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ABSTRACT

INTRINSIC FUNCTIONS FOR
SECURING CMOS COMPUTATION:

VARIABILITY, MODELING AND NOISE SENSITIVITY

SEPTEMBER 2016

XIAOLIN XU

B.E., UNIVERSITY OF ELECTRONIC SCIENCE & TECHNOLOGY OF CHINA

M.S., UNIVERSITY OF ELECTRONIC SCIENCE & TECHNOLOGY OF CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wayne P. Burleson

A basic premise behind modern secure computation is the demand for lightweight

cryptographic primitives, like identifier or key generator. From a circuit perspective, the

development of cryptographic modules has also been driven by the aggressive scalability

of complementary metal-oxide-semiconductor (CMOS) technology. While advancing

into nanometer regime, one significant characteristic of today’s CMOS design is the

random nature of process variability, which limits the nominal circuit design. With the

continuous scaling of CMOS technology, instead of mitigating the physical variability,

leveraging such properties becomes a promising way. One of the famous products

adhering to this double-edged sword philosophy is the Physically Unclonable Functions

(PUFs), which extract secret keys from uncontrollable manufacturing variabilities on

integrated circuits (ICs). However, since PUFs take advantage of microscopic process

vii



variations, thus many specialized issues including variability, modeling attacks and

noise sensitivity need to be considered and addressed.

In this dissertation, we present our recent work on PUF based secure computation

from three aspects: variability, modeling and noise sensitivity, which are deemed the

foundations of our study. Moreover, we found that the three factors coordinate with

each other in our study, for example, the modeling technique can be utilized to improve

the unsatisfied reliability caused by noise sensitivity, quantifying the variability can

effectively eliminate the impact from noise, and modeling can help with characterizing

the physical variability precisely.
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CHAPTER 1

INTRODUCTION

Sophisticated semiconductor industry facilitates the design, manufacturing and fab-

rication of integrated circuits (IC). One significant characteristic of the complementary

metal-oxide-semiconductor (CMOS) technology development is the persistent physical

scalability and ever-increasing usability. The scaling of CMOS techniques has helped

people to integrate more transistors into smaller sized chips, and made it possible

to realize ultra-large-scale CMOS design. This advancement favors the development

of electronic devices like smart phones, tablets and portable medical devices, but

also proposes new challenges. One example is that designers have to face new design

limitations like process variations, lower supply voltage, temperature sensitivity and

device aging, known as the PVTA issues. From another perspective, this also proposes

new requirements for the hardware security study, since malicious hardware devices

can now devastate commerce, government operation and even national defense in a

larger scale.

To enhance the computation security, many infrastructures like computer or

network server have been equipped with hardware security modules, such as a plug-in

card, which manages the digital keys for strong authentication or crypto-processing.

In contrast, due to the limited silicon or energy budget, strengthening the security of

many small embedded devices like implanted medical devices seems not an easy job. As

we are stepping into the Internet of Things (IoT) era, such small devices are ubiquitous

and all connected with the IoT network. In particular, many embedded systems are

now carrying sensitive information like user profiles or credentials, thus rendering them
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as attractive targets for malicious attackers. Therefore, in the proliferation of small

devices in the IoT era, it is urgent for people to properly address the security challenge

and protect security-critical information on these devices from various attacks.

While tiny embedded processors are becoming the central processing engines in

many portable devices, lightweight cryptographic primitives is also gaining more

attention in hardware security research. Since most of the embedded systems pose

tight constraints on area, energy and functionality, significant effort has been spent

to integrate more transistors and functionalities onto smaller chips. One challenge

in this process is that while the CMOS technology scales into nanometer regime,

designers have to consider the impact from like design uncertainty, which is introduced

by aggressive scalability. One main cause of the design uncertainty is the random

dopant fluctuation (RDF) [7], which introduces variabilities in the number of dopant

atoms in transistor channels and changes the threshold voltage of a transistor. Based

on current fabrication technology, totally eliminating such process variations is still a

difficult mission. In this scenario, constructively utilizing such phenomenon becomes

a meaningful direction. One well-known product based on this philosophy is Physical

Unclonable Function (PUF), which was firstly introduced in [102] [26] [77].

PUF can be used to substitute many conventional applications like key generator

or chip identifier. For example, one of the conventional solutions to identify IC is

using static identifiers (IDs) stored in non-volatile memory. However, such IDs are

usually composed by digital numbers and thus vulnerable to cloning. Due to the

uniqueness, physical characteristics was proposed as a new resource to build device

IDs, such physical features can be viewed as the fingerprinting of an IC, which has

the advantage of robust immutability and resistance to cloning and tampering. While

being employed as an identifier, PUF is originally described as a physically obfuscated

key [27], and more recently as a weak PUF [31].
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As many other electronic devices, PUF design is promoted by the scaled CMOS

technology, but also challenged. In this dissertation, we present our contribution on

PUF based hardware security in nanometer CMOS regime. More specifically, we

focus on advancing reliability, security of PUFs from three perspectives: variability,

modeling attacks and noise sensitivity, which are viewed as the foundations for our

study.

1.1 Challenges and Opportunities

1.1.1 Variability

Though frequently suspected and challenged, the development of CMOS tech-

nology has been continually driven by Moore’s Law over the past decades [112] [2].

Unfortunately, as the CMOS technology steps into nanometer scale, as depicted in Fig.

1.1, the fabrication uncertainty of device has become a big problem. One important

cause of the uncertainty problem is the inability to set all device parameters to the

desired values exactly. The observable characterization of fabrication uncertainty is the

mismatched device parameters, i.e., the different threshold voltage between transistors

[107] [41]. Variability on modern chips can be classified into three categories: 1) the

variabilities between different dies, i.e., the inter-die variability have large correlation

with each other, which affects all transistors on the same die; 2) a portion of transistors

one the same die are impacted by the intra-die variability, thus are correlated over

smaller distance; and 3) random issues like dopant fluctuations affect each transistor

randomly.

From a device perspective, CMOS design based on the scaled technology is now

affected more by the variabilities like process variations, lower supply voltage, temper-

ature and aging issues, also known as PVTA variations. Since security designs are

usually embedded in other circuits, thus are also challenged by the persistent physical

scalability and demand for increasing usability. PUF, which was firstly introduced in
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Figure 1.1: Transistor scaling trends [2].

[102], is a well-known example that constructively leverages such physical features for

security purpose.

Over the past 15 years, different variants or types of PUFs and applications

based on PUFs have emerged, as summarized in Fig. 1.2, see [91] for an overview.

They all share the above features of being a disordered structure, possessing physical

unclonability, and exhibiting some form of challenge-response mechanism. More

specifically, PUF is a function which leverages the physically variabilities like delay

variations [56], power-up state of SRAMs [36] and even optical variations [77] [89]

[83]. During the last ten years, PUFs have established themselves as an alternative

to conventional security approaches [28] [77]. In a nutshell, a PUF is a disordered,

at least partly randomly structured physical system. Due to its random structure

that is caused by uncontrollable, small-scale manufacturing variations, it is physically
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Figure 1.2: PUF is becoming a hot topic in hardware security research during the
past decade [91].

unclonable, i.e., no two specimens can be produced that are physically exactly identical.

This limitation applies to both the original manufacturer and to other, potentially

adversarial, parties. All PUFs have one basic functionality in common, namely some

challenge-response mechanism: They can be triggered by signals that are commonly

denoted as challenges Ci. Upon excitation by a challenge Ci, they react by producing a

response RCi that depends on their internal disorder and usually also on the challenge

itself. The tuples (Ci, RCi) are called the challenge-response pairs (CRPs) of the PUF.

The two main PUF-types are often denoted as strong and weak PUFs [93] [90].

Strong PUFs are built on customized circuits, which have a very large number of

possible challenges, too many to read out all corresponding CRPs in feasible time.

Their challenge-response mechanism should be complex in the sense that it is hard to

derive unknown CRPs from a set of known CRPs. Strong PUFs are usually employed

with a publicly accessible CRP interface, i.e., anyone holding the PUF or the PUF
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Figure 1.3: SRAM PUF has been gaining a lot of attention ever since it was proposed
[91].

embedding hardware can apply challenges and read out responses. The lack of access

restriction mechanisms on strong PUFs is therefore a key difference from weak PUFs.

In recent years, strong PUFs have turned out to be a very versatile cryptographic

and security primitive: First of all, by using a fixed set of challenges, they can be

employed for internal key derivation, just like weak PUFs. But they can do more:

They can also implement a host of advanced cryptographic protocols, ranging from

identification [77] [61] to key exchange [110] [11], key management [45] to oblivious

transfer [11], and more recently, as a keyless secure sensor [92].

In contrast, weak PUFs possess essentially a single, fixed challenge C. They are

mainly used for internal key derivation in security hardware. The underlying security

assumption is that attackers must not be able to access the internal response of

the PUF. The most well-known weak PUF example is the SRAM PUF proposed

by Holcomb et al. [36], by reading out the power-up state of the SRAM cells [31]

[37]. Though invented later than strong PUFs, SRAM PUF, as the most well-known

example in weak PUF category, has gained a lot of attention in hardware security
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(a) An ideal SRAM cell is a symmetric architecture.

(b) An example fingerprint based on SRAM PUFs.

Figure 1.4: A 64-bit fingerprint based on SRAM PUFs. Reproduced from Holcomb
et al. [36] with permission.

study, as Fig. 1.3. Since SRAM circuitry is widely used as storage module, this makes

SRAM PUF a ideal platform to generate secret keys or device fingerprint, as shown in

Fig. 1.4b, a 64-bit fingerprint based on SRAM PUF.

1.1.2 Modeling

Modeling is a powerful method for human beings to learn the mechanisms of

nature, especially to simulate complex theories or systems [24] [48]. In most recent

literatures about PUFs, modeling is mainly employed to play a “bad” role: help with
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predicting the behavior of PUFs, i.e., attacking PUFs. The usual working flow of

“modeling attacks” is that, an adversary collects a subset of CRPs, uses them to train

a machine learning (ML) algorithm, and later employs the model produced by the

ML algorithm to predict unknown CRPs. Even though many possible applications

make the secure construction of secure strong PUFs a worthwhile and rewarding

research target. Unfortunately, it is a non-trivial one, since a large number of powerful

attacks on some first-generation electrical strong PUFs have been published recently,

including Machine Learning modeling attacks [93] [90]; side-channel attacks [95] [94];

and also optical characterization techniques [106]. Most of these attacks target the

first electrical strong PUF, the so-called Arbiter PUF [28] [77] and variants thereof,

for example XOR Arbiter PUFs (Fig. 1.5) and Feed-Forward Arbiter PUFs.

Though ML modeling techniques are challenging the security of strong PUFs, but

also making them the most powerful tool to learn the internal variability of PUFs

until now. That is, ML modeling technique makes it possible for people to quantify

the sub-nanometer or sub-picosecond level physical variabilities. In this thesis, we

propose two constructive utilizations of Machine Learning techniques to help with

building of robust and reliable PUFs. One of them is simulating the microscopic
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process variations of PUFs. Since PUFs are leveraging microscopic process variations,

thus it is impossible to measure many important features directly, because that any

external probing will introduce bias to PUF circuitry. For example, it is extremely

difficult to measure the delay length of Arbiter PUFs, which is of pico-second level

with current instruments.

Another constructive usage of computer modeling in this thesis is speeding up the

circuit simulation. The behavior of a transistor or circuit is determined by features

including transistor size, temperature, supply voltage, etc. Thus it will be a waste of

time to repeatedly simulating one interested feature while varying the input patterns.

In this thesis, we propose to use machine learning techniques to build up models and

speed up the simulation of data retention voltage (DRV) for SRAM circuits, which is

2.2e6 times faster than using simulation like Hspice.

1.1.3 Noise Sensitivity

Many PUF architectures have been explored in literature, including strong PUFs

like Arbiter PUF [26] [56] [29], Ring Oscillator (RO) PUF [102], Lightweight PUF [70],

and weak PUFs like SRAM PUF [36] [31]. However, since all of the proposed PUFs

are built on microscopic physical variability, thus are sensitive to noise. Reliability (see

definition in Sec. 1.2.2) is an important metric to evaluate PUFs, which reflects their

ability to produce the same response for a particular challenge despite the existence

of noise, for weak PUFs like SRAM PUF, reliability refers to the constant power-

up states across different environmental conditions. Even though many meaningful

applications on PUFs have been proposed, reliability is still a problem that hinders

their practical applicability. This is because that environmental noise like power

supply (VDD) and temperature (T ) variations is ubiquitous, and can easily overcome

the process variabilities of a silicon device.
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The environmental noise can not be avoided, since even every silicon device itself

will dissipate heat after operating for a while. Thus, the output of a PUF depends

not only on the challenge (C) but also on transient environmental conditions (e).

If denoting the input/output relationship of a PUF p with a function fp, a PUF

operating in different conditions may possibly generate a flipped response (R) to the

same challenge vector (C), as expressed in Eq.1.1.

R = fp(C, e) (1.1)

PUFs are mainly proposed to constructing secret keys or serve as a lightweight

device identifier. According to [49], the security of most current cryptographic tech-

niques rely on the robustness of secret keys. Thus if using PUFs to identify hardware

devices or constructing secret keys, fingerprint observations must be consistent over

time and across different environmental conditions. A fundamental concern in PUFs

is to minimize the impact of noise and environmental fluctuations while still being

sensitive to the microscopic variations that make each device unique. A common way

of minimizing the impact of noise and environment is to use differential circuits. Yet

small variations in the fingerprint of a device are inevitable, and much effort is spent

on error correction of somewhat-unreliable fingerprints or PUF outputs, or adding

significant extra circuitry for calibration [74]. However, error correcting codes and

calibration circuitry are expensive in terms of the number of raw bits and silicon

resource required to create a reliable key, and more so if a large number of errors must

be correctable.

In this thesis, we present our work that studies the noise problems on PUFs. We

propose a novel clockless sequential PUF structure that performs autonomous majority

voting to improve reliability.
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1.2 Terminologies of PUF

1.2.1 CRPs

Challenge and response are commonly used terms in computer security, which

stand for the information exchanged between two parties, specifically, challenge means

the proposed question by one party, while response is the answer provided by the other

side. Only while the question is correctly answered, the two parties can authenticate

each other, for example, supplying the correct password before logging in. In PUF

study, these two terms are borrowed to denote the input and output respectively.

As suggested by the names, PUFs can be used in two-party authentication: a set of

challenges are applied and the corresponding responses are stored in advance, only the

genuine PUF holder can provide the correct responses while being queried. Different

PUF architectures support various amount of CRPs, according to the number of

usable CRPs, PUFs can be classified into two classes: strong and weak PUFs [33] [93]

[90]. For example, the more complex physical variability makes it possible for strong

PUFs to have a large number of usable CRPs and allow free querying of responses.

1.2.2 Reliability

Since PUFs leverage microscopic process variations, thus are sensitive to envi-

ronmental noise like slight temperature or supply voltage fluctuations. Due to the

sensitivity, a PUF may not produce consistent response for the same challenge under

different environmental conditions. Reliability of a PUF is defined as its capability to

reproduce the same responses while digesting the same challenge vectors. This feature

is very important in evaluating a PUF design, since most application based on PUFs

are related with security or privacy, such as authentication or key generation. A widely

used measure for reliability is intra-chip hamming distance as denoted in Eq. 1.2 [99]

[51], where the C = {C0, C2, C2 . . . Cn−1} stand for a group of n challenge vectors.

The intra-chip hamming distance Distintra(C) computes the proportion of flipped
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responses in RC,e (responses under random environmental conditions e), comparing

with that in RC,ne (responses under nominal environmental condition ne).

Distintra(C) = HD(RC,ne,RC,e) (1.2)

1.2.3 Uniqueness

Since PUF utilizes the physical variability from manufacturing, thus is supposed

to be distinguishable from each other. The metric measuring this capability of PUFs

is uniqueness, that is characterized by the inter-chip Hamming Distance Distinter(C).

Distinter(C) = HD(Ri
C,R

j
C) (1.3)

After digesting the same challenge vectors C = {C0, C2, C2 . . . CN−1}, two PUF

instances i and j will generate responses Ri
C and Rj

C respectively. The uniqueness

between these two PUF instances is calculated as Eq. 1.3, where Distinter(C) calculates

the hamming distance between Ri
C and Rj

C. Based on this definition, there will be

totally N × (N − 1)/2 uniqueness values for a group of N PUF instances. According

to the central limit theorem, if N is large enough, the distribution of uniqueness values

should be following a Gaussian style, and the ideal uniqueness should be close to 50%.

1.2.4 Uniformity

Frequency prediction is one possible attacking method on security systems, in

which the attacker collects outputs from known queries in order to build a probability

distribution for each output. An ideal security system is supposed to produces each

output bit as 0 or 1 with a probability of 0.5, which eliminates the possibility of

frequency prediction. For a hardware system like PUF, the probability of generating
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0 or 1 is mainly determined by the circuit bias, uniformity is a metric of PUFs that

denotes such bias in a PUF design.

HW (C) =
N−1∑
i=0

(Ri) (1.4)

In practical, uniformity is usually denoted by fractional Hamming Weight, i.e., the

proportion of “1” responses in a set of responses, as Eq. 1.4. C = {C0, C1, C2 . . . , Cn−1}

denotes a group of n challenge vectors applied on PUF, and Ri corresponds to the

response for each single challenge Ci. A good PUF is expected to have equal number

of 0 and 1 responses, i.e., a uniformity of 0.5, indicating the high unpredictability of

the design.

1.3 Background and Motivation

In previous sections, we introduced the basic definition of PUFs and some related

terminologies. We referred PUF study from three aspects: 1) physical variability

challenges conventional CMOS design but favors hardware security primitives like

PUFs; 2) modeling attacks is a main threat for PUF based applications, but also a

promising tool to study PUFs deeply; and 3) noise sensitivity limits the practical

applicability of PUFs by degrading their reliability. It it notable that, since all of the

three directions are about PUFs, thus there is intrinsic link between them, such as

the noise sensitivity is the cause of reliability problem. In the following paragraphs,

we will review some background information of the three aspects.

A wide variety of PUFs and fingerprints based on custom or pre-existing integrated

circuit components have been proposed. The identifying features used by custom

designs include MOSFET drain-current [60], timing race conditions [26], and the

digital state taken by cross-coupled logic after a reset [101]. IC identification based

on pre-existing circuitry is demonstrated using SRAM power-up state [37] [31], and
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physical variations of flash memory [78]. Lee et al. [57] derive a secret key unique

to each IC using the statistical delay variations of wires and transistors across ICs.

Circuit-level techniques for increasing the reliability of SRAM PUFs are explored by

Bhargava et al. [10]. An experimental evaluation of low-temperature data remanence

on a variety of SRAMs is provided by Skorobogatov [100], and SRAM remanence

in RFID has been studied by Saxena and Voris as a limitation to SRAM-based true

random number generation [97].

Previous works [109] have used error correction to construct secret keys from noisy

PUF sources; however, these approaches are expensive in their required number of

gates. Suh et al. use a BCH code to correct 21 errors among 127 raw bits to create a

64-bit key [104]. Guajardo et al. [31] derive a 278-bit secret key from 1,023 bits of

power-up SRAM state using a BCH code that can correct up to 102 errors. Maes

et al. [67] introduce an SRAM helper data algorithm to mask unreliable bits using

low-overhead post-processing algorithms. Recently, Yu et al. [126] proposed the use of

index-based syndrome (IBS) coding for deriving reliable key bits from PUF outputs.

A notable feature of error correction using IBS coding in PUFs is that the syndrome

does not leak information about the encoded bits. Hiller et al. extend IBS coding

for SRAM PUFs [35]. Van Herrewege et al. [111] have designed a new lightweight

authentication scheme using PUFs that does not require storage of a large number of

PUF challenge-response pairs.

Compared to the low cost of the SRAM used for DRV fingerprinting, a relatively

significant practical cost may be associated with the generation of the test voltages for

characterizing the DRVs. Emerging devices such as computational RFIDs [87] can use

software routines to extract DRVs, but as contactless devices they must generate all

test voltages on-chip. On-chip dynamic control of SRAM supply voltage is assumed

in the low-power literature at least since work on drowsy caches [25]. Supply voltage

tuning has also been applied with canary cells to detect potential SRAM failures,
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and as a post-silicon technique to compensate for process variation and increase

manufacturing yields [75] [121].

Reliability is a bottleneck that limits practical applicability of PUFs. To improve

the reliability of PUFs, techniques at system-level [18] [21], model-level [126] [63] [68]

and circuit-level [82] have been proposed. Delay based PUF is a big family, including

Arbiter PUF [26] [56] [29], RO PUF [102] and Lightweight PUF [70]. Among those

PUFs, RO PUF is a special one, that employs relatively fewer delay components. A

rich body of work has been published to improve the reliability of RO PUFs, such as

selecting RO pairs to maximize the frequency gap [102]. In [84], an aging-resistant RO

PUF is proposed to make RO PUFs reliable against aging. While for other PUFs of

higher complexity like Arbiter PUFs, few work has been explored except some generic

methods [126] [64], such as using error correction codes (ECC) to correct the flipped

responses. However, there is more work needed to complete this picture:

• Few existing works take the device aging problem into consideration. Techniques

that work well for overcoming transient unreliability may be ineffective for dealing

with aging related flips;

• No specialized attention has been paid to improve the reliability of the popular

Arbiter PUFs using properties that are specific to the Arbiter PUF circuit structure,

instead of using general purpose error correction.

In this we explore the difference between reliable and unreliable PUF CRPs, and

the impact of environmental noise and device aging on them. We propose to use the

modeling technique that is capable of predicting both types of PUF unreliability. We

use the Arbiter PUF as an example to explore the reliability of delay based PUFs. As

a well-known member of delay based PUF family, Arbiter PUF has been employed as

the basic block to build many complicated PUF architectures, like the Feed-forward

Arbiter PUF [55], Lightweight PUF [70], and XOR PUF [102]. Therefore, techniques
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that apply to the Arbiter PUF can be applied directly to other members of the

delay-based PUF family.

As described in previous sections, the noise sensitivity challenges PUFs reliability.

This impact can not be absolutely avoided since PUFs are based on microscopic

physical variability, which is easily disturbed by noise. Inspired by the truth that

physical variability was a barrier for conventional CMOS design but a chance for

hardware security study, constructively utilizing the noise sensitivity feature is a

promising direction, especially considering that PUFs own security characteristics.

Machine Learning modeling attacks have been deemed as the main threat to strong

PUFs. One possible solution to enhance the security of strong PUFs is leveraging

a more complex internal response-generating mechanism, which was supposed to

make ML attacks harder. For this reason, alternative silicon architectures have been

proposed in recent years. One such alternative is the ”Bistable Ring PUF” (BR PUF)

and its derivative ”Twisted Bistable Ring PUF” (TBR PUF) [14][15]. While it is still

a open problem that whether the proposed BR PUF and TBR PUF is as secure as

expected.

1.4 Thesis Contribution

The contribution of this thesis includes:

• Proposing a ranking technique to build reliable PUFs using data retention voltage

of SRAM cells, firstly applying Artificial Neural Network (ANN) technique for

simulation-free prediction of DRV as a function of temperature, process variation

assignments, and transistor sizes [119];

• Developing an analytical models for the BR PUF and the TBR PUF and use

these new models in order to apply, for the first time, support vector machines

(SVMs) to the BR PUF and the TBR PUF [120];
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• Constructively utilizing ML modeling method to improve the reliability of

delay-based PUFs, by predicting the noise-sensitive CRPs [116];

• Proposing a on-chip majority voting technique for reliable weak PUF design, in

which a sequential majority voting is realized using a self-timed circuit without

orchestration by a global clock. [118];

• Propose a failure-based PUF that uses failures induced by controlling the duration

of power gating. We demonstrate the approach in simulation using D flip-flop

circuits, and show that it reliably produces high quality output bits [117].

1.5 Thesis Outline

Following the introduction in this chapter, we divide the contribution of this thesis

into three parts:

• Chapter 2 presents a constructive usage of physical variability: reliable PUF

design on SRAM circuits. We demonstrates that SRAM DRV can serve as a

basis for reliable identification and key generation. We also propose the first

work that applies machine learning for simulation-free prediction of DRV as a

function of temperature, process variation assignments, and transistor sizes.

• Chapter 3 demonstrates a high quality PUF can be created by exploiting

differences in the failure propensity of instances of identical storage cells, and

this approach does not require power-up states to be unbiased.

• Chapter 4 re-examines security of the BR PUF and TBR PUF closely based

on FPGA implementations. We propose an analytical model for BR PUF and

TBR PUF, and for the first time, support vector machines (SVMs) is employed

to model these two PUF architectures.
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• Chapter 5 analyzes the unreliability causes of a PUF from two aspects: transient

noise and aging; the reliability impact of both aspects are explored respectively.

We employ ML modeling method for PUF characterization and utilize the model

to filter out the unreliable CRPs for each PUF, to achieve higher reliability.

• Chapter 6 explores hardware reliability techniques for PUF design. A novel

clockless sequential PUF structure that performs autonomous majority voting

is proposed, in which the external interface is included. Moreover, an internal

structure that autonomously performs majority voting to improve reliability is

realized.

• Chapter 7 concludes this dissertation.
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CHAPTER 2

RELIABLE PHYSICAL UNCLONABLE FUNCTIONS
USING DATA RETENTION VOLTAGE OF SRAM CELLS

The PUF studied in this chapter utilizes the variation sensitivity of SRAM Data

Retention Voltage (DRV), the minimum voltage at which each cell can retain state.

Prior work shows that DRV can uniquely identify circuit instances with 28% greater

success than SRAM power-up states that are used in PUFs [39]. However, DRV is

highly sensitive to temperature, and until now this makes it unreliable and unsuitable

for use in a PUF. In this chapter, we enable DRV PUFs by proposing a DRV-based

hash function that is insensitive to temperature. The new hash function, denoted

DRV-based Hashing (DH), is reliable across temperatures because it utilizes the

temperature-insensitive ordering of DRVs across cells, instead of using the DRVs

in absolute terms. To evaluate the security and performance of the DRV PUF,

we use DRV measurements from commercially-available SRAM chips, and use data

from a novel DRV prediction algorithm. The prediction algorithm uses machine

learning (ML) for fast and accurate simulation-free estimation of any cell’s DRV, and

the prediction error in comparison to circuit simulation has a standard deviation of

0.35 mV. We demonstrate the DRV PUF using two applications – secret key generation

and identification. In secret key generation, we introduce a new circuit-level reliability

knob as an alternative to error correcting codes. In the identification application, our

approach is compared to prior work and shown to result in a smaller false-positive

identification rate for any desired true-positive identification rate.
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2.1 Introduction

This chapter presents our work that employs Data Retention Voltage (DRV), the

minimum supply voltage at which state is retained, as the basis for a new SRAM

PUF. Previous work [39] has shown DRV fingerprints to be more informative than

power-up SRAM PUFs [31, 37]. The physical characteristics responsible for DRV

are imparted randomly to each cell during manufacturing, providing DRV with a

natural resistance to cloning. DRVs are not only random across chips, but also have

relatively little spatial correlation within a single chip and can be treated in analysis

as independent [52]. The proposed technique has the potential for wide application, as

SRAM cells are among the most common building blocks of nearly all digital systems.

In this chapter we extend the idea of DRV fingerprinting to create a PUF based

on DRV. To overcome the temperature-sensitivity of DRV, we propose a DRV-based

hashing scheme that is robust against temperature changes. The robustness of this

hashing comes from its use of (reliable) DRV-ordering instead of (less reliable) DRV

values. The use of DRV-ordering can be viewed as a differential mechanism at the

logical level instead of the circuit level as in most PUFs. To help validate the DRV

PUF, we propose a machine learning (ML) technique for simulation-free prediction

of DRVs as a function of process variations and temperature. The machine learning

model enables the rapid creation of the large DRV data sets required for evaluating

the DRV PUF approach. Our approach is furthermore supported using hardware

measurement of DRV data.

The contributions of this chapter are as follows:

• We demonstrate that SRAM DRV can serve as a basis for reliable identification and

key generation. This finding is supported by DRV characterizations of 20k SRAM

cells measured three times at each of three different temperatures.

• We present the first work that applies machine learning for simulation-free prediction

of DRV as a function of temperature, process variation assignments, and transistor
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Figure 2.1: A six transistor SRAM cell. Q and Q̄ are the complementary state nodes
that store a single bit value between cross-coupled inverters implemented by transistors
M1, M2, M3 and M4. WL is the wordline, and controls access transistors M5 and
M6. BL and BL are the complementary bitlines used to read and write the SRAM
cell. Arrows denote the direction of current leakage.

sizes. Once the machine learning model is trained, it can predict the DRV of a cell

at a given temperature 2.2e6 times faster than circuit simulation, and its prediction

error versus circuit simulation has a standard deviation of only 0.35 mV.

2.2 Data Retention Voltage of SRAM

An SRAM cell is commonly implemented in CMOS technology as a six-transistor

circuit (Fig. 3.2). When an SRAM cell is in the standby condition, its word line (WL)

is set low, and the two access transistors (M5 and M6) are shut off. If the supply

voltage is sufficient, two inverters (composed of M1,M2 and M3,M4) use positive

feedback to pull one complementary state node (Q or Q̄) high, and the other low. If

supply voltage is below DRV, then transistors operate in the sub-threshold (sub-Vth)

region [81] where they are highly sensitive to variations and may lose state. Such a

21



loss of state on account of insufficient supply voltage is termed a data retention failure.

The voltage at which data retention failures occur in each SRAM cell depends on its

asymmetric process variation. Because DRV is randomly assigned to each cell through

process variation, the DRV fingerprint of SRAM is a physical fingerprint suitable for

use in a PUF.

Since the DRV of SRAM signifies the minimum supply voltage at which cells can

store arbitrary state, DRV is usually studied as a lower limit to supply voltage scaling.

Most previous literature focuses on cases where the SRAM supply voltage remains

safely above DRV. While remaining above DRV, the supply voltage can be adjusted

to reduce leakage power [25, 12], compensate for manufacturing variability [75], or

compensate for environmental variations [113]. Our work is not concerned with

remaining above DRV, but instead with characterizing the DRV of each cell and using

this unique variation-sensitive information as part of a PUF.

Fast and accurate DRV analysis is needed to evaluate DRV fingerprinting, and

significant research effort has been spent on solving this problem. The default technique

for DRV analysis is Monte Carlo circuit simulation. When searching for the DRV

of an entire array instead of individual cells, improvements over basic Monte Carlo

simulation include the use of importance sampling [22], adaptive sampling [23, 44],

and boundary line searching [30]. An overview of several statistical techniques is given

by Wang et al. [114]. In Sec. 2.4 of this chapter, we propose a new technique that

uses machine learning to predict DRV. This approach differs from the aforementioned

statistical approaches in having the goal of predicting the DRV of individual cells,

instead of just accurately estimating the failure rate of the entire SRAM using process

variation statistics.
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Procedure 1 Characterize the DRV fingerprint of a set of SRAM cells.
Input: A set of bit-addressable SRAM cells
Output: v0i , v

1
i {the DRV characterization of cell at address i.}

1: Let Vnom be the nominal supply voltage for the SRAM
2: Let si refer to the logical state of SRAM address i.

3: for w = 0, 1 do
4: for i ∈ SRAM do
5: si ← w {write w to SRAM address}
6: vwi ← vmin {value used if no retention failure observed}
7: end for

8: vtest ← vmax {initialize test voltage}
9: while vtest > vmin do

10: lower SRAM voltage from Vnom to vtest
11: remain at voltage vtest for time ttest
12: raise SRAM voltage from vtest to Vnom
13: for i ∈ SRAM do
14: if (si 6= w) ∧ (vwi = vmin) then
15: SRAM cell at address i did not retain state w after applying vtest, and vtest is

the first and highest voltage at which this retention failure occurred.
16: vwi ← vtest
17: end if
18: end for
19: vtest ← vtest −∆v {try a lower voltage next}
20: end while

21: end for

2.3 DRV Characterization

We characterize the DRV of an SRAM cell at address i with a pair 〈v0i , v1i 〉. Each

vwi represents the highest voltage at which address i will have a retention failure

after state w is written to it. In principle, v0i and v1i are real-valued; in practice,

we approximate each one using N discrete voltages with a step size of ∆v. Proc. 1

presents our characterization procedure. The implementation details of Proc. 1 vary

slightly when applied in hardware measurement or simulation as explained in the next

two subsections.

The DRV characterization procedure is parameterized by maximum, minimum,

and step size for test voltages (vmax, vmin, and ∆v respectively), and by the time (ttest)

for which each test voltage is applied. Simulations by Nourivand et al. [75] using a

procedure similar to Proc. 1 show that a value of 2 ms for ttest is sufficient to induce
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retention failures. The total time to characterize the DRV of an SRAM cell using

Proc. 1 is given by tproc in Eq. 2.1. In the case of simulation, tproc is the simulated

time, and the actual runtime for the circuit simulator is many orders of magnitude

larger. The frequency of observing different DRVs in hardware measurements and

simulation are shown in Fig 4.5.

tproc = ttest ×
vmax − vmin

∆v
(2.1)

2.3.1 Hardware DRV Measurement

The target platform for DRV fingerprinting is an integrated SRAM block with

an adjustable supply voltage, as is sometimes used to compensate for variation [54].

To simplify experiments, our platform mimics this configuration using a dedicated

SRAM chip and a separate microcontroller. Figure 2.2 presents the overview of our

experimental system. SRAM supply voltages are generated using analog outputs of a

Texas Instruments MSP430 F2618 microcontroller [108], and that same microcontroller

also orchestrates the timing of the supply voltage changes (per Proc. 1). An op-

amp configured as a voltage follower tracks the analog output voltage from the

microcontroller and powers the SRAM at the same voltage; the op-amp is used because

the analog output of the microcontroller cannot supply enough current to power the

SRAM directly. All experiments use instances of SRAM chip AS6C6264 [3] and the

DRV characterization parameters are vmax = 700 mV, vmin = 0 mV, ∆v = 2 mV,

and ttest = 1 s. Thermal tests are conducted inside of a Sun Electronics EC12

Environmental Chamber [105], and an OSXL450 infrared non-contact thermometer [76]

with ±2◦C accuracy is used to verify the temperature.

Note that our experimental platform differs from that used in our previous work

[39]. In our previous work, the DRVs of SRAM cells in a microcontroller memory

are characterized by repeatedly lowering the microcontroller’s supply voltage and
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Figure 2.2: Experimental platform used for determining SRAM chip DRV assignments.
Photographed in EECS department, at the University of Michigan.

observing the highest voltage that induces a retention failure in each cell. Because the

microcontroller’s SRAM shares a common supply node with the processing core, the

low test voltages used for the characterization cause the core to reset and lose its state.

As persistent state is required for the DRV characterization, our experiments used the

microcontroller’s non-volatile memory to preserve state while the test voltages were

applied.

2.3.2 DRV Measurement in SPICE Simulation

Circuit simulation is a second platform for DRV characterization (Proc. 1), and

it complements hardware measurements by allowing for DRV exploration under

controllable process variations and environmental conditions. In circuit simulation,
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Figure 2.3: Distance (per Eq. 2.3) between two characterizations of the same cell
increases as temperature changes.

we use transistor models from the 45 nm predictive technology model [127, 13]. To

mimic the random process variations that give each cell its unique DRV, variations

are introduced for transistor width W , length L and threshold voltage Vth. The

International Technology Roadmap for Semiconductors (ITRS) indicates that transistor

length should have a 3σ variation that is 10% of the nominal length L [1, 5]. Adopting

the same guideline for transistor width, in our simulation the random components of

both W and L are normally distributed with a standard deviation that is 3.33% of the

nominal W or L value. The standard deviation of threshold voltage is given by Eq. 2.2;

a value of 1.8 mV*µm is used for the matching constant AVth [79]. The parameter

values used when implementing the DRV characterization procedure (Proc. 1) in

SPICE are vmax = 500 mV, vmin = 0 mV, 4v = 0.1 mV, and ttest = 2 ms.

σVth =
AVth√
W ∗ L

(2.2)
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Figure 2.4: The joint probability distribution function over all cells of the two variables
(v0i and v1i ) comprising a DRV characterization. The distribution is determined
experimentally using Proc. 1, and shows that a large fraction of cells have the
minimum possible value (vmin) for either v0 or v1, indicating a cell that retains one
written state across all test voltages.
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2.3.3 Impact of Temperature Variations

DRVs generally increase with temperature [81], and this hinders the reliability of

DRV-based fingerprinting. Recalling that each DRV is a point 〈v0i , v1i 〉 in 2-dimensional

space, an intuitive way to define the distance between two DRVs is to use their distance

in this 2-dimensional space (Eq. 2.3). This distance metric is used as the basis for

DRV fingerprint matching in our previous work [39]. To demonstrate the impact of

temperature, we compute the average distance between two characterizations of the

same cell, when one is taken at 28◦C and the other at 50◦C, or 70◦C. As shown in

Fig. 2.3, the average distance between the two characterizations increases with the

temperature difference.

d1(i, j) =

√(
v0i − v0j

)2
+
(
v1i − v1j

)2
(2.3)

Given that DRV fingerprints are intended for use in real-world scenarios with-

out precisely-controlled temperatures, the temperature sensitivity shown in Fig. 2.3

indicates that the distance metric of Eq. 2.3 is prone to unreliability in real-world

usage. In Sec. 2.5, we propose a new technique for extracting temperature-invariant

information from DRV and demonstrate that this new technique is highly reliable

when temperature fluctuates.

2.4 Modeling the DRV of an SRAM Cell

Although the SPICE simulation described in Sec. 2.3.2 is a straightforward and

highly accurate approach to characterize the DRV of SRAM cells, it is very time

consuming for two reasons. The first reason is that, to find the maximum voltage that

induces a failure in each cell, numerous test voltages must be applied (Proc. 1). The

second reason is simply that simulating each test voltage is itself very slow. On our

experimental machine, equipped with an Intel Xeon E5-2690 processor running at
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2.90 GHz with 64 GB of RAM, simulating a single test voltage on a single SRAM cell

for 2 ms has a runtime of 0.17 s.

An alternative to iterative SPICE analysis is to predict DRV using a model. Just

as the DRV of each SRAM cell is ultimately determined by temperature and the

process variations of its transistors, the DRV of an SRAM cell can be formulated as a

function of its temperature T and transistor width, length, and threshold voltage (W ,

L, and Vth respectively). Qin et al. [81] provide an analytical model for the DRV of

an individual cell as in Eq. 2.4, where DRVr is the DRV at room temperature, and

DRVf is defined in Eq. 2.5 with 4T representing the temperature difference from

room temperature. Terms ai, bi, and c in Eq. 2.5 are fitting coefficients and their

values are determined empirically for each CMOS technology process [81].

DRV = DRVr +DRVf (2.4)

DRVf =
6∑
i=1

ai ∗
4(Wi/Li)

Wi/Li
+

6∑
i=1

bi ∗ 4(Vthi) + c ∗ 4T (2.5)

Although this model can accurately estimate the DRV of a cell, it has two weak-

nesses that create the need for a more advanced model:

1. To predict a specified DRV value with Eq. 2.5, the user needs to know the

DRVr for each SRAM cell. This value is not expressed as a function of transistor

parameters and can only be calculated through hardware measurement or

computationally expensive circuit simulation.

2. Using the same coefficients ai, bi and c for different SRAM cells creates estimation

errors. In reality, the DRV of different cells increase according to different

coefficients depending on their unique process variations. This distinction is

especially important in our work, where the unique impact of process variations

across cells is critical to the overall work.
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2.4.1 Predicting DRV using Artificial Neural Networks

Our approach addresses the two aforementioned weaknesses in Qin’s work by using

machine learning for DRV prediction. The machine learning algorithm predicts the

DRV directly from the parameters that are responsible for determining it, without using

expensive circuit simulation. Given that the values of process variation parameters

vary over bounded ranges, it follows that the DRVs too fall within a bounded range

[DRVmin, DRVmax]. The range of DRVs is manually divided into K classes, each

with size 4DRV (Eq. 2.6). The use of K classes makes DRV prediction a “multi-

classification” problem: for any given feature pattern {Wi, Li, ...Vth i, T}, there is

exactly one among K classes corresponding to the correct DRV output.

[DRVmin, DRVmax] = {[DRVmin, DRVmin +4DRV )∪
[DRVmin +4DRV,DRVmin + 2 ∗ 4DRV ) ∪ ...

... ∪ [DRVmax −4DRV,DRVmax]}
(2.6)

Artificial Neural Network(ANN) is a well-known ML method [40] that is widely

used to solve multi-classification problems. Our DRV prediction method specifies the

DRV of an SRAM cell as an ANN output class, and indicates the class to which the

corresponding SRAM parameter pattern should be assigned to. Our approach collects

a group of samples from SPICE, including physical parameters of SRAM circuitry as

input and corresponding DRV values (which can be viewed as golden value) as output.

An ANN model is later trained based on this data to match input with output. In

this process, neurons learn to classify the examples from each class (Fig 2.5). Finally,

the hidden neurons dealing with the same class will be combined as one group, so

the number of groups corresponds to the number of output classes. Each class has a

corresponding surface, which is approximated by the combined neuron groups.

To get data for ANN model training, we use SPICE simulator as the infrastructure

for collecting DRV statistics. DRV values are extracted from simulations of 2000

cells across temperature 25℃ to 100℃, with a step size of 1℃. A common problem
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Figure 2.5: Artificial neural network for DRV classification and prediction.

with ML models is overfitting, where a model is trained to perform well on training

data but fails to yield similar results upon seeing new data. To avoid overfitting

in building the DRV model, we reordered the samples and divided them into three

subsets: training (60%) validation (20%) and test (20%). Training set is the data set

used for computing the gradient and updating the network weights and biases. The

validation set is used to monitor errors during the training process. The validation set

and training set error usually decreases during the initial phase of training. The test

set error is not used during training, but is used to validate the model performance

and compare different models.

2.4.2 Evaluating Accuracy of DRV Prediction

The prediction results of the test subsets are shown as Fig. 2.6. The regression

plots display the ANN-predicted DRVs with respect to the golden DRV values collected
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Figure 2.6: Training results based on Neural Network model, across three data sets.
R denotes the correlation between golden DRV data from SPICE simulation, and
predicted DRV value from our model.

from SPICE simulation. In Fig. 2.6, R denotes the correlation between model outputs

and golden values. For a perfect fit, the predicted outputs should be equal to the

golden values (the data should fall along a 45 degree line). For our DRV model, there

is a high correlation between prediction and output for all data sets.

Before our ANN model in this work, the linear model described in Eq. 2.5 was

widely used to model the DRV value of SRAM designs, which can be optimized

with Linear Regression (LR) method. LR fits a data model that is linear in the

model coefficients. The most common type of LR is a “least-squares fit”, which

can find an optimal line to represent the discrete data points. In a LR model, the

32



same physical parameters of ANN models are defined as input training features

p = {pi, |pi ∈ {W1/L1,W2/L2, . . . , T}}. By denoting the linear coefficients with

θ = {θ0, θ1, . . . , θn}, we get:

hθ(p) = θ0 + θ1 ∗ p1 + · · ·+ θn ∗ pn (2.7)

where θ stands for the set of coefficients (e.g. ai and bi as shown in Eq. 2.5). Each

training sample is composed of transistor feature set p and the corresponding golden

DRV value DRVgolden from SPICE simulation. Based on “least-squares fit” rule, the

cost function of m training examples can be expressed as:

J(θ) =
1

2m

m∑
k=1

(hθ(p
(k))−DRV (k)

golden)2 (2.8)

where p(k) corresponds to the training features of kth training sample, like the transistor

sizes and temperature. To obtain the optimal θ, we applied “Gradient Descent”

simultaneously on each coefficient θj, j ∈ (1, 2 . . . n):

Repeat{

θj : = θj − α
∂J(θ)

∂θj

= θj − α
1

m

m∑
i=1

(hθ(p
(k))−DRV (k)

golden)p
(k)
i

}

(2.9)

α is the learning rate of linear regression model, p
(k)
i is the ith feature of the kth

training sample.

To further evaluate the effectiveness of our ANN model, we compare its prediction

error to that of the LR model1 on a randomly chosen data set of size 3500. Fig. 2.7

1The linear regression model is trained and optimized with the same three data sets as the neural
network model.
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Figure 2.7: DRV prediction error for the artificial neural network model and linear
regression model. In both cases, error is determined by comparison to SPICE simulated
results.

presents the prediction error of these models. The neural network model achieves

smaller prediction errors than the linear regression model. The mean µ and standard

deviation σ of prediction error for the neural network model are −0.01 mV and

0.35 mV respectively, while those of the linear regression model are 0.041 mV and

0.9 mV. The neural network model outperforms the linear model because the neural

network model assigns varied weights and bias to different feature patterns 2, whereas

the linear model formulates all input features with the same optimized θ.

2This also validates our finding in Fig. 2.8, that different SRAM cells have different DRV growth
slopes while temperature is increasing.
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2.5 DRV-based PUF

DRV-based identification or authentication schemes must consider the impact of

temperature changes. The DRV of each SRAM cell increases approximately linearly

with temperature [81], and the coefficient relating DRV to temperature varies only

slightly across cells. Accordingly, the relative ordering of DRVs across cells is more

reliable than the values themselves; in other words, the cell with the ith highest DRV

will remain roughly the ith highest when temperature changes, even though all DRVs

will change in absolute terms. Fig. 2.8 shows the relationship of DRV and temperature,

according to machine learning prediction, for 10 randomly chosen SRAM cells. The

DRV ordering is preserved across temperature values, except for two pairs of cells

that flip their ordering. Any two cells with sufficiently different nominal DRVs have a

DRV-ordering that does not change with temperature.
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2.5.1 DRV-based Hashing with DH and DH-Preimage

To utilize the robustness of DRV ordering, we propose a hashing scheme with the

mapping between challenges and responses defined by the DRV-ordering within SRAM

address pairs. In this scheme, a challenge C of length m is a sequence of address pairs

(〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉), a response R is a bit string (r0, . . . , rm−1). A DRV mea-

surement D assigns values to each address of an SRAM such that D(c) = max(v0c , v
1
c ),

where v0c and v1c are the minimum retention voltages after writing the 0 and 1 states

to the cell at address c (Proc. 1). Note that a DRV D is a single imprecise obser-

vation, and two DRVs produced by the same chip will only match approximately.

Procedure DH(D,C) (Proc. 2) hashes a challenge C to a response R. Procedure

DH-Preimage(D,R) (Proc. 3) computes a challenge C that reliably hashes to re-

sponse R on a particular chip. For any DRV assignment D and response R, the relation-

ship R = DH(D,DH-Preimage(D,R)) holds. Procedures DH and DH-Preimage

are the building blocks for key generation and identification applications in Sec. 2.5.2

and 2.5.4.

The DRV-based hashing procedure DH is designed to be resilient to small fluctua-

tions in DRV, and to common-mode DRV shifts such as those caused by temperature.

The steps for DH are given in Proc. 2. For each address pair 〈c̄i, ci〉 in the challenge,

the corresponding response bit ri is assigned a 1 if address ci has the higher or equal

DRV, and 0 if address c̄i has a higher DRV. Procedure DH is made resilient by

applying challenges for which the addresses in each pair have vastly different DRVs,

so that the inequality at line 2 of Proc. 2 consistently resolves in the same way despite

small variations.

Given a DRV D and a desired response R, the role of procedure DH-Preimage is

to create a challenge C that will reliably generate R whenever it is applied to the same

SRAM that produced D. The steps for DH-Preimage are shown in Proc. 3. For

each bit ri of the desired response, a pair of challenge addresses 〈c̄i, ci〉 is chosen. If
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the desired response bit is 0 (1), then c̄i (ci) is assigned the address of the cell with the

higher DRV. Note that the two addresses chosen for each pair have markedly dissimilar

DRVs that are separated by |D| −m positions in DRV ordering (see lines 3 and 5 of

Proc. 3), where |D| is the SRAM size and m is the response length. Stated differently,

one address in each pair has one of the m highest DRVs in the SRAM, and the other

has one of the m lowest DRVs. The DRV dissimilarity within each address pair ensures

that the higher DRV can be reliably determined when the challenge is applied in a

subsequent call to DH.

A demonstration of the DRV-based hashing is given in Fig. 2.9. According to the

depicted DRV assignment D, procedure DH hashes challenge C = (〈1, 10〉, 〈6, 9〉, 〈7, 5〉)

to response R = (1, 0, 1): the first response bit is 1 because address 10 has a higher

DRV than address 1, the second response bit is 0 because address 6 has a higher DRV

than address 9, and the third response bit is 1 because address 5 has a higher DRV

than address 7.

A necessary condition for obtaining a wrong response bit for a challenge address

pair is that, when some test voltage is applied, the cell with nominally lower DRV

fails, and the cell with the nominally higher DRV does not. In the toy example of

Fig. 2.9, given that the DRVs within each pair have a gap of 110 mV, this will only

happen in the case of extreme noise or if the supply voltage differs by 110 mV from

one cell location to the other. As the cells of an SRAM are powered by the same

supply, and given that supply nodes are already designed to avoid local voltage droop,

such a large supply voltage difference across cells is uncommon.

The DRV hashing scheme in this chapter is related to index-based syndrome (IBS)

coding [126] and ordering-based encoding schemes applied to PUFs with real-valued

outputs [69]. Given a group of indexed objects with real-valued measurements, IBS

coding encodes each bit to a syndrome that is the index of the maximum or minimum

value in the group depending on the bit’s polarity. Given noisy measurements of
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Figure 2.9: Example of DRV-hashing. According to the depicted DRV assignment
D, and letting challenge C be (〈1, 10〉, 〈6, 9〉, 〈7, 5〉), procedure DH(D,C) produces
response R = (1, 0, 1). Similarly, procedure DH-Preimage(D,R), given this response
R, would produce as output the same challenge C.

the same indexed objects, the syndrome is decoded by determining whether the

measurement it indexes is closer to maximal or minimal in the group. A comparison of

the reliability and security of IBS versus other approaches is given by Yu et al. [125].

Variants of IBS coding are also applied to SRAM power-up state PUFs [35]. Procedures

DH-Preimage and DH are analogs for IBS encoding and decoding respectively. In

addition to using a hashing scheme related to IBS coding, a second reliability enhancing

feature is that the SRAM cell pairs are selected to maximize the discrepancy between

the values in each pairing. The idea of configuring real-valued PUFs to utilize large

discrepancies for enhanced reliability has been proposed previously for ring oscillator

PUFs [102, 124], where the identifying feature is oscillator frequency instead of

minimum retention voltage.
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Procedure 2 R = DH(D,C): Use DRV assignment D to hash challenge C to
response R.
Input: D {DRV assignments for a set of SRAM addresses}
Input: C {sequence of addr pairs (〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉)}
Output: R {bit string response (r0, . . . , rm−1) to challenge}

1: for 〈c̄i, ci〉 ∈ C do
2: ri ← (D(ci) ≥ D(c̄i))
3: end for

4: return R

Procedure 3 C = DH-Preimage(D,R): Map response R to challenge C using
DRV assignment D.
Input: D {SRAM DRVs. D(a) is DRV of cell at address a.}
Input: R {the desired response bit string (r0, . . . , rm−1)}
Output: C {sequence of addr pairs (〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉)} {sort addresses by DRV.

Let ai denote address such that D(ai) is ith highest among all addresses}
1: for i ∈ 0..(|R| − 1) do
2: if ri = 1 then
3: 〈c̄i, ci〉 ← 〈ai+|D|−m, ai〉 {ci gets addr with higher DRV}
4: else
5: 〈c̄i, ci〉 ← 〈ai, ai+|D|−m〉 {c̄i gets addr with higher DRV}
6: end if
7: end for

8: return C

2.5.2 Secret Key Generation

Cryptographic keys must be fully reliable, and this is in conflict with the inherent

imprecision of PUFs in sensing the effects of small physical variations. Error correcting

codes can bridge the gap from noisy PUFs to reliable keys. With error correction, some

number of raw response bits are transformed by helper data into a noisy codeword that

is decoded into a reliable key. One example of error correction in weak PUFs is the use

of BCH codes with power-up fingerprints [31]. The physical nature of PUFs also allows

for circuit-level reliability mechanisms that enable lighter-weight3 error correcting

codes, or in some cases supplant them entirely. Examples of reliability-enhancing

circuit techniques are reinforcing variation tendencies with directed aging [74, 10], and

3i.e. codes that are cheaper to implement but cannot correct as many errors.
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using helper data to mark on each device the response bits that are precharacterized

as unreliable [126].

Our key generation using DRV-hashing uses circuit-level reliability enhancement

and (optionally) error correcting codes. The steps to implement DRV-based secret key

generation for a given SRAM instance are shown in Proc. 4. Lines 1-5 comprise the

enrollment process to occur at the manufacturer immediately after fabrication. First,

an arbitrary secret key K is chosen and encoded into codeword R; R is the value that

should be the response of the DRV PUF in the field later. Next, DH-Preimage is

called (line 3) to generate a challenge that will reliably hash to response R on this PUF

instance. The challenge is then stored to a one-time-programmable on-chip memory

(line 4). Finally, the enrollment process is completed by blowing a fuse to disable the

DH-Preimage functionality (line 5). After the enrollment process is completed, the

PUF can be used in the field as a secret key. When the stored challenge C is applied

to the PUF in the field, it hashes to response R′ according to DRV D′ (line 6). If

D′ is similar to the enrollment DRV D (as it will be for the same chip), then the

inherent robustness of DH should produce a response R′ that exactly matches or

closely approximates R. Response R′, a possibly noisy version of the original codeword

R, is decoded to correct errors and regenerate the enrolled key K (line 7). This key is

a secret, chosen by the party that enrolled the DRV PUF, and known only to them.

To maintain secrecy of key K, it must only be used as an input to a cryptographic

hash, and never be revealed in plain text.

Note the secrecy of the generated key requires that an attacker cannot apply

arbitrary challenges to the DRV PUF. If an attacker can apply chosen challenges,

then helper data manipulation attacks from other pairing-based PUFs [17] can also

expose the secret key from the DRV PUF. It is therefore necessary in the secret

key application that the challenge addresses are supplied exclusively from a memory

that is not overwritable in the field. Note that non-overwritable challenge addresses
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need not be secret. The addresses do not leak information about the key under the

assumption that DRVs are independent and identically distributed, as shown in work

on index-based syndrome coding [125].

An adversary possessing a chip may somehow modify the test voltages prescribed

by Proc. 1 for DRV characterization. This could induce a flawed DRV characterization;

for example, if the voltage is never lowered at all, the characterization would wrongly

conclude that all cells have a DRV of 0 V since none ever had a retention failure at any

test voltage. However, voltage manipulation does not provide any useful information

about the DRV-based secret key. Even though it may be possible to learn that a

retention failure happens at some particular voltage, no information is leaked unless it

can be determined which address in a pair failed, and this is not observable because

the output of the DRV PUF is never revealed in the clear.

2.5.3 Reliability

The response bit-error-rate (BER) in key generation experiments depends on the

key size and the size of the SRAM used for the DRV PUF. The result of Fig. 2.10

shows the BER4 of an m-bit key generated by a 2m-cell SRAM5. The response BER

decreases as m increases, and does not exceed 1e-5 for any key size larger than 60

bits. The BER decreases as the SRAM size increases, because a larger SRAM tends

to have a larger difference between the DRVs of the addresses within each challenge

pair. We refer to the DRV difference between the two addresses in each challenge pair

as the “DRV gap” of a DRV PUF. Larger DRV gaps indicate more reliable DRV PUF

4In BER analysis, error correcting codes are not used so that circuit-level reliability of the
proposed hashing scheme can be observed. Error correcting codes would serve to correct the errors
that contribute to BER.

5An SRAM with 2m cells is the smallest SRAM capable of generating an m-bit response, because
each response bit is generated using two addresses.
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Figure 2.10: When implementing a key of length m using a DRV PUF in SRAM of
size 2m (per Proc. 4), the response bit error rate (BER) decreases as m increases.
The decrease in BER results from an increase in the DRV gap, where “avg DRV gap”
represents the absolute DRV difference between c̄i and ci, averaged over challenge
pairs.

responses, because the determination in DH of which challenge address has the higher

DRV will be less error prone.

The BER can be further reduced by increasing the size of the SRAM to beyond the

minimum of twice the key length m. In this case, the cells with DRVs near the median

DRV of the SRAM are not among the m highest nor m lowest, and are therefore not

selected by DH-Preimage to be used in the challenge. This further increases the

DRV gap to reduce BER. Fig. 2.10 shows experimentally the average DRV gap as

a function of SRAM size and key length. The areas of Figure 2.10 with the darkest

coloring correspond to the most reliable scenarios for key generation. Therefore,

arbitrary robustness can be added directly to the hashing scheme, creating a second

reliability knob to be used in concert with, or instead of, error correcting codes.
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Figure 2.11: Results showing identification performance using the distance
metric Response-Distance (Proc. 5) in upper plots, and performance us-
ing Voltage-Distance (Eq. 2.10) in the lower plots. The temperature re-
silience of DH and DH-Preimage causes Response-Distance to outperform
Voltage-Distance, as indicated by lower false positive rates for equivalent true
positive rates.
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Figure 2.12: When implementing a key of length m using a DRV PUF in SRAM of
size ≥ 2m (per Proc. 4), there is a clear increase in the average DRV gap as SRAM
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of SRAM therefore represents a reliability knob for the DRV PUF.

2.5.4 Circuit Identification

Hashing functions DH and DH-Preimage can be used for reliable chip identi-

fication, in a way that is similar to their use in key generation. In this application,

the DRV of each SRAM is not considered secret, and arbitrary challenges can be

applied to the SRAM. The goal of chip identification is to determine whether two

DRV characterizations D1 and D2 are generated by the same SRAM cells. Using

a distance metric to quantify dissimilarity between two DRV characterizations, a

determination of “same identity” is made whenever the distance between D1 and

D2 is below some matching threshold. Distances between two DRVs from the same

cells are denoted within-class, and distances between two DRVs from different cells

are denoted between-class. A true positive identification occurs when a within-class

distance is below the matching threshold, and a false positive identification occurs
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Procedure 4 Use DRV PUF as reliable secret key. Lines 1-4 enroll the PUF and
personalize it with key K. Lines 5-6 occur in the field to regenerate K from challenge
C.

1: Choose a secret key K
2: R = Ecc-Encode(K) {for error correction}
3: C ← DH-Preimage(D,R) {challenge C is public}
4: Store C to one-time-programmable on-chip memory
5: Disable DH-Preimage {Blow fuse. See Fig. 2.9}

6: R′ ← DH(D′, C) {D′ ≈ D =⇒ R′ ≈ R}
7: K ← Ecc-Decode(R′) {Regenerated secret key inside chip}

when a between-class distance is below the matching threshold. Perfect identification

is possible when all within-class distances are smaller than all between-class distances,

as it is then possible to choose a matching threshold that will produce a true positive

identification for all within-class distances without any false positives.

The distance between DRVsD1 andD2 is computed as Response-Distance(D1, D2)

(Proc. 5). The first step of Proc. 5 is to choose a random response R1 (line 1) and

generate for D1 a challenge C that is the preimage of R1 (line 2). Response R2 is

then obtained by hashing C using D2 (line 3). If D1 and D2 are from the same chip,

then the BER analysis of the previous subsection shows that R1 and R2 will also be

similar. To perform identification in a challenging (high-BER) scenario, we use a short

key of length 10 and a small SRAM with 20 cells (see Fig. 2.10). The distribution

of within-class and between-class distances are shown in Fig. 2.11a, and the receiver

operating characteristic (ROC) plot of Fig. 2.11b shows the identification performance

for the data. Each ROC curve traces tradeoffs between true positive and false positive

identification that can be achieved by changing the matching threshold. The three

ROC curves in Fig. 2.11b compare identification of across-temperature within-class

distances against between-class distances at a single temperature; these three com-

parisons are chosen because they are the most challenging identification scenarios, as

indicated by the largest overlaps between the two distributions (Fig. 2.11a).
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We evaluate the performance of Response-Distance for circuit identification

(Proc. 5) by comparing its ROC curves (Fig. 2.11b) against the ROC curves obtained

for the same data by our prior identification scheme [39]. In our prior work, letting

the characterization of address i in D1 and D2 be denoted 〈v10
i , v11

i 〉 and 〈v20
i , v21

i 〉,

the distance between D1 and D2 is given by Voltage-Distance(D1, D2) (Eq. 2.10).

The within-class and between-class distances according to Voltage-Distance have

a larger overlap (Fig. 2.11c), and the corresponding ROC curves (Fig. 2.11d) have

inferior performance because they admit in all cases a larger false positive identification

rate for the same true positive identification rate.

Voltage-Distance(D1, D2) =∑
i

√
(v10

i − v20
i )

2
+ (v11

i − v21
i )

2
(2.10)

Procedure 5 Response-Distance(D1, D2): Compute distance between responses
of two SRAMs when the same challenge is applied to both.
Input: D1 {DRVs for chip 1. D1(a) is chip 1 DRV at address a.}
Input: D2 {DRVs for chip 2. D2(a) is chip 2 DRV at address a.}
Output: x {the distance between D1 and D2}

1: Choose randomly R1 ∈ {0, 1}|D1|/2

2: C ← DH-Preimage(D1, R1) {note: R1 = DH(D1, C)}
3: R2← DH(D2, C)
4: x← Hamming-Distance(R1, R2)

5: return x

2.6 Summary

This chapter presents a collection of techniques that allow the data retention

voltage of SRAM cells to be used as the basis of a reliable PUF. We propose a machine

learning approach for fast and accurate simulation-free prediction of DRV values.

We present procedures DH and DH-Preimage for reliable hashing based on DRV

measurements, and demonstrate that the reliability of these approaches stems from
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their use of DRV-ordering instead of the absolute DRV values that were previously

proposed. We use a large data set of DRVs from circuit simulation to train and analyze

our DRV-prediction scheme, and use a large data set of DRV measurements from

SRAM chips to quantify the reliability of DH and DH-Preimage in key generation

and identification applications.
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CHAPTER 3

RELIABLE PUF DESIGN USING FAILURE PATTERNS
FROM TIME-CONTROLLED POWER GATING

A common PUF mechanism is based on uninitialized power-up states of bistable

storage elements, but any bias in these storage elements will reduce their sensitivity

to process variations and induce correlated outputs. Alternatively, a high quality

PUF can be created by exploiting differences in the failure propensity of instances

of identical storage cells, and this approach does not require power-up states to be

unbiased. Contrary to previous failure-based PUFs that induce failures by controlling

supply voltage explicitly, in this chapter we propose a failure-based PUF that uses

failures induced by controlling the duration of power gating. We demonstrate the

approach in simulation using D flip-flop circuits, and show that it reliably produces

high quality output bits.

3.1 Introduction

Storing static on-chip identifiers (IDs) with non-volatile memory is a conventional

method to identify integrated circuits. However, such identifiers are vulnerable to at-

tacks and are trivial to clone. On the contrary, converting physical features of circuitry

into unique fingerprints has several advantages and many possible implementations. In

literature, circuits that translate physical features into unique IDs are called physical

unclonable functions (PUFs) [26, 77], or more specifically within PUF literature as

physically obfuscated keys [27] or weak PUFs [31]. Since PUFs are harder to clone,

they can lead to more secure chip IDs and keys. The outputs of PUFs are sensitive to
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various noise sources and this hinders their practical applicability. Much effort has

been spent on correcting the bit errors caused by environmental fluctuations, such as

using error correction codes [19], or adding helper circuitry for calibration or temporal

majority voting [73].

The power-up state of static random-access memory (SRAM) has been proposed

as the basis for PUFs in FPGAs [31] and micro-controllers [36]. However, modern

FPGAs initialize or reset the values of all SRAM blocks at time of power up, and this

renders SRAM PUFs unsuitable for FPGAs. For building PUFs in FPGAs, Maes

et al. [65] propose using the power up states of flip-flops instead of SRAM. Unlike

SRAM, flip-flop circuits have biased power up states and can only produce high quality

outputs through complicated post-processing methods [65].

Independent of any bias in power up state or other fingerprint, any system with a

number of identical storage cells will have some asymmetry in how failure-prone the

various cells are. Stated differently, if the cells are subjected to the same conditions,

some cells will be more likely to fail than others. This asymmetry can be used as the

basis of a fingerprint. Yet, memory cells are designed so that failures will not occur

in normal operation, and therefore some steps must be taken to induce the failures.

In previous works, failures have been induced by manipulating the supply voltage of

SRAM arrays [39, 119], or by lengthening the refresh interval of DRAM arrays [86]. In

this work, we propose manipulating the duration of power gating as a way of inducing

device-identifying failures and we demonstrate a PUF design based on this principle.

Power gating is an energy-saving technique for embedded systems [42] in which

the power supply is effectively turned off for inactive parts of the chip. Power gating

is common in modern embedded systems, including the Xilinx 7 series FPGAs [43],

and the ARM Cortex-M series processors [46]. An example schematic of power-gated

logic is depicted in Fig. 3.1; a PMOS transistor is inserted between the normal supply

voltage (VDD) and a virtual supply voltage (VDD V ) that directly powers the logic.
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A “high” sleep signal will cut the connection to the virtual power supply so that the

gated circuitry will not draw power from VDD. Utilizing power-gated DFFs, we make

the following contributions in this work:

• We utilize retention failure counts of storage cells to create a PUF that can be used

even when the storage cells are strongly biased in their power-up states;

• We propose a characterization algorithm to extract failure counts and reliably map

them to responses in an experimental dataset containing 10,000 DFF cells;

• We present the first technique that extracts identifying information from retention

failures of CMOS cells without requiring the ability to explicitly control supply

voltage.

The remainder of this chapter is structured as follows: Section 3.2 reviews related

work on PUFs. Section 3.3 introduces data retention failures, their measurement

based on power-gating and their sensitivity to temperature. Section 3.4 presents our

approach and evaluates it on DFFs. Section 3.5 presents directions for future work

and concludes this chapter.

3.2 Related Work

Chip identifiers based on features of pre-existing circuits are an economical solution,

and many techniques have been proposed for this purpose. Perhaps the most popular

such approach exploits the power-up states of SRAM cells as chip IDs [31, 37]. Maes

et al. [65] propose using the power-up state of DFFs as on-chip identifiers for FPGAs,

but the power-up states of DFFs have significant bias due to design asymmetry.

An alternative to using power-up state of memories is to extract identifiers from

retention failure signatures in various types of memories. Identifiers of this type can

be extracted from the minimum data retention voltages of SRAM cells [39]. Bacha

et al. [8] show that device-identifying retention failures can be observed through the

error correction logic of caches on existing processors. Xu et al. [119] propose a key
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Figure 3.1: Schematic of power gating using a header switch. A PMOS transistor is
employed between the supply node (VDD) and the virtual supply node (VDD V ) that
directly powers the block. A sleep signal enables and disables the connection between
VDD and VDD V .

generation scheme based on SRAM retention voltages that can produce identifiers

which are reliable across temperature variations. Other researchers have proposed

DRAM PUFs [88] by using identifying properties of DRAM failures, and several

other works have shown that write failures [34] and retention failures in approximate

DRAMs under lengthened refresh intervals [85] also produce identifying signatures.

Borrowing ideas from failure-based PUFs, and time-controlled failures in DRAM, we

propose a time-controlled failure-based PUF for CMOS storage cells that be actuated

through power gating.
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Figure 3.2: Schematic of a positive-edge triggered master-slave D flip flop. Q and Q̄
are the complementary state nodes that store a single bit value between cross-coupled
NAND gates. The input value D is stored in the master latch when CLK rises. Nearly
simultaneously, the slave latch opens to allow the stored signal from the master to
propagate through the slave to the output.

3.3 Inducing Failures using Timing

3.3.1 Retention Failures at Low Supply Voltage

CMOS storage cells can fail to retain stored values if the supply voltage is too low.

In the case of SRAM cells, the minimum supply voltage at which data can be safely

stored is denoted the data retention voltage (DRV). SRAM must therefore remain

above DRV to function correctly. While remaining above DRV, the supply voltage

can be adjusted to reduce leakage power [25, 12], compensate for manufacturing

variability [75], or compensate for environmental variations [113].

Our work borrows the idea of DRV from SRAM literature and applies it data

retention of DFF cells. A positive-edge-triggered master-slave DFF cell can be

constructed from two D latches as depicted in Fig. 3.2. Like SRAM, DFF cells can

fail to retain data when voltage drops too low. Unlike SRAM cells, DFF cells have

biased power up states [65]. Fig. 3.3 shows the power-up of 30 DFF cells, and it

can be observed that all cells take the same power-up state of Q = 1. This bias

makes the power-up states of the cells unsuitable as fingerprints. In spite of having
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Figure 3.3: Power up simulation of 30 D flip-flop cells showing that all cells power-up
to the Q = 1 state. This consistent bias makes their power-up state unsuitable as a
fingerprint.

indistinguishable power-up states, these cells may experience retention failures at

different supply voltages.

3.3.2 Power Gating Duration as a Proxy for Supply Voltage

Finding the voltage at which each cell will fail, as is required for DRV-based

fingerprints [39], generally relies on voltage control and this causes the fingerprint

generation procedure to be very complicated. Prior work shows that the absolute

retention failure voltages are not necessary and that a reliable identifier can be

extracted from the relative ordering of the failures [119], but in this prior work the

ordering is still extracted by controlling the supply voltage.

Our proposed technique effectively derives ordering of retention failures across cells

without explicitly controlling the supply voltage. Instead of voltage control, power-

gating duration is the controlled variable that reveals the relative failure ordering

of cells. The minimum voltage applied to the cells, which is the direct cause of the

retention failures, is simply an effect of the power gating duration. Fig. 3.4 shows
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a header switch, or sleep transistor, added between the power supply node VDD and

a set of DFF cells. When the gate of the sleep transistor is 0 it will be turned on

and the DFFs will operate normally. If the sleep transistor is temporarily turned off

by a high gate voltage, node VDD V will decay and then be recharged once the sleep

transistor is turned on again. If VDD V falls sufficiently low during this time, then

some DFFs may lose their stored values. In the simulation, nodes D and CLK of

each DFF are held low during power gating.

A longer sleep duration allows VDD V to reach a lower voltage, and will cause more

cells to lose their stored values. In this way, controlling the sleep duration controls

the minimum voltage applied to the DFF cells. By observing the failures that occur

for each different sleep duration (i.e. at each different minimum VDD V voltage), it

becomes possible to learn which cells are more or less failure prone than others. This

idea of controlling power gating duration as a proxy for controlling supply voltage is a

key idea of our work. The complexity of circuit required to control timing is trivial

compared to that of controlling voltage. Digital-to-time converters can be made small

and inexpensive, whereas the ability to control the supply voltage to a particular block

of storage cells requires at least a regulator and additional voltage domain.

The simulation result in Fig. 3.5 shows the decay of VDD V during the sleep time,

using a test circuit with 30 DFF cells built with 45nm PTM library [127]. In Fig.

3.5a, a relatively shorter sleep duration is applied and no DFF cells lose their values

because VDD V remains sufficiently high. When the sleep time increases (Fig. 3.5c), a

lower voltage is reached and more DFF cells lose their written “0” state and transition

to the “1” state when power is restored after gating.

3.3.3 Impact of Temperature

The lowest voltage reached by VDD V during power gating is related not only to

the duration of power gating, but also to the temperature. A high temperature will
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Figure 3.4: A group of DFF cells with a PMOS sleep transistor added for power gating.
When the sleep signal is low, the sleep transistor is on, and the DFF cells operate as
normal. When the sleep signal is high, VDD V will decay and may cause cells to lose
state. The amount of decay in VDD V depends on the duration of the sleep signal as
well as temperature.

cause VDD V to decay more quickly. To examine the temperature-sensitivity of VDD V ,

we simulate its decay under different temperatures from 0 o 100 Given the same

sleep duration, the simulation result in Fig. 3.6 shows that, VDD V decays faster at

higher temperature.

3.4 Extracting A Signature From Failure Rates

In this section, we extract a fingerprint that is based on failure counts of a collection

of storage elements, in our case DFFs. Failure count is measured by adaptively

subjecting the cells to a variety of different power gating durations, and counting how

many of these power gating trials cause each cell to fail. By observing the number of

failures (i.e. the failure count), we learn the failure propensity of each cell relative

to the overall population; in a simple case, if one cell fails 8 times while other cells

have a median of 3 failures, then it is known that the chosen cell is particularly prone

to failures. Yet, we must supply the right conditions to make this determination. If

55



0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

vo
lta

ge
 (

V
)

time (ns)

(a) Tsleep=300ns

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

vo
lta

ge
 (

V
)

time (ns)

(b) Tsleep=500ns

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

time (ns)

vo
lta

ge
 (

V
)

 

 

sleep
V

DD_V

Q

(c) Tsleep=700ns

Figure 3.5: The simulation results of 30 DFF cells during power gating. All of the
initial written values to the cells are “0”. In Fig. 3.5a, no cells lose their “0” state
because of the short sleep duration. In the longer power gating durations of Fig. 3.5b
and 3.5c, more cells fail to retain the original states. This is caused by the natural
bias in DFF; when the supply voltage decreases, the Q competes with Q̄, and a low
enough supply voltage leads to a data retention failure.
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Figure 3.6: Decay of VDD V during power gating at different temperatures. A higher
temperature speeds up the decay of VDD V .

applying power gating scenarios that cause no cells to fail, or all cells to fail, then

nothing is learned. Ideally, we therefore seek to apply conditions that cause half of

cells to fail.

Fig. 3.7a shows the number of cells that fail for different durations of power gating.

This data is obtained by linearly sweeping the duration of power gating after writing

“0” to 10,000 DFF cells, and counting failures when power is restored. Because the

DFF cells are biased toward the “1” state, almost all cells fail when the power gating

is long enough. To build DFF PUFs based on the failure count feature, we propose a

two-step scheme comprising an enrollment process and a key (response) generation

process.

3.4.1 Enrollment Process

Enrollment would happen at the manufacturer when the chip is created, and key

generation would occur in the field to produce the secret key. The enrollment phase is

described in Proc. 6. Repeatedly, all DFF cells under test are written with 0, then

power is gated for some time and subsequently restored, and the cells are checked to

see whether they have retained the written value. The duration of power gating is
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(b) sleep pulse duration controlled by binary search

Figure 3.7: Simulation results showing that the percentage of DFF cells experiencing
retention failures varies with the duration of power gating and for different tempera-
tures. Increasing the sleep duration causes more cells to fail. Additionally, increasing
temperature speeds up retention failures because VDD V decays faster at higher tem-
peratures (see Fig. 3.6). The plot at right shows specific sleep durations that are
explored by binary search seeking to find the gating duration that causes 50% of cells
to fail at each temperature.
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Procedure 6 Enrollment phase, characterize and sort the failure count of a set of
DFF cells, generate the helper data H based on the given key K.

Input: DFF: a set of indexed DFF cells

Input: An n-bit key K = (k0, k1, . . . , kn−1)

Output: H =
(
h0, h1, . . . , hn−1

)
1: FC = Count-Failure(DFF)

2: DFFHFC ← {∀j ∈ DFF | FC(j) > 70th percentile}
3: DFFLFC ← {∀j ∈ DFF | FC(j) < 30th percentile}
4: for i := 0 to n− 1 do

5: if (ki == 1) then

6: choose hi at random from DFFHFC

7: remove hi from DFFHFC

8: else

9: choose hi at random from DFFLFC

10: remove hi from DFFLFC

11: end if

12: end for

13: return H

varied at each trial, and the total number of failures observed in each cell is counted

across all trials. This procedure records the failure count of all DFF cells. and creates

two sets of cell indices: DFFHFC containing the indices of the 30 percent of cells with

the most failures, and DFFLFC containing the indices of the 30 percent of cells with

the fewest failures. The cells that are close to the median failure counts are not in

either set. The two sets of cell addresses are used to map a chosen key K to helper

data H =
(
h0, h1 . . . hn−1

)
. The helper data will subsequently be used to regenerate

the key. The helper data need not be secret, but an adversary should not be allowed

to manipulate helper data.

3.4.2 Key Generation Process

In the field, the helper data and new measurements of failure counts can be used to

generate the enrolled key. The task of key generation is to discover, for each cell index

in the helper data, whether that cell is unusually prone to failure or unusually resistant

to failure relative to the overall cell population. The key generation procedure is given
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in Proc. 7. In this scheme, the PUF outputs are chosen by mapping each DFF index

in the helper data to a corresponding 0 or 1 output according to whether its failure

count is above or below the median failure count of the cells. Note that the helper

data is the only state retained from the enrollment, and that all failure counts, and

the computed median failure count, are obtained from the new measurements in the

field. The relative failure counts obtained during key generation can differ from those

used at enrollment, and it is for this reason that the enrollment chooses only cells in

the upper or lower 30% of failure counts; as long as a cell that was in the upper (or

lower) 30% of failure counts during enrollment remains in the upper (or lower) 50%

during key generation, then the output will be correctly generated.

3.4.3 Binary Search

If sleep durations are not carefully chosen, many of the applied sleep durations

may yield little discriminating information. For example, a very long sleep duration

may cause all cells to fail and this tells nothing about relative failure propensities

of cells. Noting that the most discriminating power gating durations are the ones

that cause half of cells to fail, we propose to use for the Count-Failure routine in

key generation (Proc. 7) a binary search procedure that adapts the gating duration

in search of the specific gating duration that induces 50% failures. The number of

failures for each cell is counted over the steps of the binary search. For the same cells

shown in Fig. 3.7a, the markers on the plot in Fig. 3.7b show the specific power gating

durations that are explored by a binary search algorithm at each temperature, and

the fraction of cells that fail in each power gating trial. It can be observed that the

algorithm targets the 50% failure duration, and thus the data points are clustered

around 50% for each temperature. Note two key features of the proposed approach:
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Procedure 7 PUF response generation: generate responses R from a set of DFF
cells using helper data H.

Input: DFF: a set of indexed DFF cells

Input: H =
(
h0, h1, . . . , hn−1

)
Output: R =

(
r1, r2, . . . , rn−1

)
1: FC = Count-Failure(DFF)

2: for i := 0 to n− 1 do

3: if (FC(hi) ≥ median
∀j∈DFF

FC(j)
)

then

4: ri ←1

5: else

6: ri ←0

7: end if

8: end for

9: return R

• It is adaptive, and for any temperature will find the appropriate gating duration

to provide highly discriminating failure counts that separate the most failure-

prone cells from the least failure-prone cells.

• It implicitly has characteristics of a majority voting scheme in the sense of being

robust to noise-induced upsets during a single power-gating trial.

3.4.4 Experiment Results

We evaluate the reliability of the failure count based DFF PUFs and depict the

results in Fig. 6.7. The figure shows, for different number of iterations, the mean PUF

reliability across 500 trials and the reliability obtained by comparing data from 25◦C

to 100◦C. For comparison, we show that the same PUF reliability can be obtained

by using random durations of power gating, but this requires more trials because

it is does not target highly informative trials. In the case of random power gating,

the durations are randomly chosen from the range 0 to 50 µ. When the number of

iterations increases, the failure counts produced are better able to identify which cells

are unusually prone to failure or unusually resistant to failure. Given that power
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gating iterations will increase runtime, there exists a tradeoff between runtime and

the reliability of the generated keys, but in either binary search or random durations,

a larger number of iterations will improve key reliability. To maximize reliability in a

small number of trials, binary search is a better choice.

3.5 Summary

In this chapter, we propose a novel method to use power gating to build reliable

PUFs from failure signatures in CMOS storage elements such as D flip-flops. The

work is notable in its ability to generate high quality identifiers from biased cells,

and it performs best when cells are biased. The method exploits power gating as

a mechanism to extract a chip-specific ordering of failures across cells, and does so

without requiring the expensive voltage control that was needed by previous works in

this area. The method is shown to be reliable and can use either random durations

of power gating or an efficient adaptive method to characterize failure counts across

temperatures.
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Figure 3.8: Plot shows the reliability of generated keys produced using binary search
and random durations of power gating. The key values are enrolled to the cells at
25◦C using Proc. 6 and then the keys are generated at 25◦C and 100◦C using Proc. 7.
The binary search is able to produce highly reliable keys using fewer power gating
trials because it seeks out gating durations that are most capable of distinguishing
the cells that are failure prone from those that are not. The plotted data is averaged
over 500 trials.

63



CHAPTER 4

SECURITY EVALUATION AND ENHANCEMENT OF
BISTABLE RING PUFS

Bistable Ring (BR) Physical Unclonable Function (PUF) is a newly proposed but

promising hardware security primitive in PUF family. The novel architecture not

only makes it capable of generating exponential responses, but also being harder to

model and machine learn than the Arbiter PUF. In this chapter, we evaluate the

security of Bistable Ring PUF by applying different attacking models and methods,

besides the proposed attacks in other literatures, we propose a novel model based on

Support Vector Machine (SVM). XORing method is employed to enhance the attack

resilience of single BR PUF, we demonstrate that XORed BR PUF is beyond the

reach of current known attacking models, thus is secure.

4.1 Introduction

At TRUST 2014, Hesselbarth and Schuster [98] succeeded in revealing some basic

vulnerabilities of the BR PUF against ML techniques. They proved that BR PUFs can

be attacked by a single layer artificial neural network (ANN) with prediction errors

between close to 0% and 20%, varying from hardware instance to instance. Among

the 20 FPGA instances examined, 14 could be predicted with errors less than 10%.

This puts close limits on the security usability of the BR PUF on FPGAs. Schuster

and Hesselbarth subsequently proposed a small design improvement, so-called twisted

BR PUFs (TBR PUFs), which they conjectured to possess better security. Using their

own ANN algorithm, they were also able to attack TBR PUFs again. However, the
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TBR PUF shows average higher prediction errors with respect to ANNs, indicating

that TBR PUFs has some improvements over plain BR PUFs. It remained open in

[98] whether said improvement is sufficient for secure practical usage of the TBR PUF.

Our Contributions In this chapter, we re-examine the security of the BR PUF

and TBR PUF closely, again using FPGA implementations. We thereby make the

following new contributions:

• We implement 8 instances of the BR PUF and the TBR PUF on FPGA. To

achieve a more comprehensive ML analysis, we implement bitlengths other and

larger than 64, namely also 32, 128 and 256. These bitlengths had never before

been implemented in silicon and studied in the literature.

• We develop the first analytical models for the BR PUF and the TBR PUF.

• We use these new models in order to apply, for the first time, support vector

machines (SVMs) to the BR PUF and the TBR PUF. This more powerful

ML-tool drastically improves the ML predication rates relative to previous work.

None of our 8 instances has a prediction error exceeding 5%. This result answers

the open question of Hesselbarth and Schuster whether certain individual and

particularly hard instances of the BR PUF or TBR PUF could be used securely

in practice: In our findings, this was not the case.

• We then propose a new, efficient strategy for the secure practical use of the BR

PUF: namely the employment of l instances in parallel, whose l outputs are

XORed at the end in order to produce one single-bit PUF-response. We call the

resulting structure XOR BR PUF. We show that even for small values of l such

as 4, this structure cannot be machine learned by our current techniques, while

it is still sufficiently stable in practice. This work is the first study of XOR BR

PUFs in the literature.
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This chapter is organized as follows. Section 4.2 discusses our attacks on the BR

PUF, while Section 4.3 details our attacks on the TBR PUF. Section 4.4 suggests

the use of XOR BR PUFs and evaluates their performance improvement. Section 4.5

concludes this chapter.

4.2 SVM Attack on BR PUFs

4.2.1 Mechanism of BR PUF

A ring oscillator (RO) is a device composed of an odd number of logically-inverting

delay elements. Since the output of the last element is always the logical “NOT” of the

first input, an RO will continually oscillate. Derived from the non-settling structure

of RO, BR PUF is a ring comprising an even number of inverting cells. Such a design

behaves like a memory cell and will fall into one of two possible stable states: either

“101010...” or “010101...”.

As depicted in Fig. 4.1, a 64-bit BR PUF is composed of 64 stages, where each

stage has two inverting delay elements (NOR gates as an example). A challenge vector

C = {c1, c2, . . . , cn} selects the NOR gates used in each bistable ring configuration by

providing values to the MUX and DEMUX gates of the stages. Since each NOR gate

has unique process variation, each different challenge vector creates a unique bistable

ring configuration, and in total 264 different configurations can be created. A common

“RESET” signal is added to each stage to establish a known “all-0” state before letting

the ring stabilize to produce its response. Evaluation of the response begins when

“RESET” is released and the ring starts to oscillate through the selected NOR gates.

Once a stable state is reached, the outputs of any two adjacent stages will be logical

compliments of each other, either “10” or “01”. The choice among the two possible

stable states of the ring depends on noise and the process variation of the NOR gates

used in the ring configuration. Any interconnection node between two stages can be
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used as an output port, and in this work we use the half bit-length port to read out

the response (Fig. 4.1).
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Figure 4.1: Schematic of a single BR-PUF with 64 stages.

4.2.2 Intuition for Modeling BR PUF

The intuition for our modeling attack is that the response can predicted based on

a summation of weights. Such an additive model is commonly used for predicting the

responses of Arbiter PUFs, where the weights represent stage delays [59]. An additive

model has also been used for predicting the resolution of metastability [38], with

weights representing the strength with which different cells pull toward a particular

outcome. We similarly use an additive model in this work; the weight we associate

with each gate represents the difference between its pull-up strength and pull-down

strength. The weights are summed across all gates used by a challenge to find the

overall favored response for that challenge; a positive sum indicates a preference for the

positive response. Note that the summation of weights requires negative and positive

polarities because the positive overall response is favored by the pull-up strength of

even stages and the pull-down strength of odd stages.
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4.2.3 Model

Let the difference between the pull-up and pull-down strength of the top NOR

gate in the ith stage be represented by ti, and in the bottom NOR gate in the ith stage

be represented by bi. The even stages will contribute toward the positive response

with strength ti (or bi if the challenge bit selects the bottom NOR gate of the stage),

and the odd stages will contribute toward the positive response with strength −ti (or

−bi). To account more generally for even-ness or odd-ness, the strength of the ith

stage toward the positive response can be written as −1iti if the challenge bit is 0,

and −1ibi if the challenge bit is 1. For a given 64-bit challenge, the total strength

pulling toward the positive response is the summation of 64 ti and bi weights.
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Figure 4.2: Prediction rate of SVM modeling attacks on BR PUFs. When the length
of the BR PUF increases, more CRPs are required to train the model to achieve 95%
prediction. Note that the scale of the x-axes are not consistent across the subfigures.
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For convenience we define αi and βi (Eq. 4.1) such that αi + βi = −1iti and

αi − βi = −1ibi. This notation allows the pull of the ith stage toward the positive

response to be written generally as αi + ciβi with challenge bit ci ∈ {−1, 1}. The

summed strengths toward the positive response for any challenge vector C is r(C) as

shown in Eq. 4.2. According to our formulation, if the ti and bi weights were known

explicitly, then the response could be predicted by the sign of R(C) (Eq. 4.2).

αi = −1i
(
ti − bi

2

)
βi = −1i

(
ti + bi

2

)
(4.1)

R(C) = sgn(
∑

i=0..n−1

αi + ciβi) (4.2)

Given that weights are not known, since there are only two possible responses of BR

PUFs, based on the model above, we can convert the response prediction of BR PUFs

into a classification problem. Support Vector Machines (SVM) are powerful learning

tools that can perform binary classification of data, the classification is realized with

building a hyperplane separating surface. While digesting the known input and output

data sets, the hyperplane separating surface will be curved to minimize the error of

predicted values.

Known CRPs are used to train the classifier to predict responses from challenges.

In the SVM formulation, first note that the αi terms in Eq. 4.2 can be discarded

because they are constant for a given PUF instance across all challenges. Only ciβi

terms remain, and from these terms the response must be predicted. Given a set of

challenges and associated responses, the training examples therefore have as their

feature vector an applied challenge Cj ∈ {−1, 1}n and as their labels the observed

response R(Cj) ∈ {−1, 1} to challenge Cj . Note that βi terms do not appear explicitly

in the SVM formulation as the classifier simply works to find the maximum margin

hyperplane to separate the challenges into two classes according to their responses.
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4.2.4 SVM Attacks on BR PUFs

To explore the effectiveness of SVM attacks, we implemented on a Xilinx Spartan-

VI FPGA board, 8 BR PUFs with lengths of 32-, 64-, 128- and 256 bits, and collected

1,000,000 CRPs from each of them (to decrease the impact of measurement noise, all

of the final CRPs are formulated by majority voting from 11 repeated measurements).

SVM attacks are implemented with a linear kernel to mimic the operation of single

BR PUFs (note that to attack XOR BR PUFs, SVM model with a polynomial kernel

is utilized, where the poly-order of the model is set as the XORing complexity of

BR PUFs). The results of SVM attacks are shown as Fig. 4.2. To demonstrate the

relationship between prediction rate and CRPs used for different PUF lengths, we

utilize 95% as a threshold prediction rate. It is clear that while the size of BR PUF is

increasing, the demand for CRPs is also increasing to build its ML model. However,

for any tested size of BR PUF, the SVM modeling attack is successful in predicting

responses. This means a single BR PUF is not secure, even if it has a large number of

stages.

4.3 Twisted BR PUFs Attack

4.3.1 Model of TBR PUFs

Uniformity, or fractional Hamming weight, is an important feature of PUFs. A

good PUF that produces an equal number of 0 and 1 responses will have a uniformity

of around 0.50. However, the uniformity of CRPs of BR PUF implementations has

been found to be biased in previous work [98] (see also Sec. 4.4.3.3 in this work). To

compensate for this drawback, TBR-PUF was proposed in [98]. Compared to the BR

PUF, the TBR-PUF has a more compact design; when applying a challenge vector to

the TBR PUF, all of its 2n inverting elements are used in the ring. By contrast, in

the standard BR PUF, half of the NOR gates in the circuit are unused for any given

challenge. Taking the TBR PUF in Fig. 4.3 as an example, using challenge bit c0 = 1
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or c0 = 0 will change the location of D0
0 and D0

1 in the ring, but in either case D0
0 and

D0
1 will both contribute in some polarity to the response.

C0

RESET

Response

D1
63

D0
63

D1
62

D0
62D0

1

D1
1D1

0

D0
0

C1 C62 C63

Figure 4.3: Schematic of a single TBR-PUF with 64 stages.

From Sec. 4.2, we know that a ring composed of an even number of inverting

elements will stabilize according to the summed strength of the pull-up and pull-down

strengths of each gate. The TBR PUF uses pull-up and pull-down strengths of all

inverting components in the circuit, but only the polarity (i.e. even-ness or odd-ness)

of each element toward the overall ring response changes with the challenge vector.

According to the interconnections of the 64-bit TBR PUF, the two NOR gates in the

ith stage are the ith and 127− ith element in the overall ring. Because one element is

odd in the overall ring, and one is even, the pull-up strength of the top and bottom

gates in each stage are working against each other. Therefore, the overall contribution

toward the positive response is βi (Eq. 4.3), or −βi if the ith challenge bit is negative.

The overall sum of weights pulling toward the positive response for challenge C is

therefore R(C) (Eq. 4.4). Eq. 4.2 and Eq. 4.4 differ only in in the physical meaning

of βi, and in Eq. 4.2 having an additional offset term of
∑

i αi, but in terms of ML

modeling they are actually the same identical model. Therefore, the complexity of ML

attacks on the TBR PUF is the same as the complexity of attacking the BR PUF.

βi = −1i(ti − bi) (4.3)
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R(C) = sgn(
∑

i=0...n−1

ciβi) (4.4)
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Figure 4.4: Prediction rate of SVM modeling attacks on TBR PUFs of different bit
lengths. As in Fig. 4.2, to achieve same prediction rate, a larger PUF requires more
CRPs.

4.3.2 SVM Attacks on TBR PUFs

Given that we have shown the model of a TBR PUF to be the same as that of

a BR PUF, we can again train an SVM classifier to predict its responses to each

challenge. Eight TBR PUFs are implemented with Spartan-VI FPGA boards, and

1,000,000 CRPs are collected from each of them. For each CRP, majority voting over

11 repeated measurements of the response to a challenge are performed in order to

reduce the impact of noise.
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Following the experiment in Sec. 4.2.4, SVM attacks with polynomial kernel are

applied on TBR PUFs of 32-, 64-, 128- and 256 bit-length (the poly-order of the model

is set as the XORing complexity). The results in Fig. 4.4 show that the modeling

attacks succeed in modeling all different sizes of the TBR PUF, with prediction rate

no lower than 95%.

4.4 XORing BR PUFs to Enhance the Security

It is possible using ML to model the behavior of a single strong PUF like the

Arbiter PUF [59]. To thwart modeling attacks, an XOR function was proposed as

a way to enhance security of Arbiter PUFs [103] and lightweight PUFs [71]. In an

XOR PUF, the same challenge vector is applied to l single PUFs in parallel, and

their outputs are XORed together to form a one-bit response. XORing is an efficient

method to enhance the security of strong PUFs, because the XOR function obfuscates

the CRPs of the individual PUFs [103]. Inspired by this idea, we propose to use XOR

strategies on BR PUFs to improve their resistance to modeling attacks.

4.4.1 Review of Existing Attacks on XOR PUFs

The addition of XOR functions increases the resistance of strong PUF against

modeling attacks. Both the training time and number of CRPs required to train

a model increase exponentially with the number of XORed PUFs [93]. Attacking

XOR-based Arbiter PUFs with more than five parallel Arbiter PUFs was stated as

difficult based on pure ML modeling [90]. Later works devised a more powerful class

of hybrid attacks that combine side channels with ML [95, 115]. Power and timing

side-channels allow information about the sub-responses (i.e. the responses of single

PUFs before the final XOR) of XORed PUFs to be extracted and used to improve

the prediction rate of ML models. In light of these hybrid attacks, if the side-channel
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No. of Bit CRPs Predict. Training*
XORs Length (×103) Rate Time

2

32 0.8 95% 3 sec
64 4 95% 10 sec
128 18 95% 6 mins
256 —– 50.8% —–

3

32 1.2 95% 5 sec
64 7.2 95% 24 sec
128 —– 50.1% —–
256 —– 50.1% —–

4

32 —– 50.1% —–
64 —– 50.3% —–
128 —– 49.8% —–
256 —– 50.1% —–

Table 4.1: The run times and number of CRPs that are required for SVM attacks
on the XOR BR PUFs of different sizes. Prediction rates around 50% imply that
the SVM model can not break XOR BR PUFs of these complexity. *Note that the
training time is greatly determined by the computational systems.

information of BR PUFs can also be measured, then the use of XOR will not be an

effective way to enhance the security.

4.4.2 SVM Modeling Attacks on XORed BR PUF

Adopting the model of single BR PUF in Sec. 4.2, for an XOR BR PUF employing

l BR PUFs, the XORed response to a challenge C can be described by Eq. 4.5. Note

the similarity between this formula and the formula of the single BR PUF (Eq. 4.2).

The only modification is that now each stage has l different α and β terms, one for

each of the PUFs. The overall response is based on how many of the individual PUFs

have a positive response.

R(C) = sgn
( l−1∏
j=0

(
n−1∑
i=0

αi,j + ciβi,j)
)

(4.5)

In applying SVM to XOR BR PUF, it is found that we can only break the

complexity up to 2 XOR for 128-bit length and 3 XOR for 64-bit length. The number
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of CRPs and runtime1 for SVM modeling attacks against XOR BR PUFs are listed in

Tab. 4.1. We can surmise that XOR BR PUFs with 4 or more XORed outputs are

beyond the reach of current SVM modeling attacks.

4.4.3 Performance Evaluation of XORed BR PUF

While the basic motivation of XORing BR PUF is to resist modeling attacks, the

impact of the XOR on other key metrics must also be considered. In this section, we

evaluate the impact of the XOR function on reliability, uniqueness, and uniformity.

4.4.3.1 Reliability

Reliability is the ratio of consistent CRPs when a PUF is operating in different

environment conditions such as temperature. To evaluate the reliability of XOR BR

PUFs, 8 BR PUFs are measured across different temperatures between 27◦C and

75◦C, with a 4◦C step, using a Sun Electronics EC12 Environmental Chamber [105]

to control the temperature (Fig. 4.5a). Reliability is evaluated by comparing CRPs

collected at 27◦C to CRPs collected at other temperatures. For a XOR PUF, any

unstable sub-response can cause the XORed response to be unreliable. Therefore, the

reliability at any temperature will decrease with the number of PUFs that are XORed

together (Fig. 6.7). According to the first BR PUF paper [15], an effective solution to

solve this problem is employing CRPs that settle down quickly, since those CRPs are

less sensitive to noise.

4.4.3.2 Uniqueness

Uniqueness is the capability of a PUF to distinguish itself from other instances.

Uniqueness is quantified as the fraction of responses that are different across instances

when the same challenges are applied. Thus for m PUF instances, a total of m∗(m−1)
2

1The computer used has a common Intel 3630QM quadcore processor.
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Figure 4.5: Evaluating reliability across different temperatures. Because the reliability
of each single BR PUF decreases with temperature, the reliability of the XOR BR
PUF results degrade significantly.

uniqueness values are obtained. To better explore the uniqueness of XOR BR PUF,

we compute its within-class (response flipping by noise, temperature noise here) and

between-class uniqueness (response difference between instances), these results are

depicted in Fig. 4.6.

4.4.3.3 Uniformity

Uniformity denotes the average response of a PUF, the ideal value of which is 0.5,

meaning equal amount of “1” and “0” responses. Uniformity that is far away from 0.5

will have less response entropy and be easier to attack with modeling [123]. In our

experiment, the uniformity of a single BR PUF is found to be highly biased, and this

phenomenon was also reported in [98] [123]. The XOR function helps to remove this

bias.

To validate the uniformity improvement from the XOR function, we collected the

CRPs from eight 64-bit BR PUFs from FPGA (without CRP majority voting). It

is found that some PUF instances show extreme bias, but XORing more single BR

PUFs together decreases response bias (Fig. 4.7).
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Figure 4.6: The between-class and within-class Hamming distance of XOR PUFs.
Even when XORing together more BR PUFs, the within-class and between-class
Hamming distances can still be differentiated. The results are based on 8 BR PUFs,
thus there is only one 8 XOR BR PUF and no uniqueness is formulated for it.
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Figure 4.7: The response uniformity of a single BR PUF (represented by “XOR=1”
in plot) is highly biased. When more BR PUFs are XORed together, the uniformity
is closer to 0.5.
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4.5 Summary

In this chapter, we studied two relatively new PUF variants: BR PUF and its

derived architecture TBR PUF. Their resilience against ML modeling attacks is

explored and it is shown that their response can be predicted with success rate

exceeding 95% using reasonable runtime and less than 10k CRPs in all cases. Our

work confirms that neither a single BR, nor TBR, PUF is secure. To strengthen the

BR PUF against modeling attacks, we proposed and evaluated an XOR BR PUF

variant. It is found that XORing 4 or more BR PUFs together produces a behavior

that is beyond the modeling capability of current SVM ML attacks, and also improves

other key PUF metrics like uniformity. Future work will explore the effectiveness of

other modeling attacks, like Evolutionary Strategy and Logistic Regression methods.
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CHAPTER 5

USING STATISTICAL MODELS TO IMPROVE THE
RELIABILITY OF DELAY-BASED PUFS

In previous chapters, we present the effectiveness of using ML modeling to attack

PUF primitives. This chapter addresses two causes of unreliability: transient unrelia-

bility caused by environmental noise, and persistent unreliability caused by device

aging. To improve reliability, we constructively apply Machine Learning modeling,

and use the models to predict and then discard challenge-response pairs (CRPs) that

will be unreliable with respect to noise and aging on a given PUF instance. The

proposed method provides flexibility to control error rate by deciding what percentage

of challenges to discard. Our experiments find that a PUF with nominal reliability of

91% can be made fully reliable by discarding only 20% of challenges.

5.1 Introduction

Though many PUF architectures have been proposed, reliability is still a problem

that is common to all PUFs. PUF responses are unreliable because supply voltage

(VDD) and temperature (T ) variations can overcome the impacts of process variations

and flip the outputs. Because a PUF operating in different conditions can generate a

different response to the same challenge vector, the PUF output is therefore a function

of not only the challenge and process variations, but also of transient environmental

conditions.

It is desirable for a PUF to generate highly reliable responses over its lifetime.

However, device aging is an important but rarely studied source of unreliability in
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PUFs. Unlike environmental noise that temporarily flip PUFs’ challenge-response

pairs (CRPs) (PUF work more reliably when VDD and T return back to normal),

device aging causes a permanent change in the behavior of a PUF. Device aging is

usually caused by negative bias temperature instability (NBTI), hot carrier injection

(HCI), time dependent dielectric breakdown (TDDB), and electromigration [50] [62].

In this work, we focus on NBTI and HCI in particular. NBTI impacts the threshold

voltage of pMOS transistors and decreases the speed of circuitry. Besides varying the

threshold voltage of nMOS transistors, HCI also narrows the effective channel length

of transistors. To build a comprehensive reliability model, aging must be considered

in addition to environmental noise.

To make a PUF highly reliable, unstable CRPs that are easily flipped by envi-

ronmental noise and aging should not be used. We propose a modeling technique to

achieve this goal that requires no extra circuitry other than a normal PUF. Based on

our method, a user applies a random set of challenges to a PUF, and obtains responses.

From the CRPs, the user trains a Machine Learning (ML) model that can predict the

reliability of responses to any challenge. He then uses the model to ensure that he

discards unreliable challenges and only applies challenges for which the responses are

highly reliable. In the experimental validation with 64−bit Arbiter PUFs (can also be

applied to other PUFs), our technique can help to achieve greater than 99% reliability

at the cost of only 0.21 seconds of computation time and 1500 training CRPs to build

the model. Larger training sets lead to better modes and further improve reliability.

Before this work, ML was always utilized to attack PUFs, so our work is novel in

using ML modeling constructively to improve reliability. The contributions of this

work are as follows:

• We classify the unreliability source of a PUF into two aspects: transient noise and

aging; the reliability impact of both aspects are analyzed.
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Figure 5.1: Schematic of an Arbiter PUF. Challenge C controls the propagation paths
of rising edges that gather delay mismatch as they propagate toward the final arbiter.

• We train a ML model for PUF characterization and utilize the model for identifying

and filtering out the unreliable challenge vectors for each PUF, allowing higher

reliability to be achieved.

The rest of this chapter is organized as follows: Section 5.2 analyzes PUF unreliability

caused by environmental noise and aging. Section 5.3 presents the use of ML modeling

techniques to filter out unreliable CRPs. Section 5.4 presents experimental validation

of the proposed approach. Section 5.5 presents directions for future work and concludes

this chapter.

5.2 Analysis of Unreliable CRPs

A n−bit Arbiter PUF is composed of n stages, with each stage employing two 2:1

MUXs as depicted in Fig. 5.1. A challenge vector C = {c1, c2, . . . cn} is applied as

the control signals for all stages to configure two paths through the PUF toward the

arbiter; at each stage the paths are configured to be either straight or crossing. Thus,

a rising edge applied at the input of the first stage gathers the delay mismatch from

the paths through each stage while propagating toward the arbiter. The arbiter is a

latch that digitizes the response into “1” or “0” by judging which rising edge is the

first to arrive.
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Figure 5.2: Propagation paths through the delay cells of an arbiter PUF.

5.2.1 Challenge and Response Pairs

A CRP can be considered reliable only if a PUF is capable of repeating this in-

put/output relationship, even under different conditions (temperature, supply voltage,

aging). Thus, before analyzing the unreliability of a PUF, it is meaningful to explore

the relationship between its input and output. In an n-bit Arbiter PUF (Fig. 5.1), we

define the propagation delay from the input to the first stage to the top and bottom

outputs of the ith stage as Di
top and Di

bottom respectively. The delay mismatch between

two delay paths is summed up as the timing difference between Dn
top and Dn

bottom (Fig.

5.2). By mapping original challenge ci ∈ {0, 1} into ci ∈ {−1, 1} we get:

Di
top =

1 + ci
2

(titop +Di−1
top )

+
1− ci

2
(tiu across +Di−1

bottom)

Di
bottom =

1 + ci
2

(tibottom +Di−1
bottom)

+
1− ci

2
(tid across +Di−1

top )

(5.1)

where D0
top = D0

bottom = 0, and titop, t
i
bottom, tiu across, t

i
d across represent the four possible

delays through the ith stage. Denoting the delay difference between top and bottom

arbiter inputs as DD, following Eq. 5.1, we get DD = Dn
top −Dn

bottom. The response

(r) of an Arbiter PUF of n-bit length is therefore determined by the sign of DD (Eq.
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5.2).

r =


0, if sgn(DD) > 0

1, if sgn(DD) < 0

(5.2)

From Eq.5.2, we can deduce that a PUF response is flipped when the sign of DD

changes, from positive to negative or vice versa.

5.2.2 Environmental Noise and Aging

5.2.2.1 Environmental Noise

To explore the impact of noise in more detail, we perform simulations on a set of

64−bit Arbiter PUFs. In this simulation, in addition to measuring the arbiter output

that depends on DD, we also sampled Dtop and Dbottom to compute DD. Responses

and DD values for 50k random challenges are collected under 1.1V and 28◦C and used

as a golden set. Furthermore, we repeated this collection under altered supply voltage

and temperature points (to mimic practical situation, random noise is considered in all

simulations). Two noise models: flicker and channel thermal noise are adopted in our

simulation. Flicker noise is a frequency dependent noise caused by charge fluctuation

in oxide traps, while channel thermal noise reflects voltage fluctuations due to the

random motion of electrons. Parameters fnoimod and tnoimod in the BSIM41 are

used to add flicker and thermal noise respectively;2 noise is therefore modeled on all

transistors in the circuit. The flipped responses are from challenges that, in the golden

set, correspond to DD in a small range:

1BSIM4 model is based on the industry standard efforts of the Compact Modeling Counsel and
the BSIM modeling group at UC Berkeley.

2the values assigned to the three parameters comprising fnoimod are noia = 6.25e41, noib =
3.125e26, noic = 8.75; the values assigned to the parameters comprising tnoimod are ntnoi = 1, tnoia
= 1.5e6 and tnoib = 3.5e6
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Figure 5.3: Exact delay difference DD of two sets: 50k golden samples (colored in
cyan), the subset of samples flipped by aging and noise (colored in blue).

DDumin ≤ DD ≤ DDumax
(5.3)

For CRP data from Arbiter PUF, DDumax therefore denotes the maximum DD

among unreliable challenges, and DDumin denotes the minimum DD among unreliable

challenges. If only the challenge vectors that satisfy either DD > DDumax or DD <

DDumin are applied to the PUF, then the PUF will be reliable and not prone to flipped

response bits. For our simulated 64-bit PUFs based on 45nm Predictive Technology

Model (PTM) [127], it is found that DDumax −DDumin = 22.6ps when considering

noise, voltage and temperature fluctuations (Fig. 5.3). However, in practice, it is

impossible to directly filter out challenge vectors that induce large values of DD

because 1) DD cannot be measured directly, as the arbiter input signals are not

externally observable; and 2) even if it were possible to measure DD (e.g. using

time-to-digital conversion [58]), it is infeasible to measure DD for all 2n challenges as

would be required for an n-stage PUF . As will be shown in Section 5.3, we overcome

both of these limitations using a machine learning model to predict DD based on the

responses produced at arbiter outputs.
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5.2.2.2 Aging

In previous literature, aging is rarely considered as a source of unreliability. Unlike

environmental variations, the impact of aging on transistors is permanent. The

most common aging effects include NBTI and HCI, both of which can degrade the

performance of a circuit. NBTI mainly changes the threshold voltage of transistors,

thus causing decreased drive current and lower operating speed. HCI arises as a

result of the aggressive scaling of device geometries, most notably for narrowing

device channel length. Shorter channel length means higher circuit speed, but this

also increases electric fields in the channel. As a result, these fields can damage the

gate-oxide interface, resulting in degradation in device performance. The amount of

degradation varies across devices and is a function of the switching activity of a device

within a circuit. Thus, for a circuit that relies on physical process variations like a

PUF, aging can introduce permanent unreliability.

To mimic the aging of Arbiter PUFs, we use Cadence Ultrasim as our infrastructure

and simulate a group of Arbiter PUFs across different age spans: year, month, week,

day, hour and minute. Using un-aged CRPs as golden values, we measure the reliability

degradation due to aging, without the presence of noise or temperature and voltage

fluctuations (Fig. 5.4). It can be seen that after only 1 hour of simulated aging,

about 2% of responses become unreliable with respect to their golden CRPs. This

occurs because some golden CRPs have associated DD values that are close to 0, and

are thus susceptible to be flipped by even a small amount of aging. After a year of

aging, approximately 8% of responses are unreliable compared with golden CRPs.

The range of DD values that were susceptible to flipped responses within a year of

aging fall within a range of DDumax −DDumin = 25.4ps. This indicates that, as with

environmental noise, reliability due to aging can also be mitigated by applying to each

chip only those challenges that induce a large DD.
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Figure 5.4: Aging introduces unreliability to PUFs, if denoting the CRPs of a new
PUF as nominal database, older PUFs becomes more unreliable.

This section has explained that environmental noise and aging degrade PUF

reliability and showed that all of the flipped responses are associated with DD closer

to 0 in the golden data. The observation that unreliable challenges are associated with

small DD values motivates an approach of improving PUF reliability by avoiding the

challenges that induce small DD values on each PUF. The first step toward avoiding

these challenges is to train a model that can predict DD of challenges.

5.3 Modeling DD of a PUF

Based on the analysis in Sec. 5.2, knowing the DD of each challenge vector makes

it possible to get reliable CRPs by avoiding challenges with smaller DD. We treat

these smaller-DD as likely to be unreliable and our goal is therefore to identify and

avoid applying these challenges. However, as probing inside a PUF to measure DD

is not practical, we instead predict DD using ML modeling method, that requires

no silicon overhead other than a normal PUF circuit. To get the value of DD, we

decompose an Arbiter PUF and mimic the generation process of its responses. Here

we firstly define two parameters as:
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αi = (titop − tibottom + tid across − tiu across)/2

βi = (titop − tibottom − tid across + tiu across)/2
(5.4)

Based on Eq. 5.4, for a given challenge vector C = {c1, c2, . . . cn}, corresponding

response generation can be modeled by accumulating the delay mismatches through

delay stages as:

DD = α1k0 + · · ·+ (αn + βn−1)kn−1 + βnkn (5.5)

where kn = 1 and ki =
n∏

j=i+1

cj, reflecting the number of times that the rising

edges will change tracks between the ith stage and the arbiter. Thus, knowing the

challenge and αi and βi, i ∈ (1 . . . n) makes it possible to compute DD for any

challenge. By denoting the delay parameters of an Arbiter PUF with vector pmodel =

{α1, α2 + β1, . . . αn + βn−1, βn}, and defining challenge features as k = {k0, k1 . . . kn},

we can formulate the model-predicted DD of each challenge vector as:

DD = 〈pmodel,k〉 (5.6)

Though we can not directly extract individual component delays of the Arbiter

PUF, we can use ML modeling to predict suitable values for pmodel. To accomplish

this, we use a set of known challenge response pairs to train a Support Vector Machine

(SVM) classifier. SVM models are powerful learning tools that can perform binary

classification of data, classification is achieved by a linear or nonlinear separating

surface in the input space of the data set. SVMs have been widely used in modeling

attacks on Arbiter PUFs [59, 90, ?]. Note that accurate delay prediction is not an

explicit objective of the SVM model, as the SVM model only seeks a value of pmodel

that will accurately predict responses. However, because responses are determined by

the sign of DD (Eq. 5.2), a model that is trained to predict responses accurately is also
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quite successful in predicting numeric values of DD. Therefore, our approach trains

a binary classifier, and then uses the resulting model to predict the delay difference

induced by each challenge. In turn, we use the predicted delay difference to infer

whether or not a challenge will be reliable if applied to the PUF.

As known, if A is highly correlated with B, the correlation coefficient (corr) between

them should be close to 1, and one can deduce information about B from A. The

correlation can be quantified as:

corr(A,B) =
E[(A− E(A))(B − E(B))]

σA ∗ σB
(5.7)

In our example, denoting the modeled PUF feature with pmodel, we hope that the

model-predicted DD will be close to the golden value of DD that is measured from

simulation. If this model works well for response prediction, then we expect ρ in Eq.

5.8 to be close to 1 when the CRP dataset used to train the model is sufficiently large.

corr(DDgolden, DDmodel) =

corr(DDgolden, 〈pmodel,k〉) = ρ

(5.8)

To validate the use of SVM classifier for delay prediction, a set of CRPs and

corresponding DDgolden values are extracted from SPICE simulation. We collect 5000

CRPs and apply 60% of them as training set for PUF model building, while other

40% CRPs for model validation. We compute the correlation coefficient (ρ) between

DDgolden (from simulation) and DDmodel, which is calculated as 〈pmodel,k〉. Fig 5.5a

shows that ρ approaches 1 when applying many CRPs for model training. To present

more details about this correlation, random challenges are chosen and DDgolden and

DDmodel (trained on 3000 CRPs) are shown for each one (Fig. 5.5b). Although

DDgolden and DDmodel are different in scale, the correlation between them is very high.

Note that our approach for selecting reliable challenges does not need exact values

but only need accurate relative magnitudes of delay differences to infer reliability.
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Because the predicted DD values from the model are accurate with respect to the

golden values from simulation, we can indeed filter out unreliable challenges of the

PUF using DDmodel.
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Figure 5.5: In (5.5a), the correlation coefficient ρ between golden delay difference and
model-predicted delay difference. While the PUF training size is increasing, higher
ρ is achieved. In (5.5b), based on the model trained with 3000 CRPs, there is good
agreement between DDgolden and DDmodel for 2000 random challenges.
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Procedure 8 Use ML model to compute the range of model-predicted delay differences
that are likely to be unreliable for a given PUF. Challenges predicted to have delay
differences inside this range will not be applied to the PUF, and this will improve the
overall PUF reliability. Reliability can be improved by using a larger value of dr to
discard more challenges.

Input: A discard ratio dr and a set of challenges and corresponding responses obtained
from a single PUF at nominal supply voltage and temperature.

Output: A range [DDmin, DDmax] of delay differences to consider as unreliable for
this PUF.

1: Let k be the challenges mapped to challenge features (Eq. 5.5 and 5.6)
2: pmodel ← SVM(k, responses) {train the PUF model}
3: µp = avg〈pmodel,k〉 {mean predicted delay difference}
4: σ2

p = var〈pmodel,k〉 {variance of predicted delay difference}
5: the distribution of delay differences across all challenges is modeled to be N (µp, σ

2
p)

6: DDmin=F−1(0.5− dr/2) = µp + σpΦ
−1(0.5− dr/2)

7: DDmax=F
−1(0.5 + dr/2) = µp +σpΦ

−1(0.5 + dr/2) {delay difference cutoffs based
on PUF model pmodel and selected challenge features k (Eq. 5.10)}

8: return [DDmin, DDmax]

5.4 Experimental Results

Following the methodology in Sec. 5.3, we use a PUF model to filter out challenge

vectors that are potentially unreliable. In this section, we validate this method with

noise from environment and aging. Based on the findings in Fig. 5.3, flipped responses

are only these satisfying DDumin ≤ DDgolden ≤ DDumax. The main algorithm in our

method uses an SVM classifier to predict delay cutoffs that will rule out approximately

fraction dr of the overall challenge space. However, there are still two questions that

need to be answered when applying this method:

1. How many CRPs are necessary to accurately model the DDumax and DDumin

cutoffs each PUF?

2. What percentage of CRPs must be avoided to achieve a given level of response

reliability?
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Figure 5.6: Illustration of the cumulative distribution function of delay difference DD.
Based on a set of CRPs, we train a PUF model pmodel and use it to compute µp and
σp. Then given a discarded ratio dr, we discard the challenges for which the predicted
DD is between DDmin and DDmax.

The first question is addressed using Alg. 8. For a PUF, assuming that its

physical features follow Gaussian distribution, the corresponding DD distribution

across randomly selected challenges will follow a normal distribution (Fig. 5.3). Our

approach characterizes the distribution of delay difference (DD) by experimentally

determining the mean and variance. For a set of delay difference values, we build its

probability distribution function following Eq. 5.9. The randomness of training set

ensures that it envelopes the unreliable range, µp and σp are defined in Alg. 8. An

illustration about how this function works is shown in Fig. 5.6.

F (DD,µp, σp) =
1

σp
√

2π
exp

− (DD−µp)2
2σ2p (5.9)

As concluded in Sec. 5.2, the unreliable responses come from challenges generating

smaller DDgolden, either negative or positive. Thus, even not knowing the exact

unreliable range, we can still apply Quantile function to quantify it with Alg. 8. If
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denoting Φ−1(dr)(dr ∈ (0, 1)) as the Probit function of standard normal distribution,

we determine the range of delay differences to discard using Eq. 5.10 (as steps 6 and

7 in Alg. 8), where dr stands for the ratio of challenges that should be discarded

from the CRP database of each PUF. The value of dr provides a tradeoff in which

selecting a larger value of dr to discard more challenges will result in more reliable

PUF operation, but a smaller space of challenges that can be applied to the PUF.

F−1(dr) = µp + σpΦ
−1(dr) (5.10)

5.4.1 Validation under environmental noise

The qualified challenges (DDmodel 6∈ [DDmin, DDmax]) are applied on PUFs, and

their responses are compared with golden database, the result is shown as Fig. 5.7.

With training size increasing, the values learned for DDmin and DDmax become more

accurate, and fewer challenges need to be discarded to achieve the same reliability.

The runtime to train the SVM model is modest; when using a training set of 4000

CRPs, training takes only 0.38 seconds.

Applications: As Machine Learning modeling is mostly considered in attacking

PUFs, our main concern in this work is to show that this technique can also be

applied for constructive purpose. Nevertheless, to use the technique in this work

for reliability improvement, one should consider whether an adversary observing the

reliable challenges that are applied to the PUF, would be able to use knowledge about

which challenges are reliable to train a model that can predict the PUF response. To

the best of our knowledge, this is not a question that has yet been addressed in the

PUF community, and would be an interesting direction for future work.

5.5 Summary

In this chapter, we analyzed the causes of PUF unreliability. A machine-learning

approach is utilized to model the delay difference on a given PUF. Based on the
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Figure 5.7: Validation under aging and environmental noise, across all of the simulated
PUF instances. Trade-off between training size and discarded ratio can be seen in
the figure. A larger dr is conservative and can compensate for the lower quality delay
predictions of a model trained from a smaller training set.

prediction of delay difference from each challenge, we discard challenges that are

likely to be unreliable. We validate our technique with a large data set, using both

environmental noise and aging impacted simulations. Our method is demonstrated as

an effective new technique for reliable PUF operation. Future work will explore the

applicability to other PUF architectures.
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CHAPTER 6

A CLOCKLESS SEQUENTIAL PUF WITH
AUTONOMOUS MAJORITY VOTING

Techniques to ensure the reliability of PUF-based keys have associated costs in

energy, area, and time. These costs must be minimized in order for PUFs to find

practical application in resource-constrained scenarios. In this chapter, we propose

and evaluate a new style of PUF that improves reliability by autonomously performing

majority voting. The novelty of this design, and the source of its efficiency, is that the

sequential majority voting happens using a self-timed circuit without orchestration

by a global clock. We show that the proposed design can be instantiated to achieve

different tradeoffs in energy versus bit-error-rate, and area versus latency.

6.1 Introduction

As we predicted in previous chapters, noise is an unwanted issue PUF outputs

typically have a bit error rate of a few percent. Circuit level reliability techniques and

error correcting codes are therefore used to produce reliable keys from the slightly-

unreliable PUFs. In this chapter we propose a PUF that has the external interface of a

simple weak PUF, but has an internal structure that autonomously performs majority

voting to improve reliability. The specific contributions of this work as follows:

• We describe a novel clockless sequential PUF structure that performs autonomous

majority voting.

• We evaluate using circuit simulation the reliability of the proposed PUF across

a range of supply voltages and temperatures.
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• We explore the tradeoffs of energy and reliability that can be accomplished using

different parameterizations of the proposed PUF.

6.2 Related Work

Secret key style PUFs generate n-bit outputs using n-instantiations of logically

identical cells, each of which generates a single output bit. The cells used for these

PUFs resemble memory cells, and in many cases actually are repurposed memory cells.

Such a cell has two stable states. The PUF output bit is generated by driving the

cell to an unstable state and letting it transition to a stable state that is determined

by process variation of the cell. Perhaps the best known PUF of this sort is based

on the power-up state of SRAM cells [37, 31]; at power-up, an SRAM cell with both

state nodes discharged becomes unstable and transitions to one of its two stable

states. Other examples of cross-coupled PUF cells are ones based on resettable NOR

latches [101], the butterfly PUF based on cross-coupled latches [53], and PUFs based

on flip-flops [66] or sense amplifiers [9]. Yamamoto et al. [122] propose a PUF based

on RS latches with inputs tied together, and this basic circuit is also a component of

our proposed PUF. However, the manner in which the RS latch is used in our design

differs substantially. Yamamoto’s work is based on the location of RS latches with

random output bits.

Secret keys used for cryptography must be highly repeatable over time, and given

that PUFs are based on physical processes that are susceptible to noise, mechanisms are

required to bridge the gap from unreliable circuits to reliable keys. These mechanisms

can be broken into circuit-level techniques operating at the level of individual PUF bits,

and error correction happening at the word level across many bits in aggregate. The

two types of mechanisms can be used together, such that the circuit-level techniques

reduce the bit-error-rate, and the reduced number of errors are then corrected using

coding.
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6.2.1 Reliability Enhancements in Secret Key PUFs

Bit-level reliability enhancements for PUFs decrease the error rate by reducing

the impact of noise on the PUF outputs. Cells that are highly biased toward one

output are largely immune to the small influence of noise, and bit errors happen in

PUF cells that are approximately metastable. Directed accelerated aging techniques

measure PUF outputs after manufacturing, and then reinforce cell tendencies using

aging to increase the bias of each cell toward its more probable output [10]. Dark-bit

masking [6] refers to pre-characterizing cells to identify and then mask out unreliable

bits. Dark-bit masking can either be applied as a post-silicon testing step, or performed

on-line in the field by evaluating the PUF under various stress conditions [72, 96].

6.2.2 Temporal Majority Voting

Especially relevant to the work in this chapter is temporal majority voting [6, 72].

In majority voting, a cell is evaluated n times in sequence, and the overall output is

decided according to which value occurs in a majority of the n trials. Larger values

of n improve the reliability of the PUF output. Effectively, majority voting across

n trials counteracts the influence of noise that can cause a cell to produce its less

likely value in a single trial. For example, consider a cell that has probability 0.1 of

producing output value 0, and probability 0.9 of producing output value 1; this cell

can be considered as having a error rate of 0.1 and nominal output value of 1. Using

p to denote the error rate before majority voting, the error rate of the same bit after

majority voting across n output observations is pbit =
∑n

i=n+1
2

(
n
i

)
pi (1− p)n−i. The

relationship between pbit and p for different values of n is shown in Fig. 6.1. For a bit

as described above (p = 0.1), the error rate after majority voting is pbit = 0.028 for

n = 3, and pbit = 0.0027 for n = 7.

Note that majority voting will not improve reliability of a cell that is equally likely

to produce either output value (p = 0.5), or a cell for which the more likely output
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changes according to temperature or another environmental parameter. Reliability of

these cells must be addressed through one of the other reliability mechanism such as

dark-bit masking, directed aging, or error correcting codes with helper data.
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Figure 6.1: The impact of majority voting on reliability of a single bit. For any
probability p of an output error in a single trial, pbit is the corresponding probability
of having an output error after using majority voting across n trials. Increasing n
decreases the probability of error, except for cells with p equal to 0.5.

6.2.3 Error Correction using Helper Data

Reliability enhancements such as majority voting are complementary to the use of

error correction. An example of error correction using the code-offset construction [47,

20] is shown in Fig. 6.2. An arbitrary secret key K is chosen for each PUF at enrollment

and then encoded to a codeword C(K) that is XORed with PUF response W to

generate helper data. The unknowability of W prevents helper data C(K)⊕W from

revealing secret C(K), so helper data need not be protected against invasive attack

and can be stored using any non-volatile memory, fuses, or antifuses. To regenerate

the secret key in the field, a PUF produces a value W ′ that may differ slightly from

W due to noise or environmental variations. Response W ′ is XORed with the helper

data to produce a version of codeword C(K) that is corrupted by the difference

between W and W ′. If the number of errors that can be corrected by the chosen code
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exceeds the Hamming distance between W and W ′, then key K is correctly recovered

by decoding the noisy codeword. Note that more reliable PUFs will have smaller

Hamming distances between W and W ′, and this reduces the number of errors that

must be correctable by the error correcting code.

PUF 
Decode

C-1+

Helper Data
(antifuse)

Key KW’ C(K) ⊕ W ⊕ W’

C(K) ⊕ W

Figure 6.2: PUF-based secret key generation using helper data for error correction.
The helper data is generated during a one-time enrollment process and is fixed over
the life of the PUF.

6.3 Design of a Clockless Sequential PUF

In this work we propose a clockless sequential PUF that performs majority voting

as part of its sequential behavior. Fig. 6.4 shows the proposed PUF design; each bit

of PUF output corresponds one instantiation of this design. The design uses two

LFSRs to count oscillations on circuit nodes, and the PUF output is determined

according to which LFSR is first to reach its final count. Because each oscillation

is effectively a PUF observation, producing an output based on oscillation counts

constitutes autonomous voting without orchestration by a global clock. In other words,

the sequential behavior of the PUF is unrelated to the system clock, and in some

configurations can occur within a single system clock. The evaluation of the PUF is

initiated by asserting EVAL. When the PUF has completed its sequential evolution,

signal READY is asserted, and the output is read from OUT. Note that READY can
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be neglected if sufficiently conservative time is waited between asserting EVAL and

reading OUT.

6.3.1 Principle of Operation

Each PUF output bit is determined by the variation-induced behavior of an 8-

transistor cross-coupled SR latch with its two inputs tied together. As shown in the

shaded box in Fig. 6.4a, we denote the input X and the outputs Y1 and Y0. The

SR latch is stable only when {X,Y1,Y0} takes the values {0,1,1}, {1,1,0} or {1,0,1}.

If these signals have any other combination of values, the latch is unstable and its

outputs will immediately transition to a stable latch configuration; for example {0,1,0}

would transition to {0,1,1}.

Our design implements feedback around the SR latch to ensure that there are no

stable states of the overall PUF circuit during evaluation, and furthermore that there

are two possible modes of oscillation. During evaluation, the RUN signal input to

the AND3 gate is high, so that X is a logical AND of delayed versions of Y1 and Y0.

Because of this logical AND, each stable state {X,Y1,Y0} will lead after a propagation

delay to a successor state {X’,Y1,Y0}, such that X’ = AND(Y1,Y0). These successor

states are all unstable and will immediately transition to a stable state and then again

propagate back to an unstable state, continuing in this way indefinitely. This constant

evolution of state is shown in Fig. 6.3, where all unstable states are shown as unshaded.

The variation-sensitive state transition of the PUF is the choice of stable state that

follows unstable state {1,1,1}. The state of the circuit will never settle until RUN is

deasserted. If the evolution of circuit state tends to follow the upper loop of Fig. 6.3,

then node Y1, and OSC1 in Fig. 6.4, will tend to oscillate. If the evolution of circuit

state follows the lower loop, then Y0 and OSC0 will oscillate.
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Figure 6.3: The evolution of SR latch state when embedded in the feedback circuit of
Fig. 6.4a. The three values marking each state are assignments to {X,Y1,Y0}. The
states that are shaded grey would be stable states if not for feedback. The unshaded
states occur transiently when latch outputs propagate back to change the value of
X. The successor state to {1,1,1} is determined by process variation and, to a lesser
extent, by noise.

6.3.2 Linear Feedback Shift Register as Counter

To meet strict timing constraints, An LFSR instead of a binary counter is used to

count oscillations. In any digital circuit, the delay of the critical path must be less

than the clock period, so that the combinational logic will stabilize to its final value

before the next clock edge comes. If this condition is not met, then a timing violation

is said to occur, and the value that gets stored on the clock edge is unpredictable. In

our circuit (Fig. 6.4a), the clock signal to each counter is in reality an oscillating signal

from the PUF. The time between successive rising edges on the LFSR clock input is

the oscillation period of PUF node OSC1 or OSC0, and is therefore determined by

the time for a signal to propagate twice through an AND3 gate, a NAND2 gate, and

two inverters. The oscillation periods of these nodes are shorter than the delay of

carry chains in adder circuits, so adders cannot be used to count oscillations without

causing timing violations. We resolve this concern by using an LFSR, which has a

much shorter critical path delay, for the counter. Because the LFSR critical path delay
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is shorter than the oscillations of the PUF nodes (Fig. 6.8), it can be clocked using

the oscillating PUF nodes without causing timing violations. An LFSR has previously

been used as a round counter in the the KATAN block cipher by DeCanniere et al. [16];

as in our case here, DeCanniere chooses to use an LFSR for its short critical path,

small implementation, and low power. An alternative solution to using LFSR counters

is to lengthen the PUF oscillation period by increasing the propagation delay of the

feedback structure, but this is avoided because it would incur area and power costs.

The size of the LFSR, in number of bits, is a parameter of the PUF that can be

chosen at design time. In Fig. 6.4b we show a 3-bit counter as one particular choice

of LFSR size. For any given LFSR size n, a maximum length polynomial must be

chosen so that the LFSR will have 2n − 1 non-repeating states, and therefore 2n − 2

transitions between the initial state and the final state. The implications of LFSR

size are discussed in the evaluation sections.

The proposed PUF architecture can be built from an industry gate library, and

the synthesized PUF with 3-bit LFSR counters is shown in Fig. 6.4c. The area is 43

µm2 in a 45nm technology node. The schematics of Fig. 6.4 imply that each PUF

has two dedicated LFSR counters, and in this case all PUFs can be evaluated in

parallel. It is also possible to design the PUF so that LFSR counters are shared across

multiple PUF bits; PUF bits that share counters would be evaluated serially. Sharing

of counters or other support circuits would reduce area cost but increase latency due

to serialization. In this work, we assume the fully parallel solution, where each PUF

has its own dedicated LFSR counters. Note that the area overhead of counters is

not unique to our design and in fact any majority voting scheme must similarly have

counters.
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(a) Overall PUF circuit schematic including two LFSR counters
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(b) Detailed schematic view of 3-bit LFSR counter

(c) Layout view of PUF with 3-bit LFSR counters (M1-M4 layers shown)

Figure 6.4: Schematic and layout view of the proposed PUF. The SR latch and
feedback circuit together induce an oscillating behavior that favors OSC1 or OSC0.
An LFSR advances its state at each rising edge of OSC1 or OSC0 to count the
oscillations of that signal. When one LFSR reaches its final count value, RUN is
deasserted, and the output is ready to read out.
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Figure 6.5: The transient waveforms of a single execution of the proposed PUF. The
EVAL signal starts the evaluation by initializing the LFSR counter states (see Fig. 6.4),
and everything thereafter happens autonomously. Once a counter (counter 1 in this
case) reaches its sixth and final state, the oscillation is terminated, and the output is
ready. In this example the PUF output is 1 because counter 1 reached its final state.

6.4 Experimental Validation

We evaluate the proposed PUF design by simulating the circuit at different supply

voltages and temperatures.

6.4.1 Simulation Methodology

The results in this chapter are obtained from circuit simulation using Synopsys

HSPICE, version E-2010.

6.4.1.1 Transistor Models and Sizing

Transistor and interconnect models are from the freely-available Predictive Tech-

nology Model (PTM). More specifically, the transistor models are PTM models for a

45 nm process [13]. The circuit behavior is sensitive to the transistors in the inverters

and the NAND2 gates in the SR latch, so the relevant parameters for these transistors
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are shown in Tab. 6.1. The mean value µ for each variation-impacted parameter is

the nominal value in the transistor model. The standard deviation (σ) of threshold

voltage (vth0) depends on transistor size, and is calculated from Eq. 6.1 using a value

of 1.8 mV µm for AV T [80]. The 3σ of transistor length is set to be 10% of the

overall transistor length based on existing literature [4], and this is implemented using

transistor parameter lint1 as shown in Tab. 6.1.

σV T =
AV T√
WL

(6.1)

Sizing Process Variation

W [nm] L [nm]
vth0 [mV] lint [nm]
µ σ µ σ

NAND2
NMOS 180 50 468 19.0 5 1.7
PMOS 180 50 -491 19.0 5 1.7

INV
NMOS 90 50 468 26.8 5 1.7
PMOS 180 50 -491 19.0 5 1.7

Table 6.1: Transistor sizes and process variation parameters.

6.4.1.2 Noise

To evaluate the ability of majority voting to mitigate noise, we adopt two noise

models in our simulation: flicker noise and channel thermal noise. Flicker noise is a

frequency dependent noise caused by charge fluctuation in oxide traps, and results in

fluctuations of both mobile carrier numbers and mobilities in the channel. Channel

thermal noise reflects voltage fluctuations due to the random motion of electrons.

The BSIM42 parameters fnoimod and tnoimod implement flicker and thermal noise

1lint, standing for internal length, represents the difference between nominal and effective transistor
length

2BSIM4 model is based on the industry standard efforts of the Compact Modeling Counsel and
the BSIM modeling group at UC Berkeley.
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respectively;3 noise is therefore modeled on all transistors in the circuit. The simulation

results of Fig. 6.6 obtained using the described variation and noise models shows

the clear separation of between-class and within-class Hamming distances. The large

between-class Hamming distance implies high uniqueness, and the relatively small

within-class Hamming distance implies high reliability.
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Figure 6.6: Hamming distances of the proposed PUF with 7-bit LFSR counters.
Within-class data points are two outputs from the same PUF, and between class are
from different PUFs. In addition to noise, the temperature is assigned randomly from
the range of 0◦C to 100◦C in each trial for this plot.

6.4.2 Reliability

The reliability of the proposed PUF is evaluated at the nominal supply voltage of

1.1 V, and at voltages of 0.825 V and 0.55 V (Fig. 6.7). On each plot of Fig. 6.7, each

line shows reliability across temperature of PUFs with a given size LFSR; correctness

of the PUF output is determined by comparing each output value against an output

from the same PUF at 25◦C. Increasing the size of the LFSR improves the reliability of

the PUF because it increases the number of majority voting trials that occur internally

before an output is produced when one of the LFSR counters reaches its final value.

3the values assigned to the three parameters comprising fnoimod are noia = 6.25e41, noib =
3.125e26, noic = 8.75; the values assigned to the parameters comprising tnoimod are ntnoi = 1, tnoia
= 1.5e6 and tnoib = 3.5e6
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(a) Nominal Vdd of 1.1 V
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(b) Reduced Vdd of 0.825 V
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(c) Reduced Vdd of 0.55 V

Figure 6.7: Reliability evaluation of the proposed PUF across temperatures for various
widths of LFSR counter. The results are averaged based on 1,000,000 PUF instances.
For the result labeled as a 1-bit counter, no majority voting is performed.

106



0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

time (ps) [when operated at 1.1V]

fr
eq

ue
nc

y

 

 

LFSR Critical Path Delay
Oscillation Period

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

fr
eq

ue
nc

y

time (ps) [when operated at 0.825V]

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

fr
eq

ue
nc

y

time (ps) [when operated at 0.55V]

Figure 6.8: The distribution of LFSR critical path delays and PUF oscillation periods
at three different supply voltages. Because LFSR critical path delay is shorter that
the oscillation period even with process variation, the LFSR circuit can use the PUF
oscillations as a clock without having timing violations.
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6.4.3 Error Correction

Error correcting codes are used to correct PUF output bit errors to produce reliable

secret keys (see Sec. 6.2.3). The number of PUF output bits needed to generate a

key is significantly larger than the key size, and this number increases when more

errors must be correctable. For example, Guajardo et al. [32] show that reliably

generating a 228-bit key requires 6,128 PUF output bits when conservatively assuming

a bit-error-rate of 0.16. Our use of majority voting in the proposed PUF reduces

bit-error-rate and reduces the number of PUF output bits used to generate a key.

There are at least three benefits to reducing the required number of PUF output bits:

1) the area cost of PUF circuitry is proportional to its number of output bits; 2) the

amount of helper data (see Fig. 6.2) is also proportional to its number of output bits;

and 3) the area and energy cost of the error correction algorithm increases with the

number of bits used.

In this section, we quantify how the reliability improvement of the proposed PUF

reduces the burden of error correction. We focus on binary BCH codes, which are a

set of codes that can be adapted for their block size and for the number of correctable

errors in each block. As the number of correctable errors per block increases, the

number of useful bits in each block decreases.

For a PUF with bit error rate pbit, we search for the BCH code that uses the

minimum number of PUF output bits to generate a 2,048-bit key that will be incorrect

fewer than once per billion uses. We find an optimal code for different values of pbit

by using exhaustive search of all BCH codes that have block length less than 511 bits.

For a BCH code described by parameters b (block size in bits), k (useful key bits per

block), and t (correctable errors per block), the following procedure calculates the

probability (denoted pkey) of producing an incorrect 2,048-bit key. First, the probability

(denoted pblock) of having an uncorrectable error in a single block is calculated as

the probability of having more than t erroneous bits in the block (Eq. 6.2), under
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the assumption that bit errors are independent and identically distributed. Then,

given that nblocks = d2, 048/ke blocks are needed to generate the entire key, the key

error probability pkey is calculated as the probability that not all blocks are error-free

(Eq. 6.3). If the pkey of a particular BCH code is less than 1E-9, then the BCH code is

deemed suitably reliable for correcting a bit error rate of pbit, and will be considered

optimal if the number of bits used (b ∗ nblocks) is fewest among all BCH codes that

satisfy the same condition of pkey being less than 1E-9.

pblock =
b∑

i=t+1

(
b

i

)
pibit (1− pbit)b−i (6.2)

pkey = 1− (1− pblock)nblocks (6.3)

Based on the analysis described in the preceding paragraph, Table 6.2 shows the

optimal BCH code for the pbit values from different LFSR counter sizes. For each

LFSR size, the value of pbit is the bit error rate obtained in the worst-case scenario of

100◦C and 0.55 V (see Fig. 6.7c). The improved reliability that comes from increasing

LFSR size has a large impact on the number of PUF bits needed to generate the key.

Number of
pbit

Optimal BCH code PUF bits Percent of
LFSR bits b k t required bits saved

1 0.0519 255 47 42 11,220 -
2 0.0468 511 103 61 10,220 8.9%
3 0.0437 511 121 58 8,687 22.6%
4 0.0353 511 157 51 7,154 36.2%
5 0.0290 511 184 45 6,132 45.3%
6 0.0257 511 211 41 5,110 54.5%
7 0.0221 511 229 38 4,599 59.0%

Table 6.2: BCH codes that generate a 2,048-bit key using the minimal number of PUF
outputs for different values of pbit. The BCH codes are chosen such that the key will
be generated incorrectly less than once per billion uses. The value of pbit in each row
corresponds to the observed bit-error-rate at 100◦C at 0.55 V supply. Each BCH code
block uses b bits to encode k key bits with capability to correct up to t errors.
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6.4.4 Energy

Changing the LFSR counter size trades energy-per-bit against reliability. For an

n-bit LFSR, a maximal length polynomial is chosen so that the evaluation will end

after one counter has experienced 2n − 2 rising transitions on its oscillating input.

When considering both counters, the total number of oscillations in the evaluation is

between 2n − 2 and 2(2n − 2)− 1. The energy of a PUF evaluation is roughly linear

in the number of oscillations and therefore exponential in LFSR size n (Fig. 6.9).

Once the LFSR becomes sufficiently large, the small reliability gains from additional

majority voting trials come at a high energy cost. In addition to changing the LFSR

size at design time, another strategy to reduce energy-per-bit is lowering the operating

voltage of the PUF. Note that both increasing LFSR size and lowering supply voltage

increase the time required to complete each evaluation of the PUF.
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Figure 6.9: The energy-per-response-bit increases roughly linearly with the number of
oscillations, which is exponential in the number of LFSR counter bits. Meanwhile, the
reliability increases with the size of the LFSR counter due to the increased number of
majority voting trials performed.
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6.5 Summary

This chapter proposes a novel PUF that uses autonomous majority voting without

orchestration by a clock. The proposed design is parameterizable by its LFSR

counter size, and this allows reliability to be traded off against energy and area. Our

experiments show that the improved reliability of the design translates to as much

as 59% savings in the number PUF bits needed for key generation when combined

with error correcting codes. An interesting direction for future work is to minimize

total energy of PUF key generation when using this design together with both dark

bit masking and error correction.
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CHAPTER 7

CONCLUSIONS

Driven by Moore’s law, semiconductor industry has experienced continuous physical

scaling in the past few decades. This advancement greatly facilitates the development

of electronic devices like smart phones, tablets, but also proposes new challenges for

hardware security researchers. This dissertation presents some of our recent work

in advancing secure CMOS computation with intrinsic functions: i.e., the so-called

Physical Unclonable Functions (PUFs). Three topics are studied: nanometer-scale

process variations, Machine Learning based modeling and noise sensitivity.

Chapter 1 of this dissertation lists the challenge and opportunities in nanometer

cryptographic circuit design. We predict that though process variations are detrimental

to conventional circuit design, PUFs have been proposed as a viable solution to harness

the unpredictable nature of process variations for security applications. Terminologies

like challenge-response pairs (CRPs), reliability, uniqueness and uniformity are defined

in this chapter.

Since PUFs leverage microscopic process variations, thus are sensitive to envi-

ronmental noise like slight temperature or supply voltage fluctuations. Due to such

sensitivity, a PUF may not produce consistent response for the same challenge under

different environmental conditions. To address the reliability of currently proposed

PUF primitives, two highly reliable PUF mechanisms on two common seen memory

architectures, SRAM and D Flip-flop are proposed in Chapter 2 and 3. To improve

the efficiency of our propose PUF mechanisms, we combined algorithm like binary
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search, advanced Machine Learning method like Artificial Neural Network (ANN) in

these two works.

Bistable Ring (BR) PUF is a newly proposed but promising hardware security

primitive in PUF family. In Chapter 4, we studied the ML modeling resilience of BR

PUF and its derived architecture TBR PUF. We evaluate the security of Bistable Ring

PUF by applying different attacking models and methods, besides the proposed attacks

in other literatures, we propose a novel model based on Support Vector Machine

(SVM). XORing method is employed to enhance the attack resilience of single BR

PUF, we demonstrate that XORed BR PUF is beyond the reach of current known

attacking models, thus is secure.

Environmental noise including temperature variance and supply voltage fluctuation

is a known cause for PUFs reliability problem. However, device aging as a widely

studied issue in hardware deign, was rarely considered in previous literatures on

PUFs. Chapter 5 addresses these two causes of unreliability: transient unreliability

caused by environmental noise, and persistent unreliability caused by device aging.

We constructively apply ML modeling method, and use the models to predict and

then discard CRPs that will be unreliable with respect to noise and aging on a given

PUF instance.

In Chapter 6, we propose and evaluate a new style of PUF that improves reliability

by autonomously performing majority voting. The novelty of this design, and the

source of its efficiency, is that the sequential majority voting happens using a self-timed

circuit without orchestration by a global clock. We show that the proposed design

can be instantiated to achieve different tradeoffs in energy versus bit-error-rate, and

area versus latency.
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