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ABSTRACT

ACCELERATING ITERATIVE COMPUTATIONS FOR
LARGE-SCALE DATA PROCESSING

SEPTEMBER 2016

JIANGTAO YIN

B.Eng., BEIJING INSTITUTE OF TECHNOLOGY

M.Eng., BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lixin Gao

Recent advances in sensing, storage, and networking technologies are creating

massive amounts of data at an unprecedented scale and pace. Large-scale data pro-

cessing is commonly leveraged to make sense of these data, which will enable compa-

nies, governments, and organizations, to make better decisions and bring convenience

to our daily life. However, the massive amount of data involved makes it challenging

to perform data processing in a timely manner. On the one hand, huge volumes of

data might not even fit into the disk of a single machine. On the other hand, data min-

ing and machine learning algorithms, which are usually involved in large-scale data

processing, typically require time-consuming iterative computations. Therefore, it is

imperative to efficiently perform iterative computations on large computer clusters

or cloud using highly-parallel and shared-nothing distributed systems.

This research aims to explore new forms of iterative computations that reduce un-

necessary computations so as to accelerate large-scale data processing in a distributed

vi



environment. We propose the iterative computation transformation for well-known

data mining and machine learning algorithms, such as expectation-maximization,

nonnegative matrix factorization, belief propagation, and graph algorithms (e.g.,

PageRank). These algorithms have been used in a wide range of application do-

mains. First, we show how to accelerate expectation-maximization algorithms with

frequent updates in a distributed environment. Then, we illustrate the way of effi-

ciently scaling distributed nonnegative matrix factorization with block-wise updates.

Next, our approach of scaling distributed belief propagation with prioritized block

updates is presented. Last, we illustrate how to efficiently perform distributed incre-

mental computation on evolving graphs.

We will elaborate how to implement these transformed iterative computations

on existing distributed programming models such as the MapReduce-based model,

as well as develop new scalable and efficient distributed programming models and

frameworks when necessary. The goal of these supporting distributed frameworks is

to lift the burden of the programmers in specifying transformation of iterative com-

putations and communication mechanisms, and automatically optimize the execution

of the computation. Our techniques are evaluated extensively to demonstrate their

efficiency. While the techniques we propose are in the context of specific algorithms,

they address the challenges commonly faced in many other algorithms.
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CHAPTER 1

INTRODUCTION

Recent advances in sensing, storage, and networking technologies, such as smart

devices, cloud storage, and mobile networks, have led to massive amounts of data

being generated and collected at an unprecedented scale and pace. For example,

companies like Google, Facebook, and Amazon, maintain and process petabytes of

data, including user interactions, product sales, system logs, and other types of in-

formation. The ability to perform timely analytical processing on these data (i.e.,

large-scale data processing) will enable companies, governments, and organizations,

to make better decisions and bring convenience to our daily life. Large-scale data

processing typically involves data mining and machine learning algorithms. Despite

the advances in data mining and machine learning algorithms, the massive amount of

data involved makes it challenging to perform large-scale data processing in a timely

manner. On the one hand, huge volumes of data are typically stored in distributed file

systems, since they might not even fit into the disk of a single machine. On the other

hand, data mining and machine learning algorithms usually require time-consuming

iterative computations to achieve the final results. As the volume of data grows and

the speed with which new data is generated increases, it is imperative to perform

iterative computations on large computer clusters or cloud using highly-parallel and

shared-nothing distributed systems.

MapReduce [22] has been proposed for processing large amounts of data in a clus-

ter of machines or the cloud environment. Since its introduction, MapReduce and

its open source implementation, Hadoop [2], have become extremely popular. It pro-
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vides a simple programming model, distributed execution, distributed data storage,

and fault tolerance. This enables programmers with no experience on distributed

systems to exploit a large cluster of commodity machines (a shared-nothing archi-

tecture, with each machine having its own storage, CPU, and memory) to perform

large-scale data processing. However, while MapReduce is highly effective in hiding

the complexity of distributed processing and fault tolerance of the system, it is mainly

designed for “embarrassingly parallel tasks”.

In this work, we challenge the conventional wisdom that distributed iterative com-

putations have to be performed with traditional update functions. We aim to identify

new forms of update functions that reduce unnecessary computations so as to accel-

erate iterative computations in a distributed environment. We propose the update

function transformation for well-known data mining and machine learning algorithms

such as expectation-maximization, nonnegative matrix factorization, belief propa-

gation, and graph algorithms (e.g., PageRank). First, we show how to accelerate

expectation-maximization algorithms with frequent updates in a distributed environ-

ment [96]. Then, we illustrate the way of efficiently scaling distributed nonnegative

matrix factorization with block-wise updates [95]. Next, our approach of scaling dis-

tributed belief propagation with prioritized block updates is presented [93]. Last, we

illustrate how to efficiently perform distributed incremental computation on evolving

graphs [94]. We will show how to implement these transformed update functions on

existing programming models such as the MapReduce-based model, as well as develop

new scalable and efficient distributed programming models and frameworks when nec-

essary. The goal of these supporting distributed frameworks is to lift the burden of

the programmers in specifying transformation of update functions and communica-

tion mechanisms, and automatically optimize the execution of the computation. In

the following, we provide backgrounds and discuss challenges in transforming up-
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date functions of iterative computations and in implementing them in a distributed

environment.

1.1 Frequent Updates for Expectation-Maximization

Expectation-maximization (EM) [23] is one of the most popular approaches in

discovering knowledge from a large collection of datasets, and has many applications

such as image understanding, document classification, and genome data analysis. It

is an iterative approach that alternates between performing an expectation step (E-

step) and a maximization step (M-step). For instance, a data clustering algorithm

(e.g., k-means) can be seen as an example of the EM approach. Such an algorithm

groups similar data points into the same cluster. In the E-step, the assignment of

points to clusters is performed according to the current information of the clusters

(e.g., the current centroid). In the M-step, the resulted assignment is used to further

update the information of the clusters. Such an iterative refinement process continues

with many iterations until the clustering algorithm converges.

Due to its popularity, many methods for accelerating EM algorithms have been

proposed. Some of them [70,85] transform original update functions by performing a

partial E-step. Such a partial E-step selects only a subset of data points for computing

the distribution. The advantage of the partial E-step is that it allows the M-step to

be performed more frequently, so that the algorithm can leverage more up-to-date

parameters to process data points and potentially accelerates convergence. Despite

the fact that the EM algorithm with frequent updates has the potential to speedup

convergence, parallelizing it can be challenging. Although computing the distribution

can be performed concurrently, parameters such as centroids of clusters are global

parameters. Updating these global parameters has to be performed in a centralized

location and all workers have to be synchronized. Synchronization in a distributed

3



environment may result in considerable overhead. Therefore, we have to control the

frequency of parameter update to obtain a good performance.

In this research, we propose two approaches to parallelize the EM algorithm with

frequent updates in a distributed environment: partial concurrent and subrange con-

current. In the partial concurrent approach, each E-step processes only a block of

data points. The size of a block controls the frequency of parameter update. In

the subrange concurrent approach, each E-step computes the distribution in a sub-

range instead of the whole range. The subrange size can determine the frequency

of parameter update. We control the parameter update frequency by setting the

block/subrange size, and provide strategies to determine the optimal values. Addi-

tionally, both approaches can scale to any number of workers/processors.

We design and implement a distributed framework, FreEM, for implementing the

EM algorithm with frequent updates based on the two proposed approaches. FreEM

eases the process of programming EM algorithms in a distributed environment. Pro-

grammers only need to specify the E-step and the M-step. The detailed mechanisms

of distributed computation are handled automatically. As a result, it facilitates the

process of implementing EM algorithms and accelerates the algorithms through fre-

quent updates.

1.2 Block-wise Updates for Nonnegative Matrix Factoriza-

tion

Nonnegative matrix factorization (NMF) [49] factorizes an original matrix into two

low-rank factor matrices by minimizing a loss function that measures the discrepancy

between the original matrix and the product of the two factor matrices. It has been

applied with great success to many applications, including genome data analysis [16],

text mining [71], recommendation systems [44], and social network analysis [67, 87].

For example, in the setting of recommender systems, matrix rows can be used to
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represent users, and columns represent items (e.g., movies). Then entries are ratings

provided by users for items. NMF is an effective tool for analyzing such dyadic data

in order to discover the interactions between users and items.

NMF algorithms typically use update functions to iteratively and alternately refine

factor matrices. Many practitioners have to deal with NMF on massive datasets. For

example, recommendation systems in web services such as Netflix have been dealing

with NMF on web-scale dyadic datasets, which involve millions of users, millions of

movies, and billions of ratings. For such web-scale matrices, it is desirable to leverage

a cluster of machines to speed up the factorization. Prior approaches (e.g., [57]) of

handling NMF on MapReduce usually select an existing NMF algorithm and then

focus on implementing matrix operations.

In this research, we present a new form of factor matrix update functions. This

new form operates on blocks of matrices. In order to support the new form, we

partition the factor matrices into blocks along the short dimension and split the

original matrix into corresponding blocks. The new form of update functions allows

us to update distinct blocks independently and simultaneously when updating a factor

matrix. As a result, it also facilitates a distributed implementation. Different blocks

of one factor matrix can be updated in parallel.

Moreover, under the new form of update functions, we can update only a subset of

its blocks when we update a factor matrix, and the number of blocks in the subset can

be adjusted. The only requirement is that when one factor matrix is being updated,

the other one has to be fixed. For instance, we can update one block of a factor matrix

and then immediately update all blocks of the other factor matrix. Frequent block-

wise updates aim to utilize the most recently updated data whenever possible. As a

result, frequent block-wise updates are more efficient than their traditional concurrent

counterparts, which update all blocks of either factor matrix alternately.
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1.3 Prioritized Block Updates for Belief Propagation

From forecasting the chance of rain to predicting the traffic on a road, proba-

bilistic reasoning has been used widely. The probabilistic graphical model is one

of the most influential techniques for probabilistic reasoning and has been used in

a wide range of application domains [35, 43, 86, 99, 112]. Inference in these models,

including marginalization and maximum a posteriori estimation, forms the basis of

many statistical methods in knowledge management. Loopy belief propagation (BP)

and its variants [39, 72, 82, 92] are popular message passing methods for performing

approximate inference in these models.

It has been shown that the schedule for updating messages can make a huge differ-

ence to the running time of BP algorithms. Specifically, dynamic scheduling schemes,

which transform original update functions by dynamically adjusting the order of up-

dating messages can significantly speedup BP algorithms [26, 29, 30, 83]. Although

dynamic scheduling schemes have potential to speedup BP algorithms, existing ones

cannot fully utilize the potential. Most of them typically select one message for up-

dating each time, e.g., the message with the highest priority value. As a result, many

operations need to be performed so as to select next message. That is, the cost of

realizing such a dynamic scheduling scheme is high.

In this research, we propose to select a set of messages instead of a single one

to update at a time. Hence, the amortized cost of selecting one message is low.

Moreover, a novel priority is leveraged to determine which messages are selected.

The priority allows messages that are more useful towards achieving convergence to

be selected, and the computation cost of the priority is low. To this end, we transform

original updates again by introducing an efficient incremental update mechanism,

which propagates only the changes of original messages. The change of a message is

efficiently computed using the changes of original incoming messages.

6



As the probabilistic graphical models are applied to model large and complex

applications, such as image restoration for high-resolution images, it is desirable

to leverage the parallelism of a cluster of machines to reduce the inference time.

Therefore, we design and implement a distributed framework, Prom, which facilitates

the implementation of BP and other graph algorithms in a distributed environment.

Prom uses the proposed scheduling scheme as its built-in scheduling and supports

the incremental-update approach. We evaluate two BP algorithms, the sum-product

algorithm and the max-product algorithm on Prom to show the performance of our

scheduling scheme.

1.4 Incremental Computation for Graph Algorithms

Since graphs can capture complex dependencies and interactions between objects,

graph algorithms have become an essential component in many real-world applications

[6, 8, 15, 27, 34, 59, 81], including business intelligence, social sciences, data mining,

and online machine learning. An essential property of graphs is that they are often

dynamic. As new data and/or updates are being collected (or produced), the graph

will evolve. For example, search engines periodically crawl the web, and the web

graph is evolving as web pages and hyper-links are created and/or deleted. Many

applications must utilize the up-to-date graph in order to produce results that can

reflect the current state. However, rerunning the computation over the entire graph

is not efficient, since it discards the work done in earlier runs no matter how little

changes have been made.

The dynamic nature of graphs implies that performing incremental computation

can improve efficiency dramatically. Incremental computation exploits the fact that

only a small portion of the graph has changed. It reuses the result of the prior com-

putation and perform computation only on the part of graph that is affected by the

change. Although a number of distributed frameworks have been proposed to sup-
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port incremental computation on massive graphs [11, 17, 60, 73], most of them apply

synchronous updates to computation. Synchronous updates require that all the up-

date operations in the previous iteration have to complete before any of the update

operations in the next iteration can start. Consequently, the synchronization barriers

might degrade performance, especially in heterogeneous distributed environments. In

order to avoid the high-cost of synchronization barriers, asynchronous updates have

been proposed [9]. In asynchronous updates model, a vertex performs the update

using the most recent values instead of the values from the previous iteration. Intu-

itively, we can expect asynchronous updates outperform synchronous updates since

more up-to-date values are used and the synchronization barriers are bypassed. How-

ever, asynchronous updates might require more communications and perform useless

computations (e.g., when no values for a vertex are updated), and thus result in

limited performance gain over synchronous updates.

In this research, we provide an approach to efficiently apply asynchronous updates

to incremental computation. We first identify what kind of graph algorithms working

with incremental computation. We then introduce a new form of the update function

of the graph algorithm (i.e., transforming the original update function) to facilitate

incremental computation. In order to address the challenge that the change in a small

range of the graph may gradually propagate to affect the computation on a large por-

tion of the graph, we present a scheduling scheme to coordinate asynchronous updates.

Furthermore, we develop a distributed system to support incremental computation

with asynchronous updates.

1.5 Contributions

The goal of this work is to explore new forms of update functions that reduce

unnecessary computations so as to improve efficiency of iterative computations in a

distributed environment. To this end, we propose the update function transformation
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for several well-known data mining and machine learning algorithms and develop

distributed frameworks to facilitate the implementation of the transformation.

More specifically, our main contributions are as follows.

• We propose two approaches to parallelize EM algorithms with frequent updates

in a distributed environment so as to scale to massive datasets. Furthermore, we

design and implement a distributed framework to support the implementation of

frequent updates for the EM algorithms. Its efficiency is shown in the context of

a wide class of well-known EM applications: k-means clustering, fuzzy c-means

clustering, parameter estimation for the Gaussian Mixture Model, and Latent

Dirichlet Allocation for topic modeling.

• We show that by leveraging a new form of update functions for nonnegative

matrix factorization, we can perform local aggregation and fully explore paral-

lelism in a distributed environment. Moreover, under the new form of update

functions, we can perform frequent updates, which aim to use the most recently

updated data whenever possible. As a result, frequent updates are more efficient

than their traditional concurrent counterparts. We evaluate the efficiency pro-

vided by our implementation through a series of experiments on a local cluster

as well as the Amazon EC2 cloud [1].

• We propose a new scheduling scheme to coordinate message updates for be-

lief propagation. The scheme selects a set of messages to update at a time

and leverages a novel priority to determine which messages are selected. An

incremental update approach is introduced to accelerate the computation of

the priority. Furthermore, we design a distributed framework to facilitate the

implementation of BP algorithms. We evaluate the efficiency of the proposed

scheduling scheme via extensive experiments.
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• We apply asynchronous updates to incremental computation on evolving graphs.

Comparing with its synchronous counterpart, asynchronous incremental com-

putation can bypass synchronization barriers and always utilize the most re-

cent values, and thus is more efficient. We develop a distributed framework

to facilitate the implementation of graph algorithms with asynchronous incre-

mental computation on massive evolving graphs. We evaluate the proposed

asynchronous incremental computation approach via extensive experiments.

The rest of this dissertation is organized as follows. In Chapter 2, we present our

technique of accelerating expectation-maximization algorithms with frequent updates

in a distributed environment. Chapter 3 presents our approach of efficiently scaling

nonnegative matrix factorization with block-wise updates. In Chapter 4, we illus-

trate our way of applying prioritized block updates to distributed belief propagation.

Chapter 5 presents our approach of applying asynchronous incremental computation

on evolving graphs. In Chapter 6, we conclude this dissertation.
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CHAPTER 2

ACCELERATING DISTRIBUTED
EXPECTATION-MAXIMIZATION ALGORITHMS WITH

FREQUENT UPDATES

2.1 Introduction

Discovering knowledge from a large collection of datasets is one of the most fun-

damental problems in many applications, such as image understanding, document

classification, and genome data analysis. Expectation-Maximization (EM) [23] is one

of the most popular approaches in these applications [56,89,91,98,108]. It estimates

parameters for hidden variables by maximizing the likelihood. EM is an iterative

approach that alternates between performing an Expectation step (E-step), which

computes the distribution for the hidden variables using the current estimates for the

parameters, and a Maximization step (M-step), which re-estimates parameters to be

those maximizing the likelihood found in the E-step.

Due to its popularity, many methods for accelerating EM algorithms have been

proposed. Some of them [70, 85] show that a partial E-step may accelerate conver-

gence. Such a partial E-step selects only a subset of data points for computing the

distribution. The advantage of the partial E-step is that it allows the M-step to be

performed more frequently, so that the algorithm can leverage more up-to-date pa-

rameters to process data points and to potentially accelerate convergence. Intuitively,

updating the parameters frequently might incur additional overhead. However, the

parameters typically depend on statistics of datasets that can be computed incre-

mentally. That is, the cost of computing statistics grows linearly with the number of

data points whose statistics have been changed in the E-step. As a result, performing
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frequent updates on the parameters does not necessarily introduce additional cost.

We refer to the EM algorithm that updates the parameters frequently as the EM

algorithm with frequent updates. In contrast, the traditional EM algorithm, which

computes the distribution for all data points and then updates the parameters, is

referred to as the EM algorithm with concurrent updates.

Despite the fact that the EM algorithm with frequent updates has the potential

to speedup convergence, parallelizing it can be challenging. Although computing the

distribution and updating statistics can be performed concurrently, parameters such

as centroids of clusters are global parameters. Updating these global parameters

has to be performed in a centralized location and all workers have to be synchro-

nized. Synchronization in a distributed environment may incur considerable over-

head. Therefore, we have to control the frequency of parameter update to achieve a

good performance.

In this chapter, we propose two approaches to parallelize the EM algorithm with

frequent updates in a distributed environment: partial concurrent and subrange con-

current. In the partial concurrent approach, each E-step processes only a block of

data points. The size of a block controls the frequency of parameter update. In the

subrange concurrent approach, each E-step computes the distribution in a subrange

of hidden variables instead of the whole range. The subrange size can determine the

frequency of parameter update. We prove that both approaches maintain the conver-

gence properties of the EM algorithms. We control the parameter update frequency

by setting the block/subrange size, and provide strategies to determine the optimal

values. Additionally, both approaches can scale to any number of workers/processors.

We design and implement a distributed framework, FreEM, for implementing the

EM algorithm with frequent updates based on the two proposed approaches. FreEM

eases the process of programming EM algorithms in a distributed environment. Pro-

grammers only need to specify the E-step and the M-step. The detailed mechanisms,
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such as data distribution, communication among workers, and frequency of M-step,

are all handled automatically. As a result, it facilitates the process of implementing

EM algorithms and accelerates the algorithms through frequent updates. We evalu-

ate FreEM in the context of a wider class of well-known EM applications: k-means

clustering, fuzzy c-means clustering, parameter estimation for the Gaussian Mixture

Model, and Latent Dirichlet Allocation for topic modeling. Our results show that

the EM algorithm with frequent updates can run much faster than that with tradi-

tional concurrent updates. In addition, FreEM is more efficient than Hadoop [2], an

open source implementation of the popular distributed framework MapReduce [22],

in supporting the EM algorithms.

The rest of this chapter is organized as follows. Section 2.2 describes the EM algo-

rithm with frequent updates. Section 2.3 exemplifies frequent updates through four

EM applications. Section 2.4 presents our approaches to parallelize the EM algorithm

with frequent updates. In Section 2.5, we present the design, implementation and API

of FreEM. Section 2.6 is devoted to the evaluation results. Finally, we discuss related

work in Section 2.7 and conclude this chapter in Section 2.8.

2.2 EM Algorithms

In a statistical model, suppose that we have observed the value of one random

variable, X, which results from a parameterized family, P (X|θ). The value of another

variable, Z, is hidden. Based on the observed data, we wish to find θ such that P (X|θ)

is the maximum. In order to estimate θ, it is typical to introduce the log likelihood

function: L(θ) = logP (X|θ). Suppose the data consists of n independent data points

{x1, ..., xn}, and thereby the hidden variable can be decomposed as {Z1, Z2, ..., Zn}.

Then, L(θ) =
∑n

i=1 logP (xi|θ). We assume that Z has a finite range for simplicity,

but the result can be generalized. Thus, the probability P (xi|θ) can be written in

terms of possible value (zi) of the hidden variable Zi as: P (xi|θ) =
∑

zi
P (xi, zi|θ).
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When it is hard to maximize L(θ) directly, an EM algorithm is usually used to

maximize L(θ) iteratively.

The EM algorithm leverages an iterative process to maximize L(θ). Each iteration

consists of an E-step and a M-step. The E-step estimates the distribution of hidden

variables, given the data points and the current estimates of the parameters. The

M-step updates the parameters to be those maximizing the likelihood found in the

E-step.

2.2.1 The EM Algorithm with Concurrent Updates

The EM algorithm with concurrent updates computes the distribution for all data

points in its E-step. Formally, let Qi be some distribution over zi (
∑

zi
Qi(zi) = 1,

Qi(zi) ≥ 0). Such an EM algorithm starts with some initial guess at the parameters

θ(0), and then seeks to maximize L(θ) by iteratively applying the following two steps:

E-step: For each xi ∈ X, set Qi(zi) = P (zi|xi, θ(t−1)).

M-step: Set θ(t) to be the θ that maximizes
∑n

i=1 EQi
[logP (xi, zi|θ)].

Here, the expectation EQi
is taken with respect to the distribution Qi(·) over the

range of Z in the E-step.

2.2.2 The EM Algorithm with Frequent updates

The EM algorithm with frequent updates attempts to accelerate the convergence

by frequently updating the parameters. The intuition behind it is that the algorithm

can leverage more up-to-date parameters to process data points and to potentially

speedup convergence. However, updating parameters frequently may incur significant

overhead if the update is done in the original way. In order to conquer this obstruc-

tion, we introduce a way of updating parameters incrementally. In the EM algorithm,

the distribution influences the likelihood of the parameters via some sufficient statis-

tics. The statistics is usually the summation over the statistics on each individual

data point, and a summation can be incrementally updated (in Section 2.3, we will
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illustrate what such statistics is and how to incrementally update the statistics for

each individual algorithm). As a result, the cost of computing the sufficient statistics

grows linearly with the number of data points whose statistics have been changed in

the E-step. Therefore, performing frequent updates on the parameters does not nec-

essarily introduce additional cost of computing statistics. However, it will incur extra

overhead of deriving the parameters from the statistics. If the overhead is large, it is

reasonable to compute the distribution for a subset of data points (or compute the

distribution in a subrange of the hidden variable) and then update the parameters.

Updating the parameters frequently in the EM algorithm can be achieved by two

approaches. One is update by block, which partition data points into mutually disjoint

blocks and iterates through the blocks in a cyclic way. Each iteration processes a block

of data points in the E-step and then perform the M-step immediately to update the

parameters. Its E-step can utilize the up-to-date parameters to process another block

of data points. Obviously, when selecting the whole set of data points as a block, the

EM algorithm with update by block is actually the EM algorithm with concurrent

updates. One iteration of the algorithm can be described as following:

E-step: Pick a block of data points, Bm (Bm ⊆ X), and for each xi ∈ Bm,

Set Q
(t)
i (zi) = P (zi|xi, θ(t−1)).

M-step: Set θ(t) to be the θ that maximizes
∑n

i=1 EQi
[logP (xi, zi|θ)].

The other one is update by subrange, which recomputes the distribution over a

subrange of the hidden variable and then updates the parameters. Its E-step can

leverage the up-to-date parameters to recompute the distribution over another sub-

range. The EM algorithm with update by subrange starts with some initial guess

at the parameters θ(0) and some guess at the distribution Q
(0)
i , and then seeks to

maximize L(θ) by iteratively applying the following two steps:

E-step: Select a subrange of Z, Rsub, for each xi ∈ X,

Let CRsub
=
∑

zi∈Rsub
Q

(t−1)
i (zi);
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Set Q
(t)
i (zi) = P (zi|xi, θ(t−1)) ∗ CRsub

.

M-step: Set θ(t) to be the θ that maximizes
∑n

i=1 EQi
[logP (xi, zi|θ)].

We can also combine the two approaches to achieve updating the parameters

frequently. Such a combined version selects a subrange of Z and computes the distri-

bution for a block of data points under the subrange in its E-step, and then performs

the M-step to update the parameters. Obviously, either approach is a special case of

the combined version. Furthermore, even the combined version maintains the con-

vergence properties of the EM algorithm.

For proving the convergence of the EM algorithm with frequent updates, we first

consider the following derivation:

L(θ) =
n∑
i=1

logP (xi|θ) =
n∑
i=1

log
∑
zi

Qi(zi)
P (xi, zi|θ)
Qi(zi)

≥
n∑
i=1

∑
zi

Qi(zi) log
P (xi, zi|θ)
Qi(zi)

.

The last step of this derivation is given by Jensen’s inequality. When Qi(zi) =

P (zi|xi, θ) for any i, the last step of the derivation holds with equality. Let

J(Q, θ) =
n∑
i=1

∑
zi

Qi(zi) log
P (xi, zi|θ)
Qi(zi)

,

then we have L(θ) ≥ J(Q, θ). We assume that P (xi, zi|θ) is a continuous function of

θ. We can show that if the local maximum of J(Q, θ) occurs at Q∗ and θ∗, the local

maximum of L(θ) occurs at θ∗ as well. Hence, if a variant of the EM algorithm gradu-

ally increase J(Q, θ), it will converge to a local maximum (or a saddle point) of L(θ).

For simplicity, we ignore the possibility that it converges to a saddle point. Next,

we will prove that each iteration of the EM algorithm with frequent updates either

improves J(Q, θ) or leaves it unchanged, and thus it converges to a local maximum

of L(θ).
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Lemma 2.2.1. Given a fixed value of θ, for each i, there is a unique distribution,

Qi(·), that maximizes J(Q, θ), achieved by Qi(zi) = P (zi|xi, θ). Moreover, the Qi(zi)

varies continuously with θ.

Proof. We need to show that for any i, with respect to Qi(·), Qi(zi) = P (zi|xi, θ)

maximize
∑

zi
Qi(zi) log P (xi,zi|θ)

Qi(zi)
. We know

∑
zi
Qi(zi) = 1. Therefore, the max-

imum can be found using a Lagrange multiplier. At such a maximum, we will

have Qi(zi) ∝ P (xi, zi|θ). Note that
∑

zi
Qi(zi) = 1. We have the unique solution

Qi(zi) = P (xi,zi|θ)∑
zi
P (xi,zi|θ) = P (zi|xi, θ). Consequently, given a fixed value of θ, for each

i, if Qi(zi) = P (zi|xi, θ), J(Q, θ) is maximized. Since P (zi|xi, θ) varies continuously

with θ, Qi(zi) varies continuously with θ.

Lemma 2.2.2. If Qi(zi) = P (zi|xi, θ) for each i, L(θ) = J(Q, θ).

Proof. If Qi(zi) = P (zi|xi, θ) (the equality in Jensen’s inequality holds), we have

L(θ) =
n∑
i=1

logP (xi|θ) =
n∑
i=1

∑
zi

Qi(zi) log
P (xi, zi|θ)
Qi(zi)

= J(Q, θ).

Lemma 2.2.3. If J(Q, θ) has a local maximum at Q∗ and θ∗, then a local maximum

of L(θ) occurs at θ∗ as well.

Proof. From Lemmas 2.2.1 and 2.2.2, we see that if Qi(zi) = P (zi|xi, θ) for each

i, then L(θ) = J(Q, θ) for any θ. Therefore, L(θ∗) = J(Q∗, θ∗), where Q∗ means

Qi(zi) = P (zi|xi, θ∗) for each i. To show that a local maximum of L(θ) occurs at θ∗,

we need to show that there is no θ′ near to θ∗ which lets L(θ′) > L(θ∗). If such a θ′

existed, we would have J(Q′, θ′) > J(Q∗, θ∗), where Q′ means Qi(zi) = P (zi|xi, θ′) for

each i. From Lemma 2.2.1, we know that Q varies continuously with θ. Therefore,

Q′ must be near to Q∗. However, it contradicts that J(Q, θ) has a local maximum at

Q∗ and θ∗.
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Theorem 2.2.4. The EM algorithm with frequent updates converges to a local max-

imum of L(θ).

Proof. Let Fi(xi, Qi, θ) =
∑

zi
Qi(zi) log P (xi,zi|θ)

Qi(zi)
, then J(Q, θ) =

∑n
i=1 Fi(xi, Qi, θ).

In the E-step of the EM algorithm with frequent updates, we change the value of

Fi(xi, Qi, θ) for a subset of data points (e.g., Sm) through changing Qi(·). If we can

show that Fe(xe, Q
(t)
e , θ) ≥ Fe(xe, Q

(t−1)
e , θ) for any xe ∈ Sm, then we prove that the E-

step increases J(Q, θ). Assume we aim to maximize
∑

ze∈B Qe(ze) log P (xe,ze|θ)
Qe(ze)

with re-

spect to Qe (where B denotes a subrange of Z). We also know that
∑

ze∈B Qe(ze) = cB

(cB is a constant). The maximum can be found using a Lagrange multiplier (maximize∑
ze∈B Qe(ze) log P (xe,ze|θ)

Qe(ze)
, subject to

∑
ze∈B Qe(ze) = cB). At such a maximum, we

will have Qe(ze) ∝ P (xe, ze|θ) (for ze ∈ cB). Note that we also have
∑

ze∈cB Qe(ze) =

cB. We have the unique solution Qe(ze) = P (xe,ze|θ)∗cB∑
ze
P (xe,ze|θ) = P (ze|xe, θ)∗cB (for ze ∈ cB).

Therefore, the E-step increases Fe(xe, Qe, θ
(t−1)) by setting Qe(ze) = P (ze|xe, θ(t−1)).

Consequently, it increases J(Q, θ). The M-step of the EM algorithm with frequent

updates obtains θ(t) by maximizing J(Q, θ). Hence, the M-step increases J(Q, θ)

as well. Since both its E-step and its M-step increase J(Q, θ), the EM algorithm

with frequent updates converges to a local maximum of J(Q, θ). By combining with

Lemma 2.2.3, we know that the EM algorithm with frequent updates converges to a

local maximum of L(θ).

2.3 Applications of the EM Algorithm

In this section, we describe two categories of applications which the EM algorithm

can be applied to, clustering and topic modeling. In the clustering category, we

illustrate k-means clustering, Fuzzy c-means clustering, parameter estimation for the

Gaussian Mixture Model. In the topic modeling category, we discuss variational

inference for Latent Dirichlet Allocation. We illustrate how to incrementally compute

the statistics and how to derive the parameters from the statistics when applying the
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EM algorithm to these applications. By introducing the statistics, the operations of

computing the parameters are divided into the operations of incrementally updating

the statistics and the operations of deriving the parameters from the statistics. The

cost of updating the statistics through a pass of all data points is fixed, no matter

how frequently the algorithm updates the parameters. The frequent updates increase

only the cost of deriving the parameters from the statistics. The more frequently it

updates the parameter, the more cost the algorithm will incur. Also, we show the

advantages of performing frequent updates.

2.3.1 Clustering

Clustering is one of the most important tasks of data mining. It has been leveraged

in many fields, including pattern recognition, image analysis, information retrieval,

and bioinformatics.

2.3.1.1 K-means

K-means clustering [63] aims to partition n data points {x1, x2, ..., xn} into k

(k ≤ n) clusters {c1, c2, ..., ck} so as to minimize the objective function:

f =
k∑
i=1

∑
xj∈ci

‖ xj − µci ‖2,

where µci = 1
|ci|
∑

xj∈ci xj is the centroid of cluster ci.

The most common algorithm of k-means clustering, Lloyd’s algorithm [58], can

be considered as an application of the EM algorithm. Its E-step assigns points to

the cluster with the closest mean. That is, a data point xj is assigned to cluster c

if c = arg minj ||xi − µcj ||2. Its M-step updates the centroids (parameters) for all

clusters. Let Si (Si =
∑

xj∈ci xj) and Wi (Wi = |ci|) be the statistics. The centroid

of one cluster (e.g., i) can be easily obtained by µi = Si

Wi
. If a particular point xi
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changes its cluster assignment from c to c′, the statistics can be incrementally updated

as follows:

Sc = Sc − xi, Sc′ = Sc′ + xi;

Wc = Wc − 1, Wc′ = Wc′ + 1.

We here analyze the space complexity and the time complexity of k-means with

frequent updates. In order to perform incremental computation (for frequent up-

dates), we need to store cluster assignments for all data points and the statistics Sc

and Wc, which only take O(n + kd) space, where d is the dimension of a data point

(in contrast, storing data points in memory takes O(nd) space). We next analyze

the complexity of frequent updates. Take the update by block method for example.

Suppose data points are equally split into b blocks (with each block having n/b data

points). Performing the E-step on one block takes O(nkd/b) time, since processing

one data point takes O(kd) time. The following M-step takes O(nd/b + kd) time, in

which updating statistics Sc and Wc needs O(nd/b) time and deriving all centroids

from the statistics (e.g., µi = Si

Wi
) takes O(kd) time. As a result, processing all data

points in one pass (including multiple E-steps and M-steps) requires O(nkd + bkd)

time. Since b ≤ n, the time can be represented as O(nkd). Furthermore, we can show

the original k-means (i.e., k-means with concurrent updates) also needs O(nkd) time

to process all data points in one pass. In other words, with incremental computation,

the update by block approach will not increase the asymptotic time complexity no

matter how frequent the M-step is performed. A similar conclusion can be obtained

for the update by subrange approach.

2.3.1.2 Fuzzy C-means

Given a set of data points {x1, x2, ..., xn}, Fuzzy c-means (FCM) [10, 25] aims to

assign these data points into C clusters so as to minimize the objective function:

Jm =
n∑
i=1

C∑
j=1

µmij ‖ xi − cj ‖2,
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where m (m > 1) is the fuzzy factor, µij is the degree of membership of xi belonging

to cluster j, and cj is the centroid of cluster j. The degree of membership µij and

the centroid cj are computed by the equations:

µij =
1∑C

k=1(
‖xi−cj‖
‖xi−ck‖

)
2

m−1

, cj =

∑N
i=1 µ

m
ijxi∑N

i=1 µ
m
ij

.

If we describe FCM in the EM setting, its E-step updates the degree of membership

for all data points, and its M-step updates the centroids (parameters) for all clusters.

Let Wj (Wj =
∑n

i=1 µ
m
ij ) and Xj (Xj =

∑n
i=1 µ

m
ijxi) be the statistics in FCM. The

centroid of one cluster (e.g., j) can be easily obtained by cj =
Xj

Wj
. For a data point

xi, if its degree of membership to cluster j changes from µij to µ′ij, the statistics can

be incrementally updated as follows:

Wj = Wj − (µij)
m + (µ′ij)

m, Xj = Xj + ((µ′ij)
m − (µij)

m)xi.

We now analyze the space complexity and the time complexity of FCM with

frequent updates. In order to perform incremental computation, we need to store the

degree of membership for all data points and the statistics Wj and Xj, which take

O(kn+ kd) space. Similar to the time complexity analysis for k-means, we can show

that processing all data points in one pass (including multiple E-steps and M-steps)

requires O(nkd) time for the update by block approach. Furthermore, original FCM

also needs O(nkd) time to process all data points in one pass. As a result, FCM with

frequent updates does not increase the asymptotic time complexity.

2.3.1.3 Gaussian Mixture Model

Given a set of data points {x1, x2, ..., xn} which are generated by a mixture of k

Gaussians, parameter estimation for the Gaussian Mixture Model (GMM) aims to
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find the means and covariances of the k Gaussians and the weights that specify how

likely each Gaussian is to be chosen so as to maximize the objective function:

` =
1

n

n∑
i=1

log(
k∑
j=1

ωjφ(xi|µj,Σj)),

where φ represents the probability of a point coming from a Gaussian source. It is

given by: φ(xi|µj,Σj) = 1√
(2π)d·|Σj |

· e−
1
2

(xi−µj)T ·Σ−1
j ·(xi−µj).

The parameters (weight, mean and covariance) of a Gaussian (e.g., j) are respec-

tively computed by the following equations:

ωj =
1

n

n∑
i=1

γij, µj =

∑n
i=1 γijxi∑n
i=1 γij

, Σj =

∑n
i=1 γij(xi − µj)(xi − µj)T∑n

i=1 γij
,

where γij represents the probability of a point coming from a Gaussian, which is given

by: γij =
ωjφ(xi|µj ,Σj)∑k
j=1 ωjφ(xi|µj ,Σj)

.

When describing GMM in the EM setting, its E-step estimates the probability of

a point coming from a Gaussian for all points, and its M-step updates the parameters

of Gaussians.

The covariance matrix Σ is typically assumed to be diagonal to facilitate the

computation of its inverse and determinant. Under such assumption, the statistics in

the GMM algorithm are as follows: Rj =
∑n

i=1 γij, Xj =
∑n

i=1 γijxi, Sj =
∑n

i=1 γijx
2
i .

Note that in this chapter, square on a vector means element-wise square, i.e., if a

vector y = [y1, y2, ..., yd], then y2 = [y2
1, y

2
2, ..., y

2
d].

Given the statistics, the parameters ωj = Rj/n, µj = Xj/Rj and Σj = Sj/Rj −

X2
j /R

2
j can be easily obtained (here / means element-wise division). For a point xi, if

its probability to the source j changes from γ′ij to γij, the statistics can be computed

as follows: Rj = Rj + γij − γ′ij, Xj = Xj + (γij − γ′ij)xi, Sj = Sj + (γij − γ′ij)x2
i .

Similar to the complexity analysis for FCM, we can show that GMM with frequent

updates (e.g., the update by block method) needs O(kn+ kd) space to cache γij, Rj,
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Xj, and Sj. Additionally, it requires O(nkd) time to process all data points in one

pass (including multiple E-steps and M-steps). Furthermore, original GMM also needs

O(nkd) time to process all data points in one pass. As a result, GMM with frequent

updates does not increase the asymptotic time complexity.

2.3.2 Topic Modeling

An EM algorithm is also a powerful tool for statistical text analysis, such as topic

modeling. Topic modeling provides a way to navigate large document collections

by discovering the themes that permeate a corpus. In particular, Latent Dirichlet

Allocation (LDA) [12] is a popular topic modeling approach. It provides a generative

model that describes how the documents in a corpus were produced. First, we denote

the M given documents represented as d1, d2, ..., dM . Let V denote the number of

words in the vocabulary, and let Ni represent the number of words in a document di.

Moreover, we use wj to denote the j-th word in the vocabulary and wi,j to represent

the j-th word in the i-th document. Assume that the documents are represented as

random mixtures over K topics. A topic is a K dimensional multinomial distribution

over words, and the i-th topic is denoted as φi. We use θi to represent the topic

distribution for a document di. Furthermore, assume wi,j is drawn form topic zi,j. In

addition, we use α and β to represent hyper parameters of the Dirichlet distribution.

LDA assumes the following generative process.

1. For each topic index k ∈ {1, ..., K}, draw topic distribution φk ∼ Dir(β).

2. For each document di ∈ {d1, d2, ..., dM}:

• Draw topic distribution θi ∼ Dir(α).

• For j ∈ {1, 2, ..., Ni}

• Draw zi,j ∼Mult(θi).

• Draw wi,j ∼Mult(φzi,j).
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In the process, Dir() denotes a Dirichlet distribution, and Mult() represents a multi-

nomial distribution.

There are two widely used approximate inference techniques for LDA. One is

Markov chain Monte Carlo (MCMC) sampling (e.g., Gibbs sampling) [32], and the

other one is variational inference [12]. Even though MCMC is a powerful methodol-

ogy, the convergence of the sampler to its stationary distribution is usually hard to

diagnose, and sampling algorithms may converge slowly in high dimensional models.

Variational inference methods have clear convergence criterion and provide efficiency

advantages over sampling techniques in high dimensional problems [76].

The basic idea of variational inference is to leverage Jensen’s inequality to obtain

an adjustable lower bound on the log likelihood of the posterior distribution. The

variational inference breaks the coupling between θ and β to make the inference

tractable. As a result, this variational inference has a posterior for each document

in the form: q(θ, z|γ, φ) = q(θ|γ)
∏N

n=1 q(zn|φn), where the Dirichlet parameter γ and

the multinomial parameters φn are the free variational parameters.

Furthermore, finding an optimal lower bound on the log likelihood can be repre-

sented as (γ∗, φ∗) = arg minDKL(q(θ, z|γ, φ)||p(θ, z|w, α, β)), which is a minimization

of the Kullback-Leibler divergence between the variational distribution and the origi-

nal posterior distribution. In turn, the likelihood (i.e., the objective function) for one

document that the variational inference aims to maximize is as follows [12]:

L(γ, φ;α, β) = log Γ(
K∑
j=1

αj)−
K∑
i=1

log Γ(αi) +
K∑
i=1

(αi − 1)(Ψ(γi)−Ψ(
K∑
j=1

γj))

+
N∑
n=1

K∑
i=1

φni(Ψ(γi)−Ψ(
K∑
j=1

γj)) +
N∑
n=1

K∑
i=1

V∑
j=1

φniwnj log βij

− log Γ(
K∑
j=1

γj) +
K∑
i=1

log Γ(γi)−
K∑
i=1

(γi − 1)(Ψ(γi)−Ψ(
K∑
j=1

γj))

−
N∑
n=1

K∑
i=1

φni log φni,
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where Γ() is the Gamma function and Ψ() is the first derivative of the log Γ() function.

One popular method to minimize the Kullback-Leibler divergence (i.e., to maxi-

mize the above objective function) is to use an EM approach (e.g., Variational EM).

Variational EM alternates between updating the expectations of the variational dis-

tribution q and maximizing the probability of the parameters given the observed

documents. Here each document is one data point. Its E-step is illustrated in Algo-

rithm 1. Its M-step updates α and β.

Algorithm 1: E-step for LDA

Set t = 0;1

Initialize φtni = 1/K for all i and n;2

Initialize γi = αi +M/K for all i;3

for d = 1 to M do4

repeat5

for n = 1 to Nd do6

for i = 1 to K do7

φt+1
dni = βiwnexp(Ψ(γtdi));8

normalize φt+1
dni to sum to 1;9

γt+1 = α +
∑Nd

n=1 φ
t+1
dn ;10

t = t+ 1;11

until convergence of φd and γd ;12

The M-step of variational EM updates α using a Newton-Raphson method. For

ease of exposition, we assume all elements of α are the same unless otherwise stated,

and thus α can be simply a single value in the following updates. Updates are carried

out in log-space, as follows:

log(αt+1) = log(αt)− ∂L

∂α
/(
∂2L

∂α2
α +

∂L

∂α
), (2.1)

∂L

∂α
=M(KΨ(Kα)−KΨ(α)) +

M∑
d=1

(
K∑
i=1

Ψ(γdi)−KΨ(
K∑
j=1

γdj)), (2.2)

∂2L

∂α2
= M(K2Ψ′(Kα)−KΨ′(α)). (2.3)

25



From Eq. (2.1) - Eq. (2.3), we can see that only the second part of ∂L
∂α

depends

on each individual document. Therefore, in order to incrementally update α, we let

R =
∑M

d=1(
∑K

i=1 Ψ(γdi)−KΨ(
∑K

j=1 γdj)), sd =
∑K

i=1 Ψ(γdi)−KΨ(
∑K

j=1 γdj).

When updating a document, i, if its sd changes from s′i to si, we can incremental

update the statistics R using R = R + si − s′i.

Next, we show how to update β incrementally. We have βij =
∑M

d=1

∑Nd

n=1 φdniwdnj

(the step of normalizing βi to sum to 1 is skipped for simplicity). One simple way to

perform incremental updates is to cache φdni. Then when a document changes φ′dni

to φdni, we can update βij using βij = βij +
∑Nd

n=1(φdni−φ′dni)wdnj. However, caching

φdni for all documents takes O(MKV ) space, which can be huge. In order to address

the space issue, we present a space-efficient incremental scheme, which is suitable for

the update by block approach. We divide documents into b blocks, {B1, B2, ..., Bb}.

Let

β
(l)
ij =

∑
d∈Bl

Nd∑
n=1

φdniwdnj. (2.4)

Then, we have

βij =
b∑
l=1

β
(l)
ij . (2.5)

When the documents in block l are updated, we compute β
(l)
ij from scratch with Eq.

(2.4), and then recover βij using Eq. (2.5). In this way, we only need to cache β
(l)
ij ,

1 ≤ l ≤ b. When b is small (e.g., a constant less than 10), then caching only takes

O(KV ) space.

Furthermore, we can show that LDA with frequent updates (e.g., the update by

block approach) need O(KV ) space to cache R, β
(l)
ij , and βij in order to support in-

cremental computation. Additionally, performing the E-step on one document takes

O(IKV ) time, where I the number of iterations the E-step needs to converge on

the document. With incremental computation, if there are m documents updated

in the E-step, the following M-step takes O(mKV ) time. As a result, LDA with
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frequent updates (e.g., the update by block approach) requires O(MIKV ) time to

process all documents in one pass (including multiple E-steps and M-steps). Fur-

thermore, original LDA also needs O(MIKV ) time to process all documents in one

pass. Consequently, LDA with frequent updates does not increase the asymptotic

time complexity.

2.3.3 Advantages of Performing Frequent Updates

Since the EM algorithm with frequent updates utilizes the up-to-date parameters

to estimate the distribution, it intuitively outperforms their concurrent update coun-

terpart. We have performed multiple experiments on a single machine to demonstrate

the advantages of frequent updates. The results, which can be seen in Section 2.6.2,

show the EM algorithm with frequent updates converges faster compared to that with

concurrent updates.

Our single machine experiments have illustrated the advantages of the EM algo-

rithm with frequent updates. Moreover, some previous results [70, 85] also showed

the advantages of the frequent updates for EM algorithm in a single machine setting.

However, the EM algorithm with frequent updates in a single machine does not scale.

Parallelizing the EM algorithm with frequent updates is important for real-world ap-

plications on massive datasets. The rest of this chapter will focus on parallelizing the

EM algorithm with frequent updates.

2.4 Parallelizing Frequent Updates

The previous sections illustrate the EM algorithm with frequent updates is more

efficient than that with concurrent updates. However, parallelizing frequent updates

in a distributed environment is challenging. Although computing the distribution

and incrementally updating the local statistics can be performed concurrently in each

worker, updating the parameters in the M-step, which is based on the global statis-
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tics, needs to be done in a centralized way. When processing the distributed data

points, the algorithm has to synchronize the global statistics frequently. Synchro-

nizing the global resources in a distributed environment may result in considerable

overhead. Therefore, we need to control the parameter update frequency to achieve

a good performance. In this section, we first briefly illustrates a natural method to

parallelize the EM algorithm with concurrent updates. Then, we present two methods

to parallelize the EM algorithm with frequent updates. Both of them can control the

parameter update frequency. Moreover, in all the parallel methods, the input data

is divided into multiple equal size partitions, and each worker holds one partition.

The data is kept in the same worker throughout the iterative process to avoid the

expensive data shuffling among workers.

2.4.1 Concurrent Method

In the traditional method of parallelizing concurrent updates, each worker com-

putes the distribution for its local data points and updates the local statistics concur-

rently based on the parameters. After each worker finishes processing its local data

points, all of them synchronize to derive the parameters from the global statistics.

Then, each worker utilizes the updated parameters to compute the distribution in the

next iteration. We refer to this method as concurrent method.

2.4.2 Partial Concurrent Method

Our first method to parallelize the EM algorithm with frequent updates is a par-

allel version of the update by block approach in Section 2.2.2. Recall that the update

by block approach selects a block of data points for computing the distribution and

then updates the parameters. The block size can control the parameter update fre-

quency. As shown in Figure 2.1, our first parallel method allows each worker to pick

a block of its local data points for computing the distribution and updating the local

statistics. After processing the data points in the picked blocks, all the workers syn-

28



chronize to derive the new parameters from the global statistics. Then each worker

leverages the updated parameters to compute the distribution for another block. All

the blocks are of the same size m. Each worker rotates the block on its local data

points. Since the data points in the picked blocks can be processed concurrently, we

refer to this method as partial concurrent method. Obviously, the concurrent method

is an extreme case of the partial concurrent method (when each worker selects all its

local data points as one block). Furthermore, either when each worker works indi-

vidually to compute the distribution or when all workers synchronize to derive the

new parameters, the objective function keeps increasing (or decreasing, we assume

“increasing” for brevity in this section). Therefore, we have the following theorem.

Theorem 2.4.1. The partial concurrent method maintains the convergence property

of an EM algorithm.

…

t

Update parameters

...
Worker 1 Worker 2 Worker w

Update parameters

Update parameters

Update parameters

...

...

...

Figure 2.1. Process of the partial concurrent method. The colored box indicates
the picked block of data points for computing the distribution.

The size of the block (i.e., m) plays an important role on the efficiency of the

partial concurrent method. It indicates the trade-off between the gain from com-

puting the distribution with the frequently updated parameters and the cost from

updating the parameters. Setting the size too small may incur considerable overhead
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for updating the parameters. Setting the size too large may degrade the effect of

the frequent updates. Nevertheless, a quite large range of the block size can improve

the performance. The optimal block size will be discussed in Section 2.5.4. Our

framework also provides a recommended block size.

2.4.3 Subrange Concurrent Method

Our second method to parallelize the EM algorithm with frequent updates corre-

sponds to the update by subrange approach in Section 2.2.2. Recall that the update

by subrange approach recomputes the distribution over the subrange of hidden vari-

ables. As shown in Figure 2.2, our second parallel method allows each worker to re-

compute the distribution among the subrange for its local data points and to update

its local statistics. After each worker finishes recomputing the distribution among the

subrange for all of its local data points, all the workers synchronize to compute the

parameters based on the global statistics. Then, each worker utilizes the updated pa-

rameters to recompute the distribution under another subrange in the next iteration.

Since all the data points can be processed concurrently under the subrange, we refer

to the second method as subrange concurrent method. The subrange is randomly

picked from the whole range of hidden variables. The concurrent method is an ex-

treme case of the subrange concurrent method as well (when the whole range is picked

as the subrange). Furthermore, either when each worker computes the distribution

among the subrange or when all workers synchronize to derive the new parameters,

the objective function keeps increasing. Therefore, we have the following theorem.

Theorem 2.4.2. The subrange concurrent method maintains the convergence prop-

erty of an EM algorithm.

The subrange concurrent method might be more suitable for a “winner-take-all”

version of EM application (e.g., k-means), which constrains that one single value of

the hidden variable is assigned probability 1 and all other values are assigned proba-
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Figure 2.2. Process of the subrange concurrent method. Each worker recomputes
the distribution among the subrange (Ri) for all of its local data points (Xj).

bility 0 (in k-means, a data point belongs to its current cluster in probability 1 and

belongs to all other clusters in probability 0). In such an application, if a subrange

does not include the value of probability 1, it is not necessary to recompute the

distribution among the subrange. By avoiding unnecessary computation, a worker

may dramatically reduce the time of processing data points in one iteration. Within

the running time of one iteration of the concurrent method, the subrange concurrent

method may proceed many iterations. Therefore, although the subrange concurrent

method may increase the objective function less than the concurrent method in one

single iteration, it still may increase the objective function faster (in terms of time).

Moreover, the distribution for most of the data points usually will not change after

first several iterations under the concurrent method, and thus the objective function

probably increases slowly after first several iterations. Consequently, the concurrent

method probably does not increase the objective function much more than the sub-

range concurrent method in one single iteration, which makes the subrange concurrent

method more superior.

Like the block size in the partial concurrent method, the size of the subrange also

impacts the efficiency of the subrange concurrent method. We will also discuss the

optimal subrange size in Section 2.5.4.

31



2.5 FreEM

In this section, we propose FreEM, a distributed framework for efficiently imple-

menting an EM algorithm. All the parallel methods mentioned in the previous section,

including concurrent, partial concurrent, and subrange concurrent, are supported by

our framework. FreEM is built on top of an in-memory version of iMapReduce [105].

The in-memory version of iMapReduce supports iterative process and loads data into

memory for efficient data access. FreEM also provides high-level APIs, which are

exposed to users for easily implementing EM algorithms.

2.5.1 Design of the Framework

Our framework consists of a number of basic workers and an enhanced worker.

Each basic worker essentially leverages user-defined functions to compute the distri-

bution and to update the parameters. Besides these operations, the enhanced worker

also picks the subrange of hidden variable for all the workers under (and only under)

the subrange concurrent method. Each worker stores a partition of the data points,

the distribution of the corresponding hidden variables, the local statistics (the statis-

tics for a worker’s local data points), and the parameters, in memory. The partition

of data points and the distribution are maintained in a key-value store, point-based

table. Also, the local statistics and the parameters are maintained in a key-value

store, parameter-based table.

2.5.2 Implementation of the Framework

Each worker in our framework has one pair of map and reduce tasks. In general,

the map task performs the M-step, and the reduce task performs the E-step. The

map task of the enhanced worker takes charge of picking the subrange of hidden

variables. Both the point-based table and the parameter-based table of each worker

is maintained by its reduce task.
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To implement an EM algorithm, a user only needs to override several APIs. FreEM

will automatically convert the EM algorithm to iMapReduce jobs. The first job is

used to split the input data into multiple equal size partitions. The second job

executes the EM algorithm, which consists of many iterations. In the first iteration,

each map task utilizes a user-defined function (API 1) to obtain the initial guess

of the parameters. Then, each map task sends the parameters to its paired reduce

task. Each reduce task first loads one partition of the input data and then leverages

a user-defined function (API 2) to compute the distribution and to initialize its local

statistics. After that, a reduce task broadcasts its local statistics to all map tasks. In

each of the following iterations, each map task uses a user-defined function (API 3) to

accumulate the local statistics it received to the global statistics. When it receives the

local statistics from all reduce tasks, a map task uses another user-defined function

(API 4) to derive the parameters from the global statistics. Then, each map task sends

the updated parameters to its paired reduce task. A reduce task leverages another

user-defined function (API 5) to recompute the distribution (under a given subrange)

and to incrementally update its local statistics based on the updated parameters.

After it finishes processing the given block of data points, a reduce task broadcasts

its updated local statistics to all map tasks again. Such iterative process continues

until the number of iterations exceeds a threshold or the objective function reaches a

specified value, when our framework terminates all the tasks. Note that the map task

of the enhanced worker also picks a subrange and broadcasts it to all reduce tasks

under the subrange concurrent method.

2.5.3 API

FreEM provides several high-level APIs, which are exposed to users for easily

implementing an EM algorithm in a distributed environment. The APIs are as follows:

1. void initPara(Para, Points): specify the initial guess at the parameters.
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2. void initLocalStat(Dist, LocalStat, Para, Points): compute the distri-

bution based on the initial guess at the parameters, and initialize the local statistics.

3. void accuStat(LocalStat, GlobalStat): accumulate the local statistics to the

global statistics.

4. void updatePara(GlobalStat, Para): update the parameters based on the

global statistics.

5. void Estep(Dist, Para, SubRange, LocalStat, Points): recompute the dis-

tribution under the given subrange based on current parameters, and incrementally

update the local statistics.

2.5.4 Setting Parameters for Parallel Methods

The size of the block in the partial concurrent method and the size of the subrange

in the subrange concurrent method can significantly impact the performance of the

algorithm. In this section, we discuss how to determine the optimal block size and

how to seek the optimal subrange size.

2.5.4.1 Optimal Block Size

For the partial concurrent method, let m be the block size. We use Tsgl to represent

the average time of processing one data point, consisting of the time for computing the

distribution and the time for updating local statistics, and use Tvhd to represent the

time spending on updating the parameters, consisting of the time for accumulating

the global statistics, the time for updating the parameters, and the time of synchro-

nization. Let F (m) be the total times of data points being processed in the E-step for

reaching a specified objective function value (i.e., the pre-defined convergence point)

when the block size is m. Then, F (m)
m

is the total number of iterations. Thus, the

total running time for reaching the convergence point is {F (m) · Tsgl + F (m)
m
· Tvhd}.

Therefore, the optimal m is given by:
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arg min
m
{F (m) · Tsgl +

F (m)

m
· Tvhd},

where Tsgl and Tvhd can be measured. The key of finding the optimal m is the function

F (m).

The experimental results demonstrate that F (m) is roughly a linear function of

m, i.e., F (m) = a ·m+ b, as will be shown in Section 2.6.4. Then, we can derive the

optimal block size m∗:

m∗ =

√
b · Tvhd
a · Tsgl

.

Among the factors determining the optimal block size, only Tvhd and Tsgl can

be easily measured. Therefore, we consider m is linear in
√

Tvhd
Tsgl

. We can explore

different settings of m/
√

Tvhd
Tsgl

to seek the optimal block size. In our framework,

we set m/
√

Tvhd
Tsgl

to be 300 by default. The default setting achieves near optimal

performance as will be shown in Section 2.6.4.

Our framework measures Tvhd and Tsgl in the following way. When it executes an

EM algorithm, FreEM first sets the block size as a pre-defined number (e.g., n
4·w , where

n is the total number of data points and w is the number of workers). Then, each

worker measures its own Tvhd and Tsgl, and reports their values to the enhanced worker

in each iteration. The enhanced worker accumulates both of them, respectively. After

a few (e.g., 3) iterations, the enhanced worker computes the average values of both

Tvhd and Tsgl and specifies 300 ·
√

Tvhd
Tsgl

as the optimal block size.

2.5.4.2 Optimal Subrange Size

For the subrange concurrent method, let s be the subrange size and r be the size

of the whole range. Suppose ∆f(s) is the averaging increase of the objective function

for computing the distribution among the subrange for all data points and updating

the parameters when the subset size is s. Since the time of processing one data point

is usually proportional to the subrange size, s
r
· Tsgl is the time for processing one
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data point under the subrange concurrent method. Therefore, n
w
· s
r
·Tsgl +Tvhd is the

running time of processing all data points in one iteration. Consequently, the optimal

subrange size is given by:

arg max
s
{ ∆f(s)
n
w
· s
r
· Tsgl + Tvhd

}.

We can use empirical approaches to seek the optimal subrange size, as will be

discussed in Section 2.6.4. Also, we provide a scheme to judge when the subrange

concurrent method is superior to the concurrent method. Obviously, we can expect

that the subrange concurrent method will outperform the concurrent method when

the following inequality holds.

∆f(s)
n
w
· s
r
· Tsgl + Tvhd

>
∆f(r)

n
w
· Tsgl + Tvhd

. (2.6)

From Inequation (2.6), we can derive another inequation, which is easier to solve, as

follows:

∆f(s)

∆f(r)
>
r

s
+

r−s
r
· Tvhd

n
w
· Tsgl + Tvhd

. (2.7)

All the factors in the right side of Inequation (2.7) either are known or can be mea-

sured. Accordingly, it provides a nice bound to estimate whether the subrange con-

current method achieves better performance than the concurrent method.

2.6 Evaluation

In this section, we evaluate the effectiveness and efficiency of EM algorithms with

frequent updates on a single machine and in a distributed environment. All the ap-

plications described in Section 2.3 are evaluated. For the distributed environment,

all the parallel methods, including concurrent, partial concurrent, and subrange con-

current, are implemented and evaluated on FreEM. We also compare the concurrent

method on FreEM with that on Hadoop.
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Table 2.1. Datasets for Clustering

Algorithm Dataset # Points Dim

k-means/FCM
Covtype 581, 012 54

KDDCUP 4, 898, 431 42

GMM
Synth-M 400, 000 60
Synth-L 1, 000, 000 60

Table 2.2. Datasets for Topic Modeling

Dataset # Documents # Unique Words # Total Words

KOS 3430 6906 467, 714
Enron 39861 28102 6, 400, 000

NYTimes 300000 102660 100, 000, 000

2.6.1 Experiment Setup

We build a small-scale cluster of local machines and a large-scale cluster on Ama-

zon EC2 [1]. The small-scale cluster consists of 4 machines, and each one has a

dual-core 2.66GHz CPU, 4GB of RAM, 1TB of disk. These 4 machines are connected

through a switch with the bandwidth of 1Gbps. The Amazon cluster consists of 40

medium instances, each of which having 2 EC2 compute units, 3.75GB of RAM, and

400GB of hard disk.

Real-world datasets from UCI Machine Learning Repository [3] and synthetic

datasets are leveraged to evaluate the EM applications. The synthetic datasets are

generated in such a way: each dimension of one data point follows a Gaussian distri-

bution with random mean and standard deviation 1.0. The datasets are summarized

in Table 2.1 and Table 2.2.

2.6.2 Single Machine Experiments

We first demonstrate the advantages of the EM algorithm with frequent updates

on one single machine. The update by block approach is used as an example. All the

EM applications described in Section 2.3 are implemented in Java.
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Figure 2.3. Convergence speed on the single machine.

First, we perform the three clustering applications, k-means, FCM, and GMM,

with various block size (m). For a fair comparison, each application runs on one

dataset with the same initial start. Datasets sampled from the original datasets are

used in the evaluation. Each dataset consists of 60, 000 data points. We sample

the datasets since a single commodity machine cannot hold the whole dataset in

memory. Figures 2.3(a) - 2.3(c) present the convergence speed. As shown, the EM

algorithm with frequent updates (m < 60k) converges faster and may achieve a better

convergence point, compared to that with concurrent updates (m = 60k). These

figures also demonstrate the update frequency (determined by the block size) has a

significant impact on the performance. Then, we perform LDA on the KOS dataset.

Figure 2.3(d) plots the convergence speed with different block sizes. They further

show that the EM algorithm with frequent updates converge faster than that with

concurrent updates and that the update frequency impacts the performance.
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2.6.3 Small-scale Cluster Experiments

FreEM allows the EM algorithm to frequently update the parameters in a dis-

tributed environment and leverage the up-to-date parameters in its E-step. Therefore,

the EM algorithm with frequent updates has the potential to reach the convergence

point with less workload, compared to that with concurrent updates. To evaluate the

effect of frequent updates, we compare the convergence speed of the partial/subrange

concurrent method with that of the concurrent method. In addition, since MapReduce

is a popular framework, we utilize the convergence speed of the concurrent method

on its open-source, implementation, Hadoop, as the base line.
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Figure 2.4. Convergence speed on the small-scale cluster.

The convergence speed evaluation is first performed on the local cluster. All the

methods start with the same initial setting, when compared on the same dataset. We

set the number of clusters as 80 for all experiments of clustering applications, unless

otherwise specified. Figure 2.4(a) - Figure 2.4(c) show the performance comparison.

39



We can see that the partial concurrent method converges faster than the concurrent

method for all the three clustering applications. The subrange concurrent method

converges faster and converges to a much better point than the concurrent method

for k-means. Unfortunately, the subrange concurrent method seems to be slower

than the concurrent method on FCM, GMM, and LDA, with several subrange sizes

we test. Additionally, the convergence speed of the concurrent method on FreEM is

much faster than that on Hadoop. The reasons are twofold. One reason is that our

framework maintains data in memory and thus avoids repeatedly loading data. The

other reason is that FreEM is built on top of iMapReduce, which is more efficient in

supporting iterative process than Hadoop by using persistent map and reduce tasks.

For example, iMapReduce is more efficient than Hadoop in supporting graph based

iterative algorithms [105,106]. Additionally, according to the experimental results, it

seems that the subrange concurrent method is suitable for “winner-take-all” version of

EM applications and the partial concurrent method is suitable for all EM applications.

For LDA, we set the number of topics as 100. From Figure 2.4(d), we can see that

the partial concurrent method converges faster than the concurrent method.

2.6.4 Optimal Block Size and Subrange Size

For the partial concurrent method, the block size significantly impacts the per-

formance. In Section 2.5.4, we discussed the optimal block size depends on several

factors. The key is to figure out the function F (m). We estimate F (m) for different

applications of the EM algorithm on the small-scale cluster. The result, as shown in

Figure 2.5, demonstrates that F (m) is roughly a linear function of m.

Since only Tvhd and Tsgl can be easily measured, we set the block size based on

them. Our framework sets the block size m in proportional to
√

Tvhd
Tsgl

. We perform

experiments of all the four EM applications on our small-scale cluster to see the effects

of various settings of m/
√

Tvhd
Tsgl

. Figure 2.6 shows the speedup with different settings.
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From the figure, we can see that all the applications demonstrate the best speedup

when m/
√

Tvhd
Tsgl

is set to be around 300. This is the reason why our framework sets

m/
√

Tvhd
Tsgl

= 300 by default.

For the subrange concurrent method, we use empirical approaches to seek the

optimal subrange size. Our experimental results reveal that if one subrange size is

better than another during the initial iterations, it is also better in the following

iterations (e.g., as shown in Figure 2.7 for k-means). Given the observation, we can

try several subrange sizes, and pick the one that achieves the best performance in the

first several iterations.
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Figure 2.7. Varying subrange size.

2.6.5 Large-scale Cluster Experiments

In order to validate the scalability of FreEM, we also evaluate it on the Amazon

EC2 cloud. We first show the performance comparison when all the 40 instances

are used. From Figure 2.8, we can see that the partial concurrent method converges

faster than the concurrent method for all the EM applications and that the subrange

concurrent method converges faster and converges to a much better point than the

concurrent method for k-means.

We then evaluate the scaling performance of FreEM as the number of workers

increases from 10 to 40. The speedup is measured relative to the running time of 10

workers. Here the running time means the wall clock time that an EM application

takes to reach a pre-defined objective function value. The speedup of the partial

concurrent method is tested on GMM, and that of the subrange concurrent method

is measured on k-means. The speedup of the concurrent method is also evaluated to

be a reference point.

Figure 2.9 and Figure 2.10 show that both the concurrent method and the partial

concurrent method exhibit good speedups. The concurrent method demonstrates a

better speedup, as presented in Figure 2.9(a), since it updates the parameters only

once through one pass of all data points and thus incurs less synchronization overhead.

Note that the bases of computing speedups for both methods are different, and thus
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Figure 2.8. Convergence speed on the Amazon EC2 cloud.
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Figure 2.9. Scaling performance of the partial concurrent method.

a better speedup does not necessarily mean a shorter running time. As shown in

Figure 2.9(b), the partial concurrent method still converges faster than the concurrent

method even on 40 workers. Since it has a better speedup, the concurrent method

will obtain the same convergence speed as the partial concurrent method when the

number of workers reaches some point. At that point, the partial concurrent method
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Figure 2.10. Scaling performance of the subrange concurrent method.

will degrade to the concurrent method by setting the right block size. For similar

reasons, the concurrent method also exhibits a better speedup than the subrange

concurrent method, as plotted in Figure 2.10(a). However, the subrange concurrent

method still runs much faster than the concurrent method even on 40 workers, as

shown in Figure 2.10(b).

2.7 Related Work

The EM algorithm has been applied very widely. Due to the popularity of the EM

algorithm, many approaches for accelerating it have been proposed. For example,

Dempster et al. [23] and Meng et al. [66] present a partial M-step may accelerate

the algorithm when maximizing the likelihood in the M-step is inefficient. Such

a partial M-step attempts to find the new estimates for the parameters improving

the likelihood rather than maximizing it. In contrast, our work focuses on how to

frequently perform the M-step to accelerate the algorithm. As the most relevant

works, the works of Neal et al. [70] and Thiesson et al. [85] also show a partial E-step

which selects a block of data points for computing the distribution may accelerate

the EM algorithm in the single machine setting. Neal et al. [70] prove that such

a variant of the EM algorithm converges. Thiesson et al. [85] provide an empirical
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method to figure out the near optimal block size. Our proof is inspired by the work

of Neal et al., but goes further. Specifically, we prove that not only selecting a block

of data points for computing the distribution but also computing the distribution

under a subrange of hidden variables can guarantee the convergence. Compared to

the work of Thiesson et al., which is in the single machine setting, our work considers

the scenario of a distributed environment. We propose a distributed framework for

efficiently implementing the EM algorithm with frequent updates. Furthermore, these

two pieces of work demonstrate the power of frequent update through only one EM

application, parameter estimation for a finite mixture model, whereas our work covers

more applications.

There are a number of efforts targeted on parallelizing the EM algorithm as well.

Most of them focused on efficiently updating the parameters in the M-step. For

examples, Wolfe et al. [90] propose an approach to distribute both the E-step and

the M-step based on MapReduce. Kowalczyk et al. [45] present a gossip-based dis-

tributed implementation of the EM algorithm for GMM. Zhai et al. [103] introduce

a MapReduce-based implementation of the EM algorithm for LDA. While our work

has a different focus: we study how to frequently update the parameters to speed up

convergence for a wide class of EM algorithms.

2.8 Conclusion

Motivated by the observations that an EM algorithm performing frequent up-

dates is much more efficient than it performing concurrent updates, we propose two

approaches to parallelize the EM algorithm with frequent updates in a distributed

environment so as to scale to massive datasets. Furthermore, we formally prove that

the EM algorithm with frequent updates converges. To support the efficient imple-

mentation of the EM algorithm with frequent updates, we design and implement a

distributed framework, FreEM. We deploy FreEM on both a local cluster and the
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Amazon EC2 cloud, and evaluate its performance in the context of two categories of

EM applications, clustering and topic modeling. The evaluation results show that the

EM algorithm with frequent updates can run much faster than the EM algorithm with

traditional concurrent updates when both are implemented on FreEM. In addition,

since FreEM is on top of iMapReduce which is more efficient than MapReduce in sup-

porting iterative algorithms, FreEM is more efficient than MapReduce in supporting

the EM algorithm.

46



CHAPTER 3

SCALABLE DISTRIBUTED NONNEGATIVE MATRIX
FACTORIZATION WITH BLOCK-WISE UPDATES

3.1 Introduction

Nonnegative matrix factorization (NMF) [49] is a popular dimension reduction

and factor analysis method that has attracted a lot of attention recently. It arises

from a wide range of applications, including genome data analysis [16], text min-

ing [71], and recommendation systems [97]. NMF factorizes an original matrix into

two nonnegative low-rank factor matrices by minimizing a loss function, which mea-

sures the discrepancy between the original matrix and the product of the two factor

matrices. Due to its wide applications, many algorithms [33,40,50,54,55,109,111] for

solving it have been proposed. NMF algorithms typically leverage update functions

to iteratively and alternatively refine factor matrices.

Many practitioners nowadays have to deal with NMF on massive datasets. For

example, recommendation systems in web services such as Netflix have been dealing

with NMF on web-scale dyadic datasets, which involve millions of users, millions

of movies, and billions of ratings. For such web-scale matrices, it is desirable to

leverage a cluster of machines to speed up the factorization process. MapReduce [22]

has emerged as a popular distributed framework for data intensive computation. It

provides a simple programming model where a user can focus on the computation logic

without worrying about the complexity of parallel computation. Prior approaches

(e.g., [57]) of handling NMF on MapReduce usually pick an NMF algorithm and then

focus on implementing matrix operations on MapReduce.
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In this chapter, we present a new form of factor matrix update functions. This

new form operates on blocks of matrices. In order to support the new form, we

partition the factor matrices into blocks along the short dimension to maximize the

parallelism and split the original matrix into corresponding blocks. The new form

allows us to update distinct blocks independently and simultaneously when updating

a factor matrix. It also facilitates distributed implementations. Different blocks of

one factor matrix can be updated in parallel, and can be distributed in memories

of all machines of a cluster and thus avoid overflowing the memory of one single

machine. Storing factor matrices in memory can support random access and local

aggregation. As a result, the new form of update functions leads to an efficient

MapReduce implementation. We illustrate that the new form works for NMFs with

a wide class of loss functions.

Moreover, under the new form of update functions, we can update a subset of

its blocks instead of all the blocks when we update a factor matrix. The number of

blocks in the subset is adjustable, and the only requirement is that when one factor

matrix is updated the other one is fixed. For instance, we can update one block

of a factor matrix and then immediately update all the blocks of the other factor

matrix. We refer to this kind of updates as frequent block-wise updates. Frequent

block-wise updates aim to utilize the most recently updated data whenever possible.

As a result, frequent block-wise updates are more efficient than their traditional

concurrent counterparts, concurrent block-wise updates, which updates all the blocks

of either factor matrix alternately. Additionally, frequent block-wise updates maintain

the convergence property of the algorithm.

We present implementations of block-wise updates for two classical NMFs: one

uses the square of Euclidean distance as the loss function, and the other uses the gen-

eralized KL-divergence. We implement concurrent block-wise updates on MapReduce,

and implement both concurrent and frequent block-wise updates on an extended ver-
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sion of MapReduce, iMapReduce [105], which supports iterative computations more

efficiently. We evaluate these implementations on a local cluster as well as the Ama-

zon EC2 cloud [1]. With both synthetic and real-world datasets, the evaluation results

show that our MapReduce implementation for concurrent block-wise updates is 19x

- 107x faster than the existing MapReduce implementation [57] with the traditional

form of update functions, and our iMapReduce implementation further achieves up

to 3x speedup over our MapReduce implementation. Furthermore, the iMapReduce

implementation with frequent block-wise updates is up to 2.7x faster than that with

concurrent block-wise updates. Accordingly, our iMapReduce implementation with

frequent block-wise updates is up to two orders of magnitude faster than the existing

MapReduce implementation.

The rest of this chapter is organized as follows. Section 3.2 briefly reviews the

background of NMF. Section 3.3 introduces block-wise updates. Concurrent block-

wise updates and frequent block-wise updates are presented in Section 3.4. Section

3.5 provides our efficient implementations of distributed block-wise updates. Section

3.6 presents the evaluation results. Section 3.7 surveys related work, and this chapter

is concluded in Section 3.8.

3.2 Background

NMF aims to factorize an original matrix A into two nonnegative low-rank factor

matrices W and H. Matrix A’s elements must be nonnegative by assumption. The

achieved factorization has the property of A ' WH. A loss function is leveraged to

measure the discrepancy between A and WH. More formally:

Given A ∈ Rm×n
+ and a positive integer k � min{m,n}, find W ∈ Rm×k

+ and

H ∈ Rk×n
+ , such that a loss function L(A,W,H) is minimized.
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The loss function L(A,W,H) is typically not convex in both W and H together.

Hence, it is unrealistic to have an approach of finding the global minimum. Fortu-

nately, there are many techniques for finding local minima.

A general approach is to adopt the block coordinate descent rules [55]:

• Initialize W , H with nonnegative W 0, H0, t← 0.

• Repeat until a convergence criterion is satisfied:

Find H t+1: L(A,W t, H t+1) ≤ L(A,W t, H t);

Find W t+1: L(A,W t+1, H t+1) ≤ L(A,W t, H t+1).

When the matrix loss function is the square of the Euclidean distance, i.e.,

L(A,W,H) = ||A−WH||2F , (3.1)

where || · ||F is the Frobenius norm, one of the most well-known algorithms for imple-

menting the above rules is Lee and Seung’s multiplicative update approach [50]. It

updates W and H as follows:

H = H ∗ W TA

W TWH
, W = W ∗ AHT

WHHT
, (3.2)

where the symbol “∗” and the symbol “-” (or equivalently “/”) are used to denote

the element-wise matrix multiplication and division, respectively.

3.3 Distributed NMF

In this section, we present how to apply the block coordinate descent rules to

NMF in a distributed environment.

3.3.1 Decomposition

A loss function is usually decomposable [79]. That is, it can be represented as

the sum of losses for all the elements in the matrix. For example, the well adopted
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loss function, the square of the Euclidean distance, is decomposable. We list several

popular decomposable loss functions in Table 3.1. To achieve better sparsity in W

and H, regularization terms have been proposed to add into loss functions [36]. For

example, the square of the Euclidean distance with an L1-norm regularization on W

and H can achieve a more sparse solution:

L(A,W,H) = ||A−WH||2F + α
∑
(i,r)

Wir + β
∑
(r,j)

Hrj,

where α > 0 and β > 0 are regularization parameters which trade off the original loss

function with the regularizer. Another common loss function with the regularization

term [97] is as follows :

L(A,W,H) = ||A−WH||2F + λ(||W ||2F + ||H||2F ),

where λ is the regularization parameter. One can also replace (||W ||2F + ||H||2F ) with∑
i,j(||Wi||2 + ||Hj||2) (where || · || denotes the L2-norm of a vector) to obtain another

loss function. The regularization term itself is usually decomposable as well. There-

fore, the final loss function is decomposable. We focus on NMF with decomposable

loss functions.

Table 3.1. Decomposable Loss Functions

Square of Euclidean distance
∑

(i,j)(Aij − [WH]ij)
2

KL-divergence
∑

(i,j)Aij log
Aij

[WH]ij

Generalized KL-divergence (I-divergence)
∑

(i,j)(Aij log
Aij

[WH]ij
− Aij + [WH]ij)

Itakura-Saito distance
∑

(i,j)(
Aij

[WH]ij
− log

Aij

[WH]ij
− 1)

Distributed NMF needs to partition the matrices W , H, and A across compute

nodes. To this end, we leverage a well-adopted scheme in gradient descent algo-

rithms [28, 84], which partitions W and H into blocks along the short dimension to
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W(1)

W(2)

W(c)

W = and H = 

A(1,1)  A(1,2) …  A(1,d)

A(2,1)  A(2,2) …  A(2,d)

A(c,1)  A(c,2) …  A(c,d)

A = 

,H(1) H(2) … H(d)…

… … …

Figure 3.1. Block-wise partition scheme for distributed NMF.

maximize the parallelism and splits the original matrix A into corresponding blocks.

We use symbol W (I) to denote the Ith block of W, H(J) to denote the Jth block of

H, and A(I,J) to denote the corresponding block of A (i.e., the (I, J)th block). Under

this partition scheme, A(I,J) is only related to W (I) and H(J) when computing the loss

function and is independent of other blocks of W and H, in terms of loss value (com-

puted by the loss function). We refer to the partition scheme as block-wise partition.

The view of the block-wise partition scheme is shown in Figure 3.1. Previous work

on distributed NMF [57] also proposes to partition W and H along the short dimen-

sion. The key difference between this partition scheme and the block-wise partition

scheme is that the former splits W and H into row and column vectors, respectively,

while the latter splits W and H into blocks. Since one block of W and one block

of H can contain a set of row and column vectors, respectively, the block-wise parti-

tion scheme can be considered as a more general scheme. Moreover, the block-wise

partition scheme splits A into blocks as well.

Due to its decomposability, loss function L(A,W,H) can be expressed as

L(A,W,H) =
∑
I

∑
J

L(A(I,J),W (I), H(J)). (3.3)

Let

FI =
∑
J

L(A(I,J),W (I), H(J)), (3.4)
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GJ =
∑
I

L(A(I,J),W (I), H(J)), (3.5)

then we have

L(A,W,H) =
∑
I

FI =
∑
J

GJ . (3.6)

FI and GJ can be seen as local loss functions. The overall loss function L is a sum

of local loss functions. By fixing H, FI is independent of each other. Therefore, FI

can be minimized independently and simultaneously by fixing H. Similarly, GJ can

be minimized independently and simultaneously by fixing W .

3.3.2 Block-wise Updates

The block-wise partition allows us to update its blocks independently when up-

dating a factor matrix (by fixing the other factor matrix). In other words, each block

can be treated as one update unit. We refer to this kind of updates as block-wise

updates. In the following, we illustrate how to update one block of W (by minimizing

FI) and that of H (by minimizing GJ). We take the square of the Euclidean distance

and the generalized KL-divergence as examples. Nevertheless, the techniques derived

in this section can be applied to any other decomposable loss function.

3.3.2.1 Square of Euclidean Distance

Here we first show how to update one block of H (i.e., H(J)) when the square of

the Euclidean distance is leveraged as the loss function. We refer to this type of NMF

as SED-NMF. When W is fixed, minimizing GJ can be expressed as follows:

min
H(J)

GJ = min
H(J)

∑
I

||A(I,J) −W (I)H(J)||2F .

We here leverage gradient descent to update H(J):

H(J)
uv = H(J)

uv − ηuv
∂GJ

∂H
(J)
uv

,
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where H
(J)
uv denotes the element at the uth row and the vth column of H(J), and ηuv

is an individual step size for the corresponding gradient element, and

∂GJ

∂H
(J)
uv

= [
∑
I

((W (I))TW (I)H(J) − (W (I))TA(I,J))]uv.

If all step sizes are set to some sufficiently small positive number, the update

should reduce GJ . However, if the number is too small, the decreasing speed can be

very slow. To obtain a good speed, we derive step sizes by following Lee and Seung’s

approach:

ηuv =
H

(J)
uv

[
∑

I(W
(I))TW (I)H(J)]uv

.

Then, we have:

H(J)
uv = H(J)

uv

[
∑

I(W
(I))TA(I,J)]uv

[
∑

I(W
(I))TW (I)H(J)]uv

. (3.7)

Similarly, we can derive the update formula for W (I) as follows:

W (I)
uv = W (I)

uv

[
∑

J A
(I,J)(H(J))T ]uv

[
∑

JW
(I)H(J)(H(J))T ]uv

. (3.8)

We have derived the update formulae with the gradient descent method. It is

important to note that we can also utilize other techniques, such as the active set

method [40] and the block principal pivoting method [41], to derive the update for-

mulae. Furthermore, we can even use different methods for different blocks at the

same time. For example, we can use the gradient descent method to update half of

blocks of H and use the active set method for the other half.

3.3.2.2 Generalized KL-divergence

Now we derive the update for one block of H when the generalized KL-divergence

is used as the loss function. We refer to this type of NMF as KLD-NMF. When W is

fixed, minimizing GJ can be expressed as follows:
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min
H(J)

GJ = min
H(J)

∑
I

∑
i∈I,j∈J

(Aij log
Aij

[WH]ij
− Aij + [WH]ij).

We also leverage gradient descent to update H(J):

H(J)
uv = H(J)

uv − ηuv
∂GJ

∂H
(J)
uv

,

where ∂GJ

∂H
(J)
uv

=
∑

I

∑
i∈I [Wiu −Wiu

Aiv

[WH]iv
]. Again we derive step sizes by following

Lee and Seung’s approach: ηuv = H
(J)
uv∑

I

∑
i∈I Wiu

.

Then, we have:

H(J) = H(J) ∗
∑

I(W
(I))T A(I,J)

W (I)H(J)∑
I(W

(I))TE(I,J)
, (3.9)

where E(I,J) is a a× b matrix with all the elements being 1 (a is the number of rows

in W (I) and b is the number of columns in H(J)).

Similarly, we can derive the update formula for W (I):

W (I) = W (I) ∗
∑

J
A(I,J)

W (I)H(J) (H
(J))T∑

J E
(I,J)(H(J))T

. (3.10)

3.4 Update Frequency

Block-wise updates can handle each block of one factor matrix independently. This

flexibility allows us to have different ways to udpate blocks. We can simultaneously

update all the blocks of one factor matrix and then update all the blocks of the

other factor matrix. Also, we can update a subset of blocks of one factor matrix

and then update a subset of blocks of the other one, and the number of blocks in

the subset is adjustable. Furthermore, block-wise updates also facilitate distributed

implementations. Different blocks of one factor matrix can be updated in parallel,

and can be distributed in memories of all the machines and thus avoid overflowing

the memory of one single machine (when there are large factor matrices). Storing

factor matrices in memory supports random access and local aggregation, which are

highly useful when updating them.
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3.4.1 Concurrent Block-wise Updates

With block-wise updates, one basic way of fulfilling the block coordinate descent

rules is to alternatively update all the blocks of H and all the blocks of W . Since

this way updates all the blocks of one factor matrix concurrently, we refer to it as

concurrent block-wise updates.

From the matrix operation perspective, we can show concurrent block-wise up-

dates derived in the previous section are equivalent to the multiplicative update ap-

proach. Take SED-NMF for example. We can show that updates in Eq. (3.7) and

Eq. (3.8) are equivalent to those in Eq. (3.2). Without loss of generality, we as-

sume that the H(J) is one block of H from the J0th column to the Jbth column.

Let Y be one block of W TWH from the J0th column to the Jbth column, then

we have Y =
∑

I(W
(I))TW (I)H(J), since W TW =

∑
I(W

(I))TW (I). Assuming that

X is one block of W TA from the J0th column to the Jbth column, we can show

that X =
∑

I(W
(I))TA(I,J). Hence, for both concurrent block-wise updates and

the multiplicative update approach, the formula for updating H(J) is equivalent to

H(J) = H(J) ∗ X
Y

. That is, Eq. (3.7) is equivalent to the formula for updating H

in Eq. (3.2). Similarly, we can show that Eq. (3.8) is equivalent to the formula for

updating W .

3.4.2 Frequent Block-wise Updates

Since all the blocks of one factor matrix can be updated independently when the

other matrix is fixed, another (more general) way of fulfilling block coordinate descent

rules is to update a subset of blocks of H, and then update a subset of blocks of W .

Since this way updates a factor matrix more frequently, we refer to it as frequent block-

wise updates. Frequent block-wise updates aim to utilize the most recently updated

data whenever possible, and thus can potentially accelerate convergence.
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More formally, frequent block-wise updates start with some initial guess of W and

H, and then seek to minimize the loss function by iteratively applying the following

two steps:

Step I: Fix W , update a subset of blocks of H.

Step II: Fix H, update a subset of blocks of W .

In both steps, the subset’s size is a parameter, and we rotate the subset on all the

blocks to guarantee that each block has an equal chance to be updated. The subset’s

size controls the update frequency. In an extreme case, if we always set the subset to

include all the blocks, frequent updates degrade to concurrent updates.

Frequent block-wise updates provide a high flexibility to update factor matrices.

For simplicity, we update a subset of blocks of one factor matrix and then update

all the blocks of the other one in each iteration. Here, we assume that we update a

subset of blocks of W and then update all the blocks of H. Intuitively, updating H

frequently might incur a large additional overhead. Fortunately, we next show that

the formula for updating H can be incrementally computed. That is, the cost of

updating H grows linearly with the number of W blocks that have been updated in

the previous iteration.

3.4.3 Incremental Computation

In order to update H, we need to compute certain global statistics over all the

blocks of W . This is because one block of H is related to all the blocks of W when

calculating the loss function. For example, when calculating GJ (defined in Eq.(3.5)),

a particular block of H (i.e., H(J)) and all the blocks of W are involved. The global

statistics over all the blocks of W can be expressed as a summation of local statistics

over each individual block of W . If a block does not change, the corresponding local

statistics does not change as well. As a result, if caching the local statistics for all

the blocks, we do not need to recompute them for unchanged blocks. In this way,
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unnecessary operations can be avoided. Furthermore, we can also cache the global

statistics. Then, we can refresh it by accumulating the old value and the changes

on local statistics. Next, we introduce incremental computation for SED-NMF and

KLD-NMF, respectively, through identifying global statistics and local statistics.

3.4.3.1 Incremental Computation for SED-NMF

For SED-NMF, in order to incrementally update H when a subset of W blocks

are updated, we introduce a few auxiliary matrices. Let XJ =
∑

I(W
(I))TA(I,J),

XJ
I = (W (I))TA(I,J), S =

∑
I(W

(I))TW (I), and SI = (W (I))TW (I). Among them,

XJ and S can be considered as global statistics, and XJ
I and SI can be seen as local

statistics. Then, H
(J)
uv can be updated by

H(J)
uv = H(J)

uv

XJ
uv

[SH(J)]uv
. (3.11)

We next show how to incrementally calculate XJ and S by saving their values

from last iteration. When a subset of W (I) (I ∈ C) have been updated, the new value

of XJ and S can be computed as follows:

XJ = XJ +
∑
I∈C

[(W (I)new)TA(I,J) −XJ
I ]; (3.12)

S = S +
∑
I∈C

[(W (I)new)TW (I)new − SI ]. (3.13)

From Eq. (3.11), Eq. (3.12), and Eq. (3.13), we can see that the cost of incre-

mentally updating H(J) depends on the number of W blocks that have been updated

rather than the total number of blocks that W has.
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3.4.3.2 Incremental Computation for KLD-NMF

For KLD-NMF, we also introduce a few auxiliary matrices to incrementally update

H when a subset of W blocks are updated. Let XJ =
∑

I [(W
(I))T A(I,J)

W (I)H(J) ], X
J
I =

(W (I))T A(I,J)

W (I)H(J) , S =
∑

I [(W
(I))TE(I,J)] (S is a vector), and SI = (W (I))TE(I,J).

Again, XJ and S can be considered as global statistics, and XJ
I and SI can be seen

as local statistics. Then, H
(J)
uv can be updated by

H(J)
uv = H(J)

uv

XJ
uv

Su
. (3.14)

We next show how to incrementally calculate XJ and S by saving their values

from last iteration. When a subset of W (I) (I ∈ C) have been updated, the new value

of XJ and S can be computed as follows:

XJ = XJ +
∑
I∈C

[(W (I)new)T
A(I,J)

W (I)newH(J)
−XJ

I ]; (3.15)

S = S +
∑
I∈C

[(W (I)new)TE(I,J) − SI ]. (3.16)

From Eq. (3.14), Eq. (3.15), and Eq. (3.16), we can again observe that the cost

of incrementally updating H(J) depends on the number of W blocks that have been

updated rather than the total number of W blocks.

3.4.4 Convergence of Frequent Block-wise Updates

Frequent block-wise updates maintain the convergence property. We here use

SED-NMF as an instance. The proof for KLD-NMF can be derived similarly. For

SED-NMF, we first prove that GJ and FI are nonincreasing under formulae Eq. (3.7)

and Eq. (3.8), respectively (as stated in the following two lemmas). We then show the

overall loss function L is nonincreasing when frequent block-wise updates are applied.
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Lemma 3.4.1. GJ is nonincreasing under formula Eq. (3.7). GJ is constant if and

only if H(J) is at a stationary point of GJ .

Lemma 3.4.2. FI is nonincreasing under formula Eq. (3.8). FI is constant if and

only if W (I) is at a stationary point of FI .

Utilizing the concept of auxiliary functions [50], we can prove the above two

lemmas. Then, we have the following theorem.

Theorem 3.4.3. L is nonincreasing when frequent block-wise updates are applied. L

is constant if and only if W and H are at a stationary point of L.

Proof. As illustrated in Eq. (3.6), the overall loss function L is the sum of local loss

functions, GJ or FI . GJ is nonincreasing when H(J) is updated for any J . FI is

nonincreasing as well when W (I) is updated for any I. Therefore, frequent block-wise

updates will not increase L when W (or H) is updated, no matter how many blocks

of W (or H) are selected for updating in each iteration. Additionally, if and only if

all the blocks of W (or H) are at a stationary point of L, L does not decrease.

3.5 Implementations on Distributed Frameworks

MapReduce [22] and its extensions (e.g, [105]) have emerged as distributed frame-

works for data intensive computation. MapReduce expresses a computation task as

a series of jobs. Each job typically has one map operation (mapper) and one reduce

operation (reducer). In this section, we illustrate the efficient implementation of con-

current block-wise updates on MapReduce. Also, we show how to implement frequent

block-wise updates on an extended version of MapReduce, iMapReduce [105], which

supports iterative computations more efficiently. To ground our discussion, we begin

with an overview of the state-of-the-art work that implements the traditional form of

update functions on MapReduce.
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3.5.1 Traditional Updates on MapReduce

The previous effort by Liu et al. [57] is a piece of state-of-the-art work of im-

plementing the traditional form of update functions on MapReduce. For performing

matrix multiplication (with two large matrices), it needs to join a row (or column)

of one matrix with each column (or row) of the other one with two MapReduce jobs.

As a result, a huge amount of intermediate data have to be generated and shuffled.

The intermediate data explosion is a huge issue in terms of performance.

In order to elaborate the intermediate data explosion issue of implementing the

traditional form of update functions, we take SED-NMF as an instance. To implement

the update for H (as shown in Eq. (3.2)) on MapReduce, the previous work [57] needs

five jobs: two jobs for computing W TA, two jobs for computing W TWH, and one

job for the final update. Among them, the two jobs for computing W TA are the

bottleneck. The first job generates the intermediate data < j,Ai,jW
T
i· > for any i and

j ∈ Oi, where Oi denotes the set of nonzero elements on the ith row of A. The second

job takes the intermediate data as its input. The intermediate data take O(ρmnk)

space (where ρ is the sparsity of A), which can be huge considering m and n are

at the order of hundreds of thousands or even millions. Consequently, dumping and

loading the intermediate data dominate the time of updating H. Similar conclusion

can be reached for updating W .

3.5.2 Concurrent Block-wise Updates on MapReduce

Block-wise updates enable efficient distributed implementations. With block-wise

updates, the basic computation units in the update functions (e.g., Eq. (3.7) and

Eq. (3.8)) are blocks of factor matrices and blocks of the original matrix. The size

of a block is adjustable. As a result, when performing an essential matrix operation,

which involves two blocks of matrices (e.g., (W (I))T and A(I,J)), we can assume that

at least the smaller block can be held in the memory of a single worker. Since W and
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H are low-rank factor matrices, they usually are much smaller than A, and thus the

assumption that one of their blocks can be held in the memory of one single worker is

reasonable. The result matrix of an essential matrix operation (e.g., (W (I))TA(I,J)) is

usually relatively small and can be held in the memory of one single worker as well.

Storing a matrix (or a block of a matrix) in memory efficiently supports random and

repeated access, which is commonly needed in a matrix operation such as multiplica-

tion. Maintaining the result matrix in memory supports local aggregation. Therefore,

one worker can complete an essential matrix operation locally and efficiently. Note

that the other (larger) matrix (e.g., one block of A) is still in disk so as to scale to

large NMF problems.

Accordingly, the MapReduce programming model fits block-wise updates well. An

essential matrix operation with two blocks can be realized in one mapper, and the

aggregation of the results of essential matrix operations can be realized in reducers.

To realize matrix multiplication with two blocks of matrices in one mapper, we exploit

the fact that a mapper can cache data in memory before processing input key-value

pairs and that a mapper can maintain state across the processing of multiple input

key-value pairs and defer emission of intermediate key-value pairs until all the input

pairs have been processed. We next illustrate efficient implementations of concurrent

block-wise updates for SED-NMF and KLD-NMF, respectively.

3.5.2.1 MapReduce Implementation for SED-NMF

Inspired by the previous work [57], which decomposes the update formula of SED-

NMF for H into three components, we consider the update formula for H(J) ( Eq.

(3.7)) into three parts as well: X(J) =
∑

I(W
(I))TA(I,J), Y (J) =

∑
I(W

(I))TW (I)H(J),

and H(J) = H(J) ∗ X(J)

Y (J) . However, we have much more efficient implementation for

each part than the previous work, as demonstrated in the following.
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We have one job to compute X(J) =
∑

I X
(I,J) =

∑
I(W

(I))TA(I,J). Let X
(I,J)
·j

represent the jth column of X(I,J), then

X
(I,J)
·j =

a∑
i=1

A
(I,J)
i,j (W

(I)
i· )T , (3.17)

where a is the number of rows of A(I,J), and W
(I)
i· is the ith row of W (I). When holding

W (I) in memory, a mapper can leverage Eq. (3.17) to compute X(I,J) via continuously

reading elements of A(I,J). X(I,J) (which is usually small) stays in memory for local

aggregation. After computing X(I,J) in the mapper, the aggregation X(J) =
∑

I X
(I,J)

can be computed in a reducer. Different reducers compute X(J) for different J .

Two jobs are used to compute Y (J) =
∑

I(W
(I))TW (I)H(J). We first compute

S =
∑

I(W
(I))TW (I) and then calculate Y (J) = SH(J). (W (I))TW (I) (a k× k matrix)

can be performed in one mapper as follows:

(W (I))TW (I) =
a∑
i=1

(W
(I)
i· )TW

(I)
i· . (3.18)

Then, all mappers send (W (I))TW (I) to one particular reducer for a global summation.

After computing S =
∑

I(W
(I))TW (I), calculating Y (J) = SH(J) can be done in a job

with the map phase only, by Y
(J)
·j = SH

(J)
·j .

Last, we have one job (with the map phase only) to compute H(J) ← H(J) ∗ X(J)

Y (J) .

In summary, the MapReduce operations for updating H are as follows.

• Job-I Map: Load W (I) in memory, calculate X(I,J) using Eq. (3.17) (take A(I,J)

as input), and emit < I,X(I,J) >.

• Job-I Reduce: Take < I,X(I,J) >, and emit < J,X(J) >.

• Job-II Map: Load W (I) in memory, calculate (W (I))TW (I) using Eq. (3.18), and

emit < I, (W (I))TW (I) >.

• Job-II Reduce: Take < I, (W (I))TW (I) >, and emit < 0, S >.

• Job-III Map: Load S in memory. Emit tuples < j, Y
(J)
·j >.
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• Job-IV Map: Read < j,H
(J)
·j >, < j,X

(J)
·j >, and < j, Y

(J)
·j >. Emit tuples in the

form of < j,H
(J)new
·j >, where H

(J)new
·j = H

(J)
·j ∗

X
(J)
·j

Y
(J)
·j

.

In the previous implementation, we try to minimize data shuffling by utilizing

local aggregation. However, in each iteration it still needs four MapReduce jobs to

update H. In addition, intermediate data (e.g., X(J)) need to be dumped into disk

and be reloaded in later jobs. We next illustrate how to minimize the number of jobs

and the amount of intermediate data to be reloaded.

,

,

, ,

∗ ⁄

Job‐1 Map:

Job‐2 Reduce:

Job‐2 Map:

Job‐1 Reduce:

Figure 3.2. Overview of the optimized implementation for updating H(J) of SED-
NMF on MapReduce.

Job-II can be kept (as Job-1), since it only produces a small (k × k) matrix and

reloading its output does not take much time. Job-I, Job-III, and Job-IV can be

integrated into one job so as to avoid dumping and reloading X(J) and Y (J). The

integrated job has the same map phase with Job-I. In the reduce phase, besides com-

puting X
(J)
·j , it also computes Y

(J)
·j and finally calculates H

(J)new
·j = H

(J)
·j ∗ [X

(J)
·j /Y

(J)
·j ].

The overview of our optimized implementation is presented in Figure 3.2, and the

MapReduce operations in the integrated job (Job-2) are described as follows.

• Job-2 Map: Load W (I) in memory, calculate X(I,J) using Eq. (3.17) (take A(I,J)

as input), and emit < I,X(I,J) >.

• Job-2 Reduce: Take < I,X(I,J) >, and first calculate X
(J)
·j . Load S in memory.

Then, read H
(J)
·j and compute Y

(J)
·j . Last, calculate H

(J)new
·j .
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In the above, we describe the MapReduce operations used to complete the update

of H for one iteration. Updating W can be performed in the same fashion. We next

provide a sketch of its design and omit the description of the operations.

The formula for updating W ( Eq. (3.8)) can also be treated as three parts:

U (I) =
∑

J A
(I,J)(H(J))T , V (I) =

∑
JW

(I)H(J)(H(J))T , and W (I) = W (I) ∗ U(I)

V (I) . Let

U (I,J) = A(I,J)(H(J))T , then

U
(I,J)
i· =

a∑
j=1

A
(I,J)
i,j (H

(J)
·j )T . (3.19)

To efficiently compute V (I), we compute H(J)(H(J))T first in the following way:

H(J)(H(J))T =
b∑

j=1

H
(J)
·j (H

(J)
·j )T . (3.20)

3.5.2.2 MapReduce Implementation for KLD-NMF

For KLD-NMF, we also decompose the update formula for H(J) (Eq. (3.9)) into

three parts: X(J) =
∑

I [(W
(I))T A(I,J)

W (I)H(J) ], Y
(J) =

∑
I [(W

(I))TE(I,J)], and H(J) =

H(J) ∗ X(J)

Y (J) .

We use one job to compute X(J) =
∑

I [(W
(I))T A(I,J)

W (I)H(J) ]. Let X
(I,J)
·j represent the

jth column of X(I,J), then

X
(I,J)
·j =

a∑
i=1

(W
(I)
i· )T

A
(I,J)
i,j

W
(I)
i· H

(J)
·j

. (3.21)

When holding W (I) andH(J) in memory, a mapper can leverage Eq. (3.21) to compute

X(I,J) via continuously reading elements of A(I,J). X(I,J) stays in memory for local

aggregation. After computing X(I,J) in the mapper, the aggregation X(J) =
∑

I X
(I,J)

can be computed in a reducer.
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One job is used to compute Y (J) =
∑

I [(W
(I))TE(I,J)]. Let Y (I,J) = (W (I))TE(I,J).

Computing Y (I,J) seems time-consuming because it multiplies two dense matrices.

But since all elements of E(I,J) is 1, all the columns of Y (I,J) are the same. Therefore,

we actually only need to calculate one column of Y (I,J). For example,

Y
(I,J)
·j =

a∑
i=1

(W
(I)
i· )T . (3.22)

After computing Y (I,J) in the mapper, the aggregation Y (J) =
∑

I Y
(I,J) can be

computed in a reducer.

The formula for updating W (Eq. (3.10)) can also be treated as three parts:

U (I) =
∑

J
A(I,J)

W (I)H(J) (H
(J))T , V (I) =

∑
J E

(I,J)(H(J))T , and W (I) = W (I) ∗ U(I)

V (I) . Let

U (I,J) = A(I,J)

W (I)H(J) (H
(J))T , then

U
(I,J)
i· =

b∑
j=1

A
(I,J)
i,j

W
(I)
i· H

(J)
·j

(H
(J)
·j )T . (3.23)

Let V (I,J) = E(I,J)(H(J))T , and it can be calculated in the following way:

V
(I,J)
i· =

b∑
j=1

(H
(J)
·j )T . (3.24)

Then V (I) can be computed through V (I) =
∑

J V
(I,J).

𝑾(𝑰) 𝑨(𝑰,𝑱) 𝑯(𝑱)

𝒀(𝑰,𝑱) = (𝑾(𝑰))𝑻𝑬(𝑰,𝑱)

𝒀(𝑱) = 
𝑰
𝒀(𝑰,𝑱)

𝑿(𝑱) = 
𝑰
𝑿(𝑰,𝑱)

𝑿(𝑰,𝑱) =
(𝑾(𝑰))𝑻 ∗ 𝑨(𝑰,𝑱)/(𝑾(𝑰)𝑯(𝑱))

𝑯(𝑱) = 𝑯(𝑱) ∗ (  𝑿(𝑱) 𝒀(𝑱))

Job-1 Map:

Job-2 Reduce:

Job-2 Map:

Job-1 Reduce:

Figure 3.3. Overview of the implementation for updating H(J) of KLD-NMF on
MapReduce.
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After decomposing the update formulae for KLD-NMF, the MapReduce opera-

tions can be easily derived by following the way of achieving operations for SED-

NMF. The overview of these operations is shown in Figure 3.3, while the details are

omitted.

3.5.2.3 Analysis

The intermediate data and the memory usage of implementing concurrent block-

wise updates on MapReduce are analyzed here. Assume that W has c blocks and H

has d blocks. Take SED-NMF as an example. Similar conclusion can be obtained

for KLD-NMF. We first analyze the intermediate data. For updating H, the main

intermediate data it generates are X(I,J) (for any I and J , cd copies in total), which

take O(k n
d
) space. Therefore, the main intermediate data take O(knc) space in total.

Similarly, we can show that the main intermediate data of updating W take O(kmd)

space in total. We can control the values of c and d and typically have c � m and

d� n. Therefore, the implementation of concurrent updates doest not suffer from the

intermediate data explosion issue, and is much more efficient than the implementation

of the traditional form of updates.

We then analyze the memory usage. For updating H, the main memory usage

happens in the map phase. A mapper at most needs to cache W (I) and X(I,J) in

memory, which take O(km
c

+ k n
d
) space. Similarly, we can show that for updating W

a mapper at most needs O(km
c

+ k n
d
) memory space as well. We know k is typically

small (since NMF is a low-rank approximation). Therefore, for m and n even at the

order of millions, a commodity server does not have the memory overflow problem.

3.5.3 Frequent Block-wise Updates on iMapReduce

Although frequent updates have potential to speed up NMF, parallelizing frequent

updates in a distributed environment is challenging. Computations such as global

summations need to be done in a centralized way. When processing the distributed
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blocks of factor matrices, the system has to synchronize the global summations fre-

quently. Synchronizing the global resources in a distributed environment may result

in considerable overhead, especially on MapReduce. MapReduce starts a new job for

each computation errand. Each job needs to be initialized and load its input data,

even when the data are from a previous job. Frequent updates bring more jobs. As a

result, the initialization overhead and the cost of repeatedly loading data may vanish

the benefit of frequent updates.

In this subsection, we propose an implementation of frequent block-wise updates

on iMapReduce [105], which uses persistent mappers and reducers to avoid job ini-

tialization overhead. Each mapper is paired with one reducer. One pair of mapper

and reducer can be seen as one logical worker. Data shuffling between mappers and

reducers is the same with that of MapReduce. In addition, a reducer of iMapReduce

can redirect its output to its paired mapper. Since mappers and reducers are per-

sistent, data can be maintained in memory across different iterations, and thus can

avoid repeatedly loading data. As a result, iMapReduce decreases the overhead of

frequent block-wise updates. Therefore, it provides frequent block-wise updates with

an opportunity to achieve good performance.

We implement frequent block-wise updates on iMapReduce in the following way.

H is evenly split into r blocks, and W is evenly partitioned into p ∗ r blocks, where r

is the number of workers and p is a parameter used to control update frequency. Each

worker handles p blocks of W and one block of H. In each iteration, a worker updates

its H block and one selected W block. That is, there are r blocks of W in total to

be updated in each iteration. Each worker rotates the selected W block on all its

W blocks. The setting of p plays an important role on frequent block-wise updates.

Setting p too large may incur considerable overhead for synchronization. Setting it

too small may degrade the effect of the frequent updates. In an extreme case, we can

set p = 1, then frequent block-wise updates degrade to concurrent block-wise updates.
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Nevertheless, we will show in experiments (Section 3.6.4) that a quite large range of

p can enable frequent block-wise updates to have better performance than concurrent

block-wise updates. The operations of iMapReduce are as follows. Note that Map-1x

represents different stages of a mapper, and Reduce-1x represents different stages of

a reducer.

3.5.3.1 iMapReduce Implementation for SED-NMF

We first show how to implement frequent updates for SED-NMF on iMapReduce.

• Map-1a: Load a subset (i.e., p) of W blocks (e.g., (W (B)new)) in memory (1st

iteration only) or receive one updated W block from last iteration. For all loaded

or received blocks, compute Sl via Sl =
∑

B(W (B)new)TW (B)new (1st iteration) or

Sl = Sl + ((W (B)new)TW (B)new − (W (B))TW (B)), and replace W (B) with W (B)new.

Broadcast < d, Sl > to all reducers, where d is the corresponding reducer ID.

• Reduce-1a: Take < d, Sl >, compute S =
∑

l Sl, and store S in memory.

• Map-1b: For each loaded/receivedW block in the previous phase (e.g., (W (B)new)),

read A(B,J) and emit tuples in the form of < B,X(B,J) > where X(B,J) is calculated

using Eq. (3.17) (1st iteration) or in the form of < B,∆X(B,J) > where ∆X(B,J) =

(W (B)new)TA(B,J) −X(B,J).

• Reduce-1b: Take < B,X(B,J) > and calculate X(J) =
∑

BX
(B,J) (1st iteration) or

take < B,∆X(B,J) > and calculate X(J) = X(J) +
∑

B ∆X(B,J). Then, load H(J)

into memory (1st iteration) and compute Y (J) = SH(J). Last, calculate H(J)new

by (H(J)new = H(J) ∗ X(J)

Y (J) ), store it in memory, and pass one copy to Map-1c in

the form of < J,H(J)new >.

• Map-1c: Receive (updated) H(J) from Reduce-1b. Broadcast < J,H(J)(H(J))T >

to all reducers.

• Reduce-1c: Take < J,H(J)(H(J))T >, compute Z =
∑

J H
(J)(H(J))T , and store Z

in memory.
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• Map-1d: For a W block that is selected in current iteration (e.g., (W (B))), read

A(B,J) and emit tuples in the form of < J,U (B,J) >, where U (B,J) is calculated

using Eq. (3.19).

• Reduce-1d: Take < J,U (B,J) >, and calculate U (B) =
∑

J U
(B,J). Then, compute

V (B) = W (I)Z. Last, calculate W (B)new = W (B) ∗ U(B)

V (B) , store it in memory, and

pass one copy to Map-1a.

3.5.3.2 iMapReduce Implementation for KLD-NMF

We then show how to implement frequent updates for KLD-NMF on iMapReduce.

• Map-1a: Load a subset (i.e., p) of W blocks (e.g., (W (B)new)) in memory (1st

iteration only) or receive one updatedW block from last iteration. For all loaded or

received blocks, compute Sl via Sl = (W (B)new)TE(B,J) (1st iteration) or Sl = Sl+

((W (B)new)TE(B,J) − (W (B))TE(B,J)), and replace W (B) with W (B)new. Broadcast

< d, Sl > to all reducers, where d is the corresponding reducer ID.

• Reduce-1a: Take < d, Sl >, compute S =
∑

l Sl, and store S in memory.

• Map-1b: For each loaded/receivedW block in the previous phase (e.g., (W (B)new)),

read A(B,J) and H(J), and then emit tuples in the form of < B,X(B,J) > with

X(B,J) computed by Eq. (3.21) (1st iteration) or in the form of < B,∆X(B,J) >

where ∆X(B,J) = (W (B)new)T A(B,J)

W (B)newH(J) −X(B,J).

• Reduce-1b: Take < B,X(B,J) > and calculate X(J) =
∑

BX
(B,J) (1st iteration) or

take < B,∆X(B,J) > and calculate X(J) = X(J) +
∑

B ∆X(B,J). Then, calculate

H(J)new by (H(J)new = H(J) ∗ X(J)

S
), store it in memory, and pass one copy to

Map-1c in the form of < J,H(J)new >.

• Map-1c: Receive (updated) H(J) from Reduce-1b. Broadcast < J,E(I,J)(H(J))T >

to all reducers.

• Reduce-1c: Take < J,E(I,J)(H(J))T >, compute Z =
∑

J E
(I,J)(H(J))T , and store

Z in memory.
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• Map-1d: For a W block that is selected in current iteration (e.g., (W (B))), read

A(B,J) and H(J), and then emit tuples in the form of < J,U (B,J) >, where U (B,J)

is calculated using Eq. (3.23).

• Reduce-1d: Take < J,U (B,J) >, and calculate U (B) =
∑

J U
(B,J). Then, calculate

W (B)new = W (B) ∗ U(B)

Z
, store it in memory, and pass one copy to Map-1a.

We can show that our implementation of frequent block-wise updates takes only

O(km + kn) aggregate memory of the cluster for either SED-NMF or KLD-NMF.

Since k is typically small, even a small cluster of commodity servers can handle the

NMF problem with m and n at the order of millions without memory overflow.

3.6 Evaluation

In this section, we evaluate the effectiveness and efficiency of block-wise updates

on both synthetic and real-word datasets. For MapReduce, we use its open source

implementation, Hadoop [2]. Experiments are performed on both small-scale and

large-scale clusters.

3.6.1 Experiment Setup

We build both a small-scale cluster of local machines and a large-scale cluster on

the Amazon EC2 cloud [1]. The local cluster consists of 4 machines, and each one

has dual-core 2.66GHz CPU, 4GB of RAM, 1TB hard disk. These 4 machines are

connected through a switch with a bandwidth of 1Gbps. The Amazon cluster consists

of 100 medium instances, and each instance has one core, 3.7GB of RAM, and 400GB

of hard disk.

Table 3.2. Dataset Summary

Dataset # of rows # of columns # of nonzero elements
Netflix 480, 189 17, 770 100M

NYTimes 300, 000 102, 660 70M
Syn-m-n m n 0.1 ∗m ∗ n
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Both synthetic and real-word datasets are used in our experiments. We use two

real-world datasets. One is a document-term matrix, NYTimes, from UCI Machine

Learning Repository [3]. The other one is a user-movie matrix from the Netflix

prize [44]. We also generate several matrices with different choices of m (the number

of rows) and n (the number of columns). The sparsity is set to 0.1, and each element

is a random integer number uniformly selected from range 1 to 5. The datasets are

summarized in Table 3.2.

Unless otherwise specified, we use rank k = 10, and use p = 8 for frequent block-

wise updates (which means each worker updates 1
8

of its W blocks in each iteration).

3.6.2 Comparison with Existing Work

The first set of experiments focus on demonstrating the advantage of our (opti-

mized) implementation of concurrent block-wise updates on MapReduce. We com-

pare it with a piece of state-of-the-art work of implementing the traditional form of

update functions, which is discussed in Section 3.5.1. The implementation of con-

current block-wise updates on iMapReduce is added into the comparison to show

iMapReduce’s superiority over MapReduce. For a comprehensive comparison, the

iMapReduce implementation of the traditional form is taken into consideration as

well. As described in Section 3.4.1, concurrent block-wise updates are equivalent to

the multiplicative update, and thus we leverage the time taken in a single iteration

to directly compare performance.
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Figure 3.4. Time taken in one iteration for SED-NMF on the local cluster. The
y-axis is in log scale.
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Figure 3.4 shows the time taken in one iteration of all the four implementations

for SED-NMF on both synthetic and real-word datasets. Note that the y-axis is in

log scale. Our implementation on MapReduce (denoted by “Block-wise on MR”)

is 19x - 57x faster than the existing approach (denoted by “Row/Column-wise on

MR”). Moreover, for the block-wise updates, the implementation on iMapReduce

(denoted by “Block-wise on iMR”) is up to 2x faster than that on MapReduce, since

iMapReduce can eliminate the job initialization overhead and the cost of repeatedly

dumping/loading factor matrices (note that the original matrix still needs to be loaded

from the file system at each iteration). For the traditional form of update functions,

the improvement by iMapReduce (denoted by “Row/Column-wise on iMR”) is quite

limited. The reasons are twofold. One reason is that its implementation does not

store factor matrices in memory, and thus there is no benefit of eliminating the cost

of repeatedly dumping/loading factor matrices. The other reason is that compared

to the long running time of a job, the job initialization overhead is almost ignorable,

and thus eliminating the job initialization overhead does not make a huge difference.

Figure 3.5 shows the time taken in one iteration of all the four implementations

for KLD-NMF. Similar to SED-NMF, our implementation on MapReduce is 20x -

59x faster than the existing approach. Furthermore, for the block-wise updates, the

implementation on iMapReduce is up to 3x faster than that on MapReduce; while

for the traditional form of update functions, the improvement by iMapReduce is

ignorable.
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Figure 3.5. Time taken in one iteration for KLD-NMF on the local cluster. The
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3.6.3 Effect of Frequent Updates

Frequent block-wise updates leverage more up-to-date H to update W than con-

current block-wise updates, since they update H more frequently. Therefore, they

have the potential to reach the convergence criterion with less workload. To evalu-

ate their effect, we compare frequent block-wise updates with concurrent block-wise

updates when both implemented on iMapReduce.
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Figure 3.6. Convergence speed of SED-NMF on the local cluster.

Both update approaches start with the same initial values when compared on the

same dataset. Figure 3.6 plots the performance comparison for SED-NMF. We can see

that frequent block-wise updates (“Frequent”) converge faster than concurrent block-

wise updates (“Concurrent”) on all the three datasets. In other words, if we use a

predefined loss value as the convergence criterion, frequent block-wise updates would

have much shorter running time. Similar phenomena are observed for KLD-NMF, as

shown in Figure 3.7.
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Figure 3.7. Convergence speed of KLD-NMF on the local cluster.
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3.6.4 Tuning Update Frequency
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Figure 3.8. Convergence speed vs. update frequency. The numbers associated with
“Fre” represent settings of p.

As stated in Section 3.5.3, the update frequency can make a huge impact on the

performance of frequent block-wise updates. In experiments, we find that a quite

large range of p can allow frequent block-wise updates to have better performance

than their concurrent counterparts, and the best setting of p stays in the range from

4 to 16. That is also why we set p = 8 by default. For example, Figure 3.8 shows the

convergence speed with different settings on dataset Netflix for SED-NMF. Another

interesting finding is that if a setting is better during the first few iterations, it will

continue to be better. Hence, another way of obtaining a good setting of p is to test

several candidate settings, each for a few iterations, and then choose the best one.

Similar trends are observed for KLD-NMF and are omitted here.

3.6.5 Different Data Sizes

We then measure how block-wise updates scale with increasing size of the original

matrix A. We generate synthetic datasets of different sizes by fixing the number of

(100k) rows and increasing the number of columns. Figure 3.9 shows the time taken in

one iteration of the block-wise updates and the traditional row/column-wise updates

as the dataset size varies. The time of either implementation increases as the number

of columns increases, and the time of the latter increases much faster. When the

number of columns is 100k, our implementation of block-wise updates is 90x faster
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than the implementation of the traditional updates (compared to 57x speedup when

the number of columns is 20k).
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Figure 3.9. Comparing Row/Column-wise updates with block-wise updates through
varying dataset size.

We next compare the running time of concurrent block-wise updates with that

of frequent block-wise updates. We use the loss value when concurrent block-wise

updates run for 25 iterations as the convergence point. Then the time used to reach

this convergence point is measured as the running time. This criterion also applies

to later comparisons. As presented in Figure 3.10, the running time of either type

of updates increases sub-linearly with the size of the dataset. Moreover, frequent

block-wise updates are up to 2.7x faster than concurrent block-wise updates. The

results for KLD-NMF have similar trends and are omitted here.
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Figure 3.10. Comparing concurrent block-wise updates with frequent block-wise
updates through varying dataset size.
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3.6.6 Different Settings of Rank

We also measure how block-wise updates scale with different settings of the rank.

We here present the results for SED-NMF (the performance comparison for KLD-

NMF is similar). Figure 3.11 shows the time taken in one iteration of the block-wise

updates and the traditional row/column-wise updates on dataset Syn-100K-20K as k

varies from 10 to 50. It can be seen that the time of either implementation increases

as k increases, and the time of the latter increases much faster. When k = 50, our

implementation of block-wise updates is 107x faster than the implementation of the

traditional updates (compared to 57x speedup when k = 10).
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Figure 3.11. Time taken in one iteration vs. different settings of rank on the local
cluster for SED-NMF on MapReduce.
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Figure 3.12. Running time vs. different settings of rank on the local cluster for
SED-NMF on iMapReduce.

We then compare the running time of concurrent block-wise updates with that of

frequent block-wise updates as k varies. As plotted in Figure 3.12, the running time

of either type of updates increases sub-linearly with k. Furthermore, the running

time of concurrent block-wise updates increases faster.
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3.6.7 Scaling Performance

To validate the scalability of our implementations, we evaluate them on the Ama-

zon EC2 cloud. The results of SED-NMF are reported. We use dataset Syn-1M-20K,

which has 1 million rows, 20 thousand columns, and 2 billion nonzero elements. Fig-

ure 3.13 plots the time taken in a single iteration when all four implementations

running on 100 nodes (i.e., instances). Our implementation on MapReduce is 23x

faster than that of the existing approach. For block-wise updates, the implementa-

tion on iMapReduce is 1.5x faster than that on MapReduce.
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Figure 3.13. Time taken in one iteration for KLD-NMF on Amazon EC2 cloud.
The y-axis is in log scale.
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Figure 3.14. Scaling performance of MapReduce implementations on Amazon EC2
cloud. The y-axis is in log scale.

Figure 3.14 shows the time taken in one iteration of the block-wise updates and

the traditional row/column-wise updates as the number of nodes being used increases

from 20 to 100. The time of either implementation decreases as the number of nodes

increases. Figure 3.15 compares the running time of concurrent block-wise updates

with that of frequent block-wise updates as the number of nodes increases. We can see

that the running time of either frequent block-wise updates or concurrent block-wise
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Figure 3.15. Scaling performance of iMapReduce implementations on Amazon EC2
cloud.

updates decreases smoothly as the number of nodes increases. In addition, frequent

block-wise updates outperform concurrent block-wise updates with any number of

nodes in the cluster.

3.7 Related Work

Matrix factorization has been applied very widely [16, 44, 67, 71, 87, 109]. Due to

its popularity and increasingly larger datasets, many approaches for paralleling it

have been proposed. Zhou et al. [110] and Schelter et al. [78] show how to distribute

the alternating least squares algorithm for matrix factorization. Both approaches

require that each worker has a copy of one factor matrix when the one is updated.

This requirement limits its scalability. For large matrix factorization problems, it

is important that factor matrices can be distributed. Several efforts handle matrix

factorization using distributed gradient descent methods, which can distribute factor

matrix updates across a cluster of machines [28, 53, 84, 97, 100]. These approaches

mainly focus on in-memory implementations, in which both the original matrix and

factor matrices are in the aggregate memory of the cluster, and use the forms of update

functions that are different from our presented form. Additionally, our approach puts

the original matrix on disk so as to scale to large NMF problems using commodity

servers. A closely related work is from Liu et al. [57]. They propose a scheme of

implementing the multiplicative update approach on MapReduce. Their scheme is
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based on the traditional form of update functions and thus has the intermediate data

explosion issue, which results in poor performance.

It has been shown that frequent updates can accelerate expectation maximization

(EM) algorithms [18, 70, 85, 96]. Somewhat surprisingly, there has been no attempt

to apply this method to NMF, even though there is equivalence between certain vari-

ations of NMF and some EM algorithms like K-means [24]. Our work demonstrates

that frequent updates can also accelerate NMF.

3.8 Conclusion

In this chapter, we find that by leveraging a new form of factor matrix update

functions, block-wise updates, we can perform local aggregation and thus have an

efficient MapReduce implementation for NMF. Moreover, we propose frequent block-

wise updates, which aim to use the most recently updated data whenever possible. As

a result, frequent block-wise updates can further improve the performance, compared

with concurrent block-wise updates. We implement concurrent block-wise updates

on MapReduce and implement frequent block-wise updates on iMapReduce for two

classical NMFs: one uses the square of Euclidean distance as the loss function, and

the other uses the generalized KL-divergence. With both synthetic and real-world

datasets, the evaluation results show that our iMapReduce implementation with fre-

quent block-wise updates is up to two orders of magnitude faster than the existing

MapReduce implementation with the traditional form of update functions.
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CHAPTER 4

SCALABLE DISTRIBUTED BELIEF PROPAGATION
WITH PRIORITIZED BLOCK UPDATES

4.1 Introduction

Probabilistic graphical models have been used for reasoning in a wide range of ap-

plication domains [35, 43, 86, 99, 112]. Inference in these models, including marginal-

ization and maximum a posteriori estimation, forms the basis of many statistical

methods in knowledge management. Usually, exact inference in a probabilistic graph-

ical model is NP-hard. As a result, there have been many approaches on introducing

both variational and sampling approximations to inference. Among them, loopy belief

propagation (BP) and its variants [39,72,82,92] are popular message passing methods

for performing approximate inference.

It has been shown that the schedule for updating messages can make a huge

difference to the running time of BP algorithms. Specifically, dynamic scheduling

schemes, which determine the order of updating messages by the changes of message

values, can significantly speedup BP algorithms [26, 29, 30, 83]. Although dynamic

scheduling schemes have potential to speedup BP algorithms, existing ones cannot

fully utilize the potential. Most of them typically select one message for updating each

time, e.g., the message with the highest priority value. As a result, many operations

need to be performed so as to select next message. That is, the cost of realizing such

a dynamic scheduling scheme is high.

In this research, we propose to select a set of messages instead of a single one

to update at a time. Hence, the amortized cost of selecting one message is low.
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Moreover, a novel priority is leveraged to determine which messages are selected. In

other words, we present a prioritized block scheduling scheme, which selects a block

of messages to update via a priority. The priority allows messages that are more

useful towards achieving convergence to be selected, and the computation cost of the

priority is low. To this end, we introduce an efficient incremental update mechanism,

which propagates only the changes of original messages. The change of a message

is efficiently computed using the changes of original incoming messages. Also, the

change can be directly utilized to calculate the priority. We refer to this mechanism

as an incremental-update approach.

As the probabilistic graphical models are applied to model large and complex

applications, such as image restoration for high-resolution images, it is desirable

to leverage the parallelism of a cluster of machines to reduce the inference time.

Therefore, we design and implement a distributed framework, Prom, which facilitates

the implementation of BP and other graph algorithms in a distributed environment.

Prom uses the proposed scheduling scheme as its built-in scheduling and supports

the incremental-update approach. We evaluate two BP algorithms, the sum-product

algorithm and the max-product algorithm on Prom, on a local cluster of machines as

well as the Amazon EC2 cloud [1].

More specifically, our main contributions are as follows:

• We propose a novel scheduling scheme for BP algorithms. It selects a set of

vertices to update at a time (in turn, a set of messages are selected, since all

its outgoing messages are selected when a vertex is selected). As a result, it

performs the selection of vertices for many message updates simultaneously

instead of for one message update, and thus reduces the overhead of scheduling

(since the amortized cost of selecting one message is low).

• We present a novel priority, which is leveraged to determine which messages are

selected. The priority is vertex-based and can well capture the gain of updating
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a vertex (updating its outgoing messages). In other words, updating a vertex

with large priority value will send out highly useful outgoing messages towards

achieving convergence. To keep the computation of the priority inexpensive,

an incremental-update approach is introduced. The message computed by the

incremental-update approach can be directly used to derive priority. Further-

more, the message update in the incremental-update approach can be done by

accumulating incoming changes rather than by computing from scratch.

• We develop an asynchronous distributed framework, Prom, to support the pro-

posed scheduling scheme and the incremental-update approach. Prom eases the

process of programming BP and other graph algorithms in a distributed environ-

ment and does not require users to have distributed programming experience.

Prom is evaluated via extensive experiments with both synthetic and real-world

data. The evaluation results show that the proposed scheduling scheme outper-

forms the state-of-the-art counterpart and the incremental-update approach can

further boost it. Moreover, a scalability test on a 50-node cluster demonstrates

nearly linear scaling performance for large graphical models.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the

background of BP. Section 4.3 introduces an incremental update mechanism for BP

algorithms. Our scheduling scheme is presented in Section 4.4. Section 4.5 provides

the design and implementation of Prom. Section 4.6 presents the evaluation result,

and Section 4.7 discusses related work. This chapter is concluded in Section 4.8.

4.2 Belief Propagation

Probabilistic graphical models, such as Bayesian networks, factor graphs, and

pairwise Markov Random Fields (MRFs), are popular tools to capture uncertainty in

real-world applications. Without loss of generality, we consider factor graphs, since
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any other graphical models can be converted to factor graphs [43]. A factor graph is a

bipartite graph with two types of vertices: variable vertices and factor vertices. Each

variable vertex represents a single random variable (e.g., xi). Each factor vertex (e.g.,

fj) denotes a function that maps a subset of random variable values (e.g., Xj) to a non-

negative real-valued number so as to capture the compatibility of an assignment to

those variables. The arguments are graphically represented by edges, which connect

a particular function vertex with its variable vertices. Therefore, a factor graph

is a factored representation of a joint probability distribution: P (x1, x2, ..., xn) =

1
Z

∏
j∈J fj(Xj), where Z is the normalization constant.

We next briefly review two BP algorithms, the sum-product algorithm and the

max-product algorithm, and then discuss asynchronous BP algorithms.

4.2.1 Sum-Product Algorithm

Marginal probabilities of the distribution represented by a factor graph are cen-

tral to inference. The sum-product algorithm provides an efficient way to compute

marginal probabilities on a factor graph. It propagates messages in both directions

along edges. Each vertex sends and receives messages till reaching a stable situation,

and then the incoming messages are used to estimate the marginal probabilities of

the vertex. Let mi→a(xi) and ma→i(xi) denote the message sent from variable vertex

xi to factor vertex fa and the message sent from fa to xi, respectively. They can be

updated by the following equations:

mt
i→a(xi) = λ

∏
k∈N(i)\a

mt−1
k→i(xi), (4.1)

mt
a→i(xi) = λ

∑
Xj\xi

f(Xj)
∏

j∈N(a)\i

mt−1
j→a(xj), (4.2)

where N(i)\a denotes the set of neighbors of a given vertex i (xi) excluding vertex a

(fa), and λ is a normalization factor to ensure all elements of the messages sum to 1.
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The belief at a variable vertex (e.g., i) is proportional to the product of all the

messages coming to the vertex: bi(xi) ∝
∏

k∈N(i) mk→i(xi). Then, the estimate of

the marginal probability is P (xi) ≈ bi(xi). While the sum-product algorithm con-

verges to the exact marginal probabilities in acyclic graphs, there are no guarantees

of convergence or correctness for graphs with loops. Nonetheless, the sum-product

algorithm is widely applied on cyclic graphs for approximate inference with great

success [20, 65,92].

4.2.2 Max-Product Algorithm

In some cases, we are interested in determining which valid configuration has the

largest probability rather than determining the marginal probabilities. The max-

product algorithm addresses this problem efficiently. Message updates in the max-

product algorithm are similar with those in the sum-product algorithm. In fact, we

only need to replace
∑

with max in computing factor-to-variable messages. The

message updates in the max-product algorithm are as follows:

mt
i→a(xi) = λ

∏
k∈N(i)\a

mt−1
k→i(xi), (4.3)

mt
a→i(xi) = λmax

Xj\xi
f(Xj)

∏
j∈N(a)\i

mt−1
j→a(xj). (4.4)

4.2.3 Asynchronous BP

We can represent each message as a vector in the vector space S ⊂ Rd, and

represent an entire set M of messages as a vector in S|M|. The BP algorithm can be

considered as the iterative algorithm with an update function F : S|M| → S|M|, i.e.

mt = F (mt−1).

BP aims to find a fixed point m∗ where m∗ = F (m∗). BP is guaranteed to converge

to a unique m∗, if the update function F is a contraction under a message norm,

‖F (m)−m∗‖ ≤ α‖m−m∗‖, 0 ≤ α < 1,
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where the message norm ‖ · ‖ measures the distance between messages. If F is a

max-norm contraction, then we have ‖F (m) − m∗‖∞ ≤ α‖m − m∗‖∞, where the

max-norm ‖ · ‖∞ is defined as the maximum of the individual message norms, ‖mt −

mt−1‖∞ = maxi,j ‖mt
i→j − mt−1

i→j‖. In this research, we use the max-norm to measure

the convergence of BP. Mooij and Kappen [68] present sufficient conditions for F to

be a contraction under the max-norm.

Function F can also be viewed as a set of individual functions, and each individual

function Fi applies to one message. These individual update functions can be used

to define synchronous BP and asynchronous BP. In synchronous BP, the functions

compute the new values of all messages simultaneously at every iteration using their

values from last iteration. In asynchronous BP, the functions update messages using

the most recent values. The convergence rate of asynchronous BP (with a pre-defined

update order) is proven to be at least as good as that of synchronous BP [26].

For asynchronous BP, it has been shown that the dynamic scheduling, which uses

a priority to determine the order of updating messages, converges much faster than

the static scheduling [26, 29, 30, 83]. The intuition behind the dynamic scheduling is

that sending a message whose current value is very different from its previous value

is perhaps more useful, and thus leads to more rapid transfer of information across

the graph, while sending a message whose value does not change is useless.

4.3 Incremental Updates

The general techniques of incremental updates have shown efficiency in many algo-

rithms, such as Nonnegative Matrix Factorization [95] and Expectation-Maximization

[96]. In this section, we present an incremental update mechanism for BP algorithms,

referred to as an incremental-update approach. In contrast, the traditional way of

updating messages (described in the previous section) is referred to as a basic-update

approach. The incremental-update approach propagates only the incremental part
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(change) of the original message. The message update in the incremental-update

approach can be performed by accumulating incoming changes instead of computing

from scratch, and thus is much more efficient than that in the basic-update approach.

Furthermore, since it usually calculates the priority value using the changes of mes-

sages, the dynamic scheduling can benefit from the incremental-update approach.

The basic idea of the incremental update is inspired by the Hugin architecture [21],

an approach proposed for the exact inference. It uses an efficient way to update mes-

sages, which computes the marginal of a vertex as the product of messages once

and then divides a message out from the marginal when one needs to update a mes-

sage. However, the incremental update we proposed aims to support asynchronous

computation. The order of asynchronous computations is based on a priority-based

scheduling. The message computed by our incremental update can be directly used

to derive priority, while there is no concept of priority in the Hugin architecture.

Furthermore, our incremental update performs log-space calculations, so it can use

addition/subtraction to update messages, while the Hugin architecture uses more

expensive multiplication/division.

To derive an incremental update mechanism for a BP algorithm, we treat messages

in log-space. A message in log-space is the logarithmic equivalent of the original

message, i.e., m(xi) = lnm(xi).

4.3.1 Incremental Updates for Sum-Product

When the messages are in log-space, the message computation for the sum-product

algorithm is as follows:

mt
i→a(xi) =

∑
k∈N(i)\a

mt−1
k→i(xi) + β, (4.5)

mt
a→i(xi) = ln(λ

∑
Xj\xi

f(Xj)e
gt−1
a→i(xj)), (4.6)
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where m(xi) = lnm(xi), β = ln(λ), and gt−1
a→i(xj) =

∑
j∈N(a)\im

t−1
j→a(xj). Then, the

belief at a variable vertex (e.g., i) can be computed as: bi(xi) ∝ e
∑

k∈N(i)mk→i(xi).

We can make a slight modification to Eq. (4.5) in which we omit normalization

factor β. As Pearl [72] pointed out, normalizing the messages is only to avoid numer-

ical underflow and makes no differences to the final beliefs. Since we still keep the

normalization factor in Eq. (4.6) and messages are in log-space, there is no numerical

underflow problem. Then, the message computation can be performed incrementally.

The message mt
i→a(xi) can be incrementally computed as follows:

∆mt
i→a(xi) =

∑
k∈N(i)\a

∆mt−1
k→i(xi), (4.7)

mt
i→a(xi) = mt−1

i→a(xi) + ∆mt
i→a(xi), (4.8)

where m0
i→a(xi) = 0, and ∆m0

k→i(xi) = m0
k→i(xi) is the initial message.

In our incremental-update approach, a vertex sends the incremental part of the

original message instead of the message itself. For example, vertex xi sends message

∆mt
i→a(xi) to factor vertex fa. In order to compute the belief, variable vertex xi also

accumulates the messages received from its neighbors, e.g., mt
k→i(xi) = mt−1

k→i(xi) +

∆mt
k→i(xi).

The function ga→i(xj) in Eq. (4.6) can be also incrementally computed. We have

∆gta→i(xj) =
∑

j∈N(a)\i

∆mt
j→a(xj), (4.9)

gta→i(xj) = gt−1
a→i(xj) + ∆gta→i(xj), (4.10)

where g0
a→i(xj) = 0.

Then, the incremental message sent from factor vertex fa to variable vertex xi can

be computed as follows:
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∆mt
a→i(xi) = mt

a→i(xi)−mt−1
a→i(xi) (4.11)

= ln(λ
∑
Xj\xi

f(Xj)e
gt−1
a→i(xj))−mt−1

a→i(xi),

where m0
a→i(xi) is the initial message. Factor vertex fa also keeps records of gt−1

a→i(xj)

and mt−1
a→i(xi).

Since the incremental-update approach uses only new incoming incremental mes-

sages to compute outgoing incremental messages, the complexity of computing an

outgoing message for a vertex depends on the number of new incoming messages the

vertex has received (since last update) rather than the vertex’s degree. This is highly

useful especially in the asynchronous communication model (e.g., under the dynamic

scheduling), in which only part of a vertex’s incoming messages may be updated when

the algorithm computes its outgoing messages. In contrast, the basic-update approach

always computes messages from scratch no matter how many incoming messages are

updated. Its computation complexity is determined by the vertex’s degree.

4.3.2 Incremental Updates for Max-Product

When the messages are in log-space, the message computation for the max-product

algorithm is as follows:

mt
i→a(xi) =

∑
k∈N(i)\a

mt−1
k→i(xi) + β, (4.12)

mt
a→i(xi) = ln(λmax

Xj\xi
f(Xj)e

gt−1
a→i(xj)), (4.13)

where mt
i→a(xi) = lnmt

i→a(xi), m
t−1
k→i(xi) = lnmt−1

k→i(xi), m
t
a→i(xi) = lnmt

a→i(xi),

β = ln(λ), and gt−1
a→i(xj) =

∑
j∈N(a)\im

t−1
j→a(xj).

The only difference in computing messages between the max-product algorithm

and the sum-product algorithm is that the former one replaces
∑

with max in com-

puting factor-to-variable messages. As a result, the message update for the max-
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product algorithm can be performed incrementally as well. Computing the incremen-

tal variable-to-factor message is the same with that in the sum-product algorithm (so

is ga→i(xj)). Here, we only show how to incrementally compute the factor-to-variable

message. The incremental message sent from factor vertex fa to variable vertex xi

can be computed as follows:

∆mt
a→i(xi) = mt

a→i(xi)−mt−1
a→i(xi) (4.14)

= ln(λmax
Xj\xi

f(Xj)e
gt−1
a→i(xj))−mt−1

a→i(xi),

where m0
a→i(xi) is the initial message. Factor vertex fa also keeps records of gt−1

a→i(xj)

and mt−1
a→i(xi).

Using mathematical induction, it is straightforward to verify that performing mes-

sage updates traditionally (i.e., the basic-update approach) and performing message

updates incrementally (i.e., the incremental-update approach) are equivalent.

4.4 Our Scheduling Scheme

In this section, we present our scheduling scheme, which is inspired by the residual

scheduling [26]. The residual scheduling leverages the difference in values of the

message before and after the update as the residual of the message. By giving the

message with high residual a high execution priority, the BP algorithm can potentially

converge fast. The residual scheduling uses a priority queue to order all outgoing

messages’ residuals. Every time it sends out the outgoing message with the largest

residual in the priority queue and then updates the queue.

The issue of the residual scheduling is that it has high overhead. It always selects

one message to update at a time. Once the message is updated, it needs to recompute

the priorities of the messages that have been affected and maintain the priority queue

so as to select next message. Moreover, the residual scheduling determines a message’s

90



priority by actually computing the message. Many messages are computed only for

the purpose of obtaining their priority values, and are never sent out. As a result, in

order to select one message, many operations have to be performed.

Our scheduling scheme selects a set of messages instead of a single one to update

each time so as to reduce the cost. It utilizes a priority to determine which messages

are selected. In addition, we also present a novel priority, which allows messages

that are more useful towards achieving convergence to be selected (without actually

computing the messages in advance).

4.4.1 Prioritized Block Scheduling

Our scheduling scheme is over vertices. That is, when a selected vertex is up-

dated, all its outgoing messages will be computed and sent out. Scheduling over

vertices rather than messages can reduce the cost of selecting messages, since a ver-

tex usually has at least several messages. Updating a vertex always uses the most

recently available data (i.e., incoming messages). Our scheduling scheme selects a

block of k vertices to update each time. Once the block of selected vertices are up-

dated, it selects another block of vertices to update. A priority is used to determine

which vertices are selected. Every time our scheduling scheme selects the top-k ver-

tices in terms of the priority value. Since our scheduling scheme selects a block of

vertices to update via a priority, we refer to it as the prioritized block scheduling.

The size of the block (i.e., k) balances the tradeoff between the gain from the

prioritized block scheduling and the cost of selecting the k vertices. Setting k too

small may incur considerable cost, e.g., when k = 1, the prioritized block scheduling

can be in principle seen as a vertex-based version of the residual scheduling (since it

selects one vertex to update at a time). Setting k too large may degrade the effect

of the prioritized block scheduling, e.g., if setting k as the number of vertices, it

degrades to the round-robin scheduling. We will show in experiments (Section 4.6.3)
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that a quite large range of k can allow the prioritized block scheduling to have better

performance than the round-robin scheduling.

The prioritized block scheduling uses an efficient way to select the top-k vertices.

The naive way is to first sort all the vertices by their priority values and then pick the

top ones. However, sorting all the vertices can be expensive and time consuming (at

least O(n log n) time). Instead, the prioritized block scheduling first finds the vertex

with the k-th largest priority value. Then, it utilizes the k-th largest priority value

as a threshold to filter the vertices. That is, it scans all the vertices once and picks

only the vertices with larger or equivalent priority values. Randomized-Select [19]

is utilized to find the k-th largest value. It has an expected running time of O(n).

In this way, the prioritized block scheduling takes O(n) time (including the time in

scanning all the vertices) in extracting the top-k vertices.

Our prioritized block scheduling has much lower cost of selecting one message

than the residual scheduling. Updating one message in the residual scheduling needs

to reset its residual and adjust the dependent messages’ residuals (the messages that

will be sent from the updated message’s destination vertex). Assuming the degree

of the message’s destination vertex is d, there are (d − 1) dependent messages. We

know that adjusting an element’s priority value in a priority queue with n elements

typically needs O(log n) time. Given a factor graph with |V | vertices and |E| edges,

there are O(|E|) messages in the priority queue. Hence, selecting a message to update

in the residual scheduling needs O(d∗log |E|) time, O(log |E|) for the selected message

itself and (O(d− 1) ∗ log |E|) for the (d− 1) dependent messages. In our prioritized

block scheduling, selecting k vertices to update only needs O(|V |) time. Suppose the

averaged degree of these k vertices is d′. Then, (k ∗d′) messages will be updated once

the k vertices are selected. As a result, the amortized cost of selecting one message

to update is O( |V |
k∗d′ ). For a reasonably large k (e.g., k is one tenth of |V |), the cost is

low and much lower than that in the residual scheduling.
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4.4.2 Priority

We define the residual of an incremental message ∆m(xi) as its L1-norm (in log-

space),

r(∆m) =
∑
xi

|∆m(xi)|.

Next, we derive the priority utilized in our prioritized block scheduling for the sum-

product algorithm and for the max-product algorithm, respectively. The priority is

vertex-based, and the priority of a vertex is directly computed from the residuals of

its incoming messages.

4.4.2.1 Priority in Sum-Product

For any outgoing message sending from a variable vertex (e.g., i), its residual can

be computed as follows:

r(∆mi→a) =
∑
xi

|∆mt
i→a(xi)| =

∑
xi

|
∑

k∈N(i)\a

∆mt−1
k→i(xi)|.

Therefore, we use the summation over all assignments of incoming messages in log-

space,

pri =
∑
xi

|
∑
k∈N(i)

∆mt−1
k→i(xi)|,

as the priority of a variable vertex (i), which well approximates the residual of each

individual outgoing message of the variable vertex.

For any outgoing message sending from a factor vertex (e.g., a), its residual can

be computed as follows:

r(∆ma→i) =
∑
xi

|∆mt
a→i(xi)|

=
∑
xi

| ln
∑

Xj\xi f(Xj)e
gt−1
a→i(xj)∑

Xj\xi f(Xj)eg
t−2
a→i(xj)

|.
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Applying the fact for any y1 > 0, y2 > 0, z1 > 0, z2 > 0, y1+y2
z1+z2

≤ max{y1
z1
, y2
z2
}, we have

r(∆ma→i) ≤
∑
xi

| ln max
Xj\xi

f(Xj)e
gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

≤
∑
xi

|max
Xj\xi

ln
f(Xj)e

gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

≤
∑
xi

max
Xj\xi

| ln e
gt−1
a→i(xj)

eg
t−2
a→i(xj)

|

=
∑
xi

max
Xj\xi

|∆gt−1
a→i(xj)|

=
∑
xi

max
Xj\xi

|
∑

j∈N(a)\i

∆mt−1
j→a(xj)|.

Applying the fact for any y1 > 0, y2 > 0, z1 > 0, z2 > 0, y1+y2
z1+z2

≥ min{y1
z1
, y2
z2
}, we

have

r(∆ma→i) ≥
∑
xi

| ln min
Xj\xi

f(Xj)e
gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

≥
∑
xi

| min
Xj\xi

ln
f(Xj)e

gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

≥
∑
xi

min
Xj\xi

| ln e
gt−1
a→i(xj)

eg
t−2
a→i(xj)

|

=
∑
xi

min
Xj\xi

|∆gt−1
a→i(xj)|

=
∑
xi

min
Xj\xi

|
∑

j∈N(a)\i

∆mt−1
j→a(xj)|.

We have derived the lower bound and the upper bound for r(∆ma→i). Then,

we use a value between these two bounds to approximate r(∆ma→i). Let va→i =∑
xi

1
s

∑
Xj\xi |

∑
j∈N(a)\i ∆m

t−1
j→a(xj)|, where s is the number of possible states of

Xj\xi. We can see that (since va→i is the average) va→i is between those bounds.

Therefore, we use va→i to approximate r(∆ma→i), and use the summation of aver-

aged values over all assignments of incoming messages in log-space,
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pra =
∑
xi

1

s

∑
Xj\xi

|
∑
j∈N(a)

∆mt−1
j→a(xj)|,

as the priority of a factor vertex (a). Intuitively, this priority well captures the

importance of new incoming messages available to the factor vertex.

4.4.2.2 Priority in Max-Product

The message update for a variable vertex in the max-product algorithm is the same

with that in the sum-product algorithm. Accordingly, the priority for a variable vertex

defined in the sum-product algorithm also applies to the max-product algorithm.

Next, we derive the priority for a factor vertex in the max-product algorithm.

For any outgoing message sending from a factor vertex (e.g., a), its residual can

be computed as follows:

r(∆ma→i) =
∑
xi

|∆mt
a→i(xi)|

=
∑
xi

| ln
maxXj\xi f(Xj)e

gt−1
a→i(xj)

maxXj\xi f(Xj)eg
t−2
a→i(xj)

|.

Applying the fact for any y1 > 0, y2 > 0, z1 > 0, z2 > 0, max{y1,y2}
max{z1,z2} ≤ max{y1

z1
, y2
z2
}, we

can derive the following inequations:

r(∆ma→i) =
∑
xi

| ln
maxXj\xi f(Xj)e

gt−1
a→i(xj)

maxXj\xi f(Xj)eg
t−2
a→i(xj)

|

≤
∑
xi

max
Xj\xi

| ln f(Xj)e
gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

=
∑
xi

max
Xj\xi

|
∑

j∈N(a)\i

∆mt−1
j→a(xj)|.

Applying the fact for any y1 > 0, y2 > 0, z1 > 0, z2 > 0, max{y1,y2}
max{z1,z2} ≥ min{y1

z1
, y2
z2
},

we can derive the following inequations:
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r(∆ma→i) =
∑
xi

| ln
maxXj\xi f(Xj)e

gt−1
a→i(xj)

maxXj\xi f(Xj)eg
t−2
a→i(xj)

|

≥
∑
xi

min
Xj\xi

| ln f(Xj)e
gt−1
a→i(xj)

f(Xj)eg
t−2
a→i(xj)

|

=
∑
xi

min
Xj\xi

|
∑

j∈N(a)\i

∆mt−1
j→a(xj)|.

From the above inequations, we can see that the max-product algorithm has the

same bounds for the residual of an outgoing message sending from a factor vertex as

the sum-product algorithm. Accordingly, the priority for a factor vertex defined in

the sum-product algorithm applies to the max-product algorithm as well.

The defined priority uses summation to aggregate incoming messages, and thereby

we call it the sum priority. From the above derivation, we can see that the sum

priority has strong connections with the residuals of its outgoing messages and thus

well captures the gain of updating the vertex. That is, updating a vertex with large

sum priority will send out highly useful outgoing messages. In contrast, updating a

vertex with zero sum priority will waste a update, since the outgoing messages will

not change.

4.4.3 Convergence

The prioritized block scheduling guarantees that BP algorithms converge if update

function F is a max-norm contraction. It has been shown that when F is a max-

norm contraction, if a scheduling scheme can guarantee that every message is updated

infinitely often (until convergence), the BP algorithm will converge [26]. We first show

that our prioritized block scheduling can fulfill this requirement.

Lemma 4.4.1. If update function F is a max-norm contraction, the prioritized block

scheduling guarantees that every message is updated infinitely often.

Proof. We prove this lemma by contradiction. Assume there are a set of messages

that belong to (sent from) a set of vertices, C, which are updated only before a time
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point t. We use pri to denote the priority value of vertex i. Since update function F

is a contraction, the messages that are updated will move towards their fixed points.

Consequently, at some time point after t, for any vertex that does not belong to C

(i.e., i ∈ (V − C), where V is the whole set of vertices), its outgoing messages can

reach the fixed points (since they are always being updated). At that time, for any

i ∈ (V −C), we have pri = 0; if we also have pri = 0 for any i ∈ C, the BP algorithm

has converged; otherwise, a vertex in C (e.g., j, prj > 0) must be selected to update,

which contradicts with the assumption that any vertex in C is updated only before

time point t.

Therefore, we have the following theorem.

Theorem 4.4.2. If update function F is a max-norm contraction, BP algorithms

with the prioritized block scheduling converge.

4.5 Distributed Framework

BP algorithms and its variants are commonly used to perform inference on large

real-world probabilistic graphical models. It is desirable to leverage the parallelism of

a cluster of machines to reduce the completion time, and to have a general framework

to facilitate the implementation in a distributed environment. BP algorithms (and its

many extensions) are graph algorithms. Actually, graph algorithms have become an

essential component in knowledge discovery, since graphs can capture complex depen-

dencies and interactions. Therefore, we propose Prom, an asynchronous distributed

framework for graph algorithms.

Prom provides several high-level APIs to users for implementing BP or other graph

algorithms without worrying about the complexity of parallel computation. Prom

supports asynchronous executions on graphs, in which vertices are updated using the

latest available values, and leverages the proposed prioritized block scheduling as its

default scheduling in order to efficiently order vertex updates.
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Prom is built upon Maiter [107], an open-source graph processing framework.

Maiter has shown good performance for several graph algorithms. In Maiter, users

specify the application logic simply through a vertex update function. However,

Maiter assumes that each vertex (or message) has only one scalar value (e.g. a

floating-point number), and thus cannot support algorithms with vector values, such

as BP and Personalized PageRank [37]. Additionally, Maiter assumes that the up-

date function has only one operation (e.g., addition) with commutative and associa-

tive properties, but there are many graph algorithms with more than one operations

in the update function (e.g., sum-product has addition and multiplication). These

limitations need to be removed so as to accommodate more graph algorithms. To

this end, Prom extends Maiter to support a broader class of graph algorithms effi-

ciently. Prom makes two basic assumptions: (1) the graph structure is static and will

not change during execution; (2) asynchronous execution with dynamically ordering

vertex updates does not affect the correctness of the algorithm. Graph algorithms

satisfying these two assumptions can be implemented on Prom and can benefit from

the efficient prioritized block scheduling.

A vertex-centric programming model (which has been shown to be efficient for

many graph algorithms) is adopted by Prom. That is, each vertex is considered

as an independent computing unit, and the operations are performed over vertices

until termination. Vertex updates are performed on workers, and there is a master

controlling the flow of computation. All workers (and the master) run in parallel and

communicate through MPI.

4.5.1 Data Partition and Storage

The input graph is split into partitions and each worker is responsible for one

partition. Each partition consists of a set of vertices and all their (outgoing) edges.

Each worker leverages an in-memory table, info table, to store the vertices in its
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partition. For graph algorithms under the vertex-centric programming model, storing

the following information is typically sufficient for a vertex: ID, incoming messages,

outgoing messages, priority, state, and edges (with edge data associated with each

edge). Hence, as shown in Figure 4.1, Prom represents a vertex by a tuple with

six fields, {v, im, om, pr, st, sd}, where field v for the vertex ID, im for the incoming

messages, om for the outgoing messages, pr for the priority value, st for the state,

and sd for the static data (e.g., edges and their associated data).

… … … … ……

info tableprioritized list

…

Figure 4.1. Data storage in a worker.

Prom allows users to define each field of the info table. For example, to implement

the incremental-update approach for BP, we can define the incoming message field

(im) of a vertex with [∆mva ,∆mvb , . . . ,∆mvl ,mva ,mvb , . . . ,mvl ] (each item can be

a vector), where ∆mva stores the new incoming incremental message from neighbor

va, and mva accumulates the incoming messages already received from va. The static

data (sd) is usually defined to contain edges and the data associated with edges (e.g.,

factor functions of the factor graph). Each tuple is stored in one entry of the info

table, which is indexed by the vertex ID (v).

4.5.2 Vertex Operation

Each worker has two main operations for its stored vertices: the catch operation

and the update operation. The catch operation uses a user-defined function (c fun())

to aggregate a new incoming message for a vertex (say vj) to its stored incoming

messages. That is, function c fun() needs to update the incoming message field

(imj) of vertex vj, upon receiving a new incoming message. Also, it needs to update
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the priority field (prj) to aggregate the importance of the new incoming message.

By defining function c fun() in different ways, users can realize different update

approaches (e.g., incremental-update or basic-update) and priorities.

The update operation uses another user-defined function (u fun()) to compute

outgoing messages (and the state) for scheduled vertices. When it is performed on a

vertex, function u fun() computes outgoing messages and updates the state (e.g., the

belief distribution of the vertex) by incorporating the latest incoming messages, and

modifies the incoming message field if necessary as well as resets the priority value to

zero.

Prom uses MPI to transmit messages between workers. All messages during trans-

mission are in the format (dst, src, cnt), where dst denotes the message’s destination

vertex, src indicates the source vertex, and cnt denotes the message’s content. The

catch operation and the update operation are realized in two threads for asynchronous

execution.

4.5.3 Distributed Prioritized Execution

Prom leverages the prioritized block scheduling (described in Section 4.4.1) as its

default scheduling scheme. Since a centralized ordering is inefficient in a distributed

environment, Prom allows each worker to build its own prioritized block scheduling.

Round by round, each worker selects its local top-k vertices in terms of the priority

value as a block to update. All workers selects vertices independently.

A worker puts the block of selected vertices into a list, prioritized list. To minimize

the copy cost, only vertex IDs are put in the prioritized list, as shown in Figure 4.1.

Vertex IDs are used to locate corresponding vertices in the info table. All the vertices

in the prioritized list will be updated by the update operation during the round. In

the first round, all vertices are put into the prioritized list to guarantee that each

vertex is updated at least once before convergence.
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4.5.4 Distributed Termination Check

Prom adopts a passively monitoring model to perform termination check. Each

worker utilizes a user-defined function (m fun()) to periodically measure its local

progress by scanning the info table (typically looking at the incoming message field),

and reports the progress to the master. The master aggregates the local progress

reports from workers (in the way that a user specifies) so as to obtain the global

progress, and in turn determines whether the termination condition is satisfied. If

yes, the master sends termination signals to all workers. Upon receiving the terminate

signal, a worker stops updating its info table and dumps the table to a distributed

file system (i.e., HDFS) so as to reliably store the converged results.

We use the following convergence criterion (max-norm) for BP algorithms (where

ε ≥ 0 is a small constant):

max
i,j
‖∆mi→j‖1 ≤ ε.

4.6 Evaluation

In this section, we evaluate the proposed prioritized block scheduling and the

priority. Both the sum-product algorithm and the max-product algorithm are imple-

mented on Prom. For the comparison purpose, both the incremental-update approach

and the basic-update approach are used. To show the performance of the prioritized

block scheduling, we compare it with the round-robin scheduling (static scheduling).

We also compare the prioritized block scheduling with the state-of-the-art dynamic

scheduling.

4.6.1 Experiment Setup

The experiments are performed on a local cluster and a large-scale cluster on

Amazon EC2 [1]. The local cluster consists of 4 machines, and each of them has

Intel E8200 dual-core 2.66GHz CPU, 4GB of RAM, and 1TB of hard disk. These 4
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machines are connected through a Gbit switch. The large-scale cluster consists of 50

medium instances.

Table 4.1. Factor Graph Summary

Dataset # of Vertices Description
gird-n 4 ∗ n2 − 2 ∗ n n× n grid MRF

uw-theory 133, 999 uw-theory MLN
uw-systems 414, 340 uw-systems MLN

Both synthetic and real-world factor graphs are used. We generate one type

of pairwise MRFs, random grids with binary variables (parameterized by the Ising

model) [26], and convert them into factor graphs. Random grids are chosen because

they are standard benchmarks for evaluating BP algorithms. For real-world graphs,

we consider Markov Logic Networks (MLNs) [75]. Alchemy is leveraged to compile

the MLNs from the UW-CSE data collection [4] into factor graphs. After compiling,

the factor functions will be adjusted if BP algorithms on the compiled graphs do

not converge. The factor graphs are summarized in Table 4.1. In order to load

the strongly connected vertices to the same worker and thus reduce across-worker

communication, we utilizes METIS [38] to split a graph into partitions.

Each worker by default sets k as 10% of the number of its local vertices. The

convergence criterion is set to ε = 10−4. Running times are averaged over 10 runs.

4.6.2 Efficiency of Prioritized Block Scheduling
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Figure 4.2. BP algorithms with different scheduling schemes and update approaches.

102



We first show the running time of BP algorithms with the prioritized block schedul-

ing on the local cluster. The running time is measured as the wall-clock time that

BP uses to reach the convergence criterion. The round-robin scheduling is also evalu-

ated as a reference point. For the sum-product algorithm as well as the max-product

algorithm, the prioritized block scheduling is faster than the round-robin schedul-

ing with either the incremental-update approach or the basic-update approach, as

presented in Figure 4.2. For example, the prioritized block scheduling is 1.9x faster

for the sum-product algorithm on grid-200 when the incremental-update approach

is utilized. In addition, the incremental-update approach is always superior to the

basic-update approach. Note that, in all figures, “P-B” indicates the prioritized block

scheduling; “R-R” represents the round-robin scheduling; “Incr” and “Basic” denote

the incremental-update approach and the basic-update approach, respectively.

Table 4.2. Vertex Degree Comparison

Graph overall avg. deg. variable avg. deg.
gird-200 2.5 5.0

uw-theory 3.8 55.7
uw-systems 3.8 78.8

To further show the advantage of the prioritized block scheduling, we evaluate

both scheduling schemes for the sum-product algorithm on real-world factor graphs.

The performance comparison for the max-product algorithm is similar and therefore

omitted here. As plotted in Figure 4.3, the speedup of the prioritized block scheduling

over the round-robin scheduling is up to 2.1x on real-world factor graphs (when the

incremental-update approach is used). Moreover, compared with the basic-update

approach, the incremental-update approach allows the prioritized block scheduling

to achieve up to 4x speedup, much higher than that on the synthetic factor graphs

(Figure 4.2(a)). The different speedups can be attributed to different structures of the

factor graphs. For instance, the real-world factor graphs have much higher degrees

for variable vertices, as shown in Table 4.2.
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Figure 4.3. Prioritized block scheduling on real-world graphs.

We also measure the convergence speed of the different scheduling schemes (when

the incremental-update approach is used). The test is performed on the real-world

factor graph, uw-theory, and the max-norm (maxi,j |∆mi→j(xi)|) is used to measure

the convergence progress. As shown in Figure 4.4, the prioritized block scheduling

converges much more rapidly than the round-robin scheduling.
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Figure 4.4. Convergence progress vs. time.

4.6.3 Impact of k

The block size (i.e., k) balances the tradeoff between the gain from the prioritized

block scheduling and the cost of preparing the prioritized list. Figure 4.5 shows the

convergence speedup results with different k. The speedup is measured over the

running time when k is the number (n) of a worker’s local vertices (i.e., the round-

robin scheduling). From the figures, we can see that a quite large range of k can

allow the prioritized block scheduling to have better performance than the round-

robin scheduling (when either the incremental-update approach or the basic-update

approach is used), and that the optimal speedup happens at around k/n = 0.1. This

is also why we set k/n = 0.1 by default.
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Figure 4.5. The impact of k (varying k/n).

4.6.4 Comparison with Other Schedules

To further demonstrate the efficiency of its built-in prioritized block scheduling,

Prom is also compared with another distributed implementation of the sum-product

algorithm, MPI Splash [30], on the local cluster. MPI Splash utilizes the DBRSplash

scheduling, a distributed version of the ResidualSplash scheduling [29]. The Residu-

alSplash scheduling applies a variation of the residual scheduling in a single machine

(multiple-core) environment, and it has been shown that ResidualSplash is more ef-

ficiently than the original residual scheduling. By recognizing the high overhead of

the residual scheduling, ResidualSplash also defines the residual over vertices instead

of messages and selects a set of vertices to update at a time via a Splash operation.

The Splash operation uses the vertex with the largest residual as a root and updates

vertices around the root. However, not all vertices covered by the Splash operation

have large residuals, and thus some updates might not be useful. ResidualSplash

defines a vertex’s priority as the maximum of the residuals of its incoming messages.

To differentiate this priority with our sum priority, we refer to it as the max priority.

The DBRSplash scheduling is the state-of-the-art dynamic scheduling for BP in a

distributed environment.

To fairly compare Prom with MPI Splash, we instruct Prom to use the same

priority and termination condition as MPI Splash. To compare scheduling schemes

only, we leverage the basic-update approach to implement the sum-product algorithm
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Figure 4.6. Performance comparison with the state-of-the-art dynamic scheduling.

on Prom. As presented in Figure 4.6(a), Prom can be up to 2x faster than MPI Splash,

indicating that the prioritized block scheduling outperforms DBRSplash. In order

to verify that the superiority of Prom over MPI Splash stems from its scheduling

scheme, we implement both the prioritized block scheduling and the ResidualSplash

scheduling (single machine version of DBRSplash) in a single machine environment

and evaluate them with the same settings. The prioritized block scheduling is 1.8x

faster on grid-200 and 2.3x faster on uw-theory than the ResidualSplash scheduling.

In order to show the performance of our sum priority, we compare it with the max

priority. We evaluate these two priorities (when both are utilized by the prioritized

block scheduling) for the sum-product algorithm on real-world graphs. As presented

in Figure 4.6(b), the prioritized block scheduling with our sum priority is 1.2x faster

on uw-theory and 1.5x faster on uw-systems than that with the max priority.

4.6.5 Accuracy

We also assess accuracy of the beliefs computed by Prom (using the prioritized

block scheduling with the incremental-update approach) for the sum-product algo-

rithm. We first compare with the exact result. Since exact inference is intractable

on large graphical models, we here use a small factor graph, grid-10. The beliefs (of

all variable vertices) computed by Prom are compared against the exact beliefs com-

puted by the junction tree algorithm [48]. We use MPI Splash as a reference point.

Kullback-Leibler (KL) divergence is leveraged to measure the difference. From Figure
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4.7, we can see that both Prom and MPI Splash achieve high accuracy. For example,

for more than 90% variable vertices, the KL divergence of the beliefs computed by

Prom from the exact beliefs is less than 0.01.
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Figure 4.7. Cumulative percentage of variable vertices as a function of the KL
divergence.

For large graphs, since exact inference is intractable, we only compare Prom with

MPI Splash. We evaluate both Prom and MPI Splash on grid-200. Beliefs from

both systems are compared by calculating the L1-difference averaged over all variable

vertices. The difference in beliefs computed by the two systems is less than 0.02 in

terms of averaged L1-difference per variable vertex.

4.6.6 Scaling Performance
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Figure 4.8. Scalability test on uw-systems.

Figure 4.8 presents the scaling performance of the prioritized block scheduling

(for the sum-product algorithm) on Prom as the number of workers increases from

10 to 50 on the Amazon EC2 cloud. The real-world factor graph, us-systems, is used.
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The speedup is calculated over the running time of 10 workers. We can see that

the prioritized block scheduling exhibits nearly linear speedup, and that it always

converges faster when the incremental-update approach is utilized than when the

basic-update approach is utilized.

4.7 Related Work

Several works [26, 29, 30, 83] have shown that BP algorithms with the dynamic

scheduling converge faster than those with the static scheduling. The earliest work [26]

proposes the residual scheduling, which selects the outgoing message with largest

residual to update each time. It uses a priority queue to order messages. Besides the

large priority queue maintenance overhead, the problem of the residual scheduling is

that it determines an outgoing message’s residual by actually computing it. Later,

Sutton and McCallum [83] propose to approximate the residual of an outgoing mes-

sage rather than compute it in order to reduce the computation overhead. However,

the cost of ordering messages so as to select the one with the largest residual is still

high. Our prioritized block scheduling scheme selects a set of messages to update

each time in order to reduce the cost.

The ResidualSplash scheduling [29] applies a variation of the residual scheduling

in the multiple-core environment. It defines the residual over vertices instead of mes-

sages. The residual of a vertex is used to determine the Splash ordering, and a Splash

operation uses the vertex with the largest residual as a root and propagates messages

around the root (i.e., among the neighbors within fixed number hops). That is, it

selects a set of messages to update at a time. The ResidualSplash scheduling outper-

forms the residual scheduling, since it reduces the cost of selecting one single message.

However, not all vertices covered by the Splash operation have large residuals, and

thus some updates might not be useful. The DBRSplash scheduling [30] extends

the idea of the ResidualSplash scheduling to a distributed environment. In contrast,
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our prioritized block scheduling selects vertices with high residuals uniformly, and

therefore all scheduled updates are potentially useful.

Since massive graphs become increasingly popular, a series of parallel frame-

works have emerged to scale graph processing. Among them, Priter [106], Maiter

[107], GRACE [88], and GraphLab [61, 62] support prioritized execution. Priter is a

MapReduce-based framework, which requires synchronous iterations. Maiter presents

asynchronous execution but assumes that each vertex (or message) has only one

scalar value. As a result, neither of them supports BP with dynamic scheduling.

GRACE and GraphLab can support BP. GRACE relies on users to implement their

own scheduling schemes and its prototype is built on a shared-memory architecture.

GraphLab uses a general asynchronous model for graph algorithms and provides the

Splash scheduling (based on ResidualSplash) for BP. In comparison, Prom provides

a more efficient scheduling scheme, the prioritized block scheduling.

4.8 Conclusion

In this research, we propose an efficient dynamic scheduling scheme, the prioritized

block scheduling, with a novel priority for BP algorithms. In order to efficiently com-

pute the priority and update messages, we introduce an incremental-update approach,

which is much more efficient than the traditional basic-update approach. In addition,

to facilitate the implementation of BP algorithms and other graph algorithms in

a distributed environment, we design and implement an asynchronous distributed

framework, Prom. Prom uses the prioritized block scheduling as its default schedul-

ing scheme. We implement two BP algorithms, the sum-product algorithm and the

max-product algorithm, on Prom. With both synthetic and real-world datasets, the

evaluation results show that the prioritized block scheduling outperforms the state-

of-the-art dynamic scheduling scheme, and that the incremental-update approach can

further accelerate the prioritized block scheduling.
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CHAPTER 5

ASYNCHRONOUS DISTRIBUTED INCREMENTAL
COMPUTATION ON EVOLVING GRAPHS

5.1 Introduction

A large class of data routinely produced and collected by large corporations can

be modeled as graphs, such as web pages crawled by Google (e.g., the web graph)

and tweets collected by Twitter (e.g., the mention graph for users). Since graphs

can capture complex dependencies and interactions, graph algorithms have become

an essential component in many real-world applications [5,8,34,59,74,104], including

business intelligence, social sciences, and data mining.

An essential property of graphs is that they are often dynamic. As new data

and/or updates are being collected (or produced), the graph will evolve. For example,

search engines periodically crawl the web, and the web graph is evolving as web pages

and hyper-links are created and/or deleted. Many applications must utilize the up-

to-date graph in order to produce results that can reflect the current state. However,

rerunning the computation over the entire graph is not efficient (considering the huge

size of the graph), since it discards the work done in earlier runs no matter how little

changes have been made.

The dynamic nature of graphs implies that performing incremental computation

can improve efficiency dramatically. Incremental computation exploits the fact that

only a small portion of the graph has changed. It reuses the result of the prior com-

putation and performs computation only on the part of the graph that is affected

by the change. Although a number of distributed frameworks have been proposed
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to support incremental computation on massive graphs [11, 17, 60, 69, 73, 102], most

of them apply synchronous updates, which require expensive synchronization barri-

ers. In order to avoid the high synchronization cost, asynchronous updates have been

proposed [9]. In the asynchronous update model, a vertex performs the update using

the most recent values instead of the values from the previous iteration (and there

is no waiting time). Intuitively, we can expect asynchronous updates outperform

synchronous updates since more up-to-date values are used and the synchronization

barriers are bypassed. However, asynchronous updates might require more commu-

nications and perform useless computations (e.g., when no new value available to a

vertex), and thus result in limited performance gain over synchronous updates.

In this chapter, we provide an approach to efficiently apply asynchronous updates

to incremental computation. We first describe a broad class of graph algorithms

targeted by this chapter. We then present our incremental computation approach

through illustrating how to apply asynchronous updates to incremental computation.

In order to address the challenge that asynchronous updates might require more

communications and computations, we present a scheduling scheme to coordinate

updates. Furthermore, we develop a distributed system to support our proposed

asynchronous incremental computation approach. We evaluate our approach on a

local cluster of machines as well as the Amazon EC2 cloud [1]. More specifically, our

main contributions are as follows:

• We propose an approach to efficiently apply asynchronous updates to incremen-

tal computation on evolving graphs for a broad class of graph algorithms. In

order to improve efficiency, a scheduling scheme is presented to coordinate asyn-

chronous updates. The convergence of our proposed asynchronous incremental

computation approach is proved.

• We develop an asynchronous distributed framework, GraphIn, to support in-

cremental computation. GraphIn eases the process of implementing graph al-
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gorithms with incremental computation in a distributed environment and does

not require users to have the distributed programming experience.

• We extensively evaluate our asynchronous incremental computation approach

with several real-world graphs. The evaluation results show that our approach

can accelerate the convergence speed by as much as 14x when compared to

recomputation from scratch. Moreover, a scalability test on a 50-machine cluster

demonstrates our approach works with massive graphs having tens of millions

of vertices and a billion of edges.

The rest of this chapter is organized as following. Section 5.2 formally defines the

problem targeted by this chapter. Section 5.3 proposes our asynchronous incremen-

tal computation approach. The distributed framework for supporting the proposed

asynchronous incremental computation approach is presented in Section 5.4. Section

5.5 presents the evaluation results. Section 5.6 surveys related work, and this chapter

is concluded in Section 5.7.

5.2 Problem Setting

In this section, we first define the problem of performing algorithms on evolving

graphs. We then describe a broad class of graph algorithms which we target.

5.2.1 Problem Formulation

Many graph algorithms leverage iterative updates to compute states (e.g., scores of

importance, closenesses to a specified vertex) of the vertices until convergence points

are reached. For example, PageRank iteratively refines the rank scores of the vertices

(e.g., web pages) of a graph. Such a graph algorithm typically starts with some initial

state and then iteratively refines it until convergence. We refer to this kind of graph

algorithms as iterative graph algorithms.
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We are interested in how to efficiently perform iterative graph algorithms on evolv-

ing graphs. More formally, if we use G to denote the original graph and G′ to represent

the new graph, the question we ask is: for an iterative graph algorithm, given G′ and

the convergence point on G, how to efficiently reach the convergence point on G′.

5.2.2 Iterative Graph Algorithms

We here describe the iterative graph algorithms targeted by this chapter. Typ-

ically, the update function of an iterative graph algorithm has the following form:

x(k) = f(x(k−1)), (5.1)

where the n-dimensional vector x(k) presents the state of the graph at iteration k,

each of its elements is the state for one vertex (e.g., x(k)[i] for vertex i), and x(0) is

the initial state. A convergence point is a fixed point of the update function. That

is, if x(∗) is a convergence point, we have x(∗) = f(x(∗)).

The update function usually can be decomposed into a series of individual func-

tions. In other words, we can update a vertex’s state (e.g., xj) as follows:

x
(k)
j = cj ?

n∑
i=1

?f{i,j}(x
(k−1)
i ), (5.2)

where ‘?’ is an abstract operator (
∑n

i=1 ? represents an operation sequence of length

n by ‘?’), cj is a constant, and f{i,j}(x
k−1
i ) is an individual function denoting the

impact from vertex i to vertex j in the kth iteration. The operator ‘?’ typically has

three candidates, ‘+’, ‘min’, and ‘max’. In this chapter, we target the iterative graph

algorithm that can compute the state in the form of Eq. (5.2).

5.2.3 Example Graph Algorithms

We next illustrate a series of well-known iterative graph algorithms, the update

functions of which can be converted into the form of Eq. (5.2).
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PageRank and Variants: PageRank is a well-known algorithm, which ranks

vertices in a graph based on the stationary distribution of a random walk on the

graph. Each element (e.g., rj) of the score vector r can be computed iteratively as

follows: r
(k)
j =

∑
{i|{i→j}∈E}

dr
(k−1)
i

|N(i)| + (1− d)ej, where d (d < 1) is the damping factor,

{i → j} represents the edge from vertex i to vertex j, E is the set of edges, |N(i)|

is the number of outgoing edges of vertex i, and e is a size-n vector with each entry

being 1
n
. We can convert the update function of PageRank into the form of Eq. (5.2).

If there is an edge from vertex i to vertex j, f{i,j}(x
(k−1)
i ) = dx

(k−1)
i /|N(i)|, otherwise

f{i,j}(x
(k−1)
i ) = 0, cj = (1− d)ej, and ‘?’ is ‘+’.

The update function of Personalized PageRank [37] differs from that of PageRank

only at vector e. Vector e of Personalized PageRank assigns non-zero values only

to the entries indicating the personally preferred pages. Rooted PageRank [80] is a

special case of Personalized PageRank. It captures the probability for two vertices

to run into each other and uses this probability as the similarity score of those two

vertices.

Shortest Paths: The shortest paths algorithm is a simple yet common graph

algorithm which computes the shortest distances from a source vertex to all other

vertices. Given a weighted graph, G = (V,E,W ), where V is the set of vertices,

E is the set of edges, and W is the weight matrix of the graph (if there is no edge

between i and j, W [i, j] =∞). Then the shortest distance (i.e., dj) from the source

vertex s to a vertex j can be calculated by performing the iterative updates: d
(k)
j =

min{d(0)
j ,mini(d

(k−1)
i + W [i, j])}. For the initial state, we usually set d

(0)
s = 0 and

d
(0)
j = ∞ for any vertex j other than s. We can map the update function of the

shortest paths algorithm into the form of Eq. (5.2). If there is an edge from vertex

i to vertex j, f{i,j}(x
(k−1)
i ) = x

(k−1)
i + W [i, j], otherwise f{i,j}(x

(k−1)
i ) = ∞, cj = d

(0)
j ,

and ‘?’ is ‘min’.
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Connected Components: The connected components algorithm is an impor-

tant algorithm for understanding graphs. It aims to find the connected components

in a graph. The main idea of the algorithm is to label each vertex with the max-

imum vertex id across all vertices in the component which it belongs to. To this

end, each vertex iteratively updates its component id as the maximum vertex id

that it has seen. Initially, a vertex j sets its component id p
(0)
j as its own vertex

id, i.e., p
(0)
j = j. Then the component id of vertex j can be iteratively updated by

p
(k)
j = max{p(0)

j ,maxi(p
(k−1)
i )}. When no vertex in the graph changes its component

id, the algorithm converges. As a result, the vertices having the same component id

belong to the same component. We can map the update function of the connected

components algorithm into the form of Eq. (5.2). If there is an edge from vertex i

to vertex j, f{i,j}(x
(k−1)
i ) = x

(k−1)
i , otherwise f{i,j}(x

(k−1)
i ) = −∞, cj = j, and ‘?’ is

‘max’.

Other Algorithms: There are many more iterative graph algorithms, update

functions of which can be mapped into the form of Eq. (5.2). We name several ones

here. Hitting time is a measure based on a random walk on the graph. Hitting time

between vertices i and j is defined as the expected number of steps in a random

walk starting from i to first time reach j. Penalized hitting probability [34] and

discounted hitting time [77] are variants of hitting time. The former penalizes the

random walk for each additional step with a damping factor, and the latter penalizes

the transition probability. The Katz Measure is a similarity measure between two

vertices. The measure is computed as the sum over the collection of paths between

two vertices, exponentially damped by the path length to count short paths more

heavily. The Adsorption algorithm [8] is a graph-based label propagation algorithm

proposed for personalized recommendation. A vertex’s label distribution is the convex

combination of the labels of other vertices. Effective Importance [13] is a proximity

measure on a graph, and can capture the local community structure of a vertex.
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It can be considered as a degree normalized version of random walk with restart.

HITS [42] utilizes a two-phase iterative update approach (the authority update and

the hub update) to rank web pages of a web graph. SALSA [51] is another link-based

ranking algorithm for web graphs. Like HITS, SALSA also iteratively updates two

scores associated with each vertex, the hub score and the authority score.

5.3 Asynchronous Incremental Computation

As the underlying graph evolves, the states of the vertices also change. Obvi-

ously, rerunning the computation from scratch over the new graph is not efficient,

since it discards the work done in earlier runs. Intuitively, performing computations

incrementally can improve efficiency. In this section, we present our asynchronous

incremental computation approach. The convergence of our approach is proved.

5.3.1 Asynchronous Updates

In order to describe our asynchronous incremental computation approach, we de-

fine a time sequence {t0, t1, . . . , t∞}. Let x̂(k) denote the state vector at time tk.

Also, we introduce the delta state vector ∆x̂(k) to represent the difference between

x̂(k+1) and x̂(k) in the operator ‘?’ manner, i.e., x̂(k+1) = x̂(k) ? ∆x̂(k). The goal of

introducing ∆x̂(k) is to perform accumulative computations. When the operator ‘?’

has the commutative property and the associative property and the function f{i,j}(xi)

has the distributive property over ‘?’, the computation can be performed accumula-

tively. All the graph algorithms discussed in Section 5.2.3 satisfy these properties. It

is straightforward to verify that accumulative computations are equivalent to normal

computations. The benefit of performing accumulative computations is that only

changes of the states (i.e., delta states) are used to compute new changes. If there is

no change for the state of a vertex, no communication or computation is necessary.

The general idea of separating fixed parts from changes and leveraging changes to
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compute new changes also shows efficiency in many other algorithms, such as Non-

negative Matrix Factorization [95] and Expectation-Maximization [96].

In our asynchronous incremental computation approach, each vertex i updates its

∆x̂
(k)
i and x̂

(k)
i independently and asynchronously, starting from ∆x̂

(0)
i and x̂

(0)
i (we

will illustrate how to construct them soon). In other words, there are two separate

operations for vertex j:

• Accumulate operation: whenever receiving a value (e.g., f{i,j}(∆x̂i)) from a

neighbor (e.g., i), perform ∆x̂j = ∆x̂j ? f{i,j}(∆x̂i);

• Update operation: perform x̂j = x̂j ?∆x̂j; for any neighbor l, if f{j,l}(∆x
(1)
j ) 6= o,

send f{j,l}(∆x̂j) to l; and then reset ∆x̂j to o;

where o is the identity value of the operator ‘?’. That is, for ∀z ∈ R, z = z ?o (if ‘?’ is

‘+’, o = 0; if ‘?’ is ‘min’, o =∞; if ‘?’ is ‘max’, o = −∞). Basically, the accumulate

operation accumulates received values between two consecutive updates on x̂j. The

update operation adjusts x̂j by absorbing ∆x̂j, sends useful values to other vertices,

and resets ∆x̂j.

We now illustrate how to construct x̂
(0)
i and ∆x̂

(0)
i by leveraging the computation

result on the previous graph, G. We need to make sure that the constructed x̂
(0)
i and

∆x̂
(0)
i can guarantee the correctness of the result on the new graph. Let x̄(∗) denote

the convergence point on G. We next show how to construct x̂
(0)
i and ∆x̂

(0)
i when

the operator ‘?’ is ‘+’ (for all the graph algorithms discussed in Section 5.2.3 except

shortest paths and connected components) and when ‘?’ is ‘min/max’ (shortest paths

and connected components), respectively.

For an iterative graph algorithm with the operator ‘?’ as ‘+’, we first leverage x̄(∗)

to construct x̂(0) in the following way: for a kept vertex (e.g., i), we set x̂
(0)
i = x̄

(∗)
i ;

for a newly added vertex (e.g., j), we set x̂
(0)
j = 0. In contrast, recomputation from

scratch typically utilizes 0 as x̂(0) (where 0 is a vector with all its elements being
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zero). In order to construct ∆x̂(0), we compute x̂(1) using x̂(1) = f(x̂(0)) and then

construct ∆x̂(0) by making sure ∆x̂(0) satisfying x̂(1) = x̂(0) ? ∆x̂(0). Since ‘?’ is ‘+’,

we can calculate ∆x̂(0) by ∆x̂(0) = x̂(1) − x̂(0). It is important to note that here the

deleted vertices and/or edges do not affect the way we construct x̂
(0)
i and ∆x̂

(0)
i . In

other words, no matter whether there are deleted vertices and/or edges, the way we

construct x̂
(0)
i and ∆x̂

(0)
i can guarantee the correctness of the result on the new graph.

For an iterative graph algorithm with the operator ‘?’ as ‘min/max’, we construct

x̂
(0)
i and ∆x̂

(0)
i as follows. When the operator ‘?’ is ‘min’ (e.g., shortest paths), if

any vertex’s initial state is not smaller than its final converged state, the algorithm

will converge. This is because of the following reason. When the algorithm has not

converged, in each iteration there must be at least one vertex whose state is becoming

smaller, and thus the overall state vector is becoming closer to the final converged

state vector. When there is no vertex changing its state, the algorithm converges.

Generally, it is hard to know the final converged state vector. Therefore, for the

shortest paths algorithm, recomputation from scratch usually sets the initial state of

a vertex (other than the source vertex) as ∞ to guarantee that it is not smaller than

the final converged state. Fortunately, when the graph grows (vertices and/or edges

are added and no vertices or edges are deleted), the previous converged state of a kept

vertex must be not smaller than its converged state on the new graph. Therefore,

for the graph growing scenario, we construct x̂
(0)
i in the following way: for a kept

vertex (e.g., i), we set x̂
(0)
i = x̄

(∗)
i ; for a newly added vertex (e.g., j), we set x̂

(0)
j =∞.

Similarly, for the connected component algorithm, whose operator ‘?’ is ‘max’, we

can construct x̂
(0)
i (for the graph growing scenario) as follows: for a kept vertex (e.g.,

i), we set x̂
(0)
i = x̄

(∗)
i ; for a newly added vertex (e.g., j), we set x̂

(0)
j = j. To construct

∆x̂(0), we also compute x̂(1) using x̂(1) = f(x̂(0)) and then simply set ∆x̂
(0)
j = x̂

(1)
j . It

can satisfy x̂(1) = x̂(0) ?∆x̂(0), no matter ‘?’ is ‘min’ or ‘max’.
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5.3.2 Selective Execution

One potential problem of basic asynchronous updates is that they might require

more computations and communications when compared to their synchronous coun-

terparts. This is because vertices are updated in a round-robin manner no matter how

many new values available to a vertex. To solve this problem, instead of updating

vertices in a round-robin manner, we update vertices selectively by identifying their

importance. The motivation behind it is that not all vertices contributes the same

to the convergence. We refer to this scheduling scheme as selective execution. The

vertices are selected according to their importance (in terms of contribution to the

convergence).

Our selective execution scheduling scheme selects a block of m vertices (instead

of one) to update each round. The reason is that if only one vertex is chosen to

update at a time, the scheduling overhead (e.g., maintaining a priority queue to

always choose the vertex with the highest importance) is high. Once the block of

the selected vertices are updated, it selects another block to update. Every time our

scheme selects the top-m vertices in terms of the importance value. The size of the

block (i.e., m) balances the tradeoff between the gain from selective execution and

the cost of selecting vertices. Setting m too small may incur considerable overhead,

while setting m too large may degrade the effect of selective execution, e.g., if setting

m as the number of total vertices, it degrades to the round-robin scheduling. We will

discuss how to determine m in Section 5.4.1.

We then illustrate how to quantify a vertex’s importance when the operator ‘?’

is ‘min/max’ and when ‘?’ is ‘+’, respectively. Ideally, the vertex whose update

decreases the distance to the fixed point (i.e., ||x(∗) − x̂(k)||1) most should have the

highest importance (note that we use L1-norm to measure the distance). For an

iterative graph algorithm with the operator ‘?’ as ‘min/max’, the iterative updates

either monotonically decrease (e.g., shortest paths) or monotonically increase (e.g.,
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connected components) any element of x̂(k). For ease of exposition, we assume the

monotonically decreasing case. In this case, x
(∗)
j ≤ x̂

(k)
j for any j, and thus we

have ||x(∗) − x̂(k)||1 = ||x̂(k)||1 − ||x(∗)||1. An update on vertex j decrease ||x̂(k)||1 by

|x̂(k)
j ?∆x̂

(k)
j − x̂

(k)
j |. Therefore, we use |x̂(k)

j ?∆x̂
(k)
j − x̂

(k)
j | to represent the importance

of the vertex j (denoted as ηj), i.e. ηj = |x̂(k)
j ?∆x̂

(k)
j − x̂

(k)
j |.

For an iterative graph algorithm with the operator ‘?’ as ‘+’, it is difficult to di-

rectly measure how the distance to the fixed point decreases. Update one single vertex

may even increase the distance to the fixed point. Fortunately, for such an algorithm,

its update function (f()) typically can be seen as a || · ||-contraction mapping. That

is, there exists an α (0 ≤ α < 1), such that ||f(x) − f(y)|| ≤ α||x − y||, ∀x, y ∈ Rn.

Therefore, we can provide an upper bound on it, as stated in Theorem 5.3.1. We

then analyze how the upper bound decreases.

Theorem 5.3.1. ||x(∗) − x̂(k+1)||1 ≤ ||∆x̂(k+1)||1
1−α .

Proof. Consider the situation that from time tk+1, synchronous updates are per-

formed. Let x and ∆x to represent the states and the delta states under syn-

chronous updates, respectively. That is, at the beginning, we have x(0) = x̂(k+1),

∆x(0) = ∆x̂(k+1), and then x(r+1) = x(r) + ∆x(r), ∆x(r+1) = f(∆x(r)), where r (≥ 1) is

used to index iterations of synchronous updates.

Since f() is a contraction mapping, for r ≥ 1, we have ||x(r+1)−x(r)||1 = ||f(x(r))−

f(x(r−1))||1 ≤ α||x(r)−x(r−1)||1 ≤ α2||x(r−1)−x(r−2)||1 ≤ αr||x(1)−x(0)||1 = αr||∆x(0)||1.

Thus,

||x(r) − x(0)||1 = ||x(r) − x(r−1) + x(r−1) − · · ·+ x(1) − x(0)||1

≤ ||x(r) − x(r−1)||1 + · · ·+ ||x(1) − x(0)||1

≤ αr−1||∆x(0)||1 + · · ·+ α1||∆x(0)||1 + ||∆x(0)||1

= ||∆x(0)||1(1 + α + · · ·+ αr−1).
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Since x∗ = limr→∞ x(r), we have

||x(∗) − x(0)||1 = lim
r→∞
||x(r) − x(0)||1

≤ lim
r→∞

(||∆x(0)||1
r−1∑
i=0

α)

≤ ||∆x(0)||1
∞∑
i=0

αi

=
1

1− α
||∆x(0)||1.

Since x(0) = x̂(k+1), ∆x(0) = ∆x̂(k+1), we have ||x(∗) − x̂(k+1)||1 ≤ ||∆x̂(k+1)||1
1−α , which

concludes the proof.

Without loss of generality, assume that current time is tk and that during interval

[tk, tk+1] we only update vertex j. When updating vertex j, we accumulate ∆x̂
(k)
j to

x̂j, send f(j,l)(∆x̂
(k)
j ) to a vertex l (and the total sending out value is no larger than

α|∆x̂(k)
j |), and reset ∆x̂

(k)
j to 0. Therefore, we have the following theorem.

Theorem 5.3.2. ||∆x̂(k+1)||1 ≤ ||∆x̂(k)||1 − (1− α)|∆x̂(k)
j |.

Theorem 5.3.2 implies that the upper bound monotonically decreases as updates

continue. When updating vertex j, we have ||∆x̂
(k+1)||1
1−α ≤ ||∆x̂(k)||1

1−α − |∆x̂(k)
j |. It shows

that the reduction in the upper bound is at least |∆x̂(k)
j |. Given a graph, α is a

constant. Hence, when the operator ‘?’ is ‘+’, we define the importance of the vertex

j to be |∆x̂(k)
j |, i.e., ηj = |∆x̂(k)

j |.

5.3.3 Convergence

Our asynchronous incremental computation approach yields the same result as

recomputation from scratch. In order to prove it, we first show that if synchronous

updates (i.e., x(k) = f(x(k−1))) converge (and synchronous updates converge for all

the graph algorithms discussed in Section 5.2.3), any asynchronous update scheme
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that can guarantee that every vertex is updated infinitely often (until its state is

fixed) will yield the same result as synchronous updates, as stated in Theorem 5.3.3.

Theorem 5.3.3. If updates x(k) = f(x(k−1)) converge to x(∗), any asynchronous up-

date scheme that guarantees every vertex is updated infinitely often will converge to

x(∗) as well, i.e., x̂(∞) = x(∗).

Since synchronous updates converge to x(∗), i.e., x(∞) = x(∗), we are going to show

that asynchronous updates (no matter the order of updates) yield the same results

as synchronous updates in the following. We first illustrate how the state vector is

computed under different updates.

By synchronous updates, xj after k iterations is:

x
(k)
j = x

(0)
j ?∆x

(1)
j ?

k∑
l=2

?
( ∑
{i�j}∈P (j,l)

?f{i�j}(∆x
(1)
i )
)
, (5.3)

where

f{i�j}(∆x
(1)
i ) = f{il−1,j}(· · · f{i1,i2}(f{i0,i1}(∆x

(1)
i0

)))

and P (j, l) is the set of all l-hop paths to reach vertex j.

We define S = {S0, S1, . . . , S∞} as the series of vertex subsets, where Sk is a vertex

subset, and the propagated values of all vertices in Sk have been received by their

direct neighboring vertices during time interval [tk, tk+1].

By asynchronous updates, following an activation sequence S, x̂j at time tk is:

x̂
(k)
j = x

(0)
j ?∆x

(1)
j ?

k∑
l=2

?
( ∑
{i�j}∈P ′(j,l)

?f{i�j}(∆x
(1)
i )
)
, (5.4)

where P ′(j, l) is the set of l-hop paths that satisfy the following conditions. First,

i ∈ Sl. Second, if l > 1, i1, . . . , il−1 respectively belongs to the sequence S. That is,

there is 0 < m1 < m2 < . . . < ml−1 < k such that ih ∈ Sml−h
.
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We first consider the iterative graph algorithm with the operator ‘?’ as ‘+’. We

know that the elements of x(0) can be nonnegative or negative. Therefore, we can

divide it into two parts, nonnegative part y(0) and negative part z(0). Let y(k) and z(k)

represent the values generated from y(0) and z(0), respectively, and x
(k)
j = y

(k)
j + z

(k)
j

for any k. Then, we have

y
(k)
j = y

(0)
j + ∆y

(1)
j +

k∑
l=2

?(
∑

{i�j}∈P (j,l)

?f{i�j}(∆y
(1)
i )),

z
(k)
j = z

(0)
j + ∆z

(1)
j +

k∑
l=2

?(
∑

{i�j}∈P (j,l)

?f{i�j}(∆z
(1)
i )).

Next, we show for asynchronous updates that ŷ(k) converges to y(∗) (i.e., y(∞)) and

that ẑ(k) also converges to z(∗) (i.e., z(∞)). To this end, we introduce the following

two lemmas.

Lemma 5.3.4. For any infinite sequence S (i.e., each vertex can have an infinite

number of updates in the sequence), given any iteration number k, we can find a

subset index k′ in S such that |y(∞)
j − ŷ(k′)

j | ≥ |y
(∞)
j − y(k)

j | for any j.

Proof. From Eq. (5.3), we can see that, after k iterations of synchronous updates,

each vertex receives the values from its direct/indirect neighbors as far as k hops

away, and it receives the values originated from each direct/indirect neighbor once

for each path. In other words, each vertex j propagates its own initial value x
(1)
j and

receives the values from its direct/indirect neighbors through a path once.

From Eq. (5.4), we can see that, for asynchronous updates, after time tk, each

vertex receives values from its direct/indirect neighbors as far as k hops away, and it

receives values originated from each direct/indirect neighbor through a path at most

once. During time period [tk−1, tk], a value is received from a neighbor only if the

neighbor is in Sk. If the neighbor is not in Sk, the value is stored at the neighbor or
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is on the way to other vertices. The vertex will eventually receive the value as long

as every vertex has an infinite number of updates.

As a result, x̂
(k)
j receives values via a subset of the paths from j’s direct/indirect

incoming neighbors within k hops. In contrast, x
(k)
j receives values through all paths

from j’s direct/indirect incoming neighbors within k hops. Considering only the

nonnegative part of the value, we can see that x̂
(k)
j receives less or equal nonnegative

parts compared to x
(k)
j . Correspondingly, ŷ

(k)
j is farther (or at least equal) to the

converged point y
(∞)
j than y

(k)
j . Therefore, we can set k′ = k and complete the

proof.

Lemma 5.3.5. For any infinite sequence S, given any iteration number k, we can

find a subset index k′′ in S such that |y(∞)
j − ŷ(k′′)

j | ≤ |y(∞)
j − y(k)

j | for any j.

Proof. From the proof of Lemma 5.3.4, we know that y
(k)
j receives values from all

paths from direct/indirect neighbors of j within k hops away. In order to allow ŷ
(k)
j

to receive all those values, we have to make sure that all paths from direct/indirect

neighbors of j within k hops away are activated and their values are received. Since

in sequence S each vertex can have an infinite number of updates, we can always find

k′′ such that {S1, S2, . . . , Sk′′} contains all paths from direct and indirect neighbors of

j within k hops away. Considering only the nonnegative part of the value, we can see

that ŷ
(k)
j receives more or equal nonnegative parts compared to y

(k)
j . Correspondingly,

ŷ
(k′′)
j can be closer (or at least equal) to the converged point y

(∞)
j than y

(k)
j . Therefore,

we complete the proof.

From Lemma 5.3.4 and Lemma 5.3.5, it is easy to see that ŷ
(k)
j and y

(k)
j converge

to the same result, i.e., ŷ
(∞)
j = y

(∞)
j . Similarly, we can show that ẑ

(k)
j and z

(k)
j

converge to the same result, i.e., ẑ
(∞)
j = z

(∞)
j . Also, we know x̂

(∞)
j = ŷ

(∞)
j + ẑ

(∞)
j ,

x
(∞)
j = y

(∞)
j + z

(∞)
j , and x

(∞)
j = x

(∗)
j . Thus, we have x̂

(∞)
j = x

(∞)
j = x

(∗)
j . For the

iterative graph algorithm with the operator ‘?’ as ‘min/max’, we know that all of
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the elements of x(0) are nonnegative (or negative). Hence, we can use Lemma 5.3.4

and Lemma 5.3.5 to show x̂
(∞)
j = x

(∞)
j = x

(∗)
j . As a result, we complete the proof of

Theorem 5.3.3.

We then show that our asynchronous incremental computation approach fulfills

the requirement of Theorem 5.3.3, as stated in Lemma 5.3.6.

Lemma 5.3.6. Our asynchronous incremental computation approach can guarantee

that every vertex is updated infinitely often (until its state is fixed).

Proof. We prove this lemma by contradiction. Assume there are a number of vertices

that belong to a set, W , which are updated only before a time point t. For the iterative

graph algorithm with the operator ‘?’ as ‘+’, its update function is a contraction

mapping. For the iterative graph algorithm with the operator ‘?’ as ‘min/max’,

we know that any element of its state vector monotonically decreases (or increases).

Therefore, no matter what kind of iterative graph algorithm, the L1-norm of the delta

states of the vertices in V −W (where V is the whole set of vertices), ||∆x̂V−W ||1

approaches 0 as updates continue (and thus |∆x̂i| approaches 0 for any i ∈ (V −W )).

Consequently, at some time point after t, for any vertex that belongs to V −W , it

can reach the fixed state since it is always being updated. At that time, for any

i ∈ (V − W ), we have |∆x̂i| = 0; if we also have |∆x̂i| = 0 for any i ∈ W , then

||∆x̂||1 = 0, and thus the graph algorithm has converged; otherwise, a vertex in

W (e.g., the one with the highest importance) must be selected to update, which

contradicts with the assumption that any vertex in W is updated only before time

point t. We complete the proof.

Furthermore, we can also prove that recomputation from scratch converges to x(∗)

(no matter what type of updates it uses). As a result, we have the following theorem.

Theorem 5.3.7. Our asynchronous incremental computation approach converges and

yields the same result as recomputation from scratch.
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5.4 Distributed Framework

Oftentimes, iterative graph algorithms in real-world applications need to pro-

cess massive graphs. Hence, it is desirable to leverage the parallelism of a cluster

of machines to run these algorithms. Furthermore, it is troublesome to implement

asynchronous incremental computation for each individual algorithm that can oper-

ate efficiently on dynamic graph data in a distributed environment. Therefore, we

propose GraphIn, an in-memory asynchronous distributed framework for supporting

iterative graph algorithms with incremental computation. GraphIn provides several

high-level APIs to users for implementing asynchronous incremental computation and

meanwhile hides the complexity of distributed computation. It leverages the proposed

selective execution scheduling scheme to accelerate convergence.

GraphIn consists of a number of workers and one master. Workers perform vertex

updates, and the master controls the flow of computation. The new graph and the

previous computed result are taken as the input of GraphIn. The input graph is

split into partitions and each worker is responsible for one partition. Each worker

leverages an in-memory table to store the vertices assigned to it. A worker has two

main operations for its stored vertices: the accumulate operation and the update

operation, as illustrated in Section 5.3.1. The accumulate operation utilizes a user-

defined function to aggregate incoming messages for a vertex. There is another user-

defined function triggered by the accumulate operation, which is used to calculate the

vertex’s importance. The update operation uses a user-defined function to update

the states of scheduled vertices and compute outgoing messages.

The prototype of GraphIn is built upon Maiter [107], an open-source distributed

graph processing framework. Maiter is designed for processing static graphs, and thus

has inherent impediments to the execution of graph algorithms with incremental com-

putation. First, it relies on the specific initial state to guarantee the convergence of a

graph algorithm. However, incremental computation leverages the previous result as
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the initial state, which can be arbitrary. Second, although Maiter supports prioritized

updates, its scheduling scheme assumes that ∆xi is always positive for any vertex i.

Last, the termination check mechanism of Maiter assumes that ||x||1 varies mono-

tonically, which can be not true as well under incremental computation. GraphIn

removes all these impediments to efficiently support incremental computation.

5.4.1 Distributed Selective Execution

GraphIn uses the proposed selective execution scheduling as its default scheduling

scheme. Since a centralized approach of finding the top-m elements is inefficient in

a distributed environment, GraphIn allows each worker to build its own selective

execution scheduling. Round by round (except the first round in which all vertices

are selected to derive x̂(0) and ∆x̂(0)), each worker selects its local top-m vertices in

terms of the importance. The number m is crucial to the effect of selective execution.

For the iterative graph algorithm with the operator ‘?’ as ‘+’, GraphIn learns m

online. We use µ · n to quantify the overhead of selecting such m vertices (where µ

represents the amortized overhead), which is proportional to the total number (n) of

vertices with an efficient selection algorithm (e.g., quick-select). Also, we assume that

the average cost of updating one vertex is ν, and then the cost of updating those m

vertices is ν ·m. Let c(m) be the total cost of updating those m vertices (including

both selection and update), then c(m) = µ ·n+ ν ·m. Let g(m) =
∑

j∈S |∆x̂j| (recall

that |∆x̂j| represents the importance of vertex i), where S denotes the set of the

top-m selected vertices. For each round, we aim to find the m that can achieve the

largest efficiency, i.e., m = arg maxm
g(m)
c(m)

. It is computationally impossible to try

every value (from 1 to n) to figure out the best m. Therefore, our practical approach

chooses several values (0.05n, 0.1n, 0.25n, 0.5n, n), which cover the entire range of

possible m, as the candidates. For each candidate m, we leverage quick-select to find

the m-th |∆x̂j|, which is used as a threshold, and all |∆x̂i| no less than the threshold

127



are counted into g(m). By testing each candidate (we set ν/µ as 4 by default), we

can figure out the best m and the set S. The practical approach leverages quick-

select to avoid the time-consuming sorting, and thus takes O(n) time on extracting

the top-m vertices instead of O(n log n) time. For the iterative graph algorithm with

the operator ‘?’ as ‘min/max’, the importance of a vertex might be close to ∞. If

we still use the above idea, g(m) might easily be overflown. Therefore, in this case,

we simply set m as 0.1n, which shows good performance in experiments. Note that

if there are only m′ (m′ < m) vertices with the importance being larger than 0, we

only select these m′ vertices to update.

5.4.2 Distributed Termination Check

We design different termination check mechanisms for the iterative graph algo-

rithm with the operator ‘?’ as ‘min/max’ and the iterative graph algorithm with the

operator ‘?’ as ‘+’. When ‘?’ is ‘min/max’, ||x̂(k)||1 monotonically decreases or in-

creases. Therefore, we can utilize ||x̂(k)||1 to perform the termination check. If and

only if ||x̂(k)||1 − ||x̂(k−1)||1 = 0, the algorithm has converged, and thus the compu-

tation can be terminated. When ‘?’ is ‘+’, ||x(∗) − x̂(k)||1 is the choice for measuring

convergence. However, it is difficult to directly quantify ||x(∗) − x̂(k)||1, since the

fixed point x(∗) is always unknown during the computation. Fortunately, we know

||x(∗)−x̂(k)||1 ≤ ||∆x̂(k)||1/(1−α) from Theorem 5.3.1, and thus can leverage ||∆x̂(k)||1

to measure convergence. We use the convergence criterion, ||∆x̂(k)||1 ≤ ε, where the

convergence tolerance ε is a pre-defined constant.

GraphIn adopts a passively monitoring model to perform the termination check,

which works by periodically (and the period is configurable) measuring ||x̂(k)||1 if the

operator ‘?’ is ‘+’ (or ||∆x̂(k)||1 if ‘?’ is ‘min/max’). To complete the measure, each

worker computes the sum of |x̂(k)
j | (or |∆x̂(k)

j |) of its local vertices and sends the local

sum to the master. The master aggregates the local sums into a global sum. The
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challenge of performing such a distributed termination is to make sure that the local

sum at each worker are calculated from the snapshot of the values at the same time

(especially for |∆x̂(k)
j |). To address the challenge, GraphIn asks all the workers to

pause vertex updates before starting to calculate the local sums. The procedure of

the distributed termination check is as follows.

1. When it is the time to perform the termination check, the master broadcasts a

chkpre message to all the workers.

2. Upon receiving the chkpre message, every worker pauses vertex updates and

then replies a chkready message to the master.

3. The master gathers those chkready messages from all the workers, and then

broadcasts a chkbegin message to them.

4. Upon receiving the chkbegin message, every worker calculates the local sum,∑
j |x̂

(k)
j | (or

∑
j |∆x̂

(k)
j |), and reports it to the master.

5. The master aggregates the local sums to the global sum ||x̂(k)||1 (or ||∆x̂(k)||1).

If ||x̂(k)||1 − ||x̂(k−1)||1 6= 0 (or ||∆x̂(k)||1 > ε), the master broadcasts a chkfin

message to all the workers. Otherwise, it broadcasts a term message.

6. When a worker receives the chkfin message, it resumes vertex updates. When a

worker receives the term message, it dumps the result to a local disk and then

terminates the computation.

It is important to note that since calculating the local sums is inexpensive and it

is done periodically, the overhead of the termination check is ignorable.

5.5 Evaluation

In this section, we evaluate the performance of our asynchronous incremental

computation approach. We compare it with re-computation from scratch. Both

approaches are supported by GraphIn. To show the performance of the selective exe-

cution scheduling, we compare it with the round-robin scheduling. The performance
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of other distributed systems that can support synchronous incremental computation

are also evaluated.

5.5.1 Experiment Setup

The experiments are performed on both a local cluster and a large-scale cluster

on Amazon EC2 [1]. The local cluster consists of 4 machines, which are connected

through a switch with a bandwidth of 1Gbps. The large-scale cluster consists of 50

EC2 medium instances.

Table 5.1. Graph Dataset Summary

Dataset Vertices Edges
Amazon co-purchasing graph (Amz) [52] 403K 3.4M

Web graph from Google (Gog) [52] 876K 5.1M
LiveJournal social network (LJ) [52] 4.8M 69M

Web graph from UK (UK) [14] 39M 936M
Web graph from IT (IT) [14] 41M 1.2B

Two graph algorithms are implemented on GraphIn, PageRank and the shortest

paths algorithm. For PageRank, the damping factor is set to 0.8, and if not stated

otherwise, the convergence tolerance ε (which is discussed in Section 5.4.2) is set to

10−2/n (n is the number of vertices of the corresponding graph). The shortest paths

algorithm stops running only when the convergence point is reached (i.e., all the

vertices reach their shortest paths to the source vertex). The measurement of each

experiment is averaged over 10 runs. Real-world graphs of various sizes are used in

the experiments and are summarized in Table 5.1.

5.5.2 Overall Performance

We first show the convergence time of PageRank on the local cluster. The con-

vergence time is measured as the wall-clock time that PageRank uses to reach the

convergence criterion. We consider both the edge change case and the vertex change

case. Under the edge change case, we randomly pick a number of vertices to change
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their edges. In the graph evolving process, there are usually more added edges than

deleted edges. Therefore, for 80% of the picked vertices, we add one random outgoing

edge to it with a randomly picked neighbor. For the rest 20% vertices, we remove

one randomly picked edge from it. Under the vertex change case, we pick a number

(e.g., p, some percentage of the number of vertices) for each experiment. We add 0.8p

new vertices to the graph and delete 0.2p vertices. For each added vertex, we put two

edges (one incoming edge and one outgoing edge) with randomly picked neighbors.

For each deleted vertex, we also delete all its edges.
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Figure 5.1. PageRank on Amz graph (edge change).

Figure 5.1 shows the performance on the Amz graph under the edge change case.

We can see that incremental computation (denoted as “Incr”) is much faster than

re-computation from scratch (denoted as “Re”) for different percentages of vertices

with edge change. The selective execution scheduling (denoted as “Sel”) is faster

than the round-robin scheduling (denoted as “R-R”) with either approach. The effi-

ciency of the incremental computation is more prominent when the change is smaller.

For example, when the percentage of vertices with edge change is 0.01%, incremental

computation with the selective execution scheduling is about 10x faster than recompu-

tation from scratch with the round-robin scheduling and 7x faster than recomputation

from scratch with the selective execution scheduling. Not surprisingly, the incremen-

tal computation takes longer time as the percentage of vertices with edge change

becomes larger, and the convergence time of the re-computation is almost the same

since the change to the graph is relatively small. Similar trends are observed for the

vertex change case, as plotted in Figure 5.2.
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Figure 5.2. Pagrank on Amz graph (vertex change).

We then present the result of the shortest paths algorithm, which runs on weighted

graphs. All the graphs summarized in Table 5.1 are unweighed. We generate a

weighted graph by assigning weights to the Amz graph. The weight of each edge

is an integer, which is randomly drawn from the rang [1, 100]. Figure 5.3 plots the

performance comparison under the vertex adding case. The percentage means the

ratio between the number of added vertices to the number of original vertices. For

each added vertex, we put two weighted edges (one incoming edge and one outgoing

edge) with randomly picked neighbors. From the figure, we can see that incremental

computation with the selective execution scheduling is about 14x faster than recom-

putation from scratch with the round-robin scheduling when the percentage of added

vertices is 0.01% and still 9x faster even when the percentage of added vertices is

10%. Similar results are observed for the edge adding case.
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Figure 5.3. Shortest paths on weighted Amz graph.
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5.5.3 Comparison with Synchronous Incremental Computation

It is also possible to build a framework to support incremental computation upon

other systems, such as Hadoop and Spark. To demonstrate the efficiency of GraphIn,

we compare it with both Hadoop and Spark for the 1% of vertices with edge change

scenario. We restrict our performance comparison to PageRank, since it is a repre-

sentative graph algorithm. For fair comparison, we instruct both systems to use the

prior result as the starting point. For Hadoop, if there is no change in the input

of some Map/Reduce tasks, we proportionally discount the running time. In this

way, we can simulate task-level reusing, which is the key of MapReduce-based incre-

mental processing frameworks. For Spark, we choose its Graphx [31] component to

implement PageRank.
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Figure 5.4. PageRank on different frameworks.

Figure 5.4 shows that GraphIn (especially with selective execution) is much faster

than Hadoop and Spark. Hadoop is a disk-based system and uses synchronous up-

dates. Even though Spark is a memory-based system, it also utilizes synchronous

updates. Therefore, it is still slower than GraphIn.

5.5.4 Scaling Performance

We further evaluate incremental computation on the large-scale Amazon cluster

to test its scalability. We consider the 1% of vertices with edge change scenario, and

concentrate on PageRank (and set the convergence tolerance ε to 10−4). We first use

the three large real-world graphs, LJ, UK, and IT (both UK and IT have tens of
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millions of vertices and a billion of edges), as input graphs when all the 50 instances

are used. As shown in Figure 5.5(a) (note that the y-axis is in log scale), on the large-

scale cluster incremental computation is still much faster than re-computation from

scratch, and both approaches can benefit from the selective execution scheduling.

We then show the performance of incremental computation when different num-

bers of instances are used. Figure 5.5(b) shows the convergence time on the LJ graph

as we increase the number of instances from 10 to 50. It can be seen that by increas-

ing the number of instances, the convergence time is reduced, and that the selective

execution scheduling is always faster than the round-robin scheduling.
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Figure 5.5. Performance on Amazon cluster.

5.6 Related Work

Due to the dynamic nature of graphs in real-world applications, incremental com-

putation has been studied extensively. In terms of iterative graph algorithms, most of

the studies [7,46,47] focus on PageRank. The basic idea behind approaches in [46,47]

is that when a change happens in the graph, the effect of the change on the PageRank

scores is mostly local. These approaches start with the exact PageRank scores of the

original graph but provide approximate scores for the graph after the change, and the

estimations may drift away from the exact scores. On the contrary, our approach can

provide exact scores. The work in [7] utilizes the Monte Carlo method to approxi-

mate PageRank scores on evolving graphs. It precomputes a number of random walk
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segments for each vertex and stores them in distributed shared memory. Besides of

the approximate result, it also incurs high memory overhead.

In recent years, the growing scale and importance of graph data have driven

the development of a number of distributed graph systems. Pregel [64] employs a

vertex-centric programming model and follows the Bulk Synchronous Parallel (BSP)

computation model. Graphx [31] is a graph system built on top of Spark [101]. It

stores graphs as tabular data and implements graph operations using distributed

joins. PrIter [106], Maiter [107], and Prom [93], introduce prioritized updates to

accelerate convergence. PrIter is a MapReduce-based framework, which requires syn-

chronous iterations. Maiter and Prom utilize asynchronous accumulative iterative

computation, which accumulates the intermediate iterative update results to acceler-

ate convergence. All these graph systems aim at supporting graph computation on

static graph structure.

There are several systems for supporting incremental parallel processing on mas-

sive datasets. Incoop [11] extends the MapReduce programming model to support

incremental processing. It saves and reuses states at the granularity of individual

Map or Reduce tasks. Continuous bulk processing (CBP) [60] provides a groupwise

processing operator to reuse prior state for incremental analysis. Similarly, other sys-

tems like DryadInc [73] support incremental processing by allowing their applications

to reuse prior computation results. However, most of the studies focus on one-pass

applications rather than iterative applications. Several recent studies address the

need of incremental processing for iterative applications. Kineograph [17] constructs

incremental snapshots of the evolving graph and supports reusing prior states in pro-

cessing later snapshots. Naiad [69] presents a timely dataflow computational mode,

which allows stateful computation and nested iterations. Spark Streaming [102] ex-

tends the cyclic batch dataflow of original Spark to allow dynamic modification of

the dataflow and thus supports iterative and incremental processing. However, most
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of these systems apply synchronous updates to incremental computation. Our work

illustrates how to efficiently apply asynchronous updates to incremental computation.

5.7 Conclusion

In this chapter, we propose an approach to efficiently apply asynchronous updates

to incremental computation on evolving graphs. Our approach works for a family of

iterative graph algorithms. We also present a scheduling scheme, selective execution,

to coordinate asynchronous updates so as to accelerate convergence. Furthermore,

to facilitate the implementation of iterative graph algorithms with incremental com-

putation in a distributed environment, we design and implement an asynchronous

distributed framework, GraphIn. The evaluation results show that our asynchronous

incremental computation approach can significantly boost the performance.
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CHAPTER 6

CONCLUSION

This dissertation explores new forms of iterative computations that reduce unnec-

essary computations so as to accelerate large-scale data processing in a distributed

environment. We propose the iterative computation transformation for well-known

data mining and machine learning algorithms such as expectation-maximization, non-

negative matrix factorization, belief propagation, and graph algorithms.

First, we apply frequent updates on Expectation-Maximization (EM) algorithms

in a distributed environment. Because of the popularity of EM algorithms, many

approaches for accelerating EM algorithms have been proposed. In particular, many

EM algorithms that frequently update the parameters have been shown to be much

more efficient than their concurrent counterparts. Accordingly, we propose two ap-

proaches to parallelize such EM algorithms in a distributed environment so as to

scale to massive datasets. Based on the approaches, we design and implement a dis-

tributed framework, FreEM, to support the implementation of frequent updates for

the EM algorithms. We show its efficiency through two categories of EM algorithms,

clustering and topic modeling. These algorithms includes k-means clustering, fuzzy

c-means clustering, parameter estimation for the Gaussian Mixture Model, and vari-

ational inference for Latent Dirichlet Allocation. Our evaluation shows that the EM

algorithms with frequent updates implemented on FreEM can converge much faster

than those implementations with traditional concurrent updates.

Second, block-wise updates are proposed for nonnegative matrix factorization

(NMF) algorithms. As NMF is increasingly applied to massive datasets such as
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web-scale dyadic data, it is desirable to leverage a cluster of machines to store those

datasets and to speed up the factorization process. However, it is challenging to ef-

ficiently implement NMF in a distributed environment. We show that by leveraging

a new form of update functions, we can perform local aggregation and fully explore

parallelism. Therefore, the new form is much more efficient than the traditional form

in distributed implementations. Furthermore, we propose frequent block-wise up-

dates, which aim to use the most recently updated data whenever possible. As a

result, frequent block-wise updates can further improve the performance, compared

with their traditional concurrent counterparts. Through a series of experiments on a

local cluster as well as the Amazon EC2 cloud, we demonstrate that our implementa-

tion with frequent updates is up to two orders of magnitude faster than the existing

implementation with the traditional form of update functions.

Third, we introduce an efficient dynamic scheduling scheme, the prioritized block

scheduling, for belief propagation (BP) algorithms. The proposed scheduling scheme

selects a set of messages to update at a time and leverages a novel priority to de-

termine which messages are selected. In order to efficiently compute the priority

and update messages, we introduce an incremental-update approach, which is much

more efficient than the traditional basic-update approach. As the size of the model

grows, it is desirable to leverage the parallelism of a cluster of machines to reduce

the inference time. Therefore, we design a distributed framework, Prom, to facilitate

the implementation of BP algorithms. We implement two BP algorithms, the sum-

product algorithm and the max-product algorithm, on Prom. The evaluation results

show that the prioritized block scheduling outperforms the state-of-the-art dynamic

scheduling scheme, and that the incremental-update approach can further accelerate

the prioritized block scheduling.

Lastly, we present an approach to efficiently apply asynchronous updates to in-

cremental computation on evolving graphs. Asynchronous incremental computation
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can bypass synchronization barriers and always utilize the most recent values, and

thus it is more efficient than its synchronous counterpart. Our approach works for

a broad family of iterative graph algorithms. Furthermore, we develop a distributed

framework, GraphIn, to facilitate implementations of incremental computation on

massive evolving graphs. We evaluate our asynchronous incremental computation

approach via extensive experiments on a local cluster as well as the Amazon EC2

cloud. The evaluation results show that our asynchronous incremental computation

approach can significantly boost the performance.

The work presented in this dissertation also open several possible directions for

future work. We discuss these possible directions in the following.

For applying frequent updates on EM algorithms, we have discussed the size of

the block/subrange plays an important role on the efficiency. Currently, the size is

fixed in all workers across iterations. A more thorough study could be done to derive

algorithms that dynamically adjust the block/subrange size across iterations in order

to achieve better performance. Moreover, the derived algorithms should also allow

each worker to have its own block/subrange size based on its capacity. For example,

a more powerful worker could have a larger block/subrange size.

The frequent block-wise updates scheme proposed for NMF algorithms in this

dissertation takes the advantage of skipping unnecessary matrix computations. How-

ever, only adjusting frequency of updates (by changing the block size) might not fully

take this advantage, since all of the blocks are still updated in a round-robin manner.

A possible future direction is to study how to dynamically choose blocks to further

improve efficiency. To this end, one might need to compute the loss value associated

with each block and only update the blocks with larger loss values.

The work on BP algorithms (and Prom) also open new directions for future

research. Although GraphLab as a representative asynchronous graph processing

framework is discussed, a more in-depth discussion and comparison to other graph
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processing frameworks can be included. It is interesting to see whether the proposed

scheduling approach could be implemented as part of other frameworks. Moreover, it

is also interesting to include results from a larger distributed deployment in order to

show the scalability limits of the proposed approach and the framework (i.e., Prom).

Although the asynchronous incremental computation approach studied in this

dissertation cover a range of graph algorithms, we still lack a systematic and practical

way to accommodate an exhausted list of graph algorithms. Taking into account

that graph mining algorithms, such as subgraph mining, dense subgraph discovery,

community detection, and graph clustering, are also very useful. It is challenging and

important to elaborate on how to apply asynchronous incremental computation on

these algorithms.

While the proposed techniques are in the context of specific algorithm domains,

they may also address the challenges faced in many other algorithm domains. The

core ideas of the techniques to leverage iterative computation transformations to

accelerate large-scale data processing in a distributed environment. Iterative com-

putations are common in many algorithm domains (even beyond data mining and

machine learning). We believe that the ideas presented in this dissertation can be

applied to other algorithm domains as well.
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