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ABSTRACT

SPHERICAL TROPICALIZATION

SEPTEMBER 2016

TASSOS VOGIANNOU

B.S., ARISTOTLE UNIVERSITY OF THESSALONIKI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jenia Tevelev

In this thesis, I extend tropicalization of subvarieties of algebraic tori over a trivially

valued algebraically closed field to subvarieties of spherical homogeneous spaces. I show

the existence of tropical compactifications in a general setting. Given a tropical compact-

ification of a closed subvariety of a spherical homogeneous space, I show that the support

of the colored fan of the ambient spherical variety agrees with the tropicalization of the

closed subvariety. I provide examples of tropicalization of subvarieties of GLn, SLn, and

PGLn.
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PREFACE

Algebraic geometry is concerned with algebraic varieties, which are geometric objects

that locally arise as solution sets of polynomial equations over some algebraically closed

field k, for instance C. Varieties can be rather complicated, and their study and classifi-

cation are quite challenging. For certain classes of varieties, seemingly difficult questions

of algebro-geometric nature have easy combinatorial description. In particular, given the

algebraic torus T = (k×)n, one can ask what are the possible ways to embed T in a

normal variety X as a dense open subset such that the action of T on itself extends to all

of X. Such varieties are called toric, and are in an on-to-one correspondence with fans

(collections of cones) in a lattice which is isomorphic to Zn (the lattice of 1-parameter sub-

groups of T). Moreover, the properties of a toric variety are reflected in the combinatorial

structure of its fan.

The study of valuations of fields (maps from the multiplicative subgroup of a field to

Q) and of logarithmic maps on complex algebraic varieties leads to the observation that

a variety (of a certain kind) gives rise to a convex object in Rn, called the tropicaliza-

tion of the variety (see [BG], [EKL]). From these ideas and the relevant work of many

people, including I. Itenberg, D. Maclagan, G. Mikhalkin, B. Sturmfels, a new branch

of geometry, called tropical geometry, emerged, and it has many applications within and

outside mathematics. Tropical geometry can be described as a piece-wise linear version of

algebraic geometry. The correspondence of toric varieties with fans in Zn may appear to

be unrelated to the tropicalization of varieties inside a torus. However, J. Tevelev showed

in [Te] that this is not the case, and that there is a connection between the two via certain

compactifications of a subvariety of T inside toric varieties, called tropical compactifica-
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tions. This demonstrates that tropicalization is not an artificial construction, but rather

has a deep connection with the geometry of the subvariety in hand.

Toric varieties form a subcategory of a bigger class of varieties called spherical vari-

eties. Along with toric varieties, many interesting varieties are spherical: GLn, SLn, SOn,

symmetric varieties, and flag varieties, to name a few. Because of this, they have been

studied extensively by many researchers, such as M. Brion, F. Knop, D. Luna, F. Pauer,

T. Vust. In a complete analogy with toric varieties, spherical varieties are classified by

colored fans (fans with additional information on them, called “colors”) in (a certain

subset of) a lattice Zn [LV].

The main goal of my thesis is to extend the ideas of tropical geometry to the cate-

gory of spherical varieties. I extend tropicalization and tropical compactifications from

the toric to the spherical case. The relation with tropical compactifications shows that

tropicalization is a natural operation.
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C H A P T E R 1

INTRODUCTION

Let k be an algebraically closed field of arbitrary characteristic, K = k((t)) the field

of Laurent series over k, and K =
⋃
n k((t1/n)) the field of Puiseux series over k (which

is the algebraic closure of K in characteristic zero). Consider the discrete valuation

ν : K× → Z,
∑
n

cnt
n 7→ min{n : cn 6= 0}

(k is trivially valued). We denote by ν its extension to a valuation K
× → Q defined

similarly.

Let Tn = (k×)n be the algebraic torus of dimension n over k, Λ = Hom(Tn, k×) its

character group, and Q = Hom(Λ, k×) ∼= Λ∨ ⊗Z Q. The valuation ν induces a surjective

map:

val : T (K)→ Q, (1.1)

that sends (x1(t), . . . , xn(t)) in T (K) ∼= (K
×

)n to (ν(x1(t)), . . . , ν(xn(t))) in Q ∼= Qn.

Given a closed subvariety Y ⊆ Tn, the tropicalization of Y , denoted TropY , is the image

val(Y (K)) ⊆ Q. It is a piece-wise linear set in Q ∼= Qn which is the support of a fan. The

combinatorial structure of the tropicalization of Y carries information about the original

variety, and is usually easier to work with. More about tropicalizations and their use can

be found in, among many others, [MB], [IMS], [G], [EKL].

Given a closed subvariety Y ⊆ T , a tropical compactification of Y is a compactification

Y ⊆ X, i.e. Y is a complete variety, in a toric variety X associated to a fan F in Q, such

1



that the multiplication map of Y :

µY : T × Y → X, (g, x) 7→ gx (1.2)

is faithfully flat. Tropical compactifications possess some nice properties. For instance, if

X is smooth, then the boundary of Y is divisorial and has combinatorial normal crossings.

If Y ⊆ X is a tropical compactification, then SuppF = TropY , which suggests a way to

construct such compactifications. Tropical compactifications were introduced, and their

existence and relation to tropicalizations were shown, in [Te].

The applications of tropicalization and tropical compactifications have motivated their

extension to more general settings than subvarieties of tori. In particular, tropical com-

pactifications for the case k is not trivially valued (non-constant coefficient case) were

introduced in [LQ]. Tropicalization of subvarieties of toric varieties is treated in [P].

Tropicalizations and tropical compactifications of log-regular varieties were introduced

in [U]. Our goal is to extend tropicalization and tropical compactifications to subvarieties

of spherical homogeneous spaces for an arbitrary connected reductive group. Spherical

means that the action of a Borel subgroup on the homogeneous space has an open orbit.

The reason such generalization is possible is that, as in the toric case, the equivariant

open dense embeddings of a spherical homogeneous space are in a bijection with com-

binatorial data (colored fans) in a lattice. This correspondence, introduced in [LV], is

described briefly in §3.1.

Let G be a connected reductive group over k, B ⊆ G a Borel subgroup, and let G/H

be a spherical homogeneous space for some closed algebraic subgroup H ⊆ G. In §3.2 we

define a map analogous to (1.1):

val : G/H(K)→ Q, (1.3)

where Q = Hom(Λ,Q) ∼= Λ ⊗Z Q, and Λ is the subgroup of characters of B that are

weights of B-semi-invariant functions on G/H. The image of this map is the valuation

cone V (defined in §3.1). Then the tropicalization of a closed subvariety Y ⊆ G/H is

2



defined to be TropY = val(Y (K)). We will see (Rem. 4.2) that we can work over K

instead of K, i.e. find the image val(Y (K)) instead of val(Y (K)), and then multiply by

scalars in Q≥0 to get the rest of TropY (here G/H(K) is viewed as a subset of G/H(K)

via the morphism SpecK → SpecK induced by the inclusion K ↪→ K).

Consider open dense G-embeddings G/H → X on normal varieties. Such a variety

X is called spherical. Given a spherical variety X, one can take the closure Y ⊆ X of a

closed subvariety Y ⊆ G/H. Write

µY : G× Y → X, (g, x) 7→ gx, (1.4)

for the multiplication map of Y .

Definition 1.1. The closure Y ⊆ X is called a tropical compactification of Y if Y is

complete and the multiplication map µY is faithfully flat.

In §4 we obtain the result:

Theorem 1.2. Let Y be a closed subvariety of a spherical homogeneous space G/H.

Then:

(i) Tropical compactifications of Y in toroidal spherical varieties exist.

(ii) If Y ⊆ X is a tropical compactification, where X is a spherical variety associated

to a colored fan F, then SuppF = TropY .

The term toroidal is explained in Definition 3.6, and the support of a colored fan is defined

in §3.1. In part (ii), the tropical compactification Y ⊆ X is not assumed to be in a toroidal

spherical variety. A direct consequence of this theorem is that the tropicalization of any

closed subvariety of G/H is a piece-wise linear object in Q that is the support of a fan.

We show the existence part of the theorem in §2 in a vastly more general setting

(Thm. 2.31), where G is replaced by a surjective smooth (relatively) affine group scheme

with connected fibers over a normal noetherian scheme S, G/H by a homogeneous G-

scheme U (Def. 2.28) that admits an equivariant compactification (Def. 2.1), and Y by

3



a closed subscheme, flat over S, such that µ(G ×S Y ) = U , where µ : G × X → X is

the multiplication map of X. The proof of (i) follows almost immediately from this. The

second result of the theorem is based on a spherical version of Tevelev’s lemma (Lem.

4.5).

In §5 we work on some examples of spherical tropicalization. First we show that

tropicalization of subvarieties of a torus Tn, when viewed as a spherical homogeneous

space G/H for G = B = Tn and H the trivial subgroup, is the same as the usual toric

tropicalization. Thus spherical tropicalization is indeed an extension of the toric one.

The linear algebraic group GLn is a spherical homogeneous space when G = GLn ×

GLn is acting on it by left and right multiplication. Recall that if x = (xij(t)) is an

invertible matrix with entries in K, there are matrices g = (gij) and h = (hij) with

entries in k[[t]], such that gxh is in (inverse) Smith normal form, i.e.

gxh =



tα1 0 . . . 0

0 tα2 . . . 0

...
...

. . .
...

0 0 . . . tαn


,

for some integers α1 ≥ · · · ≥ αn. The integers α1, . . . , αn are called the invariant factors

of x. An invertible matrix x with entries in K can be viewed as a matrix with entries

in k((t1/m)) for some m. Thus there are some matrices g, h with entries in k[[t1/m]],

such that gxh is diagonal with entries (t1/m)α1 , . . . , (t1/m)αn along the diagonal, for some

integers α1 ≥ · · · ≥ αn. We call α1/m, . . . , αn/m the invariant factors of x. We show

that for a certain choice of a Borel group and basis of Λ, which give rise to a dual basis

on Q, the tropicalization of a closed subvariety of GLn is a set in Q ∼= Qn that can be

calculated as in the following theorem.

Theorem 1.3. Let Y be a closed subvariety of GLn, defined by some ideal I ⊆ k[GLn].

Then TropY consists of the n-tuples (α1, . . . , αn) of invariant factors (in decreasing order)

of invertible matrices with entries in K, that satisfy the equations of I.

4



Figure 1: Tropicalization of Y = V (x11 − x22, x312 − x21)

As mentioned earlier, we may work over K when calculating the tropicalization of a

subvariety.

If the closed subvariety of GLn admits a parametrization, then TropY can be calcu-

lated in a straightforward and elementary way. For instance, to find the tropicalization

of the variety V (x11 − x22, x312 − x21) ⊂ GL2, where xij are coordinates for GL2, one can

write an invertible matrix with entries in K that satisfies the equations x11 = x22 and

x312 = x21, which is of the form y(t) z(t)

z(t)3 y(t)

 , y(t), z(t) ∈ K,

and determine what are the possible invariant factors of this matrix. The tropicalization

of this variety is drawn in Figure 1. The lightly shaded area is the rest of the valuation

cone.

If the closed subvariety Y = V (I) does not admit a parametrization, one has to

take the valuations of equations that Y satisfies to impose restrictions on the possible

invariant factors of invertible matrices with entries in K, and then find which numbers

bounded by these restrictions appear as invariant factors of such matrices. For instance,

if I = (x211x12−x522 +x11x
3
21−1), then any matrix (xij(t)) with entries in K that satisfies

5



Figure 2: Tropicalization of the SL2-representation variety of π1(S0,3)

the equations of I must also satisfy:

min {2ν(x11(t)) + ν(x12(t)),−5ν(x22(t)), ν(x11(t)) + 3ν(x21(t))} = 0.

One has to be careful with this approach. Given a set of generators f1, . . . , fn for the

ideal I, the tropicalization of Y is not the intersection of the TropV (fi) (see Example

5.4), which is also the case in toric tropicalization.

If the equations defining the ideal I come from matrix products, Horn’s inequalities

(Eq. (5.1) and (5.2)) may be helpful for determining TropY . Given three matrices

A,B,C with entries in K such that AB = C, the integers that appear as invariant

factors of them are described by Horn’s inequalities (see §5.5). We demonstrate this in

Example 5.5.

The cases of subvarieties of SLn and PGLn are similar and are treated in §5.3 and

§5.4. In §5.5 we find the tropicalization of the G-representation variety of the funda-

mental group of the sphere with 3 punctures, where G is GLn or SLn. The points in

TropY are precisely the ones that satisfy Horn’s inequalities. For the case G = SL2, the

tropicalization is given in Figure 2.

In the toric case, one can construct a tropical compactification for a closed subvariety

Y of a torus by embedding the torus in any ambient complete space, and modifying it with

6



blow-ups until the multiplication map of the closed subvariety becomes flat. This amounts

to refining the fan of the ambient space. Then the cones that lie outside TropY can be

removed, so that the multiplication map becomes surjective, hence faithfully flat. The

closure of Y in the toric variety defined by the resulting fan is a tropical compactification

of Y . The same idea works in the spherical case. We demonstrate this in §5.6.

In summary, spherical tropicalization appears as a natural extension of the toric one.

The latter fits in this context as a special case in which tropicalization carries the “most

possible” information. On the other end of the spectrum are generalized flag varieties,

that is spherical homogeneous spaces G/H for which H is a parabolic subgroup, i.e. it

contains some Borel subgroup, in which case V is a point and tropicalization is trivial.

This thesis is organized as follows. Chapter §2 is devoted to the proof of the existence

of tropical compactifications in a general setting, and can be skipped in first reading.

Chapter §3.1 is an introduction to spherical varieties. In §3.2 tropicalization of subvari-

eties of a spherical homogeneous space is introduced. In §4 we prove Tevelev’s Lemma

for the spherical case, and then Theorem 1.2. These three sections are mostly devoid of

examples; there is only an easy one to explain the Luna-Vust theory of spherical varieties,

and to show how the tropicalization can be calculated in this easy case. All substantial

examples are presented in §5.

In this thesis, a variety is a reduced separated scheme of finite type over an alge-

braically closed field. Given an algebraic group G, a homogeneous space is an irreducible

G-variety (hence integral), such that the action of G is transitive, i.e. there is a unique

orbit. The terms affine, projective, and quasi-projective are relative, over a scheme S.

The only exception is when we pick an affine open set in a scheme, in which case we write

is as the spectrum of a ring.

7



C H A P T E R 2

TROPICAL COMPACTIFICATIONS

The purpose of this chapter is to show the existence of tropical compactifications in a

general setting (Thm. 2.31). The existence of tropical compactifications of subvarieties of

spherical homogeneous spaces will then follow as a special case (Thm. 1.2). This chapter

is rather technical; the reader who is willing to take in faith the existence of tropical

compactifications can skip it.

Definition 2.1. Let G be a group scheme. An equivariant compactification of a G-

scheme X is a proper G-scheme X ′ with an open dense G-embedding X ↪→ X ′. Given an

equivariant compactification X ↪→ X ′, we can view X as an open dense G-stable subset

of X ′.

Let S be a scheme, G a group scheme over S, U a G-scheme over S, and Y ⊆ U a

closed subscheme. The main idea for showing that Y admits a tropical compactification

is to find an equivariant compactification U ↪→ X, take the closure Y ⊆ X, which is

proper, and then find an equivariant projective birational modification of X that fixes

U and makes the multiplication map of the “modified” Y flat. The basic problem is the

existence of such a modification of X. We proceed by showing that a coherent G-sheaf

M on some G-scheme X with a projective G-morphism X → Y can be “flattened” in

an equivariant way by some modification Y′ → Y, and then we specialize to flattening

of coherent G-sheaves on G ×S X with respect to the multiplication map. If M is the

structure sheaf OG×SX/IG×SY of G ×S Y , then this is equivalent to flattening of the

multiplication map of Y .

8



In §2.1 we review flattening of a coherent sheaf M on a scheme X for a projective

morphism f : X→ Y, which is due to M. Gruson and L. Raynaud (see [RG] or [R, Chap.

4]). In [RG] more general cases are treated, i.e. when f is not projective, but for the

purpose of this thesis this one is sufficient. We define the pure transform and flattening

of a coherent sheaf, and then we state the existence of flattenings. Then we define the

pure transform and flattening of a closed subscheme of Y, and show their existence.

In §2.2 we extend the results of §2.1 to an equivariant setting. In particular, we

show that if all schemes and sheaves considered have a G-structure and morphisms are

equivariant, then equivariant flattenings, of sheaves or of closed subschemes, exist. In §2.3

we specialize the results of §2.2 to the case f is the multiplication map µ : G×S X → X,

and M a sheaf on G×S X which is the pullback of a (not necessarily equivariant) sheaf

on X by the second projection. The multiplication map is not, in general, projective,

but we can overcome this problem with an equivariant compactification G ↪→ G′ in a

projective scheme G′ (under certain conditions on G).

Finally, in §2.4 we introduce homogeneous schemes, which is a generalization of ho-

mogeneous spaces, and show that tropical compactifications of a closed subscheme of a

homogeneous scheme that admits an equivariant compactification exist. We show that

for a homogeneous scheme over a field, there are tropical compactifications inside normal

schemes.

2.1 The Pure Transform and Flattening

Let X be a scheme, Y a noetherian scheme, f : X → Y a morphism of finite type,

and M a coherent sheaf on X. If U is an open set in Y , we write M|U for the restriction

M|f−1(U). Assume that U ⊆ Y is an open dense set such that M|U is flat (over U).

When Y is reduced, the existence of such open dense set is guaranteed by Grothendieck’s

generic flatness [EGAIV, Th. 6.9.1].

9



Let u : Ỹ → Y be a projective birational morphism that restricts to an isomorphism

on open dense sets Ũ ∼−→ U , and X̃ = X ×Y Ỹ :

X̃

Ỹ Y

X
..............................................................................
.....
.......
.....

f̃

........................................................................................................................................................................................................... ............
ũ

........................................................................................................................................................................................................... ............
u

..............................................................................
.....
.......
.....

f

Consider the subsheaf Ñ of the pullback M̃ = ũ∗M of sections supported on f̃−1(Ỹ − Ũ):

for any open set Ṽ ⊆ X̃,

Γ(Ṽ , Ñ) =
{
s ∈ Γ(Ṽ , M̃) : sP = 0 for all P ∈ X̃ with f̃(P ) ∈ Ũ

}
.

Definition 2.2. The quotient sheaf M̃/Ñ is called the pure transform of M with respect

to (u, U).

When the open set U is clear from the context, we may call M̃/Ñ the pure transform of

M with respect to f , and if both u and U are clear, we may call M̃/Ñ the pure transform

of M.

Proposition 2.3. [R, Chap. 4, §1] A coherent sheaf P on X̃ is the pure transform of

M if and only if there is a coherent subsheaf Ñ ⊆ M̃ such that the following are satisfied:

(i) P is the quotient M̃/Ñ,

(ii) Ñ vanishes on f̃−1(Ũ), and

(iii) Ass(P) ⊆ f̃−1(Ũ).

Proposition 2.4. If M is flat over Y and Ass(Ỹ ) ⊆ Ũ (e.g. if Ỹ is integral), then the

pure transform of M with respect to U is M̃, i.e. Ñ = 0.

Proof. From Proposition 2.3 it suffices to show Ass(M̃) ⊆ f̃−1(Ũ). Due to flatness of

M̃, the associated points of M̃ map to associated points in Ỹ [EGAIV, Th. 3.3.1], hence

Ass(M̃) ⊆ f̃−1(Ũ).
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If Ñ 6= 0, then M̃ is certainly not flat over Ỹ . Therefore, instead of asking whether

M̃ is flat over Ỹ , it is more natural to ask if the pure transform M̃/Ñ is flat over Ỹ .

Definition 2.5. The projective birational morphism u : Ỹ → Y , that restricts to an

isomorphism on open dense sets Ũ ∼−→ U , is called a flattening of M with respect to

(f, U), if the pure transform of M with respect to it is flat over Ỹ .

Theorem 2.6. [R, Chap. 4, §1, Thm. 1] For any quintuplet (X,Y, f,M, U), where

X is a scheme,

Y is a noetherian scheme,

f is a projective morphism X → Y of finite type,

M is a coherent sheaf on X, and

U is an open dense set in Y such that M|U is flat,

there is a flattening Ỹ → Y of M with respect to f . If Y is integral, there is a flattening

Ỹ → Y of M with Ỹ integral.

Let Z ⊆ X be a closed subscheme, and IZ the associated sheaf of ideals on X. In this

context, U will be an open dense set in Y such that the restriction f |Z : Z → Y is flat

over U .

Definition 2.7. The pure transform of Z with respect to (u, U) is the scheme-theoretic

closure ũ−1(Z ∩ f−1(U)) ⊆ X̃.

Write Z̃ for the pure transform of Z, and I
Z̃

for the associated sheaf of ideals on X̃.

Definition 2.8. The projective birational morphism u : Ỹ → Y , that restricts to an

isomorphism on open dense sets Ũ ∼−→ U , is called a flattening of Z with respect to

(f, U), if f |
Ỹ

is flat over Ỹ .

Lemma 2.9. The pure transform of the quotient sheaf OX/IZ on X is the quotient sheaf

O
X̃
/I
Z̃

on X̃.
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Proof. Consider the coherent sheaves M = OX/IZ on X and M̃ = ũ∗M = O
X̃
/Iũ−1(Z) on

X̃. The pure transform of M is then the quotient M̃/Ñ = (O
X̃
/Iũ−1(Z))/Ñ, where Ñ ⊆ M̃

is the subsheaf of sections with support outside f̃−1(Ũ). It is of the form I
Z̃′/Iũ−1(Z) for

a sheaf of ideals I
Z̃′ on X̃ containing Iũ−1(Z), that determines a closed subscheme Z̃ ′ ⊆ X̃

contained in ũ−1(Z). Then clearly M̃/Ñ = O
X̃
/I
Z̃′ . We claim that Z̃ ′ = Z̃.

From the definition of the pure transform of M, Ñ = I
Z̃′/Iũ−1(Z) vanishes on f̃−1(Ũ),

hence

I
Z̃′ |f̃−1(Ũ)

= Iũ−1(Z)|f̃−1(Ũ)
,

which implies

Z̃ ′ ∩ f̃−1(Ũ) = ũ−1(Z) ∩ f̃−1(Ũ) = ũ−1(Z ∩ f−1(U)).

From the definition of the pure transform of Z, Z̃ ⊆ Z̃ ′. Furthermore, Z̃ ′ ∩ f̃−1(Ũ) =

Z̃ ∩ f̃−1(Ũ), and hence

(
O
X̃
/I
Z̃′

)
|
f̃−1(Ũ)

=
(
O
X̃
/I
Z̃

)
|
f̃−1(Ũ)

.

Assume that the inclusion Z̃ ⊆ Z̃ ′ is strict. Let P ∈ Z̃ ′ − Z̃. Pick an affine open set

V = SpecA in X̃ containing P . Write Z̃ ′ ∩ V = V (a), Z̃ ∩ V = V (b) with a ⊂ b ideals

of A (strict inclusion). Let a ∈ A be such that a ∈ b but a 6∈ a, so that a is zero in A/b,

but non-zero in A/a. Let p be in f−1(Ũ) ∩ V . If p 6∈ Z̃ ′ then clearly
(
O
X̃
/I
Z̃′

)
p

= 0. If p

is in Z̃ ′ ∩ f̃−1(Ũ)∩ V = Z̃ ∩ f̃−1(Ũ)∩ V , then since
(
O
X̃
/I
Z̃′

)
|
f̃−1(Ũ)

=
(
O
X̃
/I
Z̃

)
|
f̃−1(Ũ)

,

a = 0 in
(
O
X̃
/I
Z̃′

)
p

=
(
O
X̃
/I
Z̃

)
p

= (A/b)p.

Thus a is a non-zero local section supported outside f̃−1(Ũ). This contradicts the defi-

nition of the pure transform of M, hence Z̃ ′ = Z̃.

Corollary 2.10. If µZ is flat and Ass(Ỹ ) ⊆ Ũ (e.g. if Ỹ is integral), then the pure

transform of Z is ũ−1(Z).
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Proof. Flatness of µZ is equivalent to flatness of OX/IZ . The pure transform of OX/IZ

with respect to U is then ũ∗(OX/IZ) = O
X̃
/Iũ−1(Z) (Prop. 2.4), and also O

X̃
/I
Z̃

. It

follows that Z̃ = ũ−1(Z).

Theorem 2.11. For any quintuplet (X,Y, f, Z, U), where

X is a scheme,

Y is a noetherian scheme,

f is a projective morphism X → Y of finite type,

Z is a closed subscheme of X, and

U is an open set in Y such that f |Z is flat over U ,

there is a flattening Ỹ → Y of Z with respect to f . If Y is integral, there is a flattening

Ỹ → Y of Z with Ỹ integral.

Proof. Flatness of f |Z over U is equivalent to flatness of the coherent sheaf OX/IZ over

U . Apply Theorem 2.6 to get a flattening u : Ỹ → Y of this sheaf:

X̃

Ỹ Y

X
..............................................................................
.....
.......
.....

f̃

........................................................................................................................................................................................................... ............
ũ

........................................................................................................................................................................................................... ............
u

..............................................................................
.....
.......
.....

f

If Y is integral, we may assume that Ỹ is as well. From Lemma 2.9, the pure transform

of OX/IZ is O
X̃
/I
Z̃

. Flatness of this sheaf is equivalent to flatness of the restriction f̃ |
Z̃

,

and we are through.

2.2 Equivariant Flattening

In this section we extend the results of §2.1 to an equivariant setting. Our main goal is

to prove an equivariant version of Theorem 2.6. We follow the same steps as in [R, Chap.

4, §1, Thm. 1], carrying equivariance along the way. This proof is based on the existence

of the Quot scheme, so our first goal is to define a group action on it and show that all

relevant morphisms are equivariant.
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Let S be a scheme and G a group scheme over S. All schemes and morphisms

considered are over S. Let X be a G-scheme, Y a noetherian G-scheme, f : X → Y a

G-morphism of finite type, and M a coherent G-sheaf on X. Write

µ : G×S X → X, (g, x) 7→ gx

for the multiplication map of X. Assume that U ⊆ Y is a G-stable open dense set such

that M|U is flat. If Y is reduced and G is flat and locally of finite type, then such an

open dense set exists. Indeed, there is an open set U ′ (not necessarily G-stable) such

that M|U ′ is flat. The image U = µ(G×S U ′) is then a G-stable open set such that M|U

is flat.

Let u : Ỹ → Y be a projective birational G-morphism that restricts to an isomorphism

on G-stable open dense sets Ũ ∼−→ U , and X̃ = X ×Y Ỹ :

X̃

Ỹ Y

X
..............................................................................
.....
.......
.....

f̃

........................................................................................................................................................................................................... ............
ũ

........................................................................................................................................................................................................... ............
u

..............................................................................
.....
.......
.....

f

Since f and u are G-morphisms, X̃ has a natural structure as a G-scheme, with which f̃

and ũ are G-morphisms, and f̃−1(Ũ) is a G-stable open set.

Proposition 2.12. If G is flat and of finite type, then the pure transform of M (Def.

2.2) is a G-sheaf on X̃.

Proof. Write M̃/Ñ for the pure transform of M, where M̃ = ũ∗M, and Ñ ⊆ M̃ is the

subsheaf of sections supported outside f̃−1(Ũ). Since ũ is a G-morphism, M̃ is a G-sheaf.

It suffices to show that Ñ ⊆ M̃ is a G-subsheaf. Write

µ̃ : G×S X̃ → X̃ and p̃r2 : G×S X̃ → X̃

for the multiplication map of X̃ and the second projection of G×S X̃, respectively, and

α : µ̃∗M̃→ p̃r∗2M̃
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for the isomorphism of O
G×SX̃

-modules that defines the G-structure on M̃. We want

to show that α(µ̃∗Ñ) ⊆ p̃r∗2Ñ. Since µ̃ is flat and Ñ ⊆ M̃ is the subsheaf of sections

supported outside f̃−1(Ũ), µ̃∗Ñ is the subsheaf of sections of µ̃∗M̃ supported outside

µ̃−1(f̃−1(Ũ)), and similarly for p̃r∗2N [H, II, Ex. 1.20]. Note that

µ̃−1(f̃−1(Ũ)) = G×S f̃−1(Ũ) = p̃r−12 (f̃−1(Ũ)),

as f̃−1(Ũ) isG-stable. The isomorphism α sends a section supported outside of µ̃−1(f̃−1(Ũ))

to a section supported outside of µ̃−1(f̃−1(Ũ)), and so outside of p̃r−12 (f̃−1(Ũ)), therefore

α(µ̃∗Ñ) ⊆ p̃r∗2Ñ as required. This completes the proof.

Definition 2.13. The projective birational G-morphism u : Ỹ → Y , that restricts to an

isomorphism on G-stable open dense sets Ũ ∼−→ U , is called an equivariant flattening (or

a G-flattening) of M with respect to (f, U), if the pure transform of M with respect to

it is a G-sheaf that is flat over Ỹ .

From now on we assume that f is projective. Let QuotM/X/Y be the Quot functor,

i.e. the contravariant functor SchY → Set such that

QuotM/X/Y (T ) =

 Coherent quotients of the pullback of

M on T ×Y X that are flat over T


for any Y -scheme T . This functor is represented by the Quot scheme Q (when Y is

noetherian, f is projective, and M coherent). It is a disjoint union
∐
i Qi of projective

schemes Qi over Y (see [TDTE] from Fondements de la Géometrie Algébrique or [N]).

Write π : Q→ Y for the structure morphism. We can view Q as a scheme over S via the

composition of π with Y → S, in which case π is a morphism over S.

Lemma 2.14. Q has a natural structure of a G-scheme, with which π is a G-morphism.

Proof. Given a scheme T , we define an action of GS(T ) on QS(T ), functorial on T , as

follows. Let g ∈ GS(T ) and s ∈ QS(T ); we want to define an element gs ∈ QS(T ). We
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view T as a scheme over Y via y = π ◦ s, in which case s is a morphism over Y , and y a

morphism over S:

S

Y

QT ................................................................................................................................................................... ............
s

................................................................. .........
...

y ..............................................................
...
............

π

.............................................
.....
.......
.....

.......................................................................................................................................... .......
.....

...............................................................................................................................
.....
............

Then s ∈ QY (T ) = QuotM/X/Y (T ). In particular, s corresponds to a coherent quotient

N of ỹ∗M that is flat over T :

T ×Y X

T Y

X
..............................................................................
.....
.......
.....

............................................................................................................................................................................ ............
ỹ

........................................................................................................................................................................................................... ............
y

..............................................................................
.....
.......
.....

f

The morphism T ×Y X → T induces a map GS(T ) → GS(T ×Y X). Let g̃ be the

image of g under this map. Note that ỹ ∈ XS(T ×Y X), so that g̃ỹ = g̃y is also an

element in XS(T ×Y X), where g̃y is given by the cartesian diagram

T ×Y X

T Y

X
..............................................................................
.....
.......
.....

............................................................................................................................................................................ ............
g̃y

........................................................................................................................................................................................................... ............
gy

..............................................................................
.....
.......
.....

f

(here T ×Y X and T ×Y X → T are as in the above cartesian diagram). Since M is a

G-sheaf, there is an isomorphism of sheaves on T ×Y X:

φ : ỹ∗M→ g̃y∗M

The quotient sheaf N is identified via φ with a coherent quotient sheaf of g̃y∗M that

is flat over T . This gives a point in QY (T ) ⊆ QS(T ), where T is a scheme over Y via gy.

We define gs to be this point. Showing the properties of a group action and functoriality

on T is easy and is omitted.

Now we show that π is a G-morphism. Let T be a scheme. Let πT : QS(T )→ YS(T )

be the map induced by π on T -points, and let g ∈ GS(T ), s ∈ QS(T ). Let y be the
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image of s in YS(T ). From the definition of gs, πT (gs) = gy = gπT (s), and so π is a

G-morphism.

Let R be a noetherian scheme and y : R → Y a morphism such that the coherent

sheaf ỹ∗M is flat over R:

X ×Y R

R Y

X
..............................................................................
.....
.......
.....

........................................................................................................................................................................... ............
ỹ

........................................................................................................................................................................................................... ............
y

..............................................................................
.....
.......
.....

f

This gives a point in QuotM/X/Y (R), hence a morphism s : R→ Q over Y .

Lemma 2.15. If R is a G-scheme and y a G-morphism, then s is also a G-morphism.

Proof. Let T be a scheme, and write sT : RS(T ) → QS(T ) for the induced map on T -

points. Given g ∈ GS(T ) and r ∈ RS(T ), we want to show that sT (gr) = gsT (r). The

image sT (r) is the point in QS(T ) = QuotM/X/Y (T ) associated to the sheaf r̃∗ỹ∗M =

(ỹ ◦ r̃)∗M on X ×Y T (which is the coherent quotient of (ỹ ◦ r̃)∗M by the zero sheaf, and

is flat over T ):

T ×Y X

T

X ×Y R

R Y

X
..............................................................................
.....
.......
.....

........................................................................................................................................................................... ............
ỹ

........................................................................................................................................................................................................... ............
y

..............................................................................
.....
.......
.....

f

........................................................................................................................................................................................................... ............
r

............................................................................................................................................. ............
r̃

..............................................................................
.....
.......
.....

Let g̃ ∈ GS(T ×Y X) be the image of g under the map GS(T )→ GS(T ×Y X) induced

by T ×Y X → T . Note that ỹ ◦ r̃ ∈ XS(T ×Y X) and, as in the proof of Lemma 2.14,

g̃(ỹ ◦ r̃) = (g(y ◦ r))∼ = (y ◦ gr)∼:

T ×Y X

T Y

X
..............................................................................
.....
.......
.....

............................................................................................................................................................................ ............
ỹ ◦ gr

........................................................................................................................................................................................................... ............
y ◦ gr

..............................................................................
.....
.......
.....

f

The equality g(y ◦r) = y ◦gr follows from the equivariance of y. There is an isomorphism

of sheaves on T ×Y X:

φ : (ỹ ◦ r̃)∗M→ ỹ ◦ gr∗M
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The sheaf (ỹ ◦ r̃)∗M (as a quotient of (ỹ ◦ r̃)∗M by the zero sheaf) is identified with the

sheaf ((y ◦ gr)∼)∗M. This is the coherent sheaf, flat over T , that determines the point

gsT (r) in QS(T ).

The image sT (gr) is the point in QS(T ) associated to the sheaf ((y ◦ gr)∼)∗M on

X ×Y T (which is the coherent quotient of ((y ◦ gr)∼)∗M by the zero sheaf, and is flat

over T ). This is precisely gsT (r), thus s is a G-morphism.

Theorem 2.16. Let S be a scheme and G a flat group scheme over S of finite type. For

any quintuplet (X,Y, f,M, U), where

X is a G-scheme,

Y is a noetherian G-scheme,

f is a projective G-morphism X → Y of finite type,

M is a coherent G-sheaf on X, and

U is a G-stable open set in Y such that M|U is flat,

there is a G-flattening Ỹ → Y of M with respect to f . If Y is integral, there is a

G-flattening Ỹ → Y of M with Ỹ integral.

Proof. The sheaf M|U is the pullback of M on f−1(U) = U ×Y X by the G-embedding

U → Y , and so by Lemma 2.15 it induces a G-morphism v : U → Q over Y . Let

Ỹ be the scheme-theoretic image of v, which is a G-stable closed subscheme of Q, and

let w : U → Ỹ be the induced G-morphism, and s : Ỹ ↪→ Q the associated closed

G-embedding. Write u : Ỹ → Y for the structure morphism.

U

Ỹ

Q

Y

......................................................................................... .........
...

w
........................................................................................................................................................................................................... ............

v

............
............
............
............
............
......................
............

............
...

s...................................................................................................................................................................... .......
.....

.......

.........

...............................................................
.....
.......
.....

...................................................................................................................................................................
.....
............

πu

We claim that u is a G-flattening of M. Since Y is noetherian, U has finitely many

irreducible components, and the same holds for its image Ỹ . Therefore Ỹ lies in finitely

many Qi in the decomposition of Q, so that u : Ỹ → Y is projective. If in addition Y
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is integral, there is only one irreducible component, and so Ỹ is integral. Furthermore,

u is a G-morphism since it is the composition π ◦ s. The composition u ◦ w is the open

G-embedding U ↪→ Y , hence w is also an open G-embedding. Let Ũ = w(U), which is

a G-stable open set in Ỹ . The structure morphism u : Ỹ → Y is birational, restricting

to an isomorphism Ũ ∼−→ U . In summary, u is a projective birational G-morphism, and

it restricts to an isomorphism on G-stable open sets Ũ ∼−→ U . If Y is integral, we may

further assume that Ỹ is integral.

We show that the pure transform of M is a G-sheaf that is flat over Ỹ . It is a

G-sheaf from Proposition 2.12. The morphism s : Ỹ ↪→ Q is an element of QY (Ỹ ) =

QuotM,X,Y (Ỹ ) and it corresponds to a quotient sheaf P = M̃/Ñ on X̃ = X ×Y Ỹ , where

M̃ = ũ∗M, that is coherent and flat over Ỹ :

X̃

Ỹ Y

X
..............................................................................
.....
.......
.....

f̃

........................................................................................................................................................................................................... ............
ũ

........................................................................................................................................................................................................... ............
u

..............................................................................
.....
.......
.....

f

We show that P is the pure transform of M.

The morphism w : U ↪→ Ỹ (over Y ) induces a map QY (Ỹ ) → QY (U). In terms of

elements of the set QuotM,X,Y (Ỹ ), this map sends a coherent quotient of the pullback of

M on X ×Y Ỹ that is flat over Ỹ to its pullback on f−1(U), which is a coherent quotient

of M|U that is flat over U :

f−1(U)

U

X ×Y Ỹ

Ỹ Y

X......................................................................................................................................... ......................
...... w̃

..............................................................................
.....
.......
.....

f |f−1(U)

................................................................................................................................................................................................... ......................
...... w

..............................................................................
.....
.......
.....

f

........................................................................................................................................................................... ............

..............................................................................
.....
.......
.....

........................................................................................................................................................................................................... ............

Thus the image of s in QY (U), which is w◦s = v, corresponds to w̃∗P (which is a coherent

quotient of M|U flat over U). It follows that w̃∗P = M|U . As an open immersion w is

flat, hence

w̃∗P = w̃∗M̃/w̃∗Ñ = (w̃∗ũ∗M)/w̃∗Ñ = M|U/w̃∗Ñ.
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Thus M|U = M|U/w̃∗Ñ and we deduce that w̃∗Ñ is the zero sheaf. Taking the pullback

of w̃∗Ñ by the isomorphism ũ|
f̃−1(Ũ)

: f̃−1(Ũ) ∼−→ f−1(U), we see that Ñ|
Ũ

= 0, i.e. Ñ

vanishes on f̃−1(Ũ):

f̃−1(Ũ)

Ũ U

f−1(U)

Ỹ

X̃
..............................................................................
.....
.......
.....

f̃ |
f̃−1(Ũ)

...................................................................................................................................................... ............

ũ|
f̃−1(Ũ)

........................................................................................................................................................................................................... ............
u|
Ũ

..............................................................................
.....
.......
.....

f |f−1(U)

......................................................................................................................................................................... ......................
...... w̃

................................................................................................................................................................................................... ......................
...... w

..............................................................................
.....
.......
.....

f̃

The associated points of Ỹ are contained in Ũ . Indeed, assume there is P ∈ Ass(Ỹ )

with P 6∈ Ũ . Pick some affine open set containing P , say Ṽ = SpecA, and let p ⊂ A be

the prime ideal associated to P . It is an associated prime of A, that is p = Ann(a) for

some (non-zero) a ∈ A. The support of a is the closure of p (in Ṽ ), which is V (p):

q ∈ Supp a ⇔ a 6= 0 in Aq ⇔ q ⊇ Ann (a) ⇔ q ∈ V (p).

Since P ∈ Ỹ − Ũ , V (p) is contained in Ỹ − Ũ , and so a ∈ Γ(Ṽ ,O
Ỹ

) is a non-zero section

supported outside of Ũ . In particular, the subsheaf of O
Ỹ

consisting of sections with

support on Ỹ − Ũ is not empty, and it corresponds to a closed subscheme Ỹ ′ ⊂ Ỹ ⊆ Q

(strict inclusion) containing U . This violates the minimality of the scheme-theoretic

image Ỹ .

Due to the flatness of P, the associated points of P map to associated points of

Ỹ [EGAIV, Th. 3.3.1]. We deduce Ass(P) ⊆ f̃−1(Ũ), and Lemma 2.3 implies that P,

which is flat over Ỹ , is the pure transform of M. This completes the proof.

From now on we assume that G is flat and of finite type. Let Z ⊆ X be a G-stable

closed subscheme, and IZ the associated G-sheaf of ideals on X. In this context, U will be

a G-stable open set in Y such that the restriction f |Y : Z → Y , which is a G-morphism,

is flat over U . Write Z̃ for the pure transform of Z, and I
Z̃

for the associated sheaf of

ideals on X̃.

Proposition 2.17. The pure transform of Z (Def. 2.7) is a G-stable closed subscheme

of X̃.
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Proof. The quotient OX/IZ is a G-sheaf, and by Proposition 2.12 so is its pure transform,

which is O
X̃
/I
Z̃

(Lem. 2.9). Since O
X̃
/I
Z̃

is a G-sheaf, Z̃ is a G-stable closed subscheme

of X̃.

Definition 2.18. The projective birational G-morphism u : Ỹ → Y , that restricts to an

isomorphism on G-stable open dense sets Ũ ∼−→ U , is called an equivariant flattening (or

a G-flattening) of Z with respect to (f, U), if Z̃ is G-stable and f̃ |
Ỹ

is flat over Ỹ .

Theorem 2.19. Let S be a scheme and G a flat group scheme over S of finite type. For

any quintuplet (X,Y, f, Z, U), where

X is a G-scheme,

Y is a noetherian G-scheme,

f is a projective G-morphism X → Y of finite type,

Z is a G-stable closed subscheme of X, and

U is a G-stable open set in Y such that f |Y is flat over U ,

there is a G-flattening Ỹ → Y of Z with respect to f . If Y is integral, there is a

G-flattening Ỹ → Y of Z with Ỹ integral.

Proof. The proof is the same with the one for the non-equivariant case; use Theorem 2.16

instead of 2.6, and Proposition 2.17 to get that Z̃ is G-stable.

2.3 Flattening of the Multiplication Map

In this section we specialize the result of §2.2 to the case f is the multiplication map

G×S X → X of a G-scheme X, and M is the pullback of a (not necessarily equivariant)

coherent sheaf on X by the second projection of G×S X.

Let S be a scheme and G a surjective flat group scheme over S of finite type. All

schemes and morphisms considered are over S. Let X be a noetherian G-scheme of finite

type, and write

µ : G×S X → X, (g, x) 7→ gx

21



for the multiplication map of X. Let G act on G ×S X by multiplication on the first

factor, i.e. g(h, x) = (gh, x). Then the multiplication map µ is a G-morphism.

Let M be a coherent sheaf on X. Then the pullback N = pr∗2M is a coherent G-sheaf

on G×S X (even if M is not a G-sheaf). Let U be a G-stable open set such that M|U is

flat, which is equivalent to N|U being flat (since pr2 is faithfully flat).

Let f : X̃ → X be projective birational G-morphism, that restricts to an isomorphism

on G-stable open dense sets Ũ ∼−→ U :

G×S X̃

X̃ X

G×S X
..............................................................................
.....
.......
.....

µ̃

............................................................................................................................................... ............
f̃

........................................................................................................................................................................................................... ............
f

..............................................................................
.....
.......
.....

µ

The morphism µ̃ is the multiplication map of X̃, and f̃ = 1G × f .

Definition 2.20. The projective birational G-morphism f : X̃ → X, that restricts to

an isomorphism on G-stable open dense sets Ũ ∼−→ U , is called a flattening of M with

respect to U , if it is a G-flattening of N with respect to (µ,U).

Theorem 2.21. Let S be a normal noetherian scheme and G a surjective smooth affine

group scheme over S with connected fibers. Then for any triplet (X,M, U), where

X is a noetherian G-scheme,

M is a coherent G-sheaf on X, and

U is a G-stable open set in X such that M|U is flat,

there is a G-flattening X̃ → X of M. If X is integral, there is a G-flattening X̃ → X of

M with X̃ integral.

Proof. Consider the G-isomorphism given by

φ : G×S X ∼−→ G×S X, (g, x) 7→ (g, g−1x).

where G acts on the left copy of G×S X by multiplication on both factors, i.e. g(h, x) =

(gh, gx), and on the right copy of G×SX by multiplication on the left factor. A morphism

22



f : X̃ → X is a G-flattening of N with respect to µ if and only if it is a G-flattening of

φ∗N with respect to pr2 = µ ◦ φ. Note that when G acts on both factors of G×S X, pr2

is a G-morphism.

Let G act on itself by left multiplication. From [Su2, Thm. 4.9] there is an equivariant

compactification G ↪→ G′ of G (Def. 2.1) in a projective scheme G′. Then G ×S X is a

G-stable open subset of G′ ×S X. The G-sheaf φ∗N extends to a coherent G-sheaf P on

G′×SX such that P|G×SX = φ∗N: the pushforward of φ∗N on G′×SX is a quasi-coherent

G-sheaf and can be written as the union (i.e. the direct limit) of its coherent G-subsheaves

that restrict to φ∗N on G×S X (see [Th, Cor. 2.4], [B, Lem. 1], or [LM, Cor. 15.5]).

The second projection pr′2 : G′ ×S X → X is projective as a base change of G′ → S.

Since M|U is flat, (φ∗N)|U is also flat (with respect to the second projection G×SU → U),

and so is P|U . From Theorem 2.16 there is a G-flattening f : X̃ → X of P:

G′ ×S X̃

X̃ X

G′ ×S X
..............................................................................
.....
.......
.....

p̃r′2

........................................................................................................................................ ............
f̃

........................................................................................................................................................................................................... ............
f

..............................................................................
.....
.......
.....

pr′2

If X is integral, we may assume that X̃ is also integral. Restricting to the G-stable open

set G×S X, we see that f is a G-flattening of P|G×SX = φ∗N with respect to pr2, hence

a G-flattening of N with respect to µ.

Remark 2.22. If S = Spec k for an algebraically closed field k, and G is a linear algebraic

group, we may drop the requirement that G has connected fibers, i.e. is connected. We

use [Su1, Thm. 3] instead of [Su2, Thm. 4.9].

Let Y be a closed subscheme of X (not necessarily G-stable). Write µY : G×SY → X

for the restriction of the multiplication map µ on G ×S Y . We call it the multiplication

map of Y . In this context, U will be a G-stable open set in X such that the morphism

µY is flat over U . Note that G×S Y is a G-stable closed subscheme of G×S X, for the

given G-structure on G×S X. Moreover, any G-stable closed subscheme of G×S X is of
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this form.

Definition 2.23. The pure transform of Y with respect to (f, U) is the scheme-theoretic

closure f−1(Y ∩ U) ⊆ X̃.

Write Ỹ for the pure transform of Y .

Proposition 2.24. The pure transform of G×S Y with respect to (f, U) is G×S Ỹ .

Proof. The pure transform of G×S Y is a G-stable closed subscheme of G×S X̃ (Prop.

2.17), and so of the form G×S Ỹ ′ for a closed subscheme Ỹ ′ ⊆ X̃. It is also the closure

of the following set in G×S X̃:

f̃−1 ((G×S Y ) ∩ (G×S U)) = f̃−1 (G×S (Y ∩ U)) = G×S f−1(Y ∩ U),

which is contained inG×S Ỹ by the definition of Ỹ (since U isG-stable, µ−1(U) = G×SU).

Therefore, there are inclusions:

G×S f−1(Y ∩ U) ⊆ G×S Ỹ ′ ⊆ G×S Ỹ .

Take the images under the second projection G×S X̃ → X̃ and then the closures in X̃,

to get Ỹ ′ = Ỹ .

Definition 2.25. The projective birational G-morphism f : X̃ → X, that restricts to an

isomorphism on G-stable open dense sets Ũ ↪→ U , is called an equivariant flattening (or

a G-flattening) of Y with respect to U , if it is a G-flattening of G×S Z with respect to

(µ,U).

Theorem 2.26. Let S be a normal noetherian scheme and G a surjective smooth affine

group scheme over S with connected fibers. For any triplet (X,Y, U), where

X is a noetherian G-scheme,

Y is a closed subscheme of X, and

U is a G-stable open set in X such that µY is flat over U ,

there is a G-flattening X̃ → X of Y . If X is integral, there is a G-flattening X̃ → X of

Y with X̃ integral.
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Proof. Consider the coherent G-sheaf OG×SX/IG×SY = pr∗2(OX/IY ). Flatness of µY over

U is equivalent to flatness of (OG×SX/IG×SY )|U , and so of (OX/IY )|U . Apply Theorem

2.26 to get a flattening f : X̃ → X of OX/IY :

G×S X̃

X̃ X

G×S X
..............................................................................
.....
.......
.....

µ̃

............................................................................................................................................... ............
f̃

........................................................................................................................................................................................................... ............
f

..............................................................................
.....
.......
.....

µ

If X is integral, we may assume that X̃ is also integral. By definition, this is a G-flattening

of OG×SX/IG×SY with respect to µ. Flatness of the pure transform of OG×SX/IG×SY ,

which is O
G×SX̃

/I
G×S Ỹ

by Lemma 2.9 and Proposition 2.24, is equivalent to flatness of

µ̃
Ỹ

: G×S Ỹ → X̃, where Ỹ is the pure transform of Y , and G×S Ỹ the one of G×S Y .

Thus f is a G-flattening of G×S Y with respect to (µ,U), that is a flattening of Y .

2.4 Tropical Compactifications

Let S be a scheme and G a flat group scheme over S of finite type. All schemes

and morphisms considered are over S. Let U be a noetherian G-scheme. We consider

open dense G-embeddings U ↪→ X for a variable noetherian G-scheme X. For such an

embedding, U is viewed as a G-stable open dense subset of X. Write µ : G×SX → X for

the multiplication map of X. Let Y ⊆ U be a closed subscheme, typically not G-stable.

Definition 2.27. The scheme-theoretic closure Y ⊆ X is called a tropical compactifica-

tion of Y if Y is proper, and the multiplication map

µY : G×S Y → X, (g, y) 7→ gy

is faithfully flat.

We say that U is geometrically homogeneous if for any algebraically closed field k,

and any morphism Spec k → S, the geometric fiber Uk = U ×S Spec k is a homogeneous

space, i.e. the action of Gk = G×S Spec k on it is transitive.
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Definition 2.28. We say that the scheme U is homogeneous if:

(i) it is geometrically homogeneous,

(ii) it is flat and of finite type, and

(iii) the fibers of the morphism

ψ : G×S U → U ×S U, (g, u) 7→ (gu, u)

are reduced, of the same dimension.

Remark 2.29. If S = Spec k for some algebraically closed field k, and U is a homoge-

neous space, then U is a homogeneous scheme over k. Indeed, it is certainly geometrically

homogeneous, flat and of finite type over k. The fibers of the morphism ψ are the stabi-

lizers of the action of G, which are all isomorphic to the subvariety H ⊆ G, hence reduced

and of the same dimension.

Lemma 2.30. If S is normal and noetherian, G is smooth, and U is homogeneous, then

the morphism ψ in Definition 2.28 is flat.

Proof. The scheme U is smooth over S. Indeed, it is flat and of finite type, and geometric

fibers are homogeneous spaces, hence smooth. The first projection G×SU → G is smooth

as a base change of U → S, so that its composition with the structure morphism G→ S,

namely the structure morphism G ×S U → S, is also smooth. In particular, it is a

normal morphism (in the sense of [EGAIV, Def. 6.8.1]). Since S is normal, so is G×S U

(see [EGAIV, Prop. 6.14.1]). Therefore G×SU is a disjoint union of integral schemes. For

a similar reason, U×SU → S is also smooth and U×SU normal. Applying [HKT, Lemma

10.12] on each component of G×S U shows that ψ is flat.

Theorem 2.31. Let S be a normal noetherian scheme and G a surjective smooth affine

group scheme over S with connected fibers. For any pair (Y,U), where
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U is a homogeneous scheme that admits an equivariant

compactification in a noetherian scheme (Def. 2.1), and

Y is a closed subscheme of U that is flat over S, and is such that

µ(G×S Y ) = U ,

there is a tropical compactification Y ⊆ X. If U admits an equivariant compactification

in an integral noetherian scheme, there is a tropical compactification Y ⊆ X in some

integral noetherian scheme X.

Proof. The multiplication map µY : G ×S Y → U is flat. Indeed, since Y → S and

G×S U → U ×S U are flat (Lem. 2.30), so are the base changes

G×S Y

U ×S Y U ×S U

G×S U
..............................................................................
.....
.......
.....

.......................................................................................................................................... ......................
......

.......................................................................................................................................... ......................
......

..............................................................................
.....
.......
.....

U ×S Y

U S

Y
..............................................................................
.....
.......
.....

.............................................................................................................................................................................. ............

........................................................................................................................................................................................................... ............

..............................................................................
.....
.......
.....

The map G×S Y → U ×S Y is given by (g, y) 7→ (gy, y), while U ×S Y → U is (u, y) 7→ u.

Their composition, which is flat, is µY .

Let U ↪→ X be a an equivariant compactification of U with X noetherian, and

let Y ⊆ X be the closure of Y . Applying Proposition 2.26 on (X,Y , U), we get a

flattening of Y , that is a projective birational G-morphism f : X̃ → X, that restricts

to an isomorphism on G-stable open dense sets Ũ ∼−→ U , such that the multiplication

map µ̃
Ỹ

: G ×S Ỹ → X̃ is flat, where Ỹ is the pure transform of Y , i.e. the closure of

f−1(Y ∩ U) = f−1(Y ) in X̃. If X is integral, we may assume that X̃ is also integral.

Since f is projective and X proper over S, X̃ is also proper, and so is Ỹ . We identify

Ũ ∼= U via f , and we view X̃ as a noetherian (integral) G-scheme containing U as a

G-stable open dense set, and Ỹ as the closure of Y in X̃.

A morphism is faithfully flat if and only if it is flat and surjective. Since µ̃
Ỹ

: G×S Ỹ →

X̃ is flat, the image µ̃
Ỹ

(G ×S Ỹ ) is open in X̃. If µ̃
Ỹ

is not surjective, replace X̃ by

µ̃(G×S Ỹ ), which contains µ̃(G×S Y ) = µ(G×S Y ) = U . Note that, after this change,

X̃ is not necessarily proper. Then Ỹ ⊆ X̃ is a tropical compactification of Y . If X is
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integral, so is X̃.

Corollary 2.32. Let S = Spec k for an algebraically closed field, and let G be a linear

algebraic group over k. For any pair (Y, U), where

U is a homogeneous space, and

Y is a closed subvariety of U ,

there is a tropical compactification Y ⊆ X.

Proof. From Remark 2.29 we know that U is a homogeneous scheme, and it is a smooth

variety, hence normal, so it admits an equivariant compactification (see [Su1, Thm. 3]).

Clearly µ(G × Y ) = U . Repeat the proof of Theorem 2.31 using Remark 2.22 when

applying Proposition 2.26, to ignore the condition on G regarding connectedness.

The existence of an equivariant compactification of U is not a strong condition. Indeed:

Proposition 2.33. [Su2, Thm. 4.13] Let S be a normal noetherian scheme and G a

surjective smooth affine group scheme over S with connected fibers. If U is a G-scheme

that satisfies the following:

(i) U is flat and of finite type,

(ii) for any closed point P ∈ S, the fiber UP is geometrically normal, and

(iii) for any point P ∈ S of codimension 1, i.e. such that its closure is a subscheme of

codimension 1, the fiber UP is geometrically integral,

then U admits an equivariant compactification.

Our discussion so far guarantees the existence of a tropical compactification for a

closed subscheme Y of a homogeneous scheme U , under certain conditions on S, G, U , and

Y . Having constructed one, we can get more tropical compactifications by appropriate

birational modifications (on integral noetherian ambient G-schemes X), as shown in the
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following proposition. Therefore, we can partially order tropical compactifications under

the relation:

Ỹ � Y if there is a proper birational G-morphism X̃ → X

of integral noetherian G-schemes containing U as

an open subset, that restricts to the identity on U.

This is an analog of Proposition 2.5 in [Te] for the toric case. In the toric case, this

ordering has a combinatorial meaning: we can get more tropical compactifications by

refining the fan of the corresponding toric variety. We will see that the same holds for

tropical compactifications in spherical varieties.

Proposition 2.34. Let S be a scheme, G a surjective flat group scheme over S of finite

type, and U a noetherian G-scheme. Let Y ⊆ X be a tropical compactification of Y , and

f : X̃ → X a proper birational G-morphism, with X̃ an integral G-scheme, that restricts

to an isomorphism on G-stable open dense sets Ũ ∼−→ U . Let Ỹ be the pure transform of

Y . If we identify Ũ ∼= U via f , Ỹ is a tropical compactification of Y in X̃, and is equal

to f−1(Y ).

Proof. Let µ : G ×S X → X be the multiplication map of X. Consider the coherent

sheaves M = OX/IY on X and N = pr∗2M = OG×SX/IG×SY
on G×SX. Faithful flatness

of the multiplication map µY is equivalent to faithful flatness of N with respect to µ.

The pure transform of N is f̃∗N = O
G×SX̃

/I
G×S Ỹ

(Prop. 2.4, 2.24, and Lem. 2.9),

which is faithfully flat. Faithful flatness of this sheaf is equivalent to faithful flatness of

µ̃ : G ×S Ỹ → X̃. Furthermore, Ỹ = f−1(Y ) (Cor. 2.10), and so it is proper since f is.

Thus Ỹ ⊆ X̃ is a tropical compactification.

Proposition 2.35. Let S be a scheme and G a group scheme normal over S (in the

sense of [EGAIV, Def. 6.8.1]). Let φ : X̂ → X be the normalization of X. Then X̂ has a

natural structure of a G-scheme, with which φ is a G-morphism.

Proof. The fiber product G×S X̂ is normal (see [EGAIV, Prop. 6.14.1]). The composition

µ ◦ (1G × φ) is a dominant morphism G ×S X̂ → X, and by the universal property of
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normalization, there is a unique morphism µ̂ : G ×S X̂ → X̂ that makes the following

diagram commute:
X̂

G×S X̂ X

......

......

......

......

......

......

......

......

......

............

............

µ̂

.................................................................................................................................................................................................................................................................... .........
...

φ

..................................................................................................................................................................................................................... ............

µ ◦ (1G × φ)

Showing that µ̂ satisfies the properties of a multiplication map is easy and omitted.

Commutativity of the latter diagram is equivalent to φ being a G-morphism.

Corollary 2.36. Let k be an algebraically closed field, G be a linear algebraic group

over k, and U a homogeneous space. Then for any closed subvariety Y ⊆ U , a tropical

compactification Y ⊆ X, with X a normal variety, exists.

Proof. The statement follows from Corollary 2.32, Proposition 2.34, and Lemma 2.35.

The normalization of any variety is a projective birational morphism. Since U is a homo-

geneous space, it is normal and so the normalization of an equivariant compactification

X of U restricts to an isomorphism on U .

30



C H A P T E R 3

SPHERICAL TROPICALIZATION

In this chapter we introduce tropicalization for subvarieties of spherical homogeneous

spaces. In §3.1 we review some results on spherical varieties regarding their classification.

All of the results are due to D. Luna and T. Vust, when working over an algebraically

closed field of characteristic zero. The extension to positive characteristic is due to F.

Knop. More details and proofs of the statements can be found in [LV], or in any survey

on spherical varieties, for instance [Ti], or the more elementary [K], which also contains

the case of positive characteristic. In §3.2 we introduce tropicalization for subvarieties of

spherical homogeneous spaces.

Let k, K, K, and ν be as in §1. Let G be a connected reductive group over k. Fix a

Borel subgroup B ⊆ G. Let G/H be a spherical homogeneous space for some subgroup

H ⊆ G. Recall that spherical means the action of B on G/H has an open (dense) orbit.

Definition 3.1. A spherical embedding G/H ↪→ X is an open G-embedding of G/H in

a normal variety X. The G-variety X is called a spherical variety.

3.1 Spherical Varieties

In this section we explain the classification of spherical varieties for a homogeneous

space G/H in terms of colored fans. First we introduce the lattice where these fans live.

Then we explain how valuations correspond to points in the lattice. We define colored

fans, and finally we explain their correspondence with spherical varieties.
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Let X = Hom(B, k×) be the group of characters of B. Let k(G/H)(B) be the multi-

plicative group of B-semi-invariant rational functions on G/H:

{
f ∈ k(G/H)× : there is χ ∈ X such that gf = χ(g)f for all g ∈ B

}
,

where G and B act on k(G/H) by left translations, i.e. if g ∈ G and f ∈ k(G/H),

gf(x) = f(g−1x) for all x such that g−1x is in the domain of f . There is a homomorphism

k(G/H)(B) → X, f 7→ χf

where χf : B → k× is the character associated to f . The kernel of this map is the set

of constant (non-zero) functions, hence k(G/H)(B)/k× injects in X. Denote by Λ its

image. It is a finitely generated free abelian subgroup of X. Let Q = Hom(Λ,Q), which

is isomorphic to Λ∨ ⊗Z Q, where Λ∨ is the dual lattice of Λ.

Any Q-valuation of k(G/H) (trivial on k×) can be restricted to B-semi-invariant

functions, and then induce a homomorphism k(G/H)(B)/k× → Q, i.e. an element of Q.

Thus there is a map

% : {Q-valuations of k(G/H)} → Q.

Denote by V the set of G-invariant valuations of k(G/H), i.e. valuations v : k(G/H)× →

Q such that v(gf) = v(f) for all g ∈ G. Then % restricts to an injection on V. We identify

V with its image in Q, so that a G-invariant valuation can be viewed as an element in

Q. As a subset of Q, V is a convex cone (but not necessarily strictly convex), called the

valuation cone. We will also view % as a map from the set of prime divisors of G/H to

Q, sending a prime divisor D to %(vD), where vD is the valuation induced by D.

Let D be the set of B-stable prime divisors of G/H. It is a finite set, since B has an

open dense orbit in G/H. The elements of D are called colors.

Definition 3.2. A (strictly convex ) colored cone is a pair (C,F), where C ⊆ Q and

F ⊆ D, that satisfy the following:

(i) C is a strictly convex cone.
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(ii) C is generated by %(F) and finitely many elements of V.

(iii) The relative interior of C intersects V non-trivially.

(iv) The set %(F) does not contain 0.

A face of a colored cone (C,F) is a pair (C0,F0), where C0 is a face of C that intersects

V non-trivially, and F0 = F ∩ %−1(C0).

Definition 3.3. A colored fan F is a (non-empty) collection of colored cones (C,F) such

that:

(i) Every face of a cone in F is also in F.

(ii) Any element v ∈ V lies in the interior of at most one cone.

A spherical variety is called simple if it contains a unique closedG-orbit. Any spherical

variety admits a covering by finitely many simple spherical open subvarieties.

Theorem 3.4. There is a bijection: Spherical embeddings

G/H → X

↔
 Colored

fans in Q


that restricts to:  Simple spherical

embeddings G/H → X

↔
 Colored

cones in Q


We describe the association between simple spherical varieties and colored cones; the

extension to arbitrary spherical varieties and colored fans is straightforward. Let X be

a simple spherical variety for the spherical homogeneous space G/H, with unique closed

G-orbit Y . Let B ⊆ V be the set of G-stable prime divisors containing the closed orbit

Y , and let F be the set of B-stable prime divisors containing Y that are not G-stable

(equivalently, the ones that intersect G/H). We identify any D ∈ F with the intersection

D ∩ G/H, which is a B-stable prime divisor of G/H, i.e. a color. Thus we can view F
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as a subset of D. Let C be the cone in Q generated by B and %(F). Then (C,F) is the

colored cone associated to X.

The support of a colored fan F is

SuppF =
(⋃

(C,F)∈F C
)
∩ V.

A spherical variety is complete if and only if the support of the associated fan is all of V.

Definition 3.5. An equivariant compactification of a spherical variety X is a complete

spherical variety X ′ (for the same homogeneous space G/H) with an open dense G-

embedding X ↪→ X ′. Given an equivariant compactification X ↪→ X ′, we view X as a

G-stable open subset of X ′.

Definition 3.6. A spherical variety X is called toroidal if the associated colored fan has

no colors, i.e. if (C,F) is a cone of the fan, then F = ∅.

Given a spherical variety, one can always find an equivariant compactification of it by

completing the colored fan, as is done in the case of toric varieties. If the given variety

is toroidal, one may assume that the equivariant compactification occurs in a toroidal

spherical variety. Any spherical variety X is dominated by a toroidal one, i.e. there is a

surjective proper birational G-morphism X ′ � X, that restricts to the identity on G/H,

with X ′ a toroidal spherical variety. If X is a toroidal spherical variety associated to a

fan F, we will write C instead of (C,∅) for a colored cone in F.

Example 3.7. Let G = SL2 with Borel subgroup B consisting of the upper triangular

matrices, and consider the homogeneous space G/H = A2 − {0}, where 0 is the origin,

and the action is given by left multiplication (the elements of A2 − {0} are viewed as

column vectors). Here H is the subgroup

H =


 1 a

0 1

 ∈ SL2 : a ∈ k

 .
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Let gij be coordinates for SL2, and x, y coordinates for A2−{0}. There are two B-orbits,

namely

O =


 x

y

 ∈ A2 | y 6= 0

 , D =


 x

0

 ∈ A2 |x 6= 0

 .

The orbit O is open, while D is closed. In particular A2 − {0} is spherical. Also, D is a

B-stable prime divisor, given by the equation y = 0.

The group of characters of the Borel subgroup X is isomorphic to Z, where n ∈ Z is

identified with

χn : B → k×,

 a b

0 a−1

 7→ an.

The field of rational functions is k(x, y). The B-semi-invariant rational functions of

A2 − {0}, up to multiplication by scalars, are yn for n ∈ Z. The character associated

to yn is χn. Therefore Λ = X, generated by y (or χ = χ1), and Q = Hom(Λ,Q) is

isomorphic to Q, spanned by

χ∗ : Λ→ Q, χ∗(y) = 1.

Consider the valuation v : k(A2 − {0})× → Q that gives the order of vanishing of

a function f ∈ k(A2 − {0})× at the origin, i.e. if f = ynf1(x, y)/ymf2(x, y) with y not

dividing f1 or f2, then

v(f) = n−m.

This is a G-invariant valuation of k(A2−{0}). The valuation −v : k(A2−{0})× → Q that

sends f ∈ k(A2−{0})× to the negative of its total degree, i.e. if f = f1(x, y)/f2(x, y) for

polynomials f1, f2, then

−v(f) = deg f2 − deg f1

(equivalently, −v gives the order of vanishing at the origin), is also G-invariant. Note that

it is not equal to the negative of v in general, but only for B-semi-invariant functions.

Therefore V = Q. Since v(y) = 1, v = χ∗ (as elements in Q) for the choice of basis on Q

we have made. There is only one color, the B-orbit D, so that D = {D}. It measures the
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Table 1: Spherical varieties for the homogeneous space A2 − {0}
Variety G-orbits Colored cones Colored fan

A2 − {0} A2 − {0} (0,∅)
A2 0 (R,D)

Bl0A2 E (R,∅)
P2 − {0} W = 0 (−R,∅)

P2 W = 0, 0 (R,D), (−R,∅)
Bl0 P2 W = 0, E (R,∅), (−R,∅)

order of vanishing of a function on D, which is y = 0. If vD is the associated valuation

on k(A2 − {0}), then clearly vD(y) = 1, hence %(D) = χ∗.

Let R denote the cone in Q generated by χ∗, and −R the one generated by −χ∗.

There are three distinct non-trivial colored cones in Q, and six colored fans. These

fans are listed in Table 1, along with their maximal cones, the corresponding spherical

varieties, and their closed G-orbits. One can see that the cone R adds to A2−{0} “limit

points at the origin,” while −R adds “limit points at infinity.” The colored cone (R,D)

adds a point at the origin, while (R,∅) adds the exceptional divisor of the blowup of the

plane at the origin, denoted E. Note that even though the dimension of any non-trivial

colored fan is 1, the spherical varieties associated to fans with colors have a closed G-

orbit of codimension 2, which is not the case for toroidal spherical embeddings. Also, the

complete spherical varieties, namely P2 and Bl0 P2, are supported on all of V.

Now we demonstrate how to find the fan of a spherical variety. Consider the projective

space P2 with homogeneous coordinates W,X, Y . Let A2 − {0} ↪→ P2 be the embedding

of A2 − {0} in the affine plane W 6= 0 inside P2, so that x = X/W and y = Y/W . The

action of SL2 extends naturally to an action on all of P2: g11 g12

g21 g22

 (W : X : Y ) = (W : g11X + g12Y : g21X + g22Y ),

for any (gij) ∈ SL2, (W : X : Y ) ∈ P2. Thus P2 is a spherical variety.

There are two closed G-orbits, the boundary of the affine plane on P2 and the origin
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0:

Y1 =
{

(0 : X : Y ) ∈ P2 : X,Y ∈ k
}
, Y2 = {(1 : 0 : 0)} .

The orbit Y1 contains “limit points of A2−{0} at infinity,” while Y2 contains a “limit point

at the origin.” Each of them will give a cone in Q. There is a uniqueB-stable prime divisor

containing Y1, namely W = 0, which is G-stable. Let v1 be the valuation associated to

it. The rational function y on A2 − {0} can be written as Y/W in k(P2) = k(A2 − {0}),

so that v1(y) = −1, hence v1 = −χ∗ in Q. The colored cone associated to Y1 is then

(−R, 0). There is a unique B-stable prime divisor containing Y2, which is Y = 0, and

is not G-stable. Its intersection with A2 − {0} is the prime divisor y = 0, i.e. the

color D. Thus, the colored cone associated to Y2 is (R,D). The fan of P2 is then

F = {(0,∅), (R,D), (−R,∅)}.

3.2 Tropicalization of Subvarieties of G/H

In this section we define a tropicalization map from the K-points of G/H to the

valuation cone V. The tropicalization of a subvariety Y ⊆ G/H will then be the image

of Y (K) ⊆ G/H(K).

Any K-point of G/H defines a G-invariant discrete valuation, and moreover, any G-

invariant valuation of G/H is a scalar multiple of a valuation defined by a K-point [LV,

Sect. 4]. Roughly speaking, each K-point defines a “formal curve” in G/H, with a limit

point in a G-stable divisor of some spherical variety for the homogeneous space G/H.

The valuation induced by this K-point measures the order of vanishing of a rational

function along that curve at the limit point. We explain this association.

Let γ : SpecK → G/H be an element in G/H(K). We want to define a discrete

valuation vγ : k(G/H)× → Z. Let f ∈ k(G/H)×. The domain of f may not contain

the image of γ, but due to homogeneity, for most g ∈ G, i.e. for g from an open (dense)

set of G, the one of gf does. Then one can take the pullback γ∗(gf) = (gf) ◦ γ, which
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is an element of K, i.e. a Laurent series in t. The value ν(γ∗(gf)) may depend on the

choice of g, but there is an open set of G for which it is constant, and it increases on

the complement. An element g ∈ G from this open set is referred to as a sufficiently

general element of G. The image vγ(f) is then defined to be ν(γ∗(gf)) for a sufficiently

general g ∈ G. For an arbitrary g ∈ G, for which the domain of gf contains im γ,

ν(γ∗(gf)) ≥ vγ(f). Thus there is a map

val : G/H(K)→ V, γ 7→ vγ .

Any γ : SpecK → G/H factors through Spec k((t1/n)) for some n > 0. Indeed, if

U = SpecA is an affine open set in G/H containing the image of γ, then the restriction

of γ to a morphism SpecK → U is induced by a k-algebra homomorphism γ∗ : A→ K.

If x1, . . . , xm is a set of generators for A (as a k-algebra), the images γ∗(xi) are Puiseux

series and they all lie in some k((1/n)) for some n ≥ 0. It follows that γ∗ factors through

k((t1/n)), so that SpecK → U factors through Spec k((t1/n)), and the same holds for γ.

If γ̃ : Spec k((t̃))→ G/H is the induced morphism, where t̃ = t1/n, we define vγ = vγ̃/n.

Thus we can extend the map val to a surjection

val : G/H(K) � V, γ 7→ vγ ,

Remark 3.8. If vγ ∈ TropY for some γ ∈ G/H(K), then from the construction of

the extension of val on G/H(K) it is immediate that there is some vγ̃ ∈ TropY for

γ̃ ∈ G/H(K) that lies in the same ray in V as vγ , and im γ̃ = im γ.

An alternative way to calculate vγ(f), given γ : SpecK → G/H and f ∈ k(G/H)×,

is the following. Let k(G) be the field of rational functions on G, and let L = k(G)((t))

be the field of Laurent series over k(G). Consider the valuation

ν : L× → Z,
∑
n

cnt
n 7→ min{n : cn 6= 0}

where the coefficients cn are in k(G). Let ψγ = µ ◦ φγ be the morphism SpecL→ G/H,
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with φγ induced as in the diagram:

Spec k(G) G

SpecK G/H

SpecL G×G/H G/H
.........
.........
.........
.........
.........
.........
.........
.........
.........
..................
............

....................................................................................................... ........
....

............................................................................................................................................. ............

................................................................................................................................................. ............
γ

.........
.........
.........
.........
.........
.........
.........
.........
.........
..................
............

p1

.................................................................................................... ........
....

p2

.............................................................................. ............
φγ

.................................................................................................................................. ............
µ

where SpecL → Spec k(G) and SpecL → SpecK are the morphism induced by the

inclusions of fields k(G)→ L and K → L, respectively, Spec k(G)→ G is the morphism

that sends the unique point of k(G) to the generic point of G, and µ : G×G/H → G/H

is the multiplication map. The pullback ψ∗γ(f) is an element in L, i.e. a Laurent series

with coefficients in k((G)). Then vγ(f) = ν(ψ∗γ(f)). Roughly speaking, the pullback

ψ∗γ(f) is the function f along the curve defined by γ, permuted by an arbitrary element

of G, which appears as parameters in the coefficients of the series. The extension of this

to K-points of G/H in straightforward.

Now let Y ⊆ G/H be a closed subvariety. The set of K-points of Y is a subset of

G/H(K).

Definition 3.9. The tropicalization of Y is TropY = val(Y (K)).

We will see later that it is enough to find the set val(Y (K)). Multiplying this set by

scalars in Q≥0 gives the rest of TropY .

Example 3.10. Let G = SL2 and G/H = A2 − {0} be as in Example 3.7, and pick

the same basis for Q. We describe the map val in this case and then find all possible

tropicalizations of curves in A2 − {0}.

The K-points of A2 − {0} correspond to homomorphisms of k-algebras k[x, y] → K

such that not both x, y map to zero. Given such γ : SpecK → A2−{0}, write xγ and yγ

for the images of x, y ∈ k[x, y] under the map γ∗ : k[x, y]→ K. They are Puiseux series
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in t. Given (gij) ∈ SL2, we have g11 g12

g21 g22


−1 x

y

 =

 g22x− g12y

−g21x+ g11y


so that the rational function gy is the sum of x and y with some (constant) coefficients.

If g = (gij) is sufficiently general, the terms of −g21x and g11y with the lowest exponents

in t do not cancel, and therefore

vγ(y) = ν(γ∗(gy)) = min {ν(xγ), ν(yγ)} .

Thus val(γ) = cχ∗, where c = min {ν(xγ), ν(yγ)}.

Alternatively, k(G) = k(gij), L =
⋃
n k(gij)((t

1/n)), and the morphism ψγ : SpecL→

A2 − {0} corresponds to the homomorphism of k-algebras:

ψ∗γ : k[x, y]→ L, f(x, y) 7→ f(g · (xγ , yγ)),

where

g · (xγ , yγ) =

 g11 g12

g21 g22


 xγ

yγ

 =

 g11xγ + g12yγ

g21xγ + g22yγ

 .

The pullback ψ∗γ(y) is then g21xγ + g22yγ . In this expression, no term from g21xγ cancels

with a term from g22yγ , since they have distinct coefficients in k(G). Therefore

vγ(y) = ν(ψ∗γ(y)) = min {ν(xγ), ν(yγ)} ,

and as before, val(γ) = cχ∗, where c = min {ν(xγ), ν(yγ)}.

Let C be a curve in A2 − {0} given by an equation

f(x, y) =
∑
n,m

cn,mx
nym = 0.

A K-point γ : SpecK → A2 − {0} factors through C precisely when the kernel of

γ∗ : k[x, y]→ K contains f(x, y), i.e. if f(xγ , yγ) = 0, where xγ = γ∗(x) and yγ = γ∗(y),

as before. Write f(x, y) = f0(x, y) + c, where c = c0,0 is the constant term. If c 6= 0, then

f(xγ , yγ) = 0 implies

min
(n,m)

{nν(xγ) +mν(yγ)} ≤ 0,
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where (n,m) are the pairs of non-negative integers, not both of which are zero, such that

cn,m 6= 0. It is clear that one of ν(xγ) and ν(yγ) has to be non-positive, hence vγ(y) ≤ 0

and val(γ) = cχ∗ with c ≤ 0. It follows that TropC = val(C(K)) is the ray −R, i.e. the

ray generated by −χ∗ in Q:

In case c = 0, there is no restriction on vγ(f), and TropC is all of V = Q:

In other words, the tropicalization of a curve “passing through the origin” is all of V,

while the tropicalization of a curve not passing through it is the ray −R.
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C H A P T E R 4

TROPICAL COMPACTIFICATIONS IN SPHERICAL

VARIETIES

Let k be an algebraically closed field, G a connected reductive group over k, and

G/H a spherical homogeneous space for some closed subgroup H ⊆ G. We use standard

notation on spherical varieties, which was introduced in §3. Let Y ⊆ G/H be a closed

subvariety. If G/H ↪→ X is an open (dense) G-embedding and X is a normal variety, then

X is a spherical variety. Hence any tropical compactification of Y in a normal variety

occurs in a spherical variety. Our goal is to prove Theorem 1.2.

The main tool for the proof of Theorem 1.2 is Proposition 4.5, which is an extension

of Lemma 2.2 (Tevelev’s Lemma) in [Te] from toric to spherical varieties. To prove this,

we first need to show that if v ∈ TropY , then the whole ray of v is in TropY .

Lemma 4.1. If v ∈ TropY , then cv ∈ TropY for any c ∈ Q≥0.

Proof. Let v ∈ TropY , say v = vγ for some γ ∈ Y (K), and pick any c ∈ Q≥0. Consider

the endomorphism of K (as a k-algebra):

φ∗ : K → K, f(t) 7→ f(tc).

This induces a morphism φ : SpecK → SpecK of schemes over k. The composition

γ̃ = γ ◦ φ is a K-point of Y . We claim that vγ̃ , which is in TropY , is equal to cv.

Let f ∈ k(G/H)×, and let g ∈ G be such that the domain of gf contains im γ = im γ̃.

Then γ̃∗(gf)(t) = γ∗(gf)(tc), and hence

ν(γ̃∗(gf)) = c ν(γ∗(gf))
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(here we use that c ≥ 0). Since this is true for any g ∈ G with gf defined on im γ, it

follows that vγ̃(f) = cvγ(f), and hence vγ̃ = cv.

Remark 4.2. From this lemma and Remark 3.8 follows that to find TropY it suffices

to find val(G/H(K)) and then multiply by scalars in Q≥0.

Let R = k[[t]] be the ring of power series over k. It is a discrete valuation ring with

field of fractions K. If γ is a K-point of G/H, and G/H ↪→ X a spherical embedding,

then due to separatedness there is at most one morphism θ : SpecR → X such that the

following diagram commutes:

SpecK

SpecR

X
..............................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
γX

..........
........

..........
........

..........
........

..........
........

..........
........

..........
........

..................
............

θ

where γX is the composition of γ with G/H ↪→ X. If such a morphism θ exist, write

x and ξ for the images of the closed and the generic point of SpecR, respectively. The

point ξ is the image of γX , and is in G/H. The point x is called the limit point of γ in X,

denoted lim γ. It lies in the closure of ξ. We say that lim γ exists in X if the morphism

θ exist. If X → X ′ is a G-morphism of spherical varieties, that fixes G/H, then the

image of the limit point of γ in X (if it exists) is the limit point of γ in X ′. This can

be extended to K-points of G/H, since any morphism SpecK → G/H factors through

Spec k((t1/n)) for some n ∈ Z≥0.

The following lemma, in a more general form, is in [LV, Sect. 4.8], but we include the

proof for completeness. Given a cone C ⊆ V, denote by C◦ its relative interior.

Lemma 4.3. If R ⊆ V is a ray, X the associated toroidal simple spherical variety with

closed G-orbit O, and vγ ∈ R◦ for some γ ∈ G/H(K), then lim γ exists in X and lies in

the closed orbit of X.

Proof. The ray R is generated by some G-invariant discrete valuation vD, associated to

a G-stable prime divisor D ⊂ X containing O. Since X is toroidal and dim C = 1, O is
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of codimension 1, hence D = O. Write vγ = cvD for some c ∈ Q≥0.

Let X ↪→ X ′ be an equivariant compactification (Def. 3.5), with X ′ a toroidal spher-

ical variety. Due to properness of X ′, there is a (unique) morphism θ : SpecR→ X ′ such

that the following diagram commutes:

SpecK

SpecR

X ′
..............................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
γX′

..........
........

..........
........

..........
........

..........
........

..........
........

..........
........

..................
............

θ

Write x̃ and ξ̃ for the closed and the generic point of SpecR, respectively, and let x = θ(x̃)

and ξ = θ(ξ̃) be their images in X ′.

Consider the induced map on stalks:

θ∗x : OX′,x → OSpecR,x̃.

We can view any f ∈ OX′,x as a rational function on X ′, i.e. an element in k(X ′) =

k(G/H), that is defined on im γ = im γX′ , in which case

γ∗(f) = γ∗X′(f) = θ∗x(f).

Let U = SpecA be an affine open set in X ′ that contains x. Let p ⊂ A be the prime

ideal associated to x. We view θ∗x as a map Ap → R via the natural identifications. It

is a local homomorphism: if f ∈ Ap, then θ∗x(f) is a unit, i.e. a series in R = k[[t]] with

a non-zero constant term, precisely when f is a unit, hence ν(γ∗(f)) = 0 if f does not

vanish at x, and ν(γ∗(f)) > 0 otherwise.

We show that x ∈ O. Assume the opposite is true. Write O′ for the closure of O in

X ′. We consider three different cases: (i) x ∈ G/H, (ii) x 6∈ G/H and x 6∈ O′, and (iii)

x ∈ O′ −O.

(i) Pick an affine open set in X ′ that contains x and intersects O′, say U = SpecA.

Such an affine open set always exists: if U0 ⊆ X ′ is an affine open set containing a point of

O′, then for an appropriate g ∈ G, U = gU0 is an affine open set that contains x and still
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intersects D (also because x and D are both in the simple spherical variety X, which is

quasi-projective). Let p ⊂ A be the prime ideal associated to x, and write O′∩U = V (a)

for some ideal a ⊂ A.

Since x 6∈ O′, p 6⊇ a, say f ∈ a but f 6∈ p. We view f ∈ A as a rational function

on X ′. It is a unit in Ap, hence ν(γ∗(f)) = 0, which implies vγ(f) ≤ 0. On the other

hand, since f ∈ a, f vanishes on O′ ∩ U and so cvD(f) > 0, as vD measures the order of

vanishing on O′ ∩ U .

(ii) Since x is in the boundary X ′ − G/H but not in O′, it lies in a G-stable prime

divisor D′ which is distinct from D. The associated G-invariant non-zero valuation vD′

is different from vD = cvγ (and not a positive multiple of it). Thus for some rational

function f ∈ k(G/H)×, vD′(f) > 0 but vγ(f) = 0, if vD and vD′ are not collinear in V,

or vγ(f) < 0, if they are.

Pick an affine open set U = SpecA containing x, and hence intersecting D′, and let

p be the prime ideal associated to x. Write D′ ∩ U = V (a) for some ideal a ⊂ A. Since

x ∈ D′, p ⊇ a. If f ∈ A is such that vD′(f) > 0, then f vanishes on D′ ∩ U , i.e. f ∈ a,

and hence f ∈ p. Then f is not a unit in Ap, so that ν(γ∗(f)) > 0. For any g from an

open set of G, gf is a rational function on X ′ vanishing at x. Indeed, if Ox ⊆ D′ is the

G-orbit where x is in, then Ox ∩ U is a non-empty open set, since it contains x, and f

vanishes on it. Then, for g from an open set of G, the intersection of the domain of gf

with Ox is an open set containing x, and gf vanishes at it. Thus gf is not a unit in

OX′,x, and as before ν(γ∗(gf)) > 0. It follows that vγ(f) > 0. Since this holds for any

regular function around x, there is no rational function f on X ′ such that vD′(f) > 0 but

vγ(f) ≤ 0.

(iii) If x ∈ O′ − O, then in particular O′ − O is non-empty and O′ strictly contains

O. Also, O is open dense in O′, hence O′ − O is a closed set in X ′, which is G-stable.

Let U = SpecA be an affine open set containing x, and so intersecting O′ and O, and let

p ⊂ A be the prime ideal associated to x. Write O′ ∩U = V (a) and (O′−O)∩U = V (b)
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(with a, b radical). Since O′ − O ⊂ O′, a ⊂ b (strict inclusion). Also, since x ∈ O′ − O,

p ⊇ b.

Let f ∈ A be such that f ∈ b but f 6∈ a, and so f ∈ p. We view f as a rational

function on X ′. In particular f does not vanish on O′ ∩ U , hence cvD(f) = 0. On the

other hand, f is not a unit in Ap, hence ν(γ∗f) > 0. Since O′−O is G-stable, f vanishes

on (O′ − O) ∩ U , and x ∈ O′ − O, like in (ii), for any g from an open set of G, gf is a

rational function on X ′ such that ν(γ∗(gf)) > 0. We deduce that vγ(f) > 0, which is a

contradiction.

Since x ∈ O, in particular x ∈ X and hence im θ ⊆ X. Thus θ factors through X;

abusing notation, write θ : SpecR→ X. We have a commutative diagram:

SpecK

SpecR

X
..............................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
γX

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..................
............

θ

It follows that lim γ exists in X and is equal to x, which is in O.

Lemma 4.4. If C ⊆ V is a (non-trivial) cone, X the associated toroidal simple spherical

variety with closed G-orbit O, and x ∈ O, then there is a γ ∈ G/H(K) such that lim γ = x

in X and vγ ∈ C◦. Moreover, if Y ⊆ G/H is a closed subvariety, Y ⊆ X its closure, and

the point x ∈ O lies in Y , we may assume that γ ∈ Y (K).

Proof. Note that the first statement is a special case of the second for Y = G/H, so we

only need to prove the second one. Pick an affine open set U = SpecA containing x, and

let p ⊂ A be the prime ideal associated to x. Write Y ∩ U = V (a) for some ideal a ⊆ A.

Then the local ring OY ,x = (A/a)p/a.

Let B be a discrete valuation ring that dominates (A/a)p/a, i.e. (A/a)p/a is contained

in B and mB ∩ (A/a)p/a = m(A/a)p/a , where m(A/a)p/a and mB are the maximal ideals.

The completion B̂ of B is isomorphic to R = k[[t]], and we identify it with this ring (this

follows from Cohen’s Structure Theorem, see [E, Prop. 10.16]). The maps φ∗ : A/a ↪→ K
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and ψ∗ : A/a ↪→ B̂ that come from compositions of the following inclusions

A/a ↪→ (A/a)p/a ↪→ B ↪→ B̂ ↪→ K

give rise to morphisms φ : SpecK → Y and ψ : Spec B̂ → Y of schemes over k, such that

φ is the composition of the natural morphism SpecK → Spec B̂ with ψ. The image of φ

is actually in Y : since φ∗ is an inclusion, the preimage of the zero ideal in K is the zero

ideal in A/a, hence a generic point, which must be in the open set Y ∩U ⊆ Y ∩U . Thus

φ factors through Y and we have a K-point of Y , say γ ∈ Y (K):

Y

YSpecK .................................................................................................................................................................................. ............

φ

........
........
........

........
................
............γ .................................................................................. .........

...

........

.......

Furthermore, from the construction of B, (ψ∗)−1(m
B̂

) = p/a, so that the closed point of

Spec B̂ maps to x in Y via ψ.

The composition of φ with Y ↪→ X is the same as γX . Let θ be the composition of ψ

with Y ↪→ X. We have a commutative diagram:

SpecK

Spec B̂

X
..............................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
γX

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..................
............

θ

It follows that lim γ exists and is equal to x.

Now we show that vγ ∈ C◦. Let C0 be the ray generated by vγ in V, and let X0 be

the associated toroidal simple spherical variety, with closed G-orbit O0. Write Y0 ⊆ X0

for the closure of Y . If C0 is in C◦ then we are done. Assume not. We consider two cases,

(i) C0 is not contained in C, and (ii) C0 is in C − C◦.

(i) Let F be a fan (without colors) that contains both C0 and C, and let X ′ be

the associated toroidal spherical variety. There are open G-embeddings X0 ↪→ X ′ and

X ↪→ X ′ that fix G/H. We treat X0 and X as G-stable open subsets of X ′. Since the

cones C0 and C don’t intersect (except at the origin), the orbit O0 is disjoint from the
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orbit O in X ′. Since vγ ∈ C◦0 , from Lemma 4.3 we know that lim γ exists in X0 and is

in O0. Then clearly lim γ exists in X ′ and is the same point in O0. But this cannot be

true, because lim γ = x as shown above, which is in O.

(ii) There is a birational G-morphism X0 → X that fixes G/H. Since C0 is not

contained in C◦, the closed orbit O0 of X0 does not map to the closed orbit O of X, but

to an orbit of smaller codimension. From Lemma 4.3, lim γ exists in X0 and is in O0.

The image of lim γ under X0 → X, which is the limit point of γ in X, is a point in the

boundary of X that is not in O. But by construction, the limit point of γ in X lies in

the orbit O.

Proposition 4.5. Let X be a simple toroidal spherical variety with closed G-orbit O,

and let C be the associated cone in Q. Then TropY intersects the relative interior of C

if and only if the closure Y ⊆ X intersects the closed orbit O.

Proof. First assume that TropY ∩C◦ 6= ∅, and let v ∈ TropY ∩C◦. From Remark 3.8 we

may assume that v = vγ with γ ∈ Y (K). Let X0 be the toroidal simple spherical variety

associated to C0, O0 the closed G-orbit of X0, and Y0 ⊆ X0 the closure of Y . Since C0 is

in C◦, there is a G-morphism f : X0 → X that fixes G/H and sends O0 to O. Also, f

maps Y0 to Y . Therefore, if x is a point in Y0 ∩O0, then f(x) ∈ Y ∩O, hence it suffices

to show that Y0 ∩O0 is non-empty. From Lemma 4.3, the limit point of γ is in O0:

SpecK

SpecR

X0
..............................................................................
.....
.......
.....

.................................................................................................................................................................................. ............
γX0

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..................
............

θ

Since γX0 factors through Y , the image of the generic point of SpecR under θ, say ξ, is

in Y . As lim γ is in the closure of ξ, it is also in the closure Y0. Thus lim γ ∈ Y0 ∩O0 and

we are through.

Now assume that Y ∩ O 6= ∅. Pick x ∈ Y ∩ O. From Lemma 4.4 there is a K-point

γ ∈ Y (K) such that vγ ∈ C◦. Clearly vγ ∈ TropY , and so TropY ∩ C◦ 6= ∅. This

completes the proof.
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The proofs of the following propositions are the same with the ones of Propositions

2.3 and 2.5 in [Te] for the toric case, but they are short and we include them for the sake

of completeness, with the appropriate modifications.

Proposition 4.6. Let X be a toroidal spherical variety, and let F be the associated fan.

Then Y is complete if and only if TropY ⊆ SuppF.

Proof. First assume that Y is complete but TropY is not contained in SuppF. Let

X ↪→ X ′ be an equivariant compactification of X in some toroidal spherical variety X ′,

associated to a fan F′ containing F. Since X ′ is complete, SuppF′ = V, hence there is

a cone C of F′ whose interior does not intersect F and contains a point of TropY . Let

Y ′ be the closure of Y (or of Y ) in X ′. Since Y is complete, Y ′ = Y . Thus Y ′ does not

intersect the boundary X ′−X. This boundary contains the closed G-orbit corresponding

to C, and this contradicts Proposition 4.5.

Now assume that TropY ⊆ SuppF, but Y is not complete. Let X ↪→ X ′, F′, and

Y ′ be as above. Since Y is not complete but Y ′ is, as a closed subvariety of a complete

variety, the inclusion Y ⊂ Y ′ is strict. In particular, Y ′ intersects some G-orbit in X ′−X,

which corresponds to a cone C of F′ whose interior does not intersect F. By Proposition

4.5, C◦ intersects TropY , but this is not the case as the latter is contained in SuppF.

Proposition 4.7. If Y is a tropical compactification of Y in a toroidal spherical variety

X associated to a fan F, then SuppF = TropY .

Proof. Assume that the support of F is not TropY . From Proposition 4.6, SuppF con-

tains TropY . Let v ∈ SuppF be an element not in TropY . Then the entire ray generated

by v is not in TropY (Lem. 4.1). Let F′ be a refinement of F that contains a cone C that

does not intersect TropY (for instance, the ray of v), and let X ′ be the toroidal spherical

variety defined by it.

There is a proper birational G-morphism f : X ′ → X that fixes G/H. The closure

Y ′ ⊆ X ′ of Y , which is the pure transform of Y with respect to f , is a tropical compact-
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ification of Y (Prop. 2.34). The multiplication morphism µ′Y ′ : G× Y ′ → X ′ is faithfully

flat, hence surjective, and so Y ′ intersects every G-orbit of X ′. But from Proposition 4.5

this is not the case for the closed G-orbit associated to the cone C.

Proof of Theorem 1.2. From Corollary 2.36 tropical compactifications of Y exist. Let

Y ⊆ X be a tropical compactification, and let F be the fan associated to X. Let F′ be

the fan that results after removing all colors from F, i.e. F′ consists of all cones C ∩ V

for (C,F) ∈ F, and let X ′ be the associated toroidal spherical variety. In particular,

SuppF′ = SuppF. There is a proper birational G-morphism f : X ′ → X restricting to

the identity on G/H. The closure Y ′ ⊆ X ′ of Y is a tropical compactification of Y in a

toroidal spherical variety (Prop. 2.34).

For the second statement, given a tropical compactification Y ⊆ X, let F, F′, X ′, and

f : X ′ → X be as before. From Proposition 4.7,

SuppF = SuppF′ = TropY.

This completes the proof.
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C H A P T E R 5

EXAMPLES OF SPHERICAL TROPICALIZATION

In this chapter we list a series of examples of tropicalization of subvarieties of various

spherical homogeneous spaces. We use notation as in §3. First we treat the case G/H is a

torus, and show that spherical tropicalization agrees with toric tropicalization, and so it

is indeed an extension of the latter. Particular examples of tropicalization of subvarieties

of tori are readily available in the literature, and we do not provide any. In §5.2 we

find all possible tropicalizations of subvarieties of the puncture n-space An − {0}, which

completes Examples 3.7 and 3.10.

In §5.3 and §5.4 we consider GLn, SLn, and PGLn, viewed as spherical homogeneous

spaces under the action of GLn ×GLn, SLn × SLn, and PGLn × PGLn, respectively, by

multiplication on the left and on the right, and we prove Theorem 1.3, and the equivalent

ones for SLn and PGLn, Theorems 5.2 and 5.6, and provide some short examples of

tropicalization of subvarieties of them. In the last two sections we treat two special

cases of subvarieties of GLn and SLn, and products of them. In §5.5 we consider the

G-representation variety of the fundamental group of the sphere with 3 punctures, for

G = GLn or SLn, which is a subvariety of G×G×G. We find that the tropicalization of

this variety is given by the Horn’s inequalities. In §5.6 we demonstrate how to construct

a tropical compactification with blow-ups.

We frequently make use of Remark 3.8 without mentioning so, i.e. when we calculate

a tropicalization we use K-points instead of K-points, and then we multiply with scalars

in Q≥0.
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5.1 Subvarieties of Tori

Let G be the n-torus Tn with Borel subgroup B = G, and consider the spherical ho-

mogeneous space G/H = Tn, i.e. H is the trivial subgroup. Let x1, . . . , xn be coordinates

for Tn.

The group of characters X of Tn is isomorphic to Zn, where a = (a1, . . . , an) is

identified with

χa : Tn → k×, (x1, . . . , xn) 7→ x−a11 · · ·x−ann ,

The lattice Λ is generated by x1, . . . , xn. The character associated to xi is χi = χei ,

where ei = (0, . . . , 0, 1, 0, . . . , 0) (the 1 in the i-th position), so that Λ = X. Then

Q = Hom(Λ,Q) is isomorphic to Qn, spanned by χ∗1, . . . , χ
∗
n, where

χ∗i : Λ→ Q, χ∗i (xj) =

 0 if i 6= j

1 if i = j
.

Clearly there are no colors.

Let γ ∈ Tn(K), and write xi,γ for the image of xi under the map γ∗ : k[x±11 , . . . , x±1n ]→

K, which is non-zero. For any i and any g = (g1, . . . , gn) in Tn, gxi = g−1i xi. Thus acting

on xi by some g ∈ G only scales it by a constant in k×, hence ν(γ∗(gxi)) = ν(γ∗(xi)) =

ν(xi,γ) and so vγ(xi) = ν(xi,γ). Then val : Tn(K)→ Q sends γ to

val(γ) = ν(x1,γ)χ∗1 + · · ·+ ν(xn,γ)χ∗n,

or (ν(x1,γ), . . . , ν(xn,γ)), in Q. This map is the same with the one of the toric tropical-

ization.

5.2 Subvarieties of the Punctured Affine n-space

Let G = SLn, with Borel subgroup B the set of upper triangular matrices, act on the

punctured affine n-space G/H = An − {0} by left multiplication; the elements of An are
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viewed as column vectors. Let gij be coordinates for G, and let x1, . . . , xn be coordinates

for An − {0}. This homogeneous space is spherical with open B-orbit:

O = {(x1, . . . , xn) ∈ An : xn 6= 0} .

We have worked the case n = 2 in Examples 3.7 and 3.10. The situation is similar

for any n. The group of characters of the Borel subgroup X is isomorphic to Zn−1, where

m = (m1, . . . ,mn−1) is identified with

χm : B → k×,



a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...

0 0 . . .
∏n−1
i=1 a

−1
ii


7→

n−1∏
i=1

ami
ii .

The lattice Λ is generated by xnn. The character associated to it is χ = χu, where

u = (1, 1, . . . , 1). Therefore Λ is a lattice of dimension 1 inside X, and Q ∼= Q, spanned

by χ∗, where

χ∗ : Λ→ k×, χ∗(xn) = 1.

The valuation cone V is all of Q. The set of colors D consists of only one element, namely

the B-stable divisor

D = {(x1, . . . , xn) ∈ An − {0} : xn = 0}

We see that the lattice is of dimension 1. The spherical embeddings are similar to the

ones of the case n = 2: in Table 1 replace the number “2” with the number “n”. Also,

the geometric description is the same. The cone (−R,∅) adds the boundary of An in Pn,

the cone (R,D) adds a point at the origin, while (R,∅) adds the exceptional divisor of

the blow up of the affine n-space at the origin.

In Example 3.10, for the case n = 2, we have seen that if C is a curve, TropC is either

all of V, if the curve passes through the origin, or the ray pointing to the left, namely −R,

if it does not. In particular, if TropC is −R, then the unique tropical compactification of
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C occurs in P2−{0}. Roughly speaking, this compactification adds the limit points of C

at infinity. On the other hand, if TropC is V, then the unique tropical compactification

of C in a toroidal spherical variety occurs in Bl0 P2. This compactification adds the limit

points of C at infinity, as well as the limit points at the origin.

The situation is similar for An−{0}. Let Y ⊆ An−{0} be a closed subvariety. Then

TropY is either all of V, if Y “contains the origin,” or −R, if it does not:

Y does not contain the origin Y contains the origin

If TropY is −R, the unique tropical compactification of Y occurs in Pn − {0}, where

the limit points of Y at infinity are added. If Y contains the origin, the unique tropical

compactification of C in a toroidal spherical variety occurs in Bl0 Pn, where in addition

to the limit points at infinity, the ones at the origin are also added.

Remark 5.1. Given a curve C ⊆ A2 − {0}, let C ⊆ X be a tropical compactification

with X toroidal, in which case X is P2 − {0} or Bl0 P2. In particular X contains the

boundary (W = 0) of A2 − {0} in P2 − {0} (with homogeneous coordinates W,X, Y ),

and the intersection number C · (W = 0) is the degree of the curve C. On the other

hand, if X = Bl0 P2, the intersection number C · E, where E is the exceptional divisor,

is the “order of vanishing of C at the origin,” which is the term of smallest degree of

the equation defining C. It is, in general, smaller than degC. We see that if we define

multiplicities as in the toric case [ST], the balancing condition does not hold.

5.3 Subvarieties of GLn and SLn

In this section we prove Theorem 1.3, along with its analog for the case of SLn:

Theorem 5.2. Let Y be a closed subvariety of SLn, defined by some ideal I ⊆ k[SLn].

Then TropY consists of the (n− 1)-tuples (α1, . . . , αn−1) of the n− 1 greatest invariant
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factors (in decreasing order) of matrices of determinant 1 with entries in K, that satisfy

the equations of I.

We treat the cases of GLn and SLn at the same time, since they are similar. Let

G = GLn or SLn. Consider the group G×G with Borel subgroup B consisting of pairs of

an upper and a lower triangular matrix. Then (G×G)/H = G is a homogeneous space,

where the action is given by left and right multiplication, i.e.

(g, h) · x = gxh−1 (g, h) ∈ G×G, x ∈ G.

Here H = {(g, g) ∈ G×G : g ∈ G}. It is spherical with open B-orbit

O = {x ∈ G |xnn 6= 0} .

Let gij , hij be coordinates for the group G×G, and xij for the homogeneous space G.

If G = GLn, the group of characters of the Borel subgroup X is isomorphic to Z2n,

where (l,m) = (l1, . . . , ln,m1, . . . ,mn) ∈ Z2n is identified with

χ(l,m) : B → k×, ((aij), (bij)) 7→
n∏
i=1

a−liii b
mi
ii .

If G = SLn, then X ∼= Z2(n−1), where (l,m) = (l1, . . . , ln−1,m1, . . . ,mn−1) ∈ Z2(n−1) is

identified with

χ(l,m) : B → k×, ((aij), (bij)) 7→
n−1∏
i=1

a−liii b
mi
ii .

If G = GLn, the lattice Λ is generated by the (classes of) B-semi-invariant functions

f ′i = det



xi,i xi,i+1 . . . xi,n

xi+1,i xi+1,i+1 . . . xi+1,n

...
...

. . .
...

xn,i xn,i+1 . . . xn,n


for i = 1, . . . , n

In particular f ′1 = detx and f ′n = xnn. The character associated to f ′i is χ′i = χ(mi,mi),

where mi = (0, . . . , 0, 1, . . . , 1) (the first non-zero entry is the i-th one). A better set

of generators is f1, . . . , fn, where fi = f ′i/f
′
i+1 for i < n, and fn = f ′n. The character
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associated to fi is χi = χ′i/χ
′
i+1 = χ(ei,ei) for i < n, and the one to fn is χn = χ(en,en),

where ei = (0, . . . , 0, 1, 0, . . . , 0) (the 1 in the i-th entry). The vector space Q is n-

dimensional, spanned by the dual basis χ∗1, . . . , χ
∗
n:

χ∗i : Λ→ Q, χ∗i (fj) =

 0 if i 6= j

1 if i = j
.

There are n − 1 colors, which are the B-stable prime divisors D2, . . . , Dn given by the

functions f ′2, . . . , f
′
n, and %(Di) = (χ′i)

∗ in Q.

The situation when G = SLn is similar: define f ′2, . . . , f
′
n as for G = GLn, i.e. ignore

the determinant function, and then let f1 = 1/f ′2, and fi = f ′i/f
′
i+1 for i = 2, . . . , n − 1.

The character χ′i associated to f ′i is χ(l,l), where l = (−1, . . . ,−1, 0, . . . , 0) (the first zero

in the i-th position). The character χi associated to fi is as in the case of G = GLn. The

vector space Q is (n− 1)-dimensional, spanned by χ∗1, . . . , χ
∗
n−1, defined as in the case of

GLn.

We now construct the tropicalization map val : G(K)→ Q. Let γ ∈ G(K), and write

γ∗ : k[G] → K for the associated homomorphism of k-algebras, where k[G] = k[xij ]detx

if G = GLn, and k[G] = k[xij ]/(1 − detx) when G = SLn. Let xij,γ = γ∗(xij) for any

i, j, and write xγ for the matrix (xij,γ). Let α1, . . . , αn be the invariant factors of xγ , in

decreasing order.

If L =
⋃
m k(G×G)((t1/m)), the morphism ψγ : SpecL→ G (see §3.2) is induced by

the map

ψ∗γ : k[G]→ L, f(x) 7→ f(gxγh
−1).

Then vγ(f ′i) is the smallest value of the valuations of all i × i minors of the matrix

xγ , and vγ(fi) = v(f ′i) − v(f ′i+1), with the special cases v(fn) = v(f ′n) if G = GLn, or

v(f1) = −v(f ′2) if G = SLn. This is a well-known method for calculating the invariant

factors of a matrix, hence v(fi) = αi. Therefore, if G = GLn,

val(γ) = α1χ
∗
1 + · · ·+ αnχ

∗
n in Q,
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Figure 3: Valuation cone of GL2

i.e. val(γ) is the vector (α1, . . . , αn) with respect to the given basis. Similarly, if G = SLn,

val(γ) = (α1, . . . , αn−1).

Proofs of Theorems 1.3 and 5.2. Let Y ⊆ G be a closed subvariety given by an ideal

I ⊆ k[G]. Given γ ∈ G(K), let γ∗ : k[G] → K and xγ be as before. The K-point γ

factors through Y when I ⊆ ker γ∗, i.e. when h(xγ) = 0 for all h ∈ I, and the statements

of the theorems follow.

If G = GLn, the valuation cone, which is the image of val, is the set

V = {(α1, . . . , αn) ∈ Q : α1 ≥ · · · ≥ αn}.

while if G = SLn, it is the set

V =

{
(α1, . . . , αn−1) ∈ Q : α1 ≥ · · · ≥ αn−1 and

n−1∑
i=1

αi + αn−1 ≥ 0

}
,

since the sum of the greatest n− 1 invariant factors of a matrix of determinant 1 is equal

to the negative of the smallest invariant factor, which must be greater or equal to −αn−1.

The valuation cones of GL2 and SL3 are the lightly shaded areas in Figures 3 and 4.

Example 5.3. Let C be the line in GL2 defined by the ideal

I = (x11 − x12 − 1, x12 − x21, x22).
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Figure 4: Valuation cone of SL3

A matrix with entries in K that satisfies the equations x11 = x12 + 1, x12 = x21, and

x22 = 0 is of the form  z(t) + 1 z(t)

z(t) 0

 , z(t) ∈ K.

The determinant of this matrix is −z(t)2. If ν(z(t)) ≥ 0, then the smallest invariant

factor is α2 = 0, and α1 = ν(−z(t)2), so that α1 can be any positive integer. This gives

the ray consisting of the positive α1-axis in Q, say R1. If ν(z(t)) < 0, then the smallest

invariant factor is α2 = ν(z(t)), and α1 + α2 = ν(−z(t)2) = 2α2, so that α1 = α2. This

corresponds to the ray along the line α1 = α2 in Q on the third quadrant, call it R2. In

Figure 5 we draw TropC, which is the union of the two rays R1 and R2.

Since TropC is of dimension 1, it completely determines the toroidal spherical variety

in which the tropical compactification occurs (in this example there are no non-toroidal

spherical varieties supproted on TropC). We describe this spherical variety.

We view GL2 as a quasi-affine variety in A4 (with coordinates xij). Consider the

projective space P4 with homogeneous coordinates

(X0, X) =

X0,

 X11 X12

X21 X22


 .

We identify A4 with the affine space (X0 6= 0) in P4. The action of GL2 × GL2 on GL2
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Figure 5: TropV (x11 − x12 − 1, x12 − x21, x22)

extends to an action on all of P4:

(g, h) · (X0, X) = (X0, gXh
−1), (g, h) ∈ GL2 ×GL2, (X,X0) ∈ P4,

and so GL2 ↪→ P4 is a spherical embedding. Its colored fan is given in Figure 11. The

rays R1 and R2 are cones of this fan, and so the spherical varieties associated to them

are GL2-stable open subvarieties of P4.

The ray R1 corresponds to the embedding of GL2 in the punctured affine space

X1 = A4 − {0}, i.e. it adds the rank 1 matrices in A4, and R2 corresponds to the

embedding of GL2 in

X2 =
{

(X0, X) ∈ P4 : detX 6= 0
}

i.e. it adds invertible matrices at infinity. The tropical compactification of C occurs in

the variety X ⊂ P4 that results when X1 and X2 are glued along GL2, i.e. their union

inside P4. The closure Y ⊂ P contains two points in the boundary, namely1,

 1 0

0 0


 and

0,

 1 1

1 0


 .

Example 5.4. Let Y1 be the hyperplane (x11 = 1) in GL2. An invertible matrix (xij(t))

with entries in K that satisfies the equation x11 = 1 must satisfy ν(x11(t)) = 0, hence
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the smallest invariant factor of such matrix, say α2, is always non-positive. There is no

restriction on the biggest invariant factor. Indeed, if (α1, α2) is a pair of integers with

α1 ≥ α2 and α2 ≤ 0, then the following matrix 1 tα1

tα2 0


is an invertible matrix that satisfies the equation x11 = 1 and has invariant factors

(α1, α2). Therefore the tropicalization of Y1 is the one of Figure 6.

If Y2 = V (x21 − x212), then TropY2 is all of the valuation cone. Indeed, for any pair

of integers (α1, α2) with α1 ≥ α2, the matrix tα1 0

0 tα2


satisfies the equation x21 = x212 and has invariant factors (α1, α2).

Now consider the subvariety Y = V (x11 − 1, x21 − x212) of GL2. An invertible matrix

with entries in K that satisfies the equations x11 = 1 and x21 = x212 is of the form 1 y(t)

y2(t) z(t)

 , y(t), z(t) ∈ K.

The determinant of this matrix is z(t)− y3(t). There are four cases:

(i) If ν(y(t)), ν(z(t)) ≥ 0, then α2 = 0 and α1 can be any positive number, which gives

the positive α1-axis.

(ii) If ν(y(t)) ≤ 0, ν(z(t)) ≥ 0, then α2 = 2ν(y(t)) and α1 = ν(y(t)). This is the ray

along the line α2 = −α1/2, on the third quadrant.

(iii) If ν(y(t)) ≥ 0, ν(z(t)) ≤ 0, then α2 = ν(z(t)) and α1 = 0, which is the negative

α2-axis.

(iv) If ν(y(t)), ν(z(t)) ≤ 0, then there are three subcases. If ν(z(t)) is more than 2ν(y(t))

or less than 3ν(y(t)), then we get back the ray along α2 = −α1/2 or the negative
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Figure 6: TropV (x11 − 1)

Figure 7: TropV (x11 − 1, x21 − x212)

α2-axis, respectively. If 3ν(y(t)) ≤ ν(z(t)) ≤ 2ν(y(t)), then α2 = ν(z(t)) and

α2/2 ≤ α1 ≤ 0, and we get the cone between α2 = −α1/2 and the negative α2-axis.

The tropicalization of Y2 is given in Figure 7. Note that even though Y = Y1 ∩ Y2, the

tropicalization of Y is strictly smaller than the intersection TropY1 ∩ TropY2.

Example 5.5. Assume that K is algebraically closed, which holds if char k = 0. Consider

the special orthogonal group SO4 as a subvariety of SL4:

SO4 =
{
x ∈ SL4 : xtx = e

}
,
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where e is the identity matrix. Let x(t) be a matrix of determinant 1 with entries in K

that satisfies x(t)tx(t) = e. The invariant factors of x(t)t are the same with the ones of

x(t), while the ones of e are all zero. Then, the invariant factors (α1, α2, α3, α4) of x(t)

must satisfy the following Horn’s inequalities (see §5.5):

α1 + α4 ≥ 0 and α2 + α3 ≥ 0.

Since x(t) has determinant 1, α4 = −α1 − α2 − α3, and the first inequality becomes

α2 + α3 ≤ 0, hence α3 = −α2. This forces α4 = −α1. We show that any quadruple

(α1, α2, α3, α4) that satisfies these two conditions is in Trop SO4.

Pick (α1, α2,−α2,−α1) with α1 ≥ α2 ≥ 0. The matrix with entries in K:

t−α1
√

1− t−2α1 0 0

−
√

1− t−2α1 t−α1 0 0

0 0 t−α2
√

1− t−2α2

0 0 −
√

1− t−2α2 t−α2


is orthogonal, of determinant 1, and has invariant factors (α1, α2,−α2,−α1). It follows

that

Trop SO4 = {(α1, α2, α3) ∈ V : α3 = −α2} .

It is the cone of dimension two with extremal rays the α1-axis and the ray which is the

intersection of the planes α1 = α2 and α3 = −α2, for α2 ≥ 0. We draw Trop SO4 in

Figure 8. It is the dark gray area; the lightly shaded area is the plane α1 = α2 (for

α1, α2 ≥ 0).

5.4 Subvarieties of PGLn

Here we describe tropicalization of subvarieties of PGLn. The situation is similar to

the one of GLn and SLn. For a homogeneous matrix with entries in K it does not make

sense to ask for its invariant factors. For instance, if α ∈ Z, I and tαI refer to the same
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Figure 8: Tropicalization of SO4 ⊂ SL4

homogeneous matrix with entries in K, but the invariant factors of I are all 0, while

the ones of tαI are all α. Given any homogeneous matrix, there is a representation of it

for which the smallest invariant factor is 0, and moreover, any such representation has

the same invariant factors. We call these invariant factors, without the last one which is

zero, the relative invariant factors of the homogeneous matrix. This definition extends

naturally to invariant factors of a homogeneous matrix with entries in K.

Theorem 5.6. Let Y be a closed subvariety of PGLn, defined by some homogeneous

ideal I ⊆ k[PGLn]. Then TropY consists of the (n − 1)-tuples (α1, . . . , αn−1) of the

relative invariant factors (in decreasing order) of invertible homogeneous matrices with

entries in K, that satisfy the homogeneous equations of I.

Let G = PGLn × PGLn, with Borel subgroup B consisting of pairs of an upper and

a lower triangular homogeneous matrix, and consider the spherical homogeneous space

G/H = PGLn, where the action is given by left and right multiplication, i.e.

(g, h) ·X = gXh−1 (g, h) ∈ PGLn × PGLn, X ∈ PGLn.
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The group H and the open B-orbit are as in the case of GLn and SLn. Let gij , hij be

homogeneous coordinates for PGLn × PGLn, and Xij homogeneous coordinates for the

homogeneous space PGLn.

The group of characters of the Borel subgroup X is isomorphic to Z2(n−1), where

(l,m) = (l1, . . . , ln−1,m1, . . . ,mn−1) ∈ Z2(n−1) is identified with

χ(l,m) : B → k×, ((Aij), (Bij)) 7→
n−1∏
i=1

(
Aii
Ann

)−li ( Bii
Bnn

)mi

.

The lattice Λ is generated by the (classes of) B-semi-invariant functions:

fi =
f ′i

Xnnf ′i+1

, for i = 1, . . . , n− 1,

where the f ′i are given by

f ′i = det



Xi,i Xi,i+1 . . . Xi,n

Xi+1,i Xi+1,i+1 . . . Xi+1,n

...
...

. . .
...

Xn,i Xn,i+1 . . . Xn,n


for i = 1, . . . , n

The character associated to fi is χi = χ(ei,ei), where ei = (0, . . . , 0, 1, 0, . . . , 0) (the 1 in

the i-th entry). The vector space Q is (n − 1)-dimensional, spanned by the dual basis

χ∗1, . . . , χ
∗
n−1:

χ∗i : Λ→ Q, χ∗i (fj) =

 0 if i 6= j

1 if i = j
.

There are n − 1 colors, which are the B-stable prime divisors Di given by the zero sets

of the homogeneous polynomials f ′2, f
′
3, . . . , f

′
n.

We construct the tropicalization map val : PGLn(K) → Q. Let γ ∈ PGLn(K), and

write γ∗ : k[Xij ]
(k×)
detX → K for the associated homomorphism of k-algebras. There is

some pair (k, l), such that not all functions

Xij,γ = γ∗

(
XijX

n−1
kl

detX

)
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are zero. For such (k, l), consider the homogeneous matrixXγ = (Xij,γ). Write α1, . . . , αn−1

for the relative invariant factors of xγ , in decreasing order.

If L =
⋃
m k(PGLn × PGLn)((t1/m)), the morphism ψγ : SpecL → PGLn (see §3.2)

is induced by the map

ψ∗γ : k[Xij ]
(k×)
detX → L, f(X) 7→ f(gXγh

−1).

Since fi = (f ′i/f
′
i+1)/Xnn, ν(fi(Xγ)) is the i-th invariant factor of Xγ (for a fixed rep-

resentation) minus the smallest one (see the case of GLn and SLn in §5.3), i.e. the i-th

relative invariant factor. Therefore

val(γ) = α1χ
∗
1 + · · ·+ αn−1χ

∗
n−1 in Q,

i.e. val(γ) is the vector (α1, . . . , αn−1) with respect to the given basis.

Proof of Theorem 5.6. The proof is the same as the one of Theorems 1.3 and 5.2 for GLn

and SLn.

The valuation cone, which is the image of val, is the set

V = {(α1, . . . , αn−1) ∈ Q : α1 ≥ · · · ≥ αn−1 ≥ 0}.

We draw the valuation cone for the case n = 3 in Figure 9.

Example 5.7. Consider the subvariety Y ⊂ PGL3 given by the homogeneous ideal I =

(X11−X13, X12, X21, X
2
22−X33, X23, X31, X32). An invertible homogeneous matrix with

entries in K that satisfies the equations X11 = X13, X12 = X21 = X23 = X31 = X32 = 0,

and X2
22 = X33 is of the form

Y (t) 0 Y (t)

0 Z(t) 0

0 0 Z(t)2

 , Y (T ), Z(T ) ∈ K.

We consider two cases, (i) ν(Y (T )) ≤ ν(Z(T )), and (ii) ν(Z(T )) ≤ ν(Y (T )).
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Figure 9: Valuation cone of PGL3

(i) Rescale the matrix by Y (T )−1, so that its smallest invariant factor is zero:
1 0 1

0 Z(t) 0

0 0 Z(t)2


The second greatest invariant factor is α2 = ν(Z(t)), while the greatest one is

α1 = 2ν(Z(t)) = 2α2. This gives the ray along the line α1 = 2α2, in the first

quadrant.

(ii) Rescale the matrix by Z(T )−2, so that it becomes
Y (t) 0 Y (t)

0 1 0

0 0 1

 .

The second greatest invariant factor is α2 = 0, while the greatest one is α1 =

ν(Y (t)), which can be any positive integer. This is the positive α1-axis.

We draw TropY in Figure 10. It consists of two rays, the α1-axis, and the ray along the

line α1 = 2α2.
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Figure 10: TropV (X11 −X13, X12, X21, X
2
22 −X33, X23, X31, X32)

5.5 Tropicalization of the Representation Variety of π1(S0,3)

Let S0,3 denote the Riemann sphere with 3-punctures. The fundamental group is

given by the following generators and relations:

π1(S0,3) = 〈a, b, c : abc = 1〉 =
〈
a, b, c : ab = c−1

〉
,

where a, b, c are loops around the first, second, and third puncture, respectively. This is

of course isomorphic to the free group in 2 generators, but this representation is more

natural for the problem.

Let G be GLn or SLn. Then the G-representation variety of π1(S0,3) is

RepG(π1(S0,3)) = Hom(π1(S0,3), G) =
{

(x, y, z) ∈ G3 : xy = z−1
}
.

We view G3 as a homogeneous space via the action of G6 = (G×G)3 by multiplication

on the left and on the right. The lattice Q has dimension 3n if G = GLn, and 3(n − 1)

if G = SLn. Consider the standard basis for Q, which is an extension of the one given in

§5.3 to the product of three copies of G.

If G = GLn, the set Trop RepG(π1(S0,3)) consists of (positive scalar multiples of)

(3n)-tuples of integers (α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) that appear as invariant factors

of matrices x, y, z with entries in K, such that xy = z−1. We write (γ′1, . . . , γ
′
n) for
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the invariant factors of the matrix z−1, which are γ′1 = −γn, γ′2 = −γn−2, etc. It

suffices to find the (3n)-tuplets of integers (α1, . . . , αn, β1, . . . , βn, γ
′
1, . . . , γ

′
n) that appear

as invariant factors of matrices x, y, z′ with entries in K, such that xy = z′. The case

G = SLn is similar.

The solution to this problem is given by the Horn’s inequalities (it is equivalent

to Horn’s problem, see [F, Thm. 7 & 17]). In particular, the elements of the (3n)-tuple

(α1, . . . , αn, β1, . . . , βn, γ
′
1, . . . , γ

′
n) appear as invariant factors of matrices x, y, z′ such that

xy = z′ if and only if
n∑
i=1

αi +

n∑
i=1

βi =

n∑
i=1

γ′i, (5.1)

and ∑
k∈K

γ′i ≤
∑
i∈I

αi +
∑
j∈J

βi for all (I, J,K) ∈ Tnr , (5.2)

where I, J,K are subsets of {1, . . . , n} of the same cardinality, and Tnr are defined induc-

tively as

Tnr =

(I, J,K) ∈ Unr :

for every p < r and (F,G,H) ∈ T rp ,∑
f∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh + p(p+ 1)/2


where Unr are the sets of triplets (I, J,K) given by:

Unr =

(I, J,K) :
∑
i∈I

i+
∑
j∈J

j =
∑
k∈K

k + r(r + 1)/2

 .

The only case for which the tropicalization can be drawn is when G = SL2. In this

case, Trop RepG(π1(S0,3)) is given by the inequalities:

α1 ≤ β1 + γ1, β1 ≤ γ1 + α1, γ1 ≤ α1 + β1.

We draw the tropicalization of RepG(π1(S0,3)) in Figure 2. The valuation cone is the first

quadrant.

It is not yet known to the author what is a tropical compactification of RepG(π1(S0,3)),

and which fan is associated to the ambient space. Oftentimes, compactifications of the
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representation variety are used to derive a compactification of the corresponding char-

acter variety, see [Ko] and [M]. Recall that the character variety is the quotient of the

representation variety by the action of G by conjugation. In our case,

CharG(π1(S0,3)) = RepG(π1(S0,3))//G.

An interesting question to ask is whether a tropical compactification of RepG(π1(S0,3))

will produce a meaningful compactification of CharG(π1(S0,3)), e.g. one with combinato-

rial normal crossings.

5.6 Tropical Compactification of the Maximal Torus of GL2

Consider the maximal torus

T = {x ∈ GL2 : x12 = x21 = 0} .

We want to find a tropical compactification of T . The idea is to find the tropicalization

of T , and begin with a “naive” compactification T ⊂ X such that the colored fan of X is

supported on TropT . Then exhibit successive blow-ups of X at the locus of “problematic”

points until the multiplication map of the pure transform becomes flat. This amounts to

refining the fan of X and removing colors.

The tropicalization of T is all of the valuation cone. Indeed, given a pair of integers

(α1, α2) with α1 ≥ α2, the invertible matrix tα1 0

0 tα2


satisfies the equations that define T and has invariant factors α1, α2. Thus we should

begin by compactifying T in a spherical variety supported on V, i.e. a complete spherical

variety.

We view GL2 as an open subset of A4, with coordinates xij , which in turn is embedded

in P4, with homogeneous coordinates (X0, X) = (X0, (Xij)), and is identified with (X0 6=
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0) (see Example 5.3). The spherical variety P4 has two closed GL2-orbits: the origin of

A4, say 0, which is the zero matrix, and the set of rank 1 matrices at infinity. There are

three other orbits, the set of invertible matrices at infinity, the matrices of rank 1 in A4,

and the open orbit GL2. The colored fan of P4 is shown in Figure 11.

Let T ′ ⊂ P4 be the closure of T . We claim that the multiplication map µT ′ : GL2 ×

GL2 × T ′ → P4 is flat everywhere but µ−1T ′ (0) = GL2 ×GL2 ×{0}. We first show that all

fibers of µT ′ but the one over 0 ∈ P4 have the same dimension.

Proposition 5.8. Let G be an algebraic group over k, X a G-variety, and Y ⊆ X a

closed subvariety. The non-empty fibers of the multiplication map of Y :

µY : G× Y → X, (g, y) 7→ gy

over points in an orbit O have dimension dimG+ dim(Y ∩O)− dimO.

Proof. First we show that all fibers over points in O have the same dimension. Let

x, y ∈ O, say y = hx for some h ∈ G. Consider the isomorphism of varieties:

φ : G× Y ∼−→ G× Y, (g, z) 7→ (gh, z).

The fiber of µY ◦ φ over x is the same as the fiber of µ over y, and is also isomorphic

to the fiber of µY over x. Therefore the fibers of µY over x and over y are isomorphic,

hence of the same dimension.

Assume that Y ∩O is non-empty. The multiplication map µY restricts to a surjective

morphism G×(Y ∩O)→ O. The fibers over points from an open set of O have dimension:

dim(G× (Y ∩O))− dimO = dimG+ dim(Y ∩O)− dimO.

From the above all fibers over O have the same dimension, which must be dimG+dim(Y ∩

O)− dimO, and we are through.

The dimension of GL2 × GL2 is 8, while the one of P4 is 4. We use Proposition 5.8

on each orbit of P4 to show that the dimension of all fibers but the one over 0 ∈ P4 is 6.

For each orbit O, we need to show that dim(T ′ ∩O)− dimO = −2.
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(i) If O = GL2, then T ′ ∩O = T is of dimension 2, while dimO = 4.

(ii) The orbit O of rank 1 matrices in A4, i.e. in (X0 6= 0), is the divisor (detx = 0) ⊂

A4, without the origin 0, hence of dimension 3. It intersects T ′ at the following

points in A4:  x11 0

0 0

 ,

 0 0

0 x22

 , x11, x22 ∈ k×.

The set of matrices of the first of the above two forms is the line V (x12, x21, x22),

which is of dimension 1, without 0. Similarly for the set of matrices of the second

form. Therefore the intersection T ′ ∩O is a union of two lines minus a point, hence

of dimension 1.

(iii) Let O be the orbit of invertible matrices at infinity. It is an open set in the hyper-

plane (X0 = 0), hence of dimension 3. Its intersection with T ′ consists of diagonal

matrices at infinity:0,

 X11 0

0 X22


 , X11, X22 ∈ k×, X11X22 6= 0.

It is isomorphic to a projective line in P3, minus two points, and so of dimension 1.

(iv) Let O be the orbit of rank 1 matrices at infinity:

O =
{

(0, X) ∈ P4 : detX = 0
}
.

It is a divisor on the hyperplane (X0 = 0) ∼= P3, hence of dimension 2. It intersects

T ′ at: 0,

 1 0

0 0


 and

0,

 0 0

0 1


 .

This is a set if two points, hence dim(T ′ ∩O) = 0.

The fiber over 0 is GL2 × GL2 × {0}, which is of dimension 8. We see that µT ′ is

equidimensional everywhere but at the origin. Flatness of µT ′ over P4−{0} follows from
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Figure 11: The fan of P4

the following proposition, which is a direct consequence of [EGAIV, Prop. 6.1.5]. The

closed set T ′ is Cohen-Macaulay as a complete intersection in P4, and GL2 is an open set

in A4, thus GL2 ×GL2 × T ′ is Cohen-Macaulay.

Proposition 5.9. Let φ : X → Y be a morphism of varieties. Suppose that:

(i) Y is nonsingular,

(ii) X is Cohen-Macaulay, and

(iii) for all y ∈ f(X), dimX = dimY + dimφ−1(y).

Then φ is flat.

Consider the blow-up Bl0 P4, and write π : Bl0 P4 → P4 for the natural proper bira-

tional morphism that restricts to an isomorphism Bl0 P4−E ∼−→ P4−{0}. The exceptional

divisor E is isomorphic to P3. We view its elements as 2×2 homogeneous matrices; write

Yij for the associated homogeneous coordinates. The action of GL2 × GL2 on P4 − {0}

extends to an action on Bl0 P4 by left and right multiplication on the homogeneous ma-

trices of the exceptional divisor. Under this action π is a GL2-morphism. Thus Bl0 P4 is

a spherical variety for the homogeneous space GL2. The closed GL2-orbits are the set of
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Figure 12: The fan of Bl0 P4

matrices of rank 1 at infinity, and the matrices of rank 1 in the exceptional divisor. The

fan associated to Bl0 P4 is given in Figure 12. In particular Bl0 P4 is toroidal.

We claim that the closure T ⊂ Bl0 P4 is a tropical compactification of T . Completeness

of T follows from completeness of Bl0 P4, or from the fact TropT = SuppF, where F is the

fan associated to Bl0 P4 (Prop. 4.6). Also, TropT = SuppF implies that T intersects all

orbits of Bl0 P4 (Prop. 4.5), so that the multiplication map µT : GL2×GL2×T → Bl0 P4

is surjective. We show that it is also flat.

Since π is a GL2-morphism that restricts to an isomorphism Bl0 P4 −E ∼−→ P4 − {0},

the multiplication maps of T and T ′ agree away from the exceptional divisor and the

origin 0:

µT |GL2×GL2×(T−E) = µT ′ |GL2×GL2×(T ′−{0})

(as morphisms to Bl0 P4−E ∼= P4−{0}). The intersection Y ∩E consists of the diagonal

homogeneous matrices of E. One can check using Proposition 5.8 that all fibers of µT

over E are of dimension 6; this case is identical with the case of fibers over the hyperplane

(X0 = 0). Therefore all fibers of µT are of the same dimension.

The closed set T , which is the pure transform of T ′, is Cohen-Macaulay as a complete

intersection; this can be easily checked on the standard charts Uij ∼= P4 of Bl0 P4 ⊂ P4×P3.
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Applying Proposition 5.9 we get that µT is flat, and since it is surjective, faithfully flat.

We deduce Y ⊂ Bl0 P4 is a tropical compactification.
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