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ABSTRACT 

 

DEVELOPMENT OF BACTERIOPHAGE BASED DETECTION TECHNIQUE FOR FOOD SAFETY AND 

ENVIRONMENT MONITORING  

 

 

SEPTEMBER 2016  

 

ZIYUAN WANG, B.S., BEIJING FORESTRY UNIVERSITY, BEIJING, CHINA 

M.A., BEIJING FORESTRY UNIVERSITY, BEIJING, CHINA 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Professor Sam R. Nugen  

 

Foodborne and waterborne pathogens which are responsible for numerous worldwide 

outbreaks of disease have caused serious health problems resulting in enormous economic cost.  

Development of new bacterial detection technologies with high sensitivity and specificity is of 

great importance for food safety and public health. However, traditional bacterial detection 

technique based on culturing and colony counting is a time-consuming process which takes 

several days to obtain results. This has highlighted the significance of developing rapid and 

effective techniques for pathogen screening. In the recent decades, bacteriophage has been 

indicated as a valuable tool for specific bacteria identification due to the high specificity for 

targeted microorganism as well as the rapid infection between phage and its host cell. The other 

natural characteristics including low cost, robustness, fast and easy production plus high 

tolerance under extreme conditions make phages superior for bacteria detection at resource-
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limited settings. The aim of this thesis is to explore a bacteriophage mediated detection system 

for foodborne or waterborne bacteria monitoring. 

Bacteriophage as a novel recognition probe has been applied in various biosensor by 

immobilizing phage particles on solid sensor surface. In the first part of this dissertation, we 

focused on utilizing biotin- streptavidin interaction system for phage immobilization on 

biosensor surface. The immobilization efficiency of the bio-recognition element on micro-

magnetic beads was investigated followed by evaluating the capture efficiency of targeted 

bacteria (generic Escherichia coli). The fusion of biotin acceptor peptide (BAP) gene and biotin 

ligase (BirA) gene to phage capsid protein gene enabled the display of BAP ligand and the 

expression of protein BirA during the replication cycle of phage infection. Then produced phage 

progenies could be biotinylated in vivo and immobilized on the streptavidin coated magnetic 

beads. Compared with wild type phage, the recombinant phage showed a significantly higher 

immobilization efficiency of 82.8% on the magnetic bead and the resulting bio-probe showed a 

capture efficiency of 86.2% of E.coli within 20 min. This phage based biomagnetic separation 

coupled PCR detection provided a detection limit of 102 CFU/mL bacteria without additional pre-

enrichment. We believe this assay could be further developed to detect other bacteria of 

interest by applying host-specific phages which will be particularly useful for detecting bacteria 

that are difficult to cultivate or grow slowly by traditional method.  

The second part of this thesis focused on utilizing host specific phage for pathogenic 

bacterial detection, such as Escherichia coli O157:H7 from practical samples. The carboxylic acid 

functionalized magnetic beads were conjugated with E. coli O157:H7 specific phage to which 

viable host cells could be captured and pre-concentrated. The effects of reaction time, 

phosphate buffer concentration, pH values and temperature on the bio-magnetic separation 

were investigated and the optimal reaction condition was as following: 0.01M PBS, pH 7.0 and 
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20 min of reaction at 37 °C. The capture efficiency of this phage based assay was about 20% 

higher than that of antibody based magnetic separation assay when the reaction was under 

extreme conditions. Then captured bacteria on the resulting bead-bacteria complexes were 

quantitatively monitored by following real-time PCR (qPCR) with a total assay time of less than 

2h. The specificity and selectivity of the phage assay system were evaluated as well and no 

cross-reactivity was detected when non-targeted pathogens, including Salmonella typhimurium, 

Staphylococcus aureus and Pseudomonas aeruginosa were tested in artificially inoculated 

agricultural water sample. 

In the last part of this thesis, an engineered alkaline phosphatase phage based colorimetric 

detection assay was developed on membrane filter which offered a convenient and rapid way to 

identify general E.coli from field water on-site. Compared with the common membrane filtration 

assay for E.coli detection in water recommended by U.S. Environmental Protection Agency (EPA), 

our method could reduce the total assay time without sacrificing the sensitivity and the limit of 

detection could reach to 100 cells/100 mL water sample. This phage mediated detection also 

provided a convenient and quantitative detection of bacteria number as the colored signal 

formed from the enzyme reaction of alkaline phosphatase and BCIP/NBT produced a 

precipitated dot corresponding to the located bacterial colony, unlike other colorimetric assay 

which are usually qualitative and require to be measured by spectrophotometer in lab. 

In summary, this dissertation demonstrated the practical application of bacteriophage as a 

promising tool for rapid foodborne and waterborne bacterial detection. And the results 

suggested that phage as a unique bio-probe offered many advantages over traditional cultural 

based method and could be coupled with various detection assays or platform with high 

sensitivity, low operation cost and in short time periods.   
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CHAPTER 1 

INTRODUCTION 

The outbreak of foodborne or waterborne infectious is reported continuously 

worldwide and has even been rising in certain arears. (1) Meanwhile, public concerns on food 

safety and environmental health have increased tremendously. Most conventional bacterial 

monitoring from food or environmental samples is based on culture technology which usually 

need several days for laboratory analysis (2), during which time potential contamination may 

render consumers at healthy risk. (3) In addition, limitations such as lack of specificity and 

difficulty in detection of slow-growing or viable but non-culturable (VBNC) microorganisms also 

exist. (4) In this sense, exploring more rapid, sensitive and specific methods or technologies are 

essential and of great importance.  

Nowadays various new assays aimed at reducing total assay time to less than 24 h have 

been reported. (5-12) In general, these methods consist of two steps: 1) target isolation, in 

which the bacteria of interest are separated, labeled or enriched to distinguish from other 

material in the sample matrix; 2) signal detection, in which optical or electrochemical 

technologies are used to quantify the target. (13) Immunomagnetic separation (IMS) technology 

which is based on antibody  conjugated magnetic nanoparticles (MNP) or microbeads specific to 

bacterial pathogens is applied widely for target separation (14) as the isolation step can be 

shortened largely compared with selective cultural enrichment. (15, 16) Many pathogenic 

bacterium, including Listeria (17, 18), E.coli O157:H7 (19, 20), Salmonella (21, 22) and 

Campylobacter jejuni (23, 24) have been identified by IMS coupled methods. In addition, when 

IMS is combined with polymerase chain reaction (PCR) technique, the analysis time can be 

reduced to several hours. For example, as few as 10 Mycobacterium avium subsp. 

paratuberculosis was reported to be consistently detected from milk and fecal samples by IMS 
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coupled real-time PCR assay. (25) Rijpens and coauthors had reported the sensitive detection of 

an average of 5.9 stressed Salmonella cells in 25 g of food product using IMS and PCR following a 

pre-enrichment of 16 h. (26) Gooding and Choudary reached a detection limit of 1 cfu E. coli 

O157:H7/g food in less than 10 h by an IMS-PCR coupled method. (27) Although nucleic acid 

technologies are the most versatile one, limitation in distinguishing between viable and non-

viable cells is still a concern, as the presence of detectable target DNA from a sample does not 

indicate the exact presence of viable organism with the ability to induce an outbreak or cause a 

disease. (5) 

In contrast, bacteriophage as a virus that only infects bacteria allows the differentiation 

between live and dead bacteria. They are natural components of the micro-flora and 

ubiquitously present in our environment, such as soil, water, food, sewage, and other 

environments that contain corresponding host bacteria. (28) It was reported that more than 

5500 kinds of phages had been found and there could be about 109 phages per milliliter in 

freshwater environment. Additionally, E. coli phages found from fresh meat, ground beef, raw 

vegetables and deli food can reach up to 104 PFU/g. (29) Generally, lytic phages that attach to 

host bacteria and utilize the host resources to reproduce new phages (30) can be used to 

eliminate harmful pathogens as they cause bacterial lysis upon the release of progenies. Thus 

phages have been applied in controlling bacterial contamination by food industry in food 

process, named biocontrol. (31) Moreover the high specificity to bacterial host at a strain level 

or species level has also provided phage as an ideal tool for bacterial targeting. (32)  

Recently, many researches have shown the application of immobilized phages on solid 

surface to form an effective biosorbent. (33, 34) These phage-based probes were indicated to be 

capable of capturing bacterial antigens and the captured targets could be quantified in real time 

by following PCR, electrochemical or colorimetric techniques. (35) Biotin, also called Vitamin H is 
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usually used to label proteins or biomaterials for the immobilization of labeled probes on 

streptavidin-coated surfaces through the strong binding between biotin and streptavidin. This 

biotinylation process can be performed by using chemical reagents that specific for a certain 

type of functional group. For example, capture efficiency of a biosorbent formed from 

chemically biotinylated Salmonella phage on streptavidin-coated magnetic beads was found to 

be five-fold of that of the control. (36) However chemical biotinylation at multiple sites may 

result in inactivation by the biotinylating reagent directly or indirectly to the functional groups 

that are critical for protein. (37) In addition, as chemical biotinylation typically produces a 

heterogeneous reaction mixture, batch-to-batch reproducibility will become a big challenge. 

Biotin protein ligase (BirA) found in Escherichia coli can catalyze a highly specific formation of a 

bond between the amino group of lysine residue from biotin acceptor domain and the carboxyl 

group of biotin, known as enzymatic biotinylation. (38) Unlike chemical reagents, enzymatic 

biotinylation ensures the uniformity of the reaction products which also in a bioactive form. (39) 

This property can be applied to create a biotinylable fusion protein such as phage coat protein 

fused with biotin acceptor peptides (BAPs). When the BAP Tags are labeled onto recombinant 

proteins and co-expressed with BirA, they can be efficiently biotinylated in E. coli.(40) For 

example, Edgar and et al. have reported a rapid and simple method that combines in vivo 

biotinylation of engineered host-specific bacteriophage and conjugation of the phage to 

streptavidin-coated quantum dots. The method could detect 10 CFU/mL with approximately a 

hundred fold amplification of the signal over control in 1 h. (41) Tolba and his coauthors also 

showed the introduction of BCCP on T4 phage capsid protein by phage display technique could 

result in oriented immobilization of phage T4 on the streptavidin magnetic beads. (42) And the 

phage-based biosorbent coupled with real-time PCR allowed a detection limit of 8×102 CFU/ml 

E. coli in 2 h.  
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 Novel phage mediated IMS assay based on bacterial enzymes or DNA liberated from the 

captured cell after phage-induced lysis has been reported more frequently. Engineered phage 

with affinity tags of interest can be introduced on the capsid protein by phage display technique 

as discussed above. (43) Usually phage based detection consists of four main steps: (1) 

immobilization of specific phages on magnetic particles for corresponding targeted bacteria; (2) 

capture and pre-concentration of target cells by IMS; (3) infection of captured target bacterium 

by the phage (wild or engineered); and (4) detection of signals resulting from the released 

enzymes, DNA or other biomarkers. Favrin et al. reported an IMS–bacteriophage assay that 

could detect an average of 3 CFU of Salmonella. enteritidis in 25 g or ml of food sample and 

could be adapted to detect Escherichia coli O157:H7 in ground beef within about 20 h. (44)  

Besides IMS, colorimetric detection of bacteria has also received considerable attention in 

bioassay due to its simple procedure, short-time testing, low cost, nonhazardous reagents and 

high sensitivity compared with other available methods. (45) Although the sensitivity of 

colorimetric methods might not be the highest, simplicity of this type assay utilizing visual 

detection makes it the most suitable method for in situ testing. Burnham and et al. reported a 

rapid assay for generic E. coli detection in water sample by monitoring the released β-

galactosidase after phage induced cell lysis. This method provided a detection limit of 40 

CFU/mL within 8 h when wild phage T4 was used. (46) Similar detection by using other enzyme 

labels, such as alkaline phosphatase (ALP) and horseradish peroxidase (HRP) with their 

corresponding substrates have also been reported (47, 48) and can be further coupled with 

phage mediated diagnostic analysis which will be more affordable compared with antibodies. By 

using a colorimetric substrate such as 5-bromo-4-chloro-3′-indolyphosphate and nitro-blue 

tetrazolium(BCIP/NBT), E.coli alkaline phosphatase needs no additional bio-labeling thus 

simplifies the detection scheme. 
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So, to achieve a rapid and sensitive detection and identification of bacteria, three phage 

based assay were developed and optimized. 1) Preparing biotinylated phage particles through 

phage display technique (using model phage T7 select kit for phage engineering and packaging) 

and achieving in vivo biotinylation in phage host bacterial cell as well as characterization and 

oriented immobilization of the biotin tagged phages on streptavidin coated magnetic beads to 

increase the capture efficiency of target bacteria from sample matrix. 2) For pathogenic 

bacterial detection from practical water samples, a novel biomagnetic separation assay was 

developed by immobilizing E. coli O157:H7 specific phage particles on magnetic beads via the 

EDC-NHS coupling chemistry (by amide bond). In addition, the capture efficiency of the phage 

probe was compared with that of antibody coated magnetic beads and the specificity of the 

phage based assay was examined as well. To reduce the total assay time, real-time PCR 

technique was coupled with the phage based MS for bacterial quantification analysis.  3) A 

membrane filter based colorimetric detection coupled phage assay was also investigated for 

bacterial monitoring in agriculture water sample. The use of membrane filter technique enables 

the performance of viable counts on these products by using physical separation of bacteria 

from the sample matrix to be tested.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Bacterial foodborne and waterborne pathogens cause significant human diseases and 

are a major threat worldwide. Especially in food industry, monitoring and careful control of 

foodborne pathogen in time is critical to ensure food safety and public health. Thus, analysis 

methods have to be sensitive enough because even a single pathogenic organism may cause an 

infection. For example, the infectious dosage of E. coli O157:H7 and Salmonella is less than 10 

cells along with zero tolerance in food products.(49) Traditional culture based methods for 

bacterial detection usually requires 5-6 days to get a positive result which are time consuming 

and always laborious. Immunomagnetic separation (IMS) as a popular approach provides a rapid 

way of detecting bacteria from different sample matrices as once captured, the isolated bacteria 

can be concentrated and enriched for downstream detection techniques without the need of 

cultivation. The capture efficiency (CE) of IMS mainly relies on the antibody that immobilized on 

the beads as the probe to capture targets. However, antibodies might encounter with 

consistency issue as there is batch to batch difference of the same product and the production 

of antibody is not cost-effective. (50) On the other hand, bacteriophage possessing high 

specificity to its target organism would circumvent these problems as well as minimize the 

probability of false-positive results generating from the cross-reaction between the antibodies 

and non-target analytes. In this case, applying phage based MS to reduce the total assay time 

would have significant potential in the study of rapid bacterial detection and realistic application. 
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It has been shown that phage based bio-probes can be generated on different solid 

surface to form a biosensor for various targets. (51) Generally, there are three different phage 

immobilization ways. The first way is through affinity binding to introduce specific binding 

ligands to phage head; the second one is through chemical binding such as EDC/NHS reaction 

and the third one is through simple physical adsorption. For the first immobilization method, 

different affinity tags have been developed via phage display technique to display protein of 

interest on its outside including specific antibodies/complementary peptides. Besides the 

standard affinity tags (His-tag), avidin-biotin system is also used widely as the binding of biotin 

to streptavidin is a very strong interaction which is advantageous for efficient immobilization. 

(52) More specifically, biotin protein ligase BirA could activate biotin to form biotinyl 5' 

adenylate and transfer it to biotin acceptor peptide BAP which named biotinylation. (53) This 

biotinylation reaction introduces biotin tags and allows for following streptavidin-biotin 

interaction. As biotin ligase protein BirA and biotin are present in all living cells, biotin molecules 

can be labeled on engineered phage surface displaying BAP through in vivo biotinylation. Unlike 

chemical reagents, this reaction which happens intracellularly would assure reaction products 

immobilized in a uniform, bioactive orientation. (40) The biotinylated phage particles can further 

be applied on various solid surface for corresponding bacteria detection. Thus, enzymatic 

biotinylation offers a better way to introduce biotin tags on phage capsid proteins and can be 

coupled with magnetic separation for rapid and simple bacterial separation.  

Quantitative real-time polymerase chain reaction (qPCR) is a commonly used laboratory 

technique for DNA molecule detection and has been used increasingly in the recent past. (12) 

Unlike conventional endpoint PCR, qPCR allows monitoring of sample at exponential phase and 

provides accurate quantification of target nucleic acid. Compared with standard PCR requiring 

post-PCR analysis (e.g. agarose gel electrophoresis) which is time-consuming and non-
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automated, qPCR eliminates these needs. (54) As the entire process (amplification and analysis) 

is performed in a single tube without further analysis, there is a reduced possibility of product 

contamination. Especially for Taqman qPCR system which contains a specific set of primers and 

internal probe (reporter), it is highly specific without the need to add other reagents. (55) 

Therefore, qPCR can be more efficient and time saving.  

Although qPCR is more sensitive and less laborious intensive, there is still a limitation of 

this assay as it detects and quantifies DNA from both live and dead pathogens as long as the 

target nucleic acid is present. By combining bacteriophage-based assay to qPCR, positive signal 

yielded only from viable bacteria would minimize the probability of false positive result. For 

example, magnetic bead-phage complex can be prepared by the interaction between biotin 

(labeled on phage surface) and streptavidin (coated on beads) or by EDC/NHS carbodiimide 

chemistry and the biosorbents can be used to capture viable target cells before downstream 

PCR analysis. Factors such as the immobilization time, phage density, number of bead-phage 

complexes, reaction time and washing steps which can influence the immobilization efficiency 

and capture efficiency could be optimized to increase the capture percentage of bacteria. For 

quantification, the cell numbers can be estimated from the means of threshold cycles (CT) of 

amplification curves as the CT value is proportional to gene copy number of the target initially 

present in a sample. 

As Figure 2.1 shows, food industry, clinical and water & environment quality control 

account for the major portion of all research regarding to pathogen detection. (56) To better 

apply phage as a bio-probe in bacterial detection for food safety and environment monitoring, a 

comprehensive study is essential. In this review, the foodborne and waterborne bacterial 

diseases as well as modern detection methods will be summarized. The characteristic of phages 

and their specific applications in bacterial pathogen detection will be discussed. 
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Figure 2.1 Distribution of application of the percent of researches published in literature on 
detection of pathogenic bacteria. 

2.2 Bacterial pathogens  

2.2.1 Foodborne pathogens  

Bacteria, fungus and other microorganisms widely exist in our natural environment, 

they can be easily found in soil, foods, the intestinal tract of animals, or surface water 

contaminated with animal fecal. (7) On the one hand, microbes are crucial to the ecosystem in 

nature to carry out essential activities like nutrient recycling. They are also applied in 

biotechnology including traditional food products and beverage preparation such as brewing, 

baking, wine making, pickling and dairy-making process. (57) On the other hand, a small 

proportion of harmful microorganisms have harmful effects on animals and humans by causing 

infectious disease or even death. The World Health Organization (WHO) defines foodborne 

illnesses as illness caused by bacteria, viruses, parasites or chemical substances (toxic) entering 

the body through contaminated food. (58) As bacteria can spread easily and rapidly through 
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contaminated food or water, microbial diseases account for the major cause of death in many 

developing countries worldwide. (59) The Centers for Disease Control and Prevention (CDC) has 

reported that one in six Americans get sick from contaminated foods or beverages annually and 

3,000 die. (60) Among these, diarrhoeal diseases are the most common illnesses that cause 550 

million people to fall ill and 230 000 deaths globally every year. (58) 

Due to the overuse and misuse of antimicrobials, a growing number of bacteria get the 

resistance to antibiotics thus become new foodborne/waterborne pathogens. (61-63) Although 

most strains of E. coli are harmless, some strains such as enterohaemorrhagic E. coli (EHEC) can 

cause intestinal infection or abdominal cramps, bloody diarrhea and even haemolytic uraemic 

syndrome. (64) For example, E. coli O157:H7 is considered to be one of the most dangerous 

foodborne pathogens due to its production of Shiga-like toxins which is usually transmitted to 

human by consumption of contaminated foods, including raw or undercooked meat products, 

raw milk and fresh vegetables.(65, 66) Waterborne transmission (from fecal contaminated water 

sources) and cross-contamination will also lead to infection. (67)  

Another example of a common and widely distributed foodborne disease is 

Salmonellosis which is caused by the bacteria Salmonella. They are widely distributed in eggs, 

poultry and other food animals. It is a dangerous foodborne pathogen and causes serious public 

health concern as all serotypes can cause disease in humans and some strains have emerged 

resistant to a range of antimicrobials since the beginning of the 1990s. (68-71) It is estimated 

that Salmonella causes one million foodborne illnesses in the United States every year, with 

19,000 hospitalizations and 380 deaths. (72)  

Listeria is as another serious foodborne pathogen which is able to grow at refrigerator 

temperature (even as low as -1.5 C) and survive well in frozen foods thus make chilled foods also 

at safety risk. (73) According to CDC’s report, approximately 1600 illnesses and 260 deaths due 
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to listeriosis occur in the United States every year. (61) And it accounts for as high as 25 to 30% 

of mortality rate associated with foodborne bacterial infections and is responsible for the 

majority of food recalls due to bacterial contamination. (74) Some of the common foodborne 

pathogens and the corresponding foodborne illness are listed in Table 2.1.  

 

Table 2.1 Pathogenic microorganisms responsible for foodborne illness(75) 

Microorganism Infective dosea V (no. 
of organisms) 

Incubation periodb Name of the disease  

Campylobacter 
jejuni 

400–500 2 to 5 days Campylobacteriosis   

Salmonella spp. 15-20 12 to 24 h Salmonellosis  
E. coli < 10 2 to 4 days Hemorrhagic colitis  
L. monocytogenes < 1000 2 days to 3 weeks Listeriosis  
Bacillus cereus > 106/g 30 min to 15 h Bacillus cereus food 

poisoning 
 

Clostridium 
botulinum 

< nano grams 12–36 h Foodborne botulism  

Clostridium 
perfringens 

> 108 8–22 h Perfringens food poisoning  

Vibrio vulnificus < 100 < 16 h Syndrome called “primary 
septicemia” 

 

Shigella < 10 12–50 h Shigellosis  

a Infective dose: the amount of agent that must be consumed to give rise to symptoms of 
foodborne illness. 
b Incubation period: the delay between consumption of a contaminated food and appearance of 
the first symptoms of illness. 

2.2.2 Waterborne pathogens 

Water sanitation and hygiene also have important impacts on both public health and 

disease prevention. Inadequate drinking-water, sanitation and hygiene are estimated to cause 

842 000 diarrhoeal disease deaths worldwide per year. (76) Moreover, it has been estimated 

that 10% of total hospital patients in the USA contract diseases due to poor water sanitation and 
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the overall lost productivity due to waterborne diseases is estimated to be $20 billion per year. 

(77)  

Waterborne diseases are usually caused by pathogenic microorganisms (including 

viruses and bacteria) in untreated or contaminated fresh water. Table 2.2 lists examples of some 

emerging waterborne pathogens which are also listed on the latest US Environmental Protection 

Agency’s (EPA) contaminant candidate List (CCL-3). (78) According to the current USEPA water 

quality standards, the limit for drinking water is <1 colony/ 100mL; for body-contact recreation 

is <200 colonies/100 mL; for fishing and boating< 1000 colonies/100 mL; and limitation for 

domestic water supply <2000 colonies/100 mL.  

Traditionally, indicator micro-organisms have been used to indicate the presence of 

pathogens as they are usually present in small amounts which is impractical for direct 

monitoring. Among these, E. coli has been extensively selected as an indicator for water quality 

monitoring as they are relatively simple and inexpensive to test. Another key factor is the 

development of improved testing methods for E. coli which also lead to the trend toward the 

use of E. coli as the preferred indicator of fecal contamination. So it is cost-effective to develop 

the detection method of E. coli for better protection of the public's health.  

 

Table 2.2 Example of potential waterborne bacterial pathogens 

Pathogens  Major disease(s) 

Campylobacter jejunia Gastroenteritis 
Escherichia coli O157a Gastroenteritis, haemolytic uraemic syndrome 
Helicobacter pyloria Chronic gastritis 
Legionella pneumophilaa Legionellosis 
Mycobacterium aviuma Lung infection 
Shigella spp.a Shigellosis 
Salmonella entericaa Gastroenteritis, typhoid 

a Pathogen on the US EPA CCL-3 (http://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3) 

http://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3
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2.3 Bacterial detection techniques 

2.3.1 Traditional detection method 

Culturing and colony counting method as a conventional bacterial detection technique, 

is the gold standard detection method. In general, conventional methods include pre-

enrichment, selective enrichment/plating and following biochemical or serological confirmation. 

They are sensitive and can offer quantitative/qualitative information of the microorganisms 

based on particular medium. These selective media include MacConkey sorbitol agar for E. coli 

O157:H7, rainbow agar for Salmonella and charcoal-based selective medium agar (CSM) for 

Campylobacter detection. However, they are confronted with time-consuming issue due to the 

time required for bacterial growth to visible colonies. For example, it takes 4–9 days to get a 

negative result and about 14 -16 days to verify a positive result for Campylobacter (79) which is 

inadequate for many practical application, especially for the food industry.  

2.3.2 Immunology-based methods 

2.3.2.1 The enzyme-linked immunosorbent assay (ELISA) 

A broad range of immunoassays for bacteria detection have provided many analytical 

tools for the detection of various targets. Based on the immunological techniques, the enzyme-

linked immunosorbent assay (ELISA) is the most widely used one and has been applied 

extensively. It is a test that combines antibody and enzyme induced color change to identify a 

substance, thus is sensitive and rapid. Figure 2.2 indicates the principles of a typical sandwich-

ELISA for antigen detection that contains five steps: 1) prepare a solid surface to immobilize the 

capture antibody; 2) block the nonspecific binding sites; 3) add  test sample to the prepared 
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surface and the antigen is captured by antibody followed by washing to remove excess antigen; 

4) expose the plate to an enzyme conjugate antibody followed by washing to remove unbound 

conjugates; 5) add colorimetric substrate to induce enzyme reaction and the colored product 

can be detected directly indicating the presence of antigen.(5) The quantity of the antigen can 

be determined by measuring the optical density which is specific, versatile and can be used 

reliably for testing sample in large numbers. 

 

Figure 2.2 Schematic representation of the sandwich-ELISA protocol. 

2.3.2.2 Immunomagnetic separation (IMS)  

IMS as a useful laboratory method that can efficiently separate targets from sample 

suspension, is commonly used to pre-enrich or pre-concentrate samples before final test. In 

brief, a sample matrix containing target bacteria is mixed and incubated with antibody coated 

paramagnetic beads for a certain period of time. As the antibody on beads can bind to the 

antigens displayed on bacteria surface, target bacterial cells are isolated and captured when an 

appropriate magnetic separator is placed nearby the test tube. Then the bead-cell complex is 
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washed several times to remove unbound cells as well as other contaminants. Finally, the 

relatively purified target cells on the magnetic particles can be used in following experiments. 

Nowadays, polystyrene beads coated with iron oxide and antibodies are the most common type 

used for microorganism separation. For example, Dynabeads® is one of the commercially 

available beads for various pathogen detection, including Salmonella, E. coli O157:H7 and 

Listeria. Different bead sizes ranging from nanometers up to microns can be chosen depending 

on the specific application. For example, to isolate whole bacteria cells, bead size in the range of 

1-2 micrometer may offer a good balance between sensitivity and time. (56) Furthermore, when 

combined with other detection methods (e.g., PCR, optical, fluorescence or electrochemical 

assay), IMS can minimize the total analysis time significantly. Bushon et al. found that the 

immunomagnetic separation coupled adenosine triphosphate (IMS-ATP) method by measuring 

bioluminescence induced by release of ATP from the captured bacterial cells could be 

performed within 1 h which was obviously much faster than other traditional methods. (80) 

2.3.3 Polymerase chain reaction (PCR) 

PCR is a nucleic acid amplification technology that developed in the 1980s and now 

widely applied in the field of bacterial detection.(81) It enables the synthesis of thousands to 

millions of copies of target DNA fragment from a single or a few copies. This technique is 

especially useful in identification of slow-growing or non-cultivatable microorganisms (e.g. 

anaerobic bacteria) as well as detection of infectious antigens. It also enables the discrimination 

of pathogenic from non-pathogenic strains through specific genes (e.g. toxin gene).  

Besides conventional PCR, the emergence of multiplex PCR, reverse transcriptase PCR 

(RT-PCR) and real-time PCR (qPCR) also provide a rapid and sensitive detection and more 

advantages. (82) For instance, multiplex PCR is sufficient to detect more than one target 
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organism at the same time by adding different sets of primers corresponding to the specific 

genes of each target strain. Reverse transcriptase PCR (RT-PCR) is able to amplify only expressed 

genes by using the reverse transcriptase to reverse transcribe RNA into single-stranded DNA 

first. Then the single-stranded DNA (complementary DNA) served as a template can be 

exponentially amplified by conventional PCR. (13) 

On the other hand, real-time PCR permits sensitive quantification of nucleic acids that 

can be used to diagnose pathogens for individual species. It is based on the detection of 

fluorescent signal generated by the fluorescent dye which increases in proportion with the 

amount of the amplicons. Fluorescence intensity is monitored during reaction cycle, thus 

allowing the analysis in real time without laborious post-amplification analysis (e.g. gel 

electrophoresis). (83) SYBR® Green and TaqMan® are the two different formats that specific to 

double-stranded DNA and sequence specific oligonucleotide, respectively. (81) Although there 

are many advantages of qPCR method, limitations still present as listed in Table 2.3. 

 

Table 2.3 Advantages and limitations of real-time PCR 

Advantagea Limitation 

Range of quantification (7–8 log decades) PCR product increases exponentially 
High technical sensitivity (<5 copies) Variation increases with cycle number 
High precision (<2% CV of CT values) Increased variation after transformation to 

linear values 
No post-PCR steps Overlap of emission spectrab 
Minimized risk of cross contamination Maximal four simultaneous reactionb 
High throughput Increased risk of false negative resultc 
Multiplex approach possible  

a Adapted from Dieter Klein.(82) 
b maybe new technology could improve this. 
c particularly for pathogen detection. 
 

PCR in combination with other detection techniques have also been well established. 

For example, a PCR and microarray-based assay offered a specificity of 98% and sensitivity of 96% 
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(initial sensitivity of 82%) in bacterial pathogen detection within three hours including the time 

required for sample preparation, DNA extraction, PCR and microarray steps.(84) Compared with 

culturing and plating, PCR based assay can rapidly provide reliable result in a less time-

consuming manner. 

2.4 Biotinylation  

In biochemistry, the process of covalently attaching biotin to a protein, nucleic acid or 

other molecule is called biotinylation. Due to the small size of biotin, it is unlikely to disturb the 

original function of the attached molecule. Generally, there are chemical biotinylation and 

enzymatic biotinylation. Chemical biotinylation means the reaction is through conjugation of 

chemistries, such as conjugation to primary amines, carboxyls or carbohydrates. These often 

result in nonspecific biotinylation of the groups on the target protein. For example, N-

hydroxysuccinimide coupling results in biotinylation of any primary amines in the protein. On 

the other hand, enzymatic biotinylation gives binding to a specific lysine within a certain 

sequence. The detailed reaction process is indicated in Figure 2.3.  

 

 

Figure 2.3 In vivo biotinylation: condensation reaction between biotin and a lysine residue to 
form a biotinylated protein that is catalyzed by biotin ligase protein.(85)  
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Table 2.4 List of some biotinylated molecules and their possible applications (abbreviations: 
ALP= alkaline phosphatase, HRP= horseradish peroxidase) 

 

Biotinylated moietya Possible applications 

Anti-immunoglobulins, Protein A, 
Protein G 

Immunological assays, flow cytometry, cell sorting, 
immunohistochemistry, Western blots 

Lectins Glycoconjugate studies, mitogenic stimulation studies 
Anti-lectins Localization of lectin receptors 
Enzymes (ALP, beta-galactosldase, 
glucose oxidase, HRP) 

Immunological assays, nucleic acid hybridization 

Ferritin, hemocyanin Electron microscopy 
Agarose, cellulose Affinity chromatography 
Anti-avidin, anti-streptavidin Amplification assays 
Nucleotides Nucleic acid hybridization 
DNA Nucleic acid hybridization, molecular mass markers, 

DNA sequencing 
Hormones Affinity chromatograp, receptor-ligand interaction 
Cells  Hybridoma production 

a Adapted from Eleftherios P. Diamand and Theodore K. Christopoulos.(86) 

2.4.1 Biotin protein ligase  

Biotin-protein ligase (BirA, EC 6.3.4.15) can add biotin covalently to biotin-acceptor 

peptides/proteins via an ATP intermediate reaction which is highly efficient. The biotinylation 

process can be carried out by the cell’s endogenous BirA or through the co-expression of an 

exogenous BirA.(87) Recently, AviTag or biotin acceptor peptide (BAP) has been fused to 

proteins for biotinylation as BirA recognizes the N-terminus or C-terminus of this 15 amino acid 

peptide. For in vivo enzymatic biotinylation, the BAP tagged protein and BirA are usually co-

expressed. BirA also reacts with proteins fused to biotin carboxyl carrier protein (BCCP) as it can 

be recognized by biotin molecules as well and attached to it.(88) Table 2.4 shows some 

biotinylated molecules and their possible applications. 
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2.4.2 Streptavidin-biotin 

Streptavidin is a 52.8 kDa protein found from the bacterium Streptomyces avidinii which 

has high affinity to biotin. The binding between biotin and streptavidin is extremely strong, 

highly specific and resistant to organic solvents, denaturants, detergents, proteolytic enzymes as 

well as extremes of temperature and pH.(86) Thus streptavidin-biotin interaction system is used 

extensively in molecular biology and biotechnology. Due to the small molecule size (244.31 Da) 

of biotin, the biological activity of the macromolecules after biotin binding will not be affected, 

e.g., enzymatic catalysis and antibody binding. In other words, biotinylation usually will not 

change the properties of these bio-molecules. (89) As one of the strongest noncovalent binding 

between a ligand and a protein and as per streptavidin molecule possess four binding sites, they 

can be applied for multiply biotinylated molecules for biotin. These features make the isolation 

of biotinylated molecules convenient and allow its application in various areas of modern 

biological techniques (e.g. orient immobilization for bacterial detection). For example, in the 

field of protein purification, biotinylation allows the purification step more easily by reducing 

background binding which often occurred within other affinity tags. In addition, the purified 

streptavidin is readily available and their derivatives e.g., with fluorophores, enzymes, 

antibodies and solid phases are also commercially available as listed in Table 2.5.  
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Table 2.5 List of streptavidin conjugates and their possible applications 

Conjugate of avidin or streptavidin witha Possible applications 

Enzymes (ALP, HRP, p-galactosidase, glucose 
oxidase, etc), fluorophores (fluorescein, 
rhodamines, phycoerythrin, Texas Red) 

Immunological assays, flow cytometry, cell 
sorting, Immunohistochemistry, Western 
blots, nucleic acid hybridization 

Eu3+-chelates Immunological assays, Western blots, nucleic 
acid hybridization 

Ferritin, gold Electron microscopy 
Chemiluminescent labels Immunological assays, Western blots, nucleic 

acid hybridization 
Agarose Affinity chromatography 
Magnetic particles Nucleic acid hybridization, affinity 

chromatography, DNA sequencing 
Polystyrene Immunological assays 

a Adapted from Eleftherios P. Diamand and Theodore K. Christopoulos.(86) 

2.5 Bacteriophage and application 

2.5.1 Phage structure 

Typical bacteriophage is composed of a protein head that encapsulate its genetic 

material (DNA or RNA) inside and tail for specific binding to the receptor molecules on its host 

bacteria (90). As a protective shell for the genome, phage head is made up of many copies of 

one or more kinds of capsid proteins which connect with a hollow tube tail. Phage tail is helpful 

for the attachment to its host cell when phage infection occurs as tail fibers would specifically 

attach to the receptor on bacterial cell wall and tightly bound to it. It is also useful for phage 

genetic material passing into the host cell. However, there also exist some exceptions, a small 

portion of phages don’t have a tail structure (found in dsDNA phages). Although different 

phages have different sizes and shapes, most of them are in a range from 24nm to 200 nm in 

length while the length of the tail can be very different (91). Miller and et al. showed a typical 

phage T4 structure containing a head and tail in Figure 2.4.  
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Figure 2.4 Electron micrographs of bacteriophage T4: (A) tail fibers and icosahedral head of 
phage T4; (B) DNA genome of phage T4 delivered into host cell through its hollow tail tube.(92) 

2.5.2 The mechanism of phage adsorption to host 

The mechanism of how phage adsorbs to its host as the first step of infection and 

parasitic metabolic life cycle is essential for better understanding phage based biosensors. 

Especially, as a key step in phage recognition to its specific host cell, both phage and bacterial 

structure as well as their interaction (eg. phage attachment, penetration to host cell) is worthy 

of attention and study.  

2.5.2.1 Phage receptors on cell surface 

Different phage is known to infect its corresponding bacterial strain or species, usually in 

a narrow host range and this specificity between phage-bacterial interaction relies on the 

specific attachment which is determined by the recognition of receptors on bacterial 

surface.(93) Moreover, receptor density, amount and site on bacterial cell wall play an 

important role in this process. For gram-negative bacteria, (such as E.coli) the external layer of 
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lipopolysaccharide (LPS) and proteins localized in the outer membrane usually serve as potential 

receptors during phage infection. 

Lipopolysaccharide as an outer membrane component offers receptor function for 

phage conjugation. As a large molecule, its contains of lipid A and a polysaccharide which is 

consist of O-antigen (also named O side-chain), outer core and inner core in the outer 

membrane of gram-negative bacteria. It has been reported that the adsorption of Salmonella 

flexneri serotype 3a was related with the hydrolysis of a bond in the O-chain and absence of this 

O-antigen resulted in resistance to its corresponding phage. (94) In brief, phages recognize the 

receptor component in LPS through certain enzyme at tail fiber, followed by adsorption to it and 

hydrolysis of the bonds in O-chain. In the case of phage T4, only LPS serves as the receptor in 

E.coli B strain. For E.oli K12 strain, this residue is masked by an additional sugar chain which 

prevent its interaction with the tail fiber of T4. As a result, it need the OmpC protein to 

overcome the prevention and function as a receptor to interact with T4.(95) While to T-even 

phages, long tail fibers seem to play an important role during the specific attachment process. 

And for phage TuIb, it’s possible that LPS plays two possible roles in the interaction with long tail 

fibers. In summary, polysaccharide part plays an important role for adsorption either by directly 

interacting with phage fibers for both short and long tail or by interacting with OmpC.  

Based on different function, proteins can be classified into different types, including 

structural proteins, porins, enzymes, transport proteins and etc. As membrane proteins, OmpA, 

OmpC and OmpF from E.coli are known to serve as receptors during phage infection for phage 

K3, phage PA2 and phage T2, respectively.(95) As a major outer membrane protein, OmpC 

serves as a receptor which is needed along with cell wall LPS for the recognition of phage T4 to 

E. coli K12 strain. Mutants with an absence of either receptor could result in a reduced infection 

efficiency. Without both receptors, E.coli cells displayed resistance to T4 phage.(96) So for an 
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effective infection by phage T4, both OmpC and LPS are required for E. coli K12 while only LPS is 

required for E.coli B strain. Unlike phage T4, the receptor protein for phage T2 is OmpF and 

different phage tail fiber protein governs the recognition.  

As another outer membrane protein of E.coli K12, OmpA has also been reported to 

serve as a receptor for T-even phage conjugation. (97) Studies indicated that phage Tulb 

attachment occurred when OmpA-LPS complex was present while missing of the protein 

resulted in resistance of phage infection. Similar result was found in phage K3 when bacterial 

mutants lacking the protein receptor were performed. (98) Moreover, for phage T6, researchers 

found tsx gene product (tsx-protein) served as phage receptors in Shigella and E.coli. Mutants 

with deficiency of this gene were fully resistant to some T6 like phage. (99) Other enzymes 

found at outer membrane, such as proteases OmpT, OmpX, protein TonA and TonB were 

receptors for T-like phage, phage T7 and T5, respectively. 

Other components of bacterial cell including capsular polysaccharides, oligosaccharides, 

peptidoglycan or flagellum/pilus have also been reported to display receptor activities during 

phage adsorption process.  

2.5.2.2 Phage adsorption under simple conditions 

The initial stage of phage infection is an attachment onto the susceptible host cell 

surface. As there is no special structure for phage moving, the adsorption is dependent on 

random collision of phage and bacteria. So the first step of host recognition is regarded as a 

searching process. This is supposed to follow the mass-action kinetics which means higher 

reactant density resulting in higher number of random collisions and an increased adsorption 

rate. Moreover, the rate of adsorption is influenced by the physiological state of the bacteria. 

For Ecoli. B strains which are motile bacteria, the adsorption rate should be higher at optimal 
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condition as the bacteria can move faster than under adverse condition as their motility will be 

limited. Thus, the time for phage attachment relies on the concentrations of two particles and 

cell’s physiological status.  

Under optimal condition, the rate is directly proportional to both bacteria and phage 

concentrations. For most viruses, the maximum collision to achieve virus-host binding in 

nutrient broth takes place at 37°C. The attachment rate of phage T1 to E. coli B decreases when 

temperature is above or below 37°C. Usually, phage adsorption process contains two steps: 

reversible and irreversible binding. In a reversible one, phages can desorb from cells by dilution 

(e.g. by distilled water), while in irreversible one, phages are not reserved to liberate as their 

binding are with specific receptors. The irreversible adsorption of virus to receptor will induce 

an rearrangement of phage tail structure and following delivery of phage nucleic acid into 

host.(100) However, the molecular mechanism for the interaction between different phage-

bacteria pair may vary according to specific receptor groups on surface. After the irreversible 

attachment, phage lysozyme and some specific enzymes will be synthesized and released to 

degrade peptidoglycan or exopolysaccharide (EPS) structure, resulting in the forming of pores in 

cell wall. ATP molecules and electrochemical membrane potential may also help the 

penetration.  

2.5.2.3 Influence of ions in phage adsorption 

In addition to physical factors (pH, temperature), phage adsorption rate is also 

influenced by chemical compositions, such as ions or organic substances in the surrounding 

environment. For example, in a plain medium, phages T1 and T3 display a rapid reaction rate to 

E.coli B at 37°C while phages T2 and T4 display no adsorption. But, when certain salts were 

added to the medium reaching an appropriate concentration, phage T2 and T4 exhibit the same 
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high adsorption velocity as phage T1 and T3. Similar result was found when phage T1 and E. coli 

B were suspended in distilled water as no measurable adsorption took place in this reaction 

system. These results suggest that the initial attachment of virus to cellular surface should 

follow an electrostatic pattern which is influenced by the ionic charges on the two surfaces. 

For phage T1, when approximately 5 X10-3 M NaCl is attained in buffered solution, virus 

adsorption rate can reach to nearly half that detected in nutrient medium. But when higher NaCl 

concentrations are applied (≥ 5 X10-2 M), the reaction becomes inhibited and adsorption rates 

decrease to relatively low values. The same decreasing of adsorption rate at an excess of NaCl is 

also obtained in cultural medium. When NaCl is replaced by other univalent ions, such as KCl, 

LiCl and NH4Cl, similar results are obtained. For example, when the concentration of NaCl 

reached 10-1 M, the adsorption rate diminished to less than half of the value obtained at the 

concentration level of 10-2 M. This means addition of ions at low concentration can increase the 

reaction velocity while decrease the velocity at high concentration.(101)  

The effect of divalent ions on phage T1 adsorption rate to host cells also exhibit a similar 

pattern to that of monovalent ions. For example, when pure salt of CaCl2 in buffered solutions is 

applied, only ≈5 X10-4 M is needed to reach the maximal adsorption rate, while higher 

concentrations depress this reaction (eg. at ≈5 X10-3 M, the velocity rate is < half of that at 5 X10-

4 M). The maximal reaction velocity at optimum Ca2+ concentration is also similar with that 

observed in nutrient broth. As their anion is the same, the concentration difference of NaCl and 

CaCl2 is apparently caused by the cations. In addition, when anion is replaced by nitrate or 

sulfate, the result is similar with that of chloride. And when CaCI2 was replaced by other divalent 

salts, such as MgCl2 or MnCl2, almost the same results were found. 

Trivalent ions, such as Fe3+, Al3+ and Cr3+ even at low concentration have inhibiting effect 

on phage and host bacteria as they can inactivate them quickly and irreversibly. Compared with 
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ionic substances, non-ionized substances in a reaction system show no effect on phage 

attachment velocity. So, the adsorption rate of phage to host cells is probably controlled by ionic 

components. In addition, the difference of total charge of these ions, instead of their chemical 

species influence most on phage adsorption rate. These experimental findings illustrate that 

electrostatic interaction maybe a key factor that influence phage attachment. 

By adding MgCl2 to a non-reacting mixture of phage and bacteria in distilled water, a 

rapid adsorption could be achieved which indicates the metallic cations have activation 

influence. Specifically, when E. coli B and phage T1 were mixed in distilled water at 37°C, no 

adsorption was detected until Mg2+ was added to the concentration of 10-3 M. The percentage 

of phage adsorption to host cells increased from 0 to 93% after the addition of Mg2+. However, 

higher concentration of Mg2+ ultimately decreased the adsorption rate of phage to bacteria. 

One proposed theory indicates that interaction between virus and host cell is a two-step 

process. The first step is a reversible one which may be similar to the attachment on an ion-

exchange surface. The second step is an irreversible one which means infectious phage cannot 

be liberated from cell by dilution or agitation. An explanation of the irreversible binding 

between phage tail and the receptor is the key-lock interaction model.(102) Although most 

phages were found to display an irreversible adsorption to their host cells, PL-1 phages were 

reported to adsorb to host bacteria reversibly only.(103) But one thing in common is that the 

groups or structures of bacterial receptors are highly specific and differentiate widely according 

to different phage species. 

Phage-host adsorption reaction would be influenced by the energy needed to different 

sites on both surfaces as well as the resulted number of ions that bind to each surface. In brief, 

the environment for effective phage-cell reaction needs appropriate charge distribution instead 

of special types of ions. 
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2.5.3 Phage life cycle 

Although all phages need host cells to replicate and assemble progenies by using their 

metabolism and machinery, different phage species have different characteristic of life cycle. 

Generally, there are two different types of phages, one has lytic life cycle while the other has 

lysogenic life cycle. And there are basically five steps for a typical phage infection: 1) virus 

attachment; 2) DNA injection; 3) synthesis of virus components (phage nucleic acid and 

proteins); 4) assemble of phage particles to burst size; 5) release of new phages after cell lysis.  

2.5.3.1 Lysogenic cycle 

In a lysogenic cycle, phage’s genome is integrated into the host chromosome instead of 

causing transcription in the bacteria. In this case, phage will not kill the host bacterial after the 

infection but replicate its DNA with the replication of bacterial DNA. Thus, phage genome will 

not be expressed except the gene coding for a repressor which can prevent the synthesis of viral 

lysozyme that is needed for a lytic cycle. Phage this unexpressed state is called prophage as it is 

not a phage but still keeps the ability to produce phage particles. Bacteria cells carry prophages 

are termed lysogen. Lysogen may turn into a lytic cycle stay until exposed to adverse conditions. 

In this case, repressor synthesis becomes inactivated or stopped while enzymes that can excise 

phage DNA from the host genome will be expressed. This process is named induction which 

means prophage DNA can be cut off from bacterial genome and following phage structural 

proteins will be synthesized and assembled for a lytic cycle. 
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2.5.3.2 Lytic cycle 

Phage lytic cycle will cause the lysis of infected bacteria which is different from lysogenic 

cycle. In this case, phage DNA is separate from host bacterial genome and replicates separately. 

But both lysogenic and lytic life cycle need host cell’s machinery for phage replication. Briefly, in 

a lytic cycle, after virus inject its nucleic acids (DNA or RNA) into the host cell, phage stars using 

cell's replication and translation mechanisms to produce their components immediately. Once 

the viral DNA and proteins are synthesized and assembled within the cell, new phage progeny 

particles are created and accumulated. Then some of phage specialized proteins, such as 

lysozyme (required for lytic cycle) are produced to dissolve the bacterial cell wall. This will result 

in the release of new phages into outside environment and keeping the infection to other cells. 

These two phage life cycles are shown in Figure 2.5. 
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Figure 2.5 Overview of the general bacteriophage replication cycles. Phages can be either lytic or 
temperate. 
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2.5.4 Phage therapy 

Phage therapy is a method by using lytic phage to treat pathogenic bacterial infections. 

As phages have the ability to infect their host bacteria, resulting in cell destruction, phage 

therapy is a potential alternative to antibodies and could be applied in many fields like human 

medicine, veterinary science, dentistry, and food industry. An advantage of phage therapy is its 

high specificity compared with antibiotics that used in clinic.  Additionally, phage therapy is 

harmless to patient and other normal flora in environment. On the contrary, conventional 

antibiotics with wider effect range will kill not only harmful bacteria but also non-harmful one. 

Phage can also be used to treat bacterial infections that can’t be treated by traditional antibiotic 

therapy. Typically, antibiotics cannot penetrate bacterial biofilm (composed of a polysaccharide 

matrix) and its concentration will decrease fast after permeating the infectious surface. On the 

contrary, due to the self-replicating and self-assembling characteristics of phage, effective 

treatment can be realized by applying phage based therapy theoretically.  

2.5.5 Phage display technique 

Phage display is a laboratory technique applied to express various peptides for different 

protein interactions. The goal is to select the one that can interact with a target of interest, such 

as peptide, protein or DNA. The first described case of phage display was on filamentous phage. 

Except this most commonly used type, other display systems by using T7, T4 and λ phage had 

also been applied. In this technique, the gene encoding target protein is inserted into phage 

coat protein gene, resulting in the expression of target protein fused with either minor or major 

phage coat protein. The general procedure of phage display is illustrated in Figure 2.6.  
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Figure 2.6 Schematic illustration of the general phage display protocol: 1) phage display libraries 
with potential ligand proteins bound to immobilized targets, 2) remove unbound phages by 

washing, 3) elution of bound phages by bacterial infection and plating on LB-agar, 4) 
amplification of the binding phage. Repeating of these steps ( phage panning) is performed to 

enrich target phage and purified by infecting suitable host bacteria. The correct insertion of 
target peptides or protein fragments is verified by gene sequencing. (104) 
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CHAPTER 3 

DEVELOPMENT OF A NOVEL BACTERIOPHAGE BASED BIOMAGNETIC SEPARATION METHOD AS 
AN AID FOR SENSITIVE DETECTION OF VIABLE ESCHERICHIA COLI 

3.1 Introduction 

The ability to sensitively and efficiently detect specific bacteria is paramount in many 

fields of study. In general, standard microbiological methods are based on traditional culture 

assays such as pre-enrichment, selective and differential culture medium, and serological tests 

to confirm the presence of targeted bacterial species. The total assay time can require 4 to 6 

days to obtain results, which may hinder the timely response or prevention of outbreaks by 

virulent pathogens.(105-107) In these cases, improved analytical techniques that facilitate 

efficient bacterial separation and concentration, as well as reduce the assay time have become 

increasingly important.                  

Immunomagnetic separation (IMS) offers a simple but effective method to extract 

target organisms from heterogeneous suspensions, such as food matrices, agricultural water 

and environmental specimens. (108-110) Harmful foodborne pathogens, including Escherichia 

coli O157:H7, Staphylococcus aureus, Salmonella spp., and Listeria monocytogenes have been 

separated and detected using IMS combined with methods such as polymerase chain reaction, 

electrochemiluminescence detection, colorimetric detection, enzyme-linked immunosorbent 

assay or microfluidic biosensors. (111-116) Safarik and Safarikova found IMS to be superior in 

performance when compared with conventional culture methods for Escherichia coli O157:H7 

detection in raw food products. (117) Lynch reported that the use of anti-Salmonella beads 

significantly improved the detection and separation rates of Salmonella in environmental 

samples. (118)  
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Immunomagnetic separation relies on the use of monoclonal or polyclonal antibodies as 

biorecognition elements. (119) Generally, the target organism in a mixed suspension can be 

captured and concentrated by antibodies coated on the surface of magnetic beads. (120) The 

retained target cells can then be eluted and analyzed after an external magnet is removed. In 

spite of the satisfactory results provided by this assay, false-positive results can still occur by 

cross-reactions between non-target components and magnetic beads. (121) Additionally, 

antibodies typically represent the most expensive part of biological assays. The immobilization 

of antibodies to magnetic beads is occasionally performed using covalent binding which 

suggests minor factors, such as pH value, cross-linking time or other changes in solution may 

easily affect this binding. (122) Alternatively, biotin-tagged antibodies can be used for 

immobilization onto streptavidin-coated surfaces. This method allows a more targeted approach 

if the biotin tag can be strategically placed. (123) However, the biotin-tagging can result in a full 

or partial loss of performance depending on the location of the tag. Thus, more research has 

focused on utilizing the affinity interaction between bacterial cells and functionalized magnetic 

particles for separation in complex samples. (121) 

Bacteriophages are a group of viruses which target specific bacteria and have therefore 

been widely used for bacteria typing. (124) The specific recognition of their host bacteria by 

bacteriophages makes them a potential alternative to antibodies that are frequently used in 

biosensors. (125) It has been reported previously that by immobilizing Salmonella-specific phage 

on a polystyrene surface, Salmonella could be specifically from foods. (126) As the infected 

target bacteria is used to mass-produce (in a range of 10-1000) progeny of the introduced phage 

after cell lysis, detection of the target bacteria could base on assaying the phage titre in the 

solution which only happens at the presence of viable target bacteria. (127, 128)  
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Phages can be uses to increase the capture efficiency of a specific host bacterium. (129) This 

could allow higher specificity and accuracy of the downstream detection assay which then 

decreases the possibility of false positive results. (122) In order to facilitate the detection of 

target bacteria, many assays have been reported to introduce either affinity tags (biotin tag, 

Strep-tag and etc.) on phage capsid protein or separate reporter genes followed by monitoring 

of the gene expression products (green fluorescent protein, luciferase or yellow fluorescent 

protein). (41, 87, 130, 131) Among the affinity tags, the biotin acceptor protein containing a 

specific 15 amino acid peptide can be biotinylated through enzyme-mediated coupling of biotin 

to the acceptor domain. (88) Tolba had published an oriented immobilized bacteriophage T4 

capable of capture and infecting Escherichia coli B specifically on the solid support. (42) Favrin 

also reported that biotin-modified bacteriophages could be used for Salmonella detection in 

broth. (132) 

The aim of our study was to genetically modify an E. coli specific phage to introduce 

biotin tags on phage capsids that would be applied in bacterial separation and detection. In 

order to increase the bioinylation efficiency, the gene for the biotin ligase enzyme (birA) was 

incorporated into the phage genome for transcription during infection of a host E. coli. 

Bacteriophage T7 and E. coli B were selected to form a model system due to the importance of 

E. coli detection as an indicator of general coliform contamination. (126) We have previously 

demonstrated the use of T7 to detect E. coli with high specificity and sensitivity. (133)  
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Engineered phage particles were biotinylated in vivo during the infection cycle followed 

by coating on magnetic beads decorated with streptavidin. The phage-bead complexes were 

used for bacterial separation and the resulting capture efficiencies were investigated. Results 

from this research could be extended to other species for biosensor applications with an 

efficient, inexpensive, and technically simple manner. 

 

Figure 3.1 (a) Synthesis of phage bead biosorbent by streptavidin biotin interaction; (b) 
Schematic representation of the strategy for bacterial detection by the biosorbent. 
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3.2 Materials and methods 

3.2.1 Chemicals, reagents and materials 

Molecular biology grade water was purchased from Fisher Scientific (Fair Lawn, NJ). DNA 

molecular standards were purchased from Invitrogen (Carlsbad, CA). QIAquick PCR Purification 

Kits were obtained from Qiagen (Hilden, Germany). Restriction enzymes were obtained from 

New England Biolabs (Beverly, MA). iProof™ High-Fidelity PCR kit and PCR reagents were 

purchased from Bio-Rad laboratories (Hercules, CA). Dynabeads® M-270 Streptavidin was 

purchased from Invitrogen (Oslo, Norway). Novagen® DNA ligase kit was obtained from EMD 

Millipore (San Diego, CA). All other chemicals of analytical grade were purchased from Fisher 

Scientific (Fair Lawn, NJ). 

3.2.2 Bacterial strains and culture conditions 

Escherichia coli BL21 (ATCC 25922) was used throughout development of the assay in 

this study. E. coli strain was cultured in Luria-Bertani broth (10 g of tryptone, 5 g of yeast extract, 

10 g of sodium chloride per liter sterilized water; pH 7.4) by shaking at 150 rpm and incubating 

at 37°C overnight before use. A working stock of the strains was kept on LB plate (addition of 15 

g agar to LB broth per liter) and stored at 4°C.  Tenfold serial dilutions of E. coli cultures with 

phosphate buffered saline buffer (PBS: 137 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na2HPO4, 

1.8 mmol/L KH2PO4; pH 7.4) were plated on LB agar and incubated at 37°C overnight for viable 

cell counting. Enumeration of bacteria was expressed in CFU/mL. 
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3.2.3 Phage engineering 

As a model system, Novagen®T7Select System (Madison, WI) was used for phage 

engineering and packaging. The target gene containing biotin ligase sequence (birA) and biotin 

acceptor peptide sequence (bap) was synthesized commercially (GenScript USA Inc., Piscataway, 

NJ) with designed overhang sequences for ligation with restriction endonuclease (HindIII and 

EcoRI) digested phage arms. Instead of cloning birA onto the phage capsid surface, we designed 

the T7Select phage to express biotin ligase intracellularly during infection under the control of 

the strong T7 Φ10 promoter downstream of the T7Select 415 capsid gene 10B. The DNA 

fragment was digested with EcoRI and HindIII and purified with Qiaquick columns (Hilden, 

Germany). Then target DNA sequence was ligated to the arms of T7Select as recommended by 

the manufacturer. T7Select packaging extracts (Novagen, Madison, WI) was used to package the 

modified genome T7birA-bap into the phage head in vitro following the manufacturer’s instruction. 

The packaged phage was amplified in liquid media of host E. coli BL21 by incubating at 37°C with 

shaking.  

Single phage plaques on the soft agar plate were isolated and selected to verify mutant 

colonies. (107) The phage colonies were picked by a sterile loop and resuspended into nucleic 

acid free water. This served as template for the PCR amplification. To confirm the insertion of 

target gene in the genome of recombinant phage, T7Select primers (forward: 5'-

GGAGCTGTCGTATTCCAGTC-3'; reverse: 5'-AACCCCTCAAGACCCGTTTA-3') were used. A PCR 

reaction was carried out in 20 μL reaction system including 1 μL phage DNA sample, 4 μL iProof 

HF buffer, 2 μL primer solution (1 μM of each primer), 0.4 μL dNTP mix, 0.2 μL DNA polymerase 

and nucleic acid free water. PCR amplification settings were as following: 95 °C, 10 min; 35 

cycles of 95 °C, 20 s; 60 °C, 30 s; 72 °C, 45 s; then 72 °C for 10 min. Agarose (1.2 %) gel 
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electrophoresis was performed to separate PCR products in TAE buffer. SYBR® Safe DNA Gel 

Stain (Invitrogen, Eugene, OR) was used to stain the gel and UV illumination was applied for 

photograph. 

3.2.4 Bacteriophage biotinylation level 

The biotinylation efficiency was calculated using a Pierce® Biotin quantitation kit 

(Thermo Scientific, Rockford, IL) following the manufacturer’s instruction. In brief, the purified 

biotinylated phage (1012 PFU/mL) was prepared and added to a mixture of HABA (4'-

hydroxyazobenzene-2-carboxylic acid) and avidin in a 96-well plate followed by measuring at 

500nm with a spectrophotometer from BioTek (SynergyTM 2, Winooski, VT). The change in 

absorbance of the HABA-avidin solution before and after addition of the biotinylated sample 

was measured and the ratio of biotin to modified phage head protein was calculated via the 

analytical formula provided by the manufacturer. 

3.2.5 Bacteriophage propagation and purification 

The engineered bacteriophage T7 was used in this study for bacteria separation. 

Amplification and purification of the phage were performed as following: an overnight E. coli 

culture (1 mL) was inoculated into 100 mL fresh LB broth followed by incubating at 37 °C with 

shaking (200 rpm) to reach an optical density of 0.6. After inoculating phage stock solution (100 

μL) to the culture and incubating for 1.5 hour, the culture was centrifuged at 8000 x g for 10 min 

to pelletize the bacterial debris. In order to purify the phage, the supernatant was filtered using 

a 0.22 μm pore size filter (Corning Life Science, Corning, NY) followed by ultracentrifuging (35, 

000 rpm, 2 hours) at 4°C. The phage pellet was resuspended in PBS buffer (1 mL) and stored at 
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4°C for future use. The phage titer was determined by double layer agar method as described by 

Adams. (107) Briefly, the phage solution (100 μL) and overnight E. coli culture (250 μL, 108 

CFU/mL) were mixed with 3 mL top agar (10 g tryptone, 5 g yeast extract, 10 g sodium chloride 

and 7.5 g agar per liter; cooled to 40-50°C) and poured over the LB agar plates following 

incubation at 37°C for 3 hour. Enumeration of phage was expressed in PFU/mL. 

3.2.6 Growth curve of the bacteriophage 

To determine the burst sizes and latent period of recombinant phage T7, one-step 

growth curve experiment was conducted as described by Park and Leuschner with minor 

modifications. (134, 135)  Firstly, log-phase E. coli B culture in fresh LB broth (100 mL) was 

prepared and incubated at 37°C. Then a phage suspension (100 μL, 108 PFU/mL) was added into 

2.0-ml Eppendorf tube that contained 1 mL of the cell culture to give a multiplicity of infection 

of 0.1. The phage-E. coli solution was diluted at a ratio of 1:104 in PBS followed by incubation at 

37°C with shaking (200 rpm). Starting at 0 min and with 10 min intervals for 1 h, the diluted 

suspension was enumerated through plaque assays as described previously.  Latent time and 

burst size were calculated from this growth curve. 

3.2.7 Preparation of bacteriophage based biosorbent 

The magenetic beads were washed three times with PBS (pH 7.4) before use. To 

construct phage based biosorbent beads, biotinylated phage T7birA-bap (1 mL, 109 PFU/mL) was 

incubated with streptavidin coated magnetic beads (100 μL, 108 beads/mL) with mild agitation 

(10 rpm) at room temperature. After the phage-bead conjugation reaction, the bound phages 

were able to be removed using magnetic separation. The biosorbents were washed three times 
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and resuspended in 100 μL PBS (pH7.4) until further use. Wild type T7 bacteriophage (T7WT) 

which served as a control was conjugated similarly. To calculate the immobilization 

efficiency, the titers of phage in the initial solution and that of supernatant solution (after 

capture by magnetic beads) were enumerated. The immobilized phage was assessed by 

subtraction of the two titers. In order to optimize the immobilization efficiency, different 

phage-beads incubation times (1 h, 6 h and 12 h) were investigated.  

Additionally, the infectivity of the biosorbent beads was verified by examining the 

presence of plaques around plated beads. Briefly, the biosorbents were mixed with overnight E. 

coli culture (250 μL) and top agar (3 mL) followed by placing on LB agar plate and incubating 

overnight (at room temperature). All experiments were performed in triplicate. 

3.2.8 SEM imaging 

Scanning electron microscopy (SEM) was performed by using a FEI SEM Magellan 

(Hillsboro, OR) at 5 KV. Beads and bacterial cells samples were prepared in 2.5% glutaraldehyde 

at 4°C overnight. After fixation, these samples were rinsed twice with distilled water and dried, 

followed by dehydrating in gradient concentrations of ethanol. Then samples were coated with 

gold for 30 second with sputter coater Cressington 108 auto (TED PELLA, INC., Watford, UK). 

3.2.9 Bacterial capture efficiency of the biosorbent 

Manual magnetic separation was performed using 1 mL samples in micro centrifuge 

tubes. A scheme of the bacteriophage-MS assay was illustrated in Fig. 1. In brief, overnight E. 

coli culture with tenfold serial dilutions were prepared to make 102 to 106 CFU/mL cell 

suspension, as confirmed through viable plate counting. Then an aliquot (20 μL) of the 
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constructed biomagnetic beads was added to bacterial samples (102 to 106 CFU/mL) and 

incubated (room temperature) with agitation (10 rpm) for 15 min. The bead-bacteria complexes 

were then separated and concentrated using a magnetic separator rack from BD IMagTM (Sparks, 

MD) for 3 min. The supernatant (100 μL) was collected and spread on LB agar plates for 

quantification and the sample was aspirated and discarded. Bead-bacteria complexes were 

washed three times with PBS (1 mL) and resuspended in the same buffer in 100 μL for further 

analysis. E. coli cells in the initial dilutions and the supernatant were enumerated respectively to 

calculate the number of captured cells. Capture efficiency (CE) was defined as the percentage of 

the total bacterial cells captured by the biomagnetic beads and calculated using the following 

equation:  

CE (%) = 100×(1-Cs/CI); 

Where CI is the initial number (CFU/ mL) of cells present in the sample and Cs is the 

number (CFU/mL) of cells in the supernatant which is unbound to biomagnetic beads. (136) 

3.2.10 PCR assays 

To verify the ability of biosorbent beads to capture and infect viable bacteria, PCR assay 

was carried out after magnetic separation of E. coli cells. The bead-bacterial complex was 

resuspended in sterile water and incubated (20 min) for lysis which allowed release of the 

bacterial DNA. The magnetic beads were removed and one microliter of the supernatant was 

used as DNA template for PCR reaction. As a control, heat treated (65 °C, 10 min) bacteria 

samples (dead cells) were performed in the same way as non-heat treated bacteria (live cells). 

(137) Universal primer 27F and 1492R (1 μM) in a total volume of 2 μL were used for PCR. The 

PCR amplification was performed under the following conditions: 98 °C, 10 minute, 35 cycles of 
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98 °C, 10 sec, 55 °C, 30 sec, 72 °C, 30 sec followed by a final extension at 72 °C for 10 minutes. 

Gels were run at 120 V in TAE buffer for 30 minutes. PCR products were separated by agarose 

gel electrophoresis and visualized under UV illumination as previously described. 

3.3 Results and discussion 

3.3.1 Engineering the reagent phage 

As depicted in Figure 3.2 a, biotin ligase in T7415 was encoded as a non-fusion protein 

downstream of gene 10B and bap. To construct the mutant, we designed a stop codon at the 

end of bap and a ribosome binding sequence (RBS) upstream of the biotin ligase gene. The T7 

promoter in front of gene 10 drives transcription of the biotin acceptor peptide and biotin ligase 

in front of gene 10. The construct was packaged and amplified in E. coli culture.  The resulting 

engineered phage (T7birA-bap) was confirmed by PCR and sequencing as containing the 

appropriate gene (birA-bap) fragment. When the DNA sequence of birA-bap was incorporated 

into the genome of phage T7415, we could identify the corresponding band at the size of ～1.3 kb. 

The control T7WT genome did not yield a detectable PCR amplicon (Fig. 3.2b). This cloning 

strategy resulted in the display of the BAP peptide on the phage capsid protein and intracellular 

expression of biotin ligase (BirA). Capsid proteins could then be biotinylated either in vivo or in 

vitro following lysis. 
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Figure 3.2 (a) Schematic representation of the recombinant construct. Cloning vector (T7415) 
included a T7 promoter (P) in front of gene 10B, a ribosome binding sequence (orange dot), T7 
terminator Tφ (gray) and restriction sites Eco RI & Hind III (black and vertical lines). Construct 

T7birA-bap containing the target gene between Eco RI and Hind III included a stop codon (white 
line) terminating the translation of 10B and BAP (fused with 10B), T7 promoter with a ribosome 

binding sequence and T7 terminator downstream of the cloning site. (b) Agarose gel 
electrophoresis showing the insertion of birA-bap into phage genome. Lanes 1 to 5, PCR 

products of engineered phage with a size of～1300 bp, indicating the insertion of birA-bap; 

lanes 6 to 9, fragments obtained from T7WT phage as a negative control for the PCR; lane M, 
GeneRuler express DNA ladder. 

3.3.2 Characterization of the recombinant phage 

3.3.2.1 Biotinylation level 

We used the commercially available kit containing HABA reagent for the colorimetric 

determination of biotinylation levels in labelled phage capsid proteins. The average number of 

biotins per modified phage (T7birA-bap) was estimated to be 136.4±7.3, which was 32.9±1.8% of 
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the total peptides (415) displayed, while the control phage (T7bap) had only 8.8±4.4% of the total 

peptides biotinylated. The result was in agreement with a previous report that recombinant 

proteins with the expression of biotin acceptor peptide in high and low levels were typically 

biotinylated at ～6% and 30% efficiency, respectively (41). 

3.3.2.2 One-step growth curve 

One-step growth curve experiment was determined to compare different characteristics 

of the recombinant phage with the wild type one. Generally, burst size and latent period had a 

progressive correlation: optimal latent period could induce high fitness of phage that would 

contribute to burst size or plaque size (107, 138). Burst size was calculated as the ratio of the 

final titer of released progeny phage to the original count of host cells that infected during the 

latent period (138). These parameters may be affected by many factors, including the host 

species, incubation temperature, medium components and bacterial physiology (129).  As Fig. 

3.3 indicated, the latent period for the wild type phage was ～20 min and the burst time was 

40 min with a burst size of 167±33 PFU; the recombinant phage latent period was ～30 min, 

with a burst time and size of 30 min and 218±80 PFU, respectively. The burst size of the wild 

type phage was similar to previously reported values. Nguyen and Kang had reported a latent 

period of 16.8 min and a burst size of 179 PFU when BL21 was infected by T7 phage at 37 °C 

(139). Thus, insertion of birA-bap into the T7 genome led to a prolonged latent period and 

enlarged bursts, which was in accordance with the normal relationship between burst size and 

latent time to maximize phage adaptation to environments: small burst size was compensated 

for by short latent time, while prolonged latent period usually yielded larger burst size (42). 
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Figure 3. 3 One-step growth curves of the T7WT and T7birA-bap. Vertical error bars represented 
standard deviation. 

3.3.3 Characteristics of the phage based biosorbent 

3.3.3.1 Infectivity 

The infectivity of bacteriophage based biosorbent was investigated by plaque assay to 

verify progeny phage released from E. coli cells that infected and lysed by the immobilized 

phage particles (140). After 3 h incubation, the plates were inspected to verify the presence of 

clear plaques produced by phage-coated beads when applied to E. coli lawn. The zone of lysis 

indicated that the immobilized recombinant phage maintained its infectivity to lyse E. coli in the 

lawn and not inactivated by the sorption on the beads. 
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3.3.3.2 Immobilization density 

As the results shown in Figure 3.4, the immobilization density of the biotin 

labelled phage (109 PFU/mL) on magnetic beads after different incubation time (1 h, 6h and 

12 h) was 29.8±9.2%, 43.9±12.2% and 82.8±5.1%, respectively. This was significantly different 

from the wild type phage which had no significant difference with respect to incubation time 

(from 4.3±1.6% to 5.1±2.4%). These results indicated that biotinylated phage particles were 

immobilized on the streptavidin coated magnetic beads due to the strong bond between biotin 

and streptavidin rather than physical absorption. To estimate the value of phage per bead, the 

number of immobilized phage particles was divided by the number of magnetic beads applied in 

the reaction. The result was summarized and compared in Table 3.1. The phage density on the 

surface of the beads was 89.3±27.7 PFU/bead, 131.5±36.7 PFU/bead, and 248.3±15.3 PFU/bead 

in 1, 6, and 12 hours, respectively. 
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Figure 3.4 Immobilization efficiency of biotinylated phage on streptavidin coated magnetic 
beads after different incubation time (1h, 6h and 12h). T7WT phage was served as control. Error 

bars represented the standard deviations of six measurements. 
 

Table 3.1 Summary and comparison of phage per bead after different immobilization times. 
Values represent the average of three independent tests ± the standard deviation 

 

Incubation time Immobilization efficiency Phages per bead 
 

1 h 29.8±9.2% 89.3±27.7 PFU 
6 h 43.9±12.2% 131.5±36.7 PFU 
12 h 82.8±5.1% 248.3±15.3 PFU 
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3.3.4 SEM image 

As shown in Fig. 3.5, E. coli cells captured by phage immobilized magnetic bead were 

observed with a scanning electron microscope (SEM). The binding between E. coli cells and the 

biosorbent also indicated the specificity and high affinity of the biotin labelled phage to 

streptavidin coated magnetic bead mediated by biotin-streptavidin interactions. 

 

 Figure 3.5 Scanning electron microscopic images of beads with E.coli cells: (a) Phage based 
magnetic beads (biosorbents); (b) E. coli cells (appear as rods); (c) High magnification of E. coli 

cells captured by the biosorbents; (d) High magnification of E. coli cells. 

3.3.5 Capture efficiency of the phage-bead biosorbent 

To estimate the ability of immobilized phage particles for bacterial capture and 

infection, phage-based biosorbents constructed using different immobilized phage densities 

(89.3±27.7 PFU/bead, 131.5±36.7 PFU/bead, and 248.3±15.3 PFU/bead) were investigated. As 

longer incubation time (exceed 30 minutes) with bead-phage complex could result in lysis of 
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bacteria, a shortened capture time (about 15 minutes) was performed prior to magnetic 

separation. 

To assess the capture efficiency of phage bead biosorbent for E. coli cells (102-106 

CFU/mL) in broth, the depletion of the number of E. coli from initial solution was determined. 

Significantly lower CEs were obtained with the use of T7WT conjugated magnetic beads than with 

T7birA-bap conjugated magnetic beads (Fig. 3.6). For the biosorbent coated with 89.3±27.7 

PFU/bead, 50.7±9.2% of E. coli (102CFU/mL) was captured compared with to 17.1±7.2% 

captured by the control (Fig. 3.6a). The CEs of 131.5±36.7 PFU/bead increased to 69.1±9.4% 

accordingly (Fig. 3.6b). For the biosorbent conjugated with 248.3±15.3 PFU/bead, 86.2±4.7% of 

E. coli cells (102CFU/mL) were captured (Fig.3. 6c). Under the same conditions, capture 

efficiencies for the control remained ～10% to 20% (Fig. 3.6b-c). For all phage densities, an 

increasing bacterial load resulted in decreased capture efficiencies. This is typically due to a 

decreased number of particles per bacterial cell resulting in lower separation velocities. The 

results demonstrated the relationship between the density of the immobilized phages and the 

capture efficiencies at different E. coli concentrations. 
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Figure 3.6 Evaluation of the constructed biosorbents: (a-c) Capture efficiency of the biosorbent 
immobilized with 89.3±27.7 PFU, 131.5±36.7 PFU and 248.3±15.3 PFU phage particles per bead, 

respectively. The time for E. coli BL21 cells attachment was 15 min. Wild-type T7 phage was 
served as a control. The error bars represented the standard deviations of six measurements. 
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3.3.6 PCR detection of viable E. coli captured by the biosorbent 

The capture ability of viable cells was tested by PCR amplification after biosorbent 

separation of E. coli cells (heat treated and non-treated). Bacterial samples were performed in 

the same biomagnetic separation and PCR amplification operation. As indicated in Fig. 3.7, all of 

the non-heat treated samples (102 CFU/mL) yielded a PCR product band. While the heat treated 

did not contain an observable PCR amplicon. 

Although non-viable E. coli may still be separated by the phage-bead complex, the 

adsorption would not result in an infection. Without a phage replication cycle, no lysis step 

would occur and the bacterial nucleic acids would not be deposited in the sample. In this case, 

the non-viable bacteria would be removed with the beads and the nucleic acids from viable 

bacteria would remain in the sample for PCR. 

 

 

Figure 3.7 PCR detection of heat treated and non-treated E. coli cells captured by the 

biosorbent. 
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3.4 Conclusions 

In our study, the genetically engineered phage was successfully biotinylated in vivo 

which offered a useful label for rapid and specific detection of bacteria. The efficiencies of 

bacterial capture by the immobilized phage particles were significantly different between the 

recombinant phage based biosorbents and the control. Approximately 86% of bacteria were 

captured by the constructed phage bead complexes which resulted in a limit of detection 102 

CFU/mL. In conclusion, combined with PCR, the captured bacteria could be detected in less than 

3 h. Compared with other published detection techniques, the proposed assay offers superiority 

in both sensitivity and assay time (Table 3.2). In addition, this developed novel separation 

method could also be applied to other bacterial specific phage which would open new avenues 

for the development of biosensors to detect bacteria efficiently and in a user friendly way. 

 

Table 3.2 Comparison and summary of detection techniques for E. coli 

Detection assay Detection time (h) Sensitivity (CFU/mL) 

IMS-enzyme immunoassay <48  104-106 
IMS-microarray 6 103 
IMS-PCR 3-4 4.52×102 
IMS <24 40-102 
IMS (Immunomagnetic nanobeads based) 1 104 
IMS-phage based 4-5 104 
IMS-ELISA 3-4 2.6×105 
Our study <3 102 
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CHAPTER 4 

APPLICATION OF BACTERIOPHAGE-CONJUGATED MAGNETIC PROBE FOR ESCHERICHIA COLI 
O157:H7 DETECTION IN WATER SAMPLES 

4.1 Introduction 

Serotype O157:H7 Escherichia coli is an important food-borne and water-borne 

pathogen that can cause outbreaks of diarrhea, hemorrhagic colitis, and hemolytic uremic 

syndrome. (141) It belongs to the broader class of Shiga-toxin producing E. coli (STEC) within 

which, E. coli O157:H7 has been the primary serotype that can cause human illnesses and 

deaths. (142) In addition, infection of this harmful pathogen is of particular concern in elderly 

people and young children as it is associated with hemolytic uremic syndrome which may 

permanently damage the kidneys. (143, 144) Outbreaks and sporadic cases of STEC infections 

have been reported worldwide and estimated to cause about 73,000 foodborne illnesses and 

approximately 61 deaths in the United States per year. (145, 146) Since 1983, more than 100 

outbreaks of E. coli O157:H7 have been reported, with a substantial economic impact of the 

contamination of foods. (147) It has been estimated that E. coli O157:H7 infections cost around 

$ 405 million each year in the USA, including the costs of medical care, premature deaths and 

lost productivity.(146, 148) Thus, development of new techniques for rapid and effective 

detection of E. coli O157:H7 is crucial for food safety and public health. 

The sources of E. coli O157:H7 infections include raw or undercooked meat products, 

unpasteurized milk, apple cider, fermented sausage, cheese, sprouts, spinach and ready-to-eat 

salad.(145, 149, 150) The other vehicle for illness associated with this pathogen includes 

contaminated drinking water, surface waters and water used in the irrigation of vegetables and 

fruits that contaminated with manure or cattle feces.(151, 152) In the recent decades, a number 

of E. coli O157:H7 outbreaks have been associated with contaminated water.(153, 154) In 
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addition, the surviving ability of this pathogen in water has been indicated for extended periods 

which emphasizes the importance of separating and detecting E. coli O157:H7 in water 

samples.(155) It has been reported that the infectious dose of E coli O157:H7 is between 10 to 

100 colony-forming units (cfu) while detection at this low concentration is always challenging 

and needs long time pre-enrichment before analysis.(156) Traditional methods used to detect E. 

coli O157:H7 with selective media followed by biochemical identification and serotype 

confirmation are time-consuming and take up to 5–6 days.(157, 158) Thus, alternative ways 

that can bypass or reduce the time required in cultural enrichment is of great importance.(159, 

160) 

Nowadays, many advanced methods including enzyme linked immunosorbent assays 

(ELISA),(150) polymerase chain reaction (PCR) amplification,(161) DNA microarrays (162) and 

etc. have provided a useful tool for the sensitive detection of E. coli O157:H7 from various 

samples.(151) Although some of these methods allow a rapid detection, there still exist 

inadequateness of distinguishing viable cell from inactivated cell or avoiding false positive 

results that caused by the presence of DNA from non-viable bacteria.(18) In this case, multiple 

assays are in great need to ensure the sensitivity and specificity for accurate detection and 

quantification. Bacteriophages (phages) as are viruses that require viable bacteria to produce 

progeny particles offer a valuable way to circumvent this issue and provide a platform for viable 

bacteria detection.(163) Compared with antibodies which are expensive and inconsistent, 

phages are inexpensive, stable and essay to produce with robustness.(164) They target  host 

bacteria with high specificity without affecting other bacteria.(165) The application of phage 

mediated assay for identification of specific bacteria has recently gained increased interest due 

to these features. Goodridge had reported using a fluorescent bacteriophage based assay for 

the detection of E. coli O157:H7 in broth with a detection limit of 102-103 cfu/mL.(166) Hoang 
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published a phage based colorimetric method that could detect E. coli O157:H7 in apple juice 

with a low concentration of 1 cfu/mL in 15 h.(167) The characteristics of specific and rapid 

interaction with target cells had made phages a potent alternative to antibodies served as a 

promising recognition element for bacterial capture and detection. 

Currently, E. coli O157:H7 capture and concentration from sample matrix accompanied 

with high levels of natural microbial population, can become very difficult.(168) The efficiency of 

the following detection techniques such as quantitative real-time PCR (qPCR) can be seriously 

affected by the inhibitors present within the complex sample matrix.(54) Thus, magnetic 

separation (MS) technology combined with qPCR assay has been found effective to detect and 

quantify small numbers of water-borne E. coli O157:H7 which also improve the detection 

efficiency.(169)  

The purpose of this study was to develop a biomagnetic separation method by using 

magnetic bead-bound phage for target capture (E. coli) in combination with qPCR for detection.  

The magnetic beads were conjugated with E. coli O157:H7 phages via the carbodiimide method 

(by amide bond). The captured bacteria were allowed for lysis as part of the natural phage 

infection cycle.  DNA released from the capture cells were used as the template for qPCR 

reaction to provide quantitative analysis (Figure 4.1). This proposed detection principle has 

proven to be rapid and selective for viable bacteria identification as well as cost effective due to 

the advantageous self-replicating and self-assembling characteristics of phage particles. 
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Figure 4.1 Schematic representation of pathogen detection of Escherichia coli O157:H7 in water 
samples by bacteriophage mediated magnetic separation combined with real time PCR. 

4.2 Materials and method 

4.2.1 Chemicals and Materials 

N-hydroxysuccinimide (NHS), 2-(NMorpholino) ethanesulfonic acid (MES) hydrate and 1-

ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) were obtained from Acros 

Organics (Morris Plains, NJ). Glutaraldehyde, bovine serum albumin (BSA), yeast extract, 

tryptone and agar were purchased from Fisher Scientific (Fair Lawn, NJ). Dynabeads® M270 

carboxylic acid were obtained from Invitrogen (Oslo, Norway). MS washing steps were carried 

out with phosphate buffered saline buffer (PBS, 8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, 0.24 

g of KH2PO4; pH 7.4, in 1 L distilled water). A Millipore Mill-Q System (Thermo Scientific, 



 

57 

Asheville, NC) was used to prepare purified water with resistivity of 18.2 MΩ cm at 25 °C.  

Buffers and medium were sterilized by autoclaving at 121 °C before use. Other chemicals were 

reagent grade and used as received. 

4.2.2 Bacterial strains and culture conditions 

Escherichia coli O157:H7 (E. coli O157:H7; ATCC 35150) from frozen culture stock was 

streaked onto a Luria Bertani (LB) plate and incubated at 37 °C for 24 h. The specificity of the 

qPCR protocol was assessed by using other foodborne pathogens, including Salmonella enterica 

(S. enterica; ATCC 14028), Staphylococcus aureus (S. aureus; CD 489), and Pseudomonas 

aeruginosa (P. aeruginosa; CD 1006). The bacteria were stored at −80 °C in LB broth containing 

30% glycerol. Prior to each experiment, a single colony was picked from the streaked LB plate 

and inoculated into LB broth for overnight growing at 37 °C with agitation (200 rpm). To collect 

the cell, fresh overnight bacterial culture was centrifuged (8000 g, 10 min) and washed with PBS 

buffer followed by tenfold serial dilution in the same buffer. The bacterial concentration (colony 

forming units (cfu)/mL) was enumerated from culture dilutions grown on LB plates. Diluted 

bacteria in PBS buffer at desired concentrations were prepared for further experiments. 

4.2.3 Bacteriophage preparation 

E. coli O157:H7 phage ECML-134 (ATCC PTA-7949) and ECML-134(ATCC#PTA-7949) 

were used in this study. The phage titer was enumerated by the double layer agar 

method.(107) In brief, the phage solution (100 μL) and overnight E. coli culture (250 μL, 108 

cfu/mL) were mixed with 3 mL top agar (10 g tryptone, 5 g yeast extract, 10 g sodium chloride 

and 7.5 g agar per liter; cooled to 40-50°C) and poured over the LB agar plates following 
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incubation at 37°C for 3 hour. Titer of phage was expressed in plaque forming units (pfu)/mL. 

The phage was propagated and purified prior to conjugation with magnetic beads. Briefly, 

100 μL of phage suspension (containing 108 pfu/mL) was added into 35 mL of a midexponential 

phase E. coli O157:H7 culture (OD600=0.6-0.8) followed by incubation at 37 °C for 1.5 hour to 

allow lysis. Lysate was centrifuged (7000g, 10 min) and the supernatant was collected following 

filtration through a 0.22-μm pore-size syringe filter (Corning Life Science, Corning, NY). Then the 

phage solution was concentrated by ultracentrifuge (35,000 rpm, 2 hour) and resuspended in 

PBS buffer (pH 7.4, 1mL) and stored at 4 °C until use. 

4.2.4 Preparation of phage-conjugated magnetic beads (MBs) 

The phage-MBs were prepared according to the manufacturer’s instruction with slight 

modifications.(170) The amino groups on phage proteins allowed for covalent binding with the 

carboxylic acid group on the activated magnetic beads via an amide linkage. Initially, magnetic 

beads (100 μL, 108 beads) were washed twice with 25 mM MES (pH 5) and resuspended in the 

same buffer (1 mL). Immediately before use, EDC (200 μL, 20 mg/mL) and NHS (100 μL, 20 

mg/mL) solutions were added to the washed beads following incubation with slow rotation at 

room temperature for 30 min. The supernatant was removed and magnetic beads were washed 

three times with ice-cold PBS (pH 7.4). After activation, phage stock (100 μL, 1010 PFU/mL, in 

PBS) was added and agitated slowly overnight at 4 °C. The phage-MBs were separated, washed 

and resuspended in PBS-BSA (PBS containing 0.1% (w/v) BSA (1 mL, 1 mg/mL)) for 2 hour to 

block any uncoated surface on the beads. After separation and washing, the blocked beads were 

stored in PBS (pH 7.4, 1mL) at 4 °C for further use. 
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4.2.5 Water qualities 

Three types of water samples were used in this study. The agricultural water was 

collected from a local farm land. The drinking water and tap water were collected from water 

fountains and lab taps at University of Massachusetts, Amherst, respectively. These water 

samples were characterized by using water quality parameters including temperature, pH, 

turbidity and E. coli. Sample pH was measured using a Fisher Scientific Accumet Research AR25 

pH/mV/°C/ion selective electrode meter. Turbidity was measured with a Hach model 2100Q 

portable turbidimeter (Hach Company, Loveland, CO). Temperature was measured with a Fisher 

Scientific thermometer. E. coli O157:H7 was tested by selective MacConkey agar plating 

method.(162) An aliquot of this water was served as negative control and others were 

inoculated with target bacteria. 

4.2.6 Artificially contaminated water sample 

Water samples (900 μL) were spiked with appropriate dilutions of overnight cultured E. 

coli O157:H7 (100 μL) to achieve the final concentrations ranging from 102 to 107 cfu/mL. Select 

solution (900 μL, containing 103 cfu E. coli O157:H7/mL) were mixed with a suspension (100 μL) 

of three other common water borne pathogens (S. enterica, S. aureus and P. aeruginosa) which 

were prepared at concentration of 104 cfu/mL. Artificially contaminated samples were used 

immediately and each sample (1 mL) was exposed to the desired amount of phage conjugated 

MBs. All water samples were tested as negative for E. coli O157:H7 by both selective plating and 

PCR methods before use.(120) 
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4.2.7 Bacteria cells capture and separation 

The phage conjugated MBs (100 μL of 106 to 108 beads) were exposed to artificially 

contaminated water samples (1 mL) at desired contamination rate (103
-106

 cfu/mL) and 

incubated at room temperature for 15 min with gentle rotation. Following incubation, the 

microcentrifuge tube containing bacteria-beads complexes was inserted into a magnetic 

apparatus for 5 min and the supernatant was pipetted out carefully. The E. coli bound beads 

were washed twice to remove unbound cells with PBS, resuspended in PBS (30 μL) and 

subjected to qPCR. Bacterial capture efficiency (CE) was assessed with the following equation: 

CE(%)=100×(C0/CI); 

where CI is the initial number of cells in the sample and C0 is the number of captured 

target cells quantified by qPCR assay.(171) 

In addition, Dynabeads anti-E. coli O157 was used following the manufacturer’s 

instruction for the E. coli capture in parallel with the phage-based separation. All the experiment 

was performed in triplicate. 

4.2.8 Imaging captured bacteria 

For SEM images, the samples were fixed within 2.5 % glutaraldehyde solution overnight 

at 4 °C followed by dehydrating with serially diluted ethanol solutions. Scanning electron 

microscopy (SEM) images were obtained using FEI SEM Magellan (Hillsboro, OR) at voltage of 5 

kV and current of 13 pA. 
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4.2.9 Real time PCR reactions 

The real time PCR reaction was performed according to the manufacturer's protocol for 

TaqMan assay using MicroSEQ® E. coli O157:H7 detection kit (Life Technologies, Warrington, UK). 

The thermal cycling conditions were 95 °C with one cycle of initial denaturation of template DNA 

and activation of Taq DNA polymerase for 3 min, 40 cycles of 95 °C of denaturation for 3 s, and 

primer annealing at 60 °C for 20 s. A standard curve was constructed using ten-fold serial 

dilutions of E. coli O157:H7 suspensions (enumerated culturally) that exposed to phage-MBs and 

incubated for DNA release from the captured bacteria following subjected to qPCR. The data 

were plotted into Ct value (Y axis) as a function of the logarithm of E. coli concentration (X axis). 

(172) In all runs, a negative control of amplification was performed using 30 μL of water instead 

of bacterial template. Applied Biosystems® 7500 fast Real-Time PCR System (Thermo Fisher 

Scientific) was used for the assay. For unknown sample, the bacterial number recovered after 

phage MBs separation was estimated from the standard curve based on Ct values obtained from 

qPCR after capture. The capture efficiency (CE) was calculated as the percentage of the 

estimated cell number (after capture and PCR detection) to the initial spiked cell number. 

4.2.10 Data analysis 

Bacterial numbers were in terms of log values. A regression line was fitted to the plot of 

log numbers of E. coli captured by the beads probe against Ct values. A linear relationship and 

value for the regression coefficient (R2) was obtained by calculating in Microsoft Excel 2010 

(Microsoft Corp., Redmond, WA). 
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4.3 Results and discussion 

The proposed method for E. coli O157 screening was dependent upon the detection of 

DNA released from viable E. coli cells following phage-mediated lysis. Although numerous PCR 

based assays for E. coli O157 detection have been reported, these typically depended on the 

presence of DNA with no indication of viability. On the other hand, accurate analysis by qPCR 

relies on efficient removal of PCR inhibitors and extraction of DNA. In this case, phage based 

magnetic separation not only assures signals (DNA) from viable bacteria but also avoids the use 

of organic or toxic reagents which simplifies the procedure. As the bio-capture efficiency is 

influenced by its microenvironments, reaction temperature, pH conditions, ionic strength, 

reaction time and the volume of pMBs are optimized in this study for a maximum bacterial 

capture. Our study applied two E. coli O157 specific lytic phages (Table 4.1and Table 4.2) for 

targeted bacterial DNA release and indicated that the phage-based magnetic separation 

provided specificity for target bacteria capture even under the interference of high numbers of 

background micro-flora. 

 

Table 4.1 Bacteriophage lytic specificity for target bacteria, E. coli O157:H7 strains 

E. coli O157:H7 strain 
number  

       Phage susceptibility              

ECML-117 ECML-134 

ATCC 700728 + - 

ATCC 35150 + + 
ATCC 43894 + + 

ATCC 43895 + + 

ATCC 43889 + + 
“ATCC” means the American Type Culture Collection; 

“+” means lytic activity was detected  

“-” means lytic activity was not detected. 
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Table 4.2 Bacteriophage lytic specificity for non-target bacteria, non-O157:H7 strains 

Bacterial strain        Phage susceptibility              

ECML-117 ECML-134 

E. coli BL21 - - 

E. coli K12 - + 
S. aureus - - 

Salmonella - - 

P. aeruginosa - - 

“+” means lytic activity was detected  
“-” means lytic activity was not detected. 

4.3.1 Optimizing bio-magnetic separation using pMBs 

Different volume of phage-MBs (pMBs) was tested for the capture efficiency (CE) of E. 

coli O157 in the range of 102-105 CFU/mL. A significantly lower CE was obtained when 25 μL of 

pMBs was applied than with using 50 μL or 100 μL of pMBs (Table 4.1). Coupled with qPCR, 

detection limit by using 25 μL of pMBs was one log higher than that by using 50 μL or 100 μL of 

pMBs). As there was no significant difference between the CEs of higher volumes, volume of 50 

μL was chosen for the separation experiments to reduce the use of pMBs.  

Table 4.3 Effect of the volume of phage conjugated beads (pMBs) on bacteria capture efficiency 
and limit of detection (LOD) by qPCR 

 

Volume of  pMBs 
(μl) 

Capture efficiency %  
 

LOD by MS plus 
qPCR 

102a 103 104  105 

25 62.9±5.2 Cc 50.5±4.1B 41.2±3.7 
C 

29.4±2.6 B  103b 

50 80.2±3.4 
AB 

75.1±2.8 A 66.4±3.1 
AB 

52.1±2.2 A 102 

100 86.5±4.1A 78.4±2.3 A 70.7±2.4 
A 

56.8±1.4 A 102 

a E. coli O157 concentrations in PBS (CFU/ mL); 
b Limit of detections (CFU/ mL);  
c Mean±standard deviation (n=3); 
The same capital letter within the same column are not significantly different (P>0.05), different 
letters are significantly different (P<0.05).  
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Effect of different incubation times (10, 20 and 30 min) on the CE of E. coli O157 (103 

CFU/mL) were investigated at room temperature (Fig. 4.2). Compared with bared beads (CE＜

10%), Dynabeads and pMBs reached high CE of 57.7±5.52 % and 64.2±4.83 % after incubating 10 

min, respectively. After incubating 20 min, CEs of Dynabeads and pMBs increased to 72.3±3.45% 

and 74.8±3.22 %, respectively. However, a reaction time of 30 min did not increase the CE 

significantly compared with that of 20 min. In contrast, longer incubation time of pMBs would 

result in phage mediated lysis, thus 20 min were used as the reaction time.  

 

 

Figure 4.2 Effect of reaction time on the capture of E. coli O157:H7 at 103 CFU/mL in PBS (pH 
7.0) at 37. Bars with same letter (a, b, c) are not significantly different (P>0.05), bars with 

different letter are significantly different (P<0.05). 
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Reaction temperatures from 4 °C-55 °C were used for the magnetic separation of 103 

CFU/mL E. coli O157:H7 in 1.0×10-2 M PBS (pH 7.0). The capture efficiency increased first with 

the increase of temperature from 4°C to 37°C, and reached the maximum CE of 74.67±2.07% 

and 72.48±2.17% for pMBs and Dynabeads, respectively (Fig. 4.3). When reaction temperature 

increased to 42 °C and 55 °C, phage based beads still retained the ability of capturing bacteria 

after incubating 20 min while antibody based beads lost the ability significantly at 55 °C 

(39.6±7.33%). This may due to the activity of antibody receded after reaching maximum at the 

physiological temperature. The results showed that phage particles the on the beads surface 

was able to better resist changes in incubation conditions which was in accordance with other 

reported studies. For example, a small fraction of inovirus PH75 was reported to survive heating 

at 75 °C for many hours (173). The cubic phage PRD1 could survive when stored at −80 °C and 

T4-like Shigella phage C16 remained detectable after 32 years of storage at 4 °C (165). An 

immobilized phage P22 (50%) was also reported to remain the ability to recognize Salmonella. 

typhimurium after left in a dry state for as long as a week (174). 

Figure 4.3 Effect of temperature on the capture of E. coli O157:H7 from 103 CFU/mL in PBS (pH 

7.0) for 20 min. 
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In addition to the high tolerance with temperature fluctuation and drying condition, 

phages were less susceptible to pH stress as well. In this study, the influence of pH on the 

magnetic separation of E. coli O157 was evaluated in a range between pH 4.0 and pH 10. As 

Fig.4.4 indicated, the interaction between phage/antibody and E. coli was dependent on the pH 

of the reaction system. A maximum CE from 103 CFU/mL E. coli cells in 1.0x10-2 M PBS was 

observed at pH 7.0 for both types of beads. Specifically, the CE of pMBs still maintained 

comparatively high level at acidic and basic conditions, CE of 66.18±3.64 % at pH 4.0 and 

71.37±1.99 % at pH 10. Although the CEs of antibody based MBs kept stable at pH 6.0-8.0, it was 

notable that it dropped significantly when the pH deceased below or increased above this stable 

range. In general, most phages are stable at the range of pH 4-10. Specifically, myovirus P78-77 

was reported to survive at pH 2-13 for 24 h and acid-resistant tectivirus P78-76 could survive at 

pH 2 for 24 h (173). 

Figure 4.4 Effect of pH on the capture of E. coli at 37 °C for 20 min. 
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The effect of phosphate buffer concentration in the range of 10-2-10-1 M PBS on the bio-

magnetic separation was tested (Fig. 4.5). CEs of both beads kept stable at first when the buffer 

concentration increased up to 2.0×10-2 M PBS, and then decreased with the increase of PBS 

concentration. Compared with antibody based beads, the CE of pMBs was above 50 % at higher 

ionic concentration (>2.0×10-2 M). When the PBS concentration reached 5.0×10-2 M, the CEs of 

antibody based beads dropped to a significant lower level (25.27±3.65 %) than that of the phage 

based one (70.54±1.64 %). And at the concentration of 10-1 M PBS, the activity of Dynabeads for 

bacterial capture left only about 14 %. It was clear that antibody based magnetic separation was 

sensitive to extreme conditions, such as pH＜4 or pH＞10, temperature＞50 °C or salt 

concentration＞0.5 M (35). On the other hand, the phage particles were much more resistant to 

the environmental stress which still retained the capture efficiency of 54.4±4.58 % at 1.0×10-1 M 

PBS.  

Figure 4.5 Effect of ionic strength on the capture of E. coli at 37 °C for 20 min. 
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The higher capture efficiency displayed by pMBs over Dynabeads under optimal 

conditions was shown in Fig.4.6. At the range of 102-106 CFU/mL bacterial culture, both the 

capture efficiency of pMBs and Dynabeads decreased with the increase of cell concentration 

(from 80.24±5.44% and 74.95±2.74 to 45.4±2.06 and 38.47±1.99, respectively). The specific 

isolation of target cells by Dynabeads beads was based on the coated antibody to recognize 

flagella antigens on the cell while the production of flagella was dependent on the incubation 

condition. Another factor resulting in the lower CE of Dynabeads was possibly due to the 

fragileness of flagella which could be disrupted during magnetic separation (175). Compared 

with antibodies, the unique property of high specificity and fast interaction between phage with 

protein/lipopolysaccharide receptors on cell surface which was a well-accepted mechanism 

contributed to a relatively higher capture efficiency at low concentrations of cell numbers (176).  

 
Figure 4.6 Capture efficiency of E. coli O157 obtained by using pMBs under optimal reaction 

conditions compared with Dynabeads. 
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4.3.1 SEM image 

Magnetic beads immobilized with E. coli phage via the reaction between amine groups 

on phage coat protein and the functionalized groups on beads surface were prepared for 

bacterial capture (Fig. 4.7a). After exposing to E. coli cells (Fig.4. 7b), the cell was captured by 

the phage-beads as confirmed by the image (Fig. 4.7c). No detectable non-targeted bacteria 

were captured on phage-beads. The results indicated that phage based magnetic particles could 

be used as a reliable pre-concentration method for specific and selective capture of E. coli from 

sample matrices. 

 

 

Figure 4.7 Scanning electron microscope images of bacterial capture by phage-beads. (a) SEM 
image of phage covalently immobilized on beads surface by the EDC-NHS coupling chemistry; (b) 

E. coli cells; (c) capture of E. coli on phage-beads. 

4.3.2 Water sample quality 

The water quality tests were included for characterizing the chemical quality of the 

water samples used in this study. As shown in Table 4.3, the average pH of the drinking water 

was similar with the tap water (pH 7.18 and 7.17, respectively) while the agricultural water 

showed acidic (pH 6.77). Turbidity of the water samples varied no widely, ranging from 0.19 
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nephelometric turbidity units (NTU; tap water) to 4.23 NTU (agricultural water). All samples 

showed negative results for the target bacteria. 

Table 4.4 Water quality date 

 
Water quality 

Water sources (n)a 

Agricultural water (2) City water A (4)  City water B (4) 

Turbidity (NTU) 4.23±0.37b 0.34±0.09 0.19±0.03 
pH 6.77±0.08 7.18±0.17 7.17±0.05 
Target E. coli _ _ _ 

a n, number of samples;  
b Mean ± standard deviation of three triplicates;  
--, not detected. 

4.3.3 E. coli capture assay of phage-bead probe 

E. coli capture performance by the phage-beads probe was measured as well. As a 

negative control, bare beads were applied in the same immunomagnetic separation operation. 

At four concentrations of 103 cfu/mL, 104 cfu/mL, 105 cfu/mL, 106 cfu/mL, the capture efficiency 

of phage-beads reached 76.97±3.48%, 65.60±3.98%, 52.59±1.72% and 43.62±1.33%, 

respectively. When applied to the same amount of target bacteria (104 cfu/mL), much higher 

capture efficiency (55.41±6.05% and 65.60±3.98%) was obtained using high bead concentrations 

(107 and 108). The capture efficiency of lower bead concentration (106) was only 36.96±4.97%. It 

was believed that higher bacterial capture efficiency was induced by the introduction of more 

phages that could infect target bacteria. With the increasing number of beads, surface area for 

the binding with target bacteria also improved which contributed to higher capture efficiency. 

4.3.4 Specificity of phage-beads probe 

Generally, E. coli O157:H7was found to present along with other bacteria in 

environment, such as water isolates. (177) For accurate detection, it was necessary to test the 
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specificity of the detection assay. In this study, the specificity was tested by both conventional 

plate counting method and qPCR method (Fig. 4.8). The specificity and sensitivity of phage-

beads probe was confirmed by detecting E. coli O157:H7 combined with other pathogenic 

bacteria strains including S. enterica, P. aeruginosa and S. aureus.  As Fig. 4.8 showed, phage-

beads probe had much higher capture efficiency (76.97±3.48%) for E. coli O157:H7 and lower 

cross reactivity (10.04±3.07%, 8.74±2.27% and 11.13±2.02%, respectively) against other 

competitor bacteria. For bare beads, higher nonspecific capture efficiency (about 12-16%) was 

obtained under the same condition. The results indicated that phage-beads could selectively 

capture E. coli O157:H7 with good specificity even in the presence of large number of 

competitor bacteria. 

 

Figure 4.8 Specificity test of the phage-MBs for E. coli cells and other bacterium. The standard 
deviations derived from the mean value of capture efficiency of triplicate experiments. 
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4.3.5 Real time PCR analysis 

Quantitative real-time PCR was performed to calculate the capture efficiency for E. coli 

O157:H7 cells by the phage-conjugated beads. Genomic DNA was released from captured cell 

through phage mediated lysis and served as templates for qPCR reaction. The sensitivity and 

dynamic range of the PCR assay was indicated in Figure 4.9. Serial dilutions of E. coli in different 

concentration ranges (108-101 cfu/mL) were tested in triplicates. 

 

Figure 4.9 Amplification plot of ten-fold dilution series of E. coli O157:H7 performed in duplicate 
from 102 to 108 cfu/mL in PBS.  Y-axis, the fluorescence signal (Delta Rn); X-axis, the cycle 

number. 

Standard curve of phage-mediated bacterial capture and qPCR detection was shown in 

Figure 4.10.  The standard curve created by correlating the Ct values to the logarithmic 

concentration of bacterial cells showed a good linear inverse relationship (y=-3.379x + 40.661, R2 

= 0.997) with a low limit of detection 103 cfu/mL. The efficiency value (E) of the qPCR assay was 

97.67% by using the formula: E = e-1/slope-1. The PCR reaction efficiency was comparable to 
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published reports when boiling was used to lyse bacterial cell and release DNA after magnetic 

beads separation. 

 

Figure 4.10 Standard curve derived from the correlation of threshold cycle (Ct) with the cell 
number (Log10) in various concentration.  Slope, -3.379; correlation coefficient (R2), 0.9967. 

4.3.6 Detection of viable E. coli O157:H7 in spiked liquid samples  

E. coli cells from inoculated water samples were detected by qPCR coupled with or 

without the phage functionalized beads separation. When DNA was extracted from the 

inoculated agricultural water at E. coli concentration below 104 CFU/mL without pMBs pre-

concentration, fluorescence signals of qPCR above the threshold values were not detectable 

(corresponding to the absence of data points). When phage-based magnetic separation was 

applied prior to qPCR, the amplification of DNA from agriculture water samples in the range of 

102-106 CFU/mL bacteria was consistently detectable (Fig. 4.11). However, the Ct values 

corresponding to the same range of E. coli concentrations derived from agricultural water were 
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higher than those from PBS buffer. These results might due to the PCR inhibitors present within 

the agricultural water. As the agricultural water was much more turbid (＞20 times) than the 

buffer and the pH condition was more acidic, these factors could affect the interaction between 

phage and bacteria resulting lower capture efficiency. But it was clear that pMBs pre-

concentration resulted in an improvement in PCR sensitivity at levels of 102 CFU/mL.  

 
Figure 4.11 qPCR detection of artificially contaminated agricultural water (AW) samples 

with/without phage-based magnetic concentration. 
 

The threshold cycle value (Ct) versus the logarithmic cell number of E. coli O157:H7 in 

spiked agricultural water sample was higher compared to reference sample (cells spiked in PBS 

buffer). Direct PCR without phage based isolation resulted in failure of amplification at lower 

concentrations, and pMBs pre-concentration contributed to improve the PCR efficiency. The 

feasibility of pMBs based magnetic separation plus qPCR detection was then tested in several 

additional samples (Fig. 4.12). The standard curves were obtained as described previously to 
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correlate the Ct values versus bacterial concentrations. Inclusion of the pMBs mediated pre-

concentration allowed the standard curves created from city water, agricultural water and broth 

to be (y=-3.39x + 41.04, R2 = 0.99), (y=-3.65x + 45.76, R2 = 0.98) and (y=-3.61x + 42.59, R2 = 0.99), 

respectively. The presence of positive PCR signals at all concentrations of inoculated bacterial 

cells after the pMBs pre-concentration showed that the phage-based magnetic separation 

offered an effective detection of low concentrations of bacteria, which was otherwise limited. 

Therefore, the ability of this separation technique to selectively isolate and purify E. coli O157 

cells from sample suspensions provided a proof-of-concept of the potential combining of pMBs 

with qPCR to achieve an effective detection of waterborne pathogens. Thus, the novel phage 

based assay could be applied to rapidly screen waterborne pathogens associated with disease 

outbreaks or to control epidemic altogether. 

 

Figure 4.12 Standard curves of different samples including LB broth, AW and city water with 
pMBs magnetic separation coupled qPCR. 
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4.4 Conclusions 

We have shown here the higher capture efficiency using phage based magnetic 

separation coupled qPCR compared with antibody based IMS assay. Due to the remarkable 

specificity and high affinity of phage particles, the developed combination of pMBs-qPCR assay 

quantified E. coli O157:H7 directly from water sample without additional labeling or time 

consuming pre-enrichment step. The assay was completed in 2 hours with a detection limit of 

102 CFU/mL even in the presence of non-target bacteria. The proposed principle has proven to 

be rapid and selective for viable bacteria identification as well as cost effective due to the self-

replicating and self-assembling characteristics of phage. Additionally, this method offers a 2-step 

specificity from both the phage and the primer selection which can be modified to other 

bacteria of interest and achieve the goal for multiple pathogen detection from environmental 

samples.  

The robustness of the reported method could allow improved bacteria separation in 

food and environmental samples with extreme or unknown matrix compositions. In addition to 

the improved temperature tolerance, these characteristics could allow an assay to be better 

amenable to field testing where incubation conditions may be less controlled.  
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CHAPTER 5 

 DEVELOPMENT OF MEMBRANE FILTER BASED COLORIMETRIC DETECTION OF ESCHERICHIA 
COLI BY USING BACTERIOPHAGE FOR ON-SITE WATER QUALITY MONITORING 

5.1 Introduction  

Rapid detection of bacteria is essential to ensure the microbiological quality of waters, 

thus prevent illness or outbreaks. The coliform group has been used extensively as an indicator 

of water quality, and in particular Escherichia coli are generally deemed as the indicator of fecal 

contamination in water and food samples.(3) According to the Centers for Disease Control and 

Prevention (CDC) report, diarrhea cases linked with unsafe water, inadequate sanitation, or 

insufficient hygiene have resulted in 1.5 million deaths each year worldwide.(178) The 

guidelines for acceptable levels of E. coli cells in water vary slightly depend on the source and 

use of the water. Fecal coliform testing is one of the nine tests of water quality that form the 

overall water-quality rating in a process used by the EPA.  This test requires a very careful set of 

sterile procedures, as well as expensive equipment and a five-day test. Field kits for fecal 

coliform are available but expensive. 

Until now, the most sensitive and specific methods for bacterial detection are based on 

cultures. Traditional viable plating allows for target microorganisms growing to certain number 

where unique biochemical features can be detected distinctly. Although the gold standard 

method (culturing) provides powerful diagnostic tools, it usually requires at least several days to 

get results. As the need for more rapid tests is of essential for environmental and food analysis, 

numerous studies have focused on developing quicker assays with the same sensitivity and 

specificity as traditional methods. One of the techniques utilized to shorten the detection time 

for E. coli is polymerase chain reaction (PCR), based on the amplification of the uidA gene that 

code for beta-glucuronidase.(179) However, the PCR assay alone lack the ability to provide 



 

78 

live/dead cells differentiation, due to the persistence of DNA in the environmental sample even 

from the cells that without viability. Additionally, detection of coliforms by means of molecular 

methods requires sophisticated equipment, costly reagents and extensive laboratory work or 

highly trained personnel. 

As a rapid and simple detection method, immunomagnetic separation (IMS) has been 

investigated widely which relies on specific antibodies coated magnetic beads to capture and 

concentrate the target bacterium via the binding with antigens on cell surface. The combination 

of IMS with PCR or electrochemical assay has also been reported to isolate and detect 

pathogenic bacteria, including Escherichia coli, Salmonella spp. and Listeria monocytogenes.(180, 

181) Although, the rapidity and selectivity of these methods enable the separation of the target 

organism from the non-target micro flora, the requirement of expensive reagents or equipment 

renders the method costly.  

As a routine and widely accepted technique, membrane filter (MF) method offers a 

simple and inexpensive way to enumerate coliforms from water samples. Compared with 

microfluidic and lab-on-a chip devices which only analyze microliter-volume samples, MF 

technique can be used directly to test liquid samples in larger volume. Recently, the detection of 

specific enzymatic activity from the localized coliforms following MF has been reported to 

detect E. coli successfully. For example, Bernal et al. employed enzyme-linked immuno-filter 

assay (ELIFA) to detect E. coli from aqueous samples and attained a limit of detection (LOD) of 

104 per membrane in 2 h 15 min. (182) The E. coli cells were collected on cellulose ester 

membranes first and then treated with rabbit anti-E. coli IgG, phosphatase-conjugated anti-

rabbit IgG and chromogenic enzyme substrate. After color development, the results were 

assessed visually. Another filtration coupled electrochemical method showed a LOD of 5×103 

cfu/mL E. coli O157:H7 in a 25-min assay. The bacterium labelled with alkaline phosphatase 
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conjugated antibodies were captured on a membrane filtration. The filter was placed against a 

carbon electrode and incubated with enzyme substrate for electrochemical detection. (183)  

Although these techniques offered a rapid detection, they still relied on immuno-labelling which 

meant relatively high cost, inconsistent reagents which may impede their practical application in 

industry. 

Utilizing bacteriophages as a capturing and sensing element is promising because they 

provide rapid interaction and high specificity in target recognition. Many bacteriophages 

mediated detection formats have been investigated, including phage mediated lysis coupled 

bioluminescence/electrochemical assay, phage biosorbents coupled PCR/immunoassay as well 

as enzyme labelled or recombinant phages based colorimetric/luminescence assay. (128, 131, 

184) According to Blasco et al., the presence of Escherichia coli and Salmonella newport can be 

assayed by measuring adenosine triphosphate (ATP) bioluminescence after phage induced host 

lysis. (185) The sensitivity was improved by detecting released adenylate kinase (AK) instead of 

ATP as the cytoplasmic marker and the detection limit was fewer than 104 cells within 1 h and 2 

h for E. coli and Salmonella Newport, respectively. β-D-galactosidase as another common 

cellular constituent can be released from intact cells upon phage infection and its enzymatic 

activity can be monitored by the amperometic measurement in real-time. Based on the 

electrochemical assay, Neufeld and co-workers indicated a detection of as low as 1 cfu/100 mL 

E. coli (K-12, MG1655) among mixed populations. The assay required a pre-incubation step for 

bacteria less than 2.5×103 cfu/ml, thus rendered the total assay time to 6−8 h. (186) The 

detection limit of this experimental format relies on the released intracellular enzymatic activity. 

Similarly, Yemini et al. indicated using phage induced release of α- and β-glucosidase as cell 

markers for the detection of Bacillus cereus and Mycobacterium smegmatis, respectively. The 

detection limit of the amperometric, phage-based biosensor was 10 cfu/ml within 8 h. (187) 
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However, the requirement for portable handheld devices used to measure bioluminescence or 

electrochemistry prevents the practical application of in-situ test. 

On the contrary, visual colorimetric examinations are more convenient compared with 

other available methods. Simplicity of the detection by naked eyes without the need for specific 

apparatus makes it the most preferable assay to perform under field conditions. Additionally, 

quantifying the optical change by a spectrophotometer is relatively easier than by an 

epifluorescence microscope or a luminescence counter. Thus, remarkable progress has been 

made on the design of colorimetric sensing systems for bacteria detection over the years. 

Jokerst et al. developed a paper based analytical device for pathogen detection by measuring 

the color change associated with three enzyme−substrate pairs: β-galactosidase with 

chlorophenol red β-galactopyranoside (CPRG); esterase with 5-bromo-6-chloro-3- indolyl 

caprylate (magenta caprylate) and phosphatidylinositol-specific phospholipase C (PI-PLC) with 5-

bromo-4-chloro-3-indolyl-myo-inositol phosphate (X-InP).  The colorimetric method allowed a 

detection limit of 10 cfu/cm2 in ready-to-eat meat sample but required an enrichment time of 8-

12 h, also it was limited to micro spot test. (188) Wen et al. utilized the bacterial intrinsic 

peroxidase activity for Shewanella oneidensis detection. The optical signal was detectable in a 

dynamic range between 5.0×103 and 5.0×106 cfu/mL target cells. (189) Thus, convenience of the 

colorimetric assay together with the rapidity and selectivity of the phage-based detection may 

allow the development of a useful technique for a low-cost, disposable, and robust test for field 

applications. 

In the present work, a phage based membrane filter technique coupled colorimetric 

assay will be developed. As a model system, the well characterized T7 bacteriophage and its 

host bacterium, E. coli BL21, are used. The choice of ALP as a reporter protein is based on the 

availability of a wide variety of methods for detection of the enzyme activity including 
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colorimetry, fluorescence and bioluminescence. (190, 191) According to our previous work, the 

ALP phage-based probe was able to detect 103 cfu/mL of E. coli in 6 hours by chemiluminescent 

assay and 104 cfu/mL in 7.5 hours by colorimetric assay. Compared with the previous methods, 

the adoption of membrane filter as an isolation and pre-concentration without the need of 

specific antibody coating in the current method is the novelty and advantage. Furthermore, 

both sample preparation and detection scheme are more simple and cost-friendly as no 

particular equipment are required. Thus, the developed assay offers a disposable test scheme 

which is practical and affordable for water quality detection and could be further applied in 

developing countries as a low cost, rapid diagnostic aid for on-site detection of viable bacteria, 

without the need of sophisticated equipment and highly trained personnel. 

5.2 Material and methods 

5.2.1 Materials 

Nitro-blue tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl-phosphate (BCIP) substrate 

solution was purchased from Thermo Scientific Pierce (Rockford, lL, USA). Sodium chloride, 

potassium chloride, tripton, agar and yeast extract were obtained from Sigma (St.Louis, MO, 

USA). Nalgene™ sterile analytical filter units (0.45 μm/0.22 μm pore size) were ordered from 

Thermo Fisher Scientific. Disposable petri dishes were purchased from Fisher Scientific. 

Ampicillin sodium salt was purchased from Thermo Fisher Scientific and filter sterilized before 

use. All chemicals and solutions used throughout this study were dissolved or diluted with 

deionized water. 
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5.2.2 Apparatus 

Ultrospec 10 cell density meter (Amersham Biosciences, Piscataway, NJ) was used to 

measure the bacterial culture optical density in this study. The photographs were taken with cell 

phone. The pH measurement was carried out on Fisher Scientific Accumet Research AR25 

pH/mV/°C/ion selective electrode meter. Stainless steel membrane forcep was purchased from 

Thermo Scientific. JCM-6000PLUS NeoScope benchtop scanning electron microscope (JEOL USA, 

Inc., Peabody, MA) was used for SEM images analysis. Cressington sputter coater 108auto (Ted 

Pella, Inc., Redding, CA) was used for SEM sample preparation. 

5.2.3 Bacterial strain and culturing 

E. coli BL21 (ATCC700550) was grown from a glycerol stock in Luria-Bertani (LB) broth as 

described in a previous report. (180) For the bacteria, a single colony was inoculated in bacterial 

medium at 37 °C with gentle shaking at 200 rpm overnight. The E. coli cell culture (1 mL) was 

centrifuged at 8000 g for 10 min to collect cells and washed three times with phosphate buffer 

solution (PBS, 0.01 M PBS; 137 mM NaCl, 6.4 mM Na2HPO4, 2.7 mM KCl, 0.88 mM KH2PO4; pH 

7.4). After removal of supernatant, the collected cell pellet was dispersed in autoclaved PBS (1 

mL) and stored at 4°C for further use. Before each measurement, cell solution was serially 

diluted to the desired concentration with LB broth and determined by plating onto standard 

agar plates for cell count. 

5.2.4 Phage preparation 

Engineered phage T7 ALP that overexpress alkaline phosphatase was used in the 

study. The T7 phage was genetically engineered to carry a reporter gene (ALP) through standard 
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molecular cloning techniques.  The designed ALP gene under control of the T7 promoter was 

synthesized by Genscript (Piscataway, NJ) in plasmid pUC57 firstly and then the reporter gene 

was PCR amplified and purified to ligate with T7Select 415-1 arms.  The ligated DNA was 

packaged into mature phage capsids via the T7select packaging extracts to create T7 ALP and 

screened for the correct insert. The positive clones were propagated in BL21 for further use. 

Overnight culture of E. coli (100 μL) were inoculated into fresh LB broth (35 mL) 

and grown at 37 °C with constant shaking (200 rpm) to reach an optical density (OD) at 

600 nm of 0.6. Then 100 μL of phage stock solution was added to the cell culture for 

phage propagation by standard techniques. (28) Lysates were filter-sterilized using 0.22 

μm pore size filters (Corning Life Science, Corning, NY). Purified phage stock solution was 

prepared by ultracentrifuge as described in previous paper. Double-layer LB plates with 

0.75 % soft agar was used to enumerate phage titers. 

5.2.5 Membrane filter capture of E. coli 

Membrane filtration was performed according to US EPA standard protocol. Serial 10-

fold dilutions of E.coli cells were prepared in the range of 102–105 cfu/ml in LB from a washed E. 

coli suspension. An aliquot of sterile LB broth was prepared as negative control. Then 1 mL of 

various cell dilutions were inoculated into 99 ml sterile water sample in the funnel followed by 

connecting the funnel unit to a tubing attached with a vacuum pump. Then the sample was 

filtered through 0.45 μm/ 0.22 μm cellulose nitrate membrane under partial vacuum. The 

membrane filter was removed from the funnel unit by sterile forceps and placed into a clean 

petri dish containing nutrient medium (2.0 mL of LB broth). The device was incubated at 37 °C 

for bacterial recovery before phage induced colorimetric reaction. The humidity in the incubator 

was kept in constant to avoid evaporation of the liquid medium.  
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5.2.6 Optimization of the reaction conditions 

The membrane filter retaining cells was incubated for 0h, 2h, 4h, 6h and 8h respectively, 

followed by adding 500 μL purified phage stock solution (5×106 PFU/mL) over the top of each 

membrane and incubating for another 30 min with shaking for phage infection. After each 

incubation, the membrane filter was removed and placed into a fresh petri dish and 500 μL of 

BCIP/NBT reaction solution was added on the top of membrane immediately. The filter was 

incubated at 37 °C for various time, ranging from 1h to 3h to determine the optimal reaction 

time for color change.  Experiments were carried out in triplicate. Negative control test was 

performed by filtering water sample without inoculating bacterial cells while positive control 

was performed by inoculating the same amount of cells followed by incubating at 37 °C 

overnight. Traditional plate counting assay was performed in parallel. 

5.2.7 Colorimetric method 

Colorimetric detection of living E.coli cell by naked eyes was conducted through the 

enzymatic reaction of alkaline phosphatase released from each captured bacteria and its 

chromogenic substrate (BCIP/NBT) under optimal condition as described above. Hydrolysis of 

this BCIP following oxidation by NBT can produce a blue-colored precipitate at the site of 

alkaline phosphatase presence. In our case, the localized precipitate resulting from alkaline 

phosphatase activity released from each colony would indicate the location of E.coli cell that 

effectively infected by the engineered T7 ALP phage. Image of the membrane with colored 

precipitate was taken using a smart phone. Chemiluminescent signal was recorded by using 

chemiluminescent substrate and the image was taken using a CCD imaging station (Kodak, 

Rochester, NY, USA).  
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5.2.8 Specificity test  

To investigate the specificity of the assay, other non-targeted bacterial strains, including 

Salmonella. Typhimurium and Staphylococcus. aureus at the concentration of 100 cells/100 mL 

water sample were tested under the same conditions. Different bacteria cells were collected, 

prepared and serial diluted followed by colorimetric detection as described above. 

5.2.9 SEM analysis of the membrane filter 

Each of the membrane filter specimen was removed and fixed by immersing in 2.0% 

glutaraldehyde for 1 h. Then the membrane was washed twice with sterile water and air dried at 

room temperature. Segments of the prepared membrane filter was aseptically affixed on the 

top of a sample holder by using double adhesive cellulose tape followed by sputter coating with 

gold. Then the specimen was observed at an accelerating voltage of 10 kv by scanning electron 

microscopy and photographed. 

 

5.2.10 Statistical analysis 

All experiments were performed at least three times with a minimum of two replicates 

in each experiment. Data presented as the mean value and standard deviation was calculated 

from each experiment using Microsoft Excel 2016. Statistical analysis was carried out using 

Student’s t test (Microsoft Excel Data Analysis) and the results were deemed to be statistical 

significance when p<0.05.  
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5.3 Results and discussion 

E. coli as an indicator of fecal contamination of water has been used commonly since 

their presence indicates the possibility of other pathogenic organisms may also be present in 

the water. Thus alkaline phosphatase based chromogenic detection methods have been 

published to investigate the bacterial contamination of drinking or well water. However, false 

positive results still exist due to the presence of other bacteria in water which express alkaline 

phosphatase. In our study, the detection of viable E. coli based on the enzymatic reaction of 

alkaline phosphatase is relatively quantitative compared with common colorimetric assay as the 

bacterial colony can be counted through the dark blued/purple precipitates. And our goal is to 

apply this phage based assay which specifically infects its corresponding host bacteria to reduce 

the rate of false positives resulting from non-targeted bacteria that also produce alkaline 

phosphatase. The schematic representation of the assay is shown in Figure 5.1.  

Figure 5.1 The schematic representation of E. coli detection approach contains the following 
steps: 1) artificially inoculated water sample (100 ml) was vacuum filtered to retain target 

bacteria, 2) membrane filter was incubated in a petri dish containing appropriate medium at 
37 °C for various time period; 3) T7 APL phage was added to the membrane and incubated at 

37 °C for 30 min 4) chromogenic alkaline phosphatase substrate was added onto the membrane 
and incubated for color development. 
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5.3.1 Proof-of-principle detection of E.coli by ALP based assay  

As the amount of alkaline phosphatase released from the bacterium on the filter 

determines the detection sensitivity, both bacteria concentration and the phage infection during 

the incubation become the key factors for the proposed approach. Two assay patterns of 

alkaline phosphatase were explored and compared. One is based on the alkaline phosphatase 

detection from engineered E. coli cells that overexpress ALP (ALP E.coli) and released by wild 

type phage T7. The other method is based on infection of the wild type E. coli cell with our 

engineered T7 phage carrying the ALP gene (T7 ALP) which will induce ALP expression upon 

infection. Both patterns allow alkaline phosphatase releasing and the enzyme reaction with 

chromogenic substrate resulting precipitated enzyme products (purple dots) which are in 

proportion to cell number. In the first model, colored signal is visual detectable as presented in 

Figure 5.2. Compared with the wild type strain, the ALP E.coli strain yields significantly higher 

intensity of colored signal both in culture solution and on membrane filter which confirms the 

principle of the second detection pattern by using T7ALP phage to detect wild type E.coli is 

possible. 

   

 
Figure 5.2 Colored signal from the reaction of E.coli strain that overexpressed alkaline 
phosphatase (ALP E.coli) with BCIP/NBT substrate on 0.22 μm membrane filter (left); 

comparison of enzymatic reaction of ALP E.coli with wild type E.coli at the presence of BCIP/NBT 
substrate in centrifuge tube and 96-well plate, respectively (middle and right). 
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5.3.2 Optimization of the membrane filtration system  

In order to maximize the detection limit of the developed assay, combination of 

different incubation time for the phage based infection was investigated. The membrane filter 

containing bacterial cells incubated for 1h following addition of phage T7 and another 1h of 

enzyme incubation showed lowest signal intensity, while the combination of 4h incubation of 

bacterial cell with 4h incubation of enzyme reaction produced the highest signal intensity (Fig. 

5.4 A and D). The intensity of colored signals increased along with the increasing of incubation 

time as indicated in Fig. 5.3. For example, the signal intensity of the combination of 2h 

incubation of cells plus 2h incubation of enzyme as well as 3h of each incubation were almost 4-

fold of the signal from just 1h incubation. This may due to the longer incubation time allowed 

more phage induced infection and enzyme released from bacterial cells, as well as enough 

enzyme reaction time with the chromogenic substrate. Moreover, the colored signal from 

counting the precipitated dye was easy to quantify the number of bacteria in the test sample 

without using other equipment. 

 

 

 

Figure 5.3 Images of signals on the membrane filter (pore size 0.45 μm) under different 
incubation time A) Cell incubation 1h + phage infection 45min + enzyme incubation 1h; B) Cell 
incubation 2h + phage infection 45min + enzyme incubation 2h; C) Cell incubation 3h + phage 

infection 45min + enzyme incubation 3h; D) Cell incubation 4h + phage infection 45min + 
enzyme incubation 4h. 
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After the proof-of-concept detection, phage T7 ALP was employed for real sample 

detection, the overexpression of alkaline phosphatase by the engineered phage was verified by 

comparing it with wild type T7 in normal plaque assay. Then Novex® AP chemiluminescent 

substrate (CDP-Star®, 100 μL) was added onto the plaques to verify the signal from infectious T7 

ALP phage to E.coli strain. The result was acquired using the imaging device and showed in Fig. 

5.4.  Positive signal (plaques) was observed from the engineered phage T7 ALP while the wild 

E.coli strain yield no signal.  

 

 

Fig. 5.4 (A) Optical images of engineered phage plaques (top left and right & bottom left) and 
wild phage plaque (bottom right) on E.coli BL21 wild type lawn using plaque assays. (B) 

chemiluminescent images from these plaques corresponding to the same plates in (A), the 
bottom right plate containing wild type T7 phage on BL21 lawn produce no signal. 
 

Sterile water sample was inoculated with E.coli cells of around 10 CFU/100ml and 

filtered through membrane filter followed by incubation for various time: 0h, 2h, 4h, 6h, 8h. 

Then phage T7 ALP was added and incubated for 30 min at 37 ℃. Substrate BCIP/NBT was 

added on top of the membrane filter in a new petri dish and incubated for enzyme reaction: 8h, 

6h, 4h, 2h,1h, respectively which made the total assay time for each set was almost the same, 

except the last one. The result from different combination times of incubation was summarized 
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in Fig 5.5 which indicated the optimal combination was 4h incubation of bacterial with 4h 

incubation of enzymatic reaction. Controls of only E.coli or E.coli with substrate without phage 

infection were also carried out in parallel and no signal was detected (Fig.5.6). 

 

 

 
Fig. 5.5 Comparison of different incubation time for colored precipitates forming on the 
membrane filter. (A) Membrane filters incubated for different combinations of bacterial 

incubation and enzyme incubation, and the number of precipitate was counted according; (B) 
number of colored precipitates (indicated with arrow) from phage based assay: reaction 

condition of 4h incubation for bactria+30 min phage infection+ 4h enzyme reaction; (C) number 
of bacterial colony from traditional assay:  incubation time 12h. 
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Fig. 5.6 Negative controls of the phage based detection assay. (A) only E.coli cells on the 
membrane after 6h incubation; (B) E.coli cells after incubation with substrate; (C) E.coli cells 

after incubation and phage infection with substrate. 
 

These results indicated that without phage infection, colored signal was not detectable 

in a short period of time, while the T7 ALP could help to synthesize and release alkaline 

phosphatase into the surrounding area resulting the reaction of its chromogenic substrate and 

forming colored precipitate. 

5.3.3 Specificity of E. coli detection 

As the proposed detection assay is based on the detection of alkaline phosphatase 

released from phage mediated lysis, the specificity relies on the interaction of phage to the host 

cell. Non-targeted bacteria showed no detectable signal during the short incubation period 

which confirmed the sensitivity by using this testing format.  

5.3.4 SEM analysis of the membrane filter 

It is clear that the bacteria retained in the membrane filter determines parts of the 

detection limit, thus the structure of membrane filter was investigated. Theoretically, compared 
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with larger pore size, smaller pore size would more easily keep bacteria on it due to the size 

restriction. Different section of the membrane filter after incubation and phage infection was 

analyzed by the SEM as shown in Fig. 5.7. As these images showed, E.coli cell was retained by 

the filter on top/ inside with intact shape. While after phage infection, bacteria were lysed and 

cell debris were found inside the membrane indicating the liberation of cell enzymes for 

following colorimetric reaction. 

 

  

Figure 5.7 SEM images of different sections of the membrane filters. (A) Top view of the 0.22 μm 
pore size membrane without bacteria; (B) cross section of the same membrane; (C) Top view of 
the membrane with bacteria (indicated with arrow) on top after water sample filtered through; 
(D) cross section of the same membrane containing bacterial cells (indicated with arrow) inside; 

(E) cross section of the membrane after phage induced lysis (indicated with arrow). 
 

In conclusion, we could achieve colorimetric detection of separate colony after a short 

period of pre-incubation followed by phage T7 ALP infection. The engineered phage that 

overexpress ALP should simplify the detection format and reduce the total assay time compared 

with conventional method. By using phages, the probability of false-positive signals originating 

from the ALP released during the growth of non-targeted bacteria could also be reduced. Thus, 

we expect the proposed assay to be helpful for real sample testing, especially in resource limited 
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regions. Future work will be carried out to quantitatively deal with the colored signal, such as 

using ImageJ to analyze the intensity of precipitate colony.  
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CHAPTER 6 

CONCLUSION 

 

Escherichia coli is frequently linked with foodborne disease and some serotype are even 

human pathogens that cause acute infections, thus a rapid and effective detection system for it 

is closely related to public safety. In addition, government and industry have pay more and more 

attention to food safety issue in order to minimize the possibility of exposing general public to 

foodborne illness. Although golden standard microbiological methods can offer the sensitivity 

for bacteria detection, the needs for long time incubation and specialized facilities restrict most 

practical applications. In recent decade, phage based biosensors for bacterial detection and 

pathogen treatment has been developed widely and obtained considerable attention. The 

natural features of phage, including highly specific, simple and rapid self-reproducing render 

them ideal tools to deal with pathogen infection issues. Their natural self-assembling allows 

synthesized nanoparticle almost identical, with exactly the same shape and nanostructured size 

which is difficult to achieve via laboratory synthesis. Furthermore, their resistance to extreme 

conditions, stability after long time storage as well as relatively large surface area of phage coat 

protein make them promising for many biochemical modification and reaction.  

In the first part of the thesis, biotinylated phage by genetic modification to express 

biotin acceptor peptide on the capsid protein was achieved and immobilized on streptavidin-

modified magnetic beads. The phage immobilization efficiency was indicated to be high enough 

for target bacterial capture from both broth and water samples. The bio- magnetic separation 

assay offered a rapid and simple way to pre-concentrate bacterial cells without pre-enrichment 

compared with traditional culture based method. This assay was also able to distinguish viable 

cell from non-viable one as phage infection only occurs in the presence of living cells thus allows 
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the detection of nucleic acid only from viable one which minimize the possibility of false positive 

signals from dead cells. The specific character of phage ensured the specificity of the assay and 

was verified by the fail from detection of non-targeted bacteria. These results provide further 

evidence that phage particles may open another avenue for accurate detection of bacteria and 

be more superior than antibody based immunoassays. 

In the second part of this thesis, phage based detection assay was further compared 

with antibody based immunoassay. Unlike nonpathogenic E.coli strains (e.g. E.coli BL21 or E.coli 

K12) pathogenic E.coli O157:H7 was not sensitive phage T7, thus two of E.coli O157:H7 specific 

phages were selected for the new assay format. The chemically immobilized specific phages on 

magnetic beads showed a higher capture efficiency than antibody immobilized beads under 

extreme conditions, including high temperature, extreme pH range thus indicated phage-based 

biosorbent could be a useful tool for practical detection under extreme environments. 

Especially, when combined with PCR based assay, the total detection time can be shortened to 

three hours which is a great advantage compared with conventional one. 

 In the third part of the thesis, a membrane filter base assay for a colorimetric 

determination of E.coli in water sample has been developed. The enzymatic assay has been 

optimized for E. coli detection with reduced enrichment time relative to standard culture 

techniques. We have demonstrated a proof-of-concept for this assay using engineered an E.coli 

strain that overexpressed alkaline phosphatase following infection with phage T7 and the 

colorimetric assay was validated. Then engineered phage T7 overexpress alkaline phosphatase 

was constructed and applied in the detection of wild type E.coli cell with similar assay format. 

The assay could be performed within 9h to detect 100 cells in 100mL water sample. The colored 

signal was easy to count by naked eye and in proportion to the real cell number. 



 

96 

In the end, our goal is to develop phage based bacterial detection procedures that could 

turn complicated pathogen detection into a routine test and adopted by the food industry using 

relatively easy method without losing specificity and detection limit. And we have testified 

phage as a rapid and economical tool for identifying certain pathogen based on different 

detection formats. Since these approaches require no more than 4 h pre-enrichment, the test 

can be completed in about a working shift. Presumably, by replacing the phage species specific 

to different pathogenic bacteria, the developed assay model could be adopted as a universal 

tool for food quality and environmental safety applications. 
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