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ABSTRACT 

THE FATE OF HALOACETONITRILES IN DRINKING WATERS 

SEPTEMBER 2016 

YUN YU 

B.A., SHANGHAI UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. David A. Reckhow 

The identification and control of halogenated nitrogenous disinfection byproducts (N-

DBPs) in drinking waters is of increasing interest over the past decade due to their more 

substantial carcinogenic potencies than the currently regulated trihalomethanes (THMs) 

and the haloacetic acids (HAAs), which offset their relatively low-level occurrence in 

drinking waters to be considered as important emerging DBPs.  

Among the major N-DBP families, haloacetonitriles (HANs) are most ubiquitous and 

they usually occur at the highest levels in US drinking waters. The formation of HANs is 

always found to be positively correlated with dissolved organic nitrogen (DON) content 

in source waters. In particular, early research on HAN formation has recognized free 

amino acids, such as aspartic acid, tyrosine, tryptophan, as well as some of their 

metabolites (e.g. kynurenine and kynurenic acid) as prolific HAN producers. With the 

presence of free amino nitrogen, amino acids are demonstrated to be highly reactive with 

chlorine and can lead to rapid formation of HANs via dichloramination and 
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decarboxylation reactions. However, free amino acids are probably not the primary 

precursors for HANs, mainly because their actual concentrations in natural waters are too 

low to sufficiently account for significant amounts of HANs that actually occur in finish 

water supplies. On the contrary, combined amino acids including peptides, proteins, and 

those that are associated with humic substances, are four to five times as common as the 

free forms. Regardless of their much higher abundance, it is ambiguous if combined 

amino acids can contribute to the formation of HANs, especially with all the essential 

amino nitrogens bound in peptide linkages. In fact, many have shown that the amide 

nitrogen within peptide bonds is unreactive with aqueous chlorine. For this reason, one of 

the key objectives of this study was to clarify the reactivity of combined amino acids with 

chlorine particularly in terms of HAN formation. Results indicated that combined amino 

acids could actually produce dichloroacetonitrile (DCAN) during chlorination, but the 

rate of DCAN formation was much slower compared to that from free amino acids. The 

key to the formation of HANs from combined amino acids was found to be a chlorine-

induced peptide degradation process, which removes each amino acid residue from the 

peptide backbone in a slow stepwise fashion, thus continuously creating reactive free 

amino nitrogens at the N-terminal end. 

Simultaneous to their continuous formation, HANs are chemically unstable and can 

undergo considerable decomposition via several types of degradation reactions. It is 

commonly acknowledged that the rate of HAN loss generally increases with increasing 

pH but varies among different analogues depending on the nature of their halogenated 

substituents. Additionally, free chlorine was shown to be an important factor and HAN 

degradation was accelerated in its presence. Despite the prevailing understanding that 
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HANs are reactive, the chemical stability of HANs has not been systematically evaluated 

and kinetically characterized to allow quantitative prediction of their lifetime under 

typical drinking water conditions. Furthermore, HAN decomposition mechanisms have 

not been fully elucidated and reconciled with the postulated reaction pathways. 

Therefore, a more comprehensive kinetic analysis is necessary to understand the reaction 

kinetics as well as the reaction mechanisms for a more complete set of HANs. Through 

this study, a mathematical kinetic model was established for seven chlorinated and 

brominated HAN species and their individual reaction rate constants were estimated 

using the Bayesian modeling framework as a more robust means of parameter estimation 

than classic least squares regression. Moreover, the nucleophilic nature of HAN reactions 

was summarized by developing linear free energy relationships (LFERs) for both HAN 

hydrolysis and chlorination pathways. 

Perhaps most importantly, as HANs degrade, they leave other reaction products in 

their place. Depending on the nature and lifetime of these sequential products, they may 

survive drinking water distribution and become important DBPs in their own right. 

Hence, understanding the concentrations, relations, and stability of these secondary 

reaction products is of great significance. Although it has been exclusively proposed that 

HAN degradation produces the corresponding haloacetamides (HAMs) and haloacetic 

acids (HAAs) as reaction intermediates and endpoint products, a group of previously 

misidentified N-DBPs, the N-chloro-haloacetamides (N-Cl-HAMs) were discovered to be 

the actual HAN reaction intermediates in this study. The N-Cl-HAMs exhibited 

substantial stability under pH conditions that are typical for drinking water treatment with 

and without the presence of chlorine. However, their nitrogen-bound chlorine was found 
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to be highly labile and could be readily dechlorinated by common reducing agents to 

form HAMs, which resulted in the erroneous identification of HAMs as emerging DBPs 

in prior occurrence studies. 

In brief, this study traced the footprints of HANs in drinking waters from their 

precursors in source waters to their decomposition products in consumers’ tap. The 

obtained findings from this study bridged several knowledge gaps regarding both HAN 

formation and degradation and are of practical importance especially in terms of 

quantitative prediction of their actual occurrence in finished water supplies and 

evaluation of overall drinking water toxicity as a result of their transformation into 

secondary DBPs. Moreover, some of the proposed kinetic modeling approaches are 

generic methodologies, which can be applicable to any instance where the formation and 

decomposition of reactive drinking water DBPs are to be assessed under varying 

conditions.
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CHAPTER 1 

1. KINETIC ANALYSIS OF HAN STABILITY IN DRINKING 

WATERS[1] 

1.1. Introduction 

To date, approximately 600-700 drinking water disinfection byproducts (DBPs) have 

been reported from the use of major disinfectants (i.e., chlorine, chloramines, etc.) as well 

as their combinations (Richardson & Postigo, 2011; Stevens et al., 1990; Krasner et al., 

1989; Krasner et al., 2006). However, none of the hitherto identified DBPs has been 

recognized to have sufficient carcinogenic potency to account for the cancer risks to 

drinking water consumers that are projected from epidemiological studies (Bull et al., 

2011). In the search for potential DBPs that might fill this risk gap, increasing interest has 

been focused on nitrogenous disinfection byproducts (N-DBPs), which are several orders 

of magnitude more genotoxic and cytotoxic than the regulated trihalomethanes (THMs) 

and the haloacetic acids (HAAs) (Plewa et al., 2004; Plewa et al., 2007; Muellner et al., 

2007). 

Among the major N-DBP families, haloacetonitriles (HANs) are the most ubiquitous 

and they usually occur at the highest levels in US drinking waters. In general, the total 

mass of HANs represents approximately 10% of the THMs (Krasner et al., 1989; Oliver, 

1983). According to a national survey conducted under the Information Collection Rule 

(ICR), the median concentration for four HANs, including dichloroacetonitrile (DCAN), 

                                                
[1] Yu, Y.; Reckhow, D.A. Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters. Environ. Sci. 
Technol. 2015, 49 (18), 11028-11036. 
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bromochloroacetonitrile (BCAN), dibromoacetonitrile (DBAN), and trichloroacetonitrile 

(TCAN), ranged from 0.5 µg/L to 41.0 µg/L in finished water supplies for 296 large-

scale public water systems and DCAN was recognized to be the most prevalent species 

(Blank et al., 2002). Regardless of their much lower level of occurrence as compared to 

THMs, HANs are up to two orders of magnitude more toxic than the regulated HAAs 

(Muellner et al., 2007), which offsets their importance as emerging non-regulated DBPs.  

HANs were first identified in US tap water in 1975 (McKinney et al., 1976). Free 

amino acids (Trehy & Bieber, 1981; Trehy et al., 1986; Ueno et al., 1996; Yang et al., 

2010), algal suspensions that are rich in proteinaceous material (Oliver, 1983; Plummer 

& Edzwald, 1998), and to a lesser extent, heterocyclic nitrogen in nucleic acids (Young 

& Uden, 1994; Yang et al., 2012) were recognized as important HAN precursors. 

Simultaneous to the discovery of HANs, it was noticed that this group of compounds 

were absent in finished waters with high pHs (Trehy & Bieber, 1981; Bieber & Trehy, 

1983). It was later revealed that the absence of HANs was attributed to their chemical 

instability as they could undergo considerable degradation on time scales relevant to 

distribution system residence times and the rate of HAN decomposition increases with 

increasing pH (Glezer et al., 1999; Reckhow et al., 2001). 

In addition to pH, chlorine is another important factor and it has been demonstrated 

that HAN decomposition was accelerated in its presence (Oliver, 1983; Glezer et al., 

1999; Reckhow et al., 2001). It was proposed that independent of base-catalyzed DCAN 

hydrolysis, chlorine can also react with DCAN via direct addition of hypochlorous acid 

(i.e. HOCl) onto the cyano group, forming the N-chloro-dichloroacetamide (N-Cl-

DCAM; Peters et al., 1990). Alternatively, hypochlorite (i.e., OCl-) will first catalyze 
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DCAN hydrolysis, producing the corresponding dichloroacetamide (DCAM), which 

further reacts with HOCl to form the N-Cl-DCAM (Peters et al., 1990). Despite the 

postulated HAN reaction mechanisms, none of the reaction intermediates have been 

verified and quantified to elucidate their relations and stabilities under typical drinking 

water conditions. 

On the other hand, there are a large number of US drinking water utilities that have 

switched from free chlorine to chloramines in order to minimize the formation of THMs 

and HAAs, driven by more stringent federal regulations (e.g., Stage 2 

Disinfectants/Disinfection Byproducts Rule; USEPA, 2003). However, there are concerns 

that chloramines could enhance the formation of N-DBPs whereas they are effective in 

inhibiting THM and HAA formation, because the nitrogen in N-DBPs can be derived 

either from organic precursors, or in the case of chloramination, from the disinfectant 

(Yang et al., 2010; Yang et al., 2012). For instance, based on the ICR database, an overall 

higher level of HAN4 (i.e., DCAN, BCAN, DBAN and TCAN) was detected in surface 

water plants that used chloramines (both with and without chlorine) than those that only 

used chlorine (Blank et al., 2002). Nevertheless, the higher HAN occurrence was 

attributed to the higher level of precursors in the source water for those chloramination 

plants, and not necessarily to an inherent tendency of chloramines to form more HANs 

(Blank et al., 2002). In fact, laboratory research has shown a higher formation potential of 

DCAN from natural waters during free chlorination than during chloramination 

regardless of whether chloramines were pre-formed or formed in-situ (Hayes-Larson & 

Mitch, 2010). More importantly, the stability of HANs under conditions that are typical 

of those used by systems practicing chloramination has not been reported to clarify 
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whether the relatively higher HAN occurrence was due to their higher stability in the 

presence of chloramines or to the tendency of chloramines to increase the formation of 

HANs.  

In spite of the general understanding that HANs are reactive under a wide range of 

pH conditions, their reaction kinetics have not been systematically characterized and the 

reaction mechanisms have not been fully elucidated. For these reasons, a more 

comprehensive kinetic analysis is necessary to quantitatively determine the HAN reaction 

kinetics, and to verify some of the reaction products to reconcile with the prevailing 

reaction pathways. Therefore, the purpose of this part of the study was to evaluate the 

chemical stability of a relatively complete set of HANs under different pH conditions 

(i.e., pH 6-9) with and without the presence of disinfectants (i.e., free chlorine and 

chloramines). Another key objective was to quantitatively characterize HAN reactions by 

developing a mathematical kinetic model and to summarize the HAN degradation 

mechanisms as well as to verify the major reaction intermediates and endpoint products. 

1.2. Materials and Methods 

1.2.1. Chemicals 

Unless otherwise noted, all chemicals were purchased from Fisher Scientific Co. and 

were of analytical grade. Purified DBP standard compounds including 

monochloroacetonitrile (MCAN), monobromoacetonitrile (MBAN), dichloroacetonitrile 

(DCAN), and trichloroacetonitrile (TCAN) were purchased from Sigma-Aldrich. 

Bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN) were supplied by 

Crescent Chemical. Bromodichloroacetonitrile (BDCAN) and three of the brominated 
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HAMs were synthesized by CanSyn Chem. Corp. in Canada. The haloacetic acids mix 

was obtained from Sigma-Aldrich.  Sources and purities of all the standard compounds 

are available in Table 1. 

Table 1. Sources and purities of standard compounds. 

Analytes Molecular Formula Purity Source 
Monochloroacetonitrile ClCH2CN 99% Sigma-Aldrich 
Monobromoacetonitrile BrCH2CN 97% Sigma-Aldrich 
Dichloroacetonitrile Cl2CHCN 98% Sigma-Aldrich 
Bromochloroacetonitrile BrClCHCN 74%  Crescent Chemical 
Dibromoacetonitrile Br2CHCN 95%  Crescent Chemical 
Trichloroacetonitrile Cl3CCN 98% Sigma-Aldrich 
Bromodichloroacetonitrile BrCl2CCN >85% CanSyn Chem. Corp. 
Monochloroacetamide ClCH2CONH2 98% Sigma-Aldrich 
Monobromoacetamide BrCH2CONH2 98% Sigma-Aldrich 
Dichloroacetamide Cl2CHCONH2 98% Sigma-Aldrich 
Bromochloroacetamide BrClCHCONH2 >99% CanSyn Chem. Corp. 
Dibromoacetamide Br2CHCONH2 >99% CanSyn Chem. Corp. 
Trichloroacetamide Cl3CCONH2 99% Sigma-Aldrich 
Bromodichloroacetamide BrCl2CCONH2 >99% CanSyn Chem. Corp. 

1.2.2. Experimental Conditions 

All solutions were prepared in ultra-pure Milli-Q water (EMD Millipore Corp.) 

containing 10 mM phosphate buffer and were adjusted to the desired pH with sodium 

hydroxide or hydrochloric acid. One milliliter of mixed HAN stock solution (1 mg/mL in 

methanol) was introduced into 4 L buffered solutions at the start of each experiment, so 

that the initial concentration for individual HANs was approximately 250 µg/L. 

Chlorination of HANs was conducted by adding small volumes of acidified sodium 

hypochlorite solution to reach the target doses. The chlorine solutions were prepared on 

the day of use by diluting the sodium hypochlorite stock solution (5.65%-6%, laboratory 

grade, Fisher Scientific), followed by acidification to the target pHs using hydrochloric 
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acid, prior to which the actual free chlorine concentration of the stock solution was 

standardized based on the N,N-diethyl-p-phenylene diamine (DPD)-ferrous ammonium 

sulfate (FAS) titrimetric method (EPA Method 330.4). Chloramination was carried out by 

adding small amounts of a 40 mM chloramine stock solution to each sample, and the 

chloramines were pre-formed by mixing aqueous ammonium sulfate and sodium 

hypochlorite at a Cl2/N ratio of 0.8 M/M, with pH of both solutions adjusted to 8.5 before 

mixing. After dosing with chlorine or chloramines, samples were partitioned off into 300 

mL BOD bottles and were stored free of headspace in a dark 20	°C constant temperature 

chamber for a maximum of 19 days. At the prescribed reaction times, one bottle of 

sample would be sacrificed and analyzed immediately for disinfectant residual and DBP 

concentrations. Six sample replicates were analyzed in this study for the estimation of 

measurement uncertainties. 

1.2.3. Sample Preparation and Chromatographic Analysis 

The extraction and analysis of HANs was based on EPA Method 551.1. After the 

prescribed reaction time, 20 mL aliquots of sample were first acidified using 100 µL of 6 

N hydrochloric acid.  In the case of chlorination and chloramination of HANs, residual 

oxidant was quenched by 20 mg/L ascorbic acid after sample acidification. HANs were 

extracted by adding 4 mL of pentane with an internal standard (1,2-dibromopropane) into 

each sample, together with 15 g of anhydrous sodium sulfate. The samples were shaken 

at 300 rpm for 15 minutes and the upper organic layer was collected for chromatographic 

analysis. Haloacetic acids were quantified following the EPA 552.2 method. The standard 

operating procedures include pH adjustment and quenching of the disinfectant residual, 

acidification of 30 mL sample using 1.5 mL of 95.0-98.0% W/W sulfuric acid, and 
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extraction with methyl tert-butyl ether, followed by methylation using 5% acidic 

methanol for two hours. Analysis of the HAMs was conducted via a solid-phase 

extraction/gas chromatography-mass spectrometry (SPE/GC-MS) method that was 

developed during the course of this study. The SPE procedure involves initial 

conditioning of the cartridges (Bond Elut PPL, 200 mg, 3 mL, Agilent Technologies) 

using 9 mL of methanol followed by 6 mL of Milli-Q water, sample loading (100 mL at 

~1 mL/min), nitrogen drying of the cartridges for 30 minutes, and final elution with 2 mL 

of ethyl acetate. HANs and the derivatized methyl haloacetates were analyzed using an 

Agilent 6980 gas chromatography with a linearized micro-electron capture detector (µ-

ECD). HAMs were quantified by a Varian CP-3800 gas chromatography coupled with a 

Varian Saturn 2200 ion-trap mass spectrometer using chemical ionization. Detailed 

information about the capillary GC columns and oven temperature programs are provided 

in Table 2.
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Table 2. GC columns and oven temperature programs for the analysis of all DBPs 

 HANs HAAs HAMs 
Analytical 
Column DB-5 DB-1 DB-1/MS 

Length 30 m 30 m 30 m 
Internal Diameter 0.25 mm 0.25 mm 0.25 mm 
Film Thickness 1.0 µm 0.25 µm 0.25 µm 
Carrier Gas N2 N2 He 
Carrier Flow 3.9 mL/min 0.9 mL/min 1.2 mL/min 
Injector Temp. 175°C 200°C 250°C 
Detector Temp. 275°C 250°C NA 
Oven Program Hold at 27°C for 

10 min 
Ramp to 41°C at 
3°C/min and hold 
for 6 min 
Ramp to 81°C at 
5°C/min 
Ramp to 180°C at 
25°C/min and hold 
for 6 min 

Hold at 37°C for 21 min 
Ramp to 136°C at 
5°C/min and hold for 3 
min 
Ramp to 250°C at 
20°C/min and hold for 3 
min 

Hold at 40°C for 9 
min 
Ramp to 200°C at 
20°C/min and hold 
for 13 min 

 

 

1.3. Results and Discussion 

1.3.1. Hydrolysis of Haloacetonitriles 

The hydrolysis of seven HANs (MCAN, MBAN, DCAN, BCAN, DBAN, TCAN and 

BDCAN) was investigated at pH 6, 7, 8, 8.5, and 9 in phosphate buffered solutions for 

reaction times of a few minutes to a total of 19 days (456 hours). Residual HAN 

concentrations were consistent with a rate law that is first-order in HANs (Figure 1). All 

seven HANs were most stable at pH 6 and the rate of loss increased with both increasing 

pH and the number of halogens, which is congruent with the trend that has been reported 

before (Oliver, 1983; Trehy & Bieber, 1981; Glezer et al., 1999; Reckhow et al., 2001). 

The instant trihaloacetonitrile (THAN) hydrolysis even under slightly acidic and neutral 

pH conditions (i.e., pH 6-7) explains their general absence in most drinking water 
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systems as was noted during the ICR survey (Blank et al., 2002). In sharp contrast, 

concentrations of monochloroacetonitrile (MCAN) and monobromoacetonitrile (MBAN) 

remained nearly constant regardless of pH over the entire period of the hydrolysis 

experiment (Figure 2). Furthermore, with the same number of halogens, HAN hydrolysis 

rate decreased as the halogens shifted from chlorine to bromine, resulting in the following 

hierarchy in terms of HAN hydrolytic stability: 

MBAN>MCAN>DBAN>BCAN>DCAN>BDCAN>TCAN. 

 

Figure 1. Semi-logarithmic plots of residual HAN concentrations versus reaction time 

under five hydrolysis pH conditions. 

 

Figure 2. Semi-logarithmic plots of residual MHAN concentrations versus reaction time 

under hydrolysis conditions (i.e., pH 6-9). 
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Moreover, two putative hydrolysis products (i.e., the HAMs and the HAAs) were 

identified and quantified in the same samples, which verifies the prevailing HAN 

hydrolysis pathways (Reckhow et al., 2001). In general, results demonstrated that the loss 

of HANs was accompanied by a rapid increase in HAM concentrations, followed by a 

slower formation of the corresponding HAAs. As metastable reaction intermediates, the 

formed HAMs also underwent a certain extent of hydrolysis depending on pH and the 

number of halogens in the substituents. Figure 3 shows the formation of DCAM (and 

TCAM) and DCAA (and TCAA) during DCAN (and TCAN) hydrolysis under four 

different pH conditions. It is evident in Figure 3 that DCAM tended to hydrolyze when 

pH was above 8, and thus its concentration first increased and then decreased at pH 9 due 

to simultaneous DCAM formation and degradation. Compared to DCAM, TCAM started 

to hydrolyze at a lower pH (i.e., pH 8) due to its higher degree of halogenation, and its 

concentration profile was characterized by a distinct peak at pH 8 and only by its 

decomposition at pH 9. More importantly, the molar sum of residual HAN and the 

formed HAM and HAA remained almost constant over the entire reaction time for both 

DCAN and TCAN. This mass balance further confirms that hydrolysis of HANs only 

produces HAMs and HAAs as major reaction products (Glezer et al., 1999; Reckhow et 

al., 2001). 
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Figure 3. Formation of reaction products during the course of DCAN (top row) and 

TCAN (bottom row) hydrolysis. The dashed lines represent the initial DCAN and TCAN 

molar concentrations spiked at the beginning of each hydrolysis experiment. 

Based on the first-order reaction kinetics consistent with the results in Figure 1, the 

full second-order HAN hydrolysis rate law can be proposed as follows: 

											
𝑑 𝐻𝐴𝑁
𝑑𝑡 = −𝐾45) ∙ 𝐻𝐴𝑁 = −𝑘"#$ ∙ 𝐻𝐴𝑁 − 𝑘$" ∙ 𝑂𝐻8 𝐻𝐴𝑁 									(1) 

In the above equation, 𝑘"#$ and 𝑘$" are the respective neutral and basic hydrolysis 

rate constants. Although it has been acknowledged that neutral water is about nine orders 

of magnitude less reactive with HANs than the anionic hydroxide (Reckhow et al., 2001), 

the neutral hydrolysis rate constant (i.e., 𝑘"#$) and the product of 𝑘$"[𝑂𝐻8] can be 

similar in magnitude when pH is close to or below 5, and therefore can equally contribute 

to the hydrolysis rate of HANs. For this reason, the proposal of a neutral hydrolysis 
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pathway and the estimation of the corresponding reaction rate constant (i.e.,	𝑘"#$) are 

necessary for quantitative characterization of HAN hydrolysis under slightly acidic pH 

conditions. The neutral and basic hydrolysis rate constants for the seven HANs were 

estimated using a Bayesian modeling approach (Yu et al., 2015) and the details of this 

statistic methodology are addressed in Chapter 2, while the resulting estimates of 𝑘"#$ 

and 𝑘$" are presented below. 

In many cases, this hydrolysis model can be further stratified into a hierarchical 

structure (Yu et al., 2015) by parsing it into a first-order observed rate constant 𝐾45) as 

shown by Equation 2: 

											𝐾45) = 𝑘"#$ + 𝑘$" ∙ 𝑂𝐻
8 								(2) 

Given that HAN hydrolysis has previously been investigated by several teams of 

researchers (Oliver 1983; Trehy & Bieber, 1981; Bieber & Trehy, 1983; Glezer et al., 

1999; Reckhow et al., 2001), it is important to reconcile our results with those that have 

been reported. Generally, when pH was below or equal to 8, the first-order observed rate 

constants (i.e.,	𝐾45)) determined in this work were in general agreement with literature 

values (Figure 4). Certain disagreements were noted at higher pH levels, which are 

probably attributed to different experimental conditions such as temperature, sample 

matrix and measurement errors. 
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Figure 4. HAN hydrolysis kinetic model. Solid lines represent the modeled 𝐾45) values as 

a function of pH and the dashed lines indicate the lower and upper bounds of a 95% 

confidence interval. Estimated 𝐾45) values from individual lower-level hydrolysis 

experiments are shown in blue open circles. Literature values are shown in red symbols. 

1.3.2. Degradation of Haloacetonitriles in the Presence of Free Chlorine 

HAN reaction kinetics were further investigated under three pH conditions (i.e., pH 5, 

6, and 7) in the presence of free chlorine (initial chlorine dose: 0.5 mg Cl2/L ~ 4.0 mg 

Cl2/L). It is evident in Figure 5 that the presence of free chlorine caused rapid HAN 

degradation, particularly the THANs (i.e., TCAN and BDCAN), and the rate of HAN loss 

accelerated with both increasing pH and increasing chlorine dose. This chlorine-induced 

HAN degradation followed many of the trends noted for HAN hydrolysis, with THANs 
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degrading at the highest rates followed by DHANs and finally MHANs under all 

investigated conditions. Furthermore, within each of the three groups, more brominated 

HANs persisted longer than the chlorinated analogues. As a result, the stability hierarchy 

for the seven HANs remained the same regardless of the presence or the absence of 

chlorine. Perhaps more importantly, the alike HAN behavior under both hydrolysis and 

chlorination conditions implies that the two reactions may proceed by similar pathways. 

This is further validated by developing the respective liner free energy relationships 

(LFERs) below. 

 

Figure 5. Semi-logarithmic plots of residual HAN concentrations versus reaction time 

under three pH conditions (i.e., pH 5, 6, and 7) with four different initial free chlorine 

doses (i.e., 0.5 mg Cl2/L, 1.0 mg Cl2/L, 2.0 mg Cl2/L, and 4.0 mg Cl2/L). Lines in the 

figure indicate the predicted HAN concentrations based on the developed HAN kinetic 

model. 
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Furthermore, during HAN chlorination, the corresponding HAMs and the HAAs were 

also quantified. Figure 6 shows that both two dichloro- and trichloro-reaction products 

were formed, which partially compensated the loss of DCAN and TCAN under all 

chlorination conditions. In general, the higher the initial chlorine dose, the more HAN 

was degraded, and thus the more HAM and HAA were formed. On the other hand, the 

concentration of HAMs exhibited a slight decrease at longer reaction times. Particularly, 

TCAM concentration decreased after 96 hours at pH 6 with 4.0 mg Cl2/L initial chlorine 

dose. This is probably because HAM themselves can be decomposed through reactions 

with chlorine (Peters et al., 1990). More importantly, there was a substantial discrepancy 

between the molar sum of the three HAN, HAM and HAA species and the initial HAN 

dose (Figure 6). Such a negative deviation is indicative of the formation of some other 

reaction intermediates that were not identified and quantified in this study. In Chapter 3, a 

full description of this reaction product is presented. Here, it is postulated that HAMs can 

be further N-chlorinated by chlorine to form the N-chloro-haloacetamides (N-Cl-HAMs; 

Peters et al., 1990). Moreover, the N-Cl-HAMs are weakly acidic (Menard & Lessard, 

1978; 𝑝𝐾A,C&'D&EF = 3.71; 𝑝𝐾A,C&'J&EF = 2.91), and therefore will tend to deprotonate 

and stay relatively stable in the anionic forms within the pH range that is typical for 

drinking water treatment. 
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Figure 6. Formation of DCAM and DCAA (top row), TCAM and TCAA (bottom row) 

during DCAN and TCAN chlorination at pH 6. Purple diamonds represent the 

intermediates that were not identified and quantified in this investigation. The dashed 

lines indicate the initial DCAN and TCAN molar concentrations spiked at the beginning 

of individual chlorination experiments. 

Analogous to HAN hydrolysis, the second-order chlorination rate law can be 

proposed as follows by assuming significant HAN reaction rates with both hypochlorous 

acid and hypochlorite: 

	
𝑑 𝐻𝐴𝑁
𝑑𝑡

= −𝑘"#$ 𝐻𝐴𝑁 − 𝑘$" 𝑂𝐻8 𝐻𝐴𝑁 − 𝑘"$&' 𝐻𝑂𝐶𝑙 𝐻𝐴𝑁 − 𝑘$&'[𝑂𝐶𝑙8][𝐻𝐴𝑁]			(3) 

To reflect the pH-dependent speciation between hypochlorous acid and hypochlorite 

(i.e., HOCl/OCl-), Equation 3 was reformulated using total free chlorine concentration 
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(i.e.,	𝐶N) and dissociation constant 𝐾A (Morris, 1966) for hypochlorous acid with 

corrections for ionic strength (i.e., I): 

𝑑 𝐻𝐴𝑁
𝑑𝑡 = −(𝑘"#$ + 𝑘$" 𝑂𝐻8 + 𝑘"$&'𝛼P𝐶N + 𝑘$&'𝛼Q𝐶N) ∙ [𝐻𝐴𝑁]				(4) 

𝛼P =
[𝐻S]

𝐻S + 𝐾A,T
; 	𝛼Q =

𝐾A,T
𝐻S + 𝐾A,T

							(5) 

In some of the chlorination experiments, significant depletion of chlorine occurred, 

particularly when the initial chlorine dose was low. As a result, its concentration cannot 

be treated as constant without introducing substantial error when the second-order 

reaction rate constants (i.e., 𝑘"$&'.and	𝑘$&') are to be estimated. For this reason, residual 

chlorine was numerically integrated over time (i.e.,	 𝐶N𝑑𝑡
N
P ), which is defined as chlorine 

contact time (CT) and the final kinetic model can be formulated as Equation 6 shown as 

follows. The estimated second-order reaction rate constants via Bayesian modeling are 

presented below. 

	 ln 𝐻𝐴𝑁 = ln[𝐻𝐴𝑁]P − 𝑘"#$ + 𝑘$" 𝑂𝐻8 ∙ 𝑡 − 𝛼P𝑘"$&' + 𝛼Q𝑘$&' ∙ 𝐶N𝑑𝑡
N

P
			(6) 

1.3.3. Stability of Haloacetonitriles in the Presence of Chloramines 

Because of their continuous reaction with chlorine, HANs are often detected at lower 

levels in systems that only use free chlorine (Blank et al., 2002). Nevertheless, the total 

amount of HANs that could initially form in those chlorination systems may otherwise be 

substantially higher (Reckhow et al., 2001; Hayes-Larson & Mitch, 2010). However, the 

reactivity of HANs with chloramines has not been assessed to clarify if the relatively 

higher HAN occurrence in most chloramination systems is attributed to their greater 
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stability in the presence of chloramines or to the greater tendency of chloramines to form 

more HANs. Therefore, a set of experiments was conducted for the evaluation of HAN 

stability at a typical chloramination pH (i.e., pH 8.5) with varying doses of preformed 

monochloramine. The use of preformed monochloramine instead of forming chloramines 

in-situ via ammonia addition was done to prevent HANs from reacting with transient free 

chlorine before the latter had a chance to fully combine with ammonia. Results indicated 

that there was no significant difference in HAN stability with or without the presence of 

chloramines at doses up to 4 mg/L (as Cl2) (Figure 7), implying that the reaction between 

HANs and monochloramine was not significant enough to be detectable under the 

investigated conditions. 

 

Figure 7. HAN degradation at pH 8.5 with and without the presence of preformed 

monochloramine. 
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1.3.4. Estimation of Second-Order Reaction Rate Constants Using Bayesian 

Modeling 

In this study, the four second-order reaction rate constants (i.e.,	𝑘"#$, 𝑘$", 𝑘"$&', and 

𝑘$&' in Equation 6) were estimated using a Bayesian framework, which is an alternative 

statistical approach to the classic least squares regression for the estimation of model 

parameters. The main benefits of parameter estimation using Bayesian statistics are fully 

discussed in Chapter 2. 

The final distribution of all model parameters, known as the joint posterior 

distribution (Figure 8) shows that the basic hydrolysis rate constant (i.e.,	𝑘$") and the 

hypochlorite chlorination rate constant (i.e.	𝑘$&') for individual HANs were of the same 

order of magnitude. Moreover, both of the second-order reaction rate constants ranked in 

reverse order to the HAN stability hierarchy. On the other hand, all estimated neutral 

hydrolysis rate constants (i.e.,𝑘"#$) and hypochlorous acid chlorination rate constants 

(i.e.,	𝑘"$&') were not only several orders of magnitude smaller, but also had some 

fluctuation in terms of following the stability hierarchy. Perhaps most importantly, for all 

seven HANs, the 𝑘"$&' estimates were normally distributed around zero, suggesting that 

given the size of the dataset collected in this study, this second-order reaction rate 

constant is not statistically different from zero. As a result, the HAN kinetic model can be 

simplified to Equation 7 by dropping the HOCl chlorination term, which will in turn 

leave the data with higher degrees of freedom to allow for more precise estimation for the 

remaining three reaction rate constants. The resulting joint posterior distribution of	𝑘"#$, 

𝑘$", and 𝑘$&' (Figure 9) shows that the three second-order reaction rate constants for 

MBAN were not statistically different from zero due to its remarkably high stability 
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under all investigated conditions. Furthermore, for MCAN, only 𝑘$" is statistically 

significant and therefore can be estimated with sufficient precision. Lastly, the neutral 

hydrolysis rate constants (i.e.,	𝑘"#$) for the two THANs (i.e., BDCAN and TCAN) were 

also noted to be small compared to 𝑘$"	and	𝑘$&'. Following the previous methodology, 

all the reaction rate constants were re-estimated by dropping the insignificant terms to 

leave the dataset with more freedom. The final posterior estimates of	𝑘"#$, 𝑘$", and 𝑘$&' 

for the seven HANs are listed in Table 3 with 95% confidence intervals. 

	 ln 𝐻𝐴𝑁 = ln[𝐻𝐴𝑁]P − 𝑘"#$ + 𝑘$" 𝑂𝐻8 ∙ 𝑡 − 𝛼Q𝑘$&' ∙ 𝐶N𝑑𝑡
N

P
			(7) 

Table 3. The estimated neutral, basic hydrolysis rate constants (𝑘"#$	and	𝑘$"), and 

hypochlorite chlorination rate constant (𝑘$&') for 7 HANs. 

 
𝑘"#$	(hr-1) 𝑘$" (M-1hr-1) 𝑘$&'	(M-1hr-1) 

Median 95% C.I. Median 95% C.I. Median 95% C.I. 
MBAN NS NS NS 
MCAN NS 4.14E+01 (0.89, 7.35) E+01 NS 
DBAN 1.38E-04 (0.46, 2.31) E-04 1.09E+03 (1.03, 1.16) E+03 1.54E+02 (1.23, 1.86) E+02 
BCAN 1.36E-04 (0.42, 2.35) E-04 2.57E+03 (2.43, 2.72) E+03 3.24E+02 (2.91, 3.58) E+02 
DCAN 1.68E-04 (0.66, 2.70) E-04 5.60E+03 (5.29, 5.91) E+03 6.85E+02 (6.40, 7.30) E+02 
BDCAN  NS  4.45E+04 (4.20, 4.71) E+04 1.36E+04 (1.30, 1.42) E+04 
TCAN NS 1.23E+05 (1.17, 1.31) E+05 3.91E+04 (3.77, 4.06) E+04 

*NS – not significant  
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Figure 8. Joint posterior distribution of	𝑘"#$, 𝑘$", 𝑘"$&', and 𝑘$&' estimates through 

Bayesian estimation. Red lines in the figure indicate the zero abscissa. 
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Figure 9. Joint posterior distribution of	𝑘"#$,𝑘$", and 𝑘$&' estimates through Bayesian 

estimation, assuming trivial second-order reaction rates between HANs and HOCl under 

the investigated conditions. Red lines indicate the zero abscissa. 
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1.3.5. Taft Linear Free Energy Relationships (LFERs) 

The impact of reactant structure on the kinetic properties of the corresponding 

reaction is usually assessed using LFERs. Establishing LFERs also helps to understand 

reaction mechanisms and to predict unknown reaction rates assuming that compounds 

with structural similarities behave alike (Chen, 2011; Deborde & von Gunten, 2008; 

Schwarzenbach et al, 2003; Zhang & Minear, 2002). The Taft equation (Equation 8) was 

selected for HANs because it has been previously used for the evaluation of substituent 

inductive and steric effect on the reactivity of aliphatic acetonitriles (Glezer et al., 1999; 

Taft, 1952; Taft, 1956). In the Taft equation,	𝐾P is the reaction rate constant for 

unsubstituted acetonitrile, k is the pathway-specific second-order reaction rate constant 

for a particular HAN with substituent R.	𝜎∗ and 𝐸) are Taft’s polar and steric substituent 

constants. The polar and steric sensitivity factors, ρ and δ, are resulting model parameters 

reflecting the sensitivity of the reaction rate to the substituent polar and steric properties 

across the entire family of HANs. 

log
𝑘
𝐾P

= 𝜌𝜎∗ + 𝛿𝐸)							(8) 

Since the Taft’s polar substituent constant, 𝜎∗, was only documented for ClCH2-, 

Cl2CH-, Cl3C- and BrCH2- groups (Taft, 1956), its value for mixed bromochloro-

substituent was calculated based on proposed correlations between the inductive 

component of Hammett constant, 𝜎Q, and Taft’s polar substituent constant, 𝜎∗, as listed in 

Table 4. On the other hand, the Taft’s steric substituent constants, 𝐸), for CH2Cl-, 

CH2Br-, CHCl2-, CHBr2-, CCl3- and CBr3- substituents have been reported (Taft, 1956). 

𝐸) for the other mixed bromine- and chlorine-containing substituents was calculated 
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assuming that the steric effect of di- and tri-halo substituents is a combination of the 

individual steric contribution of all comprising halogen atoms. As a result, the 

contribution of a single chlorine atom to the overall steric effect equals half of 𝐸),&"&'# 

for dihalogenated compounds and a third of 𝐸),&&'a for trihalogenated ones. Detailed 

calculations of the Taft steric substituent constant, 𝐸), are shown in Table 5. 

Table 4. Calculation of Taft’s polar substituent constants, σ*. 

Hammett 𝜎T Substituent Correlation Taft σ*  
𝜎T(&') 0.47 CH2Cl 𝜎 &"#b

∗ = 𝜎T b /0.45[1] 1.04 
𝜎T(ef) 0.45 CH2Br  1.00 

  

CHCl2 𝜎(&"bgb#)
∗ = 𝐴(𝜎T bg + 𝜎T b# )/0.45

[2] 
(𝐴 = 0.93) 

1.94 
CHBrCl 1.90 
CHBr2 1.86 
CCl3 𝜎(&bgb#ba)

∗ = 𝐵(𝜎T bg + 𝜎T b# +
𝜎T ba )/0.45

[3] 
(𝐵 = 0.85) 

2.65 
CBr2Cl 2.59 
CBrCl2 2.62 
CBr3 2.55 

[1] σI(X) is the inductive component of the Hammett constant and 0.45 is an empirical factor (Lowry & Richardson, 
1981; Hansch et al., 1991). 

[2] The correlation coefficient, A, is evaluated based on the known value of σ* for CHCl2- substituent: 𝐴 = 𝜎(&"&'i)∗ ∙
P.jk
ilm no

= 1.94 ∙ P.jk
i∙P.jp

= 0.93 (Glezer et al., 1999.) 

[3] The correlation coefficient, B, is similarly calculated based on the known value of σ* for CCl3- substituent: 𝐵 =

𝜎(&&'q)∗ ∙ P.jk
qlm no

= 2.65 ∙ P.jk
q∙P.jp

= 0.85 (Glezer et al., 1999). 

Table 5. Calculation of Taft’s steric substituent constants,	𝐸). 

 Es (Taft, 1956) Individual 
Contribution Es (Calculated) 

Monohalo- Es (CH2Cl) -0.24     
Es (CH2Br) -0.27     

Dihalo- 
Es (CHCl2) -1.54 Es (Cl) -0.77   
Es (CHBr2) -1.86 Es (Br) -0.93   

    Es (CHBrCl) (-0.77)+(-0.93)=-1.70 

Trihalo- 

Es (CCl3) -2.06 Es (Cl) -0.69   
Es (CBr3) -2.43 Es (Br) -0.81   

    Es (CBrCl2) 2(-0.69)+(-0.81)=-2.19 
    Es (CBr2Cl) 2(-0.81)+(-0.69)=-2.31 
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Figure 10 shows the estimated ρ and δ values based on the median second-order 

reaction rate constants that were determined in this study (Table 3). For the two major 

HAN degradation pathways (i.e., basic hydrolysis and hypochlorite chlorination), since 

the product of 𝜌𝜎∗ is always greater than the product of	𝛿𝐸), it can be inferred that both 

reactions are more sensitive to the polar than to the steric property of the halogenated 

substituents. For this reason, the higher hydrolysis and chlorination rates for more 

halogenated HANs can be explained by the higher electron-withdrawing effect from the 

halogen aggregate, which activates the nitrile carbon and renders it more electrophilic. 

Although the steric hindrance of the substituent also increases with increasing number of 

halogens, it has less impact on both of the reaction rates compared to the aforementioned 

polar effect. Perhaps most importantly, positive ρ estimates for the two LFERs reveal that 

both HAN hydrolysis and chlorination reactions are nucleophilic reactions. In other 

words, HANs react with hydroxide and hypochlorite through nucleophilic attack of the 

latter on the nitrile carbon. 

 

Figure 10. Taft LFERs based on median 𝑘$" and 𝑘$&' estimates shown in Table 3. 
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1.3.6. Implications of HAN Degradation Kinetics with Respect to Drinking Water 

Treatment and System Management 

With HAN reaction kinetics fully characterized above, the persistence of this group of 

compounds in drinking water distribution systems can therefore be quantitatively 

predicted. When exact chlorine exposure (i.e., CT) for distributed water is not readily 

available, an averaged chlorine residual 𝐶N can be assumed and a predictive model 

(Equation 10) is proposed on the basis of this pseudo-constant	𝐶N: 

𝐶N =
𝐶N𝑑𝑡

N
P
𝑡 						(9) 

ln[𝐻𝐴𝑁] = ln[𝐻𝐴𝑁]P − 𝑘"#$ + 𝑘$" ∙ [𝑂𝐻
8 + 𝑘$&'𝛼Q ∙ 𝐶N) ∙ 𝑡 		(10) 

Depending on the pH and the chlorine residual that are specific to individual systems, 

there exists a predominant reaction pathway to which the majority of HAN loss can be 

attributed. Figure 11 presents a summary of HAN half-lives over the range of pH and 

chlorine residual that are relevant to drinking water, where the half-lives were calculated 

according to Equation 11. Also shown on the figure are regions where each of the three 

major reactants results in the greatest amount of HAN loss (i.e., the predominant 

pathway).  

𝑡P.k =
ln(2)

𝑘"#$ + 𝑘$" ∙ [𝑂𝐻8] + 𝑘$&'𝛼Q ∙ 𝐶N
										(11) 
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Figure 11. Predominance diagram of HAN half-lives showing all three degradation 

pathways. Red open circles indicate a typical set of conditions (pH 8 with 1.0 mg Cl2/L 

averaged chlorine residual), under which the persistence of HANs was predicted in the 

following figure. 

As an example, Figure 12 draws from the predictive model (Equation 10) under a 

typical set of conditions for finished waters (i.e., pH 8 with 1 mg Cl2/L averaged residual 

chlorine, red circles in Figure 11) and projects the decrease in normalized HAN 

concentrations over water age up to 3 weeks. Figure 12 illustrates that under this set of 

conditions, TCAN and BDCAN will decompose rather rapidly even at low water ages 

and will completely disappear within a day. DCAN and BCAN will be lost only in 

relatively old water (from several days to a week), while DBAN, MBAN and MCAN will 

essentially remain stable during the entire distribution period. It is also important to 

recognize that very different results will be observed for systems distributing water at 
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higher pH levels (e.g., softening systems, or those using high pH for corrosion control) 

and those using chloramines as secondary disinfectant. Additionally, the above prediction 

solely considers HAN degradation kinetics and did not account for their simultaneous 

formation, which may also occur when both HAN precursors and residual disinfectant are 

present. Finally, as HANs degrade, they leave other DBPs in their place (i.e., HAMs, N-

Cl-HAMs, and HAAs) and the concentrations, relations, and stability of these sequential 

byproducts should also be considered to assess their associated health risks to drinking 

water consumers. 

 

Figure 12. Predicted persistence of HANs under a typical set of conditions: pH 8 with 1.0 

mgCl2/L averaged chlorine residual.
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CHAPTER 2 

2. EVALUATION OF DISINFECTION BYPRODUCT REACTION 

KINETICS USING HIERARCHICAL BAYESIAN MODELING[2] 

2.1. Introduction 

Since the adverse health effects of drinking water DPBs are associated not only with 

their specific toxic potencies but also with their actual occurrence, it is therefore critical 

to understand their stability under various conditions that are relevant to drinking water 

treatment and distribution. The stability of individual DBPs is often inferred from kinetic 

studies that monitor and model its degradation reactions. The kinetic experiments can be 

conducted across different conditions (e.g. varying pH levels) to develop a predictive 

degradation kinetic model based on the experimental circumstances (Reckhow et al., 

2001). This modeling framework is known as a hierarchical model, that is, a multilevel 

statistical model in which reaction rate constants characterize compound degradation 

kinetics for individual, “lower-level” time-based kinetic experiments but also exhibit a 

“higher-level” structure across different experimental conditions. 

The method of least squares is often preferred when kinetic models are fitted to 

temporal concentration measurements (Englezos, 2001). This method is simple and 

computationally straightforward, can be extended to nonlinear kinetic models (Englezos, 

2001), and provides a valid estimation of sampling variability and predictive uncertainty 

under independent and identically distributed (i.i.d.) Gaussian errors. Despite its wide 

                                                
[2] Yu, Y.; Steinschneider, S.; Reckhow, D.A. Evaluation of Environmental Degradation Kinetics Using 
Hierarchical Bayesian Modeling. J. Environ. Eng. 2015, 06015008. 
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appeal and application in kinetic studies, there are several challenges associated with the 

use of least squares when trying to construct hierarchical models. These limitations are 

addressed below and a hierarchical Bayesian modeling framework is forwarded in this 

Chapter as a more robust method to manage such problems. Hierarchical Bayesian 

models have been introduced in many environmental engineering and public health 

disciplines, including pharmacokinetics (Lunn & Aarons, 1998), epidemiology (Lawson, 

2009), ecology (Wikle, 2003), and hydrology (Steinschneider & Lall, 2015), but they 

have not yet been extended to the DPB degradation kinetics literature. Here, a 

hierarchical Bayesian model with novel components for non-constant variance is 

proposed, with special focus on its ability to propagate all uncertainties through to the 

predictive distribution of apparent reaction rate constants under different experimental 

conditions. More importantly, the hierarchical modeling framework is proposed as a 

generic methodology applicable to any instance where compound degradation reaction 

rate constants are to be estimated under varying conditions. As a specific example, the 

method is demonstrated for a particular instance examining the hydrolysis reaction rate 

constants for haloacetamides (HAMs) as an important group of emerging nitrogenous 

DBPs (N-DBPs). 

2.1.1. The Hierarchical Model 

The hierarchical model considered here relates reaction rate constants k of a 

compound (e.g., a DBP) to the experimental conditions under which those reaction rates 

are observed. Let 𝑿s be a vector of experimental factors (e.g., pH, chlorine residual, etc.) 

for the ith experiment, with	𝑖 = 1, 2,⋯ ,𝑁. Let 𝑌s,N be the concentration of a compound 

measured at time points 𝑡 = 1, 2,⋯ , 𝑇 under the ith experimental condition. In the lower-
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level regression, the compound reaction rate law for the ith experiment can be expressed 

as a function of time, given the reaction rate constant vector 𝒌s hypothesized to vary 

with	𝑿s, as well as i.i.d. normal residual noise 𝜀N with mean 0 and variance	𝜎zi: 

𝑌s,N = 𝑓 𝑡 𝒌𝒊 𝑿𝒊 + 𝜀N					(12) 

The function 𝑓 𝑡 𝒌𝒊(𝑿𝒊 ) can be a simple linear model, as in the case of first-order 

reaction under a logarithmic transformation, or it can be nonlinear for mixed-order 

reactions. The higher-level regression then relates compound reaction rate constants to 

the experimental conditions that were varied across the different experiments: 

𝑘s
} = 𝛽P

} +	𝑿s
}𝜷Q

} 	+	𝜉s
}				(13) 

Here, j indexes the vector of reaction rate constants, although for simplicity vector 

notation for k will be omitted in later discussion. The term 𝜷Q
}  is written as a vector to 

allow for multiple predictors in	𝑿s
}. The relationship between reaction rate constants and 

experimental conditions is assumed linear, although this is not required. Finally, it is 

assumed that the error term 𝜉s
} is normally distributed with zero mean. Assumptions 

regarding the variance, 𝜎��
i  of 𝜉s

} are addressed later. Equation 13 is of particular interest, 

as this is the model that will be used to predict compound reaction rates under conditions 

that were not experimentally determined. 

2.1.2. Challenges in Estimating Hierarchical Models in Stages Using Least Squares 

The development of a hierarchical kinetic model is often carried out in two stages, 

first with the lower-level estimation of reaction rate constants (i.e., k) for all individual 

experiments and replicates, followed by the higher-level regression of k on experimental 
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conditions. However, there are several challenges in developing such a model using a 

two-stage approach.  

First, it is critical to recognize that the k values are not observations, but rather they 

are estimated quantities from a regression with an associated level of sampling 

uncertainty. When developing the regression in Equation 13, this sampling uncertainty in 

k needs to be accounted for so that the higher-level regression does not give more weight 

than justified to inherently uncertain predictands. 

In a frequentist framework, this can be accomplished using weighted least squares 

(Stedinger & Tasker, 1985) and standard error estimates for each k. However, the use of 

standard errors depends on a symmetric approximation of the sampling distribution for 

regression parameters (Tellinghuisen, 2000), yet nonlinear kinetic models often have 

asymmetric sampling distributions (Görlitz, et.al, 2011). Thus, the use of weighted least 

squares in this context may not always be straightforward. 

Furthermore, the higher-level regression can also exhibit behavior that violates 

assumptions of a standard linear model, such as non-constant variance (i.e., 

heteroscedasticity). Methods such as general weighted least squares (Tellinghuisen, 

2000) or iteratively reweighted least squares (IRLS) (Gao, et.al, 2011) are available to 

correct for heteroscedasticity, but these methods were developed assuming the predictand 

is an observed value, not an estimated parameter with sampling uncertainty. 

Unfortunately, the existence of a method designed to weight k values in Equation 13 

based simultaneously on their sampling uncertainty and the heteroscedasticity in the 

model residuals	𝜉s is so far unavailable. 
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Perhaps most importantly, the staged estimation of the hierarchical model leaves the 

predictive model in Equation 13 sensitive to both outliers and limited data. Given the 

complexity of experimental procedures to quantify most DBPs at trace levels, the 

potential for substantial measurement error is nontrivial, and a small number of samples 

are often all that can be processed. Outlier estimates of k can undermine the predictive 

model in Equation 13, while a limited number of k values across experimental conditions 

can reduce model precision.  

2.1.3. Hierarchical Bayesian Modeling 

Hierarchical Bayesian modeling is an alternative approach to manage the challenges 

of hierarchical modeling described above, providing a flexible and robust means to 

estimate the predictive model in Equation 13. A brief overview of hierarchical Bayesian 

models is provided here, but a more thorough introduction to hierarchical Bayesian 

modeling is found in the following literature (Gelman, 1995; Carlin & Louis, 2008). In a 

Bayesian framework, all parameters are considered as random variables with uncertainty 

that can be described by a probability density function (pdf). Before considering any 

available data, all previous knowledge regarding the model parameters 𝛉 =

𝑘s, 𝛽P, 𝛽Q, 𝜎zi, 𝜎��
i 	 𝑖 = 1,2,⋯ ,𝑁} is summarized in a prior distribution, denoted	𝑃(𝜽). If 

no prior information is available, then vague priors can be used so that estimation is 

driven by the data. However, prior information based on expert knowledge is available in 

many situations and will reduce the uncertainty in model estimation (Choy et al., 2009; 

Kuhnert et al., 2010). For instance, in the case study presented below, linear free energy 

relationship (LFER) reveals that the HAM hydrolysis reaction is nucleophilic, implying 

that the hydrolysis reaction rates should be higher under more basic conditions where 
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hydroxide ions predominate as strong nucleophiles. This information can be included into 

the model by specifying a non-negative prior on the coefficient for pH in Equation 13. 

A likelihood function,	𝐿(𝒀|𝜽, 𝑿), is defined based on the joint distribution of the 

residuals {𝜀, 𝜉} of both the lower-level and higher-level regression models: 

L 𝐘 𝛉, 𝐗 =
1
2𝜋𝜎��

𝑒𝑥𝑝
𝑘s − 𝛽P + 𝛽Q ∙ 𝑋s

i

2𝜎��
i

1
2𝜋𝜎z

𝑒𝑥𝑝
𝑌s,N − 𝑓 𝑡 𝒌𝒊 𝐗i

i

2𝜎zi

J�

N�Q

C

s�Q

		(14) 

Here, the likelihood function simultaneously considers both the fit of each individual 

k value to the residual concentration profile in the ith experiment (i.e., the lower-level 

regressions), as well as the likelihood of all k values in the regression against 

experimental conditions X across the N experiments (i.e., the higher-level regression). 

The final distribution of all model parameters, known as the joint posterior 

distribution, is evaluated using Bayes theorem, which combines information from both 

the likelihood and the prior: 

𝑷 𝜽|𝒀, 𝑿 =
L 𝐘 𝛉, 𝐗 ∙ P 𝛉|𝐗

L 𝐘 𝛉, 𝐗 ∙ P 𝛉|𝐗 𝑑𝛉𝛉

				(15) 

The integral in the denominator is a constant of proportionality required to ensure that 

the right hand side term is a well-defined pdf. This integral often cannot be solved using 

analytical methods. However, this challenge has been largely overcome using Markov 

Chain Monte Carlo (MCMC) techniques that can efficiently sample parameter values to 

describe the joint posterior space. However, it is noted that convergence of MCMC 

sampling to the posterior distribution is not immediately guaranteed and requires 

convergence testing (Gelman & Rubin, 1992). 
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Uncertainty propagation between the lower-level estimates of k and the higher-level 

regression is immediate in the Bayesian framework, as the posterior distribution is 

evaluated jointly across all model parameters. Also, the Bayesian approach does not need 

to make any explicit assumptions about the shape of the sampling distribution of reaction 

rate constants, which, as argued earlier, is useful in most nonlinear reaction kinetics 

where this distribution is often asymmetric (Görlitz, et.al, 2011). 

By considering both the lower and higher level regressions simultaneously in the 

likelihood function, the hierarchical Bayesian model can pool information across 

experiments to lessen the influence of outliers. Estimates of 𝑘s (based on the data	𝒀s,∙) 

that appear inconsistent with the higher-level regression (based on data from the 

remaining experiments	𝒀8s,∙) will be partially pulled, or shrunk, toward the higher-level 

regression estimate,	𝛽P	 + 	𝑿s𝜷𝟏. This occurs simultaneously for all N values of	𝑘s. In so 

doing, the higher-level relationship is made more robust by reducing the effects of 

“outlier” k values (Gelman & Hill, 2007). This effectively acts as a compromise between 

completely including or completely removing outliers at the higher level, which is 

believed to be justified given the nontrivial measurement variability and data scarcity for 

most trace-level drinking water DBPs. 

In Equation 16, it is highlighted that the residual variance 𝜎��
i  for the higher-level 

regression is allowed to vary linearly with experimental condition to entertain 

heteroscedasticity in the error term	ξs: 

𝜎��
i = 𝛾P +	𝑿𝒊𝜸𝟏				(16) 
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These additional parameters, and their uncertainty, can be estimated along with the 

other model parameters in the Bayesian framework.  

Finally, a predictive distribution for an out-of-sample value of 𝑘s associated with a 

new experimental condition 𝑿s can be estimated by posterior sampling. First, 𝜎��
i  is 

estimated using posterior samples of 𝛾P	and 𝜸Q and Equation 16. Then, a sample for 𝑘s is 

developed via Equation 13 by adding a random deviate 𝑁(0, 𝜎��
i ) to the quantity 

𝛽P	 +	𝑿s𝜷Q  after sampling from the posteriors of 𝛽P	and	𝜷Q. This process can be 

repeated many times to estimate the predictive distribution of	𝑘s. 

2.2. Case Study: Hydrolysis of Haloacetamides under Different pH 

Conditions 

The hierarchical Bayesian model described above is applied in a case study 

examining the second-order hydrolysis reaction rate constants for HAMs. HAMs are an 

important group of N-DBPs that can form during the chlorination or chloramination of 

source waters that are rich in organic nitrogen content (Chu et al., 2010a). Furthermore, it 

was proposed that HAMs are reactive under conditions that are relevant to drinking water 

treatment and can undergo substantial degradation to form the corresponding haloacetic 

acids under alkaline pH conditions (Glezer et al., 1999; Reckhow et al., 2001). However, 

their reaction kinetics have not been characterized to allow quantitative prediction of their 

lifetimes in drinking water supplies. Therefore, the key objective of this case study was to 

establish a quantitative predictive model to evaluate HAM hydrolytic stability without the 

presence of chlorine or chloramines. 
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2.2.1. Experimental Conditions 

All reaction solutions were prepared in 10 mM phosphate buffer and were adjusted to 

the desired pH levels using sodium hydroxide or sulfuric acid. Small volumes of HAM 

stock solution (i.e., 0.5 mg/mL) were introduced into 4 L buffer at the start of each 

experiments so that the initial concentration for individual HAMs was 250 µg/L. After 

the addition of HAMs, samples were partitioned off into 300 mL biochemical oxygen 

demand (BOD) bottles and were then stored free of headspace in a dark 20ºC incubator 

for a maximum of 19 days. At prescribed reaction times, a single bottle of sample was 

sacrificed for immediate analysis of residual HAM concentrations. For each pH condition 

and time point, at least two sample duplicates were analyzed for the determination of 

measurement uncertainties. Quantification of HAMs was conducted using a solid-phase 

extraction/ gas chromatography–mass spectrometry (SPE/GC-MS) method that was 

previously developed. 

2.2.2. Hierarchical HAM Hydrolysis Kinetic Model 

The hydrolysis of two brominated HAMs, monobromoacetamide (MBAM) and 

tribromoacetamide (TBAM), was investigated under 6 pH conditions (pH=6, 7, 7.5, 8, 

8.5, and 9). The fully second-order hydrolysis reaction rate law can be described by 

Equation 17, with 𝑘"#$ and 𝑘$" representing the respective neutral and basic hydrolysis 

rate constants: 

𝑑[𝐻𝐴𝑀]
𝑑𝑡 = −𝑘"#$ 𝐻𝐴𝑀 − 𝑘$" 𝑂𝐻8 𝐻𝐴𝑀 = − 𝑘"#$ + 𝑘$" 𝑂𝐻8 𝐻𝐴𝑀 			(17) 

Therefore, the overall reaction is first-order in HAM. The hierarchical model 

(Equations 12-16) can be developed with 𝑌s,N being the residual HAM concentration 
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measured at time, t, and	𝑋s being the hydroxide concentration variable (i.e.,	𝑋s =

𝑂𝐻8 = 108 Qj8�" ) for the ith experiment. In Equation 13, 𝛽P	and 𝛽Q are then 

equivalent to the neutral and basic hydrolysis rate constants 𝑘"#$ and 𝑘$" that are to be 

estimated. 

The	𝑘"#$ and	𝑘$" were estimated via two different approaches: the Bayesian 

approach and the least squares regression in two stages. The Bayesian model was fitted in 

the JAGS programming language (Plummer, 2011). All parameters were given vague, 

uniform priors except for	𝛽𝟏, which was given a non-negative uniform prior to reflect our 

knowledge about the positive correlation between the HAM hydrolysis rate and 

hydroxide concentration. To account for sampling uncertainty in the least squares 

approach, the k values were weighted in the second stage by the square of their inverted 

standard errors estimated in the first stage. The resulting parameter estimates and 

predictive intervals were examined under both approaches, focusing on the influence of 

outliers, the effects of heteroscedasticity, and the simultaneous propagation of all 

uncertainties into model predictions.  

2.3. Results and Discussion 

Figure 13(a) and (b) show the apparent MBAM and TBAM first-order hydrolysis 

rates as a function of pH predicted by two-stage least squares regression. The expected 

linear relationship and the 95% predictive intervals are also presented by solid and 

dashed lines in Figure 13. It has to be noted that the predictive intervals were developed 

without the inverse-variance weighting because the predictive bounds for out-of-sample 

estimates were of interest. Similarly, the respective posterior mean estimates and 
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predictive intervals for the apparent first-order hydrolysis rate constants, k, resulted from 

hierarchical Bayesian modeling are shown in Figure 1(c) and (d). The intercept and slope 

for the higher-level regression for both compounds and the two methods are listed in 

Table 6. 

 

Figure 13. Comparison between the predictive kinetic hydrolysis models from the staged 

least squares regressions ((a) and (b)) and Bayesian hierarchical model ((c) and (d)) for 

MBAM ((a) and (c)) and TBAM ((b) and (d)). Also shown in the figure are estimates of k 

from the staged least squares (red crosses) and Bayesian modeling (black circles). Three 

potential outlier k values are numbered as 1, 2, and 3. 
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Table 6. Estimated values of 𝑘"#$ and 𝑘$" from the two methods. Standard errors are 

given in parentheses. For the Bayesian approach, the posterior mean estimates are shown, 

and standard errors are estimated as the standard deviation of the posterior distribution. 

 Compound 𝑘"#$ 𝑘$" 

Staged Least Squares 
MBAM 1.0E-03 (8.7E-05) 82.7 (14.8) 
TBAM 1.4E-05 (1.20E-04) 1137.7 (26.9) 

Hierarchical Bayesian  
MBAM 0.001 (0.0001) 102.5 (23.1) 
TBAM 0.0002 (0.0001) 1103.5 (41.2) 

In general, the posterior predictive intervals (indicated by dashed lines in Figure 13) 

for both haloacetamides were much narrower using the Bayesian method than the staged 

least squares regression, especially under lower pH conditions. The Bayesian method 

provided higher precision at lower pHs mainly because it explicitly accounted for 

heteroscedasticity in the error term	ξ. As seen in the staged least squares estimates of k 

(red crosses in Figure 13), the apparent first-order MBAM and TBAM hydrolysis rates 

were significantly smaller under lower pH conditions, as was their variability 

(particularly for TBAM), thus validating the necessity of a heteroscedastic error term. 

However, the non-constant variance cannot be readily included in the second stage least 

squares regression because the k values were already weighted according to their 

sampling uncertainty. This sampling uncertainty is nontrivial and varies across k 

estimates, and therefore should be considered when estimating the higher-level 

relationship. For instance, the coefficient of variation (CV) for k values, calculated as the 

standard error divided by the least squares k estimate, had an interquartile range of 

[0.22,0.31] and [0.03,0.16] for MBAM and TBAM, respectively. Both compounds had 

some k estimates with a CV greater than 0.5. The Bayesian estimation accounts for 



41 
 

sampling uncertainty and heteroscedasticity simultaneously, allowing the method to 

correctly weight each k value in the higher-level regression. 

Figure 13 also highlights three potential outlier values of k for the two compounds, 

which were estimated in the staged least squares approach. These outliers originated from 

outlying concentration measurements in the lower-level time-based kinetic experiments 

(Figure 14). The lower-level residual concentrations are shown as a function of reaction 

time on a semi-logarithmic scale for one outlier of MBAM (Figure 14(a)) and two of 

TBAM (Figures 14(b) and (d)). It is obvious in Figure 14 that the least squares 

regression was quite sensitive to the individual outlying concentration measurements, 

leading to higher k estimates than what data would suggest based on a straight visual 

analysis. The artificial upward bias in the k estimates propagated into the higher-level 

regression of k on pH in the staged least squares approach (see regression estimates in 

Table 6). In contrast, the hierarchical Bayesian analysis was less sensitive to the effects of 

these outliers because it can pool information across different pH conditions. The 

Bayesian model shrunk the k estimates toward the higher-level regression estimate 

(i.e.,	𝛽P + 𝜷𝟏𝑿𝒊), as shown by the solid blue line in Figure 14(a-c). The higher-level 

relationship is then made more robust because the effects of these individual outlying 

concentration data are discounted. This partial pooling allowed the posterior predictive 

distribution for k to become tighter, as seen when comparing Figures 13(a) and 13(c) for 

MBAM at pH 8.5 and Figures 13(b) and 13(d) for TBAM at pH 7.5 and 9. 
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Figure 14. Lower-level residual MBAM and TBAM concentrations as a function of 

reaction time for the three outliers 1, 2, and 3 in Figure 13. Also shown in the figure are 

the least squares (red dashed) and posterior mean (solid blue) estimates of k.
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CHAPTER 3 

3. HAN CHLORINATION PRODUCTS: THE N-CHLORO-

HALOACETAMIDES INSTEAD OF HALOACETAMIDES[3] 

3.1. Introduction 

Disinfection of drinking water provides an effective barrier in the control of microbial 

growth and therefore protects consumers from waterborne pathogens. However, the 

presence of a disinfectant can lead to the formation of potentially carcinogenic 

disinfection byproducts (DBPs). To date, approximately 600-700 DBPs have been 

identified in US drinking waters from the use of major disinfectants (i.e., chlorine, 

chloramines, chlorine dioxide, etc.) as well as their combinations (Richardson, 1998; 

Stevens et al., 1990; Krasner et al., 1989; Krasner et al., 2006). However, none of those 

hitherto reported DBPs has been recognized to have sufficient carcinogenic potency to 

account for the cancer risks that are projected from epidemiological studies (Bull et al., 

2011). In the meanwhile, haloacetamides (HAMs) have received lots of attention as an 

emerging group of nitrogenous DBPs (N-DBPs) mainly because they are one order of 

magnitude more genotoxic while two orders of magnitude more cytotoxic than the 

corresponding haloacetic acids (Plewa et al., 2007), which are currently regulated by the 

USEPA as surrogates for drinking water toxicity. 

                                                
[3] Yu, Y.; Reckhow, D.A. The Formation and Occurrence of N-chloro-2,2-dichloroacetamide Instead of 
2,2-dichloroacetamide in Chlorinated Drinking Waters. Manuscript in preparation, to be submitted to 
Environ. Sci. Technol. 
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The occurrence of HAMs was first reported in a 2000-2002 DBP survey that was 

conducted at 12 US drinking water treatment plants (Weinberg et al., 2002; Krasner et al., 

2006). The median and maximum concentrations for a collective of five chlorinated and 

brominated HAMs were 1.4 µg/L and 7.4 µg/L, respectively, among which 2,2-

dichloroacetamide (DCAM) occurred at the highest levels with a median concentration of 

1.3 µg/L. More recently, 2,2,2-trichloroacetamide (TCAM) was found to be ubiquitously 

present in English drinking water supply systems (Bond et al., 2015), albeit at a relatively 

lower level compared to DCAM (respective median concentrations for these two HAMs 

were 0.4 µg/L and 0.6 µg/L). Furthermore, the concentrations of both DCAM and TCAM 

were noted to be slightly higher in distribution systems than in finished waters, even 

though the differences were too trivial to make any significant inferences about their 

stability during drinking water distribution. 

Perhaps most importantly, in most occurrence studies, HAMs exhibited strong 

positive correlations with the corresponding haloacetonitriles (HANs) and these two 

groups of compounds were often detected at comparable levels (Krasner et al., 2006; Chu 

et al., 2010; Bond et al., 2015). This is consistent with the prevailing understanding that 

HAMs in drinking waters result primarily from base-catalyzed HAN hydrolysis (Glezer 

et al., 1999; Reckhow et al., 2001). For instance, laboratory research has verified that 

dichloroacetonitrile (DCAN) can hydrolyze to form DCAM and ultimately to 

dichloroacetic acid (DCAA) in the absence of free chlorine when pH is above neutral (Yu 

& Reckhow, 2015). However, in the presence of chlorine, hypochlorite (i.e., OCl-) 

becomes the dominant reactant in DCAN decomposition and the reaction between DCAN 

and free chlorine forms the putative N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) as 
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reaction product (Yu & Reckhow, 2015). In fact, the formation of this halogenated 

nitrogenous compound has been proposed early in the 1990s as one of the major DCAN 

degradation products (Peters et al., 1990). Nevertheless, the identity of N-Cl-DCAM has 

not been substantiated and its presence in drinking waters has never been recognized or 

reported. Due to the similarity in their molecular structures except the presence and the 

absence of a nitrogen-bound chlorine, it was postulated that N-Cl-DCAM can be formed 

from DCAM via an N-chlorination reaction at the primary amide (Peters et al., 1990), 

whereas the actual N-Cl-DCAM formation mechanisms have not been elucidated 

heretofore. More importantly, the formation of an N-Cl-DCAM analogue, the N,2-

dichloroacetamide (or N-chloro-2-monochloroacetamide) has been observed from the 

reaction between chloroacetaldehyde and monochloramine. This N-chloro-haloacetamide 

(N-Cl-HAM) was found to be very unstable and was readily reduced to the corresponding 

2-chloroacetamide (or monochloroacetamide) in the presence of sodium thiosulfate 

(Kimura et al., 2013). This finding further brings about the following question: will the 

other N-Cl-HAM species, especially the N-Cl-DCAM, have similar behavior, thus being 

dechlorinated to the corresponding HAMs when a reducing agent is used for sample 

preservation? Moreover, if N-Cl-HAMs can initially form but subsequently reduce, then 

what proportion of HAMs that has previously been identified and reported was actually 

due to N-Cl-HAM reduction? Therefore, the extent of N-Cl-HAM reduction in the 

presence of common reducing agents, such as sodium sulfite, ascorbic acid, ammonium 

chloride, and sodium thiosulfate needs to be further clarified. 

For these reasons, the main objectives of this study were to confirm the existence of 

N-Cl-DCAM in chlorinated drinking waters, and to quantitatively characterize and 
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reconcile its formation kinetics with the respective DCAN and DCAM degradation 

kinetics. Furthermore, with the third chlorine bound to the amide nitrogen, N-Cl-DCAM 

can be defined as an organic monochloramine. Since organic chloramines are capable of 

transferring the N-chloro group to other chemicals such as the exocyclic nitrogens in 

DNA and RNA (Hawkins and Davies, 1999), it is commonly acknowledged that they are 

toxicologically active and may pose special health concern to drinking water consumers 

regarding chronic diseases (Bull et al., 2011) if they have sufficient stability to survive 

drinking water distribution. For this reason, aside from its formation kinetics and 

mechanisms, the stability of N-Cl-DCAM was also evaluated under typical drinking 

water pH conditions with and without the presence of chlorine and its decomposition 

pathways were proposed accordingly. Additionally, the impact of common reducing 

agents on the persistence of N-Cl-DCAM during sample preservation was also assessed 

in this study. Another key purpose of this investigation was to develop an analytical 

method that will enable the quantification of N-Cl-DCAM, or more ideally, a family of 

N-Cl-HAMs at concentrations that are comparable to their expected occurrence levels. To 

further validate this method, a set of real tap water samples collected from seven private 

residences in the US were analyzed to examine the presence of N-Cl-HAMs in actual 

chlorinated drinking waters. 

3.2. Materials and Methods 

3.2.1. Chemicals and Reagents 

Dichloroacetamide (DCAM) and trichloroacetamide (TCAM) were purchased from 

Sigma-Aldrich (St. Louis, MO). Bromochloroacetamide (BCAM), dibromoacetamide 

(DBAM), bromodichloroacetamide (BDCAM), dibromochloroacetamide (DBCAM), and 
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tribromoacetamide (TBAM) were synthesized and supplied by CanSyn Chem. Corp. 

from Canada. General laboratory chemicals including Optima LC/MS grade organic 

solvents and formic acid (FA) were obtained from Fisher Scientific (Pittsburgh, PA). 

Purified N-chloro-haloacetamide (N-Cl-HAM) standard compounds are not commercially 

available, and they were individually prepared by reacting equal stoichiometric amount 

(Cl2/N=1:1) of free chlorine with the corresponding haloacetamides (Kimura et al., 2013; 

Kimura et al., 2015), with pH of both solutions adjusted to 9.0 before mixing. 

3.2.2. Chlorination of Dichloroacetamide 

All DCAM reaction solutions were prepared in ultrapure Milli-Q water (EMD 

Millipore Corp.), containing 10 mM phosphate buffer and were adjusted to the desired 

pHs with sodium hydroxide or hydrochloric acid. At the start of each chlorination 

experiment, 3 mL of DCAM reaction solution (0.505 mM) was introduced into a quartz 

cuvette with 1 cm path length. Chlorination of DCAM was conducted by adding a small 

volume (30 µL) of acidified sodium hypochlorite solution (50.5 mM as Cl2) into the 

cuvette containing the aforementioned DCAM reaction solution, so that the initial 

concentrations for both reactants were 0.5 mM. The chlorine solutions (50.5 mM as Cl2) 

were prepared on the day of use by diluting the sodium hypochlorite stock solution 

(5.65%-6%, laboratory grade, Fisher Scientific), followed by acidification to the 

predetermined pHs using hydrochloric acid, prior to which the actual free chlorine 

concentration in the stock solution was standardized based on the N,N-diethyl-p-

phenylene diamine (DPD)-ferrous ammonium sulfate (FAS) titrimetric method (EPA 

Method 330.4). Immediately after the introduction of chlorine, absorption spectrum was 

scanned in a continuous kinetic mode once every 5 seconds from 200 nm to 400 nm using 
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an Agilent 8453 diode array UV-visible spectrophotometer. All DCAM chlorination 

reactions were monitored at ambient room temperature (i.e., 20 °C). Reaction rate 

constants were determined from the kinetic UV absorbance measurements at 292 nm. 

3.2.3. Stability of N-chloro-2,2-dichloroacetamide 

The stability of N-Cl-DCAM was assessed in phosphate buffered solutions (10 mM, 

pH 4-8) with and without the presence of chlorine. Initial N-Cl-DCAM concentration was 

40 µM and a small volume of acidified sodium hypochlorite solution was introduced at 

the beginning of each stability test to reach the same molar concentration of 40 µM. The 

chlorinated and unchlorinated N-Cl-DCAM solutions were repeatedly injected into the 

ultra performance liquid chromatography (UPLC)-quadrupole time-of-flight mass 

spectrometer (qTOF) once every 15 minutes for a total of 8 hours. Reduction of N-Cl-

DCAM by sodium sulfite, sodium thiosulfate, ammonium chloride, and ascorbic acid was 

investigated in the same fashion via repeated sample injections into the UPLC/qTOF. 

3.2.4. Sample Pretreatment 

For the quantification of a group of seven N-Cl-HAMs, a solid phase extraction 

(SPE)-ultra performance liquid chromatography/mass spectrometry (UPLC/MS) method 

was developed during the course of this study. Before analysis, the N-Cl-HAMs in 

aqueous samples were first concentrated by SPE using the Oasis mixed-mode, reversed-

phase, strong anion-exchange (MAX) cartridges (60 mg, 3 mL, 30 µm; Waters, Milford, 

MA) that were mounted on an Agilent VacElut SPS 24 SPE manifold. Prior to sample 

loading, each MAX cartridge was conditioned with 3 mL of methanol followed by one 

wash using 3 mL of ultrapure Milli-Q water. Each sample (100 mL) was drawn through 
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the cartridges under vacuum at a flow rate of approximately 1 mL/min. After sample 

loading, the cartridges were washed with 2 mL of methanol/NH4OH (v/v=95/5) and then 

dried for 1 minute under vacuum. Subsequently, the retained N-Cl-HAMs were eluted 

with 2 mL of acetonitrile/water (v/v=90/10, with 25% formic acid). The acetonitrile 

extract was reconstituted by adding 0.5 mL of water/NH4OH (v/v=85/15) and was then 

evaporated down to 1.0 mL under a gentle nitrogen stream (TurboVap LV). 

3.2.5. Ultra Performance Liquid Chromatography/Quadrupole Time-of-Flight 

Mass Spectrometry 

An ACQUITY UPLC (Waters, Milford, MA) system was used for LC separation with 

an ACQUITY UPLC HSS T3 column (1.8 µm, 100 Å, 2.1×100 mm; Waters), coupled 

with a 1.8 µm, 2.1×5 mm VanGuard pre-column (ACQUITY UPLC HSS T3; Waters). 

Column temperature was maintained isothermally at 35 °C. The mobile phases were 5 

mM ammonium acetate (solvent A) and 100% methanol (solvent B) at a constant flow 

rate of 0.3 mL/min. The initial gradient was 0-2 min, 5% B, curve 6; increased from 5% 

to 90% B between 2 and 7 min, curve 6; 7-8 min 90% B, curve 6; switch back to 5% B in 

0.1 min, curve 11; 11-15 min for equilibration, 5% B. The injection volume for each 

sample was 5 µL. A quadrupole time-of-flight mass spectrometer (Xevo G2-XS qTOF; 

Waters) with an electrospray ionization (ESI) source was used to obtain the accurate 

mass measurements of N-Cl-HAM parent ions. Negative ESI-TOFMS mode was applied 

with typical conditions optimized as follows: capillary voltage 2.50 kV; sampling cone, 

25 arbitrary units; source offset, 80 arbitrary units; source temperature, 120 °C; 

desolvation temperature 400 °C; cone gas, 80 L/hour; desolvation gas flow, 800 L/hour. 
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3.2.6. Method Validation 

To determine the method detection limits (MDLs) and recoveries for the seven N-Cl-

HAMs using the SPE-UPLC/ESI/qTOF method, three sets of tap water samples (100 mL 

each) were prepared: (1) eight calibration standards spiked with seven N-Cl-HAMs; (2) 

seven replicate samples spiked with 0.02 µM of each N-Cl-HAM; (3) unspiked blanks. 

All samples were extracted and analyzed at the same time using the method described 

above. The SPE recovery rate for each N-Cl-HAM was determined according to the 

standard addition method (Hrudey, 2004). Furthermore, to validate the SPE-

UPLC/ESI/qTOF method, 11 tap water samples collected from seven private residences 

in the US were analyzed for N-Cl-HAMs. Prior to sampling, 100 mg of ammonium 

chloride (i.e., NH4Cl) was added to each 1 L glass bottle as the preservative. All samples 

were collected without headspace, stored at 4 °C, extracted within 72 hours, and analyzed 

by UPLC/ESI/qTOF immediately after sample pretreatment. 

3.3. Results and Discussion 

3.3.1. Identification and Verification of N-chloro-2,2-dichloroacetamide and N-

chloro-haloacetamides 

The discovery of N-Cl-DCAM stemmed from a preliminary kinetic study where the 

stability of DCAM was evaluated under a range of pH conditions with and without the 

presence of chlorine. When DCAM was chlorinated and residual chlorine was quenched 

by ascorbic acid to stop the chlorination reaction at prescribed reaction times, no 

significant decrease in DCAM concentration was observed over time. In contrast, 

residual DCAM was immeasurable at identical reaction times when chlorinated samples 
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were immediately analyzed by liquid-liquid extraction-gas chromatography/mass 

spectrometry (LLE-GC/MS; Yu & Reckhow, unpublished method) without the addition 

of any reducing agent. This suggests that DCAM chlorination may have formed a labile 

reaction intermediate, which was converted back into the initial DCAM by the addition of 

ascorbic acid. To identify this reaction intermediate, unquenched DCAM chlorination 

solution was directly infused into the high resolution quadrupole time-of-flight mass 

spectrometer (Xevo G2-XS qTOF). Under negative electrospray ionization (ESI-), a 

unique isotope cluster was observed, reflecting the presence of three chlorine atoms in 

this unknown compound. Through isotopic modeling, both the exact masses and the 

isotopic pattern of these measured [M-H]- ions were found to agree with the mass 

spectrum for 2,2,2-trichloroacetamide (TCAM). 

Nonetheless, TCAM behaved very differently from this unidentified compound in 

many ways and therefore was unlikely the DCAM chlorination product. First of all, the 

unknown compound was well retained on an UPLC column (Waters ACQUITY HSS T3 

column) with a stationary phase that promotes polar compound retention. On the 

contrary, purified TCAM standard compound was eluted near the dead volume over the 

entire mobile phase composition range, thus indicating different chemical polarities 

between these two compounds. More importantly, TCAM didn’t dechlorinate to form 

DCAM in the presence of ascorbic acid, whereas conversion of the unknown to DCAM 

was found to be a more generic result from the addition of other reductants as well (e.g., 

potassium iodide, sodium sulfite, and sodium thiosulfate), and was not otherwise specific 

to ascorbic acid. In fact, it was noticed that this DCAM chlorination product exhibited a 

very similar behavior as inorganic dichloramine (i.e., NHCl2) in terms of slowly 
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oxidizing iodide to form triiodide that reacted with N,N-Diethyl-p-phenylene diamine 

(DPD) to produce a relatively stable free radical species with an intense pink color. In 

contrast, TCAM didn’t react with the DPD indicator to form colored free radicals either 

directly or indirectly via the triiodide intermediate. 

Alternative to TCAM formation via chlorine substitution on the alkyl carbon, 

chlorination of DCAM may also result in bonding of chlorine to the amide nitrogen 

(Wayman & Thomm, 1969; Thomm & Wayman, 1969), forming the N-chloro-2,2-

dichloroacetamide (N-Cl-DCAM) as a constitutional isomer of TCAM (Figure 15). 

Particularly, trihaloacetamides (THAMs) including trichloroacetamide (TCAM), 

bromodichloroacetamide (BDCAM), dibromochloroacetamide (DBCAM), and 

tribromoacetamide (TBAM) cannot be C-chlorinated due to the absence of a substitutable 

hydrogen on the trihalogenated tertiary carbon. However, N-chlorination of THAMs may 

otherwise still be possible, leading to the formation of N-chloro-trihaloacemides (N-Cl-

THAMs) that are distinctively tetrahalogenated. In this regard, if THAMs can be further 

chlorinated to form those unique tetrahalogenated acetamides, the HAM N-chlorination 

pathway can therefore be verified and N-Cl-DCAM can be confirmed as the DCAM 

chlorination product. To substantiate our speculation that DCAM and the other HAMs 

are N-chlorinated by free chlorine to form the corresponding N-chloro-haloacetamides 

(N-Cl-HAMs), seven dihalogenated and trihalogenated HAMs (i.e., DCAM, BCAM, 

DBAM, TCAM, BDCAM, DBCAM, and TBAM) were chlorinated and the resulting 

HAM chlorination solutions were directly infused into the qTOF mass spectrometer and 

were screened for N-Cl-HAMs. 
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Figure 15. 2,2,2-trichloroacetamide (TCAM) and its constitutional isomer, N-chloro-2,2-

dichloroacetamide (N-Cl-DCAM). 

Figure 16 shows the obtained isotope clusters for the four THAM chlorination 

products on the bottom row and all the isotopic distributions are in support of the 

presence of a total of four chlorine or bromine atoms in their molecular structures. 

Furthermore, the measured exact masses of all [M-H]- ions were in perfect agreement 

with the calculated values for N-Cl-THAMs. It therefore can be concluded that free 

chlorine reacts with THAMs by N-chlorinating their primary amides instead of C-

chlorinating the tertiary alkyl carbons. In the same way, chlorination of dihaloacetamides 

(DHAMs), including DCAM, BCAM, and DBAM, is expected to produce the 

corresponding N-chloro-dihaloacetamides (N-Cl-DHAMs) instead of the THAM isomers 

(i.e., TCAM, BDCAM, and DBCAM). As a result, the identity of N-Cl-DCAM as 

DCAM chlorination product is confirmed herein. 
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Figure 16. Obtained isotope clusters for the seven HAM chlorination products (i.e., N-Cl-

HAMs) using Xevo G2-XS qTOF. All N-Cl-HAMs were formed individually by reacting 

equal stoichiometric amount of free chlorine with the corresponding HAMs (i.e., 100 µM 

Cl2:100 µM HAM) and were ionized under the negative ESI mode. For each N-Cl-HAM, 

the measured exact masses (shown in black) were compared with the calculated values 

(shown in red) and all halogen isotopes are indicated by the blue arrows. 

3.3.2. Dichloroacetamide Chlorination Kinetics 

In the preliminary study, it was noted that residual chlorine was exhausted almost 

instantaneously when DCAM was chlorinated by equal stoichiometric amount of 

chlorine, implying that the formation of N-Cl-DCAM might be very rapid during DCAM 

chlorination. In order to quantitatively determine the rate at which N-Cl-DCAM is 

formed, DCAM N-chlorination kinetics were investigated spectrophotometrically at four 

different pHs (i.e., pH 6, 7, 8, and 9) by reacting same molar concentration of DCAM and 
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aqueous chlorine (i.e., [DCAM]0=[Cl2]0=0.5 mM). UV absorbance at 292 nm was 

monitored over reaction time at a sampling frequency of once every five seconds and the 

concentrations of residual hypochlorous acid (HOCl), hypochlorite (OCl-), DCAM, and 

formed N-Cl-DCAM at each reaction time point can be determined as follows according 

to their individual molar absorptivities at the given wavelength (i.e.,	𝜀�): 

𝐴𝑏𝑠�,N = 𝜀"$&',�[𝐻𝑂𝐶𝑙]N + 𝜀$&'�,�[𝑂𝐶𝑙8]N + 𝜀D&EF,�[𝐷𝐶𝐴𝑀]N + 𝜀C&'D&EF,�[𝑁𝐶𝑙𝐷𝐶𝐴𝑀]N		(18) 

Compared to chlorine, the same concentration of DCAM and N-Cl-DCAM didn’t 

cause significant UV absorbance at 292 nm (Figure 17), suggesting very low molar 

absorptivities of these two compounds at this specific wavelength (i.e., 292 nm), although 

the actual values were not determined in this study. As a result, total residual chlorine 

concentration at each reaction time (i.e., 𝐶N) can be calculated based on Eq. 19, assuming 

negligible contributions from both residual DCAM and formed N-Cl-DCAM to the total 

absorbance (i.e., 𝐴𝑏𝑠�,N) that was measured at 292 nm (i.e., 𝜀D&EF,�[𝐷𝐶𝐴𝑀]N ≈

𝜀C&'D&EF,� 𝑁𝐶𝑙𝐷𝐶𝐴𝑀 N ≈ 0 in Eq.18). 

𝐶N =
𝐴𝑏𝑠�,N

𝛼P,"$&'𝜀"$&' + 𝛼Q,$&'�𝜀$&'�
						(19) 

𝛼P,"$&' =
[𝐻S]

𝐾A,"$&' + [𝐻S] ;				𝛼Q,$&'
� =

𝐾A,"$&'
𝐾A,"$&' + [𝐻S]						(20)	 

In Eq. 19, the respective molar absorptivities for hypochlorite and hypochlorous acid 

are 350.2 M-1cm-1 (Hand & Margerum, 1983) and 26.95 M-1cm-1 (Silverman & Gordon, 

1980) at 292 nm. The two alpha values (denoted as 𝛼P and 𝛼Qin following discussion for 

simplicity) represent the fractions of total residual chlorine that are actually in the form of 

hypochlorous acid (i.e., 𝛼P) and hypochlorite (i.e., 𝛼Q) at any given pH, which can be 
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calculated using Eq. 20  and a hypochlorous acid dissociation constant 𝐾A,"$&'   of 10-7.582 

at 20°C (Morris, 1966). 

 

Figure 17. UV-vis spectra of total free chlorine, DCAM and N-Cl-DCAM in 10 mM 

phosphate buffered solutions at four pH levels.	𝐶N,&'#= [DCAM] = [N-Cl-DCAM]. 

As is shown in Figure 18(a), residual chlorine concentrations were consistent with a 

rate law that is second-order in chlorine. Since DCAM and total free chlorine were of 

same initial concentrations, the second-order behavior of residual chlorine indicates a 1:1 

reaction stoichiometry between DCAM and chlorine. This was further confirmed on the 

basis of a fixed 1 mM Cl2/mM DCAM chlorine demand when DCAM was chlorinated 

using excess molar equivalents of chlorine (Figure 18(b)). More importantly, it is clear 

from Figure 18(a) that hypochlorite is the only reactive form of chlorine in DCAM N-

chlorination reaction, because chlorine decay was nearly immeasurable at pH 6 but was 

substantially accelerated when pH was above 𝑝𝐾A,"$&' (i.e., 7.582; Morris, 1966). The 

specific participation of hypochlorite is consistent with the prevailing amide N-

chlorination mechanism (Mauger & Soper, 1946), which indicates that formation of a 

hydrogen bond by the amino hydrogen with the hypochlorite oxygen is the rate-limiting 
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preliminary step. Moreover, hypochlorite is probably the only chlorinating agent since 

the oxygen atom in hypochlorous acid does not have enough electron-donating tendency 

to initially form a hydrogen bond with the amino hydrogen (Mauger & Soper, 1946). 

Therefore, the full second-order DCAM chlorination kinetics can be described as follows, 

reflecting the particular involvement of hypochlorite: 

𝐷𝐶𝐴𝑀 + 𝑂𝐶𝑙8
					¢a					 𝑁𝐶𝑙𝐷𝐶𝐴𝑀						(21) 

𝑑 𝐷𝐶𝐴𝑀
𝑑𝑡 =

𝑑𝐶N
𝑑𝑡 = −𝑘q 𝐷𝐶𝐴𝑀 𝑂𝐶𝑙8 = −𝑘q𝐶N ∙ 𝛼Q𝐶N = −𝑘q𝛼Q ∙ 𝐶Ni	 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: [𝐷𝐶𝐴𝑀]P = 𝐶N,P						(22) 

Based on the integrated form of this second-order reaction rate law (Eq. 23), the 

product of 𝑘q𝛼Q at any given pH can be derived by finding the corresponding slope of the 

linear regression line in Figure 18(a) (i.e.,  Q
&¨

 versus reaction time). Subsequently, the 

second-order DCAM N-chlorination rate constant, 𝑘q, can be estimated by regressing the 

obtained 𝑘q𝛼Q	products over 𝛼Q (or reaction pH) with the intercept being forced through 

zero. Figure 18(c) shows the result of this linear regression (R2=0.9972) and the 

estimated reaction rate constant, 𝑘q of 9.94´104 M-1hr-1 (or 0.0276 mM-1s-1). 

1
𝐶N
=

1
𝐶N,P

+ 𝑘q𝛼Q ∙ 𝑡						(23) 
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Figure 18. Analysis of DCAM chlorination kinetics. (a) Reversed residual chlorine 

concentration (1/𝐶N) versus reaction time at four DCAM chlorination pHs. (b) 

Verification of DCAM: Cl2=1:1 reaction stoichiometry. (c) Estimation of second-order 

DCAM chlorination rate constant (i.e.,	𝑘q). 

3.3.3. N-chloro-2,2-dichloroacetamide Degradation Kinetics 

Aside from N-Cl-DCAM formation, its stability in drinking water on time scales that 

are relevant to system residence times is also of great significance. As a newly identified 

compound, it is necessary to understand if N-Cl-DCAM can persist for enough periods of 

time during drinking water distribution to reach the consumers’ tap, or is it too short-

lived to be considered as an important drinking water DBP. 

N-Cl-DCAM was found to be quite stable under a range of pH conditions (i.e., pH 6-

9) up to several weeks when chlorine was not present (data not shown). However, in the 

presence of chlorine, N-Cl-DCAM can decompose to form the corresponding DCAA 

especially at lower pHs (Peters et al., 1990). For this reason, the chlorine-induced N-Cl-

DCAM degradation kinetics were further investigated at pH 4, 5, 6, 7, and 8 by reacting 

equal concentrations of N-Cl-DCAM with aqueous chlorine (i.e., 40 µM for each). 
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Figure 19(a) shows the normalized reversed residual N-Cl-DCAM concentration 

(i.e.,	CP/C) as a function of reaction time, which supported a rate law that is second-order 

in N-Cl-DCAM. Analogous to the DCAM N-chlorination reaction, the second-order 

behavior of N-Cl-DCAM also suggests a 1:1 reaction stoichiometry between N-Cl-

DCAM and free chlorine. Perhaps most importantly, unlike DCAM, N-Cl-DCAM is 

weakly acidic in water, and its estimated acid dissociation constant 𝐾A,C&'D&EF is 10-3.71 

at 25 °C (i.e., 𝑝𝐾A,C&'D&EF=3.71; Menard & Lessard, 1978). Because of this relatively 

low pKa value, N-Cl-DCAM will tend to deprotonate into the corresponding anionic 

form (i.e., Cl2CHC(O)NCl-) within the pH range that is typical for drinking water (i.e., 

pH 6-9). Since both of the two reactants can either be protonated or deprotonated 

depending on the reaction pH, it is helpful to first determine the two respective forms of 

reactants that are actually reactive in this N-Cl-DCAM chlorination reaction. 

As is evident in Figure 19(a), the apparent N-Cl-DCAM chlorination rate 

substantially increased when pH was decreased. Accordingly, the Log C versus pH 

diagram (Figure 19(b)) shows all four possible combinations of the two participating 

reactants, among which, only when N-Cl-DCAM and aqueous chlorine are both in their 

protonated forms, their combined concentration (i.e., [Cl2CHC(O)NHCl][HOCl]; the red 

line in Figure 19(b)) will also increase with decreasing pH. This strongly indicates that it 

is the hypochlorous acid (i.e., HOCl) that reacts with the neutral Cl2CHC(O)NHCl to 

form DCAA under acidic pH conditions. As a result, the full second-order N-Cl-DCAM 

chlorination kinetics can be proposed as follows: 



60 
 

𝑑𝐶N,C&'D&EF
𝑑𝑡 =

𝑑𝐶N,&'#
𝑑𝑡 = −𝑘j 𝐶𝑙i𝐶𝐻𝐶 𝑂 𝑁𝐻𝐶𝑙 𝐻𝑂𝐶𝑙

= −𝑘j ∙ 𝛼P,C&'D&EF𝐶N,C&'D&EF ∙ 𝛼P,"$&'𝐶N,&'#

= −𝑘j𝛼P,C&'D&EF𝛼P,"$&' ∙ 𝐶N,C&'D&EFi  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:	𝐶N,C&'D&EF,P = 𝐶N,&'#,P																		(24) 

𝛼P,C&'D&EF =
[𝐻S]

𝐾A,C&'D&EF + [𝐻S] ;				𝛼Q,C&'D&EF =
𝐾A,C&'D&EF

𝐾A,C&'D&EF + [𝐻S]						(25) 

In Eq. 24, 𝑘j denotes the second-order N-Cl-DCAM chlorination rate constant. 

𝛼P,"$&' and 𝛼P,C&'D&EF represent the respective fractions of total residual chlorine (i.e., 

𝐶N,&'#) and total residual N-Cl-DCAM (i.e., 𝐶N,C&'D&EF) that are actually in the forms of 

HOCl and Cl2CHC(O)NHCl, and these two values can be calculated according to Eq. 20 

and Eq. 25, respectively. The integrated form of this kinetic model is formulated in Eq. 

26, on the basis of which, the second-order N-Cl-DCAM chlorination rate constant 𝑘j 

was estimated in two stages (Yu et al., 2015). Products of 

𝑘j𝛼P,"$&'𝛼P,C&'D&EF𝐶N,C&'D&EF,P were first estimated via lower-level linear least squares 

regressions of &¨,©noªn«¬,
&¨,©noªn«¬

 over reaction time at individual pH levels (Figure 19(a)). With 

known initial total N-Cl-DCAM concentration (i.e.,	𝐶N,C&'D&EF,P = 40	𝜇𝑀) and 

calculated alpha values (i.e.,	𝛼P,"$&' and	𝛼P,C&'D&EF) at all investigated pHs (Eq. 20 and 

Eq. 25), the higher-level linear regression shown in Figure 19(c) resulted in an estimated 

𝑘j of 703.1 M-1hr-1. 

𝐶N,C&'D&EF,P
𝐶N,C&'D&EF

= 1 + 𝑘j𝛼P,"$&'𝛼P,C&'D&EF𝐶N,C&'D&EF,P ∙ 𝑡						(26) 



61 
 

 

Figure 19. Analysis of N-Cl-DCAM chlorination kinetics. (a) Kinetic analysis of N-Cl-

DCAM degradation in the presence of same molar concentration of aqueous chlorine 

under five different pH conditions. (b) Log C-pH diagram for a system containing 40 µM 

N-Cl-DCAM and 40 µM total free chlorine. (c) Estimation of N-Cl-DCAM chlorination 

rate constant (i.e.,	𝑘"$&',C&'D&EF). 

Another transient chlorine species that needs to be considered in N-Cl-DCAM 

degradation is the H2OCl+, since its specific reactivity is estimated to be 105 times higher 

than that of HOCl at pH 7 and therefore is probably the species responsible for many 

acid-catalyzed reactions (Morris, 1975). If H2OCl+ is the major reactive species, the 

corresponding reactive form of N-Cl-DCAM will be the deprotonated Cl2CHC(O)NCl- 

(Figure 20(b)) and the resulting second-order reaction rate constant 𝑘j¯  is 1.1´109 M-1hr-1 

(Figure 20(c)). As the HOCl/Cl2CHC(O)NHCl and the H2OCl+/ Cl2CHC(O)NCl- 

combinations are both compatible, this can be interpreted that the extra proton can be 

either on the Cl2CHC(O)NCl- or on the HOCl to decompose N-Cl-DCAM to DCAA. 

However, the actual speciation of these two reactants is not of great concern considering 

the scope of this work and the description of this reaction by the two neutral species (i.e., 

HOCl and Cl2CHC(O)NHCl) might be relatively easier to perceive. Lastly, it has to be 
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addressed that the key to the estimation of 𝑘j using Eq. 26 was to determine the acid 

dissociation constant, 𝐾A,C&'D&EF, for N-Cl-DCAM (i.e., Cl2CHC(O)NHCl) at 20 °C, 

under which condition the N-Cl-DCAM chlorination rates were observed. The estimated 

𝑝𝐾A,C&'D&EF value is 5.2 in this study, which exhibited certain disagreement with the 

value that was reported earlier (𝑝𝐾A,C&'D&EF=3.71 at 25 °C; Menard & Lessard, 1978). 

For this reason, this tentative acid dissociation constant needs to be further validated in a 

future work. 

 

Figure 20. Analysis of N-Cl-DCAM reaction kinetics with H2OCl+.(a) Normalized 

reversed residual N-Cl-DCAM concentration (i.e.,	𝐶P/𝐶) as a function of reaction time 

under five different pH conditions. (b) Log C-pH diagram for a system containing 40 µM 

N-Cl-DCAM and 40 µM total free chlorine. (c) Estimation of second-order N-Cl-DCAM 

chlorination rate constant (i.e.,	𝑘j¯ ). 

3.3.4. The Fate of N-chloro-2,2-dichloroacetamide and 2,2-dichloroacetamide in 

Chlorinated Drinking Waters 

In Chapter 1, it has been proposed that chlorination of DCAN can lead to the 

formation of N-Cl-DCAM via direct nucleophilic addition of hypochlorite on the nitrile 
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carbon (Figure 21) and the estimated second-order reaction rate constant 𝑘Q is 

(6.85±0.45) ×102 M-1hr-1. Alternatively, DCAN can undergo base-catalyzed hydrolysis to 

form the corresponding DCAM by reacting with hydroxide (i.e., OH-) at an estimated rate 

of (5.60± 0.31) ×103 M-1hr-1 (i.e., 𝑘i). According to the N-Cl-DCAM formation 

mechanism that has been elucidated above, the formed DCAM will further react with 

hypochlorite via the amide N-chlorination pathway, resulting in rapid N-Cl-DCAM 

formation (Figure 21 & Eq. 27). Perhaps most importantly, reaction kinetics suggest that 

DCAM will not be able to persist as a long-lived reaction intermediate in this pathway, 

mainly because its reaction rate with hypochlorite is more than one order of magnitude 

higher than the rate at which DCAM can actually form via alkaline DCAN hydrolysis. As 

an example, Table 7 compares the DCAM formation rate (i.e., 𝑟𝑎𝑡𝑒± =

𝑘i[𝐷𝐶𝐴𝑁][𝑂𝐻8]) with its subsequent reaction rate with hypochlorite (i.e., 

𝑟𝑎𝑡𝑒&'# = −𝑘q[𝐷𝐶𝐴𝑀][𝑂𝐶𝑙8]) under a set of conditions that are typical for finished 

waters (i.e., pH 6-9 with 1 mg/L residual chlorine as Cl2). Results indicated that under 

these conditions, DCAM will be N-chlorinated by free chlorine to form the corresponding 

N-Cl-DCAM at a rate that is 24 to 638 times faster than the rate at which it is initially 

formed from DCAN hydrolysis. As a result, it can be concluded that DCAM is so highly 

reactive with chlorine that it will not remain in systems with the presence of residual free 

chlorine for significant amount of time that is relevant to drinking water distribution. 

𝐷𝐶𝐴𝑁 + 𝑂𝐻8

D&EF	²4fA³Ns4´
fANµ¶�¢# D&EC $"� 		

𝐷𝐶𝐴𝑀 + 𝑂𝐶𝑙8
D&EF	·¸'4fs´ANs4´

fANµno#�8¢a D&EF $&'� 		
	𝑁𝐶𝑙𝐷𝐶𝐴𝑀							(27)



64 
 

 

Table 7. Comparison of DCAM formation and chlorination rate at four different pH 

levels assuming a 1.0 mg Cl2/L chlorine residual. 

pH 𝐶N,&'#(mg/L)	 𝛼Q,$&'� 	 𝑘i[𝑂𝐻8]	 𝑘q[𝑂𝐶𝑙8]	
𝑟𝑎𝑡𝑒±,D&EF
𝑟𝑎𝑡𝑒&'#,D&EF

	

6 

1.0 

0.03 5.6E-05 3.6E-02 638 
7 0.21 5.6E-04 2.9E-01 519 
8 0.72 5.6E-03 1.0E+00 181 
9 0.96 5.6E-02 1.3E+00 24 

 

Furthermore, also reconciled in Figure 21 are the N-Cl-DCAM chlorination pathway 

and the base-catalyzed DCAM hydrolysis pathway, both of which can lead to the 

formation of DCAA as final endpoint product. Owning to the very short lifetime of 

DCAM in chlorinated drinking waters, its hydrolysis pathway is considered as relatively 

unimportant, even though its second-order reaction rate constant has also been estimated 

in this study (𝑘k = 620	𝑀8Qℎ𝑟8Q; Figure 22). On the other hand, the rate of N-Cl-

DCAM degradation via the HOCl chlorination pathway has also been estimated above 

(𝑘j = 703.1	𝑀8Qℎ𝑟8Q), and this reaction pathway is important only when the reaction 

pH is very low (i.e.,	𝑝𝐻 < 𝑝𝐾A,C&'D&EF < 𝑝𝐾A,"$&'), considering that the actual 

participating reactants are the uncharged neutral N-Cl-DCAM and hypochlorous acid 

(i.e., HOCl). When under ambient or slightly basic pH conditions (i.e., pH³7), either N-

Cl-DCAM is deprotonated, or both N-Cl-DCAM and chlorine are in their conjugated 

anionic forms, which inhibits the degradation of N-Cl-DCAM to DCAA. For this reason, 

N-Cl-DCAM are very stable in its deprotonated form under typical drinking water pH 

conditions regardless of the absence or the presence of residual chlorine. Accordingly, 
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Figure 23 draws the calculated half-lives of DCAN, DCAM, and N-Cl-DCAM based on 

the characterized reaction kinetics that are shown in Figure 21 under identical conditions 

as listed in Table 7 (i.e., pH 6-9 with 1 mg/L residual chlorine as Cl2). As is illustrated in 

Figure 23, the half-lives of both DCAN and DCAM will substantially decrease with 

increasing pH and DCAM will decompose rather rapidly even at slightly acidic pH (i.e., 

pH 6), with its half-life ranging between 30 minutes to 1 day over decreasing pH. DCAN 

will degrade only in relatively alkaline waters (e.g., softened waters or finished waters 

with high pH for corrosion control). For instance, DCAN has a 1-day half-life when pH is 

increased to 8.5. This compares to a half-life of 10 days for DCAN at neutral pH (i.e., pH 

7). In sharp contrast, N-Cl-DCAM will essentially remain stable regardless of the water 

pH, with a minimum half-life of 20 days at pH 6. 

 

Figure 21. N-chloro-2,2-dichloroacetamide formation and degradation mechanisms. 
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Figure 22. Kinetic analysis of second-order DCAM hydrolysis rate constant,	𝑘k. (a) 

Semilogarithmic plot of residual DCAM concentration versus reaction time at six 

investigated pH levels. (b) Estimation of second-order DCAM hydrolysis rate 

constant,	𝑘k using heteroscedastic hierarchical Bayesian modeling (detailed methodology 

is referred to Chapter 2). 

 

Figure 23. Predicted half-lives of DCAN, DCAM, and N-Cl-DCAM under a range of pH 

conditions (i.e., pH 6-9) with 1mg/L residual chlorine as Cl2. 
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3.3.5. Quantification and Occurrence of N-chloro-haloacetamides in Drinking 

Waters 

To examine the existence of N-Cl-DCAM, or more ideally, the family of N-Cl-HAMs 

in real drinking water supplies, a SPE-UPLC/ESI/qTOF method was developed and 

validated during the course of this study, which enables the quantification of seven 

chlorinated and brominated N-Cl-HAMs (Figure 24) in drinking waters at trace 

concentration levels. The optimized SPE procedures and UPLC/ESI conditions have been 

summarized above. All seven N-Cl-HAMs were separated within 4 minutes (Figure 25) 

and the performance of this SPE-UPLC/ESI/qTOF method was evaluated as shown in 

Table 8. When combined with SPE pre-enrichment, the estimated method detection limits 

(MDLs) for the seven analytes were between 0.13 µg/L and 1.40 µg/L, and recoveries 

ranged from 46% to 86% with standard deviations of 3%-7%, depending on the N-Cl-

HAM species. Additionally, prior to sample pretreatment, ammonium chloride was found 

to be the only reducing agent that did not cause N-Cl-HAM reduction to HAMs even over 

a relatively long period of sample storage time (i.e., 14 days). On the contrary, complete 

disappearance of all seven analytes from the selected ion chromatogram was observed 

instantly after spiked ultrapure water (1 µM for each N-Cl-HAM) was treated with same 

concentrations of ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. This 

is probably because dechlorination by ammonium chloride is due to the combination of 

ammonium with residual free chlorine to form the inorganic monochloramine (i.e., 

NH2Cl), which may not interact with N-Cl-HAMs also as chloramines, but organic ones. 
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Figure 24. N-chloro-haloacetamide molecular structures. 

 

Figure 25. Typical selected ion chromatogram of N-Cl-HAMs using the optimized 

UPLC/ESI/qTOF method. The concentrations were 1 µM for each N-Cl-HAM.
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Table 8. Retention times, method detection limits (MDLs), and recoveries of the 

developed SPE-UPLC/ESI/qTOF method. 

Analytes Retention 
Time (min) 

MDL 
(µg/L) 

Recovery 
(%) 

N-chloro-2,2-dichloroacetamide 1.289 0.90 85±6 
N-chloro-2,2-bromochloroacetamide 1.424 0.15 86±4 
N-chloro-2,2-dibromoacetamide 1.574 0.13 84±4 
N-chloro-2,2,2-trichloroacetamide 2.422 1.40 51±7 
N-chloro-2,2,2-bromodichloroacetamide 2.672 0.82 49±4 
N-chloro-2,2,2-dibromochloroacetamide 2.950 1.08 47±4 
N-chloro-2,2,2-tribromoacetamide 3.257 0.81 46±3 

 

To further validate this analytical method, 11 tap water samples collected from seven 

private US residences were analyzed to quantitatively determine the occurrence of N-Cl-

HAMs. Among the seven N-Cl-HAM species, all three N-Cl-DHAMs, including N-Cl-

DCAM, N-Cl-BCAM, and N-Cl-DBAM were detected for the first time (Figure 26), 

whereas the other four N-Cl-THAMs were absent in all of the samples that were 

analyzed. N-Cl-DCAM was present in 5 of the 11 samples at levels that are higher than 

its MDL, with averaged concentrations ranging between 1.40 µg/L to 3.48 µg/L. 

Interestingly, the two brominated N-Cl-DHAM analogues were detected more frequently 

(n=8) than the N-Cl-DCAM probably because the developed method is more sensitive to 

those two higher molecular weight compounds (i.e., lower MDLs). N-Cl-BCAM and N-

Cl-DBAM also exhibited some moderate correlations with each other, since N-Cl-DBAM 

tended to occur at higher levels in samples with higher concentrations of N-Cl-BCAM, 

even though the median concentration of the former remained relatively lower than that 
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of the latter (respective median concentrations for N-Cl-DBAM and N-Cl-BCAM were 

0.20 µg/L and 0.65 µg/L). The lower level N-Cl-DBAM occurrence is in agreement with 

the bromine substitution efficiency that was noted for other DBP families (Hua & 

Reckhow, 2012). Additionally, as has been demonstrated above, N-Cl-DCAM forms as 

DCAN degrades. Thus, concentrations of the three N-Cl-DHAMs are further compared in 

Figure 26 with dihaloacetonitrile (DHAN) concentrations that were determined in the 

same sample. Although strong correlations between these two classes of N-DBPs were 

not observed given the very small pool of samples that were analyzed, the average 

concentrations of the N-Cl-DHAMs were consistently higher than those of the 

corresponding DHANs. This further supports the previous conclusion regarding the high 

chemical stability of N-Cl-HAMs (e.g., Figure 23). It is also noteworthy that all three N-

Cl-DHAMs were not detected in three of the samples that were collected from systems 

using chloramine instead of free chlorine (i.e., sample 7, 8, and 10), nor were their 

corresponding DHANs, suggesting that the formation of these two groups compounds is 

more likely associated with the use of free chlorine instead of chloramines during 

drinking water disinfection.
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Figure 26. Measured concentrations of N-Cl-DCAM, N-Cl-BCAM, and N-Cl-DBAM 

(shown in bars) in 11 real tap water samples by SPE-UPLC/ESI/qTOF. Numbers above 

the bars denote the averaged N-Cl-DHAM concentrations between two sample 

duplicates. Dashed lines indicate the MDLs for each N-Cl-DHAM species. 

Concentrations of the three N-Cl-DHAMs were also compared to those of the 

corresponding dihaloacetonitriles (DHANs; shown in solid dots) that were determined in 

the same sample. 

3.3.6. Implications for Future DBP Work 

The existence of a previously misidentified nitrogenous disinfection byproduct, N-

chloro-2,2-dichloroacetamide in chlorinated drinking waters was confirmed in this part of 

the study. The discovery of this compound is of great importance since N-Cl-DCAM 

exhibited very high stability under pH conditions that are relevant to drinking water 

treatment with and without the presence of chlorine. Furthermore, as an organic 

chloramine, N-Cl-DCAM is expected to be more toxicologically potent than the hitherto 

identified N-DBPs, and therefore may pose higher carcinogenic risks to drinking water 

consumers given its ubiquitous occurrence and high stability. Paradoxically, the escape of 

N-Cl-DCAM from previous detection by advanced analytical technologies is due to its 



72 
 

reduction by common reducing agents during sample preservation, which resulted in the 

erroneous identification of DCAM as an emerging drinking water DBP. The SPE-

UPLC/ESI/qTOF method developed in this study can be used in the future as a strong 

analytical tool to create a larger scale of occurrence information for the N-Cl-HAM 

family. Lastly, with the underlying formation and degradation mechanisms elucidated 

herein, the remaining question is how toxic N-Cl-DCAM, or more broadly speaking, N-

Cl-HAMs are and how the overall drinking water toxicity may alter as a result of inter-

class transformation from HANs to N-Cl-HAMs and ultimately to HAAs. For this reason, 

quantitative toxicity assessment is needed in order to determine the potential health risks 

that may be imposed by N-Cl-HAMs.
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CHAPTER 4 

4. FORMATION AND DEGRADATION OF 

DICHLOROACETONITRILE DURING THE CHLORINATION 

OF FREE AND COMBINED ASPARTIC ACID: EFFECT OF 

PEPTIDE BOND[4] 

4.1. Introduction 

Different from the trihalomethanes (THMs) and the haloacetic acids (HAAs), which 

are mainly derived from activated aromatic moieties of natural organic matter (NOM) 

(Rook, 1974), the formation of haloacetonitriles (HANs) tends to correlate positively 

with the organic nitrogen content in NOM (Lee et al., 2007). In fact, early research on 

HAN formation has established a-amino acids as important HAN precursors in drinking 

water (Trehy & Bieber, 1981; Ueno et al., 1996; Yang et al., 2012). Of all the common 

amino acids, aspartic acid was found to be the most prolific HAN producer, especially for 

dichloroacetonitrile (DCAN; Trehy & Bieber, 1981; Bond et al., 2014; Chu et al., 2010b). 

As is demonstrated in Figure 25, free aspartic acid can react very quickly with excess 

chlorine (Alouini & Seux; 1987) leading to rapid DCAN formation via the 

“decarboxylation pathway”. In this pathway, chlorination of the a-amine first forms the 

N,N-dichloroaspartic acid. Subsequent decarboxylation of this dichloramine forms an N-

chloroaldimine, which can dehydrohalogenate (i.e., elimination of hydrochloric acid) to 

yield the cyanoacetic acid. Due to the combined electron-withdrawing effect from both 

                                                
[4] Yu, Y.; Reckhow, D.A. The Formation of Dichloroacetonitrile from Chlorination of Free and Combined 
Aspartic Acid: Effect of Peptide Bond. Manuscript in preparation, to be submitted to Water Research. 
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the carboxylic acid group and the nitrile group, the methylene carbon in cyanoacetic acid 

is very acidic (Shah & Mitch, 2011). Therefore, rapid dichlorination of this carbon 

followed by decarboxylation will ultimately lead to the formation of DCAN. In the 

meanwhile, aspartic acid can also react with one molar equivalent of free chlorine to form 

the N-chloroaspartic acid, which can undergo concerted decarboxylation to yield an 

imine. Imines are usually very unstable in water and can rapidly hydrolyze to form the 

corresponding aldehydes (Nweke & Scully, 1989). In this case, hydrolysis of the primary 

aldimine forms the 3-oxopropanoic acid, which can be further chlorinated and 

decarboxylated to form the dichloroacetaldehyde. Although dichloroacetaldehyde is an 

important drinking water DBP in its own right, it tends to further react with chlorine to 

form the trichloroacetaldehyde (or chloral; Trehy, 1980), while the latter can readily form 

a hydroxyl adduct with water (i.e., chloral hydrate) and finally result in chloroform (i.e., 

CHCl3) formation (Trehy, 1980). 

 

Figure 27. Scheme of reaction pathways for aspartic acid chlorination (summarized from 

Trehy & Bieber, 1981; Trehy et al., 1986; Peters et al., 1990; Hureike et al., 1994; Shah 

& Mitch, 2011; Bond et al., 2014). 
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Despite their relatively high reactivity with chlorine (Trehy & Bieber, 1981; Trehy et 

al., 1986; Peters et al., 1990; Hureike et al., 1994; Shah & Mitch, 2011; Bond et al., 

2014), free amino acids are probably not the primary precursors for HANs, mainly 

because their actual concentrations in natural waters are too low to sufficiently account 

for the amounts of HANs that can actually occur in finished water supplies (Reckhow et 

al., 2001; Bond et al., 2012). For instance, aspartic acid was detected in the source waters 

for 16 US drinking water treatment plants at concentrations between 0.3 µg/L to 1.6 µg/L 

(Mitch et al., 2009). This could only account for 0.08 µg/L DCAN production based on a 

maximal DCAN formation potential of 6% (i.e., mole/mole) for aspartic acid (Bond et al., 

2009). On the other hand, in surface water, around 60% of recoverable dissolved amino 

acids are combined in peptides and proteins, with another 20% associated with humic 

substances (Thurman, 1985). Thus, those combined amino acids are generally 4 to 5 

times as common as free amino acids in natural waters (Hureiki et al., 1994).  

Unlike free amino acids, the majority of the amino nitrogens in combined amino acids 

are bound in peptide linkages and therefore are orders of magnitude less reactive with 

chlorine than amine nitrogens (Hawkins and Davies, 1999). In fact, many have shown 

that amide nitrogens in peptide bonds are unreactive with aqueous chlorine (Pereira et al., 

1973; Hureiki et al., 1994). For this reason, due to the absence of an active amine group, 

an aspartyl residual that is incorporated in a peptide may be inaccessible to chlorine to 

form the corresponding DCAN. However, when the aspartyl residual is at the N-terminal 

end, its unprotected amine group can be chlorinated in the same way as the a-amine in 

free aspartic acid, leading to the formation of an N,N-dichloramine (Bieber & Trehy, 

1983; Figure 26). Since peptides cannot readily undergo decarboxylation (Nweke & 
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Scully, 1989; McCormick et al., 1993; Conyers & Scully, 1993; Conyers & Scully, 

1997), following dehydrohalogenation of this dichloramine yields an N-chloroimine, 

which can undergo C-C cleavage to remove a cyanoacetic acid from the peptide 

backbone (Bieber & Trehy, 1983). The resulting cyanoacetic acid will then convert 

rapidly into DCAN via the aforementioned dichlorination and decarboxylation pathways 

(Figure 25). Subsequently, the chlorination reaction will proceed to the next amino acid 

residue with the generation of a new amine group at the N-terminus from isocyanate 

hydrolysis (Keefe et al., 1997; Fox et al., 1997; Figure 26). As a result, the peptide will 

be degraded in a slow stepwise fashion (Goldschmidt et al., 1927; Bieber & Trehy, 1983; 

Keefe et al., 1997; Fox et al., 1997) and DCAN can be produced at any point when the 

remaining peptide contains an N-terminal aspartyl residue that can be chlorinated to 

generate cyanoacetic acid as an essential DCAN precursor. 

Because aspartyl residue is well represented in peptides and proteins, DCAN 

formation in drinking water will thus be readily accounted for if chlorine can produce 

appreciable amount of cyanoacetic acid via stepwise peptide degradation. However, no 

empirical evidence has been presented so far showing the actual formation of DCAN 

from chlorination of bound aspartyl residues. Therefore, the reactivity of combined 

aspartic acid with chlorine needs to be evaluated and its potential contribution to DCAN 

formation has to be validated. Moreover, in addition to its continuous formation in treated 

drinking waters, DCAN will undergo simultaneous decomposition due to its metastability 

in water (Reckhow et al., 2001; Chapter 1). As DCAN degrades, it leaves the 

corresponding N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) and dichloroacetic acid 
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(DCAA) in its place (Chapter 3). For this reason, understanding the role of combined 

amino acids in the formation of those secondary DBPs is also of great importance. 

 

Figure 28. Proposed DCAN formation mechanism from the chlorination of a generic 

peptide possessing an aspartyl residual at the N-terminus (summarized from Bieber & 

Trehy, 1983; Keefe et al., 1997; Fox et al., 1997). 

The purpose of this study was to compare the formation of DCAN and its degradation 

products (i.e., N-Cl-DCAM and DCAA) from free aspartic acid and two aspartyl-

containing model peptides during chlorination so as to clarify the reactivity of bound 

aspartyl residues in combined amino acids and their role as potential HAN precursors. 
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4.2. Materials and Methods 

4.2.1. Selection of Model Peptides 

As has been mentioned above, chlorination and removal of an aspartyl residue during 

stepwise peptide degradation is the key to DCAN formation. Therefore, two 

commercially available model peptides that particularly contain aspartyl residues were 

studied. Tetra-aspartic acid (i.e., Asp-Asp-Asp-Asp) is a small-size oligopeptide that 

simply consists of four aspartyl residues and the one at the N-terminus should be initially 

reactive with chlorine due to the presence of an a-amine. The other peptide that was 

investigated in this study was Arg-Gly-Asp-Ser. Unlike Asp-Asp-Asp-Asp, Arg-Gly-

Asp-Ser contains only one aspartyl residue, which is located in the middle of the peptide 

backbone. Hence, this aspartyl residue won’t contribute to DCAN formation unless the 

prior two amino residues are both degraded. 

4.2.2. Chemicals and Reagents 

L-Aspartic acid (reagent grade, ≥ 98%), Asp-Asp-Asp-Asp (≥ 97%), Arg-Gly-Asp-

Ser (≥ 95%), and all purified DBP standard compounds, including dichloroacetonitrile 

(DCAN), dichloroacetamide (DCAM), and dichloroacetic acid (DCAA) were all 

purchased from Sigma-Aldrich (St. Louis, MO). General laboratory chemicals including 

Optima LC/MS grade organic solvents and formic acid (FA) were obtained from Fisher 

Scientific (Pittsburgh, PA). N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) was prepared 

by reacting equal stoichiometric amount (Cl2/N=1:1) of free chlorine with 

dichloroacetamide (DCAM), with pH of both solutions adjusted to 9.0 before mixing. 

The formation of N-Cl-DCAM in the stock solution was confirmed using ultra 
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performance liquid chromatography/quadrupole time-of-flight mass spectrometry 

(ACQUITY UPLC/Xevo G2-XS qTOF, Waters; Chapter 3). 

4.2.3. Experimental Conditions 

All reaction solutions were prepared in ultrapure Milli-Q water (EMD Millipore 

Corp.), containing 10 mM phosphate buffer and were adjusted to the desired pHs with 

sodium hydroxide or hydrochloric acid. At the start of each chlorination experiment, 

certain amount of model compound was introduced individually into three liters of 

buffered solutions, so that the respective initial concentrations for free aspartic acid, Asp-

Asp-Asp-Asp, and Arg-Gly-Asp-Ser were 20 µM, 10 µM, and 10 µM. Chlorine solutions 

were prepared on the day of use by diluting the sodium hypochlorite stock solution 

(5.65%-6%, laboratory grade, Fisher Scientific), followed by acidification to the target 

pHs using hydrochloric acid. The actual chlorine concentration was standardized using 

the N,N-diethyl-p-phenylene diamine (DPD)-ferrous ammonium sulfate (FAS) titrimetric 

method (EPA Method 330.4). Chlorination of individual model precursors was conducted 

by adding small volumes of acidified sodium hypochlorite solutions to reach a fixed dose 

of 15 mg/L as Cl2. Immediately after the introduction of chlorine, samples were 

partitioned off into 300 mL BOD bottles and were stored without headspace in a dark 20 

°C constant temperature incubator until the prescribed reaction times. At each reaction 

time, one bottle of sample would be sacrificed for instant chlorine residual determination 

and DBP analysis. All samples were analyzed in duplicates to account for measurement 

uncertainties. 
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4.2.4. Sample Pretreatment and Chromatographic Analysis 

After the prescribed chlorine contact time, the chlorine residual in each sample was 

quenched using ammonium chloride (100 mg/L NH4Cl). Subsequent DCAN analysis was 

performed according to EPA Method 551.1. To prevent DCAN from base-catalyzed 

hydrolysis (Chapter 1) during sample pretreatment, 20 mL aliquots of quenched samples 

were first acidified to pH 6 using hydrochloric acid. DCAN was extracted by adding 4 

mL of pentane with an internal standard (i.e., 1,2-dibromopropane), together with 15 g 

anhydrous sodium sulfate. Then the samples were shaken at 300 rpm for 15 minutes, and 

the upper organic layer was collected for subsequent analysis by an Agilent 6980 gas 

chromatography with a linearized micro-electron capture detector (µ-ECD) (Table 2). 

DCAA was quantified following EPA Method 552.2. In brief, 30 mL aliquots of each 

sample were acidified to pH ~2 using 1.5 mL of concentrated sulfuric acid (95.0-98.0% 

W/W, ACS grade, Fisher Scientific), followed by liquid-liquid extraction with 3 mL 

methyl tert-butyl ether and methylation using 5% acidic methanol at 60 °C for two hours. 

The final extract, which contained the derivatized methyl dichloroacetate was analyzed 

using GC- µECD (Table 2). 

N-Cl-DCAM was quantified according to solid phase extraction (SPE)-ultra 

performance liquid chromatography/electrospray ionization/quadrupole time-of-flight 

mass spectrometry (UPLC/ESI/qTOF MS) method that was described in Chapter 3. 

Before analysis, N-Cl-DCAM in aqueous samples was first concentrated using Oasis 

mixed-mode, reversed-phase, strong anion-exchange (MAX) cartridges (60 mg, 3 mL, 30 

µm; Waters, Milford, MA) that were mounted on an Agilent VacElut SPS 24 SPE 

manifold. Prior to sample loading, each MAX cartridge was conditioned with 3 mL 
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methanol, followed by one Milli-Q water wash (3 mL). Each sample (100 mL) was 

drawn through the cartridges under vacuum at a flow rate of approximately 1 mL/min. 

After sample loading, the cartridges were washed with 2 mL of methanol/NH4OH 

(v/v=95/5) and then dried for 1 minute under vacuum. Subsequently, the retained N-Cl-

DCAM was eluted with 2 mL of acetonitrile/water (v/v=90/10, with 25% formic acid). 

The acetonitrile extract was reconstituted by adding 0.5 mL of water/NH4OH (v/v=85/15) 

and was then evaporated down to 1.0 mL under a gentle nitrogen stream (TurboVap LV). 

An ACQUITY UPLC (Waters, Milford, MA) system was used for LC separation with 

an ACQUITY UPLC HSS T3 column (1.8 µm, 100 Å, 2.1×100 mm; Waters), coupled 

with a 1.8 µm, 2.1×5 mm VanGuard pre-column (ACQUITY UPLC HSS T3; Waters). 

The column temperature was maintained isothermally at 35 °C. The mobile phases were 

5 mM ammonium acetate (solvent A) and 100% methanol (solvent B) at a constant flow 

rate of 0.3 mL/min. The initial gradient was 0-2 min, 5% B, curve 6; increased from 5% 

to 90% B between 2 and 7 min, curve 6; 7-8 min 90% B, curve 6; switch back to 5% B in 

0.1 min, curve 11; 11-15 min for equilibration, 5% B. The injection volume for each 

sample was 5 µL. A quadrupole time-of-flight mass spectrometer (Xevo G2-XS qTOF; 

Waters) with an electrospray ionization (ESI) source was used to obtain accurate mass 

measurements of the parent ions of N-Cl-DCAM. Negative ESI-TOFMS mode was 

applied with typical conditions optimized as follows: capillary voltage 2.50 kV; sampling 

cone, 25 arbitrary units; source offset, 80 arbitrary units; source temperature, 120 °C; 

desolvation temperature 20 °C; cone gas, 80 L/hour; desolvation gas flow, 800 L/hour. 

The retention time of N-Cl-DCAM is 1.289 min and the method detection limit is 0.39 

µg/L. 
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4.3. Results and Discussion 

4.3.1. Dichloroacetonitrile Formation from Free and Combined Aspartic Acid 

Figure 27 shows the formation of DCAN as a function of reaction time and pH 

during the chlorination of free aspartic acid, Asp-Asp-Asp-Asp, and Arg-Gly-Asp-Ser. 

Regardless of the reaction pH, temporal DCAN formation profiles followed many similar 

trends among the three model precursors. In general, the yields of DCAN increased 

rapidly at the beginning of each chlorination reaction, but significantly decreased at 

longer reaction times especially under high pH conditions. This non-monotonic 

relationship between DCAN yield and chlorine contact time is indicative of its 

simultaneous formation and decomposition over the entire reaction period. As a result, 

the amount of DCAN that was initially formed may be substantially greater than what 

was instantaneously measured (indicated by the solids dots in Figure 27). In order to 

compare the actual DCAN formation potentials between free and combined aspartic acid, 

the amount of DCAN that was degraded also needs to be considered. 

Although developing a mechanistic kinetic model to predict byproduct formation 

meanwhile reflecting the underlying precursor chlorination chemistry can be practically 

very challenging, the amount of DBP formation can instead be back simulated based on 

their decomposition kinetics, which are often adequately characterized and in some cases, 

are well modeled (Reckhow et al., 2001). In Chapter 1, the DCAN degradation kinetics 

have been fully characterized, which can be described by the following rate law: 

𝑑[𝐷𝐶𝐴𝑁]
𝑑𝑡 = −𝑘"#$ 𝐷𝐶𝐴𝑁 − 𝑘$" 𝑂𝐻8 𝐷𝐶𝐴𝑁 − 𝑘$&' 𝑂𝐶𝑙8 𝐷𝐶𝐴𝑁 						(28) 
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In the above equation,	𝑘"#$ and 𝑘$" are the second-order neutral and basic 

hydrolysis rate constants, and 𝑘$&' is the hypochlorite chlorination rate constant, which 

were estimated to be (1.68±1.02) ×10-4 hr-1, (5.60 ± 0.31) ×103 M-1hr-1, and (6.85± 0.45) 

×102 M-1hr-1, respectively (Chapter 1). Equation 28 can be further formulated as follows 

using the hypochlorous acid dissociation constant (i.e., Ka =10-7.582 at 20°C; Morris, 1966) 

to reflect the fraction of total free chlorine (i.e., Ct) that is actually in the form of 

hypochlorite (i.e., OCl-) at any given pH. 

𝑑[𝐷𝐶𝐴𝑁]
𝑑𝑡 = − 𝑘"#$ + 𝑘$" 𝑂𝐻8 + 𝑘$&'𝛼Q𝐶N ∙ 𝐷𝐶𝐴𝑁 								(29) 

𝛼Q =
𝐾A,"$&'

𝐾A,"$&' + [𝐻S]								(30) 

When both DCAN and residual chlorine concentrations were monitored over reaction 

time, the amount of DCAN that decomposed in a discretized time step from “t” to “t+1” 

can be quantitatively determined using Equation 31, where intermediate DCAN and free 

chlorine concentrations were approximated by linear interpolation (i.e., [D&EC]¨	S	[D&EC]¨»g
i

 

and &¨,¨	S	&¨,¨»g
i

). 

∆ 𝐷𝐶𝐴𝑁 = 𝑘"#$ + 𝑘$" 𝑂𝐻8 + 𝑘$&'𝛼Q ∙
𝐶N,N + 𝐶N,NSQ

2
∙
𝐷𝐶𝐴𝑁 N 	+ 	 𝐷𝐶𝐴𝑁 NSQ

2
∙ ∆𝑡			 31  

As a result, if there wasn’t any DCAN decomposed, the cumulative DCAN formation 

(denoted as [DCAN]F) can be back calculated as follows by augmenting the amount of 

DCAN that was instantaneously measured with the amount that had been degraded. 

𝐷𝐶𝐴𝑁 ±,NSQ = 𝐷𝐶𝐴𝑁 ±,N + 𝐷𝐶𝐴𝑁 NSQ − 𝐷𝐶𝐴𝑁 N + ∆ 𝐷𝐶𝐴𝑁  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:	[𝐷𝐶𝐴𝑁]±,N|N�P = 0								(32) 
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Solid lines in Figure 27 represent the results of this calculation based on the kinetic 

DCAN and Ct measurements (i.e., solid dots shown in Figure 27 and Figure 28). It is 

evident in Figure 27 that large amounts of DCAN initially formed but subsequently 

degraded during the chlorination of all three model precursors, especially at high pH 

levels. 

 

Figure 29. Formation of DCAN as a function of reaction time during the chlorination of 

free aspartic acid, Asp-Asp-Asp-Asp, and Arg-Gly-Asp-Ser at four different pH levels 

(i.e., pH 6, 7, 8, and 9). DCAN yields are shown in percentage on the y-axis, which were 

calculated by normalizing the amount DCAN formed with the initial aspartic acid content 

in each model compound. Solid dots represent the actual time-based DCAN 

measurements, with error bars showing the standard deviation between the two 
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duplicates. Dashed lines in the figure interpolate the kinetic DCAN formation potential 

profiles. Solid lines indicate the calculated cumulative DCAN formation potentials. 

 

Figure 30. Residual chlorine concentrations over reaction time during the chlorination of 

free aspartic acid, Asp-Asp-Asp-Asp, and Arg-Gly-Asp-Ser. 

4.3.2. Reactivity of Free vs. Combined Aspartic Acid 

To elucidate the different reactivity between free and combined aspartic acid, 

cumulative DCAN formation potentials of the three model compounds are further 

compared in Figure 29 under identical pH conditions. As is shown in the figure, about 

90% of total free aspartic acid was transformed to DCAN after 72 hours at pH 6, which 

compares to 97%, 100%, and 100% maximum DCAN formation at pH 7, 8, and 9, 
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respectively. This agrees with the expected high reactivity of free aspartic acid when 

chlorine is in excess (Alouini & Seux, 1987). Perhaps most importantly, results indicated 

that the actual DCAN formation potential of free aspartic acid was almost 100% when pH 

was above neutral, although apparent DCAN yields (solid dots in Figure 27) were 

suppressed at higher pHs mainly by its simultaneous degradation. Therefore, over 

increasing reaction pH, the decreased DCAN yields shown in Figure 27 are attributed to 

its more substantial self-decomposition and not to the lower reactivity of free aspartic 

acid to form less DCAN. 

Given the same reaction time and pH, both Asp-Asp-Asp-Asp and Arg-Gly-Asp-Ser 

produced approximately one order of magnitude less DCAN compared to free aspartic 

acid (Figure 29). Furthermore, the yields of DCAN from both peptides increased not only 

with increasing reaction time, but also with increasing reaction pH. Since peptide 

degradation is a slow and base-catalyzed process (Bieber & Trehy, 1983; Goldschmidt et 

al., 1927), these trends clearly suggest that bound aspartyl residues in peptides are also 

reactive with chlorine to form DCAN, but the rate of DCAN formation is dependent on 

how fast reactive N-terminal aspartyl residue can be generated via peptide degradation. 

Therefore, more DCAN formation was observed at higher pHs when peptide degradation 

was accelerated. Moreover, because only N-terminal aspartyl residue is reactive with 

chlorine (Bieber & Trehy, 1983), the rate of DCAN formation from each aspartyl residue 

will follow a descending trend when this residue is located in a peptide closer towards the 

C-terminal end. In Asp-Asp-Asp-Asp, the first aspartyl residue contains the α-amine 

group and therefore is initially reactive with chlorine. Hence, the rate of DCAN 

formation from this first aspartyl residue should be the highest. As the second aspartyl 
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residue in Asp-Asp-Asp-Asp won’t be reactive until the C-C bond is cleaved and the 

isocyanate intermediate is hydrolyzed, the DCAN formation rate will be determined by 

those steps and thus becomes much slower. Continuing this trend, the third and the last 

aspartyl residue in Asp-Asp-Asp-Asp will form DCAN at even slower rates. Compared to 

Asp-Asp-Asp-Asp, Arg-Gly-Asp-Ser contains only one aspartyl residue near the C-

terminal end, and thus DCAN formation from this peptide is expected to be much slower. 

As is obvious in Figure 29, all kinetic data well supported the expected DCAN formation 

trends from the two investigated tetrapeptides and the corresponding DCAN formation 

mechanisms can therefore be proposed as shown in Figure 30 & 31. 

 

Figure 31. Comparison of cumulative DCAN formation potentials (calculated using 

Equation 32) of free aspartic acid Asp-Asp-Asp-Asp, and Arg-Gly-Asp-Ser under four 

pH conditions. 
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Figure 32. Proposed DCAN formation pathways from chlorine-induced Asp-Asp-Asp-

Asp degradation. Four aspartyl residues in this peptide are indicated by different colors. 
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Figure 33. Proposed DCAN formation pathways from chlorine-induced Arg-Gly-Asp-Ser 

degradation. The four amino acid residues are indicated by different colors. 
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4.3.3. N-chloro-2,2-dichloroacetamide and Dichloroacetic Acid Formation from 

Free Aspartic Acid 

As has been demonstrated above, large quantities of DCAN can initially form but 

subsequently degrade during the chlorination of all three model precursors. Thus, it is 

necessary to understand both the identities and quantities of these secondary degradation 

products. In Chapter 3, N-Cl-DCAM and DCAA were found to be the major DCAN 

decomposition products in chlorinated drinking waters and therefore these two 

compounds were also quantified during the course of aspartic acid chlorination. 

Figure 32 shows that both N-Cl-DCAM and DCAA were formed, which considerably 

accounted for the loss of DCAN under all pH conditions. In general, N-Cl-DCAM 

formation increased not only with increasing reaction time but also with increasing pH. 

At lower pHs (i.e., pH 6 and 7), N-Cl-DCAM was barely measurable. However, when pH 

was increased to 8, its formation became much more substantial, albeit its yield exhibited 

some slight decrease at longer reaction times. At pH 9, more N-Cl-DCAM was formed 

and its yield quickly reached a plateau of 62% (mol/mol of aspartic acid) within the first 

72 hours. These trends can be explained by the dual dependence of N-Cl-DCAM 

formation and degradation on pH (Chapter 3). In brief, high pH favors N-Cl-DCAM 

formation while inhibits its decomposition. For this reason, greater amount of N-Cl-

DCAM was formed at higher pHs, under which conditions it also persisted longer. 

On the other hand, the formation of DCAA continuously increased over reaction time 

but significantly decreased with increasing pH with the exception of pH 6. At this slightly 

acidic pH, only a small amount of DCAN was initially degraded so that the formation of 

both N-Cl-DCAM and DCAA was relatively insignificant compared to the other pH 
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conditions. In Chapter 3, it has been confirmed that DCAN will degrade to form DCAA 

mainly through an acid-catalyzed N-Cl-DCAM chlorination pathway (Figure 20). 

Therefore, when pH was below or close to neutral, N-Cl-DCAM degradation was 

accelerated so that the amount of DCAN decomposed was mostly offset by the amount of 

DCAA formed. However, at pH 9, considerable DCAA formation was still observed 

when the formed N-Cl-DCAM wasn’t degraded (Figure 32). This is indicative of another 

DCAA formation pathway that is independent of N-Cl-DCAM decomposition. More 

importantly, the aggregate DCAN, N-Cl-DCAM, and DCAA formation (shown by purple 

diamonds in Figure 32) fully accounted for the amount of DCAN that was initially 

formed (shown by solid black lines in Figure 32), suggesting that the rapid DCAA 

formation at pH 9 was also a result of DCAN degradation. For these reasons, a new 

DCAA formation pathway can be proposed as follows in Figure 33. In this pathway, 

DCAN will undergo sequential reactions with hydroxide and hypochlorite to form an N-

chloro-2,2-dichloroethane-1,1-diol. Following hydrolysis of this N-Cl-DCAM hydroxyl 

adduct eventually yields a DCAA. Due to the participation of both a hydroxide ion and a 

hypochlorite ion, this reaction is presumed to be base-catalyzed, and thus was only noted 

in this case at the highest reaction pH (i.e., pH 9)
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Figure 34. DCAN, N-Cl-DCAM, and DCAA formation as a function of reaction time and 

pH during the chlorination of free aspartic acid. Purple diamonds represent the aggregate 

formation potentials of all three dichloro species. Black solid lines indicate the 

cumulative DCAN formation potentials (i.e., [DCAN]F) that were calculated based on 

Equation 32. All solid symbols are actual time-based measurements, with dashed lines 

interpolating the corresponding kinetic profiles. 

 

Figure 35. Proposed N-Cl-DCAM and DCAA formation pathways from DCAN 

degradation. 



93 
 

4.3.4. N-chloro-2,2-dichloroacetamide and Dichloroacetic Acid Formation from 

Aspartyl-containing Tetrapeptides 

Significant N-Cl-DCAM formation was also observed during the chlorination of Asp-

Asp-Asp-Asp and Arg-Gly-Asp-Ser (Figure 34), which exhibited many of the similar 

trends as noted previously for free aspartic acid. At pH 6 and 7, only trivial amount of N-

Cl-DCAM was formed. This is probably because peptides were less reactive with 

chlorine to form DCAN at lower pHs, whereas the formed DCAN either didn’t 

substantially degrade (e.g., pH 6), or decomposed to form DCAA instead. When pH was 

above neutral, the yields of N-Cl-DCAM increased with both increasing reaction time 

and pH as its formation was accelerated while decomposition was retarded under these 

more alkaline conditions. More importantly, N-Cl-DCAM yields were consistently lower 

than the amount of DCAN that could have cumulatively formed without degradation 

(i.e.,	[𝐷𝐶𝐴𝑁]±). For this reason, it is highly likely that N-Cl-DCAM was produced 

exclusively from DCAN decomposition other than from some other peptide or 

intermediate chlorination pathways. 

Furthermore, it is obvious in Figure 34 that both Asp-Asp-Asp-Asp and Arg-Gly-

Asp-Ser yielded large amounts of DCAA under all pH conditions, which positively 

deviated from the cumulative DCAN formation potentials that were predicted during 

prior discussions. Therefore, the prevailing DCAN degradation pathways (Figure 33) will 

not fully account for the amount of DCAA that was produced by these two peptides. On 

the other hand, in the chlorination of peptides, certain active amino acid side chains may 

be oxidized by chlorine independently of the stepwise peptide degradation pathway, thus 

giving rise to additional DCAA formation. For example, it is chemically plausible that 



94 
 

the side chain of an aspartyl residue (i.e., -CH2-C(O)-OH) can be chlorinated and then 

cleaved to form DCAA. Moreover, both free arginine and serine exhibited certain DCAA 

formation potentials (0.569 ± 0.014% and 0.063 ± 0.009%, respectively) when 

chlorinated with excess chlorine at pH 7 (Hong & Liang, 2008). Hence, these two amino 

acid monomers may still be able to contribute to DCAA formation once they are removed 

from the peptide structure. Nonetheless, to fully understand the DCAA formation 

mechanisms during the chlorination of Asp-Asp-Asp-Asp and Arg-Gly-Asp-Ser, further 

research using isotopically labeled model compounds is needed. 

 

Figure 36. DCAN, N-Cl-DCAM, and DCAA formation during the chlorination of Asp-

Asp-Asp-Asp and Arg-Gly-Asp-Ser at four pH levels. Purple diamonds represent the 

aggregate formation potentials of all three dichloro species. Black solid lines indicate the 

cumulative DCAN formation potentials (i.e., [DCAN]F) that were calculated based on 

Equation 32. All solid symbols are actual time-based measurements, with dashed lines 

interpolating the corresponding kinetic profiles. 
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4.3.5. Implications with Respect to Precursor Removal during Drinking Water 

Treatment 

As was confirmed in this study, combined amino acids (i.e., peptides) actually have 

significant reactivity to form both nitrogenous and carbonaceous DBPs under conditions 

that are typical for drinking water treatment. The nitrogenous DBPs (i.e., DCAN and N-

Cl-DCAM) were mainly derived via chlorine-induced stepwise peptide degradation so 

that the amino nitrogens served as the nitrogen source for both N-DBPs. However, the 

carbonaceous byproduct (i.e., DCAA) tended to form independently through halogenative 

oxidation of the amino acid side chains in addition through the aforementioned DCAN as 

its decomposition product. Perhaps most importantly, proteinaceous material, including 

peptides, proteins, and amino acids that are associated with humic substances, are usually 

found in hydrophilic neutral or base fractions of NOM (Westerhoff & Mash, 2002), 

which are poorly removed by conventional drinking water treatment processes (e.g., 

coagulation; Scully et al., 1988), compared to the hydrophobic fractions that usually 

harbor most THM precursors. For this reason, it may be important for treatment plant 

operators to develop different treatment techniques to control the formation of different 

types DBPs, especially if these emerging N-DBPs (i.e., HANs and N-Cl-HAMs) are soon 

to be considered for future regulation.
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CHAPTER 5 

5. CONCLUSIONS 

The fate of HANs in drinking waters from their precursors in natural waters to their 

degradation products in consumers’ tap were systematically investigated in this study. 

Combined amino acids were proved reactive with chlorine to form DCAN under 

typical drinking water conditions. However, the rate of DCAN formation from bound 

aspartyl residues was much slower compared to free aspartic acid. The key to DCAN 

formation from combined amino acids was a chlorine-induced peptide degradation 

process, which slowly degraded the peptide backbone to continuously produce reactive 

amine functional groups at the N-terminal end. Particularly, when an N-terminal aspartyl 

residue is chlorinated, it will form an N-chloroimine, which can undergo C-C cleavage to 

remove a cyanoacetic acid from the peptide structure. This cyanoacetic acid will then 

transform to DCAN as an essential intermediate precursor. 

Simultaneous to their continuous formation, HANs were found to be chemically 

unstable and can undergo considerable decomposition via several types of degradation 

reactions. The rate of HAN loss generally increased with increasing pH but varied among 

different HAN analogues depending on the nature of their halogenated substituents. 

Additionally, free chlorine was shown to be an important facilitator and HAN 

degradation was accelerated in its presence. Perhaps most importantly, a mathematical 

kinetic model was established for seven chlorinated and brominated HAN species and 

their second-order hydrolysis and chlorination reaction rate constants were estimated 
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using a Bayesian modeling framework, so that their lifetimes under typical sets of 

drinking water conditions can be quantitatively predicted  

As HANs degrade, they leave other reaction products in their place. In the absence of 

chlorine, HANs decomposed to form the corresponding HAMs as reaction intermediates 

and HAAs as endpoint products. When chlorine was present, a group of previously 

unreported compounds, the N-Cl-HAMs were proved to be the HAN chlorination 

intermediates. However, N-Cl-HAMs are often misidentified in chlorinated drinking 

waters in the form of HAMs because the nitrogen-bound chlorine in N-Cl-HAMs is 

highly labile and thus can be readily dechlorinated by common reducing agents during 

sample preservation. N-Cl-HAMs are weakly acidic and they exhibited very high stability 

in water under a wide range of pH conditions without the presence of chlorine. On the 

other hand, it can undergo acid-catalyzed chlorination by hypochlorous acid to form the 

corresponding DCAA. Lastly, an analytical method using ultra performance liquid 

chromatography (UPLC)-quadrupole time-of-flight mass spectrometry (qTOF) was 

developed for a family of seven N-Cl-HAMs. Combined with solid phase extraction, the 

occurrence of N-Cl-DCAM and its two brominated analogues (i.e., N-Cl-BCAM and N-

Cl-DBAM) in real tap waters was quantitatively determined for the first time.
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CHAPTER 6 

6. RECOMMENDATIONS FOR FUTURE WORK 

Since the formation of N-Cl-THAMs from THAM chlorination has been confirmed 

by UPLC/ESI/qTOF MS, it becomes important to understand their relations with the 

corresponding THANs and THAMs by quantitatively characterizing their formation 

kinetics. It was noticed in the preliminary study that the chlorination reaction rates of all 

four THAMs were faster than the maximum detectable rate that can be achieved by a 

regular spectrophotometric system. Therefore, a spectrophotometer coupled with a rapid 

mixing stopped-flow accessory may be a more appropriate setup to obtain more reliable 

kinetic data for the estimation of those second-order THAM chlorination rate constants. 

For a more complete description of the formation and degradation of N-Cl-HAMs in 

chlorinated drinking waters, the stability of N-Cl-BCAM, N-Cl-DBAM, and N-Cl-

THAMs needs to evaluated. For this reason, a more comprehensive kinetic analysis is 

needed to investigate N-Cl-HAM degradation kinetics under a range of pH conditions 

with and without the presence of chlorine. Residual N-Cl-HAM concentrations can be 

determined over reaction time using the UPLC/ESI/MS method that was developed in 

this study. Ideally, a mathematical kinetic model can also be established to predict their 

lifetimes in drinking water on time scales relevant to system residence times. 

Lastly, more N-Cl-HAM occurrence data has to be collected to understand their 

relative importance compared to HANs and HAMs. More importantly, cytotoxicity and 

genotoxicity of N-Cl-HAMs need to be quantitatively determined and the impact of HAN 
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transformation, to N-Cl-HAMs, and ultimately to HAAs on aggregate drinking water 

toxicity has to be assessed.
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