

discharge flow is calculated based on the number of vehicles served by the intersection

in each case. All things equal, a higher discharge flow would indicate lower delays

since there are no changes in the signal settings. However, both delay and discharge

flow are estimated and presented since different applications might require different

measures of effectiveness for their analysis.

49



3.2.1 Auto Delay

3.2.1.1 Base Case

The term base case refers to all cases where no TPT is implemented. Auto delays for

the base case are analyzed in two cases N and B. Case N represents the situation

in which there are no buses traveling during the cycle while in case B a bus travels

within the auto platoon and could stop at a bus stop or not. Bus delays for the base

sub-cases are evaluated using sub-case T equations.

Case N

Based on the platoon arrival time, platoon size, residual queue length, and signal

timing, different cases are considered. Note that for case N, PN
j,T and sNj are equal

to the total number of vehicles in the platoon, Pj,T , and total saturation flow for the

approach, sj, respectively.

• Sub-Case N1: Platoon arrival before residual queue served, entire platoon

served in green

Vehicles in the residual queue, NN
j,T−1, will be delayed by an amount of time

equal to the red time from the beginning of the cycle until the start of the green

time, R
(1)
j . All vehicles in the platoon will be served after the residual queue is

served and they will be delayed by the time interval between the arrival time of

the platoon and the time when the last vehicle in the residual queue is served.

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j + PN

j,T

(
(T − 1)C +R

(1)
j +

NN
j,T−1

sNj
− tj,T

)
(3.1)

Total Vehicle Discharge Flow Qj,T :

Qj,T =
NN
j,T−1 + PN

j,T

C
3600 (3.2)
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• Sub-Case N2: Platoon arrival before residual queue served, insufficient green

to serve entire platoon

Vehicles in the residual queue, NN
j,T−1, will be delayed by an amount equal to

the red time from the beginning of the cycle until the start of the green time,

R
(1)
j . A portion of vehicles in the platoon will be served after the residual queue

is served and they will be delayed by the time interval between the arrival time

of the platoon and the time when the last vehicle in the residual queue is served.

The rest of the vehicles in the platoon will be delayed an additional time interval

equal to the red time interval until the end of the cycle, R
(2)
j .

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j + PN

j,T

(
(T − 1)C +R

(1)
j +

NN
j,T−1

sNj
− tj,T

)

+ (PN
j,T +NN

j,T−1 −Ge
js
N
j )R

(2)
j (3.3)

The calculation of the discharge flow is based on the fact that the full green

time is utilized to serve vehicles

Total Vehicle Discharge Flow Qj,T :

Qj,T =
Ge
js
N
j

C
3600 (3.4)

• Sub-Case N3: Insufficient green to serve residual queue

All vehicles in the residual queue will be delayed by an amount equal to the red

time from the beginning of the cycle until the start of the green time, R
(1)
j , and

the ones that will not be served during cycle T will be delayed an additional

time until the end of the cycle, (C-R
(1)
j ). All vehicles in the platoon will be
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delayed by the time interval between the platoon arrival and the end of the

cycle.

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j + PN

j,T (TC − tj,T ) + (NN
j,T−1 −Ge

jsj)(C −R
(1)
j ) (3.5)

The calculation of the total vehicle discharge flow is based on the fact that the

full amount of green time is utilized to serve vehicles.

Total Vehicle Discharge Flow, Qj,T :

Qj,T =
Ge
js
N
j

C
3600 (3.6)

• Sub-Case N4: Platoon arrival after residual queue served, entire platoon served

in green

All vehicles in the residual queue will be delayed by an amount equal to the

red time from the beginning of the cycle until the start of the green time that

serves their lane group, R
(1)
j . The platoon will be served with no delay.

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j (3.7)

The calculation of discharge flow is based on the fact that the whole residual

queue and platoon are being served.

Total Vehicle Discharge Flow Qj,T :

Qj,T =
PN
j,T +NN

j,T−1

C
3600 (3.8)
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• Sub-Case N5: Arrival after residual queue served, insufficient green to serve

entire platoon

All vehicles in the residual queue will be delayed by an amount equal to the red

time from the beginning of the cycle until the start of the green time, R
(1)
j , and

the ones that will not be served during cycle T will be delayed an additional

time until the end of the cycle, (R
(2)
j ). All vehicles in the platoon will be delayed

by the time interval between the platoon arrival and the end of the cycle.

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j +

(
PN
j,T − ((T − 1)C +R

(1)
j +Ge

j − tj,T )sNj

)
R

(2)
j (3.9)

Total Vehicle Discharge Flow Qj,T :

Qj,T =
NN
j,T−1 + ((T − 1)C +R

(1)
j +Ge

j − tj,T )sNj
C

3600 (3.10)

• Sub-Case N6: Arrival after the green, entire residual queue is served

All vehicles in the residual queue will be delayed by an amount equal to the red

time from the beginning of the cycle until the start of the green time, R
(1)
j . All

vehicles in the platoon will be delayed by the time interval between the platoon

arrival and the end of the cycle.

Total Auto Delay, Dj,T :

Dj,T = NN
j,T−1R

(1)
j + PN

j,T (TC − tj,T ) (3.11)

The discharge flow is calculated based on the size of the residual queue since

those are the only vehicles being served during the current cycle.
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Total Vehicle Discharge Flow Qj,T :

Qj,T =
NN
j,T−1

C
3600 (3.12)

3.2.1.2 Effect of Near-side Bus Stop

When a bus traveling within the auto platoon dwells at the near-side bus stop, as

shown in Figure 3.2, the auto platoon can be divided into four separate sub-platoons

A, B, C, and D. Sub-platoon A consists of the autos traveling in the lane(s) other

than the lane that has the bus stop. Sub-platoon B includes autos in the bus stop

lane that are ahead of the bus. Sub-platoon C involves autos waiting behind the bus

and sub-platoon D includes autos behind the bus that decide to change their lane

to avoid waiting behind the bus. Sub-platoons A and B will continue their regular

trip while autos in sub-platoon C will stop and wait for the bus to finish loading

and unloading passengers and then leave the intersection; thus, autos in sub-platoon

C will experience additional delay due to the bus stop. Autos in sub-platoon D

are those vehicles behind the bus that will attempt to change lanes to avoid waiting

behind the bus while it dwells at the bus stop. Lane changing is possible when there

is enough free space in the lane adjacent to the bus stop lane. It is assumed that autos

in sub-platoon D will wait for sub-platoon A to clear, which is when the queue in

sub-platoon A’s lane is shorter than the distance from the stop line to the upstream

end of the bus stop. As a result, the autos that want to change lanes will experience

extra delay. If during a cycle, sub-platoon A does not allow enough free space for

lane changes, then autos in sub-platoon D will not be able to change lanes and the

size of sub-platoon D will be effectively zero.

In this study, the arrival time of the bus at bus stops is calculated assuming

that the near-side bus stop is located very near the stop line. As a result, the free

flow travel time from the bus stop to the intersection stop line is considered to be
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negligible, or that short time may be assumed to be part of the dwell time used for

the analytical calculations.

Figure 3.2: Platoons formed at an intersection approach with a near-side bus stop

Four sub-cases for the calculation of delay and discharge flow (BA, BB, BC, and

BD) are considered for platoons A, B, C, and D as follows:

• Sub-Case BA:

PBA
j,T = αA ∗ Pj,T (3.13)

sBAj = αA ∗ sj (3.14)

In Figure 3.2, the portion of lanes serving vehicles of platoon A, αi , is 0.5,

indicating that the size of platoon A is half of the total platoon size for that

lane group, because it includes vehicles that were originally in one lane of traffic.

Therefore, the saturation flow is also half of the total saturation flow of that

approach. Note that in this case, the residual queue of the previous cycle

(NBA
j,T−1) represents the residual queue of the previous cycle for platoon A, so it

is again half the size of the residual queue for the whole approach. By replacing

PN
j,T , sNj , and NN

j,T−1 with PBA
j,T , sBAj , and NBA

j,T−1 to the corresponding case N
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equations (equations 3.1-3.12), auto delay and discharge flow for Sub-Case BA

can be calculated.

• Sub-Case BB: The size of platoon B is equal to the number of autos in front

of the bus, which is:

PBB
j,T = nb,T = max(0, (tb,T − tj,T ) ∗ sBBj ) (3.15)

and the associated saturation flow is:

sBBj = αB ∗ sj (3.16)

where αB represents the portion of lanes serving vehicles associated with platoon

B, which is 0.5 for the case in Figure 3.2. The residual queue in front of

platoon B is the residual queue of platoon C from the previous cycle, NB
j,T−1C.

Similar to Sub-Case BA, auto delay and discharge flow for Sub-Case BB can

be calculated by replacing PN
j,T , sNj , and NN

j,T−1 with PBB
j,T , sBBj , and NBC

j,T−1 to

the corresponding case N equations (equations 3.1-3.12).

• Sub-Case BC: The size of platoon C is the portion of the total number of

vehicles behind the bus that will not change lanes. The total number of vehicles

behind the bus is the total platoon size of the subject lane group minus the sizes

of platoons A and B. So, the size of platoon C, PBC
j,T , is:

PBC
j,T = (1− β) ∗ (Pj,T − PBA

j,T − PBB
j,T )

= (1− β) ∗ (αC ∗ Pj,T −max(0, (tb,T − tj,T ) ∗ sBBj )) (3.17)
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where β represents the portion of vehicles that change lanes. In cases where

lane changing is not possible due to lack of free space, β is zero. The associated

saturation flow for platoon C is:

sBCj = αC ∗ sj (3.18)

In Sub-Case BC the bus is considered to be the first vehicle in platoon C and

therefore, the arrival time of the first vehicle in platoon C at the intersection

is equal to the arrival time at the bus stop plus the dwell time at the bus stop

and is calculated as follows:

tCj,T = tb,T + db,f (3.19)

The residual queue in front of platoon C is the residual queue of platoon B

in the same cycle, NBB
j,T . Similar to Sub-Cases BA and BB, auto delay and

discharge flow for Sub-Case BC can be calculated by replacing PN
j,T , sNj , tj,T ,

and NN
j,T−1 with PBC

j,T , sBCj , tCj,T and NBB
j,T to the corresponding case N equations

(equations 3.1-3.12).

• Sub-Case BD: The size of platoon D is the portion of the vehicles behind the

bus that will change lanes. So, the size of platoon D, PBD
j,T , is:

PBD
j,T = β∗(Pj,T−PBA

j,T −PBB
j,T ) = β∗(αD∗Pj,T−max(0, (tb,T−tj,T )∗sBBj )) (3.20)

and the associated saturation flow is:

sBDj = αD ∗ sj (3.21)
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In Sub-Case BD, the arrival time of the first vehicle in platoon D, tDj,T , at the

intersection is the arrival time of the bus at the intersection stop line, tb,T , plus

the waiting time before a lane change occurs, tl,T .

tDj,T = tb,T + tl,T (3.22)

Lane changing waiting time is equal to the time platoon D is waiting behind

the bus before it is capable of changing lanes, therefore, it depends on platoon

Aś movement. The residual queue in front of platoon D is the residual queue of

platoon A in the same cycle. Auto delay and discharge flow for Sub-Case BD

can be calculated by replacing PN
j,T , sNj , tj,T , and NN

j,T−1 with PBD
j,T , sBDj , tDj,T

and NBA
j,T to the corresponding case N equations (equations 3.1-3.12).

3.2.2 Bus Delay

3.2.2.1 Mixed Traffic Lane

In this case, it is assumed buses travel within the auto platoon. For a bus to be

within a platoon, its arrival time at the intersection stopline, tb,T , should satisfy the

following conditions:

tb,T ≥ tj,T (3.23)

and

tb,T ≤ tj,T + Pj,T/sj (3.24)

and its position in the platoon can be estimated as follows:

tb,T = max{0, (tb,T − tj,T ) ∗ sj} (3.25)

Based on the bus arrival time, platoon arrival time, platoon size, residual queue

length, and signal timing, eight different cases are considered as follows:
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• Sub-Case TM1: Platoon arrival before residual queue served, entire platoon

served in green, bus is served during the green phase

This case corresponds to case N1 of auto delay.

Bus Delay, db,T :

db,T = (T − 1)C +R
(1)
j +

NN
j,T−1

sNj
− tj,T (3.26)

• Sub-Case TM2: Platoon arrival before residual queue served, insufficient green

to serve entire platoon, bus is served during the green phase

This case corresponds to case N2 of auto delay when the bus can be served

during the green phase.

Bus Delay, db,T :

db,T = (T − 1)C +R
(1)
j +

NN
j,T−1

sNj
− tj,T (3.27)

• Sub-Case TM3: Platoon arrival before residual queue served, insufficient green

to serve entire platoon, bus is not served during green phase

This case corresponds to case N2 of auto delay when the bus can not be served

during the green phase.

Bus Delay, db,T :

db,T = (T − 1)C +R
(1)
j +

NN
j,T−1

sNj
− tj,T +R

(2)
j +R

(1)
j (3.28)

• Sub-Case TM4: Insufficient green to serve residual queue

This case corresponds to case N3 of auto delay.
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Bus Delay, db,T :

db,T = TC +R
(1)
j +

NN
j,T−1 −Ge

js
N
j

sNj
− tj,T (3.29)

• Sub-Case TM5: Platoon arrival after residual queue served, entire platoon

served in green

This case corresponds to case N4 of auto delay.

Bus Delay, db,T :

db,T = 0 (3.30)

• Sub-Case TM6: Arrival after residual queue served, insufficient green to serve

entire platoon, bus is served during green phase

This case corresponds to case N5 of auto delay when the bus can be served

during the green phase.

Bus Delay, db,T :

db,T = 0 (3.31)

• Sub-Case TM7: Arrival after residual queue served, insufficient green to serve

entire platoon, bus is not served during green phase

This case corresponds to case N5 of auto delay when the bus can not be served

during green phase.

Bus Delay, db,T :

db,T = R
(1)
j +R

(2)
j (3.32)

• Sub-Case TM8: Arrival after green, entire residual queue is served

This case is corresponds to the case N5 of auto delay

Bus Delay, db,T :

db,T = TC +R
(1)
j − tb,T (3.33)
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3.2.2.2 Dedicated Bus Lane

Bus delays for the cases that dedicated rights-of-way are utilized by buses are esti-

mated as follows:

• Sub-Case TD1: Bus arrival before the beginning of green

The bus will experience delay equal to the time interval between the beginning

of the green time interval and the bus arrival:

db,T = (T − 1)C +R
(1)
j − tb,T (3.34)

• Sub-Case TD2: Bus arrival during the green phase

The bus will get served as soon as it arrives at the intersection so it will not

experience any delay:

db,T = 0 (3.35)

• Sub-Case TD3: Arrival after the end of green

The bus will experience delay equal to the time interval between the bus arrival

time at the intersection in the current cycle and the beginning of the green time

in the next cycle.

db,T = TC − tb,T +R
(1)
j (3.36)

3.2.2.3 Queue Jumper Lane

For the QJL alternative, auto delays can be calculated using the sub-case N equations.

Bus delays will be estimated using two different sub-cases based on the location of

the buses when they join the queue, as follows:

• Sub-Case TQ1: The distance between the intersection and the location of a

bus when it joins the queue is longer than the queue jumper length (Xb ≥

Xqjornb,T ≥ Kj ∗ Xqj). An example is shown in Figure 3.3. In this case the
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bus cannot move to the queue jumper lane; thus, the bus will travel with auto

traffic. The delay of the bus can be calculated using the equations presented in

Sub-Cases TM1 - TM8.

• Sub-Case TQ2: The distance between the intersection and the location of a

bus when it joins the queue is shorter or equal to the queue jumper length

(Xb ≤ Xqjornb,T ≤ Kj ∗Xqj). An example is shown in Figure 3.4. In this case

the bus moves to the queue jumper lane; thus, its delay can be calculated as

if it were traveling on a DBL using equations provided for the TD1, TD2 and

TD3 sub-cases.

Figure 3.3: Time-space diagrams for a bus not utilizing the queue jumper lane
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Figure 3.4: Time-space diagrams for a bus utilizing the queue jumper lane

3.3 Evaluation

Two types of space TPTs, DBLs and QJL, and one time TPT, green extension

have been selected for evaluation with regards to their impact on person delay and

person discharge flow at signalized intersections. For the QJLs, 240 feet deceleration

lane at the upstream end and 420 acceleration lane and taper at the downstream

end of the intersections are added according to the Transit Cooperative Research

Program (TCRP) Report 19 guidelines (Fitzpatrick et al., 1996). Dedicated bus

lanes are included in two types of scenarios: 1) DBL addition (a DBL is added on

the direction of interest and has the same width as the mixed use lanes), and 2) DBL

substitution (the right most existing lane is substituted for a DBL on the direction

of interest). The time TPT scenario consists of providing a green extension of 10

seconds for a chosen transit movement at the intersection when needed, meaning
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when it will result to reduced and ideally zero delay for the transit vehicle. These

TPTs are first implemented individually. Then, each of the space priority strategies is

combined with the time priority strategy to investigate their impact on person delay

and person discharge flow when implemented together.

Two types of tests are performed and their results are compared with the help

of the two types of models that have been developed: 1) analytical tests, and 2)

microsimulation tests. An emphasis is placed on evaluating TPTs in terms of person

delay and person discharge flow at signalized intersections. Vehicle discharge flow is

also used in the evaluation.

3.3.1 Test Site

A four-intersection segment of San Pablo Avenue, in Berkeley, California, is used

as the test site. The arterial section under consideration includes four signalized

intersections: University Avenue, Delaware Street, Cedar Street, and Gilman Street.

Figure 4.4 shows the arterial segment layout, bus stop locations, traffic volumes, and

the bus routes along this segment during the evening peak hour (5-6pm). The distance

between the intersections of San Pablo and University Avenues and San Pablo Avenue

and Addison Street, which is the immediately upstream one, is 0.8 miles. In addition,

emergency vehicles are not taken into account.

San Pablo Avenue is a signalized arterial accommodating vehicles and bus traffic

in mixed traffic lanes. It has two lanes in each direction, 35 mph posted speed

limit, permitted on-street parking, and left turning pockets at all intersections. The

volumes and signal timings have been obtained by previous studies. The signals

operate under a fixed-time coordinated signal control scheme with a common cycle

length of 80 seconds. Ten bus lines travel through the corridor and on cross streets

with headways that vary between 10 and 45 minutes during the evening peak hour that

was used for the analysis. The northbound through movement, which is the heaviest
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direction during the evening peak hour, has the following degrees of saturation for

the four intersections moving from University Avenue towards Gilman Street: 0.94,

0.64, 0.70, and 0.84. Saturation flows were assumed to be 1,800 vph per lane. Data

on individual buses departure times have been obtained from the Alameda-Contra

Costa Transit Districts website (ACTransit, 2014).

3.3.2 Analytical Model Tests

To evaluate TPTs with the proposed analytical model, a one-hour microsimula-

tion is performed with deterministic input for the platoon and bus vehicle arrival

times, as well as for the platoon size at all northbound through approaches of the

selected test site. Thirty bus arrival time scenarios are considered to capture the

variability in the arrivals of transit vehicles and the average results of those thirty

runs are presented. Platoon sizes and arrival times were assumed to be constant for

all cycles of all scenarios. Since no information is available on the average car and

bus passenger occupancies they have been assumed to be 1.25, and 30 persons per

vehicle respectively. The developed analytical models are evaluated using MATLAB.

3.3.3 Microsimulation Tests

The microsimulation model used in the evaluation was developed using the AIM-

SUN software. The test site was modeled and calibrated during previous research

studies by the authors (Christofa et al., 2013). The assumptions on the bus arrival

times and auto and bus passenger occupancies were the same as for the analytical

model. For the QJL alternative, right lane near-side and far-side open bus bays were

added for bus deceleration and acceleration on the direction of interest at all inter-

sections In addition, the right-turning vehicles were allowed to use the QJL or the

DBL to turn right, which was not the case for the analytical model tests.

Green extension at signalized intersections was applied for transit vehicles. All

northbound through buses were allowed to request priority as they approached an
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(a) Arterial layout, bus lines, and volumes (vph)

(b) Arterial map (Source: Google Map)

(c) Signal phases

Figure 3.5: Test site for TPT evaluation
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intersection. The green time was extended by 10 seconds every time a bus was de-

tected during the green phase for the transit movement. Priority request detectors

were located upstream of each intersection stop line providing 5 seconds of travel

time between the detector and stop line. To overcome the stochastic nature of mi-

crosimulation results, thirty replications were performed and the average outcome

is presented. Each replication was run for one hour and it included 10 minutes of

warm-up period.

3.3.4 Results

The microsimulation and analytical models are tested for both without and with

nearside bus stops presence conditions. For the without nearside bus stop case, space

and time priority strategies when implemented individually or in combination are

tested. For the with nearside bus stop case, only space priority strategies are tested

on the intersection of San Pablo Avenue and Cedar street.

3.3.4.1 Without Nearside Bus Stop

Figure 3.6 to 3.11 present the results provided by the analytical and microsim-

ulation models for all eight alternative scenarios tested for the northbound through

approaches of San Pablo Avenue with Cedar Street and Gilman Street. The fo-

cus was on the northbound direction since that is the heaviest one for the evening

peak that was studied. While both the analytical and the microsimulation models

have evaluated all four intersections, this study presents only results for Cedar Street

and Gilman Street intersections, since they are the ones presenting the highest and

lowest degree of saturation respectively, therefore allowing for a comparison of the

TPT performance on congested (i.e., oversaturated) versus uncongested (i.e., close to

saturation) approaches.

The results from the analytical model tests Figure 3.6 indicate that for the in-

tersection of San Pablo with Cedar Street , there is a reduction in bus person delay

67



Figure 3.6: Percent change in person delay for the northbound direction at the inter-
section of San Pablo Avenue and Cedar Street with 30 passengers per bus (without
bus stop)
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Figure 3.7: Discharge flow rate for the northbound direction at the intersection of
San Pablo Avenue and Cedar Street with 30 passengers per bus (without bus stop)
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Figure 3.8: Percent change in person delay for the northbound direction at the inter-
section of San Pablo Avenue and Gilman Street with 30 passengers per bus (without
bus stop)
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Figure 3.9: Discharge flow rate for the northbound direction at the intersection of
San Pablo Avenue and Gilman Street with 30 passengers per bus (without bus stop)
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by about 40% and 89% when QJL and DBL treatments are introduced respectively.

When those treatments or existing conditions are combined with green extension,

additional reductions are not observed. Bus lane substitution leads to a significant

reduction in bus person delay, however, the total person delay increases since the

intersection becomes oversaturated. Note that due to the big percent changes in

person delay measure when bus lane substitution is implemented, the results of this

alternative are not presented in Figure 3.6. Auto person delay does not significantly

benefit from the green extension provision since all autos can pass the intersection

during the regular green.. Person and vehicle discharge flows seem to remain at the

same levels for all alternatives tested (Figure 3.7) and for both types of tests with the

exception of the lane substitution alternative with and without green extension for

which person discharge flow decreases by 29%. Similar results for person and vehicle

discharge flows are observed for the microsimulation tests.

Microsimulation test results for the intersection of San Pablo with Cedar Avenue

(Figure 3.6) indicate that when space TPTs are individually implemented bus person

delay is reduced by about 47% and 59% with QJL and DBL addition treatments

respectively. When no space TPT is implemented, green extension decreases bus

person delay by about 0.1%. Total person discharge flow decreases by about 17% for

bus lane substitution with and without green extension. Note that when space TPTs

are combined with green extension the reductions in total, auto, and bus person delay

are not significant as shown by the 95% confidence intervals in Figure 3.6.This is due

to the higher variability in person delays observed in the microsimulation tests.

The analytical model results for the intersection of San Pablo Avenue and Gilman

Street (Figure 3.8) show that implementation of individual space TPTs significantly

decreases bus person delay by 9% and 26% for the QJL and DBL alternatives respec-

tively. Combination of green extension and space TPTs results in extra 50% to 68%

bus person delay reductions. For the bus lane substitution alternative the approach
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becomes oversaturated and auto person delay increases by 2028%. As before, the

lane substitution scenario is not presented in Figure 3.8. For the same scenario a

significant reduction is observed in the vehicle and person discharge flow (Figure 3.9).

Microsimulation test results indicate that for the intersection of San Pablo Avenue

and Gilman Street bus person delay decreases by about 26%, and 39% with QJL,

and DBL alternatives respectively. Green extension implementation, individually or

combined with space TPTs, significantly decreases bus person delay. When QJL,

and DBL alternatives are combined with green extension the additional reductions of

11% and 12% in bus person delay are achieved. In addition, when no space TPT is

implemented, green extension significantly reduces bus person delay by 12%.

There is consistency between the results of the analytical model and the AIMSUN

microsimulation results for the space TPTs. In both the analytical and microsimu-

lation results bus lane substitution significantly reduces vehicle and person discharge

flow while QJL and DBL addition do not significantly change person discharge flow.

In addition, space TPTs substantially decrease bus person delay. The significant dif-

ferences observed between the analytical and the microsimulation results for the bus

substitution alternative and in particular for the auto and total person delay on the

Gilman Street intersection are due to the short length of the subject link. As a conse-

quence of the short link vehicles are being kept upstream at the intersection, and thus

delays are not captured in the microsimulation tests because microsimulation results

are presented only for the link directly upstream of the intersection of San Pablo and

Gilman Avenue.

The effects of green extension on the cross-street traffic is also examined in this

study. Analytical model and microsimulation tests results of the San Pablo and

Cedar Street intersection indicate that green extension does not increase total person

delay for the cross street. Analytical model and microsimulation tests results for the

intersection of San Pablo with Gilman Street show that green extension increases total
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Figure 3.10: Percent change in total person delay for cross-streets at the intersection
of San Pablo Avenue and Cedar Street (without bus stop)

person delay for the cross street by 4% and 11% respectively. While for both types of

tests there is increase in the cross-street delay due to the reduced green time allocated

to those approaches when green extension is provided in the northbound approach, the

reductions are lower in the analytical model results due to the simplifying assumptions

and the lack of stochasticity that accompany the analytical model.

Sensitivity Analysis

Sensitivity analysis is performed to investigate how the frequency of buses and

their passenger occupancy affects the performance of the TPT alternatives with re-

spect to person delay and person discharge flow.

Effect of Bus Frequency

For the sensitivity analysis bus frequencies in the studied direction (northbound)

are doubled and the performance of the TPT alternatives is examined for the intersec-

tion of San Pablo Avenue and Gilman Street. Analytical results shown in Figure 3.13

reveal that with higher bus frequencies, higher person delay reduction is achieved

when green extension is implemented in combination with space TPTs. In particular

an extra 10% and 11% reduction in total person delay, in comparison to the case

with regular bus frequency, is achieved when green extension strategy is combined
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Figure 3.11: Percent change in total person delay for cross streets at the intersection
of San Pablo Avenue and Gilman Street (without bus stop)

with QJL and DBL addition respectively Similar to the analytical models, microsim-

ulation results show that green extension strategy is more effective with higher bus

frequencies since an extra 1% and 2% reduction in total person delay, in comparison

to the case with regular bus frequency, is achieved when green extension is combined

with QJL and DBL addition respectively.

Effect of Bus Passenger Occupancy

The effect of various bus occupancies on the person delay is tested by increasing

the bus passenger occupancy to 40 passengers per vehicle, compared to 30 passengers

that were used in the previous tests. The auto passenger occupancy remained at 1.25

passengers per auto and the frequency was equal to the frequency of the initial tests

performed. Results show that higher bus occupancy has insignificant effect on the

person delay.

3.3.4.2 With Nearside Bus Stop

Nearside bus stop at the intersection of San Pablo Avenue and Cedar Street has

been taken into account. Figures 3.15 and 3.16 represent the person delay evaluation

of the alternatives using the analytical and simulation models for the northbound

75



Figure 3.12: Microsimulation results for the percent change in person delay of the
northbound direction at the intersection of San Pablo Avenue and Cedar Street with
double bus frequency (without bus stop)
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Figure 3.13: Analytical model results for the percent change in person delay of the
northbound direction at the intersection of San Pablo Avenue and Cedar Street with
double bus frequency (without bus stop)
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Figure 3.14: Percent change in person delay for the northbound direction at the in-
tersection of San Pablo Avenue and Cedar Street with 40 passengers per bus (without
bus stop)
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Figure 3.15: Person delay results of the analytical model and simulation tests for San
Pablo Avenue northbound direction at the intersection with Cedar Street (with bus
stop)

Figure 3.16: Percent change in person delay results of the analytical model and
simulation tests for San Pablo Avenue northbound direction at the intersection with
Cedar Street (with bus stop)

direction of traffic at the intersection of San Pablo Avenues and Cedar Street. No

results are presented for the cross street traffic since there was no negative impact on

it when a DBL or a QJL was added, due to no changes in the signal settings for the

intersection.

The analytical model results indicate that implementation of space TPTs de-

creases bus person delay by up to 55%. When QJL and DBL are added, auto person

delay is reduced by 18% due to the reduction in lane blockings by the stopped buses.

The DBL substitution alternative gridlocks auto vehicles and increases auto person

delay by 746%. Since traffic conditions at the test site are undersaturated, discharge
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flow remains unchanged in the DBL addition and QJL alternatives. The results of

the DBL substitution are not presented in Figures 3.15 and 3.16, because auto per-

son delays of this alternative are very high which makes it difficult to distinguish the

differences between the results of other alternatives when plotted in the same graph.

Simulation tests results reveal that bus person delay is reduced by 50% when

a DBL is introduced. Auto person delay decreases by about 19% with QJL and

DBL addition, but it increases by 142% with the DBL substitution alternative. As

before, for the DBL substitution alternative the approach becomes oversaturated and

auto person delay increases dramatically. The magnitude of the delay increase in the

simulation is much lower than in the analytical model, because the simulation only

accounts for the vehicles queued within the link, whereas the analytical model includes

delays for vehicles that are blocked by the spillback on upstream links. The QJL and

DBL addition alternatives reduce total person delay by 23% and 28% respectively.

The analytical model and simulation results suggest a 55% and 50% reduction

in bus person delay respectively when DBL addition is implemented. Using a 5%

level of significance, there is not a statistical difference between analytical model and

simulation test results, since the p-value is 0.28>0.05. The DBL addition decreases

auto person delay by 18% and 19% according to the analytical model and the sim-

ulation test results respectively and these results are not significantly different from

each other (p-value = 0.33>0.05). The analytical model and simulation results also

indicate an 18% and 20% decrease in auto person delay with QJL implementation,

and there is not enough evidence to conclude that the results differ from each other

as the p-value is 0.19>0.05. The results for the QJL alternative show that bus person

delay is reduced by 55% in the analytical model, while simulation results suggest a

33% reduction. However, there is a significant difference between these results using

a 95% confidence interval. The difference is mainly due to the assumption in the
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Figure 3.17: Queue jumper length effect on person delay for San Pablo Avenue north-
bound direction at the intersection with Cedar Street (with bus stop)

analytical model that buses traveling in the QJL merge into the through roadway

downstream without experiencing any extra delay.

Since the assumed QJL length (345 ft) is longer than the observed for the specific

traffic conditions queue length, buses change freely into the QJL without experiencing

extra delay, and consequently bus delays for both QJL and DBL addition alternatives

are the same based on the analytical model results. By shortening the QJL, bus delay

would increase. To test this, a 100 ft long QJL was modeled. Figure 3.17 shows

the results from the analytical model and simulation tests. With a 100 ft QJL bus

person delay is 7% and 8% higher than for the 345 ft long queue jumper lane for the

analytical model and simulation test results respectively. Total person delay in the

DBL addition alternative is 6% less than the delay with a 100 ft long QJL.

3.4 Summary of Findings

The chapter presented an analytical model designed to evaluate the impact of

alternative TPTs, in terms of person delay and person discharge flow at signalized

both with and without nearside bus stops. The proposed analitycal models can han-

dle both under-saturated on over-saturated conditions; however, in this study only

under-saturated conditions have been evaluated. In addition the same TPTs are eval-
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uated using a microsimulation model. For the without nearside bus stops condition,

the evaluations were performed on a four-intersection signalized arterial located in

Berkeley, CA. A total of eight alternative scenarios were evaluated. These scenarios

included several space TPTs (DBL addition and substitution, and QJL addition) and

a time TPT (green extension). Space and time TPTs were evaluated both individu-

ally and in combination. For the with nearside bus stops situation, only space priority

strategies were evaluated on the intersection of San Pablo Avenue and Cedar Street.

The results of this study indicate that space TPTs introduce noticeable benefits

to transit users. When a QJL or a DBL is added there is no negative impact on

auto traffic. However, when a lane is substituted for a bus lane, person discharge

flow decreases significantly and auto person delays increase dramatically. This is a

result of the oversaturated conditions that the substitution of a lane is likely to cause

for high vehicle demand levels. Therefore, DBL substitution is not suitable for high

volume approaches, because it reduces the capacity by significant amounts. DBL

substitution may be justified for high frequency transit lines, essentially when DBL

substitution can serve at least as many people as it does when the lane is available

for all vehicles. Implementation of green extension leads to favorable results for total

person delay and bus person delay while autos on the priority approach also benefit. In

addition, doubling the bus frequency had a positive impact in reducing total and bus

person delay when green extension was implemented, while increased bus passenger

occupancy had insignificant effect. Finally, a comparison of the analytical with the

microsimulation test results indicates that the proposed analytical model can be used

to quantitatively assess space and time TPTs.

The person-based analytical model that was presented in this study as well as the

insights obtained in this study can be used to provide guidance in the planning and

design of TPTs that improve transit reliability while improving overall mobility in

urban areas. Developed analytical model can be used to assist decisions on prefer-
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ential treatments under various traffic and transit operating conditions. In addition,

this study showed that the analytical method could be used for such assessments

without the need for expensive microsimulations since the results produced through

microsimulation were comparable to the results produced with the analytical model.
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CHAPTER 4

BUS TRAVEL TIME PREDICTION

Several applications of intelligent transportation systems (ITS) rely on short-term

travel time predictions including advanced traveler information systems (ATIS) and

transit signal priority (TSP) strategies. Accurate predictions can improve bus service

reliability and traffic signal control efficiency while providing Transit Signal Priority

(TSP). Automated Vehicle Location (AVL) systems are widely used by transit agen-

cies; however, low resolution AVL data present a challenge in accurate travel time

prediction. A robust parametric model is presented to predict bus travel time along

signalized arterials.

The problem is formulated as a mixed-integer quadratic programming (MIQP)

model and the unknown parameters are estimated using a robust norm approxima-

tion method. The model decomposes total transit travel time into its components

including running travel time, dwell time at bus stops, and delays at signalized in-

tersections. It then estimates signal status and predicts individual bus delays at

intersections. The outcomes of the MIQP model are compared with the results of a

linear regression model.

4.1 Methodology

Bus travel time along a dedicated bus lane in an urban arterial is modeled. In par-

ticular, bus travel time is decomposed to free flow travel time, acceleration/deceleration

lost time, dwell times at bus stops, and intersection delay. The proposed model

can decompose various components only if there are enough data to estimate sig-
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nificant parameters. For example, if there is not enough data to estimate accel-

eration/deceleration lost times significantly, the model cannot distinguish accelera-

tion/deceleration lost times from the free flow travel time. In this case, instead of

estimating free flow travel time and acceleration/deceleration lost time separately,

average running travel time can be estimated which includes both the free flow travel

time and the acceleration/deceleration lost time components. In addition, if there is

not enough data to distinguish dwell times at multiple bus stops or delays at multiple

intersections, again these components can be aggregated in the average speed estima-

tion of the section. In this case the prediction accuracy will be reduced. With lower

data polling frequencies and lower number of buses traveling along the study section,

the chance of not having enough data to significantly distinguish various travel time

components increases. When there are not enough data to significantly estimate some

components, those components must be aggregated in the average speed component.

4.1.1 Travel Time Decomposition

Bus travel time between two records is the time needed to travel from a specific up-

stream point where a record is obtained to a downstream one that a different record is

obtained. The bus travel time includes free flow travel time, acceleration/deceleration

lost time, dwell time at bus stops that may be located in-between the two points, and

delays at signalized intersections that may exist between the two points. To de-

compose bus travel time, short segments of an urban arterial where traffic behavior

conditions are assumed to be stationary are considered. As a result, it is assumed

that the average speed do not vary along the study segment during the prediction

period.

To facilitate the description of the model, the following sets, variables and param-

eters are defined:

• Sets:
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– IN = {1, 2, .., N}: Set of network intersections,

– IB = {1, 2, .., B}: Set of buses traveling through the arterial segment,

– IA = {1, 2, .., i}: Set of ordered AVL records,

– IK = {1, 2, , K}: Set of bus stops,

– INi,j
is a subset of IN that includes the signalized intersections between

AVL records i and j

– Ib is a subset of IA that includes the AVL records for bus b ∈ IB

– IKi,j
is a subset of IK that includes the bus stops between AVL records i

and j

• Variables:

– p̄: Average bus pace along a segment (sec/mile),

– v̄: Average bus speed along a segment (miles/sec),

– tngr: Beginning of the green signal indication for the direction of interest at

intersection n as measured from the beginning of the cycle (sec),

– tnb : Bus b arrival time at intersection n as measured from the beginning of

the cycle (sec),

– ttu,nb : Bus b travel time from the AVL record reported upstream of the

intersection n to the intersection n stop line (sec)

– t̂tb,i,j : Bus b travel time from AVL record i to j,

– w̄k: Average dwell time at bus stop k (sec/bus),

– Dn
b,1, D

n
b,2, D

n
b,3, D

n
b,4: Delay of bus b at intersection n for different cases

(sec),

– D̄n: Average bus delay at intersection n (sec),

– Dn
b : Delay of bus b at intersection n (sec),
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– ān: Average lost time at intersection n (sec),

– ād: Average acceleration/deceleration lost time (sec),

– xnb,1, x
n
b,2, x

n
b,3, x

n
b,4: Binary variables indicating the delay case that bus b

at intersection n belongs to.

– ynb,1, y
n
b,2: Binary variables indicating the bus arrival time case that bus b

at intersection n belongs to.

• Parameters:

– tb,i: Bus b AVL record i time stamp (sec),

– tu,nb : Bus b most recent time stamp upstream of intersection n (sec) as

measured from the beginning of a cycle (sec),

– lb,i,j: distance traveled by bus b between records i and j (miles),

– lu,nb : distance between most recent record of bus b upstream of intersection

n and intersection n stop line (miles),

– ADb,i,j: Number of acceleration/deceleration events from AVL record i to

j for bus b,

– M : Big number,

– Cn: Signal cycle length of intersection n (sec),

– rn: Signal red phase duration for the direction of interest at intersection n

(sec),

– gn: Signal green phase duration for the direction of interest at intersection

n (sec).

Figure 4.1 illustrates an urban arterial layout, used to facilitate the description of

the models. The network includes multiple signalized intersections. Each AVL record

i of a bus b includes geographical location information, i.e., coordinates at time tb,i.
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The distance a bus travels between two records i and j (lb,i,j) can be determined by

mapping the records to the roadway. The records stored while loading and alighting

passengers or while the bus is stopped at an intersection are dismissed. In Figure 4.1

for instance, record 4 is stored while the bus dwells at the bus stop. Since the

proportion of the dwell time component of the travel time from point 3 to 4 and from

point 4 to 5 cannot be determined, record 4 is dismissed, and the travel time from

point 3 to 5 is analyzed, which includes the total dwell time at bus stop 2. Dwell

time is defined as the total time spent from the moment the bus doors open until the

bus leaves the bus stop. Highway Capacity Manual defines dwell time as the time

required to serve passengers at a stop plus the time required to open and close the

doors (HCM, 2010).

Figure 4.1: Urban arterial layout

The estimate of bus travel time from record i − 1 to record i, t̂tb,i−1,i, can be

calculated as free flow travel time between the two consecutive records, accelera-

tion/deceleration lost time, dwell time at the bus stops, and delay at the intersections

between i− 1 and i as follows:
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t̂tb,i−1,i = p̄ ∗ lb,i−1,i + ād ∗ ADb,i−1,i +
∑

k∈IKi−1,i

w̄k

+
∑

n∈INi−1,i

D̄n ∀b ∈ IB, i ∈ Ib, & i 6= 1 (4.1)

The unknown variables in equation (4.1) are p̄, w̄k ∀ k ∈ IK , and D̄n ∀ n ∈ IN

which could be estimated by estimation methods like least-squares method.

4.1.2 Linear Regression

In previous research (Farid et al., 2016) the unknown parameters in equation (4.1)

were estimated using the following linear regression model was formulated :

t̂tb,i−1,i = β1 ∗ lb,i−1,i + β2 ∗ ADb,i−1,i +
∑
k∈IK

βk3 ∗ λkb,i−1,i

+
∑
n∈IN

βn4 ∗ µnb,i−1,i ∀b ∈ IB, i ∈ Ib & i 6= 1 (4.2)

where

λkb,i−1,i =


1 if bus stop k is between records i-1 and i

0 otherwise

(4.3)

µnb,i−1,i =


1 if intersection n is between records i-1 and i

0 otherwise

(4.4)

β1 represents expected values for bus pace while β2 is the expected values for accel-

eration/deceleration lost time, βk3 is the expected value of dwell times at bus stop k

and βn4 is expected value of delay at intersection n.

4.1.3 MIQP Model

βn3 in the linear regression model (equation (4.2)) is the expected value of bus de-

lays at intersection n over all buses; However, determining individual bus intersection
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delay is critical since the variation in this type of delay could be large due to some of

the buses stopping and some not stopping at the signalized intersection. Therefore,

determining individual bus intersection delay could improve the accuracy of travel

time predictions. In this regard equation (4.1) becomes:

t̂tb,i−1,i = p̄ ∗ lb,i−1,i + ād ∗ ADb,i−1,i +
∑

k∈IKi−1,i

w̄k

+
∑

n∈INi−1,i

Dn
b ∀b ∈ IB, i ∈ Ib & i 6= 1 (4.5)

Where Dn
b is delay of bus b at intersection n. The difference between equations (4.1)

and (4.5) is that in equation (4.1) average intersection delay over all buses, D̄n, is es-

timated. In equation (4.5), intersection delay for each individual bus at intersections,

Dn
b , are estimated. In this regard, the proposed MIQP model estimates signal phases

status and by inferring trajectories of the buses, it estimates individual bus delays.

Next, individual bus intersection delay is further investigated.

Intersection delay is defined as the difference between the time a bus actually

passes the intersection and the time it would have passed if it did not have to stop

at the intersection. To calculate the intersection delay, perfect knowledge about the

signal settings and signal status during the estimation period is usually required. In

this study, no knowledge about the actual signal status of the intersection is assumed.

However, we have assumed that signal settings remain constant during each study

period and the duration of signal phases is given. In cases where the study period

includes multiple periods with constant but different signal settings (e.g. peak and

off-peak signal plans), each of those periods should be analyzed separately.

To estimate intersection delay, bus arrival time at the intersection as well as the

beginning of the green for the bus approach are needed, both of which are considered

unknown and should be estimated. Bus arrival time at the intersection stop line,

t̂nb , can be estimated using the time stamp of the AVL record just upstream of the

90



intersection, tu,nb , and the bus travel time from the record location to the intersection,

t̂t
u,n

b . The time interval between the beginning of the cycle and the beginning of the

green phase, tngr, is constant and is less than the cycle length. Federal Highway Ad-

ministration defines a cycle as the total time to complete one sequence of signalization

for all movements at an intersection (Koonce et al., 2008).

The estimated time interval between the bus arrival time at the intersection stop

line and the beginning of the cycle is:

t̂nb = (t̂t
u,n

b +tu,nb )%Cn = t̂t
u,n

b +tu,nb −b(t̂t
u,n

b +tu,nb /Cnc∗Cn ∀b ∈ IB, n ∈ IN (4.6)

Since t̂t
u,n

b is a variable, the floor operator in equation (4.7) will result in a non-

quadratic and non-linear objective function. To determine t̂nb using linear inequalities,

two cases (Figure 4.2) are considered assuming that bus arrival at the intersection

stop line, t̂nb , occurs during the same or next cycle as the most recent record upstream

of the intersection, tu,nb . If not, more cases should be added. In case A1, both t̂nb and

tu,nb are in the same cycle and in case A2, t̂nb is in the next cycle.

Case A1: t̂t
u,n

b + tu,nb ≤ Cn

In this case both t̂nb and tu,nb are in the same cycle and as a result, t̂nb = t̂t
u,n

b + tu,nb .

Case A2: t̂t
u,n

b + tu,nb > Cn

In this case t̂nb is in the next cycle than the one that the last record for bus b upstream

of the intersection was reported. In this case t̂nb = t̂t
u,n

b + tu,nb − Cn.

Therefore, the bus arrival time at intersection stop line can be expressed as follows:

t̂nb = t̂t
u,n

b + tu,nb − y
n
b,2 ∗ Cn ∀b ∈ IB, n ∈ IN (4.7)

where ynb,2 is a binary variable which is one if case A2 is true and zero otherwise.

The delay of the buses traveling in the dedicated bus lane depends on the arrival

time of the bus at the stop line, tnb , the signal status when the bus arrives, and
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Figure 4.2: Cases of bus arrival times at the intersection stop line.

the duration of the signal phases at the intersection of interest. To estimate the

intersection delay as a function of the bus arrival at the intersection stop line, four

different cases are considered, which are shown in Figure 4.3. In cases D1 and D2 the

phase at the beginning of the cycle is green while for cases D3 and D4 it is red. In

cases D1 and D3 the bus arrives at the intersection during the green phase while in

cases D2 and D4 the bus arrives during the red phase.

Case D1: tnb ≤ tngr − rn

The bus arrives at the intersection stop line during the green phase and a portion of

the green phase precedes the red one in the cycle. The bus passes the intersection

without experiencing delay.

Dn
b,1 = 0 ∀b ∈ IB, n ∈ IN (4.8)

Case D2: tngr − rn < tnb ≤ tngr

The bus arrives at the intersection stop line during the red phase and a portion of

the green phase precedes the red one in the cycle. The bus will pass the intersection
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Figure 4.3: Intersection delay cases

when the green phase begins and thus, its delay will be equal to beginning of the

green phase, tngr, minus the bus arrival time at the intersection stop line, tnb , plus the

intersection lost time.

Dn
b,2 = tngr − tnb + ān ∀b ∈ IB, n ∈ IN (4.9)

Case D3: tngr < tnb ≤ tngr + gn

The bus arrives at the intersection stop line during the green phase and a portion of

the red phase precedes the green one in the cycle. The bus experiences no delay.

Dn
b,3 = 0 ∀b ∈ IB, n ∈ IN (4.10)

Case D4: tngr + gn < tnb
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The bus arrives at the intersection during the red phase and a portion of the red

phase precedes the green one in the cycle. The bus will be served in the next cycle

and will experience delay equal to:

Dn
b,4 = tngr + Cn − tnb + ān ∀b ∈ IB, n ∈ IN (4.11)

Four binary variables, xnb,1, x
n
b,2, x

n
b,3, x

n
b,4 are introduced to define the four delay cases

for buses. As a result, the intersection delay can be expressed as:

Dn
b = xnb,1 ∗Dn

b,1 + xnb,2 ∗Dn
b,2 + xnb,3 ∗Dn

b,3 + xnb,4 ∗Dn
b,4 ∀b ∈ IB, n ∈ IN (4.12)

Since Dn
b,1 and Dn

b,3 are zero, equation (4.12) becomes:

Dn
b = xnb,2 ∗Dn

b,2 + xnb,4 ∗Dn
b,4 ∀b ∈ IB, n ∈ IN (4.13)

Using equation (4.5) we have:

t̂tb,i−1,i = p̄ ∗ lb,i−1,i + ād ∗ ADb,i−1,i +
∑

k∈IKi−1,i

w̄k

+
∑

m∈INi−1,i

(xmb,2 ∗Dm
b,2 + xmb,4 ∗Dm

b,4) ∀b ∈ IB, i ∈ Ib & i 6= 1 (4.14)

Note that in equation (4.14), the term xnb,2∗Dn
b,2 and xnb,4∗Dn

b,4 are multiplications of the

continuous variables Dn
b,2 and Dn

b,4 with the binary variables xnb,2 and xnb,4 respectively,

which results in a non-quadratic and non-linear function. To avoid these bilinearities,
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two new continuous variables, hnb,1 and hnb,2 are introduced for each bus b at each

intersection n and are defined as follows:

hnb,1 = xnb,2 ∗Dn
b,2 ∀b ∈ IB, n ∈ IN (4.15)

hnb,2 = xnb,4 ∗Dn
b,4 ∀b ∈ IB, n ∈ IN (4.16)

When xnb,2 is 1, hnb,1 equals to Dn
b,2, and when xnb,2 is zero, hnb,1 equals to zero. In

addition, new linear inequalities are introduced which return hnb,1 and hnb,2 that are

consistent with equations (4.15) and (4.16) as shown in (4.17)-(4.22).

hnb,1 ≤ Dn
b,2 +M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.17)

hnb,1 ≥ Dn
b,2 −M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.18)

hnb,1 ≤ xnb,2 ∗M ∀b ∈ IB, n ∈ IN (4.19)

hnb,2 ≤ Dn
b,4 +M ∗ (1− xnb,4) ∀b ∈ IB, n ∈ IN (4.20)

hnb,2 ≥ Dn
b,4 −M ∗ (1− xnb,4) ∀b ∈ IB, n ∈ IN (4.21)

hnb,2 ≤ xnb,4 ∗M ∀b ∈ IB, n ∈ IN (4.22)

4.1.4 Mathematical Program Formulation

To estimate the unknown variables the norm minimization approach is selected.

The most common approximation problem involves l2-norm which results in least-

squares approximation problem (Boyd and Vandenberghe, 2004). In the presence

of outliers in the data, l2-norm can result in a poor fit since it penalizes deviations

quadratically. Various penalty functions have been introduced to reduce the sensitiv-

95



ity of the models to the outliers. Huber used a penalty function as follows (Boyd and

Vandenberghe, 2004):

φ(u) =


u2 |u| ≤ γ

γ(2|u| − γ) |u| ≥ γ

(4.23)

The Huber penalty function is convex and applies l2-norm for residuals smaller

than γ and l1-norm-like for the larger residuals. However, since it switches from

being quadratic to linear at |u| = γ, several models have been introduced to reduce

the Huber penalty function to a quadratic problem. Mangasarian and Musicant

(Mangasarian and Musicant, 2000) proposed the following mathematical program:

min
1

2
||z||22 + γe′(s+ + s−)

s.t. Ax− b− z = s+ + s−

s+, s− ≥ 0

(4.24)

where z, s+ and s− are vectors of variables, Ax − b is the vector of residuals and

e′ is the vector of ones of arbitrary dimension. In this chapter, the formulation of

Mangasarian and Musicant has been adopted. As a result, the objective function of

the mixed-integer quadratic program is formulated as follows:

min
∑
b∈IB

∑
i∈Ibi 6=1

(
1

2
||zb,i||22 + γe′(s+b,i + s−b,i)

)
(4.25)

The constraints of the mathematical program including the ones associated with

the Mangasarian and Musicant formulation, bus arrival time cases, intersection delay

cases, defeating bilinearity, as well as non-negativity and binary integer constraints

are as follows:
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min
∑
b∈IB

∑
i∈Ibi 6=1

(
1

2
||zb,i||22 + γe′(s+b,i + s−b,i)) (4.26)

subject to

p̄ ∗ lb,i−1,i + ād ∗ ADb,i−1,i +
∑

k∈IKi−1,i

w̄k +
∑

n∈INi−1,i

(hnb,1 + hnb,2)− ttb,i − zb,i

= s+b,i + s−b,i ∀b ∈ IB, i ∈ Ib (4.27)

t̂t
u,n

b = p̄ ∗ lu,nb +
∑

k∈IKu,n

w̄k ∀b ∈ IB, n ∈ IN (4.28)

t̂t
u,n

b + tu,nb ≤ Cn +M ∗ (1− ynb,1) ∀b ∈ IB, n ∈ IN (4.29)

Cn ≤ t̂t
u,n

b + tu,nb +M ∗ (1− ynb,2) ∀b ∈ IB, n ∈ IN (4.30)

ynb,1 + ynb,2 = 1 ∀b ∈ IB, n ∈ IN (4.31)

t̂nb = t̂t
u,n

b + tu,nb − C
n ∗ ynb,2 ∀b ∈ IB, n ∈ IN (4.32)

tnb ≤ tngr − rn +M ∗ (1− xnb,1) ∀b ∈ IB, n ∈ IN (4.33)

tngr − rn ≤ tnb +M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.34)

tnb ≤ tngr +M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.35)

tngr ≤ tnb +M ∗ (1− xnb,3) ∀b ∈ IB, n ∈ IN (4.36)

tnb ≤ tngr + gn +M ∗ (1− xnb,3) ∀b ∈ IB, n ∈ IN (4.37)

tngr + gn ≤ tnb +M ∗ (1− xnb,4) ∀b ∈ IB, n ∈ IN (4.38)

xnb,1 + xnb,2 + xnb,3 + xnb,4 = 1 ∀b ∈ IB, n ∈ IN (4.39)
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hnb,1 ≤ tngr − tnb + ān +M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.40)

hnb,1 ≥ tngr − tnb + ān −M ∗ (1− xnb,2) ∀b ∈ IB, n ∈ IN (4.41)

hnb,1 ≤ xnb,2 ∗M ∀b ∈ IB, n ∈ IN (4.42)

hnb,2 ≤ tngr + Cn − tnb + ān +M ∗ (1− xnb,4) ∀b ∈ IB, n ∈ IN (4.43)

hnb,2 ≥ tngr + Cn − tnb + ān −M ∗ (1− xnb,4) ∀b ∈ IB, n ∈ IN (4.44)

hnb,2 ≤ xnb,4 ∗M ∀b ∈ IB, n ∈ IN (4.45)

hnb,1 ≥ 0, hnb,2 ≥ 0 ∀b ∈ IB, n ∈ IN (4.46)

tngr, ā
n ≥ 0 ∀n ∈ IN (4.47)

w̄k ≥ 0 ∀k ∈ IK (4.48)

s+b,i, s
−
b,i ≥ 0 ∀b ∈ IB, i ∈ Ib (4.49)

p̄ ≥ 0 (4.50)

xnb,1, x
n
b,2, x

n
b,3, x

n
b,4, y

n
b,1, y

n
b,2 ∈ {0, 1} ∀b ∈ IB, n ∈ IN (4.51)

The objective function (4.26) and constraint (4.27) represent the reformulated Hu-

ber loss function. Constraints (4.28)-(4.32) determine bus arrival time at intersection

stop line based on the two cases described in Figure 4.2.

Constraints (4.33)-(4.39) determine the intersection delay case presented in Fig-

ure 4.3. When it is case D1 (tnb ≤ tngr − rn), xnb,1 could be either zero or one

in constraint (4.33); however, since xnb,2, x
n
b,3, and xnb,4 must be zero to hold con-

straints (4.34), (4.36), and (4.38) feasible, based on the constraint (4.39), we have

xnb,1 = 1. If it is case D2 (tngr − rn ≤ tnb ≤ tngr), based on constraints (4.34) and (4.35)
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xnb,2 could be either zero; but to keep constraints (4.33),(4.36), and (4.38) feasible,

xnb,1, x
n
b,3, and xnb,4 must be zero and thus, based on constraint (4.39), xnb,2 must be

one. Similarly other cases can be determined using the constraints.

Constraints (4.40)-(4.46) defeat the bilinearity problem presented in equations (4.17)-

(4.22). Constraints (4.47)-(4.51) are non-negativity and binary variable constraints.

4.2 Application

4.2.1 Test Site

The test site is a 1,300 feet long arterial segment of Washington Street in Boston,

Massachusetts, between the Newton Street and Massachusetts Avenue bus stops (Fig-

ure 4.4). Washington Street is an arterial with one lane for autos and one dedicated

bus lane in each direction. On-street parking is permitted and left-turning pockets at

intersections are provided. The southbound direction is the direction of interest. The

study site includes two bus stops, on Newton Street and Worcester Square, and one

signalized intersection, the intersection of Massachusetts Avenue with Washington

Street. The intersection is signalized with a fixed-time signal control scheme and a

cycle length of 120 seconds during morning (6:00 AM - 10:30 AM) and afternoon (2:30

PM - 7:30 PM) periods and 110 seconds at all other times. The green phases duration

serving the approach of interest are 47, 41, and 37 for the morning, afternoon and all

other times respectively.

Two major MBTA bus routes, Silver Line 4 (SL4) and Silver Line 5 (SL5), travel

through the segment. MBTA Route SL4 runs from South Station, mostly via Wash-

ington Street, to Dudley Station in Boston, Massachusetts. The frequency varies from

3 (late night) to 10 (during peak hours) buses per hour. MBTA Route SL5 runs from

the Downtown Crossing terminal, via Washington Street, to Dudley Station. The

frequency varies from 4 to 11 buses per hour.
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Figure 4.4: Test site

4.2.2 Data

Three AVL data sampling methods are used by MBTA including announcement,

heartbeat, and adherence. Announcement is an event-based sampling in which records

are polled at internal (e.g. stop request announcement) and external (e.g., announcing

destination at bus stop) announcements. Heartbeat is a time-based sampling in which

records are polled every 60 seconds and adherence is a location-based sampling where

data is polled when a bus crosses a time point (geo nodes).

In this study, announcement and heartbeat data are used. The AVL records from

the routes SL4 and SL5 of the MBTA, between 7:00 AM and 10:00 PM on May 4, 2015

are analyzed. Three time periods including morning (6:00 AM – 10:30 AM), midday

(10:30 AM – 2:30 PM) and afternoon (2:30 PM – 7:30 PM) are studied separately.

The signal control plan is constant during each period. The raw data are processed for

the analysis. Records with zero distance from the previous record are dismissed. In

cases where there are bus stops or intersections, data is filtered so that the travel time

between two consecutive records includes the full length of dwell time or intersection

delay. After filtering, 225 (36 buses), 154 (30 buses) and 315 (50 buses) AVL records
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are used for morning, midday, and afternoon periods respectively. The data is divided

into training (50%) and test data sets (50%). The models are trained on the training

data and their performance is tested on the test data. Cross-validation technique is

used to estimate γ in the MIQP model.

4.2.3 Results

To estimate various components of the bus travel time, both MIQP and linear re-

gression models were trained using the available training data. However, estimates of

some parameters, especially acceleration/deceleration lost times, were insignificant.

Therefore, instead of estimating free flow travel time and acceleration/deceleration

lost time separately, average running travel time is estimated which includes both the

free flow travel time and the acceleration/deceleration lost time components.

The MIQP is solved with CPLEX solver on an Intel(R) Core i5 CPU (3.2 GHz)

system with 4 GB installed memory (RAM). The CPLEX output is listed in Ta-

ble 4.1. The results show that the optimality gap is reached in less than 1 second

with 260, 259, and 184 simplex iterations for the morning, midday and afternoon

periods respectively.

Table 4.1: CPLEX Output of the MIQP Model

Metric Morning Midday Afternoon
Objective Value 1661 2754 2616
MIP simplex iterations 4939 3285 2939
Branch and Bound Nodes 260 259 184
Run Time (s) 0.30 0.30 0.53

The estimated parameters of the MIQP model using the training dataset are listed

in Table 4.2. The average running speed can be calculated as the inverse of the average

running pace. Average running speed for the morning, midday, and afternoon periods

are 13.67, 12.73, and 12.13 miles per hour respectively. The average running speed

includes the free-flow portion of the bus travel time as well as the lost time due to
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Table 4.2: MIQP Parameter Estimates

Model Average Running Stop 1 Average Stop 2 Average Average Lost Time
Pace (sec/mile) Dwell Time (sec) Dwell Time (sec) at Intersection (sec)

Morning 263.28 15.74 11.25 24.66
Midday 282.80 15.17 18.95 4.80
Afternoon 296.75 21.14 15.00 16.27

acceleration and deceleration at bus stops. Since all buses are traveling on a dedicated

bus lane and therefore, are not affected by general traffic congestion, the fact that

average running speeds for all three time periods are similar is not surprising. The

lost time at intersections includes the acceleration and deceleration portion at the

signal as well as delays other than the ones caused by the signal, e.g., delays due to

right-turning vehicles utilizing the dedicated bus lane, delays due to buses dwelling at

the downstream of the intersection bus stop, etc. As shown in Table 4.2, the average

intersection lost time is higher for the peak morning and afternoon periods. This is

likely due to the increased volumes of right-turning vehicles during peak hours that

utilize the dedicated bus lanes and delay the buses or due to higher frequency bus

service and potentially longer dwell times at the downstream bus stop.

The linear regression model is estimated with the Pandas library in Python using

the training data and the results are shown in Table 4.3. All estimated coefficients are

significant with 99% confidence assuming a Gaussian distribution of the error terms.

The average intersection delay over all vehicles is 51.95, 33.32 and 36.20 seconds and

the average running speed 12.81, 12.22, and 12.37 miles per hour, for the morning,

midday, and afternoon periods respectively.

Both models are evaluated based on their generalized error on the test data. Bus

timestamp at location of record i has been predicted using the timestamp of record

i − 1 and estimated travel time between two records. The predicted timestamps of

records are evaluated against the actual timestamps of those records. The prediction

results of both models are evaluated in terms of the mean absolute error (MAE), the
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Table 4.3: Linear Regression Model Parameter Estimates.

Model Average Running Stop 1 Average Stop 2 Average Average
Pace Dwell Time Dwell Time Intersection

(sec/mile) (sec) (sec) Delay (sec)

Morning
Coefficient 281.09 20.2 14.06 51.95
t statistic 9.61 6.45 4.77 15.2
P-value 0.0000 0.0000 0.0000 0.0000

Midday
Coefficient 294.51 24.77 31.75 33.32
t statistic 4.45 3.6 4.97 4.71
P-value 0.0000 0.0006 0.0000 0.0000

Afternoon
Coefficient 291.00 22.61 21.02 36.20
t statistic 8.43 6.15 6.21 9.61
P-value 0.0000 0.0000 0.0000 0.0000

Table 4.4: Generalized Errors of the MIQP and Linear Regression Models.

Model MAE MAPE RMSE

Morning
MIQP 3.85 45.09 6.67
Linear Regression 7.48 59.38 13.72

Midday
MIQP 4.74 34.36 10.35
Linear Regression 8.82 56.25 12.74

Afternoon
MIQP 4.55 35.64 8.22
Linear Regression 8.10 47.95 14.30

mean absolute percentage error (MAPE) and the root mean square error (RMSE)

of the travel time estimates. These three measures are presented in Table 4.4. The

results show that the MIQP model outperforms the regression model by all measures.

In particular, the proposed model can predict bus travel times with less than five

seconds average error for all tested time periods compared to linear regression with

average errors higher than seven seconds.

Using the estimated beginning of the green phase at each cycle, the signal status

at the intersection is estimated. Intersection delay estimates from both the actual

records and the MIQP model on the test data are shown in Figures 4.5a, 4.5b, and 4.5c

for the morning, midday, and afternoon periods respectively. Intersection delay es-

timates from the actual records are determined as the total travel time of the bus
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passing the intersection obtained from the records just before and after the intersec-

tion minus the estimated running travel time. Delay estimates from the MIQP model

are determined using the estimated intersection lost time plus the signal delay time.

Note that the linear regression model estimates are average values over all buses.

The results indicate that the estimated signal phase starting and ending times are

reasonable since the MIQP model predicts that the delay decreases as the bus arrival

time gets closer to the beginning of the green phase and approaches zero once the

green phase has started. These results are in close agreement with the actual AVL

records observed. At the same time, the linear regression model predicts a constant

intersection delay for all buses independently of their arrival time at the intersection

stop line.

Using the decomposed traffic characteristics from both the linear regression and

MIQP models, bus trajectories can be inferred. Bus arrival times at downstream

bus stop are predicted using the buses’ timestamp at the upstream bus stop (stop

1). Figure 4.6 shows two examples of the inferred trajectories. The Figures show

that the MIQP inferred bus trajectories are very close to the recorded AVL data,

while the linear regression inferred trajectories tend to underestimate intersection

delay. Prediction errors of the MIQP and linear regression models for the first sample

bus (Figure 4.6a) are 1 and 20 seconds respectively. Prediction errors of the MIQP

and linear regression models for the second sample bus (Figure 4.6b) are 1 and 26

seconds respectively. As mentioned before this is due to the fact that the MIQP

model estimates the status of the signal, and as a result, it can estimate individual

bus delay, while the linear regression model estimates an average intersection delay

for all buses.
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(a) Intersection delay on the morning test dataset

(b) Intersection delay on the midday test dataset

(c) Intersection delay on the afternoon test dataset

Figure 4.5: Intersection delay for the morning, midday, and afternoon periods
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(a) Sample Bus 1

(b) Sample Bus 2

Figure 4.6: Estimated trajectories of two sample buses

106



4.3 Summary of Findings

This chapter developed a mixed-integer quadratic programming model (MIQP) to

obtain estimates of dwell time at bus stops, average speed, acceleration/deceleration

lost time, and intersection delay that can be used to predict bus travel time along a

signalized arterial. The model learns these components using historical low resolution

AVL data (i.e. one record every 60 seconds) without requiring information about the

dwell times at bus stops, the signal status, or traffic conditions. The MIQP model

is robust since it has been developed using the Huber loss function that ensures

low sensitivity to the outliers. The results of this model are compared against the

ones obtained with a linear regression model. This study addresses shortcomings

of previous studies by estimating individual bus delays at intersections rather than

estimating an average value over all buses. Another advantage is that the only signal

settings required are the phase durations.

The proposed method improves prediction accuracy of bus arrival times at any

point along the study segment. Accurate predictions are especially crucial in TSP

systems. Inaccurate bus arrival predictions at signalized intersections implementing

TSP could increase intersection delay for conflicting vehicles while not benefiting the

bus (i.e., wasted priority). Although the main purpose of the model is to be used in

TSP systems, it can also be used for other applications including advanced passenger

information systems.

Both the linear regression and MIQP models are tested in a segment of the Wash-

ington Street in Boston, Massachusetts. The MIQP model is solved using CPLEX

and the linear regression is estimated using the Panda library in Python. The re-

sults indicate that the MIQP model outperforms linear regression model in terms of

generalized error measures including MAE, MAPE, and RMSE. In particular, the

MIQP model is capable of predicting bus travel time with an average error of less
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than five seconds, which is sufficient for implementation of TSP strategies and traveler

information systems.

Implementation of the proposed model is expected to lead to enhanced traveler

information systems and efficient TSP provision, consequently improving transit reli-

ability and ridership. Future work will improve the model to account for cases where

buses travel on mixed-use lanes and actuated signal control plans. In a mixed-traffic

lane case, the position of buses in queue at intersections should be estimated to de-

termine bus delay at the intersections. Furthermore, future research will relax the

assumption that information about the duration of the signal phases is available.
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CHAPTER 5

REAL-TIME TRAFFIC SIGNAL CONTROL

While traditional traffic signal control systems rely on historical data to develop

optimal signal timing plans, recent systems increasingly rely on real-time data to

provide real-time control that automatically adapts to changes in traffic conditions.

Adjustments of signal timings to in traffic conditions can potentially improve sys-

tem efficiency. In this chapter, a person-based real-time signal control system that

accounts for stochasticity in transit vehicles’ arrival time is presented. The system

evaluates person delay measure using the analytical models developed in chapter 3

and takes into account the randomness in bus arrival time predictions.

5.1 Methodology

A real-time signal control system is developed to minimize total person delay while

accounting for stochasticity in bus arrival times. Auto vehicle arrivals are assumed to

be deterministic while bus arrivals at intersection stopline are assumed to be stochas-

tic. It is assumed that cycle length, as well as the sequence of the phases are constant.

The model optimizes signal phase splits by minimizing the total person delay at the

intersection. Auto and bus delays are determined using methods described in Chap-

ter 3. The case where buses are traveling in a mixed traffic lane is modeled. The

mathematical program is formulated under assumptions consistent with those made

in Chapter 3 including: Shockwave theory holds true, there is negligible platoon

dispersion, and traffic conditions are under-saturated.
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5.2 Mathematical Model

The mathematical model that is developed minimizes total person delay of both autos

and transit vehicles at intersections that are part of a signalized arterial corridor while

providing a priority window equal to one standard deviation lower and one higher than

the expected transit arrival time at the intersection. Since the intersection is part of a

signalized arterial, it is assumed that vehicles arrive in platoons. It is further assumed

that traffic operations can be modeled by the Kinematic Wave Theory (Lighthill

and Whitham, 1955, Richards, 1956) and saturation flows are constant. The auto

arrivals and platoon sizes are deterministic and it is assumed that there is no platoon

dispersion. The mathematical model is developed to describe a variety of traffic

conditions but while it does not account for queue spillbacks, saturation flows can be

easily adjusted to describe this phenomenon occurring during times of oversaturated

conditions. Transit vehicle arrivals at the intersection stopline are assumed to be

stochastic an following a exponential distribution. Finally, it is assumed that the cycle

length as well as the phase sequence are constant. Transit vehicles and autos travel

in mixed use lanes and the impact of transit stops on traffic and transit operations

has been ignored.

The mathematical program optimizes the green times for the intersection by min-

imizing the summation of the auto and transit vehicle person delays. Auto delays for

both autos and transit vehicles are estimated based on the KWT as functions of the

auto arrival times, platoon sizes, sizes of the residual queue, transit vehicle arrival

times, and signal settings and are then weighted by their respective passenger occu-

pancies. Since the focus is on one signalized intersection, which is however influenced

by upstream intersections, the offsets remain constant. The proposed real-time signal

control system minimizes total person delay by changing the phase green times at

the intersection while ensuring the provision of a priority window for transit vehicles

arriving from a certain direction.
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To facilitate the description of the model, the following sets, variables and param-

eters are defined:

• Sets:

– Ma = {1, 2, .., 6}: Set of auto delay cases,

– Mb = {1, 2, .., 16}: Set of transit delay cases,

– J = {1, 2, .., j}: Set of lane groups,

– I = {1, 2, .., i}: Set of signal phases,

– B = {1, 2, .., b}: Set of total transit vehicles during cycle T ,

– Bj = {1, 2, .., bj}Set of the transit vehicles traveling on the lane group j

during cycle T .

• Variables:

– Ge
j : effective green time for the phase that serves lane group j [sec];

– zamj : variable introduced to defeat bilinearity in determining delay of autos

traveling in lane group j for case m;

– zbmj,b: variable introduced to defeat bilinearity in determining delay of tran-

sit vehicle b traveling in lane group j for case m;

– xmj : Binary variable indicating the delay case that autos in lane group j

belong to;

– ymj,b: Binary variable indicating the transit vehicle sub-case that transit

vehicle b in lane group j belongs to.

– E1
b , E

2
b , and E3

b : Binary variable indicating the transit vehicle case (i.e.,

within, ahead, or behind the platoon) that transit vehicle b in lane group

j belongs to.
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• Parameters:

– C: cycle length [sec];

– Nj,T−1: residual queue size of lane group j at the end of the previous cycle

T -1 [veh];

– Pj,T : total platoon size of lane group j during cycle T ;

– sj: total saturation flow of lane group j [vpm];

– tbb,T : arrival time of transit vehicle b at the intersection during cycle T

[sec];

– tj,T : platoon arrival time at the intersection of lane group j during cycle

T [sec];

– tT : beginning of the cycle [sec];

– ōa average auto occupancy [passenger/car];

– ōb average transit vehicle occupancy [passenger/transit vehicle];

– Zα/2 = the value from the standard normal distribution for the confidence

level (1− α)%;

– σ = standard deviation of transit arrival time predictions;

• Others

– Daj,T : total delay of autos in lane group j during cycle T [veh-sec];

– Dasmj, T : delay of autos in lane group j during cycle T for delay case m

m ∈Ma[veh-sec];

– Dbj,T : total delay of transit vehicles in lane group j during cycle T [veh-

sec];
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– Dbmj,T : delay of transit vehicles in lane group j during cycle T for delay

case m m ∈Mb [veh-sec];

– R
(1)
j : component of the red time from the beginning of the cycle until the

start of the green time for lane group j [sec];

– R
(2)
j : component of the red time from end of the green until end of the

cycle for lane group j [sec];

– T : signal cycle index.

5.2.1 Auto delay estimation

Auto delay is estimated as a function of the platoon arrival time, platoon size, residual

queue length, and signal timing. As shown in Figure 5.1 six cases for auto delay

estimation are considered as follows:

• Case N1: Platoon arrival before residual queue served, entire platoon served in

green

The corresponding constraints are:

tj,T ≤ tT +R
(1)
j +

Nj,T−1

sj
∀j ∈ J (5.1)

Pj,T ≤ Gjsj −Nj,T−1 ∀j ∈ J (5.2)

The auto delay function is:

Da1j,T = Pj,T

(
(T − 1)C +R

(1)
j +

Nj,T−1

sj
− tj,T

)
+Nj,T−1R

(1)
j (5.3)

• Case N2: Platoon arrival before residual queue served, insufficient green to

serve entire platoon

The corresponding constraints are:
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Figure 5.1: Auto delay cases
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tj,T ≤ tT +R
(1)
j +

Nj,T−1

sj
∀j ∈ J (5.4)

Pj,T ≥ Gjsj −Nj,T−1 ∀j ∈ J (5.5)

The auto delay function is:

Da2j,T = Pj,T

(
(T − 1)C +R

(1)
j +

Nj,T−1

sj
− tj,T

)
+ (Pj,T +Nj,T−1 −Ge

jsj)(R
(2)
j +R

(1)
j ) +Nj,T−1R

(1)
j (5.6)

• Case N3: Insufficient green to serve residual queue

The corresponding constraint is:

Nj,T−1 ≥ Gjsj ∀j ∈ J (5.7)

The auto delay function is:

Da3j,T = Pj,T

(
(TC +R

(1)
j +

Nj,T−1 −Ge
jsj

sj
− tj,T

)
+Nj,T−1R

(1)
j (5.8)

• Case N4: Platoon arrival after residual queue served, entire platoon served in

green

The corresponding constraints are:

tj,T ≥ tT +R
(1)
j +

Nj,T−1

sj
∀j ∈ J (5.9)

Pj,T ≤ (tT +R
(1)
j +Gj − tj,T )sj ∀j ∈ J (5.10)

The auto delay function is:
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Da4j,T = Nj,T−1R
(1)
j (5.11)

• Case N5: Arrival after residual queue served, insufficient green to serve entire

platoon

The corresponding constraints are:

tj,T ≥ tT +R
(1)
j +

Nj,T−1

sj
∀j ∈ J (5.12)

tj,T ≤ tT +R
(1)
j +Gj ∀j ∈ J (5.13)

Pj,T ≥ (tT +R
(1)
j +Gj − tj,T )sj ∀j ∈ J (5.14)

The auto delay function is:

Da5j,T =
(
Pj,T − ((T − 1)C +R

(1)
j +Ge

j − tj,T )sj

)
(R

(2)
j +R

(1)
j )

+Nj,T−1R
(1)
j (5.15)

• Case N6: Arrival after the green, entire residual queue is served

The corresponding constraint is:

tj,T ≥ tT +R
(1)
j +Gj ∀j ∈ J (5.16)

The auto delay function is:

Da6j,T = Pj,T (TC +R
(1)
j − tj,T ) +Nj,T−1R

(1)
j (5.17)
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5.2.2 Transit delay estimation

Transit vehicles traveling in mixed-traffic lanes are traveling either within the auto

platoon or outside of it. Therefore, two cases are defined to capture whether transit

vehicles are within the auto platoons (cases TW) or not (cases TO). For each case,

several sub-cases are considered.Constraints to determine transit vehicle position cases

are as follows:

Case TW

tbb ≤ tj,T +
Pj,T
sj

+M(1− E1
b ) ∀j ∈ J&∀b ∈ Bj (5.18)

tbb ≥ tj,T +M(E1
b − 1) ∀j ∈ J&∀b ∈ Bj (5.19)

Case TO - Ahead of the Auto platoon

tbb ≤ tj,T +M(1− E2
b ) ∀j ∈ J&∀b ∈ Bj (5.20)

Case TO - After the Auto platoon

tbb ≥ tj,T +
Pj,T
sj

+M(E3
b − 1) ∀j ∈ J&∀b ∈ Bj (5.21)

E1
b + E2

b + E3
b = 1 ∀∀b ∈ B (5.22)

5.2.2.1 Case TW

In this case, transit vehicles travel within the platoon. Vehicles experience delay as

the autos in the platoon except for cases N2 and N5. In N2 and N5, a portion of the

platoon passes the intersection during the green phase and the rest of the platoon

will wait until the next cycle to discharge. As a result, eight different sub-cases

(Figure 5.2) are considered as follows:
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Figure 5.2: Transit delay cases: transit vehicle traveling within the platoon
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• Case T1: Platoon arrival before residual queue served, entire platoon served in

green, transit vehicle also served in green

The Corresponding constraints are as follows:

tj,T ≤ tT +R
(1)
j +

Nj,T−1

sj
+M(1− y1j,b) ∀j ∈ J&∀b ∈ Bj (5.23)

Pj,T ≤ Gjsj −Nj,T−1 +M(1− y1j,b) ∀j ∈ J&∀b ∈ Bj (5.24)

y1j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.25)

This case corresponds to case N1 for auto delay. The transit vehicle delay

function is:

db1b,T = (T − 1)C +R
(1)
j +

Nj,T−1

sNj
− tj,T (5.26)

• Case T2: Platoon arrival before residual queue served, insufficient green to serve

entire platoon, transit vehicle also served in green

The Corresponding constraints are as follows:

tbb − tj,T ≤ Ge
j −

Nj,T−1

sj
+M(1− y2j,b) ∀j ∈ J&∀b ∈ Bj (5.27)

y2j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.28)

This case corresponds to case N2 for auto delay. The transit vehicle delay

function is:

db2b,T = (T − 1)C +R
(1)
j +

NN
j,T−1

sj
− tj,T (5.29)

• Case T3: Platoon arrival before residual queue served, insufficient green to serve

entire platoon, transit vehicle can not get served in green
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The Corresponding constraints are as follows:

tbb − tj,T ≤ Ge
j −

Nj,T−1

sj
+M(y3j,b)− 1) ∀j ∈ J&∀b ∈ Bj (5.30)

y3j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.31)

This case corresponds to case N2 for auto delay. The transit vehicle delay

function is:

db3j,T = (T − 1)C +R
(1)
j +

Nj,T−1

sj
− tj,T + (R

(2)
j +R

(1)
j ) (5.32)

• Case T4: Insufficient green to serve residual queue, transit vehicle cannot served

in green

The Corresponding constraints are as follows:

Nj,T−1 ≥ Gjsj +M(y4j,b − 1) ∀j ∈ J&∀b ∈ Bj (5.33)

y4j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.34)

This case corresponds to case N3 for auto delay. The transit vehicle delay

function is:

db4b,T = TC +R
(1)
j +

Nj,T−1 −Ge
jsj

sj
− tj,T (5.35)

• Case T5: Platoon arrival after residual queue served, entire platoon served in

green, transit vehicle served in green
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The Corresponding constraints are as follows:

tj,T ≥ tT +R
(1)
j +

Nj,T−1

sj
+M(y5j,b − 1) ∀j ∈ J&∀b ∈ Bj (5.36)

Pj,T ≤ (tT +R
(1)
j +Gj − tj,T )sj +M(1− y5j,b) ∀j ∈ J&∀b ∈ Bj (5.37)

y5j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.38)

This case corresponds to case N4 for auto delay. The transit vehicle delay

function is:

db4j,T = 0 (5.39)

• Case T6: Arrival after residual queue served, insufficient green to serve entire

platoon, transit vehicle served in green

The Corresponding constraints are as follows:

tbb ≤ (T − 1)C +R
(1)
j +Ge

j +M(1− y6j,b) ∀j ∈ J&∀b ∈ Bj (5.40)

y5j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.41)

This case corresponds to case N5 for auto delay. The transit vehicle delay

function is:

db6b,T = 0 (5.42)

• Case T7: Arrival after residual queue served, insufficient green to serve entire

platoon, transit vehicle cannot get served in green
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The Corresponding constraints are as follows:

tbb ≥ (T − 1)C +R
(1)
j +Ge

j +M(y7j,b − 1) ∀j ∈ J&∀b ∈ Bj (5.43)

y5j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.44)

This case corresponds to case N5 for auto delay. The transit vehicle delay

function is:

db7b,T = R
(2)
j +R

(1)
j (5.45)

• Case T8: Arrival after the green, entire residual queue is served, transit vehicle

served in green

The Corresponding constraints are as follows:

tj,T ≥ tT +R
(1)
j +Gj +M(y8j,b − 1) ∀j ∈ J&∀b ∈ Bj (5.46)

y8j,b ≤ E1
b ∀j ∈ J&∀b ∈ Bj (5.47)

This case corresponds to case N6 for auto delay. The transit vehicle delay

function is:

db8b,T = TC +R
(1)
j − tj,T (5.48)

5.2.2.2 Case TO

In this case, the buses travel outside the platoon either ahead of it or after and the

bus can be modeled as a platoon of size one. If the bus travels ahead of the platoon

the residual queue for determining bus delay is the residual queue from the previous

cycle (cases T9-T12). If the bus travels behind the platoon, the residual queue is
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the residual queue from the previous cycle plus the platoon size of the current cycle

(cases T13-T16). Eight different sub-cases (Figure 5.3) are considered as follows:

• Case T9: Transit vehicle arrival before residual queue served, sufficient green

to serve entire residual queue, transit vehicle passes the intersection during the

green phase of the current cycle

The Corresponding constraints are as follows:

tbb ≤ tT +R
(1)
j +

Nj,T−1

sj
+M(1− y9j,b) ∀j ∈ J&∀b ∈ Bj (5.49)

y9j,b ≤ E2
b ∀j ∈ J&∀b ∈ Bj (5.50)

The transit vehicle will experience delay which is:

db9b,T = (T − 1)C +R
(1)
j +

Nj,T−1

sj
− tbb,T (5.51)

• Case T10: Insufficient green to serve entire residual queue, transit vehicle passes

the intersection during the green phase of the next cycle

The Corresponding constraints are as follows:

Nj,T−1 ≥ Gjsj +M(y1j,b0− 1) ∀j ∈ J&∀b ∈ Bj (5.52)

y1j,b0 ≤ E2
b ∀j ∈ J&∀b ∈ Bj (5.53)

The transit vehicle will experience delay which is:

db10b,T = TC +R
(1)
j +

Nj,T−1

sj
−Ge

j − tbb,T (5.54)
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Figure 5.3: Transit delay cases: transit vehicle traveling outside the auto platoon
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• Case T11: Transit vehicle arrival during the green phase before residual queue

served, transit vehicle passes the intersection without delay

The Corresponding constraints are as follows:

tbb ≥ tT +R
(1)
j +

Nj,T−1

sj
+M(y1j,b1− 1) ∀j ∈ J&∀b ∈ Bj (5.55)

tbb ≤ tT +R
(1)
j +Gj +M(1− y1j,b1) ∀j ∈ J&∀b ∈ Bj (5.56)

y1j,b1 ≤ E2
b ∀j ∈ J&∀b ∈ Bj (5.57)

The transit vehicle delay is zero:

db11b,T = 0 (5.58)

• Case T12: Transit vehicle arrival after the green, entire residual queue is served,

transit vehicle passes the intersection during the green phase of the next cycle

The Corresponding constraints are as follows:

tbb ≥ tT +R
(1)
j +Gj +M(y1j,b2− 1) ∀j ∈ J&∀b ∈ Bj (5.59)

y1j,b2 ≤ E2
b ∀j ∈ J&∀b ∈ Bj (5.60)

The transit vehicle delay is:

Db12b,T = TC +R
(1)
j − tbb,T (5.61)

Cases T13, T14, T15, T16 are similar to cases T9, T10, T11, T12 respectively and

just Nj,T−1 must be replaced with Nj,T−1 + Pj,T .
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5.2.3 Mathematical Program Formulation

The mathematical program objective function consists of the auto and transit person

delays for all vehicles arriving at the intersection during two cycles.

5.2.4 Objective Function

min
J∑
j=1

ōaDaj,T +
J∑
j=1

Bj∑
b=1

ōbDbj,b,T (5.62)

where:

Daj,T =
Ma∑
m=1

(xmj ×Damj,T ) ∀j ∈ J (5.63)

Dbj,b,T =

Mb∑
m=1

(ymb ×Dbmj,b,T ) ∀j ∈ J,∀b ∈ BT (5.64)

So, the objective function becomes:

min
J∑
j=1

Ma∑
m=1

ōa(x
m
j ×Damj,T ) +

J∑
j=1

BT∑
b=1

Mb∑
m=1

ōb(y
m
b ×Dbmb,T ) (5.65)

In the objective function (equation (5.65)), the binary variables xmj and ymj,b are

multiplied by the continuous variables Damj and Dbmj,b respectively, which make it

non-linear. To defeat these bilinearities, the objective function is reformulated and

new variables zamj and zbmj,b are introduced, which are defined as follows:

zamj = xmj ×Damj ∀j ∈ J&∀m ∈Ma (5.66)

zbmj,b = ymj,b ×Dbmj,b ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.67)
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5.2.5 Constraints

tbb ≤ tj,T +
Pj,T
sj

+M(1− E1
b ) ∀j ∈ J&∀b ∈ Bj (5.68)

tbb ≥ tj,T +M(E1
b − 1) ∀j ∈ J&∀b ∈ Bj (5.69)

tbb ≤ tj,T +M(1− E2
b ) ∀j ∈ J&∀b ∈ Bj (5.70)

tbb ≥ tj,T +
Pj,T
sj

+M(E3
b − 1) ∀j ∈ J&∀b ∈ Bj (5.71)

E1
b + E2

b + E3
b = 1 ∀b ∈ B (5.72)

zamj ≤ Damj +M × (1− xmj ) ∀j ∈ J&∀m ∈Ma (5.73)

zamj ≥ Damj −M × (1− xmj ) ∀j ∈ J&∀m ∈Ma (5.74)

zamj ≤M × xmj ∀j ∈ J&∀m ∈Ma (5.75)

zbmj,b ≤ Dbmj,b +M × (1− ymj,b) ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.76)

zbmj,b ≥ Dbmj,b −M × (1− ymj,b) ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.77)

zbmj,b ≤M × ymj,b ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.78)

I∑
i=1

gi,T +
I∑
i=1

yi = C (5.79)

gi,T ≥ gi,min ∀i ∈ I (5.80)

gi,T ≤ gi,max ∀i ∈ I (5.81)

gi,T ≥ 0 ∀i ∈ I (5.82)
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zamj ≥ 0 ∀j ∈ J&∀m ∈Ma (5.83)

zbmj,b ≥ 0 ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.84)

xmj ∈ {0, 1} ∀j ∈ J&∀m ∈Ma (5.85)

ymj,b ∈ {0, 1} ∀j ∈ J&∀b ∈ Bj&∀m ∈Mb (5.86)

Constraints (5.68) to (5.72) are used to determine the case that a transit vehicle

falls under, meaning whether it is traveling within, ahead, or after the vehicle platoon.

Constraints (5.73) to (5.78) are added in the mathematical program formulation with

the introduction of the auxiliary variables to treat the bilinearities originally existing

in the objective function. Constraint (5.79) ensures that the optimal green times

add up to the cycle length, and constraints (5.80) and (5.81) provide the lower and

upper bounds of the green times respectively. Finally, (5.82) and (5.86) determine

the feasible domain for all decision variables.

Additional constraints are introduced to determine the six different auto delay

and 16 transit vehicle delay cases, but are omitted here for brevity. An example of

constraints for case N1 of auto delays are:

tj,T ≤ tT +R
(1)
j +

Nj,T−1

sj
+M(1− x1j) ∀j ∈ J (5.87)

Pj,T ≤ Gjsj −Nj,T−1 +M(1− x1j) ∀j ∈ J (5.88)

Finally, to provide the priority window, at first optimum green times are deter-

mined without applying it. Then, using the optimum green times, if the estimated

transit arrival times are within the confidence intervals of the beginning or the end

of green, two additional constraints are activated and the optimum green times are

recalculated using these additional constraints. If the time between the estimated

transit arrival time and the end of the calculated optimum green, goptj , is less than

one confidence interval, constraint (5.89) ensures that there will be at least one con-

fidence interval from the estimated transit arrival time to the end of the green. Also
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constraint (5.90) ensures that the there will be at least one confidence interval from

the beginning of the green to the estimated transit arrival time.

Lupper ≤ (T − 1)C +R
(1)
j + goptj ∀j ∈ J&∀b ∈ Bj (5.89)

Llower ≥ (T − 1)C +R
(1)
j ∀j ∈ J&∀b ∈ Bj (5.90)

where:

Lupper = tbb + Zα/2 ×
σ√
n

(5.91)

Llower = tbb − Zα/2 ×
σ√
n

(5.92)

assuming a normal distribution of transit arrival times. Applying these constraints

requires careful consideration to avoid infeasibility in solutions. For instance, if the

first phase is serving a transit vehicle, applying constraint (5.90) will result in an

infeasible solution space.

5.3 Application

The real-time signal control system has been tested with the use of the microsimu-

lation software AIMSUN through Emulation-In-the-Loop Simulation (EILS). In par-

ticular, five different scenarios are tested and their results are compared:

• Scenario 1: SYNCHRO: signal timings are designed based on the optimum

signal timings obtained from SYNCHRO.

• Scenario 2: Vehicle-based Optimization without Priority Window:

signal timings are optimized by minimizing total vehicle delay. In other words,

passenger occupancy of both transit vehicles and autos are one. Priority window

is not applied.
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• Scenario 3: Vehicle-based Optimization with Priority Window: signal

timings are optimized by minimizing total vehicle delay and priority window is

applied.

• Scenario 4: Person-based Optimization without Priority Window:

signal timings are optimized by minimizing total person delay. Passenger oc-

cupancy of autos and transit vehicles are 1.25 and 40 passengers per vehicle

respectively. Priority window is not applied.

• Scenario 5: Person-based Optimization with Priority Window: signal

timings are optimized by minimizing total person delay and priority window is

applied.

5.3.1 Test Site

The developed real-time TSP control is tested on a single intersection. The intersec-

tion of San Pablo Avenue and University Avenue is selected as the test site to study

the performance of the real-time signal control system. Existing conditions at this

intersection indicate traffic condition close to saturation. The selected intersection

layout and the lane groups, phasing, and green times for the intersection during the

evening peak are shown in Figure 5.4. The intersection flow ratio during evening peak

hour (4-5pm) is 0.73. The cycle length is C = 80 seconds and the lost time is L =

12 seconds. The heaviest direction during the evening peak hour is the northbound

through movement and for that reason it has been selected for the analysis by includ-

ing only buses for that direction. Traffic flow of the northbound through movement

includes three bus lines (72, 72M, and 72R) with 10 buses per hour. Buses are con-

sidered only in the north bound direction. The frequency of buses are increased to

one dispatch in every 5 minutes for each of the bus lines 72, 72M, and 72R.
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Figure 5.4: Test Site: Lane Groups, Phasing, and Green Times

5.3.2 Simulation Tests

The AIMSUN micro-simulation software (TSS, 2006) is used to develop the simula-

tion model. 30 replications are used to overcome the stochastic nature of auto and

bus arrivals. Each replication includes 5 minutes of warm-up period and is run for

one hour. The auto inter-arrival times on the incoming links are set to follow an

exponential distribution at upstream intersections. Due to the existence of upstream

intersections vehicles arrive in platoons at the University Avenue intersection with

San Pablo Avenue, however the platoon size may vary from cycle to cycle since the

vehicle arrivals at the upstream intersection are random.

Detectors are placed 1400 feet upstream of the upstream intersections to make

sure that travel time from the detectors to the upstream intersections is more than

one cycle length. The detectors are used to estimate the platoon size of each lane

group during the next cycles. Based on the speed of the detected vehicles, their travel

time to the upstream intersection are estimated. Based on the estimated arrival time

of each vehicle and signal plan of the upstream intersection, platoon sizes for the next

cycle are estimated. Theses detectors are also used to predict bus arrival times at the

intersection stopline.
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Residual queues for each lane group are determined using the exit and entering

detectors. The entering detectors are located at the far-side of the links and detect

the actual number of vehicles entering the link. The exit detectors are located at the

University intersection stoplines and are used to determine the number of vehicles

discharging from the intersection. Residual queues are calculated as the difference

between entered and discharged vehicles during the previous cycle.

5.3.3 Results

The mathematical program is a Mixed Integer Linear Program (MILP) modeled in

C++ and solved using ILOG CPLEX Concert package and is simulated in Aimsun

using application programming interface (API) provided by Aimsun. A separate

micro-simulation test were run to determine error in predicting bus arrival times.

Ten replications for an hour were run and estimated bus arrivals and actual arrivals

were collected. Bus arrival estimates were calculated using upstream detectors and

actual arrival times were collected using the detectors at intersection stopline. The

average error in predicting bus arrivals was -0.4 seconds with a standard deviation

of 7.6 seconds. Using the standard normal table, the confidence interval for α = 0.5

is 4.7 seconds. Therefore, in the priority window constraints, a 5-second confidence

interval is considered. The results of the vehicle delay and person delay for auto

passengers, bus passengers, and total passengers for the five scenarios as well as their

standard deviation are listed in Tables 5.1 and 5.2 respectively.

The results indicate that the vehicle-based optimization without applying priority

window significantly reduces bus person delay by 32% in comparison to the base case

(SYNCHRO) (Figure 5.5). Person-based optimization reduces bus person delay by

54% and increases car person delay by 20%. This increase is due to the fact that in

person-based optimization higher weight is given to the buses. Although car person

delay is increased, total person delay has not been changed in comparison to the
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Table 5.1: Vehicle Delays

Bus Delay Auto Delay Total Delay
(sec) SD (sec) SD (sec) SD

SYNCHRO 27.84 7.87 18.57 2.73 18.64 2.75
Vehicle-Based - No 18.79 4.49 19.63 3.83 19.62 3.81
Priority Window
Vehicle-Based - With 15.62 3.95 20.12 3.64 20.08 3.63
Priority Window
Person-Based - No 12.52 3.95 22.35 4.83 22.27 4.79
Priority Window
Person-Based - With 6.88 3.22 26.09 7.87 25.95 7.81
Priority Window

Table 5.2: Person Delays

Bus Person Auto Person Total Person
Delay Delay Delay

(pax-sec) SD (pax-sec) SD (pax-sec) SD
SYNCHRO 11.01 3.06 30.46 4.75 41.47 7.23
Vehicle-Based - No 7.52 1.79 32.21 6.54 39.73 7.11
Priority Window
Vehicle-Based - With 6.25 1.58 33.00 6.22 39.25 7.05
Priority Window
Person-Based - No 5.01 1.58 36.65 8.28 41.66 8.22
Priority Window
Person-Based - With 2.75 1.29 42.71 13.17 45.46 13.31
Priority Window
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Figure 5.5: Percent change in person delay without priority window

base case. By applying 5 seconds priority window, results (Figure 5.6) show that

additional 11% and 21% reduction in bus person delay is achieved by vehicle-bases

and person-based optimization methods respectively. Person-based optimization with

priority window increases car person delay by 40% while total person delay increased

10%.

Applying priority window in vehicle-based optimization reduces bus person delay

by 43% which is 11% higher than the scenario without priority window (Figure 5.7).

With the person-based optimization, applying priority window achieves 21% higher

reduction in person delay in comparison to the scenario without priority window

(Figure 5.8).

5.4 Summary of Findings

This chapter developed a real-time signal control plan which minimizes total person

delay of an intersection along a signalized corridor while accounting for stochasticity

in transit vehicle arrival time by ensuring a priority window for them. An analytical
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Figure 5.6: Percent change in person delay with priority window

Figure 5.7: Percent change in person delay with vehicle-based optimization
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Figure 5.8: Percent change in person delay with person-based optimization

model based on Kinematic Wave Theory is used to estimate auto and transit vehicle

delays. The optimization model is formulated as a mixed-integer programming model.

The mathematical program is modeled in C++ and solved using the CPLEX Concert

package. Results from the AIMSUN micro-simulation tests indicate that the proposed

mathematical program with and without priority window, significantly reduces bus

person delay in comparison to the base scenario. By applying 5 seconds priority

window, results show that an additional significant reduction in bus person delay is

achieved by both vehicle-based and person-based optimization methods.

Future work will focus on expanding the model to accommodate varying cycle

lengths and phase sequences. In addition, the impact of bus stops as well as queue

spillbacks will be incorporated. The mathematical program will be also updated to

account for multiple transit lines arriving at the even from conflicting approaches.

Finally, additional work will extend this model to multiple intersections along the

arterial following a pair-wise optimization as in (Christofa et al., 2016).
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CHAPTER 6

CONCLUSION

The objective of this dissertation is threefold: 1) to perform a person-based evaluation

of alternative TPTs when considered individually and in combination, 2) to estimate

bus arrival time at intersection stopline and 3) to develop a real-time traffic signal

control plan accounting for stochastic bus arrivals at the intersection stopline.

6.1 Summary of Findings

6.1.1 TPT Evaluation

This dissertation first (Chapter 3) presented an analytical model to evaluate the

impact of alternative TPTs, in terms of person delay and person discharge flow at

signalized arterials both with and without nearside bus stops. The model assumes

vehicles arrive in platoons and using Kinematic Wave Theory, it determines person

delay performance measures of both auto vehicles and buses traveling at each lane

group. TPTs are also evaluated using a microsimulation model in Aimsun. The

proposed analytical models can handle both under-saturated on over-saturated con-

ditions; however, in this study only under-saturated conditions have been evaluated.

For the without nearside bus stops case, the evaluations were performed on a four-

intersection signalized arterial located in Berkeley, CA. A total of eight alternative

scenarios were evaluated. These scenarios included several space TPTs (dedicated

bus lane addition and substitution, and queue jumper lane addition) and a time TPT

(green extension). Space and time TPTs were evaluated both individually and in
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combination. For the with nearside bus stops situation, only space priority strategies

were evaluated on the intersection of San Pablo Avenue and Cedar Street.

The results of this chapter indicate that space TPTs introduce noticeable benefits

to transit users. When a QJL or a DBL is added there is no negative impact on

auto traffic. However, when a lane is substituted for a bus lane, person discharge

flow decreases significantly and auto person delays increase dramatically. This is a

result of the oversaturated conditions that the substitution of a lane is likely to cause

for high vehicle demand levels. Therefore, DBL substitution is not suitable for high

volume approaches, because it reduces the capacity by significant amounts. DBL

substitution may be justified for high frequency transit lines, essentially when DBL

substitution can serve at least as many people as it does when the lane is available

for all vehicles. Implementation of green extension leads to favorable results for total

person delay and bus person delay while autos on the priority approach also benefit. In

addition, doubling the bus frequency had a positive impact in reducing total and bus

person delay when green extension was implemented, while increased bus passenger

occupancy had insignificant effect. Finally, a comparison of the analytical with the

microsimulation test results indicates that the proposed analytical model can be used

to quantitatively assess space and time TPTs.

The person-based analytical model that was presented in this study as well as

the insights obtained in this study can be used to provide guidance in the planning

and design of TPTs that improve transit reliability while improving overall mobil-

ity in urban areas. The developed analytical models can be used to assist decisions

on preferential treatments under various traffic and transit operating conditions. In

addition, this study showed that the analytical method could be used for such as-

sessments without the need for expensive microsimulations since the results produced

through microsimulation were comparable to the results produced with the analytical

model.
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6.1.2 Bus Arrival Prediction

The second part of this dissertation (Chapter 4) presented a a mixed-integer quadratic

programming model (MIQP) to estimate bus travel time along a signalized arterial

using data obtained from low resolution Automated Vehicle Location (AVL) data. A

model is developed to decompose bus travel time into its components including dwell

time at bus stops, average speed, acceleration/deceleration lost time, and intersection

delay. The model learns these components using historical low resolution AVL data

(i.e. one record every 60 seconds) without requiring information about the dwell times

at bus stops, the signal status, or traffic conditions. The model estimates signal status

and infers trajectories of the buses. The problem was formulated as a mixed-integer

quadratic programming model (MIQP) and was solved using CPLEX solver.

The results of the MIQP model and a linear regression model are compared. Both

the linear regression and MIQP models are tested in a segment of the Washington

Street in Boston, Massachusetts. Results indicate that the MIQP model outperforms

linear regression model in terms of generalized error measures including MAE, MAPE,

and RMSE. In particular, the MIQP model is capable of predicting bus travel time

with an average error of less than five seconds, which is sufficient for implementation

of TSP strategies and traveler information systems.

6.1.3 Real-time Traffic Signal Control Plan

The third part of this dissertation (Chapter 5) presented a real-time signal control

plan which minimizes total person delay of an intersection along a signalized corridor

while providing a priority window for transit vehicles. The program uses the analytical

models developed in Chapter 3 to evaluate person delay of an intersection and arrival

time of the buses at the intersection stopline are predicted. Taking into account the

stochasticity in transit vehicles’ arrival time, a mathematical program is formulated

to minimize total person delay while providing priority window for buses to make sure
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that 95% of the buses arriving during the green phase can be served. The optimization

model is formulated as mixed-integer programming model and is solved using CPLEX

Concert package. Results from the Aimsun micro-simulation test showed that the

proposed mathematical program significantly reduces bus, car and total person delays

in caparison to the base scenario.

6.2 Research Contributions

• Development of analytical models to evaluate various space (e.g., queue jumper

lane and dedicated bus lane) and time (e.g., transit signal priority) priority

strategies along signalized arterials with and without nearside bus stops. The

analytical models evaluate person-based performance measures including per-

son delay and person discharge flow using Kinematic Wave Theory. Vehicles

approaching the signalized intersection are considered to travel within platoons.

• Development of a bus travel time prediction model using data obtained from

AVL systems. The proposed model estimates traffic signal status using the

AVL records of buses and provides more accurate predictions in comparison to

a simple linear regression model. The proposed model decomposes bus travel

time into its components including running travel time, dwell times at bus stops,

and delays at intersections. Unlike other studies, the developed model in this

research estimates intersection delay for individual buses rather than estimating

an average delay over all buses thus, improves prediction accuracy.

• Development of a real-time traffic signal control with TSP which takes into

account stochasticity in bus arrivals and provides a priority window for buses.

The control system minimizes total person delay at an intersection. The per-

son delay measures are determined using the analytical models developed for

the TPT evaluation. This study is unique since the developed control system
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provides a priority window to make sure that buses can pass the intersection

(if arriving during the green phase) considering a certain confidence level to

overcome the randomness in the bus arrival time predictions.

6.3 Future Work

6.3.1 TPT Evaluation

Future work will improve the analytical models to account for platoon dispersion and

stochasticity in auto arrivals. Future work will extend the analytical model to evaluate

other TPT strategies including intermittent bus lanes. In addition, future research

will focus on testing the proposed analytical and simulation models at test sites that

present oversaturated traffic conditions. Finally, future research will investigate a

variety of traffic and transit conditions to determine domains where certain TPTs

should be implemented to minimize person delay.

6.3.2 Bus Arrival Prediction

Future work will improve the model to account for cases where buses travel on mixed-

use lanes and actuated signal control plans. In a mixed-traffic lane case, the position

of buses in queue at intersections should be estimated to determine bus delay at the

intersections. Furthermore, future research will relax the assumption that information

about the duration of the signal phases is available.

6.3.3 Real-time Traffic Signal Control Plan

Future work will expand the model to accommodate varying cycle lengths and phase

sequences. In addition, the impact of bus stops as well as queue spillbacks will be

incorporated. The mathematical program will be also updated to account for multiple

transit lines arriving at the even from conflicting approaches. Finally, additional work
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will extend this model to multiple intersections along the arterial following a pair-wise

optimization as in Christofa et al. (2016).
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