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ABSTRACT

STOCHASTIC NETWORK DESIGN: MODELS AND SCALABLE
ALGORITHMS

SEPTEMBER 2016

XIAOJIAN WU

B.E., WUHAN UNIVERSITY, CHINA

M.S., MISSISSPPI STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Sheldon and Professor Shlomo Zilberstein

Many natural and social phenomena occur in networks. Examples include the spread of

information, ideas, and opinions through a social network, the propagation of an infectious

disease among people, and the spread of species within an interconnected habitat network.

The ability to modify a phenomenon towards some desired outcomes has widely recognized

benefits to our society and the economy. The outcome of a phenomenon is largely deter-

mined by the topology or properties of its underlying network. A decision maker can take

management actions to modify a network and change the outcome of the phenomenon. A

management action is an activity that changes the topology or other properties of a network.

For example, species that live in a small area may expand their population and gradually

spread into an interconnected habitat network. However, human development of various

structures such as highways and factories may destroy natural habitats or block paths con-

necting different habitat patches, which results in a population decline. To facilitate the
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dispersal of species and help the population recover, artificial corridors (e.g., a wildlife

highway crossing) can be built to restore connectivity of isolated habitats, and conservation

areas can be established to restore historical habitats of species, both of which are examples

of management actions. The set of management actions that can be taken is restricted by a

budget, so we must find cost-effective allocations of limited funding resources.

In the thesis, the problem of finding the (nearly) optimal set of management actions

is formulated as a discrete and stochastic optimization problem. Specifically, a general

decision-making framework called stochastic network design is defined to model a broad

range of similar real-world problems. The framework is defined upon a stochastic network,

in which edges are either present or absent with certain probabilities. It defines several

metrics to measure the outcome of the underlying phenomenon and a set of management

actions that modify the network or its parameters in specific ways. The goal is to select

a subset of management actions, subject to a budget constraint, to maximize a specified

metric.

The major contribution of the thesis is to develop scalable algorithms to find high-

quality solutions for different problems within the framework. In general, these problems

are NP-hard, and their objective functions are neither submodular nor super-modular. Ex-

isting algorithms, such as greedy algorithms and heuristic search algorithms, either lack

theoretical guarantees or have limited scalability. In the thesis, fast approximate algorithms

are developed under three different settings that are gradually more general. The most re-

stricted setting is when a network is tree-structured. For this case, fully polynomial-time

approximation schemes (FPTAS) are developed using dynamic programming algorithms

and rounding techniques. A more general setting is when networks are general directed

graphs. We use a sampling technique to convert the original stochastic optimization prob-

lem into a deterministic optimization problem and develop a primal-dual algorithm to solve

it efficiently. In the previous two problem settings, the goal is to maximize connectivity of

networks. In the most general setting, the goal is to maximize the number of nodes being
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connected and minimize the distance between these connected nodes. For example, we do

not only want the species to reach a large number of habitat areas but also want them to

be able to get there within a reasonable amount of time. The scalable algorithms for this

setting combine a fast primal-dual algorithm and a sampling procedure.

Three real-world problems from the areas of computational sustainability and emer-

gency response are used to evaluate these algorithms. They are the barrier removal problem

aimed to determine which instream barriers to remove to help fish access their historical

habitats in a river network, the spatial conservation planning problem to determine which

habitat units to set as conservation areas to encourage the dispersal of endangered species

in a landscape, and the pre-disaster preparation problem aimed to minimize the disruption

of emergency medical services by natural disasters. In these three problems, the devel-

oped algorithms are much more scalable than the existing state-of-the-arts and produce

high-quality solutions.
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CHAPTER 1

INTRODUCTION

Many natural and social phenomena occur in networks. For example, information

spreads among people [18, 42] through a social network. In a social network, people are

represented by nodes, and an edge may represent the friendship between two people. If

an individual receives a piece of information sent by their friends, she/he may continue to

send it to her/his other friends. Over time, more and more people will receive the informa-

tion, forming a so-called cascading process [42]. Another example is the spread of species

within a landscape [33, 97]. Historical habitats within a landscape are divided into a finite

number of habitat areas, each of which is represented by a node, and are interconnected

by natural paths that species can travel along, each of which is represented by an edge.

Species that live in one habitat area may expand their population and spread into a nearby

habitat area along the natural paths. Over time, the population of the species increases, and

a large number of habitat areas are occupied by species. This process can be modeled as a

diffusion process in an interconnected habitat network.

Management actions can be taken to modify the underlying networks and reshape the

phenomena toward some desired objective. For example, a company can provide rewards

as one kind of management actions to inspire people to share information about a product

through a social network to a large number of people—an advertising method called viral

marketing [18, 57]. Ecologists want to facilitate the dispersal of endangered species of

one kind by constructing corridors, as management actions, to connect fragmented habi-

tats [7, 66, 67]. Habitats are fragmented by human constructed barriers, such as highways

and railroads, that cut off the natural paths for species to move between habitats. Other
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examples of management actions can be to improve the reliability of telecommunication

networks [90], to control the spreading of epidemics [70], to minimize the disruption of

emergency services by a natural disaster [60, 72].

A decision maker wants to know how to select a good set of management actions from a

large number of candidate actions to steer the outcome of a phenomenon towards a certain

desired objective. For example, among millions of people in a social network, a company

may need to decide who to provide the rewards, or an environmental agency may need

to select among hundreds or thousands of damaged habitat areas which ones should be

recovered or set as conservation areas. Broadly, this question asks how to allocate resources

in an efficient manner to maximally achieve certain desired objective. In most cases, the

effect of one action relies on the execution of several other actions, meaning that selecting

actions greedily by maximizing the marginal gain of an objective function does not provide

the optimal, or even a good, strategy. The decision is often made subject to a budget limit.

The purpose of this thesis is to develop tools to help a decision maker find cost-efficient

management actions by solving an optimization problem.

Typical network design problems are defined to model similar network optimization

problems. Example network design problems include the Steiner tree problem [37, 75] and

the maximum spanning tree problem [51, 74]. These problems have been formulated and

extensively studied [30, 40] and used successfully in many real-world applications, such as

the design of telecommunication, traffic networks, and VLSI chips. The basic structure of

a typical network design problem is that we are given a graph and a set of extra edges that

can be purchased and added to the graph and are required to design an algorithm to find the

least costly set of edges so that the graph augmented with the purchased edges accomplishes

some desired objectives. For the Steiner tree problem, the input consists of an undirected

graph, a subset of specified nodes called terminal nodes, which, for example, can represent

locations that a truck needs to reach, and a set of edges that can be purchased and added to

the graph. The desired output is the cheapest set of edges with which all terminal nodes are
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interconnected in the augmented graph. The Steiner tree problem can model a real-world

problem in which we want to build a road network to connect several important locations,

represented by terminal nodes, by building roads, represented by edges, in an existing road

network.

However, typical network design problems fail to capture the uncertainty or the stochas-

ticity that exists in a natural or social phenomenon such as the spread of information over a

social network and the dispersal of species within a landscape. Consider the same example

of adding edges to a road network to connect several important terminal nodes. By solving

a Steiner tree problem, we can find the least costly set of edges if all these edges or roads

guarantee to work. However, in reality, some of these edges may malfunction due to var-

ious reasons such as natural disasters. For example, if a flood or an earthquake happens,

some roads may be destroyed, and become impossible for traffic to pass. To guarantee

the connectivity of a pair of nodes, one way is to either build two parallel edges to con-

nect them or build a reinforced edge that is resistant to natural disasters such as floods and

earthquakes. The question asks which pairs of nodes we should invest money to connect.

While making the decision, we want to take into account which edge will be under attack

by a natural disaster, and how severe the damage will be. Although the perfect prediction

for these events is unavailable, we could treat them as random events and build a predic-

tive probabilistic model to describe them. Therefore, a better decision-making framework

can be built by combining the Steiner tree problem with a probabilistic model. Another

generalized version of the Steiner tree problem called survivable network design deals with

uncertainty from a different perspective. In a survivable network design problem, multiple

disjoint paths between two terminal nodes are required to be constructed so that the connec-

tivity between them remains valid even although one path is destroyed by a natural disaster.

This method doesn’t explicitly model the probabilities of edge failures, but chooses a safe

way by building multiple paths beforehand with the assumption that the likelihood that all

these paths fail simultaneously is very low. This method is related to an active research
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area called robust optimization [5] where the decisions are made to optimize the worst out-

comes. Robust optimization is widely used when a probabilistic model of the involved

random events is not available. Otherwise, it is too pessimistic to consider the worst out-

comes, and, usually, the solution produced by solving a robust optimization problem turns

out to be too conservative and not cost-efficient. A better way is to take advantage of the

available probabilistic model to formulate the decision-making problem. For example, if,

statistically, floods are very unlikely to severely damage any roads within a certain area,

the priority of building multiple roads to connect two locations to guarantee connectivity

should be low. The ability to model the uncertainty of a phenomenon is the first step to

produce a high-quality strategy to modify the phenomenon towards our desired direction.

The major contribution of the thesis is to provide scalable algorithms to compute high-

quality solutions for a range of decision-making problems including the examples discussed

earlier.

First, I propose a framework called stochastic network design to model a range of net-

work design problems by taking into account the uncertainty existing in the underlying

phenomenon. The way to model the uncertainty is to use a stochastic network. A stochas-

tic network is a directed graph in which the presence or absence of an edge is a random

event. The absence of an edge means that the edge suffers from a failure; a road, for ex-

ample, is destroyed by a natural disaster. Management actions can be taken to change the

probabilities of presence. An evaluation function is also defined to measure the perfor-

mance a set of taken actions, and a budget constraint that limits the set of actions that can

be taken. For example, in the influence maximization problem [42], the evaluation func-

tion measures the expected number of people who will receive a piece of information if

the information initially starts from a source and gradually spreads out among people over

time. An evaluation function maps a subset of actions into a real value. The goal of the

framework is to select a subset of actions that satisfy the budget constraint to produce the

maximum (or minimum) value of the evaluation function. The framework can model a
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Figure 1.1: Subclasses of stochastic network design problems

range of real-world decision-making problems if the presence probabilities, management

actions, and the evaluation function are defined properly. Both the information spread-

ing problem and the species spreading problem discussed earlier can be modeled by the

framework.

Second, I develop methodologies and scalable algorithms to solve problems within the

stochastic network design framework under three different settings, as shown in Fig 1.1,

that are gradually more general. In the most restricted setting, the underlying network is

assumed to be tree-structured. A real-world problem that satisfies this assumption is the

so-called barrier removal problem that has been widely studied by researchers from envi-

ronmental science and operations research [65, 63]. In a barrier removal problem, the goal

is to maintain the connectivity of a river network by removing river barriers, such as dams

and culverts that prevent fish from moving upstream, so that fish once enter the river from

the ocean can access their historical river habitats and produce next generation. The mod-

eling works well because a river network can be treated as a tree [65]. In the slightly more

general setting, it is assumed that the underlying network is a general directed graph. This

setting can be used to model a conservation planning problem [87], of which the goal is to

conserve the population of an endangered species called red-cocked woodpecker (RCW).

Human constructions and activities destroyed the natural habitats of RCWs and resulted in

a decline of their population. In this problem, we want to decide which disrupted habitats,
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which are either currently occupied or will potentially be occupied, to set as conservation

areas to encourage the dispersal of RCWs. The influence maximization problem [42] can

be modeled by this setting as well. In the first two settings, the focus is only on the con-

nectivity of a network but not the distance between nodes. For the information spreading

problem, under these two settings, we only maximize the number of people that the infor-

mation can eventually reach but not worry how long it takes for those people to receive

the information. The last setting, which is more general, is to maximize the connectivity

and also minimize the distance. To adapt the stochastic network design framework to this

new setting, each edge has a length that is randomly distributed in a range [0,∞]. That

is, we do not only want the information to reach a large number of people in the network

but also want it to reach those people within a reasonable amount of time (e.g., within a

week). A decision-making problem under this last setting is related to a well-known prob-

lem called continuous-time influence maximization problem in the area of computational

social network [77]. In this thesis, a real-world problem called pre-disaster preparation

is formulated using the stochastic network design framework under this setting. The goal

of the problem is to selectively reinforce several road segments before a natural disaster,

such as a flood, happens, such that when a disaster indeed happens, the response time of

Emergency Medical Services (EMS), the time that an ambulance takes to travel from an

ambulance center reach a patient who made the call, is minimized.

A problem,in general, for any one of these three settings is NP-hard, so the focus of the

thesis is to develop approximate algorithms. When the underlying network is a tree, ap-

proximation algorithms called fully polynomial-time approximation schema (FPTAS) are

developed to produce near optimal solutions within a reasonable amount of time. When

applying to the barrier removal problem [65], the algorithm runs around 60 times faster

than a state-of-the-art algorithm and produces a solution with the value within 99% opti-

mal value. When the underlying network is a general directed graph, an FPTAS becomes

unavailable, but I develop a fast approximate algorithm by combining a sample average ap-
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proximation method and a primal-dual algorithm. As demonstrated later, the algorithm is

faster than a greedy baseline and produces high-quality solutions for the conservation plan-

ning problem [87]. For the most general setting where the lengths of edges are considered,

all previous algorithms are not applicable, but a new approximate algorithm is proposed to

deal with problems of large sizes, which a greedy algorithm takes more than 100 hours to

solve. As shown by experiments, this new algorithm can produce near optimal solutions

and much faster than several existing algorithms.

Several other algorithms and optimization techniques are relevant but cannot solve

stochastic network design problems with satisfiable performance and scalabilities. Approx-

imation algorithm design techniques have been widely studied to solve typical network

design problems such as the Steiner tree problem [37, 75], the maximum spanning tree

problem [51, 74] and the facility location problem [39]. But, since these network design

problems fail to model the stochasticity that exists in the problem, these algorithms can’t

be applied directly. Local search algorithms can give empirically good solutions for many

NP-hard problems [26, 36, 56, 61, 71]. A local search algorithm is usually fast and can stop

at any time to produce a feasible solution but does not give any theoretical guarantee on

the quality of the computed solution. Also, a local search algorithm is domain-dependent,

that is, an algorithm that can produce a high-quality solution for one problem is hardly to

be transported to solve another problem even although these two problems share several

common properties, because the performance of a local search algorithm largely relies on

the way that the neighborhood of a solution is defined and how a starting point of search

is selected, both of which are designed based on heuristic and are hardly to generalize to

a different problem. More discussion of the performance of local search algorithms is be-

yond the scope of this thesis. In comparison, the algorithms provided in the thesis are very

general to solve any problems within the framework, and for a tree-structured network, the

theoretical result is given to bound the quality of a computed solution. Moreover, as shown

in the experiments, these algorithms can be hundreds times faster than a greedy algorithm
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that is one type of fast local search algorithms, that is, they are superior to local search

algorithms also in terms of time efficiency. Heuristic search algorithms [48, 49, 79] are

widely used to find the optimal solution or a near optimal solution [32] for a NP-hard prob-

lem. With a good heuristic, a heuristic search algorithm can run very fast because a large

portion of search space is pruned and is never explored by the algorithm. The problem

is that it is hard to design a good heuristic function in many domains, and in some cases,

computing a good heuristic value takes almost the same amount of time as solving the orig-

inal optimization problem. And, a carefully designed heuristic function for one problem is

hardly useful to solve a different problem. In this thesis, the interest is to develop several

general algorithms that can solve a range of decision-making problems. These problems

can be modeled by a unified framework, but are quite different. It is unclear how to design

a general heuristic function that can work for all these problems. Also, since the number

of candidate actions is usually proportional to the number of edges in a network, which

can be thousands or millions, the search tree of a heuristic search algorithm can be very

deep such that even with a fairly good heuristic, the algorithm may take a long time to

finish. As demonstrated later, the heuristic search algorithm can find optimal solutions

for a pre-disaster preparation problem [83] but can only scale up to a network with 1000

edges while my algorithms can deal with a network with 50, 000 edges for that problem.

Other problems that are tested can be millions of candidate actions, of which a heuristic

search algorithm is obviously not viable. Greedy algorithms are fast, of which the run-

time are usually quadratic the number of candidate actions, but don’t have any guarantee

on the solution quality for most of NP-hard problems. A constrained discrete optimization

problem that a greedy algorithm has theoretical guarantee on needs to satisfy certain prop-

erties [21, 24, 28, 50] such as the objective function being submodular and nondecreasing

and having a knapsack constraint [91]. For problems that don’t have these properties, the

greedy algorithm can perform arbitrarily bad. As shown later, a stochastic network design

problem under any one of three settings doesn’t satisfy these properties. For example, the
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objective function is neither submodular or supermodular. In this sense, greedy algorithms

are ideal algorithm of solving stochastic network design problems. In experiments shown

in other chapters, a greedy algorithm is used as a baseline algorithm to compare with other

algorithms. Also, for some real-world problems such as a pre-disaster preparation prob-

lem, a greedy algorithm is unable to compute a solution within 100 hours. For the same

problem, my algorithm only takes 6 hours. In total, approximation algorithm design, lo-

cal search, heuristic search, and greedy search are useful techniques to deal with NP-hard

problems, but my fast approximate algorithms are better options in aspects of generality

and scalabilities.

In summary, the thesis studies one type of decision-making problems that we want

to find a good set of management actions to steer a phenomenon that occurs in network

towards certain desired goal. A general framework called stochastic network design is

defined to model a range of such problems, and several scalable algorithms are developed to

produce high-quality solutions. These algorithms are superior to several existing techniques

that are widely used to deal with NP-hard problems regarding generality and scalability. In

next section, several relevant problems studied in other fields are connected to the problem

studied in this thesis. The similarities and differences between them are discussed.

1.1 Related Works

Several research areas are related to our work.

1.1.1 Network Reliability

In telecommunication networks, network reliability describes the ability of a network

to continue network services in the case of component failures [3]. In the basic model,

each edge or node has an independent failure probability, and different metrics are used

to measure the reliability, such as all-terminal reliability (the probability that the graph

remains connected) and s-t reliability (the probability that there is a path from s to t).
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However, most widely used metrics are intractable (#P -hard) to compute exactly [3, 11],

and polynomial-time algorithms exist only for very restricted cases (e.g. series-parallel

graphs) [12, 80]. The reliability network design problem is to find a network topology

maximizing the reliability for a given cost constraint or minimizing the design cost for a

given reliability constraint [47]. As the reliability is hard to calculate, most of the existing

methods are only scalable on small networks. For example, a branch-bound algorithm, a

genetic algorithm, and a neural network approach have been used but can only scale up to

hundreds of edges [15, 78, 89].

The stochastic network design framework can be specialized to model several common

metrics of reliability, such as s-t reliability and all-terminal reliability, so the stochastic

network design algorithms can be applied to reliability network design problems. They

have a better scalability, for example up to hundreds of thousands of nodes, and can produce

high-quality solutions with theoretical and empirical evidence.

1.1.2 Influence Maximization Problem

Influence maximization problem recently becomes a hot topic in the area of computa-

tional social network. The spread of information among people is modeled as a cascad-

ing process through a social network, and several well-known cascade models, such as

the Independent Cascade (IC) model [42], the Linear Threshold (LT) model [42], and the

Continuous-Time Independent Cascade (CTIC) model [19, 77], are used to describe such

a process. Each of these models defines a local rule and specifies how information spreads

through a network following this local rule. For example, a set of nodes called sources are

infected or active at the beginning of the process. Recursively, an infected node can infect

its neighboring nodes, and the local rule, such as a probability distribution, describes how

each neighboring node gets infected. After a certain number of such cascading cycles, a

large number of nodes become infected. For an influence maximization problem, the goal

is to maximize the (expected) number of nodes that become infected eventually by taking
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management actions. One type of influence maximization problems is the source selection

problem, motivated by an active research area called viral marketing [57], where a decision

maker wants to pick K nodes, also called sources, to make them infected at the beginning

of the process to maximize the number of nodes infected at the end of the process [18].

This problem has a submodular objective function [42] and, a natural greedy algorithm

can produce a solution with the value within 63% of the optimal value. A lot of following

work has been done to improve the greedy algorithm to scale up to networks of millions of

nodes [8, 9, 10], but it hard to extend these algorithms to problems of other types of man-

agement actions than selecting sources. Khalil et al. [44] study a problem of modifying

the topology of a network, such as adding edges, deleting edges, adding nodes and deleting

nodes, to maximize/minimize the influence under the LT model. The objective function has

shown to be either sub-modular or super-modular, and the technique of submodular func-

tion optimization is used to develop algorithms producing high-quality solutions. Sheldon

et al. [87] study a problem of maximizing the spread of species in a habitat network by

adding nodes. The optimization problem doesn’t have a sub-modular or super-modular

objective function. A sample average approximation technique [45] is used to formulate

the problem into a mixed integer program (MIP) and a standard solver is used to solve the

MIP. As shown by experimental results, the algorithm produces high-quality solutions, but

only works when the underlying network is a acyclic directed graph (DAG). In addition,

the algorithm can only scale up to networks of several hundreds of nodes. Instead of maxi-

mizing (minimizing) the spread of influence directly, some other methods optimize a static

property of the network, in the hope of optimizing diffusion. For instance, Schneider et

al. [84] suggest betweenness centrality as a heuristic for immunizing nodes or removing

edges under the SIR model, while degree centrality is adopted by Gao et al. [25] to protect

against virus propagation in email networks.

All these influence maximization problems with actions including selecting sources,

adding (removing) nodes and edges, under the IC, LT and CTIC models are special cases of
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the stochastic network design framework. Besides modifying the topology of the network,

the framework also models richer management actions, such as increasing (decreasing) the

probability that a node infects its neighbors, which has correspondence in reality. For ex-

ample, to maximize the number of purchases by a viral marketing strategy, a company will

offer a person rewards if her friends purchase the product due to her recommendation [57].

The rewards, as one type of management actions, can increase the chance that a person

sends the recommendation of one product to her friends, which raises the chance that a

friend will also purchase the product. To efficiently allocate rewards, we want to determine

who are the good candidates to provide the rewards and who should get more rewards than

others. Also, my algorithm can solve the problem introduced by Sheldon et al. [87], deal

with a general directed graph, and runs much faster than their algorithm.

1.1.3 Conservation Planning

Conservation planning that has recently been taken up in the emerging field of com-

putational sustainability [29]. One branch of conservation planning problems is known as

reserve design or corridor design in which a decision maker selects management actions,

such as purchasing or improving habitats and constructing a wildlife corridor connecting

two fragmented habitats, to optimize certain metric or the connectivity of landscape to facil-

itate species dispersal [7, 66, 67, 95]. A number of recent works connect the reserve design

problems to typical network design [13, 14, 16, 17, 54, 55]. In most of these works, the

goal is to construct, by purchasing nodes or edges, a subgraph minimizing the design cost

for a given connectivity constraint, such as connecting all terminals, or maximizing certain

connectivity metric for a given cost constraint, such as the total design cost less than a bud-

get limit. However, as mentioned earlier, these network design problems don’t explicitly

model the stochasticity of the activity of species within a landscape. A separate group of

works incorporate the stochasticity into an evaluation function that measures how good a

conservation strategy is [69, 81, 85]. For example, a well-known method, adopted by ecol-
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ogists, to evaluate a conservation policy is called probability of connectivity (PC) [81], that

is, the probability that one node is connected to other nodes. For a given policy, calculation

of its PC score is very time-consuming, so finding the policy to maximize PC score is a

complex stochastic optimization problem. Heuristic based methods and greedy algorithms

are used by ecologists to solve this problem [92, 59, 62], which, as mentioned earlier, do

not have any theoretical guarantee on the quality of the computed solution. The conserva-

tion planning problem with the PC evaluation function can be formulated as a stochastic

network design problem, and my algorithms are capable of solving the problem.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 defines the stochastic net-

work design framework and its extensions. Chapter 3 and 4 introduce the algorithms for

tree-structured networks. Chapter 5 introduces the algorithms for general directed graphs.

Chapter 6 introduces the algorithms for the setting that edges have arbitrary lengths.

13



CHAPTER 2

STOCHASTIC NETWORK DESIGN

This chapter introduces the stochastic network design framework. First, the basic set-

ting of the stochastic network design framework is given. To help understand the motivation

of the framework, two real-world problems are introduced, and the way to formulate these

two problems as stochastic network design problems is explained. Then, several ways

to build more complex settings by relaxing some of the assumptions of the basic setting

are discussed. At last, the quota problem and the prize-collecting problem of a stochastic

network design problem are briefly mentioned.

2.1 Basic Setting

This chapter introduces the mathematical formulation of the stochastic network design

framework. It starts with the basic setting of the framework and discusses several ways to

extend the framework. Then, several real-world problems are introduced and formulated

as stochastic network design problems.

2.1.1 Stochastic Network

A stochastic network consists of a directed graph G = (V,E), where V is a set of

nodes and E is a set of directed edges, and a probability mass function p : E → [0, 1]

that defines the probability that an edge doesn’t fail. That is, each edge is in one of two

exclusive states: present (survival) or absent (failed). The state of an edge is a random

event following a Bernoulli distribution. The probability of an edge (u, v) ∈ E being

present is defined by p(u, v), and the probability of the edge being absent is 1 − p(u, v).
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The probability function p(·) is also called the survival probability function while p(u, v)

is called the survival probability of the edge (u, v), and 1 − p(u, v) is called the failure

probability. To make the presentation clear, let’s for now assume that the state of each

edge is independently distributed, which is a reasonable assumption for some real-world

problems as shown later in section 2.2. This assumption is relaxed while discussing the

ways to extend this basic setting in section 2.4. The stochastic network, in fact, defines a

probability distribution over a set ΦG that contains all directed graphs Gs = (V,Es) with

Es ⊆ E, that is, ΦG = {Gs = (V,Es) : Es ⊆ E}. Each directed graph in ΦG is called

a sample network. The probability of a sample network Gs is defined to be the probability

that all edges in Es are present and all edges not in Es are absent, which equals to the

product of the survival probabilities of all edges in Es and the failure probabilities of all

edges not in Es. That is

Pr(Gs) =
∏

(u,v)∈Es
p(u, v)

∏
(u,v)/∈Es

(1− p(u, v)) (2.1)

It is easy to show that probabilities of all sample networks in ΦG sum to one. To sample

from the distribution defined by a stochastic network, a sample network is constructed by

flipping a biased coin with probability p(u, v) to determine the state of each edge (u, v).

The stochastic network can model many social and natural phenomena. For the influ-

ence maximization problem, the probability that a node u is connected to another node v

in a stochastic network represents the probability that information propagates from u to v

in a social network. More details on how to formulate the influence maximization problem

as a stochastic network design problem is gave later in section 2.2.

2.1.2 Management Actions

Management actions can be taken to change the survival probabilities of edges. For

each edge (u, v) in a stochastic network, there is a management action auv, with cost cuv,

available to modify its survival probability. To describe the survival probabilities of edges
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before and after actions are taken, two probability mass functions are defined. A probability

mass function po : E → [0, 1] defines the original (by superscript o) survival probabilities

of edges, and a different probability mass function pm : E → [0, 1] defines the modified

(by superscript m) survival probabilities after actions are taken. That is, if auv is not taken,

p(u, v) = po(u, v) (pouv for short) and if auv is taken, p(u, v) = pm(u, v) (pmuv for short). Let

the set of all available actions denoted by A = {auv|(u, v) ∈ E} and define a policy π to

be a subset of A. The survival probability function is re-defined to be conditional on π as

p(u, v; π) =

 pouv if auv /∈ π

pmuv if auv ∈ π
(2.2)

The definition of management actions is very general. For an influence maximization

problem, a management action models the activity that rewards are provided to a person

A to increase the chance that a person A sends the information to a person B. For a con-

servation planning problem, an action models the activity of building a corridor to connect

two fragmented habitat areas A and B. The corridor increases the chance (modeled as the

survival probability) that species can spread from A to B. Each action is associated with a

cost, which is defined by a cost function c : E → R. The cost of an edge (u, v) is written as

cuv for short. For now, it is assumed that each edge has only one candidate action, which is

reasonable from some real-world problems as shown later. This simple assumption makes

the presentation clear and is relaxed later in section 2.4. If no candidate action is available,

we can simply set pouv = pmuv and cuv = 0.

2.1.3 Objective Function

Given a stochastic network G, we need to have an evaluation function to quantify how

good a policy π is applied to G.

First, a function r : V × V → R is defined to quantify the benefit that we can obtained

by connecting one pair of nodes. For example, if r(s, t) > r(u, v), it benefits us more to
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have the pair (s, t) connected than the pair (u, v). The function is also called the reward

function, that is, r(v, u) represents the reward that we can obtain if v is connected to u.

With a reward defined for each node, the reward of a sample network is calculated as

r(Gs) =
∑

(s,t)∈V×V

rst · I(there is a path from s to t in Gs) (2.3)

where I is an indicator function which returns 1 if the specified event is true and returns 0

otherwise. This is to say that for a sample network, a reward rst is collected for each node

pair (s, t) if there is a path from s to t, and the reward of the sample network is the total

rewards collected.

Then, a resilience function is defined to quantify the outcome of a policy π by the

expected reward that can be obtained when π is applied. Mathematically,

R(π;G) =
∑

Gs∈ΦG

Pr(Gs; π)r(Gs) (2.4)

With a policy, the management action of each edge is determined. Then, the survival

probability of each edge is fixed, so the probability of a sample network is calculated using

the (2.1). Since the probability of a sample network also depends on the policy π taken,

it is written as a function of both Gs and π as shown in (2.4). The name resilience in

some way represents the robustness of the network’s connectivity to random failures, which

is represented by the expected total rewards in the stochastic network design framework.

Other ways to represent the resilience are discussed later. The resilience function is the

objective function that we want to maximize.

2.1.4 Decision Making Problem

Now, we can define the decision-making problem, a discrete optimization problem, for

the stochastic network design framework. For a given policy π ⊆ A, the cost of a policy is

defined to be the total cost of actions taken, that is, cost(π) =
∑

auv∈π cuv.
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The inputs of the decision-making problem consist of a stochastic networkG = (V,E),

an original survival probability function po (representing the probabilities before actions

are taken), a modified survival probability function pm (representing the probabilities after

actions are taken), a reward function r that defines a resilience function, and a budget limit

B. The goal is to find a policy π maximizing the resilience function defined by (2.4) for a

given cost constraint cost(π) ≤ B. Mathematically, the decision-making problem is written

as

max
π⊆A

R(π) subject to cost(π) ≤ B (2.5)

where the dependency of the resilience function on G is omitted without confusion.

2.2 Two Examples of Stochastic Network Design Problems

This section introduces two real-world problems and explains how they can be formu-

lated as stochastic network design problems. Some of these problems have been mentioned

and used as examples earlier.

2.2.1 Influence Maximization by Source Selection

The influence maximization problem is introduced in Section 1.1. Here, we formally

define the source selection problem and explain how it can be formulated as a stochastic

network design problem. In the source selection problem, the diffusion process is described

by the Independent Cascade (IC) model [43] on a directed graph G′ = (V ′, E ′). Each

node is either infected (also called active) or uninfected (also called inactive). Each edge

(u, v) ∈ E ′ is associated with an infection probability p′uv to represent the probability that

node v will get infected if node u becomes infected. A set of nodes called sources are

infected by some external sources at the beginning of the process. The process unfolds

over a finite number of time steps. At each step, once a node u becomes infected, it will

attempt to infect each of its neighboring nodes v independently with probability p′uv. After
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Figure 2.1: The instance of the stochastic network design problem equivalent to an instance
of the source selection problem.

a certain number of time steps, a large number of nodes become infected in the network.

The process terminates or becomes stable when no nodes will get infected in the future, that

is, when all nodes have made their attempts. Since the diffusion of infection starts from

sources, well-selected sources can make a large number of nodes infected at the end of the

process while poorly selected sources, such as sources not connecting to any other nodes,

can hardly spread out the infection. To facilitate the spread of infection, a decision maker

wants to find the best set of sources. Since the decision maker also has a budget constraint,

(e.g., at most K sources), in the source selection problem, the goal is to select K sources

to maximize the expected number of nodes that will be infected at the end of the cascading

process. The source selection problem can be written as follows.

max
select K sources from V ′

E

[∑
v∈V ′

I(v will be infected)

]

where I(·) is an indicator function.

Now, I show how to formulate the source selection problem as a stochastic network

design problem. First, given an instance of the source selection problem with a social

network represented by a directed graph G′ and infection probabilities of all edges, a new

graph G = (V,E) is created where the new node set V = {s} ∪ V ′ contains an extra node

s and the edge set E = {(s, v)|v ∈ V }∪E ′ contains a directed edge from s to each v in V .
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An example is shown in Fig. 2.1. For each edge (u, v) in E ′, set the original and modified

probability of the correspondent edge to be pouv = pmuv = p′uv and set the cost of the action

to be cuv = 0 meaning that no actions can be taken to change the infection probabilities of

edges in the social network. For each edge (s, v) with v ∈ V − {s}, set pouv = 0, pmuv = 1

and cuv = 1. That is, the action on (s, v) with one unit of cost can make node v infected

with probability 1 or equivalently make v a source. Then, we set B = K meaning that at

most K actions can be taken or equivalently at most K sources can be selected. Therefore,

a policy of the stochastic network design problem maps to a set of sources being selected.

To define the resilience function, we set the value of a policy to be the expected number

of nodes being infected eventually. The way is to set r(s, v) = 1 for all v ∈ V − {s} and

the reward for other node pairs to be 0, that is, one unit of reward is collected for a node

v ∈ V − {s} if and only if the node v is connected to s. Now, it is easy to show that the

stochastic network design problem encodes the source selection problem.

It is also easy to show that the problem of maximizing the influence by modifying

the topology of the network [44] can also be formulated as a stochastic network design

problem.

2.2.2 Barrier Removal Problem

Fish barrier removal problem is an important ecological sustainability problem pro-

posed by [65] to combat dramatic population declines of wild fish over the past two cen-

turies due to the presence of river barriers. Dams and other barriers such as culverts, flood-

gates, and weirs harm populations by preventing fish from accessing or moving between

parts of their historical habitat. The way to address this problem is to retrofit existing bar-

riers or to replace them by new instream structures that make it easier for fish to pass. The

existing work formulated the optimization problem of selecting a subset of barriers to repair

or remove so as to maximize the available upstream habitat for anadromous fish—species

such as salmon that live part of the year in oceans but travel up rivers and streams to spawn.
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Figure 2.2: River networks in Massachusetts

Fig. 2.2 shows river systems of Massachusetts in which different color represents different

river networks. Every year, fish start from a root (e.g., the ocean or some fixed location)

and swim upstream to access their historical habitats. At a barrier, a randomly selected fish

can pass the barrier with a certain probability, which is called the passage probability of

the barrier. A river network is treated as a tree as justified by [65], that is, two different

locations in the river is connected by a unique path. So, the probability that a fish can

reach a designated location in a river from the root is the probability that the fish can pass

all barriers on the unique path from the root to that location. To make the model simple,

we assume that the passage of one barrier is independently distributed from the passage of

any other barrier. The probability equals to the product of the passage probabilities of all

barriers on the path. A barrier can be removed or repaired with a certain cost to increase its

passage probability. For example, the passage probability of an old culvert is 0.5, meaning

that with 50% chance a randomly picked fish, which, for example, is mature and has strong

fins, can swim upstream to pass the culvert. If a new type of tunnel is built to replace the

old culvert, some premature fish can pass the tunnel and reach upstream areas so that the

passage probability may become 80%. Fish, after reaching a stream segment, can consume

the food and use the natural resource available in that region. One stream segment can only

support a certain number of fish to live there, so we say that each stream segment has a

certain amount of habitat that the fish can use. The barrier removal problem is to find the
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Figure 2.3: Left: a river network with barriers A, B, C and contiguous regions u, v, w, x.
Right: corresponding bidirected stochastic tree.

best set of barriers to repair or remove to maximize the expected amount of habitat that fish

can access.

The barrier removal problem can be formulated as a stochastic network design problem.

As shown in Fig. 2.3, a river network (left) can be modeled as a directed rooted tree (right)

denoted by T = (V,E) with a unique root. Each node v ∈ V represents a contiguous

region of the river network—i.e., a connected set of stream segments among which fish

can move freely without passing any barriers—and the reward r(root, v) equals to the total

amount of habitat in that region (e.g., the total length of all segments if the amount of habitat

in a segment is proportional to its length). Thus, the total habitat that fish can use equals to

the total reward collected at nodes that are connected to root. Each barrier is represented by

a directed edge that connects two regions for which pouv is set to be the passage probability

before the repair and pmuv is set to be the passage probability after the repair. cuv is the cost

of repairing the barrier on the edge (u, v). Multiple alternative actions can be defined for

each edge as discussed in section 2.4. In this way, the barrier removal problem is written

as a stochastic network design problem.
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Figure 2.4: The instance of the stochastic network design framework representing the
Knapsack problem

2.3 The Hardness of Stochastic Network Design

In general, a stochastic network design problem is NP-hard. This can be proved by

showing that an instance of the Knapsack problem, which is a well-known NP-hard prob-

lem, can be written as a stochastic network design problem.

Theorem 2.3.1. The stochastic network design problem, in general, is NP-hard.

Proof. In the Knapsack problem, we are given n items, each of which has a weight and a

value. Given a bag of capacity B, the goal is to determine which items to pack to maximize

the total value being packed while the total weight of packed items is no greater than the

capacity of the bag. Mathematically, the Knapsack problem can be written as the following

maximization problem.

max
∑
i

vi · I(i is packed) s.t.
∑
i

wi · I(i is packed) ≤ B

where vi and wi are the value and the weight of the ith item and I(·) is an indicator function

that reflects how items are packed.

A Knapsack problem can be written as a stochastic network design problem shown

in Fig. 2.4. In the network, V consists of n nodes {1, 2, ..., n}, each of which represents

an item to be packed, and an extra node s. We set posi = 0 and pmsi = 1 for each node

i ∈ {1, 2, ..., n} and set the cost of the action on (s, i) as wi. Also, we set the reward

r(s, i) to be vi for each node i ∈ {1, 2, ..., n} and the reward of other node pairs to be

0. Now, if we take the action on the edge (s, i), it is equivalent that we pack the item i.
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Therefore, a set of actions taken maps to a set of items packed. The total value of packed

items equals to the expected total reward. The total weight is equivalent to the cost of the

policy. Therefore, two problems are equivalent. Since we know the Knapsack problem is

NP-hard, the theorem holds.

2.4 Extensions

In this section, several ways to extend the stochastic network design framework are

discussed. For the ease of presentation, most of the algorithms in the thesis are presented

in the basic setting of the stochastic network design framework discussed in section 2.1.

These algorithms are also compatible with one or multiple these extensions. It is a future

work to develop scalable algorithms to solve those stochastic network design problems

with extensions of which no algorithms are given in the thesis.

2.4.1 Correlated Survival Probability

In the basic setting, the state of an edge is randomly distributed and is independent of

the states of other edges, but, in a real-world problem, the states of multiple edges can be

correlated. For example, in a pre-disaster preparation problem, an edge represents a road

segment, and the survival probability represents the chance that the road segment will be

damaged by a natural disaster such as a flood. It is very likelihood that when one road is

damaged, all nearby roads are under the effect of the disaster too, implying that all these

edges may fail simultaneously. To model this situation, the survival probabilities are de-

fined jointly by all these edges instead of for each single edge. To draw a sample network

from a correlated probability distribution, the states of multiple edges are sampled simul-

taneously from a joint probability distribution instead of independently from a Bernoulli

distribution. For stochastic network design problems with correlated survival probabilities,

the sampling based algorithms discussed in Chapter 5 and 6 are still applicable.
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2.4.2 Effect of an Action on Multiple Edges

In the basic setting, each edge is associated with a candidate action, so the total number

of actions equals to the number of edges. In reality, one action may change the survival

probabilities of multiple edges. For the influence maximization problem, rewards are pro-

vided to a person (e.g., a node) to increase the chance that the person will share the in-

formation with her/his friends. The reward can target on nodes or edges. If rewards are

given to a node, the survival probabilities of all outgoing edges can increase. For exam-

ple, if rewards are given to encourage a person to share the information of a product to as

many friends as possible, the chance of any friend of this person to adopt the product will

increase. For a variant of the barrier removal problem, introduced in section 2.2.2, called

bidirected barrier removal problem [99], fish don’t start from a unique entrance, such as

the ocean, but from multiple locations in the river network. These fish may pass a barrier

from either upstream direction or downstream direction, each of which is modeled by a

directed edge and has a different passage probabilities because of the difficulties of pass-

ing a barrier from two directions are different. Since the two directions are considered, an

action will modify the survival probabilities of both edges (u, v) and (v, u) simultaneously.

An algorithm to solve the bidirected barrier removal problem is given in Chapter 4. The

algorithms in Chapter 5 and 6 that are based sampling methods are compatible with this

extension too.

2.4.3 Multiple Candidate Actions

In the basic setting, it is assumed that one edge has only one candidate action, if taken,

changing the survival probability from po to pm. Sometime, it is required to have more

than one candidate actions, each of which has a different cost and a different effect. For

the barrier removal problem, there may be multiple ways, or multiple actions, to repair a

barrier, each of which can raise the passage probability into a different level. To repair a

dam, we may have two candidate actions. One is to remove the dam completely, which
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is expensive but very effective such as raising the passage probability from 0.2 to 1.0.

The other is to build a small fish passage tunnel, which is less expensive but may only

be helpful to mature fish such as raising the passage probability from 0.2 to 0.5. More

reparing strategies can be defined and set as candidate actions. The algorithms introduced

in Chapter 3 and 4 are compatible with this extensions.

2.5 Quota, Budget, and Prize-collecting Problems

The goal of the stochastic network design framework defined by (2.5) is to find the

policy to maximize the resilience function and also to satisfy a budget constraint. This

type of problem is the budget problem. In contrast, two variant optimization problems of a

budget problem are the quota problem and the prize-collecting problem, both of which have

been widely studied in the community of approximation algorithm design [41]. Especially,

many typical network design problems are quota problems. In a quota problem, the goal

is to minimize the design cost to make a policy satisfy some constraint, which, in some

sense, switches the budget constraint and the objective of a budget problem. An example

problem is the Steiner tree problem [37], in which a policy needs to connect all terminal

nodes and the goal is to minimize the design cost. A quota variant of a stochastic network

design problem is to find a policy to minimize the cost and make the value of the policy

equal or greater than a given value. Mathematically, it is written as

min
π⊂A

cost(π) s.t. R(π) ≥ value (2.6)

All requirements that we want the policy to satisfy is summarized by a single inequality in

the constraint in the quota problem. The left side of the inequality involves an expectation

that makes the optimization problem very difficulty to solve. It is an open question on how

to design the scalable algorithms to solve the quota variant of a stochastic network design

problem.
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A prize-collecting variant of a stochastic network design problem is to find a policy to

maximize the difference between the value and the cost of the policy. Mathematically, it is

written as

max
π⊂A

R(π)− β · cost(π) (2.7)

The subtraction of the cost from the value is one kind of the penalty that we get while

maximizing the value of the policy. In a stochastic network design problem, with more

management actions, the value of the policy will increases or remain the same, but cost of

the policy will also increase. The parameter β, which is a part of the problem definition,

controls our tradeoff between the value and the cost. The larger the value of β, the more

penalty we will get by taking more actions. A well-defined β helps people identify a

cost-efficient policy so that more actions added to the policy can only increase the value

very little and not worthy investing to. The prize-collecting Steiner tree problem and the

algorithms to solve it are given in the book [96].

A prize-collecting problem appears to be easier to solve than its budget variant for many

network design problems [39, 96]. For example, the facility location problem is one type

of prize-collecting problem [39]. Its budget variant is the so-called k-median problem that

is more difficulty to solve than the facility location problem.

2.5.1 Relationship between Budget and Prize-collecting Problems

A budget problem can be rewritten as a prize-collecting problem by taking its La-

grangian relaxation, that is, moving the budget constraint into the objective along with

a parameter β called the Lagrangian multiplier. A budget problem is written as

max
π⊂A

min
β

R(π)− β · (cost(π)− B) (2.8)

If a policy violates the budget contraint or cost(π)−B > 0, the inner minimization makes

the objective negative infinity. For a policy that satisfie the contraint, the objective remain
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bounded as long as value of any policy in the space is bounded. Therefore, problem (2.8)

is equivalent to the stochastic network design problem defined by (2.5).

B is irrelavant to the policy and can be removed from (2.8). If we fix the value of β and

eliminate the inner minimization problem, the problem becomes a prize-collecting prob-

lem if we fixed β. Algorithms have been developed to solve a budget problem by searching

a good value of β and solving prize-collecting problems that are created by above proce-

dure [39]. In Chapter 5 and 6, the same technique is used to solve stochastic network design

problems in which a sequence of prize-collecting stochastic network design problems are

solved.

2.6 Summary

This chapter gives the mathematical definition of the stochastic network design frame-

work, which is defined under a general context and can model a range of decision-making

problems. For illustrative purposes, it is explained how to formulate two real-world prob-

lems using the framework. A stochastic network design problem is one type of budget

problem in which the goal is to find a policy to maximize the value of the policy that sat-

isfies a budget constraint. The correspondent quota problem and prize-collecting problem

are briefly discussed.
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CHAPTER 3

STOCHASTIC NETWORK DESIGN FOR DIRECTED ROOTED
TREES

This chapter and the next chapter introduce the algorithms for stochastic network de-

sign problems for trees. The algorithms are developed separately for two types of trees:

the directed rooted tree and the bidirected tree. A directed rooted tree also called arbores-

cence [1] is a directed graph with a unique node called root in which there is a unique

directed path from the root to every other node. A bidirected tree can be obtained from

an undirected by converting each edge in the undirected tree into two directed edges with

reversed directions. In this chapter, I introduce the stochastic network design problem for

directed rooted trees and a scalable algorithm to solve it. The algorithm for bidirected

trees is discussed in the next chapter. The structure of this chapter is as follows. First, the

formal definition of the problem is given. A dynamic programming algorithm is given to

solve the problem optimally, but the runtime complexity of the algorithm is exponential of

the number of nodes in the tree. A rounding strategy is used to reduced the complexity

of the algorithm but is still able to produce nearly optimal solutions. Then, experimental

results are provided. At last, the quota and the prize-collecting versions of the problem are

discussed.

3.1 Problem Statement

A directed rooted tree is a directed graph denoted by T = (V,E) with a unique node

called root ∈ V . For every other node v ∈ V − {root}, there is a unique directed path

from root to v. An example is shown in Fig. 3.1
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Figure 3.1: A directed rooted tree

The directed rooted tree can model a phenomenon or a process that spreads out from

the root into the network. For example, the information spreads in a hierarchical structure

where the root represents the information source, each level of the tree represents a level

in the hierarchy and nodes pass information to their subordinates. Another example is

the barrier removal problem that I introduce in section 2.2.2 where the river network is

considered as a tree and all fish spread into the river network from the unique entrance of

the network (e.g., the root).

Now, I will quickly remind you the barrier removal problem and how it is formulated

as a stochastic network problem. In the barrier removal problem, each node represents a

contiguous region in the river. The reward r(root, v) represents the size of habitat that can

be used by fish at a node v. Since all fish start from the root and spread into the network,

so the reward for any other pair (u, v) with u 6= root is 0. For simplicity, we denote the

reward of a node as rv = r(root, v). The expected total reward defined by (2.4) is the sum

of reward that we can collect at each node. Mathematically, the stochastic network design

problem for rooted trees can be written as

max
π

R(π) =
∑
v∈V

Pr(root; v; π) · rv s.t. cost(π) ≤ B (3.1)
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where Pr(root; v) is the probability that all edges on the unique path from root to v are

present. Since we have a unique path from root to v, we have

Pr(root; v; π) =
∏

e on path from root to v

p(e; π)

The basic setting of the stochastic network design framework only defines one action

for each edge, that is, the action can raise the survival probability from pouv to pmuv. The

algorithms introduced in this chapter and the next chapter are compatible with multiple

candidate actions, so the problem definition is changed a little to accomodate multiple

candidate actions. At each edge (u, v), there are a finite number of candidate actions Auv.

An action a ∈ Auv takes cost cuv,a to make the survival probability to be puv|a or written as

puv|π for a given policy π.

Without loss of generality, I make the following assumption

Assumption 3.1.1. Each node u in T has at most two children.

Any problem instance can be converted to this form by replacing a node u with more

than two children by a sequence of nodes with exactly two children to achieve the same

overall branching factor so that a policy for the modified tree can be mapped to a unique

policy for the original tree with the same expected reward.

For the purpose of presentation, Pu;v|π denotes the probability that all edges on the

unique path from u to v are present under π. Since the tree is a rooted tree, a subtree Tu

can be defined at each node u. Let zu(π) denote the expected total reward (also called

value for short) that we can collect within subtree Tu under a policy π. That is, zu(π) =∑
v∈Tu Pu;v|πru, and R(π) = zroot(π).

The basic idea of the algorithm to solve the problem (3.1) is as follows. First, a pseudo-

polynomial time dynamic programming algorithm is developed to compute the optimal so-

lutions. Then, a rounding strategy is developed to make the algorithm an fully polynomial-

time approximation scheme (FPTAS). Let’s see first how to evaluate a policy recursively.
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3.2 Policy Evaluation

The value of each subtree can be calculated recursively from leaf nodes to the root by a

simple recurrence

zu(π) = puv|πzv(π) + puw|πzv(π) + ru (3.2)

where v and w are two children of u. At the root node, we have the expected total reward

of the whole tree.

3.3 Dynamic Programming Algorithm

The dynamic programming (DP) algorithm computes a dynamic programming table

for each subtree recursively from leaf nodes to the root of the tree. Let subpolicy πu be

the part of the full policy that defines actions within Tu. The DP table of each subtree

Tu contains a list of z values that are reachable by some subpolicies, and each value is

associated with a least-cost subpolicy, that is, each z in the table is associated with the

policy π∗u ∈ arg min{πu|zu(πu)=z} c(πu) where c(πu) represents the cost of a subpolicy πu.

We recursively generate the list of reachable z values for subtree u and the associated

least-cost subpolicies using the z values and their associated subpolicies in the tables of

subtree v and subtree w. To do this, for each zv, zw, we first extract the corresponding π∗v

and π∗w. Then, using these two least-cost subpolicies of the children, for each a ∈ Auv and

a′ ∈ Auw, a new subpolicy πu is constructed for Tu with cost c(πu) = cuv,a + cuw,a′ +

c(π∗v) + c(π∗w).

Using Eqs. (3.2), the value zu(πu) of πu is calculated. If zu(πu) already exists in the list

(i.e., zu(πu) was created by some other previously constructed subpolicies), we update the

associated subpolicy such that only the minimum cost subpolicy is kept. If not, we add this

new value zu(πu) and subpolicy πu into the list.

To initialize the recurrence, the table of a leaf subtree contains only a single value of

zu = ru associated with an empty subpolicy. Once the table of Troot is calculated, we scan
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the table to pick a pair (z∗root, π
∗) such that z∗root = max{(zroot,π)|c(π)≤b} zroot. Finally, π∗ is

the returned optimal policy and z∗root is the optimal expected reward.

3.4 Rounded Dynamic Programming

As shown in Theorem 2.4, a stochastic network design problem is NP-hard even for

a directed rooted tree. The DP algorithm is not a polynomial-time algorithm because the

number of reachable values of z increases exponentially as we approach the root, but it can

be made into an FPTAS algorithm with a rounding strategy. The basic idea is to discretize

the continuous space of zu at each subtree such that there only exists a polynomial number

of different values. To do this, the one-dimensional value space of zu for Tu is discretized

by a granularity factor Kz
u into a finite number of values {0, Kz

u, 2 ∗ Kz
u, ...} in which the

difference between any two subsequent values is Kz
u.

For any subpolicy πu of subtree u, a rounded value ẑu(πu) in the discretized space is

used to underestimate the true value zu(πu) of πu. To evaluate ẑu(πu), we use a similar

recurrence as (3.2), but rounding each intermediate value into a value in the discretized

space. The new recurrence is as follow:

ẑu(πu) = Kz
u

⌊
puv|πẑv(π) + puw|πẑv(π) + ru

Kz
u

⌋
(3.3)

The modified algorithm—rounded dynamic programming (RDP)—is the same as the

DP algorithm, except that it works in the discretized space. Specifically, each node main-

tains a list of reachable rounded values ẑus, each one associated with a least costly subpol-

icy that can achieve ẑu by formula (3.3), that is, π∗u ∈ arg min{πu|ẑu(πu)=ẑu} c(πu). Similar

to the DP algorithm, at each subtree Tu, we generate the list of reachable rounded values

using the lists of rounded values of its children. The difference is that to calculate the

rounded values of a new subpolicy we use the recurrence (3.3).
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3.5 Theoretical Analysis of the Algorithm

This section provides the theoretical analysis of the performance of the RDP algorithm.

The main result is as follows.

Theorem 3.5.1. The Rounded Dynamic Programming (RDP) algorithm is an FPTAS. Specif-

ically, let OPT be the value of the optimal policy. By assigning the scaling factors {Kv} in

a certain way (described below), the RDP algorithm computes a policy with value at least

(1− ε)OPT and runs in time O(n
2

ε2
) in the worst case.

The remaining of this section proves Theorem 3.5.1 by showing the approximate guar-

antee and analyzing the running time.

3.5.1 Approximation Guarantee

Let π∗ be the optimal policy and let π′ be the policy returned by RDP. We wish to bound

the value loss z(π∗)− z(π′).

The idea is to first bound the difference between the true objective value z(π) and the

RDP objective value ẑ(π) for an arbitrary policy π, which can be done by analyzing the

error incurred by the rounding operations in the recurrence of Eq. 3.3. By showing that the

rounded objective function ẑ is uniformly close to z for all policies π, it is straightforward

to show that optimizing with respect to ẑ provides a nearly-optimal policy with respect to

z.

To analyze the error introduced by rounding, fix a policy π and let ∆u(π) ∈ [0, 1) be the

fractional part of the quantity that is rounded in Eq. 3.3, so that Ku∆u(π) is the total loss

due to rounding when computing the recurrence for node u. Then it is straightforward to

show that the total error is equal to the sum of the rounding errors at each node u weighted

by the accessibility of the parent of node u under policy π.

Lemma 3.5.1. For any policy π, the difference between the original and rounded objective

functions is
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z(π)− ẑ(π) =
∑
u∈V

Pr(root; u; π)Ku∆u(π) (3.4)

Now, to bound the optimality gap z(π∗) − z(π′), note that z(π′) ≥ ẑ(π′) ≥ ẑ(π∗),

where the first inequality holds because the rounded policy value always underestimates

the true policy value, and the second inequality holds because π′ is optimal with respect to

ẑ. Thus we have

z(π∗)− z(π′) ≤ z(π∗)− ẑ(π∗), (3.5)

so it suffices to bound the gap between the original and rounded objective on the optimal

policy π∗ using Lemma 3.5.1. We have

z(π∗)− z(π′) ≤
∑
u∈V

Pr(root; u; π∗)Ku∆u(π
∗) (3.6)

Lemma 3.5.2. The RDP policy π′ has value at least (1− ε)OPT if the following condition

on the scaling factors {Ku} holds:

∑
u∈V

Pr(root; u; π∗)Ku ≤ εz(π∗) (3.7)

Proof. The left side of Eq. (3.7) is an upper bound on z(π∗) − z(π′) because of (3.6) and

∆u(π
∗) ≤ 1. Then, we have z(π′) ≥ (1− ε)z(π∗) which proves the lemma.

Lemma 3.5.2 is useful as a generic condition on the scaling factors {Ku} for obtaining a

(1−ε)-optimal policy. There are different ways of setting the values so Eq. (3.7) is satisfied,

and the particular choice will affect the running time of the algorithm. Indeed, note that a
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larger value of Ku leads to a coarser discretization of the value space at node u, and thus

the RDP algorithm will take less time to evaluate the recurrence for all discretized values.

Thus, in practice, we would like to set the scaling factors as large as possible while still

satisfying Eq. (3.7). We first present a particular way of setting the values that are rather

coarse but lets us prove both the approximation guarantee and the worst-case running-time

bound. In Section 5 we discuss practical improvements.

Lemma 3.5.3. Setting Ku = εru, the policy π′ returned by RDP is (1− ε)-optimal policy.

Proof. Setting Ku = εru, we have

∑
u∈V

Pr(root; u; π∗)Ku ≤ ε
∑
u∈V

Pr(root; u; π∗)ru = εz(π∗)

By Lemma 3.5.2, we prove the lemma.

3.5.2 Runtime Analysis

Now, we show that the running time of the RDP algorithm is O(n
2

ε2
) in the worst case

if the scaling factors Ku are assigned as in Lemma 3.5.3. First, it is reasonable to assume

that the rewards are constant with respect to n.

Assumption 3.5.1. There are universal constants m and M such that m ≤ ru ≤M for all

u ∈ V .

As shown later in the barrier removal problem, if the rewards represent the lengths of

accessible stream segments, these should not vary with the size of the stream network being

modeled.

Let `u denote the number of discretized values at subtree u. We have the following

lemma.

Lemma 3.5.4. With Assumption 3.5.1 and setting Ku as in Lemma 3.5.3, the number of

discretized values at node u is bounded by O(nu/ε), where nu is the number of nodes in

Tu.
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Proof. The lemma is a direct consequence of the definitions we have made. Let UBv =∑
u∈Tv rv. Then

`u =

⌈
UBu

Ku

⌉
≤
⌈
nuM

Ku

⌉
≤
⌈
nuM

εm

⌉
= O

(nu
ε

)
.

We are ready to prove the following result.

Theorem 3.5.2. By setting Ku = εru, the running time of RDP is O(n
2

ε2
).

Proof. Let’s examine the time spent in computing the recurrence for a single node u. To

compute the list of rounded values for subtree u, we first need to compute the lists of

rounded values for two children subtrees and then enumerate each pair of rounded values

in the lists of two children subtrees and each pair of actions at two edges. Let T (nu) be the

running time for subtree u where nu is the number of nodes in Tu. Let v, w be two children

of u and nv and nw be the numbers of nodes in Tv and Tw with nu = nv + nw. Then, we

have the recurrence

T (nu) = O(
nv · nw
ε2

) + T (nv) + T (nw) (3.8)

where the number of available actions at each edge is assumed to be bounded by a constant.

It is ready to show that T (nu) = O(n
2
u

ε2
). First, consider a slightly different function

T ′(nu) for subtree u with the recurrence as follows.

T ′(nu) = O(nv · nw) + T ′(nv) + T ′(nw) (3.9)

It can be shown that T ′(nu) = O(n2
u), which helps to show T (nu) = T ′(nu)/ε

2 =

O(n2
u/ε

2).
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To show T ′(nu) = O(n2
u), the induction method is used. The base case is T ′(1) = O(1)

for any leaf node. Assume T ′(nv) = O(n2
v) and T ′(nw) = O(n2

w). By (3.9), we have

T ′(nu) = c1 · 2 · nvnw + c2n
2
v + c3n

2
w

≤ c(2 · nvnw + n2
v + n2

w) ≤ c(nv + nw)2 = cn2
u

where c1, c2, c3 are three constants and c = max{c1, c2, c3}. Therefore, T ′(nu) = O(n2
u)

for any node u.

It is easy to show by induction that T (nu) = T ′(nu)/ε
2, so we have T (nu) = n2

u

ε2
,

meaning that the running time for a rooted tree with n nodes is O(n
2

ε2
), which proves the

theorem.

3.6 Implementation

Theoretically, the upper bound of the runtime of RDP is quadratic of the size of the

underlying tree. This theoretical upper bound is very large when the tree has millions of

nodes. In this section, I discuss several techniques to improve the empirical runtime.

3.6.1 Setting the Scaling Factors

To prove the FPTAS, it suffices to set Ku = εru for all u. However, in practice, we

observe that setting the scaling factors to a constant value α that is larger than εru still

finds near-optimal policies and runs much faster. The reason for the observation is given in

paper [98].

3.6.2 Detecting Infeasible Policies

The algorithm can be made faster by exploiting the budget limit b. The idea is to ignore

pairs (ẑv, ẑw) in the RDP recurrence when the cost to obtain either ẑv or ẑw in the subtree

already exceeds b, because these will lead to infeasible policies. This technique speeds up
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the algorithm especially when the budget limit is small. In our experiments, we observe

that even for the subtrees at intermediate depths, a large percentage of values are pruned.

3.7 Experiments

The RDP algorithm is applied to solve the barrier removal problem introduced in Sec-

tion 2.2. In our experiments, we use data from the CAPS project [58] for the Connecticut

River watershed in Massachusetts (shown in red in Fig. 2.2), which has 18550 nodes includ-

ing 596 dams and 7566 crossings that include different types of small barriers. We assigned

passage probabilities to dams and road-stream crossings based on techniques developed in

the CAPS project. For dams, the structural height of the dam is a proxy for passability,

which maps through a logistic function to a probability value. A subset of road-stream

crossings was directly assessed by a field protocol; The remaining crossings were assigned

passage scores based on a fitted predictive model. Passage scores were then transformed

to probabilities, resulting in a typical range of [0.7, 1.0] for road-crossings and [0, 0.15] for

dams.

Using this dataset, we compared our RDP algorithm with the dynamic programming

algorithm, called DP+, of [65], which assumes that the costs of actions and the budget b

are integral values. DP+ is optimal under this assumption. However, unlike RDP, DP+ is

not scalable to large action costs. Therefore, to perform the evaluation we used relatively

small integral costs.

For road-crossings, most of the probabilities are close to 1 to start with, and relatively

cheap actions can be taken to clear out the crossing completely. For example, we use

A{(u,v)} = {a1} with (puv|a1 = 1.0, cuv|a1 = 20). In contrast, it is relatively difficult and

expensive to remove dams completely, so multiple strategies must be considered to improve

the passability of dams. For example, we may have A{(u,v)} = {a1, a2, a3} with (puv|a1 =

0.2, cuv|a1 =20), (puv|a2 =0.5, cuv|a2 =40) and (puv|a3 =1.0, cuv|a3 =100).

Now, we present some experimental results.
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Figure 3.2: Solution quality and runtime for different budgets
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Figure 3.3: Impact of different methods to set Ku

3.7.1 Approximation Quality

Fig. 3.2(a) shows the expected reward of the computed policy for different budgets, as

well as OPT (the value of the optimal policy) and 90%OPT. In these experiments, we set

all Ku to be a constant α = 450. We see that the actually expected reward of the computed

policy is very close to the optimal value and guaranteed to be greater than the 90%OPT .

3.7.2 Runtime

Fig. 3.2(b) shows the computation time of our algorithm (with the optimization of de-

tecting infeasible policies) compared with DP+ over a range of budget sizes. We see that

RDP runs much faster than the optimal algorithm DP+. Moreover, the runtime of DP+

increases quadratically with the budget size while RDP’s runtime remains essentially con-
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Habitat Accessibility: 0 1.0

(a) budget = 0, z = 5.4× 105 (b) budget = 1000, z = 2.2× 106 (c) budget = 10000, z = 5.8× 106

Figure 3.4: Visualization of several barrier removal policies

stant, even for very large budget sizes. For example, when the budget size is 5000, DP+

takes about 20 minutes while RDP takes only 20 seconds.

Fig. 3.2(a) and 3.2(b) together show that by setting Ku = 450, RDP runs much faster

than DP and produces a near-optimal policy (within 90%).

3.7.3 Different Settings of Ku

We compared the two different ways of setting Ku as discussed in Section 3.6: (1)

setting Ku = βK ′u where K ′u are the values specified in Lemma 4, and (2) Ku = α.

We used the constants α and β to relax the optimality guarantee and study the effect on

runtime/quality (Fig. 3.3). The runtime ratio is the ratio of RDP’s runtime to DP+’s runtime.

The value ratio is the ratio of the expected reward of the computed policy obtained by RDP

to the optimal expected reward obtained by DP+. We found that for method (1) that before

the expected reward becomes worse than 90% of optimal, RDP takes more time than DP+.

For method (2), as α increases up to 950, the quality of the policy remains above 90%,

but the runtime ratio is less than 0.1. This matches the intuitive explanation provided in

Section 5.

41



0.5 1 1.5 2
x 10

4

0

2

4

6

Size of network

R
u
n
ti
m
e
(s
ec
)

 

 

No Predetect
With Predetect

Figure 3.5: RDP’s runtime achieving 90% optimality

3.7.4 Runtime Curve

Theoretically, we proved that in the worse case the complexity of RDP is O(n
2

ε2
). How-

ever, in practice, we can get a better computation time by using the techniques described

in Section 3.6. By applying the technique of detecting infeasible policies, runtime was re-

duced by at least 20% over a range of budget sizes. When the budget size is small, many

computations can be pruned and runtime is reduced by up to 55%. Moreover, as just shown,

the value of Ku can be selected in a better way to further reduce the computation time dra-

matically. Fig. 3.5 shows the minimum time needed to produce a 90% optimal policy as a

function of network size. Subnetworks of different sizes were extracted from the original

network for these experiments. The minimum time is obtained by applying method (2)

and choosing the largest constant α that produces the desired quality. Surprisingly, both

curves—with and without detecting the infeasible policies—are nearly linear except for

some small fluctuation in the middle.

3.7.5 Visualizing Policies

To give some sense of how the policies improve the ability of fish to access their habi-

tats, Fig. 3.4 illustrates the accessibility of each stream segment by a distinct color from

the color bar at the top. Barriers that are repaired by some action are designated by green

circles, regardless of the specific repair action. The budget in (c) is 10 times larger than in

(b), leading to a substantial increase in the number of repaired crossings as they are much
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cheaper to repair compared to dams, and resulting in significantly better overall accessibil-

ity.

(a) Budget: 0 (b) Budget: about 30% of total cost

(c) Investment in small subtree

Figure 3.6: A tool called river explorer built based on the RDP algorithm. The stream with
darker color has higher reachability probability. The green dots represent removed/repaired
barriers

3.8 Interactive Decision Making

The rounded dynamic programming algorithm can also help a decision maker to de-

termine how much budget to invest. In most of the cases, a decision maker doesn’t know

clearly how much budget is needed and how effective a certain amount of budget is. Before

making the decision, she/he may want to try different budget sizes and pick the best one.

The idea of interactive decision making, as described below, can help the decision maker

to find the ideal budget size. First, the decision maker sets a budget size. Second, the value
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that can be achieved with this budget size is computed by the algorithm and the (near) op-

timal policy is visualized. Based on the results, the decision maker learn how effective is

this budget size. Third, the decision maker changes the budget size and goes back to the

second step to see how much improvement (loss) the little change to the budget incurs to

the final results. Over some iterations, the decision maker can gradually learn what budget

size is ideal. The process may make many iterations, so the ability to solve a stochastic

network design problem quickly is critical.

The rounded dynamic programming algorithm is ideal for the interactive decision mak-

ing. By running RDP once, the dynamic programming tables are computed at each node

from which we can easily check the value that can be achieved for different amounts of

budget without solving the optimization problem again. Sometimes, we only want to de-

cide the ideal budget size of a small region (e.g., a subtree) of the whole network. Since

the tables are available at each subtree, the outcome can be learned by simplely look at

the table. Fig. 3.6 shows how RDP is convenient to the interactive decision making. The

figure shows several screenshots of a tool called river explorer [20] built based on the RDP

algorithm. As demonstrated by Fig. 3.6(a,b), the decision maker can change the budget

size (e.g., from 0 to 30% of the total cost) and quickly visualize how much habitat fish can

reach and which barriers are removed/repaired. Also, the decision maker can only focus on

a subtree and play with different budget sizes shown in Fig. 3.6(c).

3.9 Quota and Prize-collecting Problem for Directed Rooted Tree

As mentioned in Section 2.5, a stochastic network design problem has a correspondent

quota problem and a prize-collecting problem.

A prize-collecting problem appears easier to solve than the budget problem for many

network design problems [96]. The prize-collecting stochastic network design problem

under a directed rooted tree is defined by
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max
π

∑
v∈V

Pr(root; v) · rv − β · cost(π) (3.10)

in which both the value and the cost of a policy–the penalty for a taken policy–are in the

objective function along with a tradeoff parameter β with β ≥ 0. If the value of β is 0, the

unconstrained optimization problem can be solved by a simple message passing algorithm

from leaf nodes to the root, which takes polynomial time. If the value of β is greater than

zero, the hardness of the problem remains to be an open question.

The quota stochastic network design problem under a directed rooted tree is defined by

min
π

cost(π) s.t.
∑
v∈V

Pr(root; v) · rv ≥ value (3.11)

In the problem, it is required that the expected total reward is equal or greater than value,

and the goal is to minimize the cost to satisfy this requirement. The hardness of the quota

problem is another open question.

3.9.1 Dynamic Programming Algorithm

Both the quota and the prize-collecting stochastic network design problem under a di-

rected rooted tree can be solved by the dynamic programming algorithm introduced in

section 3.3. The only difference is the way to extract the optimal policy when the table at

the root is created. For any one of three problems, the table of the root is scanned once, and

the optimal policy is extracted. For the budget problem, the optimal policy produces the

maximized expected total reward (or value) and has a cost bounded by the budget B . For

the quota problem, the optimal policy uses the least cost and has a value equal or greater

than value. For the prize-collecting problem, the optimal policy produces the maximum

value for the objective (3.10).

The correctness of this algorithm to solve both quota problem and the prize-collecting

problem is shown by the following intuitions. Remeber that a DP table equivalently stores

a list of tuples (zu, cu) for subtree u where zu is an achievable value and cu is the least cost
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to achieve it by some policy to subtree u. For both problems, we can see that the tuple

produced by the optimal policy is in the table. For a prize-collecting problem, if the tuple

produced by the optimal policy is not in the table, the tuple will take a higher cost than an

existing tuple in the table but achieve the same value, which doesn’t maximize the objective

function (3.10). For a quota problem, since all achievable values are in the table and are

attached by the least-costly policy, the optimal policy can be found from the table.

3.9.2 Improving the Dynamic Programming Algorithm

The table can be made smaller by only keeping Pareto-optimal tuples. Given two tuples

(z, c) and (z′, c′), we say that (z, c) dominates (z′, c′) if the first has a larger value and

no larger cost or has a smaller cost and no smaller value than the second tuple, that is,

r > r∗, c ≤ c∗ or r ≥ r∗, c < c∗. A tuple (z∗, c∗) is Pareto-optimal tuple in the sense

that no policy can produce a tuple that dominates (z∗, c∗). The following propositions say

that it is safe to only keep Pareto-optimal tuples in the table while running the dynamic

programming algorithm.

Consider a node u with two children v and w.

Proposition 3.9.1. To construct all Pareto-optimal tuples at subtree u, only Pareto-optimal

tuples at v and w are needed.

Proof. A Pareto-optimal tuple in the table of u cannot be built by a non-Pareto-optimal

tuple in the table of v or w. At subtree v, consider two tuples A and B where A dominates

B, so B is not Pareto-optimal. For a pair of actions on the edges from u to v and w and

a tuple at w, the tuple for subtree u built from B cannot be Pareto-optimal because it is

dominated by the tuple built from A. It is true for subtree w as well. Therefore, using only

the Pareto-optimal tuples in the tables of v and w, all Pareto-optimal tuples at u can be

constructed.
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Proposition 3.9.2. For a prize-collecting stochastic network design problem under a di-

rected rooted tree, only the pareto optimal tuples are needed to be kept in the table of each

subtree while running the dynamic programming algorithm introduced in section 3.3.

Proof. By Proposition 3.9.1, the table of the root contains all Pareto-optimal tuples. The

tuple produced by the optimal policy to problem (3.10) is Pareto-optimal because a non-

Pareto-optimal tuple A doesn’t maximize the objective function since a tuple B that domi-

nates A can gives a larger objective value than A. Therefore, it is safe to only keep Pareto-

optimal tuples.

Proposition 3.9.3. For a quota stochastic network design problem under a directed rooted

tree, only the pareto optimal tuples are needed to be kept in the table of each subtree while

running the dynamic programming algorithm introduced in section 3.3.

Proof. There exists a Pareto-optimal tuple (r, c) such that c is the minimum value of the

objective function in (3.11) and r ≥ value. Assume that all tuples that satisfy the above

condition are non-Pareto-optimal tuples. Let (r′, c′) be a non-Pareto-optimal tuple that

satisfies the above condition and (r, c) be a Pareto-optimal tuple that dominates (r′, c′).

If r > r′ and c ≤ c′, (r, c) with r ≥ value either gives the minimum objective value

(c = c′) or gives a smaller objective value (c < c′). f r ≥ r′ and c < c′, (r, c) gives

smaller objective value and has r ≥ value. Any one of these cases contradicts to the

assumption. Therefore, a Pareto-optimal tuple can achieve the minimum objective value

and also satisfies the constraint in (3.11). Since, by Proposition 3.9.1, the table of the root

contains all Pareto-optimal tuples, we can find such Pareto-optimal tuple by going through

the table once.

The similar result holds to the budget problem.

Proposition 3.9.4. For a stochastic network design problem under a directed rooted tree,

only the pareto optimal tuples are needed to be kept in the table of each subtree while

running the dynamic programming algorithm introduced in section 3.3.

47



Proof. There exists a Pareto-optimal tuple (r, c) such that r is the maximum value of the

objective function in (3.1) and c ≤ B. Assume that all tuples that satisfy the above condition

are non-Pareto-optimal tuples. Let (r′, c′) be a non-Pareto-optimal tuple that satisfies the

above condition and (r, c) be a Pareto-optimal tuple that dominates (r′, c′). If r > r′ and

c ≤ c′, (r, c) gives larger objective value and has c ≥ B. If r ≥ r′ and c < c′, (r, c) with

c ≥ B either gives the maximum objective value (r = r′) or gives a larger objective value

(r > r′). Any one of these cases contradicts to the assumption. Again, such Pareto-optimal

tuple can be found from the table by one pass.

The dynamic programming algorithms for both the quota and the prize-collecting prob-

lem can be made into rounded dynamic programming algorithms with reduced complexi-

ties. The details and the theoretical results of these rounded algorithms are out of the score

of this thesis.

3.10 Summary

In this chapter, I define the stochastic network design framework under directed rooted

trees and show how the barrier removal problem can be formulated by the framework.

Then, I introduce a fast approximation algorithm called rounded dynamic programming

to solve the problem, which can compute nearly optimal policies theoretically and empir-

ically. It is shown that the algorithm is a fully polynomial-time approximation scheme

(FPTAS). When applied to solve the barrier removal problem using the network data of

the Connecticut River watershed in Massachusetts, RDP can produce near-optimal solu-

tion within a small fraction of the runtime of a benchmark algorithm called DP+. RDP can

also scale to problems with larger sizes for which DP+ is not scalable. RDP is an effective

planning tool for restoring accessibility of native fish habitat in large river networks.
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CHAPTER 4

STOCHASTIC NETWORK DESIGN FOR BIDIRECTED TREES

In Chapter 3, the focus is on the stochastic network design framework for directed

rooted trees. This chapter studies the framework for bidirected trees. A bidirected tree

is obtained by converting each edge in an undirected tree into two directed edges with

reversed directions. It models a flow that can originate from any node in the tree with cer-

tain probability and spreads through the network. To facilitate the spreading, we optimize

the connectivity of the network by taking into account both the probability distribution of

the starting locations of flows and the number of nodes that can be reached. One real-

world problem that can be modeled by the framework is the bidirectional barrier removal

problem. For the bidirectional barrier removal problem, a random fish, instead of starting

from a single location, may start from any node in a river network and move upstream or

downstream to reach other nodes. The goal is to decide which barriers to remove/repair to

optimize the connectivity of the network.

A stochastic network design problem under bidirected trees turns out to be harder than

under directed rooted trees. But, I can still find a fully polynomial-time approximation

scheme (FPTAS) by extending the ideas in Chapter 3. The basic ideas are the same.

First, a dynamic programming algorithm is proposed to solve the problem optimally, but

the algorithm is a pseudo-polynomial time algorithm and is unscalable to solve problems

of large sizes. Then, a rounding strategy is used to modify the algorithm to be a fully

polynomial-time approximation scheme (FPTAS). The dynamic programming algorithm

and the rounding strategy for bidirected trees are more complex and the complexity of the

resulted algorithm is higher than for directed rooted trees.
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The structure of this chapter is as follows. First, the stochastic network design frame-

work for bidirected trees is defined. Then, the algorithm is given. At last, some empirical

results of applying the algorithm to solve the bidirectional barrier removal problem are

shown.

Figure 4.1: A bidirected tree

4.1 Problem Statement

A bidrected tree is a directed graph T = (V,E) that can be obtained by replacing each

edge (u, v) in a undirected tree with two directed edges (u, v) and (v, u) with reverse di-

rections. An example is shown in Fig. 4.1. Each edge (u, v) ∈ E has a survival probability

puv. Again, we consider mutiple candidate actions on each edge, so a finite set of possible

actions Au,v = Av,u is associated with each bidirected edge (u, v). An action a ∈ Au,v has

cost cuv,a and, if taken, simultaneously increases the survival probabilities of two directed

edges to puv|a and pvu|a. We assume that Au,v contains a default zero-cost noop action a0

such that puv|a0 = puv and pvu|a0 = pvu. A policy π selects an action π(u, v)—either an

actual action or a noop—for each bidirected edge. We write puv|π := puv|π(u,v) for the prob-

ability of edge (u, v) under policy π. In addition to the edge probabilities, a non-negative

reward rs,t is specified for each pair of vertices s, t ∈ V .

Given a policy π, the s-t accessibility ps;t|π is the product of all edge probabilities

on the unique path from s to t, which is the probability that s retains a path to t in the
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Figure 4.2: Left: sample river network with barriers A, B, C and contiguous regions
u, v, w, x. Right: corresponding bidirected tree.

subgraph T ′ where each edge is present independently with probability puv|π. The total

expected reward for policy π is R(π) =
∑

s,t∈V rs,t ps;t|π. Our goal is to find a policy that

maximizesR(π) subject to a budget b limiting the total cost c(π) of the actions being taken.

Hence, the resulting policy satisfies π∗ ∈ arg max{π|c(π)≤b}R(π).

In this work, it is assumed that the rewards factor as rs,t = hsht, which is useful for

our dynamic programming approach and consistent with several widely used metrics. For

example, network resilience [11] is defined as the expected number of node pairs that can

communicate after random component failures, which is captured in our framework by

setting rs,t = hs = ht = 1. Network resilience is a general model of connectivity that

can apply in diverse complex network settings. The ecological measure of probability of

connectivity (PC) [81], which was the original motivation of our formulation, can also be

expressed using factored rewards. PC is widely used in ecology and conservation plan-

ning and is implemented in the Conefor software, which is the basis of many planning

applications [82]. A precise definition of PC appears later.

4.1.1 Bidirected Barrier Removal Problem

Fig. 4.2 illustrates the bidirectional barrier removal problem in river networks and its

mapping to stochastic network design in a bidirected tree. A river network is a tree with
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edges that represent stream segments and nodes that represent either stream junctions or

barriers that divide segments. Fish begin in each segment and can swim freely between

adjacent segments, but can only pass a barrier with a specified passage probability or pass-

ability in each direction; in most cases, downstream passability is higher than upstream

passability. To map this problem to stochastic network design, we create a bidirected tree

T = (V,E) where each node v ∈ V represents a contiguous region of the river network—

i.e., a connected set of stream segments among which fish can move freely without passing

any barriers—and the value hv is equal to the total amount of habitat in that region (e.g., the

total length of all segments). Each barrier then becomes a bidirected edge that connects two

regions, with the passage probabilities in the upstream and downstream directions assigned

to the corresponding directed edges. It is easy to see that T retains a tree structure.

Our objective function R(π) is motivated by PC introduced above. It is defined as

follows:

PC(π) =
z(π)

R
=

∑
s∈S
∑

t∈S rs,tps;t|π

R
(4.1)

whereR =
∑

s,t hsht is a normalization constant. When hv is the amount of suitable habitat

in region v, PC(π) is the probability that a fish placed at a starting point chosen uniformly

at random from suitable habitat (so that a point in region s is chosen with probability

proportional to hs) can reach a random target point also chosen uniformly at random by

passing each barrier in between.

4.2 Policy Evaluation

Given a bidirected tree T , a divide-and-conquer method can be used to evaluate a policy

π. Given an arbitrary node as the root, any bidirected tree T can be viewed as a rooted tree

in which each node u has corresponding children and subtrees. To simplify the algorithm

and proofs, the same assumption 3.1.1 as in section 3.1 is made, that is, each node has at

most two children.
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To evaluate a fixed policy π, we use a divide and conquer method that recursively

computes a tuple of three values per subtree of the given tree T . Let v and w be the

children of u. The tuple of the subtree rooted at u denoted by Tu can be calculated using

the tuples of subtrees Tv and Tw. Once the tuple of Troot, namely T , is calculated, we can

extract the total expected reward from that tuple.

Now, we define the tuple of Tu to be ψu(π) = (νu(π), µu(π), zu(π)).

• νu(π) =
∑

t∈Tu pu;t|πht is the summation of the s-t accessibilities of all paths from

u to t ∈ Tu, each of which is weighted by the habitat ht of its ending node t.

• µu(π) =
∑

s∈Tu ps;u|πhs is the summation of the s-t accessbilities of all paths from

s ∈ Tu to u, each of which is weighted by the habitat hs of its departing node s.

• zu(π) =
∑

s∈Tu
∑

t∈Tu ps;t|πrs,t (rs,t = hsht) represents the total expected reward

that a fish obtained by following paths with both starting node and ending node being

in Tu.

The tuple ψu(π) is calculated recursively using ψv(π) and ψw(π). To calculate νu(π), we

note that a path from u to a node in Tu\{u} is the concatenation of either the edge (u, v)

with a path from v to Tv or the edge (u,w) with a path from w to Tw, that is, νu(π) can be

written as

∑
t∈Tv

puv|πpv;t|πht +
∑
t∈Tw

puw|πpw;t|πht + hu = puv|πνv(π) + puw|πνw(π) + hu (4.2)

Similarly, µu(π) =

∑
s∈Tv

ps;v|πpvu|πhs +
∑
s∈Tw

ps;w|πpwu|πhs + hu = pvu|πµv(π) + pwu|πµw(π) + hu (4.3)
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By dividing the reward from paths that start and end in Tu based on their start and end

nodes, we can express zu(π) as follows:

zu(π) = zv(π)+zw(π)+µv(π)pv;w|πνw(π)+µw(π)pw;v|πνv(π)+huνu(π)+huµu(π)−h2
u

(4.4)

The first two terms describe paths that start and end within a single subtree—either Tv or

Tw. The third and fourth terms describe paths that start in Tv and end in Tw or vice versa.

The last three terms describe paths that start or end at u, with an adjustment to avoid double-

counting the trivial path that starts and ends at u. That way, all tuples can be evaluated with

one pass from the leaf nodes to the root and each node is only visited once. At the root,

zroot(π) is the expected reward of policy π, that is, zroot(π) = R(π).

4.3 Dynamic Programming Algorithm

This section introduces the dynamic programming algorithm to compute the optimal

policy. Again, let πu be the subpolicy for subtree Tu. Instead of maintaining a list of

achievable z values, the DP table of each subtree Tu contains a list of tuples ψ that are

reachable by some subpolicies and each tuple is associated with a least-cost subpolicy, that

is, π∗u ∈ arg min{πu|ψu(πu)=ψ} c(πu).

In the same manner, the list of reachable tuples and the associated least-cost subpolicies

of u are generated using the tuples of v and w. To do this, for each ψv, ψw, we first extract

the corresponding π∗v and π∗w. Then, using these two least-cost subpolicies of the children,

for each a ∈ Auv and a′ ∈ Auw, a new subpolicy πu is constructed for Tu with cost

c(πu) = cuv,a + cuw,a′ + c(π∗v) + c(π∗w). Using Eqs. (4.2), (4.3) and (4.4), the tuple ψu(πu)

of πu is calculated. If ψu(πu) already exists in the list (i.e., ψu(πu) was created by some

other previously constructed subpolicies), we update the associated subpolicy such that

only the minimum cost subpolicy is kept. If not, we add this tuple ψu(πu) and subpolicy

πu to the list.
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To initialize the recurrence, the list of a leaf subtree contains only a single tuple (hu, hu, h
2
u)

associated with an empty subpolicy. Once the list of Troot is calculated, we scan the list to

pick a pair (ψ∗root, π
∗) such that (ψ∗root, π

∗) ∈ arg max{(ψroot,π)|c(π)≤b} zroot where zroot is the

third element of ψroot. Finally, π∗ is the returned optimal policy and z∗root is the optimal

expected reward.

4.4 Rounded Dynamic Programming

The DP algorithm is not a polynomial-time algorithm because the number of reachable

tuples increases exponentially as we approach the root. In this section, we modify the

DP algorithm into an FPTAS algorithm. The idea is to discretize the space of ψu into a

polynomial number of different tuples. To do this, the three dimensions are discretized

using granularity factors Kν
u , Kµ

u and Kz
u respectively such that the space is divided into a

finite number of cubes with volume Kν
u ×Kµ

u ×Kz
u.

For any subpolicy πu of u in the discretized space, there is a rounded tuple ψ̂u(πu) =

(ν̂u(πu), µ̂u(πu), ẑu(πu)) to underestimate the true tuple ψu(πu) of πu. To evaluate ψ̂u(πu),

we use the same recurrences as (4.2), (4.3) and (4.4), but rounding each intermediate value

into a value in the discretized space. The recurrences are as follow:

ν̂sumu (πu) = puv|πu ν̂v(πu)+puw|πu ν̂w(πu)+hu µ̂sumu (πu) = pvu|πuµ̂v(πu)+pwu|πuµ̂w(πu)+hu

ν̂u(πu) = Kν
u

⌊
ν̂sumu (πu)

Kν
u

⌋
µ̂u(πu) = Kµ

u

⌊
µ̂sumu (πu)

Kµ
u

⌋
(4.5)

ẑu(πu) = Kz
u·⌊

ẑv(πu)+ẑw(πu)+µ̂v(πu)pv;w|πu ν̂w(πu)+µ̂w(πu)pw;v|πu ν̂v(πu)+huµ̂
sum
u (πu)+huν̂

sum
u (πu)−h2

u

Kz
u

⌋
(4.6)

The modified algorithm, which I called rounded dynamic programming for bidirected

trees (RDPB)is the same as the DP algorithm, except that it works in the discretized space.
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That is, each node maintains a list of reachable rounded tuples ψ̂u, each one associated

with a least costly subpolicy achieving ψ̂u, that is, π∗u ∈ arg min{πu|ψ̂u(πu)=ψ̂u} c(πu). The

reachable tuples for each node are generated by its children’s lists of tuples using recur-

rences (4.5) and (4.6) instead of (4.2), (4.3) and (4.4).

4.4.1 Theoretical Analysis

The main result for the RDPB is as follows.

Theorem 4.4.1. RDPB is an FPTAS. Specifically, let OPT be the value of the optimal

policy. Then, RDPB can compute a policy with value at least (1− ε)OPT in time bounded

by O(n
8

ε6
).

Now, we prove the theorem by showing approximation guarantee and analyzing the

running time.

4.4.1.1 Approximation Guarantee

Let π∗ be the optimal policy and let π′ be the policy returned by RDPB. The value loss

z(π∗)− z(π′) is bounded if the distance between the true tuple ψ(π) and the rounded tuple

ψ̂(π) is bounded for an arbitrary policy π. In Eqs. (4.5) and (4.6), starting from leaf nodes,

each rounding operation introduces an error at most K ·u where · represents ν, µ or z.

For ν, starting from u, each node t ∈ Tu introduces error Kν
t by using the rounding

operation. The error is discounted by the accessibility from u to t. For µ, each node s ∈ Tu

introduces error Kµ
s , discounted in the same way. The total error is equal to the sum of all

discounted errors.

Finally, we get the following result by setting

Kν
u =

ε

3
hu, Kµ

u =
ε

3
hu, Kz

u =
ε

3
h2
u (4.7)
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Lemma 4.4.1. If condition (4.7) holds, then for all u ∈ V and an arbitrary policy π:

νu(π)− ν̂u(π) ≤
∑
t∈Tu

pu;t|πK
ν
t =

ε

3

∑
t∈Tu

pu;t|πht =
ε

3
νu(π) (4.8)

µu(π)− µ̂u(π) ≤
∑
s∈Tu

ps;u|πK
µ
s =

ε

3

∑
s∈Tu

ps;u|πhs =
ε

3
µu(π) (4.9)

The difference of z(π)− ẑ(π) is bounded by the following lemma.

Lemma 4.4.2. If condition (4.7) holds, z(π)− ẑ(π) ≤ εz(π) for an arbitrary policy π.

Proof. To prove the lemma, we first use induction to prove the following statement:

zu(π)− ẑu(π) ≤ εzu(π) ∀u ∈ V

For the base case where u is a leaf node, we have zu(π) = h2
u and therefore the error

zu(π)− ẑu(π) is bounded by Kz
u = ε

3
zu(π).

For the induction step, assume that the statement holds for the two children v and w

of u. To prove that it also holds for u, we consider the error introduced by each term in

recurrence (4.6) that uses the rounded values ν̂v(π) and µ̂w(π) instead of the true values

νv(π) and µw(π). For the term µ̂v(π)pv;w|πν̂w(π), the introduced error is

µv(π)pv;w|πνw(π)− µ̂v(π)pv;w|πν̂w(π)

. Using Lemma 4.4.1, the error is

≤
(
ε

3
µv(π)ν̂w(π) +

ε

3
µ̂v(π)νw(π) +

ε2

32
µv(π)νw(π)

)
pv;w|π ≤ εµv(π)pv;w|πνw(π)

where the last inequality holds because the rounded value always underestimates the true

value.
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Similarly, the error for the term µ̂w(π)pw;v|πν̂v(π) is bounded by εµw(π)pw;v|πνv(π).

For the term huµ̂
sum
u , the error is hu(µu(π)− µ̂sumu (π)). By using Lemma (4.4.1), the error

is bounded by hu ε3(µu(π) − hu). Similarly, the error for the term huν̂
sum
u is bounded by

hu
ε
3
(νu(π)− hu). In addition, by the inductive assumption, the errors for ẑv(π) and ẑw(π)

are bounded by εzv(π) and εzw(π) respectively.

Therefore, the total error for the enumerator of Equation (4.6) is bounded by

ε(zv(π) + zw(π) + µv(π)pv;w|πνw(π) + µw(π)pw;v|πνv(π) + huν·,u(π) + huµu(π)− 2 · h2
u)

According to the definition of ẑu(π) in Equation (4.6), the enumerator is divided by Kz
u,

rounded and then multiplied by Kz
u. These operations introduce an additional error Kz

u,

which is bounded by εh2
u based on condition (4.7) in the paper. By adding the error to the

total error above, the error zu(π) − ẑu(π) is bounded by εzu(π) where the expression of

zu(π) is shown in Equation (4.4) in the paper. Hence, the statement holds for u.

Finally, as defined in the paper, z(π) = zroot(π) and ẑ(π) = ẑroot(π). Therefore, the

lemma holds.

It is ready to show the bound of z(π∗) − z(π′)–the main result for the approximation

guarantee.

Theorem 4.4.2. Let π∗ and π′ be the optimal policy and the policy return by RDPB respec-

tively. Then, if condition (4.7) holds, we have z(π∗)− z(π′) ≤ εz(π∗).

Proof. By Lemma 4.4.2, we have z(π∗)− ẑ(π∗) ≤ εz(π∗). Furthermore, z(π′) ≥ ẑ(π′) ≥

ẑ(π∗) where the second inequality holds because π′ is the optimal policy with respect to

the rounded policy value. Therefore, we have z(π∗)− z(π′) ≤ z(π∗)− ẑ(π∗) which proves

the theorem.
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4.4.1.2 Runtime Analysis

We derive the runtime result of Theorem 4.4.1, that is, if condition (4.7) holds, the

runtime of RDPB is bounded by O(n
8

ε6
). First, it is reasonable to make the following as-

sumption as for the directed rooted tree setting:

Assumption 4.4.1. The value hu is constant with respect to n and ε for each u ∈ V .

Let mu,ν̂ , mu,µ̂ and mu,ẑ denote the number of different values for ν̂u, µ̂u and ẑu respec-

tively in the rounded value space of u.

Lemma 4.4.3. If condition (4.7) holds, then

mu,ν̂ = O
(nu
ε

)
, mu,µ̂ = O

(nu
ε

)
, mu,ẑ = O

(n2
u

ε

)
(4.10)

for all u ∈ V where nu is the number of vertices in subtree Tu.

Proof. The number mu,ν̂ is bounded by
∑
t∈Tu ht

Kν
u

where
∑

t∈Tu ht is a naive and loose upper

bound of νu obtained assuming all passabilities of streams in Tu are 1.0. By Assump-

tion (4.4.1), mu,ν̂ = O(nu
ε

). The upper bound of mu,µ̂ can be similarly derived. As-

suming all passabilities are 1.0, the upper bound of zu is
∑

s∈Tu
∑

t∈Tu hsht. Therefore,

mu,ẑ ≤
∑
s∈Tu

∑
t∈Tu hsht

Kz
u

= O(n
2
u

ε
)

Recall that RDPB works by recursively calculating the list of reachable rounded tuples

and associated least costly subpolicy. Using Lemma 4.4.3, the following main result can

be obtained:

Theorem 4.4.3. If condition (4.7) holds, the runtime of RDPB is bounded by O(n
8

ε6
).

Proof. Let T (n) be the maximum runtime of RDPB for any subtree with n vertices. In

RDPB, for node u with children v and w, we compute the list and associated subpolicies

by iterating over all combinations of ψ̂v and ψ̂w. For each combination, we iterate over
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all available action combinations auv ∈ Auv and auw ∈ Auw, which takes constant time

because the number of available candidate actions are constant w.r.t. n and ε. Therefore,

we can bound T (n) using the following recurrence:

T (nu)=O(mv,ν̂mv,µ̂mv,ẑmw,ν̂mw,µ̂mw,ẑ) + T (nv) + T (nw) ≤ c
n4
vn

4
w

ε6
+ T (nv) + T (nw)

≤ max
0≤k≤(nu−1)

c
k4(nu − k − 1)4

ε6
+ T (k) + T (nu − k − 1)

where nu = 1 + nv + nw as Tu consists of u, Tv and Tw. The second inequality is due to

Lemma 4.4.3. The third inequality is obtained by a change of variable.

It can be shown that T (n) ≤ cn
8

ε6
by induction. For the base case n = 0, we have

T (n) = 0 and for the base case n = 1, the subtree only contains one node, so T (n) = c.

Now assume that T (k) ≤ ck
8

ε6
for all k < n. Then, we can show that

T (n) ≤ max
0≤k≤(n−1)

c

ε6
(
k4(n− k − 1)4 + k8 + (n− k − 1)8

)
≤ c

n8

ε6
(4.11)

Thus, the theorem holds. The first inequality is obtained by plugging T (k) and T (nu−k−

1). What is left is to prove the second inequality.

To derive the second inequality, we show for any integer k ∈ [0, n− 1] that

k4(n− k − 1)4 + k8 + (n− k − 1)8

≤ 2k4(n− k − 1)4 + k8 + (n− k − 1)8

=
(
k4 + (n− k − 1)4

)2

≤
(
k4 + 2k2(n− k − 1)2 + (n− k − 1)4

)2
=
((
k2 + (n− k − 1)2

)2
)2

≤
((
k2 + 2k(n− k − 1) + (n− k − 1

)2
)4

=
(
(k + n− k − 1)2)4

= (n− 1)8 ≤ n8
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Therefore, we have

max
0≤k≤(n−1)

k4(n− k − 1)4 + k8 + (n− k − 1)8 ≤ n8

which proves the inequality. Therefore, the assumption T (n) ≤ cn
8

ε6
holds, which proves

the theorem.

4.5 Implementation

In the proof of the main theorem 4.4.1, the values of Ks are set by (4.7) The empirical

runtime is much faster than the upper bound of runtime in theorem 4.4.3 due to the follow-

ing observations. First, Ks can be set much larger than in (4.7) because the upper bound of

runtime we found may not be the tightest one. Second, a lot of tuples in discretized space

are not reachable while the proof of the upper bound runtime is based on the assumption

that all tuples in the space are accessed.

Therefore, the performance of RDPB can be improved by making the following two

modifications. First, before calculating the list of reachable tuples of u, we estimate the

upper bound and lower bound of the reachable values of ν̂u, µ̂u and ẑu using the list of tuples

of its children. Then, we dynamically assign the values to K ·u by fixing the total number

of different discrete values of ν̂u, µ̂u and ẑu in the space, that is, this number determines

the granularity of discretization. For example, if the upper bound and the lower bound of

ν̂u are 1000 and 500 respectively and we want 10 different values, the value of Kν
u is set to

be 1000−500
10

= 50. With a finer granularity of discretization, a slower algorithm is obtained,

but it has a better solution quality. In our experiments, by setting the numbers to be 50, 50,

150 for ν̂u, µ̂u and ẑu, the algorithm is very fast and we can get very good solution quality.

Second, sparse matrix representation is used to store and access the reachable tuples, which

makes the runtime much faster than the upper bound that assumes all tuples in the space

are used once.
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4.6 Experiments

In experiments, the RDPB algorithm is applied to solve the bidirectional barrier re-

moval problem introduced in section 4.1. The data is from the CAPS project [58] for river

networks in Massachusetts (Fig. 2.2) mentioned in section 2.2.2. Barrier passabilities are

calculated from barrier features using the model defined by the CAPS project. We cre-

ated actions to model practical repair activities. For road-crossings, most passabilities start

close to 1 and are cheap to repair relative to dams. To model this, we set Au,v = {a1},

puv|a1 =pvu|a1 =1.0 and cuv|a1 =5. In contrast, it is difficult and expensive to remove dams,

so multiple strategies must be considered to improve their passability. We created actions

Au = {a1, a2, a3} with action a1 having puv|a1 = pvu|a1 = 0.2 and cuv|a1 = 20; action a2

having puv|a2 = pvu|a2 = 0.5 and cuv|a2 = 40; and action a3 having puv|a3 = pvu|a3 = 1.0 and

cuv|a3 = 100. Note that the passage probabilities from upstream and downstream are the

same. Later, the case that two probabilities are different is considered.

Now, we present the experimental results.

4.6.1 Results on Small Networks

We compared SAA+MILP, RDPB and a greedy algorithm (denoted by Greedy) on

small river networks. The algorithm called SAA+MILP does not guarantee to produce

optimal solutions, which is discussed in Chapter 5. The basic idea of it is to use a sam-

ple average approximation (SAA) procedure to approximate the stochastic network design

problem by a mixed linear integer program (MILP) and find the optimal solution of the

program as an approximate solution. SAA+MILP used 20 samples for the sample average

approximation and IBM CPLEX on 12 CPU cores to solve the integer program. RDPB1

used finer discretization than RDPB2, therefore requiring a longer runtime. The results in

Table 4.1 show that RDPB1 gives the best increase in expected reward (relative to a zero-

cost policy) in most cases and RDPB2 produces similarly good solutions, but takes less

time. Although Greedy is extremely fast, it produces poor solutions on some networks.
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SAA+MILP gives better results than Greedy, but fails to scale up. For example, on a net-

work with 781 segments and 604 barriers, SAA+MILP needs more than 16G of memory

to construct the MILP.

number of ER Increase Runtime
Segments barriers SAA+MILP Greedy RDPB1 RDPB2 SAA+MILP Greedy RDPB1 RDPB2

106 36 3.7 4.1 4.1 4.0 3.3 0.0 0.7 0.4
101 71 4.0 3.6 4.3 4.3 19.5 0.0 2.5 1.2
163 91 11.3 11.2 12.3 12.1 42.3 0.0 13.6 6.8
263 289 20.7 11.1 25.3 24.8 1148.7 0.7 263.3 98.7
499 206 48.6 55.6 53.8 53.2 116.0 0.7 11.9 6.4
456 464 124.1 96.8 146.9 144.3 8393.5 0.7 359.9 142.0
639 609 51.8 25.8 53.7 51.6 12720.1 1.3 721.2 242.4

Table 4.1: Comparison of SAA+MILP, RDPB and Greedy. Time is in second. Each unit of
expected reward is 107 (square meters). “ER increase” means the increase in expected reward after
taking the computed policy.

4.6.2 Results on Large Networks

We compared RDPB and Greedy on a large network—the Connecticut River watershed,

which has 10451 segments, 587 dams and 7545 crossings. We tested both algorithms on

three different settings of action passabilities.
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Figure 4.3: Aymmetric passabilities.
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Figure 4.4: Asymmetric passabilities & downstream passabilities = 1
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Figure 4.5: Asymmetric passabilities & varying downstream passabilities.

4.6.3 Actions with Symmetric Passabilities

In this experiment, we used the action setting introduced earlier. The expected reward

increase (Fig. 4.3a) and runtime (Fig. 4.3b) are plotted for different budgets. For the ex-

pected reward, each unit represents 1014m2. Runtime is in seconds. As before, RDPB1

uses finer discretization of tuple space than RDPB2. As Fig. 4.3 shows, the RDPB algo-

rithms give much better solution quality than the greedy algorithm. With a budget of 20000,

the ER increase of RDPB1 is almost twice the increase for Greedy. Incidentally, RDPB1

doesn’t improve the solution quality by much, but it takes much longer time to finish. No-

tice that both RDPB1 and RDPB2 use constant runtime because the number of discrete
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values in both settings are bounded. In contrast, the runtime of Greedy increases with the

budget size and eventually exceeds RDPB2’s runtime.

4.6.4 Actions with Asymmetric Passabilities

The RDPB algorithms work with asymmetric passabilities as well. For road-crossings,

we set the actions to be the same as before as the initial passabilities are already near 1. For

dams, we first considered the case in which the downstream passabilities are all 1—which

happens for some fish—and all upstream passabilities are the same as before. The results

are shown in Figures 4.4a and 4.4b. In this case, RDPB still performs better than Greedy

and tends to use less time as the budget increases.

We also considered a hard case in which the downstream passabilities of a dam are:

(pvu|a1 = 0.8), (pvu|a2 = 0.9) and (pvu|a3 = 1.0). These variations of passabilities produce

more tuples in the discretized space. Our RDPB algorithm still works well and produces

better solutions than Greedy over a range of budgets as shown in Fig. 4.5a. As expected

in such hard cases, RDPB needs much more time than Greedy. However, obtaining high

quality solutions to such complex conservation planning problems in a matter of hours

makes the approach very valuable.
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4.6.5 Tradeoff Between Time and Solution Quality

Finally, we tested the time/quality tradeoff offered by RDPB. The tradeoff is controlled

by varying the level of discretization. These experiments are done using the network of

Connecticut River watershed with symmetric passabilities. Fig. 4.6 shows how runtime and

expected reward grow as we refine the level of discretization. As can be seen, RDPB con-

verges quickly on high-quality results and exhibits the desired diminishing returns property

of anytime algorithms—the quality gain is large initially and it diminishes as we continue

to refine the discretization.

4.7 Limitation

In this chapter and chapter 3, the focus is on the stochastic network design framework

for both directed rooted trees and bidirected trees, and on how two versions of the barrier

removal problem are formulated using the framework. Two algorithms RDP and RDPB are

developed, one for each setting. With the basic setting of stochastic network design defined

in section 2.1, each edge is associated with only one available action, that is, we can either

take the action or do nothing. One advantage of RDP and RDPB is that they can work

with multiple action alternatives. That is, at each edge, one of the multiple actions can be

taken to change the survival probability. Both algorithms also have limitations. For RDP,

one action can only raise the probability of one edge. For RDPB, one action will change

the probabilities of exact two edges. They are not general enough to deal with the setting

mentioned in section 2.4.2. That is, one action can affect an arbitrary number of edges. It is

an interesting future work how to develop efficient approximation algorithms to deal with

this general setting.

4.8 Summary

This chapter discusses the stochastic network design framework for bidirected trees,

which models the flow of influence that may start from any node of a tree and spreads into
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the tree along both directions of edges. It is shown how a bidirectional barrier removal

problem can be formulated as a stochastic network design problem. To solve the problem,

a fast approximation algorithm called rounded dynamic programming for bidirected trees

(RDPB) is developed, which can compute nearly optimal policies both theoretically and

empirically. Theoretically, the algorithm is a fully polynomial-time approximation scheme

that takes time O(n
8

ε6
) to produce a (1− ε) optimal solution. Empirically, applying the algo-

rithm to solve the bidirectional barrier removal problem, the results show that the algorithm

can run much faster than this theoretical runtime bound.
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CHAPTER 5

STOCHASTIC NETWORK DESIGN FOR GENERAL DIRECTED
GRAPHS

The focus of this chapter is on the stochastic network design framework for general

directed graphs–a more general setting than Chapter 3 and 4. A real-world problem called

spatial conservation planning is introduced and is formulated using the framework. For

general directed graphs, problems become harder, and building an FPTAS seems impos-

sible. Instead, an approximate algorithm using different optimization techniques can be

built. Although it is not theoretically proved that the solution produced by the algorithm

is guaranteed to be near optimal within a fixed percentage, empirical results show that the

algorithm can produce nearly optimal solutions. The basic idea of the algorithm is to use

the sample average approximation (SAA) method to convert the stochastic network design

problem into a deterministic network design problem, solve the deterministic network de-

sign problem, and use the computed solution as an approximate solution of the original

problem. The deterministic optimization problem can be formulated as a mixed integer

program (MIP), but solving it directly using a standard MIP solver appears to be very time-

consuming. To increase the scalability, I develop an approximate algorithm combining the

Lagrangian relaxation technique and a primal-dual algorithm. Applying to a conservation

planning problem in which the goal is to facilitate the dispersal of red-cockaded wood-

peckers (RCWs) within a landscape, the algorithm runs much faster than a MIP solver and

a greedy baseline and can produce high-quality solutions.

The structure of this chapter is as follows. First, the definition of the stochastic network

design framework is briefly reviewed. Then, the SAA method is introduced, and some of

its theoretical properties are given. After that, it is shown that how the SAA method helps
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to write a stochastic network design problem into a MIP. At last, the fast algorithm to solve

the MIP is introduced, and experimental results are given.

5.1 Problem Statement

The input of a stochastic network design problem is a stochastic network defined by a

directed graph G = (V,E), where V is a set of nodes and E is a set of directed edges.

Each edge is either present (survival) or absent (failed). The initial survival probability of

an edge (u, v) is pouv. At each edge, an action denoted by auv with cost cuv can be taken to

raise the survival probability to pmuv (pmuv > pouv). The probability of failure equals to one

minus the survival probability. Each pair of nodes (s, t) is associated with a reward rst.

In the stochastic network, if all edges on the path from s to t are present, the reward rst

can be collected. That is, each reward can be collected with a probability, which can be

raised by taking actions. A policy π selects an action π(u, v)—either the available action

or no-action—for each edge. The goal of the stochastic network design problem is to find a

policy π to maximize the expected total reward that can be collected. Mathematically, the

problem can be written as

max
π

R(π) =
∑
s,t∈V

rs,t ps;t|π subject to cost(π) ≤ B (5.1)

where ps;t|π is the probability that there exists at least one path from s to t on which all

edges are present, and B is a budget limit. This is a hard stochastic network design problem

as shown by the following theorem.

Theorem 5.1.1. For a stochastic network defined on a directed graph, calculation of the

probability that a pair of nodes are connected is #P-hard.

Proof. The theorem can be derived from the results in paper [93].
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The theorem says that for a given policy π, calculation of R(π) is at least #P-hard while

#P-hard is at least as hard as NP-hard. Therefore, to build a scalable algorithm, we focus

on approximate algorithms.

5.2 Sample Average Approximation

The stochastic network design problem is a one-stage stochastic optimization problem.

That is, we take all actions that we need before the outcomes of any stochastic events are

revealed. After these actions are executed, we don’t take any actions in the future. In

contrast, actions are taken over multiple stages in a multiple-stage stochastic optimization

problem. The outcomes of random events are gradually revealed at different stages.

One-stage stochastic optimization problems have been studied by people in the field

of operations research [22, 86], and the Monte Carlo sampling is one of the widely used

methods [35, 23, 46]. A one-step stochastic optimization problem can be written as

min
π
z(π) := Eξ[Z(π, ξ)] s.t. cost(π) ≤ B (5.2)

π (a policy) represents all decision variables. ξ is set of random variables that model all

random events. The probability distribution of ξ is independent from the value of π. The

property enables us to use sample average to approximate the expectation of ξ. As shown

later, a stochastic network design problem can be written as (5.2) and satisfies this property

if π and ξ are defined in a specific way. Z(·) is a function of both π and ξ. cost(π) is the

cost of a policy π. B is a real number, such as budget limit, bounds the cost of the policy.

An optimization problem in form (5.2) is hard if the domains of π and ξ contain an

exponentially large number of different values with respect to the problem size, which is

usually true for many problems. For some problems, the domain of ξ may even contain

an infinite number of different values. So, evaluation of Z(π, ξ) becomes intractable. To
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reduce the complexity, the idea of a sampling method is to draw a sequence of samples of

ξ and use the sample average to approximate the expectation, which is shown as follows.

z(π) ≈ ẑ(π) :=
1

N

∑
i=1:N

Z(π, ξi) (5.3)

where {ξ1, ..., ξN} are N independent samples of ξ. Also, we have the following theorem.

Theorem 5.2.1. For a given x, ẑ(π) converges to z(π) as N goes to infinity.

Proof. Since eachZ(π, ξi) is an unbiased estimator ofZ(π, ξ), by the central limit theorem,

we know the average 1
N

∑
i=1:N Z(π, ξi) converges to the mean of Z(π, ξ) as N goes to

infinity.

As the probability distribution of ξ is independent of π, we can obtain an approximate of

z(π) for different π using the same set ofN samples. Therefore, we can solve the following

optimization problem instead and use the solution of it as an approximate solution of the

original problem (5.2).

min
π
ẑN(π) :=

1

N

∑
i=1:N

Z(π, ξi) s.t. c(π) ≤ B (5.4)

We also concern how close the (nearly) optimal solution of problem (5.4) is to the

(nearly) optimal solution of problem (5.2). Let π̂N be the optimal solution of (5.4) for N

samples and π∗ be the optimal solution of problem (5.2). We have the following results.

Theorem 5.2.2. x̂N converges to x∗ as N goes to infinity.

Proof. See paper [46].

5.2.1 Convergence Rates

Theorem 5.2.2 tells us that the optimal solution of problem (5.4) will converge to the

optimal solution of problem (5.2) if we can increase N to infinite but not tell us how to
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choose N in order to get a sufficiently good solution. In this section, we provide more

information how to choose N , which can be summarized by the following Corollary.

Corollary 5.2.1. If the size of the solution space is exponential of the problem size, to

obtain a sufficiently good solution, the number of samples needs to be linear of the problem

size.

Now, we prove Corollary 5.2.1 and explain what it means by ”a sufficiently good so-

lution”. For an ε > 0, let Sε be the set of ε-optimal solutions of problem (5.4), that is,

Sε = {π | z(π) ≤ z(π∗) + ε}. For an δ ∈ [0, ε), let ŜδN be the set of δ-optimal solutions of

problem (5.2) for N samples, that is, ŜδN = {π | ẑN(π) ≤ ẑ(π̂N) + δ}. Then, we have the

following theorem.

Theorem 5.2.3. For a value α ∈ (0, 1), the sample size N which is needed for the proba-

bility Pr(ŜδN ⊆ Sε) to be at least 1− α should satsify

N ≥ constant

(ε− δ)2
log

(
number of policies

α

)

Proof. The proof can be found in paper [46], which uses the large deviation theory.

5.3 Sample Average Approximation for Stochastic Network Design

In this section, the sample average approximation (SAA) method is applied to solve

stochastic network design problems for general directed graphs. The basic idea is as fol-

lows. First, a deterministic optimization problem in the form of (5.4) is constructed from

a stochastic network design problem (5.1) by a sampling technique that is explained later.

Second, the deterministic optimization problem is written as a mixed integer program that

is then solved by a standard MIP solver. The rest of this section explains these two parts.
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5.3.1 Sampling Procedure

The Monte Carlo sampling method is used to construct a deterministic optimization

problem for problem (5.1). Recall that each edge has a survival probability which equals

to pouv if the action on the edge (u, v) is not taken and is pmuv if the action is taken. For a

given policy π, the survival probability of an edge (u, v) is denoted by p(u, v; π) or puv|π

for short. We can directly sample whether the edge is present or absent by flipping a biased

coin with probability p(u, v; π) if we know π. To be able to use SAA method, we want

to draw samples independent from π. Remember, ξ represents all random events that are

distributed independently from any π. We want

Eξ[f(ξ, π)] = R(π) (5.5)

where R(π) is the resilience of the network with the policy π defined by (2.4). Now, the

important question is what ξ represents specifically in a stochastic network design problem.

To define ξ, let’s first define a stochastic graph G′ = (V,E ′, ξ) while G = (V,E) is

the input graph of the stochastic network design problem. There are two parallel edges

eo (the original edge) and em (the modifed edge) in E ′ for each edge e ∈ E and two

random variables ξeo and ξem for each edge respectively. If ξeo = 1, the edge eo is present.

Otherwise, eo is absent. Similarly, ξem = 1, the edge em is present. Otherwise, em is

absent. We further define a random graphG′(π) = (V,E ′(π), ξ) parameterized by a policy

π. This graph always includes the original edge and will include the modified edge if and

only if the action on the edge e is taken or ae ∈ π. Assuming that (u, v) ∈ E and u, v are

not connected by other edges, let’s consider the random event that v is connected to u. If

auv /∈ π, the event occurs if and only if ξ(u,v)o equals to 1. We want this probability to be

pouv. If auv ∈ π, the event occurs if and only if at least one of ξ(u,v)o and ξ(u,v)m equals to

1. We want this probability to be pmuv. To achieve this, for each edge e ∈ E, we define a

uniform random variable Ue in the range [0, 1] and use it to define random variables ξeo and

ξei:
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ξeo =

 0 if Ue > poe

1 if Ue ≤ poe

ξem =

 0 if Ue > pme

1 if Ue ≤ pme

(5.6)

Now, we let ξ = {ξeo , ξem} of which the probability distribution is independent from any

policy, so we can sample the values of ξeo and ξem independently of any policy. First, a

value of Ue is sampled. Then, we can determine the value of ξeo and ξem easily. Now, we

claim the following result.

Theorem 5.3.1. For an arbitrary policy π ⊆ E and two vertices s, t ∈ V , the probability

that there is a directed path from s to t in G′(π) equals to the probability t is connected to

s in G, the original stochastic network.

Proof. Let’s consider an arbitrary policy π and an edge (u, v) ∈ E. If we assume there are

no other edges, the probability that u is connected to v is

Pr(u; v) =

 Pr(ξ(u,v)o = 1) if auv /∈ π

Pr(ξ(u,v)o = 1 or ξ(u,v)m = 1) if auv ∈ π
(5.7)

We show that if auv /∈ π, Pr(u; v) = pouv and if auv ∈ π, Pr(u; v) = pmuv.

• Case 1: auv /∈ π. Only edge (u, v)o exists inG′(π). The probability of ξeo is pouv.

• Case 2: auv ∈ π, both (u, v)o and ei are present inG′(π). Then,

Pr(ξ(u,v)o = 1 or ξ(u,v)m = 1) = 1− Pr(ξ(u,v)o = 0 and ξ(u,v)m = 0)

= 1− Pr(Ue > pmuv) = Pr(Ue ≤ pmuv) = pmuv

Now, we prove the theorem. First, we prove the easy case where there are no parallel

edges in G and we only consider a single path p = {v1, v2, v3, ..., vn} in G. In G′(π), we

only consider edges (vi, vi+1)o and (vi, vi+1)i if avivi+1
∈ π for all i = 1 : n− 1. We ignore
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pouv = 0.2
pmuv = 0.8

u v
equivalent to

The original graph G
u v

G′

sampling
(u, v)m

(u, v)o
u1 v1

(u, v)m1

(u, v)o1

u2 v2

(u, v)m2

sample 1 G′1: Ue = 0.1

sample 2 G′2: Ue = 0.5

Sampled graphs

Figure 5.1: An example of sampling procedure. The orginal graph is G and the random graph is
G′. We have V d = {u1, u2, v1, v2}, Ed = {(u, v)o1, (u, v)m1 , (u, v)m2 }, Eduv = {(u, v)m1 , (u, v)m2 }.
Ed0 = {(u, v)o1}.

all other edges in both graphs for now. Then, for an arbitrary policy π, the probability that

vn is connected to v1 in the original stochastic network equals to the probability that vn is

connected to v1 in G′(π) based on the previous claims. Thus, basically, these two graph

gives equal probability for any path. So, the claim in the theorem holds.

Let’s define Z(π, ξ) to be the total reward collected in the graph G′(π) with a fixed

value of ξ, in which a reward rst is collected if and only if there is a directed path from s to

t. Then, we have

Corollary 5.3.1. If

Z(π, ξ) =
∑
s,t∈V

rst I [t is connected to s inG′(π)],

then Eξ[Z(π, ξ)] = R(π) for any policy π.

Proof. The proof can be obtained from Theorem 5.3.1 directly.

Sampling procedure can be summarized as follows. We generate N samples of G′,

{G′1, ..., G′N} by sampling N values of Ue for each edge e using (5.6). In each G′k, the

presence or absence of each edge is known. See Fig. 5.1 for an example of the sampling
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procedure. In the example, the original graph has two nodes u and v and an edge (u, v)

with probabilities pouv = 0.2 and pmuv = 0.8. The correspondent random graph G′ has two

parallel edges. We draw two samples. For the first sample G′1, the randomly drawn value

of Uuv is 0.1, so by (5.6), we end up having both eouv and emuv present. Similarly, for G′2, the

drawn value of Uuv is 0.5, so only emuv is present.

5.3.2 Construction of Deterministic Optimization Problems

To construct the deterministic optimization problem, we first combineN sample graphs

{G′1, ..., G′N} into a single graph Gd = (V d, Ed) (e.g., d stands for ”deterministic”). Let

the node inG′i indexed by vi and edges denoted by eoi and emi where v represents a node and

e represents an edge in the orginal graph G respectively. The node set V d contains nodes

from all sample graphs. The edge setEd contains the original edges and the modified edges

in all sample graphs.

V d = {vi| i = 1 : N, vi ∈ G′i}

Ed = {eoi | i = 1 : N, eoi ∈ G′i}
⋃
{emi | i = 1 : N, emi ∈ G′i}

For each edge (u, v) in the orginal graphG, all modified edges inEd corresponding to (u, v)

are grouped into an edge set Ed
uv, that is, Ed

uv = {emi | i = 1 : N, emi ∈ G′i, e = (u, v)}.

An action auv, if taken, will purchase all edges in Ed
uv with cost cuv . All original edges in

Ed are grouped into an additional edge set E0, that is, E0 = {eoi | i = 1 : N, eoi ∈ G′i}. An

action a0 with cost c0 = 0 will purchase all edges in set E0. Fig. 5.1 gives an example of

these sets. Then, we form a deterministic optimization problem in which we purchase edge

sets to maximize the average reward collected.

max
π

1

N

N∑
k=1

∑
s,t∈V

rst I[t is connected to s in G′k(π)] s.t.
∑
ae∈π

ce ≤ B (5.8)
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where I(·) is an indicator function that returns 1 if the event inside is true and returns 0

otherwise. By Corollary 5.3.1 and Theorem 5.3.1, for a π, the objective of (5.8) converges

to the objective of (2.5) as N goes to infinity. The problem (5.8) can be written as a MIP as

I will show in next section, for which a standard MIP solver can be used to find the optimal

or the nearly optimal solution.

5.4 Budget Set Weighted Directed Steiner Graph Problem

The deterministic optimization problem (5.8) can be formulated as a new network de-

sign problem called Budget Set Weighted Directed Steiner Graph (BSW-DSG) that can be

written as a mixed integer program (MIP).

Broadly, in a Budget Set Weighted Directed Steiner Graph (BSW-DSG) problem, we

want to decide how to purchase edges, which are grouped into sets, to connect a spec-

ified set of nodes in the network. The formal definition is as follows. The input of a

BSW-DSG problem consists of a directed graph Gd = {V d, Ed} and a set of o-d pairs

Θ = {(o1, d1), ..., (oT , dT )} (oi, di ∈ V s), each pair associated with a reward roidi . Specif-

ically, oi represents the node of the origination of a flow, and di represents the node of

the destination of the flow. We are also given a collection of edge sets E = {E1, ..., ES}

where Ei ⊆ Ed and each Ei is associated with a cost ci. A subset A ⊆ E corresponds to

a subgraph Gd(A) = {V d, Ed(A)} with Ed(A) = ∪Ei∈AEi. For a given Gd(A), if di is

connected to oi for any pair (oi, di), a reward roidi is collected. The goal is to purchase edge

sets from E, subject to a budget limit B, to maximize the total rewards that are collected in

Gd(A). That is,

max
A⊆E

∑
(o,d)∈Θ

rod · I[d is connected to o in Gd(A)] s.t.
∑
Ei∈E

ci ≤ B (5.9)

where I is an indicator function.
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To make later presentation clear, we prefer to write a BSW-DSG problem as a mini-

mization problem. We define a value M that is greater than the reward of any pair, that is,

M ≥ rod for any (o, d) ∈ Θ. Let Mod = M − rod ≥ 0, representing the penalty charged

for not connecting the pair (o, d). Then, the problem is equivalent to

min
A⊆E

∑
(o,d)∈Θ

Mod · I[d is not connected to o in Gd(A)] s.t.
∑
Ei∈E

ci ≤ B (5.10)

I use (5.10) as the standard formulation of a BSW-DSG problem.

It is straightforward to write the deterministic optimization problem (5.8) as a BSW-

DSG problem. In the BSW-DSG problem, we use the directed graph Gd = {V d, Ed}

defined in section 5.3.2 as the input graph. The collection of edge sets consist of E0 and

all Ed
uvs defined in section 5.3.2. The cost of the edge set E0 is 0 and the cost of the edge

set Ed
uv is cuv. To define Θ, for any pair of nodes (o, d) (o ∈ V , d ∈ V ), if the reward rod

is not 0, we add a pair (o, d) into Θ with reward rod and penalty Mod = M − rod. So, the

problem (5.8) is written as a BSW-DSG problem. The next sections provide techniques to

solve a BSW-DSG problem in general.

5.4.1 Hardness of BSW-DSG

A BSW-DSG problem is a discrete optimization problem and is hard to solve.

Theorem 5.4.1. A BSW-DSG problem, in general, is NP-hard and its objective function is

neither sub- nor super-modular.

Proof. Given an instance of Knapsack problem, we show it is a special case of the BSW-

DSG problem. The Knapsack problem

max
N∑
i=1

pixi s.t.

N∑
i=1

cixi ≤ B
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(where pi is profit and ci is cost) is equivalent to

min
N∑
i=1

Mixi s.t.

N∑
i=1

cixi ≤ B

where Mi = M − pi > 0 and M is bigger than all pis.

To build the BSW-DSG problem for this Knapsack problem, we define (V,E). V con-

tains N + 1 vertices or V = {o} ∪ {di : i = 1 : N}. E contains N edges E = {(o, di) :

i = 1 : N}. The length of each edge is 0. Define N edge sets with Ei = {(o, di)} with

cost ci. Let Θ = {(o, di) : i = 1 : N} and (o, di) has penalty Mi. It is easy to see that the

BSW-DSG problem is equivalent to the Knapsack problem.

To show that the objective function is neither submodular nor supermodular, we use a

simple graph as shown in Fig. 5.2 with V = {o, u, v} and E = {e1, e2, e3, e4}. Let the

unique o-d pairs be (o, d) with the penalty Mo,d > 0 and the collection of edge sets being

E = {{e1}, {e2}, {e3}, {e4}}. Let f(·) be the objective function. Given a set of edges, if o

is connected to d, the value of the objective function is 0. Otherwise, the objective function

equals to Mo,d. For example,

f(φ) = Mo,d

f({e3}) = Mo,d

f({e1, e2}) = Mo,d

f({e1, e2, e3}) = 0

f({e4, e3}) = 0

If we let A = φ, B = {e1, e2} and x = {e3} satifying A ⊆ B and x /∈ B, we have

f(A ∪ {x})− f(A) = 0 > f(B ∪ {x})− f(B) = −Mo,d

Thus, the objective function is not supermodular.
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o u u d
e1 e2 e3

e4

Figure 5.2: An example

min
∑

(o,d)∈Θ

Mo,dz
od (5.1)

s.t.
∑

e∈δ+(S)

xode + zod ≥ 1 ∀(o, d) ∈ Θ, S ∈ Sodo (5.2)

∑
i:e∈Ei

yi ≥ xode ∀(o, d) ∈ Θ, ∀e ∈ Es (5.3)

∑
Ei∈E

ciyi ≤ B (5.4)

xode ∈ [0, 1] ∀(o, d) ∈ Θ ∀e ∈ Es (5.5)

yi ∈ {0, 1} ∀Ei ∈ E, zod ∈ {0, 1} ∀(o, d) ∈ Θ (5.6)

Figure 5.3: MIP formulation of the budget BSW-DSG problem

If we let A = {e2, e3}, B = {e2, e3, e4} and x = {e1} with A ⊆ B and x /∈ B, we have

f(A ∪ {x})− f(A) = −Mo,d < f(B ∪ {x})− f(B) = 0

Thus, the objective function is not submodular.

5.5 Formulation of a BSW-DSG problem as a MIP

A BSW-DSG problem can be formulated as a mixed integer program (MIP) shown in

Fig. 5.3. A binary variable xode is defined for each edge e ∈ E and o-d pair indicating

whether e is on (xode =1) a path from o to d or not (xode =0). A binary decision variable yi is

defined for each edge set Ei ∈ E indicating whether the set is purchased (=1) or not (=0).

All yis define a set A. A binary variable zod is defined for each o-d pair indicating whether

the pair is penalized/disconnected (zod =1) or not/connected (zod =0). Let set Sodo consist
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of all subsets of V d that contain o but not d, Sodo = {S|S ⊆ V d ∧ o∈ S ∧ d /∈ S}. Let set

δ+(S) all outgoing cut edges of S, that is, δ+(S) = {(u, v)|(u, v)∈E ∧ u ∈ S ∧ v /∈S}.

With constraint (5.2), if d is connected to o (zod = 0), at least one cut edge e for any set

in Sodo should have value xode = 1. With constraint (5.3), an edge is on the path from o to

d only if it is purchased. Constraint (5.5) is the budget constraint. It is easy to show that

relaxing the binary variable x to be a continuous variable in [0, 1] will not change the value

of the optimal solutions.

The MIP has an exponentially large number of constraints, but the ellipsoid method can

be used to find the optimal solution. A standard solver, such as IBM CPLEX optimizer [38]

or Gurobi [68], can be used to solve it directly.

5.6 A Fast Algorithm to Solve BSW-DSG Problems

Although a BSW-DSG problem can be formulated as a MIP, directly solving it by a MIP

solver can only scale to networks of small sizes and a small number of samples as shown

in experimental results later. In this section, I will introduce a much faster algorithm to find

high-quality solutions. By studying a BSW-DSG problem shown in Fig. 5.3, I observed

that it is the budget constraint that causes the problem very difficult to be solved by a

MIP solver. To avoid dealing with this constraint directly, I instead solve a Lagrangian

relaxation problem constructed by a method called Lagrangian relaxation. The nearly

optimal solution of the Lagrangian relaxation problem is used as a solution to the original

problem.

The Lagrangian relaxation technique has been used to solve many constrained discrete

optimization problems [2, 39, 53]. The basic idea is to relax a complex constraint and bring

it to the objective together with a Lagrangian multiplier β. The new optimization problem is

called relaxation problem parameterized by β. For the BSW-DSG problem, the relaxation

problem is a prize-collecting version of the BSW-DSG called Prize-Collecting Set Weighted

Directed Steiner Graph (PCSW-DSG), of which the objective function consists of both the
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objective function of the BSW-DSG problem and the cost of the policy weighted by a

parameter β that serves to be a tradeoff factor. Our definitions of the BSW-DSG problem

and the PCSW-DSG problem are the generalizations to the budget and the prize-collecting

Steiner tree variants [41]. The MIP formulation of the PCSW-DSG problem is shown in

Fig. 5.4 (5.1-5.5)

Due to the special structure of the relaxation problem as explained in the next section, a

bisection procedure can be used to find a β, with which by solving the relaxation problem,

we can get a nearly optimal solution to the original BSW-DSG problem.

In summary, the algorithm of solving a BSW-DSG problem consists of three steps.

First, we build a relaxation problem that is parametrized by a β. Then, we use a bisection

procedure to find a value of β. At last, we solve a PCSW-DSG problem with that beta and

output the found solution.

5.6.1 Bisection Procedure

Let’s first analyze the function L(β) in Fig. 5.4. Let (xβ, yβ, zβ) denote the optimal

solution of the PCSW-DSG problem for a given β. Let, Z(β) =
∑

(o,d)∈ΘMo,dz
od
β , C(β) =∑

Ei∈E ciyiβ − B, and L(β) = Z(β) + βC(β). We have the following properties.

Proposition 5.6.1. As β increases, Z(β) is nondecreasing and C(β) is nonincreasing.

Proof. Intuitively, larger β puts larger penalty on the cost and thus results in a less costly y

but larger Z(β). To prove Proposition 5.6.1 formally, I first prove the following claim.

Claim: If β1 < β2, then Z(β1) ≤ Z(β2) and C(β1) ≥ C(β2).

Let’s use the following two notations.

Z(z) =
∑

(o,d)∈Θ

Mo,dz
od and C(y) =

∑
Ei∈E

ciyiβ − B (5.11)

where both z and y are two vectors.
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Prize-Collecting Problem / Primal Problem:

L(β) = min
∑

(o,d)∈Θ

Mo,dz
od + β

 ∑
Ei∈E

ciyi − B

 (5.1)

s.t.
∑

e∈δ+(S)

xode + zod ≥ 1 ∀(o, d) ∈ Θ, S ∈ Sodo (5.2)

∑
i:e∈Ei

yi ≥ xode ∀(o, d) ∈ Θ,∀e ∈ Es (5.3)

xode ∈ [0, 1] ∀(o, d) ∈ Θ ∀e ∈ Es (5.4)

yi ∈ {0, 1} ∀Ei ∈ E, zod ∈ {0, 1} ∀(o, d) ∈ Θ (5.5)

where (5.2), (5.3), (5.4), (5.5) are basically constraints (5.2), (5.3), (5.5), (5.6) in Fig. 5.3 respectively

Dual Problem:

max
∑

(o,d)∈Θ,S∈Sod
o

µodS (5.6)

s.t.
∑

S:e∈δ+(S),S∈Sod
s

µodS − λ
od
e ≤ 0 ∀(o, d) ∈ Θ, ∀e ∈ E (5.7)

∑
S:S∈Sod

s

µodS ≤Mo,d ∀(o, d) ∈ Θ (5.8)

∑
(o,d)∈Θ

∑
e∈Ei

λode ≤ βci ∀Ei ∈ E (5.9)

µodS ∈ [0,∞) ∀(o, d) ∈ Θ, S ∈ Sodo (5.10)

λode ∈ [0,∞) ∀(o, d) ∈ Θ, e ∈ E (5.11)

Figure 5.4: Primal and dual of the PCSW-DSG problem

Let (xβ1 , yβ1 , zβ1) and (xβ2 , yβ2 , zβ2) be two minimizers for parameters β1 and β2 re-

spectively.

Assume that Z(zβ1) > Z(zβ2). It implies C(yβ1) < C(yβ2). Otherwise, Z(zβ1) +

β1C(yβ1) > Z(zβ2) + β1C(yβ2) such that (xβ2 , yβ2 , zβ2) is a better solution for β1 which

contradicts (xβ1 , yβ1 , zβ1) being a minimizer for β1.

Since (xβ2 , yβ2 , zβ2) is a minimizer for β2, we have

Z(zβ2) + β2C(yβ2) ≤ Z(zβ1) + β2C(yβ1) (5.12)

⇒Z(zβ1)− Z(zβ2) ≥ β2 (C(yβ2)− C(yβ1)) > β1 (C(yβ2)− C(yβ1)) (5.13)

⇒Z(zβ1) + β1C(yβ1) > Z(zβ2) + β1C(yβ2) (5.14)
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where (5.13) is true because we proved earlier by contradiction that C(yβ2) − C(yβ1) > 0

and β1 < β2.

(5.14) indicates (xβ2 , yβ2 , zβ2) is a better solution for β1 that contradicts that (xβ1 , yβ1 , zβ1)

is the minimizer for β1. Thus, my first assumption that Z(zβ1) > Z(zβ2) is wrong, so we

have Z(zβ1) ≤ z(zβ2).

Z(zβ1) ≤ Z(zβ2) also implies C(yβ1) ≥ C(yβ2). Otherwise, if C(yβ1) < C(yβ2), we

get Z(zβ1) +β2C(yβ1) < Z(zβ2) +β2C(yβ2) that says (xβ1 , yβ1 , zβ1) is a better solution for

β2 which is a contradication.

In summary, we have Z(β1) = Z(zβ1) ≤ Z(zβ2) = Z(β2) and C(β1) = C(yβ1) ≥

C(yβ2) = C(β2).

The bisection procedure starts with a suitably large interval bounding β and then nar-

rows it iteratively. At each iteration, a new β is picked as the middle point of the current

range and then the primal-dual algorithm is used to calculate C(β) and produce a near-

optimal strategy for β. By Proposition 5.6.1, if C(β) < B, all β′ greater than β will give

Z(β′) ≥ Z(β) and therefore can be abandoned. If C(β) > B, all β′ smaller than β will

give C(β′) ≥ C(β) and therefore can be abandoned. The procedure terminates when the

range is less than some threshold, and a β in the range along with the computed strategy is

returned.

Proposition 5.6.1 is true when the PCSW-DSG problem is solved optimally for each β,

but the bisection procedure is still valid with our approximate algorithm. Let (x̂β, ŷβ, ẑβ)

denote the near-optimal solution computed by the primal-dual algorithm for some β. And

let Ẑ(β) =
∑

(r,k′)∈ET ẑrk′β and Ĉ(β) =
∑M

s=1 csŷsβ . Then, we have

Proposition 5.6.2. Suppose terminal vertices in line 6 of Algorithm 1 are chosen in a

predefined order, as β increases, Ẑ(β) is nondecreasing and Ĉ(β) is nonincreasing.

Proof. Intuitively, as β becomes larger, the equality in (5.9) in the dual problem becomes

harder to satisfy. Since the terminal vertices are picked in the same order over different β,
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Algorithm 1 Primal-Dual Algorithm for PCSW-DSG

1: function PRIMALDUAL(Gd, E , β)
2: Set yi ← 0 ∀Ei ∈ E and zod ← 0 ∀(o, d) ∈ Θ
3: F ← φ
4: For each pair (o, d), the set Cod contains all vertices reachable from o in (V d, F )
5: Initially, Cod = {o} for each (o, d)
6: Mark all o-d pairs as active
7: while there exists some active pairs do
8: Increase µod

Cod
and λode for all active pairs simultaneously until

9: if (5.8) in Fig. 5.4 becomes tight for (o, d) then,
10: Mark (o, d) abandoned and set zod = 1
11: else . (5.9) in Fig. 5.4 becomes tight for Ei
12: set yi = 1 and F ← F ∪ e
13: for each active (o, d) do
14: expand Cod by e
15: end for
16: if Cod contains d for some (o, d) then
17: Mark (o, d) connected
18: end if
19: end if
20: end while
21: . Remove unused edge sets
22: for each Ei with yi = 1 do
23: if remove edges in Ei from F , all connected pairs are still connected then
24: Remove Ei and yi ← 0
25: end if
26: end for
27: return y
28: end function

the set of edge sets purchased for a larger β is the subset of edge sets for a smaller β which

gives us Proposition 5.6.2.

Finally, if the primal-dual algorithm performs near-optimally for the PCSW-DSG prob-

lem, the final solution computed by the bisection procedure will be near optimal for the

BSW-DSG problem. Although this procedure is not accompanied by a formal approxima-

tion guarantee, we observe that it produces near-optimal results on the problem instances

used in our experiments.
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5.6.2 Solving the Prize-Collecting Problem

I provide a primal-dual algorithm shown in Algorithm 1 to solve the prize-collecting

problem. The algorithm borrows ideas from the primal-dual algorithms of the generalized

Steiner tree problem [96]. The basic idea is to repeatedly increase the dual objective by in-

creasing the value of dual variables and simultaneously construct a feasible primal solution

based on the primal complementary slackness condition [94].

Definition 5.6.1. Primal Complementary Slackness Condition

xode = 1 =⇒
∑

S:e∈δ+(S),S∈Sods

µodS − λode = 0

zod = 1 =⇒
∑

S:S∈Sods

µodS = Mo,d

yi = 1 =⇒
∑

(o,d)∈Θ

∑
e∈Ei

λode = βci

Namely, xode = 1, zod = 1 and yi = 1 imply equality in constaints (5.7), (5.8) and (5.9) in

Fig. 5.4 respectively.

Lines 2-20 of Algorithm 1 are the major primal-dual procedure. We start with an infea-

sible primal solution where all x, y, z variables are 0, an empty graph (V d, F ) where F = φ

and a feasible dual solution where all µ and λ are 0. The graph (V d, F ) represents the pri-

mal solution: F contains e if xode = 1 for any o-d pair. The loop (lines 7-20) proceeds until

each (o, d) is either abandoned (zod = 1) or connected where we get a feasible primal solu-

tion by satisfying (5.2) in Fig. 5.4. Note that (5.3) is always satisfied as we proceed. A pair

is active meaning that constraint (5.2) of this pair is violated for some S. To satisfy (5.2)

for all S ∈ Sodo , at each iteration, we only increase the dual variable of the set S ∈ Sodo with

the smallest number of vertices for which the constraint (5.2) is violated. This smallest set

is Cod defined at line 4. At each iteration, we increase the dual variable of Cod for all (o, d)

simultaneously (line 8). If the constraint (5.7) becomes tight for some e, by the slackness
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condition, we want to add e in to F (set xode = 1), but e may not be purchased yet. So, we

continue increasing both µod
Cod

and λste with the same speed until following cases happen. If

(5.8) becomes tight for some (o, d), by the slackness condition, we set zod = 1 and never

consider this pair again because all constraints at (5.2) that involve this pair are satisfied

(line 10). If constraint (5.9) becomes tight for some Ei, we set yi = 1. Also, we know e

is purchased and can be added into F (line 12). At line 14, we update Cod with the newly

added edge. At line 16, d ∈ Cod means the pair is connected. In lines 22-26, the unused

edge sets are removed.

5.6.3 Complexity

Proposition 5.6.3. If we assume that |E|≤ |E| and |Θ|≤ |E|, the runtime of Algorithm 1

is bounded by O(|Θ||E|).

Proof. The algorithm takes at most (|E|+|Θ|) iterations, because at each iteration, either

an edge is added into F or a pair becomes inactive (abandoned or connected). When all

edges are in F , the loop terminates too. In line 8, we calculate the minimum amount that

the variable µ of all active Cod can increase. To do this,

To do this, at each iteration, we don’t need to worry about constraint (5.7). We only

need to check constraint (5.8) for all pairs and (5.9) for all edge sets in Fig. 5.4. It takes

O(|Θ|+|E|) In total, the line 8 takes O((|E|+|Θ|) · (|Θ|+|E|)).

Line 14 will only take O(|E||Θ|) in total because each edge will be expanded at most

once for each pair. During the prunning, checking connectivity only takes O(|E|) time.

Except these lines, other lines take insignificant runtime. Thus, for a connected network

where |V |≤ |E|, the total runtime will be O((|E|+|Θ|) · (|Θ|+|E|)).

5.6.4 Improvements

Several techniques can improve the quality of a solution produced by Algorithm 1.
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5.6.4.1 Local Search

We found it useful to do a local search, with 10-20 iterations, in a small range around the

β value returned by the bisection procedure to further improve the solution using random

orders of picking terminals. We note, however, that the improvement is limited, indicating

that the order of picking terminals doesn’t affect the quality that much.

5.6.4.2 Greedy Padding

Since we find a near-optimal β rather than an optimal one, the computed solution may

not use all the available budget. Therefore, to improve the solution, a greedy procedure can

be used to continue purchasing edge sets until the budget is exhausted. In our experiments,

only several additional edge sets can be purchased, so the procedure is very fast, but the

improvement is not significant, usually 1-2%.

5.7 Case Study: Conservation Planning Problem

Spatial conservation planning problems have received significant attention in the AI

community, resulting in a range of strategies for conserving land parcels in order to sup-

port the recovery of an endangered species or preserve biodiversity. Sheldon et al. [87]

study a restricted version of this problem—Red-cockaded Woodpecker (RCW)—in which

the planner selects a set of land parcels, subject to a budget constraint, to maximize the

spread of a population over a geographical network of land patches within a specific time

horizon. The underlying spreading process is modeled as a network diffusion process or

cascade [42] using a metapopulation model developed by ecologists. Due to the stochas-

ticity of process, the RCW problem can be written as a stochastic optimization problem.

I apply my algorithm to solve the RCW problem. Remember that the basic idea of the

algorithm is to first construct the deterministic optimization using the sampling technique

and then solve the deterministic problem using the bisection procedure and the primal-dual

algorithm. Sheldon et al. [87] use a different sampling technique to convert the RCW prob-
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lem into a MIP and use a MIP solver to solve the MIP. Their method can only deal with

acyclic directed graphs while the RCW problems are defined on acyclic directed graphs. I

observe that my sampling procedure degenerates into their sampling procedure in the RCW

problem.

In the rest of this section, I formally define the RCW problem, formulate it as a stochas-

tic network design problem, and show the experimental results of applying my algorithm

to the problem.

5.7.1 Problem Settings

Consider a conservation area consisting of habitat patches that are the atomic units in

the population dynamics model and can be either occupied or unoccupied by the species.

These patches are grouped into non-overlapping parcelsP1,P2, ...,PL, which are the small-

est units available for purchase. A parcel Pi can be purchased with cost ci used to restore

and conserve its habitat patches so they are suitable for the species to occupy. A patch

can be occupied only if the parcel that it belongs to is purchased. A conservation strategy

is an L-dimensional vector y where yl = 1 if that the lth parcel is purchased and yl = 0

otherwise. Let P be the set of parcels and Pa be the set of patches.

Sheldon et al. [87] use a metapopulation model from ecology [34] to describe the

stochastic occupancy dynamics of the species. In this model, a patch is either occupied

or unoccupied at each time step h ∈ {0, 1, ..., H − 1}. At time 0, the species occupy a

set of patches called sources. At any time h, an occupied patch v triggers two stochastic

events: (1) the population at u colonizes an unoccupied patch v with probability P c
uv (typi-

cally decays with distance between the patches) that makes v occupied at time h + 1; and

(2) the population at v becomes extinct with probability P e
v , making v unoccupied at time

h+ 1.

The goal of conservation planning is to select a set of parcels to purchase, without

exceeding a budget B, such that the expected number of patches being occupied at time
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H − 1 is maximized. More concretely, given a strategy y, define 0-1 random variable

X(y)v,h for each patch v and each time h to indicate whether the patch v is occupied at

time h (X(y)v,h = 1) or not (X(y)v,h = 0). The best strategy is obtained by solving the

following optimization problem:

arg max
y

∑
v

E[X(y)v,H−1] s.t.
∑
l:yl=1

cl ≤ B (5.15)

5.7.2 Formulated as a Stochastic Network Design Problem

The diffusion process of the species can be written as a layered graph as shown in

Fig. 5.5. The graph contains a node vh for patch v and time h. For a pair of patches

(u, v) (u 6= v) and a h ∈ {0, . . . , H − 2}, the graph contains a directed edge (uh, vh+1),

meaning that v may be occupied at h + 1 when u is occupied at h. For a patch v and h ∈

{0, . . . , H − 2}, the graph contains a directed edge (vh, vh+1), meaning that the population

occupying v at h may survive to time h+ 1 with some probability. The graph also contains

a unique node s as the dummy source and it has a directed edge to any v0 if v is initially

occupied, for example, u and v are the initially occupied nodes in the Fig. 5.5.

Now, we set the original survival probability and the modified survival probability. Note

that the management actions in this problem are to purchase land units. Therefore, for any

patch v, we set pouh,vh+1
= 0 for all h ∈ {0, . . . , H − 2} and pos,v0

= 0 if the edge (s, v0)

exists, meaning that before the patch v is purchased, all edges going into this patch are

blocked. In contrast, we set pmuh,vh+1
= pcuv if u 6= v and pmuh,vh+1

= 1 − pev if u = v for all

h ∈ {0, . . . , H − 2} and pms,v0
= 1 if the edge (s, v0) exists, meaning that after the patch

v is purchased, all edges going into this patch are passable. To configure the actions, for

each parcel Pi, an action ai is defined to raise the probability of any edge (uh, vh+1) with

v ∈ Pi from pouh,vh+1
to pmuh,vh+1

. For example, in Fig. 5.5, P1 contains patches u and v, so

the action a1 can all edges related to u and v to 1. Specifically, an action affacts edges in

the set
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}
P1

}
P2

h = 0 h = 1 h = 2 h = 3 h = 4

s

u0 u1 u2 u3 u4

v0 v1 v2 v3 v4

w0 w1 w2 w3 w4

Figure 5.5: An example of the input directed graph of the stochastic network design prob-
lem that models the RCW problem, in which there are three patches u, v, w, two parcels
P1,P2 and 5 time steps.

{uh, vh+1|u, v ∈ Pi, h ∈ {0, . . . , H − 2}}
⋃
{s, v0|v ∈ Pi, v is occupied at time 0}

At last, we configure the reward function. Obviously, this is a single flow problem.

Therefore, we set rs,vH−1
= 1 for any patch v and the reward of other pairs to be 0, meaning

that we only care how many patches can be reached by birds at the last time step.

With this configuration, we constructed an instance of the stochastic network design

problem which is equivalent to the RCW problem, and we see the graph is a directed

acyclic graph.

5.7.3 Sampling Procedure and the MIP Formulation

The stochastic optimization problem (5.15) is very hard to solve directly, so the SAA

method discussed in Section 5.3 is used. We sample N independent sample graphs using

the procedure discussed in Section 5.3.1, each of which represents a possible outcome of

the stochastic process. Since the original survival probabilities are all 0, all original edges

eo are absent. For the modified edges em, we sample a value of Ue and determine their the

presences.

More concretely, one sample graph G′k(π) is a layered graph, as shown in Fig. 5.6, that

contains a node vh for any patch v and any time step h. The edges in each graph G′k(π)

are determined by the sampling procedure, that is, G′k(π) contains all modified edges that

are sampled to be present. With a conservation strategy or a policy π, we can determine
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}
P1

}
P2

h = 0 h = 1 h = 2 h = 3 h = 4

u0 u1 u2 u3 u4

v0 v1 v2 v3 v4

w0 w1 w2 w3 w4

Figure 5.6: Example of the layered graph of a scenario with three patches u, v, w and
two parcels P1,P2, showing parcels (grey boxes), occupied (red) and unoccupied (blue)
patches.

whether v is occupied at h by checking whether there exists a valid path from some u0 to

vh such that (1) u is occupied at time 0 and (2) all patches on the path are purchased. Then,

the discrete optimization problem can be written as

max
π⊆A

1

N

N∑
k=1

∑
vH−1∈ set of patches

I[v is connected to s in G′k(π)] s.t.
∑
e∈π

ce ≤ B (5.16)

which is the same as (5.8) but customized to the RCW problem by removing pairs of the

rewards being 0.

This problem can be formulated as a compact MIP by [87] so that the standard MIP

solver runs more efficiently. Let the variable xkv,H−1 to denote whether the node vH−1 is

connected to s in kth sample graph. Let the binary variable yi to denote whether the par-

cel Pi is purchased or not. Constraint (5.2) basically says that the total cost of purchased

parcels is no greater than the budget limit. Constraint (5.3) says that a node xkv,h is con-

nected to s only if the correspondent patch v is in some purchased parcels. Constraint (5.4)

says that a node xkv,h is connected to s only if a node that has an directed edge to the node

is connected to s. Constraint (2.5) requires the value of each x variable to be in range [0, 1]

instead of being in {0, 1}. It can be shown that in the optimal solution, the value of any

xkv,h is either 0 or 1. The MIP formulation in Fig. 5.7 is more compact than the general MIP

formulation of the BCSW-DSG problem in Fig. 5.3. So, in the RCW problem, if we use

the standard MIP solver, we use it to solve MIP in Fig. 5.7.
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max
x,y

1

N

N∑
k=1

∑
v∈Pa

xkv,H−1 (5.1)

s.t.
∑
Pi∈P

ciyi ≤ B (5.2)

xkv,h ≤
∑

i:v∈Pi

yi ∀k = 1 : N,∀v ∈ Pa,∀h = 0 : H − 1 (5.3)

xkv,h+1 ≤
∑

(uh,vh+1)∈G′
k

xku,h ∀k = 1 : N,∀v ∈ Pa,∀h = 0 : H − 1 (5.4)

0 ≤ xkv,h ≤ 1 ∀k = 1 : N,∀v ∈ Pa,∀h = 0 : H − 1 (5.5)

yi ∈ {0, 1} ∀Pi ∈ P (5.6)

Figure 5.7: A compact MIP formulation for the RCW problem

5.7.4 Experimental Results

We used the data set for the RCW problem introduced by [87]. The study area includes

2537 patches and 443 parcels. The data set specifies the colonization probabilities between

all pairs of patches, the grouping of patches into parcels, the prices of parcels and the initial

occupancy status of patches. We used a planning horizon of 100 years and compared our

algorithm with a MIP solver and with a greedy algorithm. In each iteration, the greedy

algorithm chooses the edge set with the highest ratio of increase in objective value to cost,

which gives better solutions than another greedy variant that chooses the edge set with the

highest increase in objective value. We used the Gurobi Optimizer as the MIP solver [31].

All the experiments were run on a 2.2GHz Intel Core i7 CPU with 16GB of RAM.

5.7.4.1 Small Sample Size

We compare three algorithms for 10 samples and the results are shown in Fig. 5.8. For

our algorithm, we applied Algorithm 1 twice, once using the forward method and once us-

ing the backward method, and then applied the local search and greedy padding techniques

to the better of those two solutions. In Fig. 5.8(b), our algorithm runs significantly faster

than MIP and 10–20 times faster than the greedy algorithm. In Fig. 5.8(a), both our algo-
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(a) Optimality w.r.t. budget (b) Runtime w.r.t. budget

Figure 5.8: Optimality and runtime versus budget with 10 samples

(a) Optimality w.r.t. budget (b) Runtime w.r.t. budget

Figure 5.9: Optimality and runtime versus budget with 300 samples

rithm and the greedy algorithm produce near-optimal solutions. Our algorithm outperforms

the greedy algorithm on larger budget sizes and performs slightly worse on smaller budget

sizes.

5.7.4.2 Large Sample Size

We also tested our algorithm and the greedy baseline using 300 samples. The results are

show in Fig. 5.9. We did not test Gurobi because it fails to solve MIPs with more than 20

samples by either using too much time or running out of memory. Our algorithm performs

almost identically to the greedy algorithm when the budget is smaller than 3 × 108 and

outperforms the greedy algorithm when the budget is greater than 3×108. Fig. 5.9(b) shows

that our algorithm is 10–30 times faster than the greedy algorithm and its running time is

almost constant with respect to budget, while the greedy algorithm takes longer for larger
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budgets. This implies that our algorithm can scale to larger network sizes or more samples,

that latter of which leads to improved solution quality within the SAA methodology.

5.7.4.3 Synthetic Data

In the RCW problem, even though the discrete optimization problem is NP-hard, the

greedy algorithm is still able to produce a solution within 80% of the optimal value, which

suggests that the problem does not badly violate submodularity. In this section, we de-

sign a group of problems that are more challenging. These synthetic problems are moti-

vated by the corridor design problem, which is another important conservation planning

problem [29] in which the goal is to purchase a subset of parcels to build a (long) corri-

dor connecting distant habitat areas in a fragmented landscape. When formulated within

our context, the objective function violates submodularity because purchasing individual

parcels has no or little effect on the objective function until the entire corridor is purchased,

at which point the endpoints become connected, and there is a large jump in the objective

value.

With this motivation, we construct a small problem instance as follows (see Fig. 5.10(a)).

We first create M1 parcels, each of which are directly connected to the source population

and so carry an immediate reward of p1 if purchased. We also create a free parcel which has

reward of p2 if it is reachable from the source. The free parcel is connected by a corridor

of M3 parcels, which have reward of p3 if accessible. All parcels in the corridor must be

purchased to realize the reward of the free parcel. If we set p2 � p1 > p3 , the optimal

strategy should first purchase all parcels in the corridor whenever the budget allows, and

first purchase all of the M1 parcels if the budget is not enough to purchase the corridor.

The experimental results of our algorithm and the greedy algorithm on the synthetic

data are shown in Fig. 5.10(b). Our algorithm gives the optimal solution as its curve over-

laps with the curve of the MIP solver. When the budget is not enough (less than 7500) to

purchase all parcels in the corridor, the greedy algorithm performs optimally. But it per-
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(a) Corridor design problem (b) Optimality w.r.t. budget

Figure 5.10: Experiments on synthetic data

forms poorly when the budget is enough (greater than 7500) because it never purchases

any parcels in the corridor before all M1 parcels are purchased. From these results, we ob-

served that when the objective function is not submodular as in our simple problem setting,

the greedy algorithm may produce arbitrarily bad solutions while our algorithm can still

produce near-optimal solutions.

5.8 Summary

In this chapter, I study the stochastic network framework under general directed graphs.

One problem within the framework, in general, is at least #P-hard, so we try to design

an approximate algorithm and find nearly optimal solutions of the problem. The basic

idea is to construct a deterministic optimization problem using an SAA method and use

the solution to the deterministic optimization problem as the approximate solution. The

deterministic optimization problem is also NP-hard, and its size increases along with the

number of samples and the size of the network. A fast algorithm combining a bisection

procedure and a primal-dual algorithm is developed to produce high-quality solutions. At

last, the algorithm is applied to solve a conservation planning problem called the RCW

problem. The algorithm runs about 120 times faster than a MIP solver and up to 30 times

faster than a greedy algorithm. The solutions produced by the algorithm also are nearly

optimal and slightly better than the solutions produced by the greedy algorithm.
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CHAPTER 6

STOCHASTIC NETWORK DESIGN FOR DISTANCE
MINIMIZATION

In Chapter 5, the goal of a network design problem is to improve the connectivity of

a set of specified node pairs in a network, for which it is assumed that the lengths of all

edges equal to one unit. The uncertainty of an edge is whether it is present or absent.

In this chapter, we study a more general setting in which both the connectivity and the

distance between these node pairs, so we allow an edge to have an arbitrary length in the

graph. Since the length of an edge may not be known beforehand, we use a probability

distribution to describe it. An action can be taken to change the probability distribution and

make the length of an edge shorter.

One motivating problem of this setting is the emergency medical service (EMS) re-

sponse time minimization problem. In the problem, we are given a road network and a set

of origin-destination (o-d) node pairs. An origin node represents an ambulance dispatch lo-

cation, and a destination node presents a patient location. During natural disasters such as

flood or earthquakes, a road may be damaged which makes the road impossible for traffic

to get across or incurs traffic some delays to traffic. The response time of EMS is increased

by either case. To keep the response time within an acceptable level, people selectively re-

inforce some roads before a natural disaster to reduce the travel time on the road when the

disaster happens. Here is the optimization problem that a decision maker needs to solve.

Given a limited amount of budget, which road segments should we select to reinforce such

that the average EMS response time between a set of node pairs is minimized.

To solve the problem, we define a more general network design framework called

stochastic network design with arbitrary edge lengths (SND-AEL) and formulate the EMS
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response time minimization problem as an SND-AEL problem. The SND-AEL frame-

work extends the stochastic network design framework in the following ways. Each edge

has a length randomly distributed in a range [0,∞], where∞ equivalently means the edge

doesn’t exist. An action can be taken to change the probability distribution of the length, for

example, to make the length stochastically shorter, which is explained later. For each dis-

connected o-d pair (e.g., distance is∞), a penalty Muv is charged. The SND-AEL problem

is to decide which actions to take subject to a budget limit to minimize both the distance

between the connected o-d pairs and the total penalties charged.

A SND-AEL problem, in general, is harder to solve than a stochastic network design

problem under a general directed graph. To develop a scalable algorithm, the same ba-

sic idea in Chapter 5 is used. First, a sample average approximation (SAA) method is

conceived to construct a deterministic optimization problem. Then, a fast algorithm is de-

veloped to solve the deterministic optimization problem, and the obtained solution is used

as an approximate solution to the original problem. The SAA method and the fast algorithm

are different from the ones used in Chapter 5.

The structure of this chapter is as follows. First, the SND-AEL framework is defined

and more details about the EMS response time minimization problem are provided. Then,

the sampling procedure and the fast algorithm are introduced. At last, the experimental

results of applying the algorithm to the EMS response time minimization problem are pre-

sented.

Both the sampling procedure and the fast algorithm extend the ones discussed in Chap-

ter 5. If you already read Chapter 5, you may find some texts in this chapter are repetitive,

which are still included to make this chapter self-contained. The difference between the

algorithm for SND-AEL and the algorithm introduced in Chapter 5 are mentioned in this

chapter..
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6.1 Stochastic Network Design with Arbitrary Edge Lengths

This section defines the SND-AEL framework and explains how the framework is a

more general framework than the stochastic network design framework.

6.1.1 Stochastic Network with Arbitrary Edge Lengths

A stochastic network with arbitrary edge lengths consists of a directed graph G =

(V,E) where each edge e ∈ E has a length randomly distributed within [0,∞] (∞ indicates

that the edge is absent or fails). This is a generalization of the stochastic network introduced

in Chapter 3 in which each edge is either present or absent. The survival probability equals

to the probability that the edge length is less than∞.

6.1.2 Management Actions

At each edge (u, v), an action auv can be taken to change an edge length distribution.

Let π denote a policy, a set of actions being taken. Then, the length of edge e is represented

by a random variable Le(π) whose distribution depends on π. We are given two cumulative

distribution functions (CDF): F o
e : [0,∞] → [0, 1] (o means ”original”) and Fm

e : [0,∞]→

[0, 1] (m means ”modifed”) so that

CDF of Le(π) =

 F o
e if ae /∈ π

Fm
e if ae ∈ π

(6.1)

The action is taken to make the length stochastic shorter, that is, two CDFs satisfy the

constraint F o
e (l) ≥ Fm

e (l) for any l ∈ [0,∞]. Let L(π) denote the random vector consisting

of Le(π) for all e ∈ E.

6.1.3 Decision Making Problem

For a given policy π, G along with Le(π) defines a probability distribution over a set

of networks with edge lengths. Each network in the set has node set V , edge set E and

edge lengths drawn from range [0,∞]. Let SPL(u, v, L(π);G) represent the shortest path
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length or distance from a node u to a node v. If the distance is∞, SPL(u, v, L(π);G) is set

to be Mod which is greater than any finite path length Mod represents the penalty charged

for not connecting u and v. Then, the decision making problem can be written as

min
π⊆A

∑
u,v∈V

EL(π) [ruv · SPL(u, v, L(π);G)] s.t.
∑
ae∈π

ce ≤ B (6.2)

where A contains all available actions and ruv represents the importance of the pair (u, v).

We don’t call ruv the reward of (u, v) because the problem is a minimization problem.

ruv is better to be called as the importance of (u, v). Note that if a pair (u, v) has larger

importance, more efforts need to be invested to minimize the distance from u to v.

6.1.4 Extensions

In the above definition, we assume that the length of each edge is independently dis-

tributed, but our solution method is applicable to more complex cases where the lengths of

multiple edges are correlated or one investment can affect multiple edges simultaneously.

6.1.5 Comparison with Stochastic Network Design

A stochastic network design problem with arbitrary edge lengths and a standard stochas-

tic network design problem share lots of similarities and have some differences.

• A stochastic network design problem focuses on the connectivity of the network

while an SND-AEL problem focuses on both connectivity and distance.

• Two frameworks use the concept of the stochastic network to model the uncertainty

of underlying phenomenon in slightly different way. A stochastic network design

problem defines each edge to be either present or absent with certain probability. An

SND-AEL problem defines a probability distribution for the length of each edge. The

latter definition is more general than the former one because the length of an edge

being∞ is equivalent to the edge being absent and the length of the edge less than

∞ is equivalent to the edge being present.
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• Both frameworks define management actions to modify the outcomes of a stochastic

network. In a stochastic network design problem, an action can be taken to raise

the survival probability and therefore improve the connectivity of the network. In

an SND-AEL problem, an action can be taken to shorten the length of an edge and

improve both the connectivity (e.g., shortening the length from ∞ to some value

<∞) and the distance.

• Both frameworks use ruv to represent the importance of connecting a pair of nodes.

In an SND-AEL problem, with a larger the value of ruv, we want the probability that

u is connected to v to be higher and the distance from u to v to be shorter.

• In a stochastic network design problem, the goal is to maximize the expected total

rewards. A reward is collected for each pair of connected nodes. In an SND-AEL

problem, the goal is to minimize the expected weighted distance between a set of

node pairs in which a penalty is charged for each disconnected node pair. If the

penalty is very large (e.g., infinity), the SND-AEL becomes equivalent to a stochastic

network design problem.

6.1.6 Connection to the Continuous-Time Influence Maximization:

We note that the SND-AEL framework is also related to the continuous-time influence

maximization problems [77, 19]. The time of a node being infected can be considered as

the shortest path length from a source to this node in our problem. Our problem suggests

novel variants of influence maximization where it is possible to accelerate propagation by

manipulating certain edges in addition to selecting diffusion sources [44].

6.1.7 Complexity

Theorem 6.1.1. An SND-AEL problem is APX-hard and is neither submodular nor super-

modular.
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Proof. A problem called predisaster transportation network preparation introduced by the

paper [83] is a special case of the SND-AEL framework. It is proved that a predisaster

transportation network preparation problem, in general, is APX-hard and is neither sub-

modular nor super-modular [83]. Thus, an SND-AEL problem, in general, has the same

hardness results.

6.2 Algorithm to Solve SND-AEL Problems

The basic idea to solve an SND-AEL Problem is the same as the idea to solve a stochas-

tic network design problem for general directed graphs introduced in Chapter 5. The two

components–a sampling procedure and a fast primal-dual algorithm–are discussed as fol-

lows.

6.3 Sampling Procedure

We use the SAA method to recast the stochastic optimization problem (6.2) as a de-

terministic analogue using N sampled scenarios that are generated by sampling from the

underlying distribution. The basics of the SAA method is introduced in Section 5.1. How-

ever, we cannot directly sample L(π) as its distribution depends on π.

Here, we introduce a new sampling method. The basic idea is that we define a new

random graph G′ = (V,E ′, ξ) where ξ = {ξe|∀e ∈ E ′} and ξe is a random variable

representing the length of edge e ∈ E ′. The distribution of ξe does not depend on any

policy, so the sample of G′ can be drawn before applying policies. Then, we create the

deterministic optimization problem using N samples ofG′.

More specifically, inG′, there are two parallel edges eo (original edge) and ei (invested

edge) in E ′ for each edge e ∈ E, with lengths ξeo and ξei respectively. We further define

a random graph G′(π) = {V,E ′(π), ξ} parameterized by policy π. This graph always in-

cludes the original edge (length ξe0) and will include the invested edge (length ξei) if and

only if e ∈ π. If e /∈ π, the distance from u to v is ξe0; we want this to have CDF He.
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If e ∈ π, the distance from u to v is min{ξe0 , ξe1} because both edges are in the graph;

we want this to have CDF Fe. To achieve this, for each edge e ∈ E, we define a uniform

random variable Ue in the range [0, 1] and use it to define:

ξeo = min
l:F oe (l)=Ue

l, ξei = min
l:Fme (l)=Ue

l (6.3)

With this definition, we can sample the values of ξeo and ξei independently of any policy.

First, a value of Ue is sampled to be the cumulative probability. Then, we pick the smallest

lengths that have cumulative probability Ue from F o
e and Fm

e respectively. If the function

F o
e or Fm

e is strictly increasing, we have ξeo = (F o)−1(Ue) or ξei = (Fm)−1(Ue). Also,

if F o
e or Fm

e is a discrete CDF, the probability of any sampled value is nonzero. Now, we

claim the following result.

Theorem 6.3.1. For any fixed policy π ⊆ E and two vertices o, d ∈ V , the expected short-

est path length from o to d in G′(π) equals to EL(π) [SPL(o, d, L(π);G)] in the original

SND-AEL problem.

Proof. First, let’s consider an arbitrary policy π and an edge e ∈ E. For a fixed length l,

we claim that

Pr(Le(π) ≤ l) =

 Pr(ξeo ≤ l) if e /∈ π

Pr(min{ξeo , ξei} ≤ l) if e ∈ π
(6.4)

Remember that we defined

ξeo = min
l:He(l)=Ue

l, ξei = min
l:Fe(l)=Ue

l

and both He and Fe are nondecreasing functions.
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• Case 1: e /∈ π. Only edge eo exists in G′(π). In G, Le(π) has CDF He. Then we

have

Pr(ξeo ≤ l) = Pr( min
l′:He(l′)=Ue

l′ ≤ l)

= Pr(Ue ≤ He(l)) = He(l)

To explain the second last equation, let l′′ = minl′:He(l′)=Ue l
′. If l′′ ≤ l, we have

He(l
′′) = Ue ≤ He(l).

• Case 2: e ∈ π, both eo and ei are present inG′(π). In G, Le(π) has CDF Fe.

Remember that we define the concept of stochastically shorter as Fe(l′) ≥ He(l
′) for

any l′. So, we claim

min
l′:He(l′)=Ue

l′ ≥ min
l′:Fe(l′)=Ue

l′

Let l1 = minl′:He(l′)=Ue l
′ and l2 = minl′:Fe(l′)=Ue l

′. We have He(l1) = Fe(l2) = Ue.

If l1 < l2, since l2 is the smallest length with Fe(l2) = Ue, we haveHe(l1) ≤ Fe(l1) <

Ue which contradicts He(l1) = Ue. Therefore, l1 ≥ l2 and the claim holds.

Then, we have

Pr(min{ξeo , ξei} ≤ l)

=Pr(min{ min
l′:He(l′)=Ue

l′, min
l′:Fe(l′)=Ue

l′} ≤ l)

=Pr( min
l′:Fe(l′)=Ue

l′ ≤ l}) = Pr(Ue ≤ Fe(l)) = Fe(l)

Now, we prove the theorem. First, we prove the easy case where there are no parallel

edges in G and we only consider a single path p = {v1, v2, v3, ..., vn} in G. In G′(π), we
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only consider edges (vi, vi+1)o and (vi, vi+1)i if (vi, vi+1) ∈ π for all i = 1 : n − 1. We

ignore all other edges in both graphs for now. Then, for any shortest path length l in G,

the probability that l is achieved by G with policy π is the same as the probability that l

is achieved by G′(π) based on our previous claims. Thus, basically, these two graph gives

the same probability for any shortest path length and any path. So, the claim in the theorem

holds.

To summarize the SAA procedure, first, we generate N samples of G′, {G′1, ..., G′N},

by sampling the value of Ue’s and applying (6.3). In G′k, edges have fixed lengths. Then,

we form the following deterministic optimization problem:

min
π⊆E

1

N

∑
(o,d)∈Θ

N∑
k=1

SPL(o, d,G′k(π)) s.t.
∑
e∈π

ce ≤ B (6.5)

where SPL(o, d,G′(π)) is the shortest path length in G′(π) from o to d. By theorem 6.3.1,

for any policy, the objective of (6.5) converges to the objective of (6.2) asN goes to infinity.

In the next two sections, we formally define the problem (6.5) and give a fast algorithm to

solve it.

6.4 Budget Set Weighted Shortest Path Steiner Graph (BSW-SPSG)

Problem

In this section, wedefine a new network design problem called budget set weighted

shortest path Steiner graph (BSW-SPSG) problem, which is similar to the BSW-DSG prob-

lem introduced earlier in Section 5.4. Then, we show how the deterministic optimization

problem (6.5) can be formulated as a BSW-SPSG problem.

The input of a BSW-SPSG problem consists of a directed graph Gs = {V s, Es} where

each edge has fixed length le and a set of o-d pairs Θ = {(o1, d1), ..., (oT , dT )} (oi, di ∈ V s)

where each pair is associated with a penalty Mst. We are also given a collection of edge

105



sets E = {E1, ..., ES} where Ei ⊆ Es and each Ei is associated with a cost ci. A subset

A ⊆ E corresponds to a subgraph Gs(A) = {V s, Es(A)} with Es(A) = ∪Ei∈AEi. The

goal is to purchase edge sets A, subject to a budget limit B, such that in Gs(A), the total

shortest path length from o to d for all (o, d) ∈ Θ is minimized. That is,

min
A⊆E

∑
(o,d)∈Θ

SPL(o, d,Gs(A)) s.t.
∑
Ei∈E

ci ≤ B (6.6)

where SPL(o, d,Gs(A)) is the shortest length path from o to d in Gs(A), set to be Mo,d if

there is no path from o to d.

To write the optimization problem (6.5) as a BSW-SPSG problem, we combine N sam-

pled graphs {G′1, ..., G′N} of G′ into a single graph Gs with appropriate edge sets E. The

vertex set of Gs is the union of those from the samples {G′i}. The edges of Gs include

original edges {eok} and invested edges {eik} of all samples. For each edge e in G, the in-

vested edges of finite length (from all samples) are grouped into an edge set Ee with cost

ce. The unimproved edges for all edges in G are grouped into an additional edge set E0 of

zero cost. Finally, let set Θ contains o-d pairs in all sampled graphs. An example is shown

in Fig. 6.1.

The BSW-SPSG problem can be formulated as an MIP shown in Fig. 6.2. You may

notice that the MIP formulation for the BSW-SPSG problem is the same as the MIP formu-

lation for the BSW-DSG problem in Fig. 5.3 except that in the objective we have addition

term for distance. To be self-contained, each component of this MIP is still explained.

A binary variable xode is defined for each edge e ∈ E and o-d pair indicating whether

e is on (=1) the shortest path from o to d or not (=0). A binary decision variable yi is

defined for each edge set Ei ∈ E indicating whether the set is purchased (=1) or not (=0).

All yis define a set A. A binary variable zod is defined for each o-d pair indicating whether

the pair is penalized/disconnected (=1) or not/connected (=0). Let set Sodo consist of all

subsets of V that contain o but not d, Sodo = {S|S ⊆ V ∧ o ∈ S ∧ d /∈ S}. Let set δ+(S)

all outgoing cut edges of S, that is, δ+(S) = {(u, v)|(u, v)∈E ∧ u ∈ S ∧ v /∈ S}. With
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u v w

The original graph G

of the GPTNP problem

e f sampling

u1 v1 w1

(ei1, 8)

(eo1, 12)

(f i1,∞)

(f o1 ,∞)

u2 v2 w2

(ei2, 5)

(eo2, 10)

(f i2, 6)

(f o2 ,∞)

sampled G′1

sampled G′2

Gs of BSW-SPSG

Figure 6.1: An example of creating the BSW-SPSG problem. The tuple (ei2, 5) means the edge
ei2 has sampled length 5. The graph Gs contains all vertices and edges in gray. We have edge sets
Ee = {ei1, ei2}, Ef = {f i2} and E0 = {eo1, eo2} with c0 = 0 in the BSW-SPSG problem. If the o-d
pair in the GPTNP is {u,w}, in BSW-SPSG, Θ = {(u1, w1), (u2, w2)}

constraint (6.2), if d is connected to o (zod = 0), at least one cut edge e for any set in Sodo

should have value xode = 1. With constraint (6.3), an edge is on the shortest path from o to

d only if it is purchased. Constraint (6.4) is the budget constraint. It is easy to show that

relaxing binary variable x into continuous variable in [0, 1] will not change the value of the

optimal solutions.

Theorem 6.4.1. The BSW-SPSG problem is NP-hard and its objective function is neither

sub- nor super-modular.

Proof. The theorem can be proved using the same techniques being used in the proof of

Theorem 5.4.1 and are omitted.

6.5 Solving the BSW-SPSG Problem

To solve a BSW-SPSG problem, we first create a PCSW-SPSG problem by folding the

budget constraint into the objective with a β based on Lagrangian relaxation method [53,
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min
∑

(o,d)∈Θ

(
∑
e∈Es

dex
od
e ) +Mo,dz

od (6.1)

s.t.
∑

e∈δ+(S)

xode + zod ≥ 1 ∀(o, d) ∈ Θ, S ∈ Sodo (6.2)

∑
i:e∈Ei

yi ≥ xode ∀(o, d) ∈ Θ, ∀e ∈ Es (6.3)

∑
Ei∈E

ciyi ≤ B (6.4)

xode ∈ [0, 1] ∀(o, d) ∈ Θ ∀e ∈ Es (6.5)

yi ∈ {0, 1} ∀Ei ∈ E, zod ∈ {0, 1} ∀(o, d) ∈ Θ (6.6)

Figure 6.2: MIP formulation of the budget BSW-SPSG problem

39]. The MIP of PCSW-SPSG is shown in Fig. 6.3. Then, the bisection procedure is used

to find a β such that by solving the prize-collecting problem with β, a high quality solution

of the budget problem can be obtained. The bisection procedure is basically the same as the

one introduced in Section 5.6.1. Briefly, the bisection procedure starts with a large interval

of β and halves it iteratively until narrow enough. At each iteration, a solution is found by

solving the prize-collecting problem with β. If the cost of the solution is greater than B,

the lower half of the interval is abandoned. Otherwise, the higher half is abandoned.

6.5.0.1 Solving the Prize-Collecting Problem

To scale up to large networks, a fast primal-dual algorithm is developed, shown in Al-

gorithm 2, to solve the PCSW-SPSG problem approximately. Fig. 6.3 gives the dual formu-

lation of the LP relaxation of the prize-collecting problem. To compare the dual problem

of PCSW-SPSG with the dual problem of BSW-DSG in Fig. 5.4, the only difference is the

constraint (6.4). In constraint (6.4), the difference of two variables is less than de while in

constraint (5.7), the difference of two variables is less than 0.

The algorithm borrows ideas from the primal-dual algorithms of the single pair shortest

path problem and the generalized Steiner tree problem [96]. The basic idea is to repeatedly
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Prize-Collecting Problem / Primal Problem:

L(β) =min

 ∑
(o,d)∈Θ

(
∑
e∈E

dex
od
e ) +Mo,dz

od

 + β

 ∑
Ei∈E

ciyi − B

 (6.1)

s.t. x, y satisfy constraints (6.2), (6.3), (6.5), (6.6) in Fig. 6.2 (6.2)

Dual Problem:

max
∑

(o,d)∈Θ,S∈Sod
o

µodS (6.3)

s.t.
∑

S:e∈δ+(S),S∈Sod
s

µodS − λ
od
e ≤ de ∀(o, d) ∈ Θ,∀e ∈ E (6.4)

∑
S:S∈Sod

s

µodS ≤Mo,d ∀(o, d) ∈ Θ (6.5)

∑
(o,d)∈Θ

∑
e∈Ei

λode ≤ βci ∀Ei ∈ E (6.6)

Figure 6.3: Primal and dual of the prize-collecting problem

increase the dual objective by increasing the value of dual variables and simultaneously

construct a feasible primal solution based on the primal complementary slackness condi-

tion [94].

Definition 6.5.1. Primal Complementary Slackness Condition xode = 1, zod = 1 and

yi = 1 imply equality in constaints (6.4), (6.5) and (6.6) in Fig. 6.3 respectively.

Lines 2-20 of Algorithm 2 are the major primal-dual procedure. We start with an in-

feasible primal solution where all x, y, z variables are 0, an empty graph (V s, F ) where

F = φ and a feasible dual solution where all µ and λ are 0. The graph (V s, F ) represents

the primal solution: F contains e if xode = 1 for any o-d pair. The loop (lines 7-20) proceeds

until each (o, d) is either abandoned (zod = 1) or connected where we get a feasible primal

solution by satisfying (6.2) in Fig. 6.2. Note that (6.3) in Fig. 6.2 is always satisfied as we

proceed. A pair is active meaning that constraint (6.2) of this pair is violated for some S.

To satisfy (6.2) for all S ∈ Sodo , at each iteration, we only increase the dual variable of the

set S ∈ Sodo with the smallest number of vertices for which the constraint (6.2) is violated.
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Algorithm 2 Primal-Dual Algorithm
1: function PRIMALDUAL(Gs, E , β)
2: Set yi ← 0 ∀Ei ∈ E and zod ← 0 ∀(o, d) ∈ Θ
3: F ← φ
4: For each pair (o, d), the set Cod contains all vertices reachable from o in (V s, F )
5: Initially, Cod = {o} for each (o, d)
6: Mark all o-d pairs as active
7: while there exists some active pairs do
8: Increase µod

Cod
of all active pairs simultaneously. If (6.4) in Fig. 6.3 becomes tight for

edge e, increase λode to maintain feasibility until
9: if (6.5) in Fig. 6.3 becomes tight for (o, d) then,

10: Mark (o, d) abandoned and set zod = 1
11: else . (6.6) in Fig. 6.3 becomes tight for Ei
12: set yi = 1 and F ← F ∪ e
13: for each active (o, d) do
14: expand Cod by e
15: end for
16: if Cod contains d for some (o, d) then
17: Mark (o, d) connected
18: end if
19: end if
20: end while
21: For each connected (o, d), find the shortest path in (V s, F )
22: for each Ei with yi = 1 do
23: if exists a shortest path using an edge in Ei then
24: yi ← 1
25: else
26: yi ← 0
27: end if
28: end for
29: return y
30: end function

This smallest set is Cod defined at line 4. At each iteration, we increase the dual variable of

Cod for all (o, d) simultaneously (line 8). If the constraint (6.4) in Fig. 6.3 becomes tight for

some e, by the slackness condition, we want to add e in to F (set xode = 1), but e may not

be purchased yet. So, we continue increasing both µod
Cod

and λste with the same speed until

following cases happen. If (6.5) in Fig. 6.3 becomes tight for some (o, d), by the slackness

condition, we set zod = 1 and never consider this pair again because all constraint (6.2)s in

Fig. 6.2 that involve this pair are satisfied (line 10). If constraint (6.6) in Fig. 6.3 becomes

tight for some Ei, we set yi = 1. Also, we know e is purchased and can be added into F

110



(line 12). At line 14, we update Cod with the newly added edge. At line 16, d ∈ Cod means

the pair is connected. In lines 21-30, the unused edge sets are removed. Only the edge sets

that are used by the shortest path of connected pairs are purchased.

Proposition 6.5.1. The runtime of the algorithm is bounded by O((|Es|+|E|+|Θ|)2).

Proof. The algorithm takes at most (|E|+|Θ|) iterations, because at each iteration, either an

edge is added into F or a pair becomes inactive (abandoned or connected). When all edges

are in F , the loop terminates too. In line 8, we calculate the minimium amount that the

variable µ of all active Cod can increase. To do this, in the worst case, at each iteration, we

need to check constraint (6.4) in Fig. 6.2 for all edges, constraint (6.5) in Fig. 6.2 for all pairs

and constraint (6.6) in Fig. 6.2 for all edge sets. It takes time O(|E|+|Θ|+|E|). In total, the

line 8 takes O((|E|+|E|+|Θ|)2). Line 14 will only take O(|E||Θ|) in total because each

edge will be expanded at most once for each pair. The shortest path calculation in line 21

takes time O(|Θ|·(|E|+|V |log|V |) in total for all pairs if we use Dijkstra’s algorithm for

each pair. Except these lines, other lines take insignificant runtime. Thus, for a connected

network where |V |≤ |E|, the total runtime will be O((|E|+|E|+|Θ|)2).

6.6 Case Study: Predisaster Preparation Problem

The Predisaster preparation problem is introduced by the paper [72]. They consider

a road network where edges represent road segments and nodes represent the intersection

of roads. During natural disasters such as earthquakes or flood, each road segment has a

probability, called the failure rate, to be damaged. If that happens, the road either becomes

impassable, or the damage incurs a big delay to traffic. To reduce the travel time between

a set of origin and destination locations, such as escaping from the origin locations to

the destination locations during natural disasters, it is much cheaper and more realistic to

reinforce road segments before the disasters. Once we have a model to predict the failure
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rates of road segments during the disaster, the problem of deciding which roads to reinforce

can be formulated as a stochastic optimization problem.

A predisaster preparation problem can be modeled as a stochastic network design prob-

lem with arbitrary edge length. The road network is modeled as a directed graphG=(V,E),

where the length of an edge represents the travel time on the road when disasters happen

and the length being∞ means that the road becomes impassable. An action ae with cost

ce can repair edge e before disasters to reduce its travel time stochastically. We are also

given a set of o-d pairs, which represent important origin-destination locations in a specific

application. Given a road network and travel times specified for edges, the time to get from

a location A to a location B is assumed to equal to the shortest path length from A to B. The

goal of the problem is to select a subset of actions to execute before disasters, subject to

the budget limit B, to minimize expected total travel time between a set of o-d pairs during

disasters.

In the next sections, two predisaster preparation problems–Istanbul earthquake prepara-

tion problem and emergency medical service (EMS) response time minimization problem–

are used as test cases to evaluate our algorithm.

6.6.1 Experimental Settings

Theoretically, the convergence of the SAA method is guaranteed as the number of sam-

ples N goes to infinity. In practice, a small number of samples may be enough for conver-

gence. In the experiments, we treat the optimization algorithm as the training step and the

samples used by SAA as training samples. We use training samples to create a BSW-SPSG

problem and compare the performance of our algorithm in optimizing this BSW-SPSG

problem against other existing algorithms. However, an optimal solution to the training

samples may perform poorly in minimizing the expected travel time when N is not big

enough. To evaluate the actual performance of policies produced in the training step and

also determine how many training samples are enough for convergence, we conduct a test-
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ing step. In testing, we draw another group of samples as testing samples and calculate, for

a policy, the average travel time as a testing value. The testing value of a policy is a fair

estimation of its expected travel time. As N increases, the convergence of the testing value

is a good indicator that SAA converges.

We experimented on two different domains, using a 2.2GHz Intel Core i7 CPU with

16GB of RAM.

6.6.2 Istanbul Earthquake Preparation

The first predisaster preparation problem is called the Istanbul earthquake preparation

problem [72]. In the problem, we are expected to move casualties after an earthquake from

highly affected areas, as determined in the Japan International Cooperation Agency Report

(2002), to areas with large medical support capacities. The task is to minimize the sum of

the expected shortest-path distances for five o-d pairs. The network contains 30 undirected

edges. Each edge has binary length distribution. The survival probability can be raised to

1.0 with the investment. We used the basic settings described by [72], with Mst=120. On

this small problem, we only report solution quality. In Fig. 6.4, we compare our algorithm,

the greedy algorithm and the mixed integer program (MIP) with three budget sizes (10%,

20% and 30%) where MIP is an optimal solver. In testing, we use 10000 samples to evaluate

policies produced in the training step. We also add the optimal expected values (green) as

comparisons, which are reported by [83].

In training, “Our” and “Greedy” produce near optimal solutions in most of the cases. In

testing, except for several cases for “Greedy”, all algorithms produce near optimal testing

values. For the 10% budget case, the testing value is better than the optimal expected

value, which indicates a slight difference in problem setting relative to previous work. The

training value of each algorithm is always smaller than the testing value due to overfitting.

Also, varying the sample size from 10 to 200 barely impacts the testing value, which implies

that 10 training samples are enough for convergence.
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Figure 6.4: “Istanbul Prep” benchmark: Y-axis shows path lengths.

Figure 6.5: The road network showing patient locations (blue dots), hospital (red dot), and ambu-
lance dispatch locations (green dots).

6.6.3 Emergency Medical Service Response Time Minimization Problem

The second real-world problem is the EMS response time minimization problem, which

is the main focus of the experiments. Roadway stream crossing structures, such as culverts,

become vulnerable to flood as climate changes. The failure of crossing structures causes

road segments to be flooded, which causes traffic delay or even make roads impassable.

Money can be invested to increase the resilience of crossings. The goal is to decide which

crossings to invest in, subject to a budget limit, so that the total travel time of certain o-d

pairs is minimized. In this problem, we only care about the travel time of emergency med-

ical services (EMS). We obtained relevant data for the road network of the Deerfield river

watershed in Massachusetts. In our dataset, an o-d pair represents a request of ambulance

114



0

10

20

30

1
0
%

 

 

Our
Greedy

100 150 200 250 300
0

5

10

15

2
0
%

Number of o/d Pairs

(a) Training

0

10

20

30

1
0
%

 

 

Our
Our30
Our60
Greedy

100 150 200 250 300
0

5

10

15

2
0
%

Number of o/d Pairs

 

 

Our
Our30
Our60
Greedy

(b) Testing

Figure 6.6: Performance on the sub-network of flood preparation problem. Y-axis represents the
total travel time in seconds (×104).
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probabilities 0.

from o (ambulance center/patient address) to d (patient address/hospital). We obtain such

pairs from actual EMS calls recorded over the past 5 years. The road network, shown in

Fig. 6.5, contains 55687 edges, 1366 crossings (not shown) and 5504 o-d pairs.

To conduct the experiments, we used the following assumptions. The length of an edge

corresponds to travel time and is calculated by le = road length
speed limit

. Each crossing has a survival

probability pe in the range [0.2 − 0.4]. An edge, if associated with a crossing, has length

le with probability pe and has length ∞ with probability 1 − pe. pe is raised to 1.0 if the

correspondent crossing is fixed. We used a constant investment cost for all crossings. The

penalty Mo,d of each disconnected pair was set to be 15 times the shortest travel time from

o to d when no crossings fail.
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6.6.3.1 Results on Sub-Networks

We compare SAA and the greedy baseline on a sub-network with 10037 edges and 248

crossings. MIP failed to finish within a reasonable amount of time for this dataset. The

results are shown in Fig. 6.6. In training, we use 10 samples, two budget sizes and various

numbers of o-d pairs. For 10% budget, “Greedy” performs slightly better, but the value of

our algorithm is within 1.3 times the value of “Greedy”’s. For 20% budget, both algorithms

perform the same in most cases. In terms of runtime, shown in Fig. 6.7, our algorithm

is significantly faster. In testing, we use 100 testing samples and evaluate the policies

produced by a different number of training samples. For example, “Our30” represents

the policy trained on 30 samples by our algorithm. The policy of “Greedy” is trained on

10 samples due to its limited scalability. Again, for 10% budget, the policy produced by

”Greedy” gives slightly better testing value. For 20% budget, all policies basically perform

the same, implying that 10 samples are enough for convergence. Overall, the results show

that our algorithm performs similarly well or a little worse in some cases compared to the

greedy algorithm, but it is significantly faster and can scale up to larger problems.

6.6.3.2 Results on Complete Networks

We also tested on the complete road network using 10 training samples and 100 testing

samples. In this case, the greedy algorithm is not scalable as one iteration takes more

than 10 hours. Instead, we compared with two other methods. The results are shown in

Table 6.1. The “Random” method selects a policy by randomly picking crossings to fix

until the budget is exhausted. We let the algorithm repeatedly generate and test policies

over 10 hours and report the best one. The “M-Greedy” method is the same as the greedy

algorithm except that, at each iteration, it only re-evaluates the top 10 crossings that gave

the best travel time reduction in the previous iteration. We only show the result of “M-

Greedy” for 10% budget, which already takes 46 hours. By the table, our algorithm runs

faster and produces the best training and testing values. To the best of our knowledge,
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Algorithm Budget Train (×106) Time (h) Test (×106)
Our 10% 9.8 6.1 9.8

Random 10% 24.5 13 24.4
M-Greedy 10% 11.2 46.2 11.4

Our 20% 3.6 7.3 3.6
Random 20% 19.7 16.3 19.8

Table 6.1: On the complete network of Deerfield river watershed.

our algorithm is the only known method that can solve this problem with relatively good

performance.

6.6.3.3 Experiments with More Challenging Settings

As shown above, the greedy algorithm performs quite well in training in terms of so-

lution quality. One reason may be that in the road network, a large portion of o-d pairs

are not far from each other. Additionally, the survival probabilities of crossings are rela-

tively high such that, in the created BSW-SPSG problem, only one or two crossings fail

on the path from o to d. In this case, fixing one crossing could reduce the total travel time

immediately, which offers good guidance for the greedy algorithm. Intuitively, the greedy

strategy will fail when a path is disconnected by multiple crossings simultaneously and no

one-step reduction is available. We were curious about the performance of our algorithm is

such more challenging settings. So we designed a BSW-SPSG problem using the complete

network by making all crossings fail simultaneously. This problem setting is related to the

robust optimization. Since a few pairs and a small budget are used, running the optimal

MIP solver is feasible. The results in Fig. 6.8 show that the greedy algorithm performs

poorly in this case, while our algorithm produces near optimal solutions.

6.7 Summary

In this chapter, we study a more general framework called stochastic network design

with arbitrary edge length (SND-AEL) in which the goal is to both optimize the connectiv-

ity between a set of o-d pairs and also minimize the distance between them. The SND-AEL

framework extends the stochastic network design framework. To develop an efficient al-
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gorithm to solve an SND-AEL problem, the basic idea is to construct a deterministic opti-

mization problem by sampling the lengths of edges, and use the solution to the deterministic

optimization problem as the approximate solution. The deterministic optimization problem

is formulated as a new network design problem called Budget Set Weighted Shortest Path

Steiner Graph (BSW-SPSG), which is solved approximately by a bisection procedure and

a primal-dual algorithm. At last, we test the algorithm on two real-world predisaster prepa-

ration problems. The experimental results show that my algorithm is much faster than

existing algorithms and is able to produce high-quality solutions.
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CHAPTER 7

SUMMARY

The thesis studies how to select management actions to modify the structure of a net-

work to steer phenomena that occur in the network toward certain desired objectives. Sev-

eral real-world problems are which river barriers to remove to facilitate fish to access their

historical habitats in a river network, where to set conservation areas to help the dispersal

of red-cockaded woodpeckers (RCW), and which roads to reinforce to minimize the dis-

ruption of emergency medical services by natural disasters. A computational tool is needed

to help decision makers select a cost-efficient strategy among a large number of candidate

modification strategies by taking into account a budget constraint. These problems are

treated as stochastic optimization problems. Existing algorithms either perform poorly or

fail to scale to problems of large sizes. The goal of the thesis is to develop scalable algo-

rithms that can solve a broad range of such network optimization problems. To achieve this

goal, a general problem framework called a stochastic network design framework is defined

to model a broad range of problems including the examples mentioned earlier. Several scal-

able algorithms and optimization techniques are developed to solve problems within this

framework.

7.1 Stochastic Network Design Framework

The major component of the framework is a stochastic network. A stochastic network

is defined using a directed graph, in which each edge is either present or absent with a

survival probability. Actions with certain costs can be taken to raise its survival probability

and therefore improve the connectivity of the network. In the barrier removal problem,
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the survival probability of an edge models the probability that fish can pass a barrier rep-

resented by the edge, and an action is taken to improve the passage of the barrier. In the

conservation planning problem, the survival probability models the probability that RCWs

can successfully travel along an edge and survive in the habitat area represented by the end-

ing node of the edge, and an action is taken to improve the living condition of the habitat

area. The optimization problem is to determine which actions to take subject to a budget

limit.

7.2 Fast Algorithms

Scalable algorithms are developed under three different settings that gradually become

more general. The underlying network is a tree (Chapter 3 and 4), the underlying network

is a general directed graph (Chapter 5), and edges in the network have arbitrary lengths that

make the decision-making problem optimize both connectivity and distance of the network

(Chapter 6). In Chapter 3, the underlying network is assumed to be a directed rooted

tree, which models a diffusion process that starts from a single root node and gradually

spreads into a tree-structured network. An example is the spreading process of fish in a

river network. A fully polynomial-time approximation scheme (FPTAS) called rounded

dynamic programming (RDP) algorithm is developed for this setting, of which the basic

idea is to combine a dynamic programming algorithm and a rounding strategy. Applying to

a real-world barrier removal problem, RDP is much faster than a mixed integer solver and

can produce nearly optimal solutions. In Chapter 4, the underlying network is assumed to

be a bidirected tree, in which a diffusion process starts from instead of a single root node

but multiple nodes. This setting makes the optimization problem harde, for which a FPTAS

called rounded dynamic programming for bidirected trees (RDPB) with worse runtime

complexity is developed. Applying to a real-world bidirectional barrier removal problem,

RDPB is faster than the greedy algorithm and can produces a solution with better qualities

within a reasonable amount of time. In Chapter 5, techniques are developed for general
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directed graphs that makes the optimization problem at least #P-hard. The basic idea is to

construct a deterministic optimization problem using an SAA method, and then to develop

a fast primal-dual algorithm to compute a nearly optimal solution for the deterministic

optimization problem, which, as shown by experiments, is also a nearly optimal solution of

the original optimization problem. Applying to the conservation planning for red-cockaded

woodpeckers (RCW), the algorithm is around 120 times faster than a mixed integer solver

with slightly worse solutions and around 30 times faster than a greedy algorithm with better

solutions. In Chapter 6, a fast algorithm is developed for networks with arbitrary edge

lengths. The length of an edge is randomly distributed in a range [0,∞], which can be

reduced by an action stochastically. The goal is to determine which actions to take to

minimize the distance between a set specified of o-d pairs. The algorithm for this setting

is based on the same structure as the algorithm in Chapter 5 but has a different sampling

and a more complex primal-dual components. The algorithm is applied to a predisaster

preparation problem for emergency medical services (EMS) in which the goal is to decide

which roads to reinforce to reduce the response time of EMS during floods. The real-world

road network has 50, 000 edges but an existing state-of-the-art method can only scale to

1000 edges. The algorithm can compute high-quality solutions within 6 hours on this large

network and runs 400 times faster than a greedy algorithm.

7.3 Future Directions

The framework and algorithms are very general and can be applied to a broad range of

network optimization problems. Three real-world problems are formulated by the frame-

work, and high-quality are produced by the algorithms within a reasonable amount of time.

However, there still exists aspects that the framework does not model and assumptions

made by the framework that some real-world problems don’t satisfy. This section dis-

cusses several properties that some real-world problems possess but are not modeled by the

stochastic network design frameworks. It is an open question on how to enrich the frame-
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work to include these properties and how to develop scalable algorithms to solve problems

within the new framework.

7.3.1 Robust Optimization

In the stochastic network design framework, it is assumed that probability distributions

have already been created by domain experts or by machine learning techniques to describe

the uncertainty of the underlying phenomena. For example, algorithms can be applied only

when all survival probabilities are known. This assumption is valid for many problems

including the applications given in the thesis. For the barrier removal problem, the prob-

ability that fish can pass a barrier is estimated from data by ecologists. For the RCW

problem, the probability that RCWs will successfully spread from a location A to a loca-

tion B is estimated from real-world observations by machine learning techniques [97]. For

the EMS response time minimization problem, the failure rates of culverts during floods

are estimated by environmental scientists.

In many situations, the existing probability distribution may not be accurate enough to

help find good decisions or plans. For example, not enough data are available to construct

a sufficiently confident probability distribution, or available data involves lots of noise.

An alternative optimization technique to deal with these situations is called [4, 5].

In the robust optimization, since the uncertainty of a random variable cannot be accurately

described, the worst value of that random variable is used when making decisions and plan-

ning. A recent work [52] provides an algorithm based on the idea of robust optimization to

solve the RCW problem, for which only a confident range of the probability of an edge–

instead of a point estimate of the probability–is available. For example, we only know

the probability that the RCWs will spread from a location A to a location B is in a range

such as [0.2, 0.6], which could be a 90% confidence interval of the spreading probability.

Instead of maximizing the expected total rewards as done by the stochastic network design

framework, the authors of the paper choose a policy to minimize the max-regret, where
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max-regret is the largest quantity by which the decision maker could regret taking the pol-

icy while allowing probabilities to vary within the ranges [6]. It is an interesting future

research direction on how to modify my stochastic network design framework to deal with

the model uncertainty and how to develop robust optimization techniques to solve these

problems.

7.3.2 Multiple Processes

In the stochastic network design framework, only a single phenomenon or process that

occurs in a network is considered and some other external effects are ignored. For the bar-

rier removal problem, it is assumed that there only exists a single diffusion process of fish

(e.g., salmon) in a river network while other types of fish, each of which forms a diffusion

process, that may eat salmon or compete for habitats against salmon are ignored. If these

other types of fish do exist, the decisions made by ignoring them are far from optimal.

For the EMS response time minimization problem, it is assumed that the travel time for an

ambulance to get from a location A to a different location B is the shortest cumulate travel

time while the travel time of a road is calculated by the length of the road divided by its

speed limit. This assumption is confidently realistic while the traffic is not busy or in rural

area–the latter holds for the network we use. It becomes an unrealistic assumption during

rush hours or in big cities, such as New York city, where the traffic is always very busy. In

these situations, a better way is to describe the traffic and the competition between different

vehicles using the model of congestion game [64] and calculate travel time at a Nash equi-

librium point. It is an interesting future research direction on how to change the stochastic

network design framework to model multiple processes that occur in the network and the

relationships between these processes.

7.3.3 Adaptive Decision Making

A stochastic network design problem is basically a one-step decision-making problem,

that is, the decision is only made once, and all management actions that will be executed are
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determined at that point. As shown earlier, the barrier removal problem is formulated as a

one-step decision-making problem in the sense that a decision maker decides which barriers

to remove in a river network and removes those barriers before fish enter the river network.

No further decisions are made afterwards. For this problem, actions are executed before

the fish start to spread. A different way is to allow actions being taken at multiple stages.

At each stage, we collect more information about the underlying phenomenon that helps

to reduce uncertainty, and we decide which actions to take based on this information. This

type of decision-making framework is called adaptive decision-making. In comparison,

for a one-step decision-making problem, all available funds are spent at once while for an

adaptive decision-making problem funds are spent gradually over multiple steps. One-step

decision-making simplifies the decision-making process and makes the resulted optimiza-

tion problem tractable. Also, taking actions early reduces the cost. For example, repairing a

malfunctioning culvert is more expensive than reinforcing it before it fails. The advantage

of adaptive decision-making is that it allows people to make better decisions as more and

more information is collected to reduce the uncertainty–although the execution of these

decisions may be very expensive at that point. But, an adaptive decision-making problem

is usually very hard to solve, and some assumptions, such as adaptive submodular intro-

duced by paper [27], are needed to make the problem tractable. Two well-studied adaptive

decision-making framework are Markov decision process (MDP) [76] and partially observ-

able Markov decision process (POMDP) [88], which are used in slightly different contexts

such as autonomous driving [73]. It is an interesting future research direction on how to

define an adaptive version of the stochastic network design framework and how to develop

fast algorithms to solve them.
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