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ABSTRACT

THERMODYNAMIC AND DYNAMIC MODELS FOR
DIRECTED ASSEMBLY OF SMALL ENSEMBLES OF

COLLOIDAL PARTICLES

SEPTEMBER 2016

RAGHURAM THYAGARAJAN

B.E.(Hons.), BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI

M.Tech., INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David M. Ford and Professor Dimitrios Maroudas

Self and directed assembly of finite clusters (10 to 1000) of colloidal particles

into crystalline objects is an emerging area of scientific interest that finds applica-

tions in manufacturing of photonic crystals and other meta-materials. Such assembly

problems are also of fundamental scientific interest because they involve thermody-

namically small systems, with a number of particles that is far below the bulk limit.

Robust methods for assembling defect-free target structures will ultimately require

reduced-dimension process models that link the particle-level dynamics of the colloids

to the actuator states. We have developed a three-part strategy for developing such

process models.

First, we employ diffusion mapping (DMaps), a machine learning technique, on

raw trajectory data to identify slow, low-dimensional manifolds in the system dy-

namics. Second, we identify convenient observables, or order parameters (OPs), that
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strongly correlate with low-dimensional DMap coordinates; this step may involve a

feedback loop with the DMap process itself. Third, we use a Fokker-Planck or Smolu-

chowski formalism to build free energy and diffusivity landscapes in the OPs, which

serve as our reduced-dimension process models. We have applied this technique to two

model systems in this work. The first system comprises 32 silica particles, which in-

teract via a temperature-tunable depletion interaction potential. This system shows

transitions between an expanded and condensed phase when the pair interaction

strength is changed by a few kBT . The second system comprises 210 quasi-2D silica

particles confined within quadrupole electrodes and the interaction strength, which

is of the order of few kBT , is tuned by an externally applied electric field. This

system shows interesting features like the formation and annealing of polycrystalline

microstructures as the magnitude of the applied field is changed. We systematically

compare and contrast the DMap analysis on both these model systems. We con-

struct an optimal control policy map in the low-dimensional DMap coordinates using

dynamic programming. The free energy and diffusivity landscapes along with the

control policy map is used to robustly assemble perfect colloidal crystals.

We have also examined the phase behavior of the depletion potential system via a

histogram-based simulation approach. We conducted replica exchange Monte Carlo

simulations of these small colloidal clusters and generated potential energy histograms

for various levels of the osmotic pressure that controls the interaction strength. By

carefully tuning the osmotic pressure, we observed bimodal distributions in the poten-

tial energy space, which is indicative of coexistence between fluid-like and solid-like

configurations. Quantitative analysis of these histograms yield phase coexistence

curves for these small clusters and we report comparisons with bulk colloidal phase

diagrams.
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CHAPTER 1

INTRODUCTION

1.1 Background & Objectives
Colloidal crystals are periodic lattice structures of micron-sized particles that are

important for several technological and scientific applications. The periodic lattice

spacing in these crystals are of the order of wavelength of visible light, enabling them

to manipulate the flow of light and function as “semiconductors of light” or photonic

crystals [1–3]. Other technological applications include devices such as optical fibres,

nanoscopic lasers and advanced meta-materials [3] that require the fabrication of

ordered and defect-free crystals. An example of photonic device containing small

clusters of crystalline colloidal materials is shown in Fig. 1.1.

Self assembly and directed assembly are widely used methods for producing col-

loidal crystals. Self assembly refers to the spontaneous organization of the colloidal

particles due to presence of a net attractive potential between them [4–8]. Directed

assembly requires the presence of an external stimuli, like gravity, electric or magnetic

or flow fields, or directing templates to facilitate the process [9–12]. One of the main

limitations of these techniques is the formation of polycrystalline structures. The lack

of control over the interaction strengths during the course of the assembly causes irre-

versible aggregation leading to defective structures that cannot be corrected. Careful

design of these materials with a periodic structure free of defects require a detailed

understanding of the system’s equilibrium and dynamical properties.

The main objective of this thesis is to construct robust mathematical models

describing the thermodynamics and kinetics of directed assembly of such materials in

order to engineer defect-free colloidal crystals. Such mathematical models (in the form
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Figure 1.1: Photonic crystals containing finite clusters of dielectric material in a
periodic lattice (from http://ab-initio.mit.edu/photons).

of free energy and diffusivity landscapes) can then be utilized in real-time feedback

control to guide the directed assembly process and produce the desired target crystal

structures. An important first step is understanding the thermodynamics of small

colloidal clusters containing of the order of tens of particles. Such small clusters

can serve as building blocks to engineer colloidal crystals for advanced meta-material

applications. We have chosen to study two model colloidal systems in this thesis.

The first system comprises colloidal silica particles in aqueous solution interacting

via a temperature tunable depletion pair potential, details of which can be found in

the literature [13–15]. The second system comprises colloidal silica particles confined

within quadrupole electrodes to a monolayer due to gravitational forces. The pair

potential interaction is controlled by means of an external electric field and more

details on the experimental setup and the pair potential functions can be found in

the literature [16–20].

In addition to having technological applications, such assembly problems are also

of fundamental scientific interest because they involve thermodynamically small sys-

tems [21, 22], with the number of particles far below the bulk limit. These thermo-

dynamically small systems exhibit phase behavior that is qualitatively different from
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that of bulk materials [23]. For example, unlike bulk systems that have a fixed melt-

ing temperature at a given pressure, small clusters of atoms exhibit phase coexistence

over a range of temperatures [24]. Phase coexistence can be dynamic in small systems,

characterized by frequent transitions between phases whose relative free energy vary

by a few kBT , while for bulk systems, the slightest free energy difference is sufficient

to constrain the system to the preferred phase. The second objective of this thesis

it to explore the topic of small cluster phase behavior and compare and contrast the

results with classical thermodynamics.

In order to build mathematical models, we have made use of the Fokker-Planck

equation to desribe the stochastic behavior of the colloidal assembly. We require a

convenient set of observables or order parameters to build Fokker-Planck models for

which we have made use of a machine learning technique to determine the number

and type of observables. Both of these techniques are described in the sections below.

1.2 Fokker-Planck Modeling Approach
The time evolution of systems displaying Markovian stochastic behavior is gov-

erned by the Fokker-Planck Equation (FPE). The FPE is a phenomenological conser-

vation equation for the probability distribution in a set of observables [25–27] given

by,
∂ρ(Ψ, t)

∂t
= LFP(Ψ, t)ρ(Ψ, t) (1.1a)

LFP(Ψ, t) ≡
n∑
i=1

∂

∂ψi
vi(Ψ, t) +

n∑
i,j=1

∂2

∂ψi∂ψj
Dij(Ψ, t) (1.1b)

where LFP is the Fokker-Planck operator, Ψ is the vector of observables, ρ(Ψ, t) is

the probability distribution function, vi is the drift coefficient of the ith variable, and

Dij is the (ij)th element of the diffusion coefficient matrix which are directly related

to the first two moments of Ψ. The drift and diffusivity coefficients of the FPE can

be extracted from a set of dynamic trajectories initiated in the observable or coarse

variable space.
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This technique of modeling stochastic systems has been extensively used to study

the thermodynamics and kinetics of peptide fragment dissolved in water [28], mi-

celle formation [29, 30], and stress-induced structural and order-disorder transitions

in crystalline solids [31–33]. The central theme underlying all of this work is the

assumption of an existence of a “slow manifold” parameterized by a set of “coarse-

grained variables” or observables. The system dynamically evolves over this slow

manifold and this technique provides a means for calculating the effective free-energy

surface as a function of the coarse-grained variables.

The FPE can be suitably modified to describe a system of particles intercting via

a conservative force-field F and the resulting equation is termed the Smoluchowski

equation (SE) [34]. The connection between the FPE and the SE has been worked

out elsewhere [35] and the SE for the evolution of the probability density ρ(Ψ, t) is

given by,

∂ρ(Ψ, t)
∂t

= 5. exp
(
−W (Ψ)

kBT

)
D(Ψ). exp

(
W (Ψ)
kBT

)
ρ(Ψ, t) (1.2)

where W (Ψ) is the free energy landscape (FEL), D(Ψ) is the diffusivitiy landscape

(DL), kB is Boltzmann constant, and T is temperature.

For some systems, including the ones of interest here, the challenge in building

the above mentioned Smoluchowski models lies in finding the appropriate number

and type of coarse-grained variables. To this end we have used a machine learning

technique discussed in the following section.

1.3 Diffusion Mapping: Coarse-Graining Approach
Diffusion map (DMap) analysis, sometimes referred to as the nonlinear analog of

principal component analysis, provides a route to identifying low-dimensional repre-

sentations of a high-dimensional data set [36–40].
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In the context of colloidal assembly, data sets are typically generated from Brow-

nian dynamics (BD) or Monte Carlo (MC) simulations. Consider for example, a

simulation trajectory for a system containing N particles. The data set generated

from simulations comprises 3N particle coordinates describing the microstate of the

system at each time instance or MC step. For a trajectory withM snaphots, the total

data is represented by a matrix withM x 3N elements. The first step in DMap analy-

sis is to compute the distance metric dij between all pairs of snapshots i, j = 1, 2, ...M

in the data set. The choice of the distance metric is vital in synthesizing an effective

low-dimensional manifold that captures the important modes of the process and this

will be discussed later in this section.

Once the distance metric has been computed for all snaphot pairs, we compute

the matrix A given by[41],

Aij =
(
−
d2
ij

2ε

)
i, j = 1, 2, ...M (1.3)

where ε is a measure of the local neighborhood of any point in the data set. By

construction, only data points that are separated by dij ∼
√
ε or smaller have a

nonzero contribution in the matrix. A large value for ε implies all data points are

connected while a small value implies only local connectivity. Suitable values for ε is

provided by the extent of linear regime of in a plot of log(∑i,j Aij) against log(ε) and

twice the slope of the linear region provides an estimate of the dimensionality of the

intrinsic manifold [42]. A Markov transition matrix M is constructed by normalizing

the rows of A as shown below[41].

Mij = Aij∑M
j=1 Aij

i, j = 1, 2, ...M (1.4)

Since M is a Markov matrix, the top eigenvalue and eigenvector is unity, i.e. λ1 = 1

and ν1i = 1, i = 1, 2, ...M . The intrinsic dimensionality of the system is determined
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by the presence of a spectral gap in the eigenvalue spectrum. A spectral gap after

λk+1 implies a dimensionality of k, which is much lesser than the dimensionality of the

problem 3N and λ2, λ3, ...λk+1 are the top k non-trivial eigenvalues. The mapping of

the ith snapshot into the ith components of each of the top k non-trivial eigenvectors

of the Markov matrix M is termed as the diffusion map embedding [41].

snapshoti → (ν2(i), ν3(i), ...νk+1(i)) (1.5)

While DMap analysis provides a value of k and corresponding set of reduced-space

coordinates for each data point in the set, it does not provide an explicit mapping

between the 3N -dimensional and k-dimensional coordinates. The task of identifying

useful coarse variables in the 3N -dimensional space requires some empiricism.

A simple illustration of the application of DMap technique to a Swiss roll data

set is shown in Fig. 1.2. The data set shown in Fig. 1.2(a) comprises points residing

in a 2D surface in 3D space. The distance metric dij for this case is simply the

Euclidean distance in R3. The DMap technique is able to recover the underlying

intrinsic manifold of this data set as shown in Fig. 1.2(b) where the data is projected

onto the ν2 − ν3 space.
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(a) Swiss roll data set with data
points residing in a 2D surface in
3D space. The points are colored
by their geodesic distance along the
sprial.

(b) Projection of the three dimen-
sional data onto the top two eigen-
vectors ν2 − ν3 space recovers the
underlying intrinsic manifold of the
original data.

Figure 1.2: Illustration of the DMap technique to the Swiss roll data set.

However for assemblies of particles, we require a more sophisticated distance met-

ric to capture transitions between microstates in the trajectory data set. We have

used the Hausdorff distance metric to calculate distances between sets of points (co-

ordinates of the particles in the clusters) in 3D space [43]. Let C1 and C2 denote two

configuration snaphots and C1(i) denotes the position of particle i in C1. Hausdorff

distance is defined as the maximum distance of a set to the nearest point in the other

set and is given by [40],

d(C1, C2) = max
{

max
i

min
j
‖ C1(i)− C2(j) ‖,max

i
min
j
‖ C2(i)− C1(j) ‖

}
(1.6)

Each of the two quantities inside the braces in Eq. 1.6 is the directed Hausdorff

metric and it is an asymmetric function. The Hausdorff distance is computed as

the maximum of the two directed Hausdorff metrics. Before the computation of the

Hausdorff distance metric, each of the snapshots in the trajectory data set is mean

centered, and aligned along their principal axes of inertia. This preprocessing step

is carried out to make sure the distance metric computed is invariant under simple
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Figure 1.3: Hausdorff distance metric calculation for two polygons. h(A,B) is the
directed Hausdorff distance metric from set A to B. The radius of the two solid circles
(which are equal) is the Hausdorff distance metric and each point in one set is located
at a distance that is at most equal to the Hausdorff distance from the other set.

translations and rotations of the snapshots [40]. This ensures that the DMap analysis

captures only the underlying dynamic behavior of the system and not any degrees

of freedom associated with translations and rotations. A simple application of the

Hausdorff metric to a set of points is shown in Fig. 1.3.

The underlying assumption behind the use of DMap technique to find slow coarse

variables is the fact that the system dynamics can be modeled as a diffusion process,

whereby its evolution is restrained to an intrinsic manifold parameterized by a handful

of coarse-variables, while all other degrees of freedom are effectively slaved to these

slow modes. Diffusion mapping has been applied to model the evolution of complex

biophysical systems like chain dynamics in solvents and protein folding problems

[44, 45] to determine suitable order parameters. We will apply this technique for

the assembly of small clusters of colloidal particles to identify the appropriate order

parameters for building the low-dimensional Smoluchowski models.
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1.4 Thesis Outline
This dissertation document is organized as follows. Chapter 2 begins with an in-

troduction to the depletion potential system and discusses the existing Smoluchowski

model built previously by our coworkers. It also contains the new coarse-grained

model built using the bootstrapped DMap approach, the corresponding landscape

models (FELs and DLs) and also the Markov state models and control policy maps

built by our collaboraters. Chapter 3 begins with an introduction to the electric

field (quadrupole) system and discusses the DMap results and the limitations of the

distance metric used. We present a modified implementation of DMap with a new

distance metric and present the landscape models (FELs and DLs) in the justified

coarse-variable space. We also present some calculations performed by our collabo-

raters to benchmark the low dimensional models. In contrast to the Fokker-Planck

order parameter approach presented in Chapters 2 and 3, Chapter 4 examines phase

changes in small colloidal clusters by examining potential energy histograms. We

revisit the depletion potential system here and present a quantitative analysis of

phase coexistence in small clusters by analyzing histograms from replica exchange

Monte Carlo simulations and compare them to predictions made from FELs. Finally,

Chapter 5 summarizes the main findings of this thesis and also includes some future

research directions related to this thesis and preliminary calculations for few of the

topics discussed.
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CHAPTER 2

COARSE-GRAINED LANDSCAPE MODELS:
DEPLETION POTENTIAL SYSTEM

2.1 Introduction
We investigate the phase behavior of a system of silica particles∼ 2 µm in diameter

as the main colloidal species and ∼ 200 nm in diameter poly-N-isopropylacrylamide

(PNIPAM) gel particles as the depletant. The presence of the depletants in the

solution results in a net attractive force between the silica particles through an en-

tropic mechanism that was originally described by Asakura and Oosawa(AO) [46].

Fig. 2.1(a) shows the image of the silica particles in the presence of depletants and

the corresponding pair potential interaction is shown in Fig. 2.1(b).

(a) Colloidal silica particles (blue
spheres) with PNIPAM depletants
(yellow spheres) in aqueous solution.
The red zone is excluded volume be-
tween the colloids [15].

(b) The depth of the attractive
pair potential between the col-
loids varies by a few kBT for
the temperature range T = 20
◦C - 29 ◦C [14].

Figure 2.1: Depletion potential system with its corresponding pair potential interac-
tion.
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The pair potential comprises an electrostatic double layer repulsion term and

a temperature dependent attractive depletion potential. The attractive potential is

well modeled by the AO expression with excluded volume and osmotic pressure terms

[14, 15] and the total potential energy is given by

upp
tot(rij) = upp

E (rij)− Ππ
[

4
3 (a+ L)3

(
1− 3rij

4(a+ L) +
r3
ij

16(a+ L)3

)]
(2.1)

where upp
E is the electrostatic respulsion term, a is the colloidal silica radius, L is

the radius and Π is the osmotic pressure of the depletants. It should be mentioned

here that the effective one component pair potential model in Eq. 2.1 can accurately

capture the experimental behavior when used in BD or MC simulations [14, 15]. The

osmotic pressure Π is modeled using the Carnahan-Starling hard sphere equation of

state as [47],

Π = nkBT

[
1 + φ+ φ2 − φ3

(1− φ)3

]
(2.2)

where n is the depletant bulk number density and φ is the depletant volume fraction

φ = n
4
3πL

3 (2.3)

The quantity Π is proportional to the volume fraction of solution occupied by the

depletant species and therefore proportional to L3, the cube of the depletant radius.

The radius L of the depletant particles (which also controls the range of the potential)

is highly sensitive to temperature in the neighborhood of 25 ◦C, and minor changes in

temperature can cause large changes in Π. Fig. 2.1(b) shows theoretical curves for the

pair potential in Eq. 2.1 (obtained via inverse MC analysis) for temperatures varying

between 20 ◦C (red curve) and 29 ◦C (cyan curve). It should be noted that Π can

also be controlled by varying the concentration of the depletants n in the solution.
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Depletant density n affects the depth of the interaction while temperature T affects

both the depth and range of the attractive potential via the parameter L and either

of the two variables could be changed independently to control the osmotic pressure

strength. The osmotic pressure values reported in this thesis are non-dimensionalized

as Π∗ = Πa3/kBT where kBT/a3 is the scale for Π in this system.

The particular system of interest in this study is a 32-particle cluster of the large

colloidal particles. Fig. 2.2 shows the evolution of potential energy of these clusters

in a BD simulation in the canonical ensemble in a cubic simulation box of volume

fraction φ = 0.0695 with periodic bounday conditions for Π∗ ∼ 148. The magnitude

of Π∗ can be tuned to favour fluid or crystalline configurations [48]. For Π∗ ∼ 148

where the pair potential energy at equilibrium separation is ∼ -4.35 kBT , we observe

a transition at t ∼ 3000 s from an expanded fluid-like phase to a solid-like phase. This

is an interesting feature of the depletion potential system and we wish to probe this

“crystallization” process in small colloidal clusters via the use of diffusion mapping

technique. BD or MC simulations serve as the engine for producing large amounts of

trajectory data sets which are the input for diffuion maps.
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Figure 2.2: Evolution of potential energy, U , of a 32 particle cluster from a BD
simulation. The insets show two configuration snapshots at different times in the
trajectory marked by arrows. A transition is observed from a fluid-like to a solid-like
state around t ∼ 3000 s. Simulations were carried out in the canonical ensemble in a
cubic box with periodic boundary conditions with a volume fraction φ = 0.0695 and
Π∗ ∼ 148 [49].

2.2 Coarse-Grained Smoluchowski Models
Previously, our coworkers have modeled the colloidal crystallization dynamics us-

ing both a 1D and 2D Smoluchowski model [49, 50]. The set of independent variables

in the 2D Smoluchowski model was chosen using the technique of diffusion mapping

(described in section 1.3) plus a heuristic analysis. The diffusion mapping technique

indicated that two coarse variables would be sufficient. Numerous order parameter

candidates were screened for use in constructing the model which included coordina-

tion number, cluster size, local and global orientational metrics. The final pair chosen

was radius of gyration, R∗g to capture condensation and average number of hexago-

nally close packed neighboring particles, 〈C6〉 to capture crystallinity. Both R∗g and
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〈C6〉 showed the largest percent change with cyrstallization [48]. Fig. 2.3 shows two

different snapshots with their R∗g and 〈C6〉 values. The radius of gyration, R∗g, for N

particles of radius a with position vector r is given by

R∗g = 1
aN

1
2
∑
i,j

|ri − rj|2
1/2

(2.4)

where the (∗) denotes normalization by the particle radius.

The crystallinity order parameter, 〈C6〉, is defined as the average number of crys-

talline neighbors around each particle in an ensemble. The number of coordinated

neighbors, NC(i), to particle i are all particles j within a coordination radius, rC .

Identification of crystalline nearest neighbors is based on a local sixfold orientational

order parameter for the particle i given by [51]

q̄6m(i) = 1
NC(i)

NC(i)∑
j=1

Y6m(r̂ij) (2.5)

where r̂ij is a unit vector specifying the orientation of the vector rij joining neigh-

boring particles i and j, and Y6m(r̂ij) are spherical harmonic components. The above

equation can be normalized as

q̃6m(i) = q̄6m(i)[
6∑

m=−6
|q̄6m(i)|2

] (2.6)

which is used to determine the crystalline connectivity, χ6(ij), between particle i and

neighboring particles j as

χ6(ij) =
6∑

m=−6
q̃6m(i)q̃6m(j)∗ (2.7)

where q̃6m(j)∗ is the complex conjugate of q̃6m(j). The number of crystalline near

neighbors, C6(i), for particle i is

14



C6(i) =
NC(i)∑
j=1

 1 χ6(ij) ≥ 0.5

0 χ6(ij) < 0.5

 (2.8)

which gives the value of 〈C6〉 as the average over all particles in an ensemble as

〈C6〉 = 1
N

N∑
i=1

C6(i) (2.9)

(a) Fluid-like configuration
with R∗g = 4.05, 〈C6〉 = 0.56.

(b) Solid-like configuration
with R∗g = 2.85, 〈C6〉 = 6.88.

Figure 2.3: Configuration snapshots shown along with their order parameter values
R∗g and 〈C6〉.

The data set used for DMap analysis was produced using BD simulations at

Π∗ ∼ 148 in the canonical ensemble. The data set contained 8000 snapshots that

included both fluid-like and crystalline configurations. The eigenvalue spectrum for

this data set shown in Fig. 2.4 indicates a spectral gap after the third non-trivial

eigenvalue which implies that the system dynamics can be described with at most

three dimensions in the Smoluchowski model.

15



Figure 2.4: Eigenvalue spectrum shows a spectral gap after the third non-trivial
eigenvalue λ4 indicating a dimensionality requirement of at most three for this process
[49].

The data set was examined in the top three non-trivial eigenvector coordinates

as shown in Fig. 2.5. The BD data is plotted in diffusion map coordinate space, ν2,

ν3, and ν4 and Figs. 2.5(a) and 2.5(d) show that the data essentially lie on a 2D

manifold, which implies that a 2D Smoluchowski model is sufficient to model the

dynamics. The correlations of the candidate order parameters R∗g and 〈C6〉 against

the top eigenvectors were studied. The plots colored by Rg (top row of Fig. 2.5) show

that Rg is some function of diffusion-map coordinates ν2 and ν4. This correlation is

best observed only for the values of R∗g > 3.6 where the data points lie on a nearly

one dimensional manifold in the ν2 − ν4 space. However for lower R∗g values, there is

no correlation with any of the diffusion mapping coordinates

The plots colored by 〈C6〉 (bottom row of Fig. 2.5) show a good clustering of high

and low 〈C6〉 valued points. Low 〈C6〉 values are confined to the a small region in the
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ν2 − ν4 space where there is some correlation. For 〈C6〉 > 1.5 there is no correlation

with any of the diffusion mapping coordinates. To summarize, no significant corre-

lations were observed for both R∗g and 〈C6〉 against any of the DMap coordinates.

This necessitated a search for alternate coarse-variables to build the low dimensional

Smoluchoswski models. In the following section, we discuss a robust procedure to

generate data sets and validate the choice of order parameters.

Figure 2.5: Different views of BD simulation data points plotted in the space of top
three non-trivial eigenvectors ν2, ν3, ν4. The top row is colored by R∗g and the bottom
row is colored by 〈C6〉 [49].

2.3 Diffusion Mapping: Bootstrapped Approach
Here we have adopted the idea of integrating diffusion mapping with Monte Carlo

umbrella sampling (MC-US) as proposed by Ferguson and coworkers [44]. The um-

brella sampling ensures a more complete coverage of the phase space, although the

biased nature of the sampling must be accounted for when preparing the trajectory

data set for the DMap analysis. We implemented the method as follows.
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We choose R∗g and 〈C6〉 as the starting order parameter set. As explained in the

previous section, this order parameter pair was used in constructing the intial model

and serves as a reasonable starting point. We also employed the specific attraction

strength value Π∗ = 147.74 because this value is known to produce the most complex

free energy landscape, with local minima representing both fluid-like and crystalline-

like states. We carried out umbrella sampling on a grid spacing of (0.01, 0.0625) in

the OP space ψ = (R∗g, 〈C6〉). Partially overlapping windows with side length equal

to 10 times the grid spacing were used to cover the OP space, with hard walls used

to constrain the system within a window during an MC run. We ran 50 million

Monte Carlo steps per window and, by stitching together the free energy profiles in

adjacent windows, produced a free energy landscape (FEL), F (ψ), at the resolution

of the grid. From this process we also naturally obtained a large collection of detailed

particle configurations, or snapshots, that span the range of ψ. We then associated

with each snapshot a Boltzmann weight given by

P (ψi) = e−βψi

Σie−βψi
(2.10)

We used two-dimensional interpolation on the grid to compute each F (ψi). Under

this probability distribution, we scaled up our data set using

ci = round([sP (ψi)]) (2.11)

where s is a scaling factor and ci is the multiplicity of each snapshot i. In the data

set, each snapshot was then replicated a number of times equal to ci (essentially

ci = 0 removes that snapshot from the data set). This procedure transformed the

inherently biased set of snapshots from MC-US into a set that is consistent with what

an unbiased MC walk would have produced, assuming that the underlying choice of

coarse variables provides a meaningful FEL. We set the scaling factor s = 106 and
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subsampled to generate a data set containing ∼ 104 snapshots. We employed this

pseudo-unbiased set of snapshots as the input to the DMap analysis.

2.4 Diffusion Mapping Analysis: Dimensionality & Order

Parameters
We analyzed three data sets obtained through the bootsrapped approach; one

master data set that included both fluid-like and crystalline configurations; one subset

included only those snapshots located in the fluid-like well on the FEL, and the other

included only those snapshots located in the solid-like well. This new approach led

us to discover a new order parameter that correlated much better with the diffusion

mapping coordinates than what was observed with the BD data set discussed earlier.

We introduce the new order parameter in the next section and follow it up with the

diffusion mapping results.

2.4.1 Average Cluster-Cluster Distance Metric

In addition to R∗g and 〈C6〉, we introduce D∗cc, a third order parameter which

is defined as the average pairwise distance between distinct clusters in the system

normalized by the radius of a single particle. A cluster is defined as a subset of

particles that are mutually connected by pairwise bonds. A pair of colloidal particles

is defined as bonded if they are close enough to experience the mutual attractive

entropic interaction caused by the depletant particles and that distance is 2.2 (radii

units) for the system being studied. The number of distinct clusters in an N -particle

system may range from 1 to N (N = 32 here). The pairwise distance between two

clusters is defined as the smallest distance between any pair of particles, with the pair

comprising one particle from each cluster. In the case of only one distinct cluster, Dcc

is set to a value that corresponds to the maximum bonded length for a particle pair;

this makes D∗cc an essentially continuous function with a lower bound equal to the

19



maximum bonded length. As an example, Fig. 2.6 shows two configuration snapshots,

a single cluster and a broken one. Both R∗g and 〈C6〉 show minor differences between

the two snaphots but D∗cc is able to quantify the effect of broken clusters significantly.

We test the correlations of the non-trivial eigenvectors against all the three order

parameters.

(a) Solid like con-
figuration with
R∗g = 2.85, 〈C6〉 =
6.88, D∗cc = 2.20. D∗cc
is set to a maximum
bonded length value
for a single cluster.

(b) Broken cluster
configuration with
R∗g = 2.96, 〈C6〉 =
6.32, D∗cc = 4.40. D∗cc
shows a significant change
for clusters with broken
fragments.

Figure 2.6: Configuration snapshots shown along with their order parameter values
R∗g, 〈C6〉, and D∗cc.

2.4.2 Data Sets

The first step towards generating data sets involve construction of the FEL in the

chosen OP space ψ =
(
R∗g, 〈C6〉

)
. The FELs for three different osmotic pressures are

shown in Fig. 2.7. Fig. 2.7(a) is the FEL at Π∗ = 139.76 where a basin at high R∗g and

low 〈C6〉 is the only stable fluid-like phase. At a higher value of Π∗ = 147.74, a more

stable crystalline-like solid phase emerges at low R∗g and high 〈C6〉 and the fluid-like

phase is metastable as shown in Fig. 2.7(b). The FEL for the highest osmotic pressure

Π∗ = 173.03 is shown in Fig. 2.7(c) and the only basin at high values of 〈C6〉 is the

crystalline-like solid phase. As mentioned before, since the intermediate value of Π∗
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captures the coexistence of fluid-like and solid-like phases, the corresponding FEL in

Fig. 2.7(b) is chosen to generate the data sets.

(a) Π∗ = 139.76 (b) Π∗ = 147.74 (c) Π∗ = 173.03

Figure 2.7: FELs in R∗g − 〈C6〉 space for three osmotic pressures Π∗. These FELs
demonstrate the phase behavior of these small clusters ranging from single fluid-like
phase at Π = 139.76, phase coexistence at Π∗ = 147.74 and single solid-like phase at
Π∗ = 173.03.

The outcome of weighting the configurations obtained via umbrella sampling using

the FEL is shown as an OP phase space plot in Fig. 2.8. Fig. 2.8(c) is the master data

set comprising data points in both fluid-like and solid-like basins of the underlying

original FEL. Figs. 2.8(a) and 2.8(b) are the subsets of the master data set that

contain only the fluid-like and solid-like data points respectively. Each of the data

sets in Fig. 2.8 are subjected to a DMap study.

(a) Fluid well data set (b) Solid well data set. (c) Two well data set.

Figure 2.8: Data sets in Rg−〈C6〉 space at Π∗ = 147.74. Two well data is the master
set and both fluid well and solid well are subsets of the master data set.
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2.4.3 Eigenvalue Spectum

Fig. 2.9 shows the eigenvalue spectrum for the fluid well, crystalline well, and

two-well (master) data set, respectively. A spectral gap is observed after the first non-

trivial eigenvalue in Fig. 2.9(a) and the first two non-trivial eigenvalues in Figs. 2.9(b)

and 2.9(c), which indicates a dimensionality of at most two.

(a) Eigenvalue spectrum for
fluid data.

(b) Eigenvalue for solid well
data.

(c) Eigenvalue for two well
data.

Figure 2.9: Eigenvalue spectra for the three data sets generated using the boot-
strapped approach. The three spectra indicate a dimensionality requirement of at
most two to model the assembly process.

2.4.4 Eigenvector Correlations & Analysis

Figs. 2.10, 2.11, and 2.12 show the data sets plotted in the coordinates of the

first two non-trivial eigenvectors, i.e., in ν2 − ν3 space. The data points are colored

by the value of order parameter R∗g in Figs. 2.10(a), 2.11(a), and 2.12(a), 〈C6〉 in

Figs. 2.10(b), 2.11(b), and 2.12(b), and D∗cc in Figs. 2.10(c), 2.11(c), and 2.12(c).

Fig. 2.10 shows the data for the fluid well. The DMap coordinate ν2 corresponding to

the single non-trivial eigenvalue in Fig. 2.9(a), correlates best with R∗g. Fig. 2.11 shows

the data for the solid well. The data points are clustered both by R∗g and 〈C6〉, but

D∗cc shows an excellent correlation with ν2 as indicated by the continuous change of

color from left to right in Fig. 2.11(c). The two-well (master) data set is shown in Fig.

2.12. By comparing the two-well data to the solid well data in Fig. 2.11, we see that

the fluid data are localized near the vertex of the angle formed by the two branches
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of the crystalline data. As with the crystalline well data, Dcc correlates best with ν2.

For the data sets that include the crystalline well, Figs. 2.11 and 2.12, we observe

a symmetry about the ν3 = 0 axis. This symmetry suggests that this coordinate is

capturing some inversion degrees of freedom, which are not of particular interest in

this study. Overall, the DMap analysis leads us to the conclusion that the OP space

ψ =
(
R∗g, Dcc

)
will provide a better coarse-grained representation than the originally

chosen space
(
R∗g, 〈C6〉

)
. R∗g correlates best with the only important coordinate in the

fluid well. D∗cc correlates best with the first important coordinate in the crystalline

well, while the second important coordinate in this well seems to be associated with

an inversion symmetry that is not of interest. Figs. 2.11(a), 2.11(b), 2.12(a), and

2.12(b) indicate redundancy of information contained by R∗g and 〈C6〉, suggesting

that the latter variable may be replaced.

(a) Fluid data set in ν2 − ν3
space colored by R∗g.

(b) Fluid data set in ν2 − ν3
space colored by < C6 >.

(c) Fluid data set in ν2 − ν3
space colored by D∗cc.

Figure 2.10: Eigenvector correlations for the fluid data set with the three order pa-
rameters R∗g, 〈C6〉, and D∗cc. R∗g shows the best correlation with ν2 compared to either
〈C6〉 or D∗cc.
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(a) Solid data set in ν2 − ν3
space colored by R∗g.

(b) Solid data set in ν2 − ν3
space colored by 〈C6〉.

(c) Solid data set in ν2 − ν3
space colored by D∗cc.

Figure 2.11: Eigenvector correlations for the solid data set with the three order
parameters R∗g, 〈C6〉, and D∗cc. While R∗g and 〈C6〉 cluster data points, D∗cc shows the
best correlation with ν2.

(a) Two well data set in ν2−
ν3 space colored by R∗g.

(b) Two well data set in ν2−
ν3 space colored by 〈C6〉.

(c) Two well data set in ν2−
ν3 space colored by D∗cc.

Figure 2.12: Eigenvector correlations for the two well data set with the three order
parameters R∗g, 〈C6〉, and D∗cc. R∗g and D∗cc once again cluster data points whereas
D∗cc shows best correlation with ν2. ν3 is a symmetry variable not important for the
dynamics of this process.

We now have identified a set of OPs that correlate very well with the DMap

coordinates of the data set, which we did not have before when studying a single data

set from BD simulations. The bootstrapped approach helped generate data sets with

complete coverage of phase space and analyze multiple data sets with diffusion maps.

We discuss the low-dimensional Smoluchowski models built in
(
R∗g, D

∗
cc

)
space in the

following section.
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2.5 Equilibrium and Dynamic Landscape Models
2.5.1 Free Energy & Diffusivity Landscapes

By fitting trajectories in the newly chosen coarse variable space ψ =
(
R∗g, D

∗
cc

)
based on DMap analysis, both free energy and diffusivity landscapes are generated for

four values of osmotic pressures. The reason for including a higher osmotic pressure

would be explained in further detail in the following section on model validation. The

FELs shown in Fig. 2.13 provides thermodynamic information on the likelihood of the

system being in different regions of the OP space. The free energy differences capture

the thermodynamic driving force that influences trajectory drift between different

states. In the FEL in Fig. 2.13(a), there is a global minimum located around (4.9,

4.2), which corresponds to fluid-like structures. As Π∗ increases to 147.74, there

is emergence of two wells located at (4.9, 3.8) and (4.1, 3.1) in Fig. 2.13(b) that

indicates coexistence of fluid-like structures and solid-like structures. At higher Π∗,

large free energy gradients drive fluid-like structures towards solid-like structures with

low D∗cc and low R∗g. At regions around (3.5, 3.1) in Fig. 2.13(c), there exist a local

minimum with kBT scale energy barrier prior to assembly trajectories entering the

global minimum near (2.2, 3.0). Fig. 2.13(d) contains a deep free energy minimum

at D∗cc = 2.2 corresponding to a single compact cluster at high attraction strengths.

The diffusivity landscapes shown in Fig. 2.14 characterize the drift and diffusion

mediated by the free energy gradient. The off-diagonal terms of the diffusivity tensor

D are negligible and not reported here. The D∗ccD∗cc and R∗gR∗g components are shown

in figures 2.14(a)-(d) and 2.14(e)-(f) respectively. For each Π∗, the D∗ccD∗cc component

shows higher values at D∗cc ∼ 2.2 − 3, which characterize the large fluctuations due

to particles attaching to or breaking from a cluster. For the R∗gR∗g component, higher

values appear at moderate extent of condensation (R∗g ∼ 3.2−4.0), where particle ar-

rangement results in strong fluctuations in R∗g. Both the diagonal components D∗ccD∗cc

and R∗gR∗g show a decrease in magnitude at lower R∗g values as the configurations be-

25



come more condensed and compact allowing little room for particles to move around

in the cluster, especially at increased attraction levels.

Figure 2.13: Free energy landscapes generated at four different osmotic pressures (a)
Π∗ = 139.76, (b) Π∗ = 147.74, (c) Π∗ = 173.03, (d) Π∗ = 252.89 from Smoluchowski
analysis.

26



Figure'7'

(a)                            (b)                             (c)                            (d) 
 
 
 
 
 
 
 
(e)                            (f)                             (g)                             (h) 

Figure 2.14: Diffusivity landscapes generated at four different osmotic pressures (a)-
(e) Π∗ = 139.76, (b)-(f) Π∗ = 147.74, (c)-(g) Π∗ = 173.03, (d)-(f) Π∗ = 252.89 from
Smoluchowski analysis. Top rows show the DD∗ccD

∗
cc
component and the bottom rows

show the DR∗gR
∗
g
component.

2.5.2 Model Validation

The low-dimensional Smoluchowski models are examined by comparing the proba-

bility propagator constructed from particle-scale Brownian dynamic (BD) simulations

and order-parameter-scale low dimensional Langevin dynamics (LDLD) simulations.

The LDLD simulations are based on a Langevin equation given by [52],

Ψ(t+∆t) = Ψ(t)−D(Ψ).(kBT )−15W (Ψ)∆t+5.D(Ψ)+[2D(X∆t)]1/2 Γ(t) (2.12)

where all the symbols retain the same meaning as explained in Eq. 1.2 and Γ(t)

is a Gaussian noise term. An accurate Smoluchowski model will reproduce ρ(Ψ, t)

obtained from high-dimensional BD simulations. Fig. 2.15 shows the comparison

between BD and LDLD simulations performed at Π∗ = 147.74 for an observation

time t = 10 s for two starting points. The time scale is smaller than the global
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relaxation time (i.e., order 103 s) and larger than the Brownian time scale (i.e., order

10−1 s) and is expected to capture the transient assembly dynamics. Fig. 2.15 shows

good agreement between BD and LDLD simulations starting at (5.2, 4.4) and (4.5,

3.2), which are the located inside the two wells at Π∗ = 147.74. Similar comparisons

for the fluid well at lower Π∗ and solid well at higher Π∗ confirm that the high-

dimensional particle scale model can be well approximated by low-dimensional order

parameter based dynamic models.

Figure'8'

(a)                                   (b) 
 
 
 
 
 
 
 
(c)                                   (d) 

Figure 2.15: Probability propogator obtained from BD and LDLD simulations at
Π∗ = 147.74. Simulations were initiated from (5.2, 4.4) for (a)BD, (b)LDLD and
(4.5, 3.2) for (c)BD, (d)LDLD.
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2.6 Markov State Model for Control Policy Maps
In order to utilize the low-dimensional model for controlling the assembly, our

collaborators in consultation with our group constructed a Markov decision process

(MDP). MDP has previously been used to achieve a highly ordered colloidal crystal

in a Markov chain transition state model of the assembly process, using electric field

and depletion force as control input. Here we construct a Markov decision process

framework to study the control of the colloidal crystals to form a single crystalline

state using the system osmotic pressure as the control variable, and implementing the

control in a BD simulation. The methods for constructing a MDP is outlined in [52].

We summarize the results below.

The first step is the validation of the model by comparing the sampling of Markov

chain Monte Carlo simulations with BD simulations. Fig. 2.16 compares the Markov

chain Monte Carlo simulation (1000-realization averaged) to 1000-realization averaged

BD simulation. These simulations are run at constant Π∗ without control. In Fig.

2.16, ‘BDUnCon’ denotes the uncontrolled BD simulation and ‘MCUnCon’ denotes

the uncontrolled Markov chain Monte Carlo simulation. All the simulations started

from the same fluid-like initial state and were simulated for 500 s. The comparison

shows that the transition matrices are able to approximate the BD simulation qual-

itatively and with reasonable quantitative accuracy, capturing the differences across

the four osmotic pressure levels. Under the high Π∗ values (Π∗3 and Π∗4), the system

is able to reach a more crystalline final state (given the same amount of simulation

time), indicated by low R∗g and D∗cc values. Under the action of Π∗3, system can achieve

a greater degree of condenstation (low R∗g), while with Π∗4, the system gets to lower

values of D∗cc relative to Π∗3. It is due to this reason that we have included the fourth

level of osmotic pressure (Π∗4) and built the landscapes for all four Π∗ as discussed in

the previous section. Given these observation, some combination of both Π∗3 and Π∗4

can lead to the desired target state.
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Figure'9'Figure 2.16: OP phase space trajectory comparison between Markov chain models
and the full scale BD simulations at four Π∗ values. The Markov models are able to
reasonably capture the trend at all the osmotic pressure strengths.

Given the transition matrix models, we constructed a time-independent optimal

control policy with dynamic programming using the policy iteration algorithm. The

objective function or the reward fucntion R being minimized is given by [52],

R = 1
R∗2g

+ 1
D∗2cc

(2.13)

This reward function attempts to drive the system simultaneously towards low

R∗g and low D∗cc values where free energy minimum is located at high attraction

strengths. The control policy is shown in Fig. 2.17 as a lookup table. The numbers

in the color bar stand for the control action Π∗ values, increasing from Π∗1 to Π∗4

accordingly. Given its time-independent property, with the current R∗g and D∗cc values

known, the corresponding control action can be taken directly from this table. With

approximately 10,000 discrete states, the policy calculation can be achieved in only

a few minutes.
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According to Fig. 2.17, the optimal control policy is mostly confined to the use

of the high Π∗ values, Π∗3 and Π∗4. When the system is close to the global minimum

point around R∗g = 2.8 and D∗cc = 2.2, Π∗4 is used to lock the system in the minimum.

A single controlled BD simulation is plotted on top of the policy map, starting from

a fluid-like state of R∗g = 3.78, D∗cc = 5.0. A combination of Π∗3 and Π∗4 is able to drive

the system close to the global free energy minimum.
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Figure'10'
Figure 2.17: Optimal control policy for four osmotic pressures computed from Markov
chain model using dynamic programming. A combination of Π∗3 and Π∗4 drive the
system from a fluid-like state to the global free energy minimum as shown by the red
trajectory.

The effectiveness of the control policy is evaluated by applying it to both the

Markov chain model as well as BD simulations. A comparison of 250-realization-

averaged order parameter simulation results with and without control in BD simula-

tions is shown in Fig. 2.18. In Fig. 2.18, the trajectory labeled ‘BDCon’ stands for

250-realization-averaged BD simulations with control. Trajectories labeled ‘BDΠ∗’

are 250-realization-averaged BD simulations under constant Π∗ values. All these tra-

jectories are simulated for 500 s, starting from the same initial fluid-like state of

31



R∗g = 3.78 and D∗cc = 5.0. Fig. 2.18(a) shows the average trajectories in the OP phase

space. Inspection of the controlled trajectory reveals a decrease in the final D∗cc value,

compared to that under the action of Π∗3, as well as a lower R∗g value compared to

that under the action of Π∗4. Fig. 2.18(b) shows the same trajectory as a function of

time. In all three cases, the time scales for the system response are similar, but end

up at different terminal states.
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Figure 2.18: Comparison between 500 s long, 250 realization-averaged order param-
eter trajectories with and without control policy.

2.7 Summary & Conclusions
We studied the phase behavior of a small cluster of silica colloidal particles in

aqueous solution interacting via a temperature tunable kBT scale depletion potential.

We modeled the thermodynamic and dynamic behavior by building a low-dimensional

Smoluchowski model in a coarse-grained order parameter phase space. We applied

a bootstrapped diffusion mapping technique to determine suitable order parameters
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to build the low-dimensional models. The initial coarse variable pair (Rg, 〈C6〉) was

chosen from a previously existing model where the diffusion maps did not show any

significant correlations with either R∗g or 〈C6〉. We introduced a third order parameter,

average cluster to cluster distance metric, D∗cc, that was able to track the breakage or

coalescence of clusters in the assembly. By use of the bootstrapped technique, we were

able to generate mutliple data sets that spanned the fluid-like and solid-like regions

of phase space and studied the correlations of the candidate order parameter set with

the non-trivial eigenvectors. R∗g showed excellent correlation with the eigenvector in

the fluid data set while D∗cc showed excellent correlation with the eigenvector in data

sets that included the solid-like well. We replaced 〈C6〉 with D∗cc and built energy

and diffusivity landscapes in
(
R∗g, D

∗
cc

)
. The Smoluchowski models were validated

by comparison of full scale BD simulations with low dimensional Langenvin dynamic

simulations in the coarse variable space. Markov state models were also built for

computing a control policy sequence that utilized the information from the landscape

models to optimally guide the system towards the desired target crystal structure.
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CHAPTER 3

COARSE-GRAINED LANDSCAPE MODELS: ELECTRIC
FIELD (QUADRUPOLE) SYSTEM

3.1 Introduction
The second model system we investigate is the electric field mediated assembly

or the quadrupole system. It comprises an assembly of colloidal silica particles ∼ 3

µm in diameter confined within quadrupole electrodes that are connected to a gen-

erator. The high frequency AC applied electric field causes the formation of induced

dipoles in the colloids. These induced dipoles interact with the electric field and with

each other. Fig. 3.1(a) and Fig. 3.1(b) show the co-planar thin gold film quadrupole

electrode. Fig. 3.1(c) shows the cluster of colloids in the center of the electrodes and

Fig. 3.1(d) is the contour plot of the electric field and the field strength is minimum at

the center of the electrodes. The interaction energy between the colloids is modeled as

a combination of electrostatic double layer (DLVO), induced dipole-inhomogeneous

electric field, and induced dipole-induced dipole interactions [16–20]. The gravita-

tional potential acts in the direction normal to the underlying wall and helps confine

colloids to a monolayer. The net potential energy for the system is given by,

unet(r) =
N∑
i=1

upfde,i +
∑
〈i,j〉

(
uppe,i,j(r) + uppdd,i,j(r)

)
(3.1)

where r is the 3N dimensional vector with position information of all particles in the

system, uppe,i,j(r) is the electrostatic potential between particles i and j, and uppdd,i,j(r)

is the induced-dipole induced-dipole potential between particles i and j, and uppde,i(r)

is the induced dipole-inhomogeneous electric field potential of particle i.
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Figure 3.1: Co-planar thin gold film quadrupole electrode. (a) Top view of device
showing connections to the generator. (b) Schematic of the device setup. (c) 3 µm
silica colloids in the quadrupole electrode center at the electric field minimum. (d)
Contour plot of the electric field with linear spectrum scale [19, 20].

An interesting feature of this system is the formation of different microstructures

like fluids, quasi-2D chains, polycrystalline configurations with multiple misoriented

domains, and hexagonal packed crystals. In particular, polycrystalline configurations

form due to coalescence of individual crystal domains at increased field strength

resulting in grain boundaries and the migration of the defects towards edge of the

crystal results in formation of nearly perfect crystal structures [53]. In contrast, we

noticed a phase change from a fluid-like to a crystalline configuration in the case of

depletion potential in Chapter 2. Here we seek to probe this feature of grain boundary

formation and annealing of defective microstructures to form perfect crystals by use

of the diffusion mapping technique.
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3.2 Diffusion Mapping Analysis: Dimensionality & Order

Parameters
3.2.1 Order Parameters

We have used three order parameters to characterize the particle configurations

in this system. The first metric is radius of gyration, Rg which is used to capture the

condensation of the clusters. It is calculated as given in the equation

Rg =

 1
N

1
2
∑
i,j

|ri − rj|2
0.5

 /Rg,Hex (3.2)

where a is the particle radius and N is the system size. Rg,Hex is the normalizing factor

which is the radius of gyration for 2D HCP clusters with regular polygon morphologies

and is given by [54],

Rg,Hex =
√

5
3 aN0.5 (3.3)

The presence of global order in the crystals is estimated using ψ6 [55] calculated

as

ψ6,j = 1
NC,j

NC,j∑
k=1

ei6θjk (3.4)

ψ6 = 1
N

N∑
j=1

ψ6,j (3.5)

where ψ6,j is the six-fold bond orientation order parameter of particle j, NC,j is the

number of neighbors with the coordination radius of particle j, θjk is the angle between

particle j and each neighboring particle with an arbitrary reference direction, and ψ6

is the average local bond orientation determined by averaging over all particles, which

produces values between zero and one. The third order parameter is 〈C6〉, which is the

average local six-fold connectivity order. It is calculated from the following equations.
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Figure 3.2: (a) Microstructure evolution of the 210 quasi-2D colloidal systems from
quadrupole experiments and (e) the corresponding evolution of the three order pa-
rameters Rg, 〈C6〉, and ψ6 [53].

χ6,jk =
|Re

[
χ6,jχ

∗
6,k

]
|

|χ6,jχ∗6,k|
(3.6)

C6(j) =
NC(j)∑
k=1

 1 χ6,jk ≥ 0.32

0 χ6,jk < 0.32

 (3.7)

〈C6〉 = 1
N

N∑
i=1

C6(i) (3.8)

Fig. 3.2 shows the various microstructures formed during the experiment. The

plot also shows the evolution of the three order parameters. Rg decreases instantly

as a result of the condensation and 〈C6〉 increases as a result of emergence of local

order in the crystal. However, ψ6 is sensitive to the defects and it gradually increases

as the grain boundaries migrate towards the edge of the crystal domain.

Fig. 3.3 shows three representative snapshots with their order parameter values.

Rg is able to distinguish between fluid-like configuration in Fig. 3.3(a) and condensed

clusters in both Figs. 3.3(b) and 3.3(c). 〈C6〉 is a meaure of only local order and is

high for both defective and nearly perfect clusters while ψ6 is sensitive to the presence

of defects and can distinguish between the two states in Figs. 3.3(b) and 3.3(c).
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(a) Rg = 14.7, 〈C6〉 =
2.12, ψ6 = 0.105.

(b) Rg = 11.75, 〈C6〉 =
5.03, ψ6 = 0.242.

(c) Rg = 11.58, 〈C6〉 =
5.37, ψ6 = 0.92.

Figure 3.3: Representative configuration snapshots with their order parameter values
for Rg, 〈C6〉, and ψ6.

3.2.2 Data Sets

For the diffusion mapping analysis, a large number of configuration (snapshots)

were generated using BD simulations for a system size of N = 210 with a normalized

voltage V ∗ = 0.80. The data set contains ∼ 8000 configurations spanning all relevant

regions of phase that includes fluid-like, polycrystalline, and crystalline states. The

data sets are shown in OP space in Fig. 3.4. We note that both Rg and 〈C6〉 show a

high degree of correlation with condensation and emergence of local order as can be

seen in Fig. 3.4(b). However ψ6 shows a gradual increase towards unity as the defects

migrate towards the edge of the crystal. The diffusion mapping analysis for this data

set follows.
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(a) BD data set in 〈C6〉−ψ6
space colored by Rg.

(b) BD data set in 〈C6〉−Rg
space colored by ψ6.

(c) BD data set in ψ6 − Rg
space colored by 〈C6〉.

Figure 3.4: BD data sets for field assembly plotted in the space of Rg, 〈C6〉, and ψ6.
The set contains fluid-like, polycrystalline and perfect crystalline configurations.

3.2.3 Eigenvalue Spectum

The eigenvalue spectrum from diffusion maps exhibits a large spectral gap after

λ2 and a smaller gap after λ4, as shown in Fig. 3.5. This spectrum indicates a strong

one-dimensional characteristic to the data, with the possibility of two additional di-

mensions of lesser importance.

Figure 3.5: Eigenvalue spectrum for the BD dataset contains a big spectral gap
after the first non-trivial eigenvalue λ2 and a smaller gap after the third non-trivial
eigenvalue λ4. This implies a strong one-characteristic to the data, with two additional
dimensions of lesser importance.
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3.2.4 Eigenvector Correlations & Analysis

The data are plotted in the space of corresponding non-trivial eigenvectors, ν2 −

ν3 space in Fig. 3.6 and ν2 − ν4 space in Fig. 3.7. We observe that the data are

clustered into two distinct one-dimensional objects that are mirror images across the

ν4 = 0 axis in Fig. 3.7. Therefore we conclude that ν4 is likely a symmetry variable

of no importance to the intrinsic dynamics of the assembly process. Projection of

the data onto the ν2 − ν3 space in Fig. 3.6 suggests that the points lie on a one-

dimensional curve, implying that ν3 has a functional dependence on ν2. Ferguson

et al. [45] reported that such functional dependencies indicate multiple eigenvectors

characterizing the same dynamic pathway. Although not shown in the figures here,

we have also plotted the data in the coordinate space of higher-order eigenvectors, up

to ν8, and the data always appear to remain on a one-dimensional manifold.

We also studied how the eigenvectors correlate with the candidate order param-

eters that have been described previously by coloring plots in Figs. 3.6 and 3.7.

Fig. 3.6(a) shows that Rg is very well correlated with ν2, as indicated by the con-

tinuous spectrum of color in the ν2 coordinate. Fig. 3.6(c) shows that data points

with larger values of ψ6 are clearly confined to the region of high ν2 values, and while

there is some clustering of points by color in that region, ψ6 does not show a signifi-

cant correlation with any of the top three eigenvectors. From the diffusion mapping

analysis, we conclude that the data lie on a one-dimensional manifold that is strongly

correlated with Rg but not with ψ6.
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(a) Data in ν2−ν3 space col-
ored by Rg.

(b) Data in ν2−ν3 space col-
ored by 〈C6〉.

(c) Data in ν2−ν3 space col-
ored by 〈C6〉.

Figure 3.6: Data set plotted in ν2 − ν3 space colored with the OPs Rg, 〈C6〉, and ψ6.
Date points lie on a one dimensional curve with ν3 being a strong function of ν2. Rg

shows the best correlation with ν2.

(a) Data in ν2−ν4 space col-
ored by Rg.

(b) Data in ν2−ν4 space col-
ored by 〈C6〉.

(c) Data in ν2−ν4 space col-
ored by ψ6.

Figure 3.7: Data set plotted in ν2 − ν4 space colored with the OPs Rg, 〈C6〉, and ψ6.
ν4 is a symmetry variable that is not important to the dynamics of the process.

3.2.5 Limitations of the Hausdorff Distance Metric

We examined the sensitivity of the Hausdorff distance metric that was used in

the construction of the probability transition matrix M. We isolated snapshots in

phase space that represent fluid-like, defective crystals and perfect crystal states and

randomly chose snapshots from each state that were not correlated in BD time or

MC trajectory but had similar order parameter values Rg and ψ6. The average

Hausdorff distance metric between expanded and condensed states was much higher

than those between defective and perfectly ordered crystals. Thus the distinction
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between defective and perfect crystals is not sharp in the distance metric. This is

best observed in Fig. 3.8 which shows the blurred boundary between defective and

perfect crystals. This analysis also reveals why condenstaion and not grain boundary

motion is the only dominant feature of the directed assembly process as perceived by

diffusion maps.

Figure 3.8: State (A) Expanded fluid-like structures State (B) Condensed defective
structures and State (C) Condensed perfect crystal structures. The dashed circles
around each solid circle is a measure of variations of Hausdorff distance within each
state. The more interesting observation is the average distance µd between states A-B
or A-C is much greater than B-C, i.e. µd,AB ∼ µd,AC � µd,BC .

3.2.6 Modification of the Distance Metric in DMap Analysis

Based on the limitations of Hausdorff distance metric, we modified the distance

metric used in the DMap analysis by augmenting the distance metric with an angular

contribution that accounts for the local orientational arrangement about each particle
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in the cluster. The local orientation distance metric between snaphot i and j, O, is

given by [56],

Oij = min
θt

‖ hi(θ)− hj(θ + θt) ‖2 (3.9)

where hi(θ) is the normalized bond angle histogram for snapshot i, θt is the offset in

order to achieve the global optimal alignment. This orientational metric is combined

with Hausdorff distance metric to effectively yield an augmented distance metric

∆ij =
( Hij

||H||2

)2

+
(
Oij

||O||2

)2
 (3.10)

The diffusion mapping results (for the same data set used before) with the new

distance metric are shown in Fig. 3.9. The eigenvalue spectrum in Fig. 3.9(A) is sim-

ilar to Fig. 3.5 where there is a large spectral gap after the first non-trivial eigenvalue

and a smaller gap after the third. The top three non-trivial eigenvectors are plotted

in Figs. 3.9(C),(D) and the data points effectively lie on a two dimensional manifold.

We observe from both Figs. 3.9(B),(C) that Rg shows a very good correlation with

ν2. We also observe from Fig. 3.9(D) that ψ6 is some function of both ν2 and ν3

while ν4 has a strong functional dependence on ν2 and does not contribute towards

the dynamics of the process. We should note here that the correlation (as seen by

the color separation) shown by ψ6 is much better than the correlation observed in

Fig. 3.6(c). The new distance metric can differentiate between defective and perfect

crystals and this is manifest in the improved correlations ψ6 shows with the eigenvec-

tors. Thus we conclude from this analysis that both Rg and ψ6 are the most suitable

order parameter candidates to build the Smoluchowski model.
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Figure 3.9: (A) Eigenvalue spectrum shows a big spectral gap after λ2 and smaller
gap after λ4 (B)Phase space plot of Rg−ψ6 colored by first non-trivial eigenvector ν2
(C) Data set in ν2 − ν3 − ν4 space shows a very good correlation between ν2 and Rg

(D) Data set in ν2 − ν3 − ν4 space shows that ψ6 is some function of both ν2 and ν3.

3.3 Equilibrium & Dynamic Landscape Models
3.3.1 Free Energy & Diffusivity Landscapes

Based on the diffusion mapping analysis, free energy and diffusivity landscapes

are constructed in the OP space Rg and ψ6. At the lowest voltage V ∗ = 0.42 shown in

Fig. 3.10(A), the global minimum is located at ψ6, Rg ∼ .25, 1.18 and configurations

in the vicinity of the minimum have a dense fluid-like structure consisting of several
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ordererd clusters. These configurations (rendering I of Fig. 3.10(A)) lack global order

due to weak electric field strength incapable of compressing the induced dipoles to

form close packed structures. A single trajectory on top of the energy landscape in

Fig. 3.10A shows the compression of an expanded fluid like state and its approach

towards the global minimum. The four diffusivity components are shown in the

middle column of Fig. 3.10(A). The Dψ6ψ6 component (upperleft) has relatively large

values in the neighborhood of ψ6 ∼ 0.2−0.3, which is consistent with grain boundary

motion in polycrystalline structures that produces larger fluctuations in ψ6. Cross

terms in the diffusivity landscapes, both DRgψ6 and Dψ6Rg have values mostly close

to zero, except for slightly negative values in the vicinity of ψ6, Rg ∼ 0.4, 1.18. These

negative values indicate a weak coupling between the condensation and the ordering

process.

As voltage is increased to V ∗ = 0.5, the global minimum shifts to ψ6, Rg ∼

0.6, 1.14, showing increased condensation and global ordering as seen in Fig. 3.10(B).

The equilibrium structure (rendering III) has a single central hexagonal close packed

core surrounded by a thin fluid-like envelope. The free energy gradient in the Rg

direction is steeper at higher voltages, while it is shallow in the ψ6 direction. The

bi-domain crystals shown with low values of both ψ6 and Rg (rendering II) have

misorientation angles close to 30◦, which are metastable structures with minimal

driving force for grain boundary migration. For the DL at this voltage, both the

diagonal components decrease as Rg becomes smaller, owing to the formation of

dense clusters that hinders particle rearrangement. At the highest voltage V ∗ = 0.57

shown in Fig. 3.10(C), the global minimum is at ψ6, Rg ∼ 0.6, 1.14, with more ordered

and condensed equilibrium structures (rendering VI). The free energy plateau region

extends along ψ6 ∼ 0− 0.5 at low Rg values.

The FEL in Fig. 3.10(C) contains two typical assembly pathways denoted as T1

and T2. The T1 trajectory corresponds to rapid condensation along a steep free
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energy gradient where two locally ordered domains coalesce into a bi-crystal with a

near maximum 30 ◦ misorientation angle. From V to VI, the bi-crystal relaxes into a

single domain as one grain grows at the expense of the other.

In contrast to T1, the T2 trajectory develops higher global order via initial stochas-

tic motion before it moves down the free energy gradient and is rapidly funneled

towards the global free energy minimum. The intermediate microstructure (render-

ing IV) is typically characterized by domains with similar orientation (i.e. small

misorientation angle). Domains with small misorientation angles easily relax during

coalescence and condensation, which is consistent with a smaller free energy barrier

to grain boundary motion. As a result, T2 is able to bypass the free energy plateau

at low Rg to avoid the slow diffusion process encountered in the T1 trajectory, which

results in much faster equilibration the global free energy minimum single crystal.

For all voltages, all diffusivity components uniformly decreases with decreasing Rg,

so that paths T1 and T2 do not experience significantly different levels of friction as

part of determining the total time to produce single perfect crystals.
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Figure 3.10: FELs and DLs from the Smoluchowski model constructed at (A) V ∗ =
0.42 (B) V ∗ = 0.50 (C) V ∗ = 0.57. Left column contains the FELs with sample
trajectories plotted in the OP phase space. Middle column contains the diffusivity
tensor components (left-to-right, top-to-bottom): Dψ6ψ6 , Dψ6Rg , DRgψ6 and DRgRg

Last column shows representative configurations for the coordinates marked on the
FEL in the left column.
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3.3.2 Model Validation

The low-dimensional models based on the landscapes shown in Fig. 3.10 not only

provide qualitative information about the assembly process but also quantitatively

capture assembly dynamics. By evaluating statistical properties of trajectories from

the full N-dimensional BD simulations and low-dimensional Langevin dynamic (refer

to Eq. 2.12 for the Langenvin equation) simulations, such as the first passage times

for transitions from one state to another, it is possible to evaluate the accuracy of

the LDLD model. Fig. 3.11 compares first passage time distributions from BD and

LDLD simulations at V ∗ = 0.57. First passage time distributions show histograms of

the times it takes to pass for the first time between initial states and end states char-

acterized by (ψ6, Rg) coordinates on the FEL. The first passage time is a distribution

due to the stochastic nature of the assembly dynamics.

As depicted in Fig. 3.11(A), we simplify the presentation of first passage time

distributions by comparing assembly processes characterized by either (1) conden-

sation along the steep free energy gradient parallel to the Rg axis (Fig. 3.11(B)),

or grain boundary relaxation along the free energy plateau parallel to the ψ6 axis

(Fig. 3.11(C)). For as assembly driven by condensation, Fig. 3.11(B) shows a set of

first passage time distributions for assembly trajectories between initial and final Rg

coordinates specified in the figure caption. These distributions are obtained by aver-

aging over all ψ6 coordinates sampled during condensation. In the case of trajectories

dominated by grain boundary relaxation, Fig. 3.11(C) shows first passage time distri-

butions for trajectories between initial and final ψ6 coordinates, which are averaged

over all Rg coordinates. It is interesting to note that the mean first passage time for

grain boundary motion is an order of magnitude higher when compared to condensa-

tion. A very good agreement is observed between the N -dimensional BD simulations

and the LDLD simulations, confirming the accuracy of the landscape models from

the Smoluchowski analysis.
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Fig. 3.11(D) also shows first passage time distributions roughly corresponding

to trajectories T1 and T2 in Fig. 3.10(C). The fast T2 trajectory makes it to the

global free energy minimum single crystal nearly two orders of magnitude faster than

the slow T1 trajectory that is slowed down by the presence of the free energy plateau

corresponding to grain boundary diffusion. This large difference in first passage times

is not captured when projecting onto a single dimension (Rg or ψ6) as shown by the

first passage times in Figs. 3.11(B),(C).
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Figure 3.11: First passage time distribution (FPTD) comparisons between BD (black)
and LDLD (red) trajectories.(A) Vertical arrow denots condenstation along the steep
free energy gradient and horizontal arrow denotes grain boundary migration along the
free energy plateau. (B) FPTD for condensation process for initial and final Rg states
between (top to bottom curves): (1.24,1.22), (1.22,1.20), (1.20,1.18), (1.18,1.16), and
(1.16,1.14). (C) FPTD for grain boundary migration for initial and final ψ6 states
between (top to bottom curves): (0.4,0.6), (0.3,0.5), and (0.2,0.4). (D) FPTD corre-
sponding to T1 and T2 in Fig. 3.10 between a sink at ψ6 = 0.7, Rg = 1.18 and sources
at ψ6 = 0.15, Rg = 1.13 (circles) and ψ6 = 0.5, Rg = 1.14 (triangles).

After showing the accuracy of the LDLD model via first passage time distribu-

tions, it is possible to completely explore the dynamic evolution of the system by using

the low dimensional models in Fig. 3.10 to numerically solve the Smoluchowski equa-
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tion. This provides more complete information on the time evolution of states during

stochastic assembly processes (e.g. compared to first passage times alone). Fig. 3.12

shows the solution of SE (p(x, t)) at different voltages and observation times ∆t, with

given initial conditions, p(x, 0) = δ(x− x0), x0 = (0.025, 1.22), which corresponds to

an initial fluid configuration.

At the lowest voltage, Figs. 3.12(A),(B) show that the evolution of p(x,∆t) is

characterized by slow drift and diffusion of the initial delta function towards the new

equilibrium state, which is a broader distribution of configurations centered on a more

condensed fluid like state. Convergence to the equilibrium Boltzmann distribution

is observed to occur within 200 s (most easily seen from blue and cyan curves in

Fig. 3.12(B)). At the intermediate voltage, Figs. 3.12(C),(D) show how p(x,∆t) drifts

rapidly towards more condensed and ordered states before a loosely packed crystal

state emerges between 100-200 s and the equilibrium distribution is reached within ∼

400 s. At the highest voltage, which corresponds to conditions when a single crystal is

expected as the global free energy minimum configuration, Figs. 3.12(E),(F) show how

p(x,∆t) drifts even more rapidly toward evolving ordered configurations that once

again reach the equilibrium distribution in ∼ 400 s. The results in Fig. 3.12 show

how the low-dimensional model captures the stochastic evolution of the probability

density of states at different thermodynamic conditions, which captures all dynamic

information necessary to design, control, and optimize colloidal assembly schemes in

this system.
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Figure 3.12: Numerical solution of the Smoluchowski equation to calculate p(x, t)
at observation times ∆t = 10 s, 100 s, 200 s, and 400 s at applied voltage (A),(B)
V ∗ = 0.42 (C),(D) V ∗ = 0.50 (E),(F) V ∗ = 0.57. Initial conditions for all cases is
p(x, 0) = δ(x − x0), x0 = (ψ6, Rg) = (0.025, 1.22). The left column are 2D contour
plots of p(x, t) and right column are 1D projections onto the ψ6 coordinate for ∆t =
10 s (black), 50 s (red), 200 s (blue), and 400 s (cyan).
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3.4 Summary & Conclusions
We investigated the phase behavior of a system of quasi-2D colloidal silica par-

ticles confined within quadrupole electrodes in an inhomogeneous electric field. We

applied diffusion maps to probe the formation of defective microstructures and how

these defects migrate to the edge of the structure to form perfect crystals. Diffusion

maps picked up the condensation as the key feature of the assembly as confirmed by

the excellent correlation Rg showed with the eigenvector. However the migration of

defects were not captured and ψ6 showed a very poor correlation with the eigenvec-

tor. The Hausdorff distance metric, a key aspect of the diffusion maps technique in

constructing the Markov matrix failed to distinguish between defective crystals that

contained grain boundaries and perfect crystals. We added a second term to the

distance metric that is sensitive to the local orientation of the neighbors around each

particle in the cluster and this helps in detecting defects in the crystal. Application of

diffusion maps with the modified distance metric improved the correlations of eigen-

vector with ψ6. Free energy and diffusivity landscapes were built in the coarse variable

space (Rg, ψ6) and the low dimensional Langevin dynamics were benchmarked with

full scale BD simulations. The interesting physics of this system is the condensation

along the steep free energy gradient in the Rg direction and the migration of the

grain boundaries along the free energy plateau in the ψ6 direction and both of these

aspects are captured very well by the mean first passage time distributions as well

as the numerical solution of the governing Smoluchoswski equation for this assembly

process.
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CHAPTER 4

THERMODYNAMICS OF COLLOIDAL CLUSTERS:
DEPLETION SYSTEM REVISITED

4.1 Introduction
The central theme of the previous chapters was modeling self-assembly and phase

behavior of colloidal clusters using an order-parameter approach. Diffusion mapping

was used to locate an underlying low-dimensional manifold, and a heuristic procedure

was used to identify an appropriate set of OPs. We then built free energy and

diffusivity landspaces to determine the equilibrium and dynamical properties of these

small clusters. Using this approach, free energy landscapes and phase diagrams have

been generated for different system sizes and range of pair-potential in [57, 58].

In contrast to the order parameter approach, here we explore the phase behavior

of the depletion potential system via a histogram-based simulation approach. We

conducted replica exchange Monte Carlo simulations of these small colloidal clusters

and generated potential energy histograms at different values of the osmotic pres-

sures. From the framework of thermodynamics for small systems [59], a single peak

in the histogram corresponds to a single stable phase and a double peak corresponds

to two coexisting phases in equilibrium. Certain intermediate values of the osmotic

pressure yielded fluid-solid coexistence. We present a quantitative analysis of these

histograms and construct phase coexistence curves for these small clusters. We in-

vestigate the phase behavior for different cluster sizes at a fixed depletant size and

vary the depletant density to control the strength of the attraction. The parameters

involved in this pair-potential can be found in Eq. 2.1.
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We discuss the simulation methodology used to generate the potential energy

histograms followed by analysis of the energy histograms for different osmotic pres-

sures. We then compute the phase coexistence curves from the energy histograms

and compare them to calculations from the FEL approach.

4.2 Replica Exchange Monte Carlo Simulations
Results from initial canonical Monte Carlo studies suggested that an enhanced

sampling algorithm would be benificial in generating the potential energy histograms.

First we review the algorithm that we chose (parallel tempering) and then describe

how we implemented it.

Parallel tempering, or replica exchange simulation technique [60] is a method

where a given number of replicas are simulated, typically in canonical ensemble at a

series of temperatures. Replicas at adjacent temperatures are swapped at a certain

frequency based on an acceptance criterion. The high temperature replicas sample

a larger volume of phase space while the low temperature replicas may get trapped

in a metastable state and an exchange of information between replicas enables good

sampling of the entire phase space.

The idea of the parallel tempering technique is however not limited to exchanges

between replicas at different temperatures or the number of parameters in which the

tempering can be performed. de Pablo and co-workers [61] have performed hyper-

parallel tempering methods in the grand canonical ensemble by making exchanges

between replicas at different temperatures and chemical potentials. They have also

studied large polymeric systems in an expanded grand canonical framework [62] where

in addition to temperature and chemical potential, the length of the polymeric chain

in the replicas is also a parameter used for tempering. Fukunishi et al. [63] devel-

oped a Hamiltonian parallel tempering method which was applied to biomolecular

systems wherein each replica of the system has different interaction potentials. We
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have invoked this idea of Hamiltonian replica exchange method and applied it to the

depletion potential system and details of its implementation follow.

We fix the temperature of each replica and vary the depletant concentration across

the replicas. This implies a series of replicas with different Hamiltonians varying in

depth of the attractive potential well and the depth is determine by the osmotic

pressure Π∗ of each replica. Since the temperature is fixed for all the replicas, the

size of depletant is the same and hence the range of the pair potential stays constant

across replicas. The parallel tempering scheme described here is shown in Fig. 4.1

where the osmotic pressure due to the depletants are shown as varying shades of

background color in each replica. The acceptance criteria for the Hamiltonian replica

exchange method for a swap between replicas i and j is given by [60],

A = min
{

1, exp
[
−β

([
Hi(X

′) +Hj(X)
]
−
[
Hi(X) +Hj(X

′)
])]}

(4.1)

where Hi(X) is the Hamiltonian of configuration X in replica i, and configurations

X and X ′ are the configurations in replicas i and j, respectively, before the swap is

made.
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Figure 4.1: Hamiltonian replica exchange scheme for the depletion potential system
shows two replicas with different levels of interparticle attraction as can be seen in
the pair potential curves. The intensity of the background color is a measure of the
osmotic pressure strength due to the differing levels of depletant concentration in the
replicas.

4.3 Potential Energy Histograms & Analysis
We conducted replica exchange Monte Carlo runs for the parameters N = 32 and

L = 110 nm since we have extensive data available from previous studies [49, 52, 57,

58] based on the order parameter approach to compare our calculations. We initially

conducted runs of 100 parallel tempering steps with 106 canonical Monte Carlo steps

in between each parallel tempering step. These initial runs provide an estimate of

the operating window of osmotic pressure in which there is phase coexistence. We

have summarized the results of these runs in Fig. 4.2. Fig. 4.2(a) shows histograms

for four osmotic pressures. The histogram distributions for the lowest three osmotic

pressures resemble a Gaussian centered around U ∼ −130 kBT and this high-energy

fluid-like configurations within the Gaussian is the only stable phase at these Π∗

values. We note from Fig. 4.2(a) the presence of a small peak centered around U ∼
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-360 kBT . This is a low-energy solid-like condensed phase that is metastable relative

to the stable fluid-like phase.

Fig. 4.2(b) shows the energy distributions for a slightly higher range of osmotic

pressures and all the histograms shown here are double-peaked indicative of the phase

coexistence regime. The fluid-like phase is more stable for the lower two Π∗ while the

solid-like phase is more stable for the higher two Π∗. Based on these histograms, we

could infer that the osmotic pressure at which both phases are equally likely to be

found lies between the values corresponding to the green and black curves. Fig. 4.2(c)

show the energy distributions for the third set of osmotic pressures. We observe in

Fig. 4.2(c) that solid-like phase is the most stable phase over the entire range of Π∗

and fluid-like phase is metastable.

(a) Energy histograms for
Π∗ = 145.47 (blue), Π∗ =
146.27 (green), Π∗ = 146.94
(black), Π∗ = 147.74 (red).

(b) Energy histograms for
Π∗ = 148.54 (blue), Π∗ =
149.34 (green), Π∗ = 150
(black), Π∗ = 150.8 (red).

(c) Energy histograms for
Π∗ = 151.6 (blue), Π∗ =
152.4 (green), Π∗ = 153.2
(black), Π∗ = 154 (red).

Figure 4.2: Potential energy histograms for N = 32 particle cluster generated across
a series of Π∗ values using replica exchange Monte Carlo simulations. (a) Fluid-like
phase is the most stable phase and we observe onset of a solid-like low-energy phase
for one of the Π∗ (red curve) (b) Both fluid-like and solid-like observed in significant
amounts for all 4 Π∗ simulated and we notice an exchange of stability in this range
of Π∗ (c) Solid-like phase is the most stable and fluid-like phase gradually disappears
for higher Π∗.

Fig. 4.3 shows the corresponding trajectory of the osmotic pressures through the

various processors during the course of the parallel tempering simulation. We record

histogram statistics by following the trajectory of every individual Π∗ and calculate
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the energy distributions for each one of the Π∗ shown in Fig. 4.2. Fig. 4.3(a) shows

the trajectory for the histograms in Fig. 4.2(a) and this run had an acceptance ratio

of 84%. Since all the histograms reside in similar energy ranges, a high percentage of

the swap moves are accepted as observed in Fig. 4.3(a).

In Fig. 4.3(b) we observe that the number of swaps made are lower than the one

for Fig. 4.3(a). Since the histograms are all double-peaked, configurations in adjacent

replics could be found in either of the two peaks and the energetic penalty can be too

high for a swap to be accepted. We see that after ∼ 50 parallel tempering steps, the

swaps are made only between two sets of adjacent osmotic pressures (blue with green

and red with black). This leads to a lower acceptance of 62%. Energy histograms in

Fig. 4.3(c) all reside in the low-energy regions thus leading to a high acceptance ratio

of 84% for the run shown in Fig. 4.3(c).

(a) Π∗ = 145.47 (blue),
Π∗ = 146.27 (green), Π∗ =
146.94 (black), Π∗ = 147.74
(red).

(b) Π∗ = 148.54 (blue),
Π∗ = 149.34 (green), Π∗ =
150 (black), Π∗ = 150.8
(red).

(c) Π∗ = 151.60 (blue),
Π∗ = 152.40 (green), Π∗ =
153.20 (black), Π∗ = 154
(red).

Figure 4.3: Osmotic pressure trajectory over the course of the replica exchange Monte
Carlo simulations. For cases (a) and (c) the energy histograms are centered around
either high-energy or low-energy ranges and thus the likelihood for swap acceptance
is high. The acceptance ratio is 84% for both cases. Since energy histograms for (b)
contain twin peaks and the energetic penatly for swap acceptance is higher and this
leads to acceptance of 62%, lower than (a) and (c).
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4.4 Phase Coexistence Curves
This histograms presented in the previous section provided an estimate of the

osmotic pressure range over which we observe phase coexistence. We ran longer Monte

Carlo runs with a thousand parallel tempering steps with a million canonical Monte

Carlo steps after each tempering step. We chose 20 replicas and a corresponding set

of osmotic pressure values that spanned the entire range of phase coexistence. We

calculated the distribution metric D from the energy histograms as follows.

The relative stability of two phases A and B (manifest as twin peaks in an energy

histogram) can be quantified using the distribution metric D from [23] given by

D = K − 1
K + 1; K = [A]

[B] (4.2)

where K is the equilibrium ratio of the amounts of A and B. D = -1 corresponds

to pure B and D = 1 to pure A. Any value of D ε [−1, 1] implies coexistence of A

and B. We calculate D from the relative areas in the peaks of the potential energy

histograms to construct phase diagrams for these small colloidal clusters.

These calculations were performed for cluster sizes N = 25, 27, 30, 32 and the

distribution metric D as a function of the osmotic pressure Π∗ is shown in Fig. 4.4.

For low osmotic pressures, the clusters for all system sizes sample the only fluid-like

phase (D = −1). The onset of solid-like crystalline phase is first observed for N = 32.

With increase in Π∗, the cluster undergo a transition from a fluid-dominated phase

(D < 0) to a solid-dominated phase (D > 0). The onset of solid-like crystalline phase

is delayed for smaller cluster sizes. The transition curve is more diffuse for smaller

clusters and the width of the coexistence region (range of Π∗) increases. From this

figure, we note that Π∗ can be varied to control the stability and the relative amounts

of the two phases in equilibrium.

We compare the phase coexistence curves shown in Fig. 4.4 with the order pa-

rameter approach studied in Chapter 2. In order to quantify the relative amounts of
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different phases in the FELs, we invert the free energy to a probability measure by

using

P (Ψ) ∝ exp
[
−W (Ψ)

kBT

]
(4.3)

where P (Ψ) is the probability of observing the system in a state Ψ and W (Ψ) is the

FEL. Specific to this colloidal system, we observe a fluid-like phase in coexistence

with a solid-like phase and thus we sum up the probabilities in both these basins and

compute D using Eq. 4.2.

Figure 4.4: Phase coexistence curves shown for system sizes N = 25 (black), 27
(blue) ,30 (magenta), and 32 (red). The curves indicate a transition from a fluid-
dominated phase (D < 0) to a solid-dominated phase (D > 0). The transition curves
also becomes more diffuse and coexistence region widens as the size of the cluster
decreases.

The FEL analysis has been performed for the N = 32 system and shown in

Fig. 4.5 (magenta symbols). We have also plotted the phase coexistence data from

Fig. 4.4 corresponding to N = 32 (red symbols). We observe a very good qualitative

and a reasonable quantitative agreement between the order parameter FEL approach

and the potential energy histogram method. From fundamental thermodynamics, we

have used potential energy as a metric to capture the phase changes in small colloidal
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clusters and the phase coexistence curves agree very well with a more sophisticated

order parameter approach studied in Chapter 2. It is also interesting to note here

that such phase changes have been observed in experimental works. Dinsmore and co-

workers have observed two-step mechanisms of sublimation and crystallization that

involve fluid-solid transitions in small colloidal clusters [13, 64]. DNA-coated gold-

nanoparticles and colloidal systems show a similar phase behavior over a range of

temperature that controls the hydrogen bond strength between the DNA strands

[65–67]. Phase coexistence curves such as shown in Fig. 4.4 provide a fundamental

understanding of phase changes in colloidal particle assemblies.

Figure 4.5: Comparison of the phase coexistence curves shown for N = 32.

An alternate way to plot phase coexistence is by constructing a P − v type phase

diagram. The phase diagrams for bulk colloidal systems are traditionally plotted in

the space of volume fraction of large colloidal and small depletant spheres. Fig. 4.6

shows the phase diagram for a bulk colloidal system expressed as a ηrs − ηl plot

[68]. In this plot, ηrs is the volume fraction of the depletants while ηl is the volume

fraction of the large colloidal particles. We see both single phase and two phase

regions separated by the phase coexistence curves for a depletant colloid size ratio
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of 0.1. A key difference between bulk systems and small clusters is the lack of a

definition of a homogeneous volume or density for the latter. We propose here to

use (Rg)3 as a proxy measure for the volume of the clusters since radius of gyration

has proven to be a good measure of condensation in the order parameter study. We

have plotted Π∗ against (Rg)3 in Fig. 4.7(a) and (Rg)−3 in Fig. 4.7(b). Figs. 4.7(a)

and 4.7(b) resemble a typical pressure-volume or pressure-density plot with the fluid

and the solid branches (blue symbols) on either side of the coexistence region that

is shaded. The red symbols in Fig. 4.7 correspond to coexistence of fluid-like and

solid-like phases over a range of Π∗.

Figure 4.6: Bulk phase diagram for the depletion potential system from [68]. ηl is
the volume fraction of large colloids while ηrs is the volume fraction of the reservoir
of small depletants.
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(a) Π∗ vs R3
g plot for colloidal cluster with

N = 32 from MC simulations.
(b) Π∗ vs R−3

g plot for colloidal cluster
with N = 32 from MC simulations.

Figure 4.7: Phase coexistence curves expressed as (a) Π∗− (Rg)3 and (b) Π∗− (Rg)−3

for N = 32 system.

4.5 Summary & Conclusions
We have revisited the depletion potential system and studied its phase behavior

using a histogram-based simulation approach. We conducted replica exchange Monte

Carlo simulations using the osmotic pressure as the tempering variable. We gener-

ated potential energy histograms that captured the fluid-solid phase coexistence by

carefully tuning the osmotic pressure. We constructed phase coexistence curves by

calculating the distribution metric D from the energy histograms. These coexistence

curves showed good agreement with the FELs generated using the order parameter

approach. We also made Π∗ − (Rg)3 plots analogous to P − v plots for bulk sys-

tems and highlighted the key difference between bulk and thermodynamically small

systems.
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CHAPTER 5

SUMMARY & FUTURE RESEARCH DIRECTIONS

5.1 Summary
We have studied the directed assembly of two model colloidal systems by building

reduced-dimension process models that link the particle-level dynamics of the colloids

to the actuator states. We have developed a three-part strategy for developing such

process models. First, we employed diffusion mapping on raw trajectory data to iden-

tify slow, low-dimensional manifolds in the system dynamics. Second, we identified

convenient observables, or order parameters, that showed strong correlation with low-

dimensional DMap coordinates. Finally we used the Smoluchowski equation to build

free energy and diffusivity landscapes that serve as reduced-dimension process models

to describe the system’s thermodynamics and kinetics respectively. An optimal con-

trol policy map is computed using dynamic programming in the DMap coordinates.

This control policy map along with the landscape models aid in the optimal feedback

controlled assembly of perfect colloidal crystals[69].

One of the key findings of this thesis is the importance of the choice of distance

metric for the success of the diffusion mapping technique. We used Hausdroff distance

metric for both the systems. For the depletion potential case, Hausdroff distance

was able to distinguish between both fluid and solid phases as well as single and

broken clusters in the solid phase. This was manifest in the correlations observed

with average cluster to cluster distance metric. For the quadrupole system, while

Hausdorff distance metric could detect differences between expanded and condensed

structures, it showed no sensitivity towards the presence of grain boundaries found in
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polycrystalline microstructures. This led to the modification of the distance metric to

account for local orientation of neighbors around each particle and this improved the

correlation of ψ6 against the eigenvectors. DMap analysis of two different systems

revealed the importance of distance metric in identifying the best possible coarse-

variables to build the low-dimensional models.

We have also built phase coexistence curves for small clusters by quantitative

analysis of potential energy histograms generated using replica exchance Monte Carlo

simulations. These histograms highlighted the idea of dynamic phase coexistence in

thermodynamically small systems which show frequent transitions between phases

whose relative free energy difference vary by a few kBT . We have compared these

calculations with the order parameter approach and observed a very good agreement

between the two methods.

5.2 Estimation of Free Energies using Biased Sampling Tech-

niques
In this thesis, we have extensively used Monte Carlo umbrella sampling as our en-

gine for performing free energy calculations in a given order parameter phase space.

When we applied this technique to the field assembly problem, we observed insuffi-

cient sampling in the biasing windows in regions of high free-energy, despite running

long MC trajectories. Such insufficient sampling leads to inaccurate estimates of free

energies and also a lack of representative configurations in OP space. Such equili-

brated configurations serve as vital starting points in OP space to initiate dynamic

simulations and build Smoluchowski models from the resulting trajectories.

Thus, we use an alternate form of biased sampling to estimate free energies across

the whole range of OP space and produce equilibrium configurations. To be more

specific, we alter the Metropolis criterion by incorporating additional biasing functions

to promote uniform sampling across the entire span of OP values and follow it up
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with reweighting techniques. For such biased sampling techniques, the acceptance

criterion is

P12 = min {1, exp (−β∆U12 + ∆η12)} (5.1)

where η is the biasing function. We run multiple MC simulations using approxima-

tions of the bias function to sample a wide range of overlapping OP values. Using

the histograms recorded from each simulation and the corresponding bias function,

we construct a single bias function over the entire range of OP values sampled. This

resulting bias function can then be used to drive the simulations and sample a wide

range of OP values. This is an iterative process and the biasing function is continu-

ously updated until the entire physical range of OP values are sampled.

Fig. 5.1 is the radius of gyration Rg histogram obtained from an unbiased MC

simulation at a voltage V ∗ = 0.3. At this low voltage, the natural state of the system

is fluid-like and the Rg range sampled is roughly over the interval [13.2, 14.2]. In

order to sample more condensed states at this voltage, we require a high free energy

penalty to drive the system to sample lower Rg values. Fig. 5.2 is one example of a

biasing function at the voltage value V ∗ = 0.3. This biasing function is constructed

from a set of multiple bias functions that were used in independent MC simulations.

Application of this bias results in a roughly uniform sampling of the Rg space as

shown in Fig. 5.3.

There are two useful products from this process, for a fixed voltage in the quadrupole

apparatus. The first is an accurate FEL across the entire OP space. The second is a

set of particle configurations across the entire OP space, which should be representa-

tive of equilibrium conditions at the fixed voltage.
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Figure 5.1: Histogram sampling from an
unbiased Monte Carlo simulation at a
voltage V ∗ = 0.3.

Figure 5.2: Biasing potential A(Rg), con-
structed from a set of independent Monte
Carlo simulations.

Figure 5.3: Histogram resulting from the
application of the biasing function. Bias-
ing promotes uniform sampling over the
entire range of Rg shown.

Biased sampling for two more voltage levels, V ∗ = 0.5 and V ∗ = 0.7 will pro-

duce equilibrium configurations across a wide range of Rg values at three voltage

levels. Additional order parameter calculations (〈C6〉, ψ6) will determine if there are

microstructural differences across these equilibrium configurations. The reason for

producing and comparing these configurations is discussed below.
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Dynamic models (diffusivity landscapes) are built by initiating local trajecto-

ries from configurations in OP space and estimating the Smoluchowski equation

coefficients[50]. We wish to examine if certain characteristics of the configurations

(like the voltage at which it was produced and its location in OP space) has an im-

pact on the estimation procedure. To this end, we will use a bunch of configurations

produced from the biased sampling technique to initiate trajectories and examine the

resulting diffusivity landscapes. Differences would have implications on key assump-

tions (eg. Markovian nature of the colloidal assembly process) underlying the process

of building these landscape models.

5.3 Equilibrium Crystal Shapes and Morphology of Lennard-

Jones Clusters
In addition to studying colloids, we also investigate the phase behavior of small

Lennard-Jones clusters. The structures and potential energy landscapes of small

Lennard-Jones clusters has been very well studied and global minimum energies of

some of these clusters have been reported in [70]. Such small clusters exhibit quali-

tatively different structural and phase behavior compared to the corresponding bulk

systems. Previous work from my research group [71] focused on the LJ38 cluster

which exhibits very rich phase behavior characteristics with fluid-solid and solid-solid

phase transitions [72, 73]. The work in [71] involved the use of diffusion mapping to

justify a coarse grained model which was able to capture the polymorphic solid-solid

transitions at low temperatures and melting transitions at higher temperatures.

A fundamental understanding of the equilibrium structures and morphology of

small clusters is essential for further studies on the thermodynamics and kinetics of

crystal nucleation and growth. Towards this end, the first step is to compute ground-

state energies and morphologies of various crystal assemblies as a function of system

size. Recent work from our research group [74] has focused on studying the equi-
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librium crystal shapes of colloidal crystals using the classical Wulff construction [75]

as well as a generalization of that technique. While the traditional Wulff technique

works well for system sizes that are nearly bulk (comprising tens of thousands of

particles or higher), a novel generalized technique was developed and implemented

to explicitly handle small clusters containing few tens of particles where surface ef-

fects are important. We use this technique to explore the equilibrium structures and

morphologies of small LJ clusters.

The generalized Wulff constructions consists of a set of lattice-site-exchange Monte

Carlo simulations coupled with a parallel tempering scheme. Each simulation run

produces a minimum-energy configuration for a given system size and a choice of the

underlying crystalline lattice. More details about the generalized Wulff algorithm

can be found in recent work by our coworkers [74]. We ran the generalized Wulff

construction for LJ clusters upto N = 110 for both FCC and HCP lattice structures

and have reported the minimum energies for each cluster size. We have plotted

cohesive energy per particle as a function of cluster size in Fig. 5.4. We have also

plotted the global minima of LJ clusters reported in literature [70] for comparison

with the generalized Wulff technique results. We observe that our results capture the

trend in global minima qualitatively for the entire size range examined here. The

agreement is excellent up to N ∼ 35 beyond which the minimum-energies are lower

(in magnitude) compared to the global minima. We have also examined the stability

of the clusters by computing the second-order energy difference defined as,

∆2(N) = Eb(N + 1) + Eb(N − 1)− 2Eb(N) (5.2)

where Eb(N) is the binding energy of a cluster of size N . This metric identifies the so

called magic clusters which show improved stability over similarly sized clusters. We

have computed ∆2(N) as a function of N for both FCC and HCP lattice structures

and compared them with the magicity of the global minima clusters in Fig. 5.5 shows
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the comparisons of magicity. Similar to the minimum-energy curve, we observe very

good agreement in magicity for both FCC and HCP lattice types with the global

minima clusters upto N ∼ 35.

The generalized Wulff construction is a technique that consists of lattice-site-

exchange moves followed by configurational relaxation Monte Carlo runs. We have

been able to calculate minimum-energy configurations and also predict magicity of

clusters for N upto 35. We however underpredict the global minima energies consis-

tently for higher cluster sizes. One way to improve the algorithm is to introduce a

a shear (displace the lattice plane) prior to the configurational relaxation step. The

ultimate objective of this exercise is to use the generalized technique (which is easy to

implement and also an effective technique) to identify minimum-energy clusters for a

wide size range and characterize their morphologies and compare and constrast with

the vast database of LJ clusters available in literature [70].

Figure 5.4: Minimum-energy clusters from for FCC and HCP lattice structures from
generalized Wulff construction for cluster sizes upto N = 110 atoms. We have also
compared the energies with global minima reported in literature [70]. Excellent agree-
ment is seen for cluser sizes upto N ∼ 35 beyond which this the minimum energy is
lower in magnitude when compared to the global minima.
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(a) FCC compared with global minima
structures.

(b) HCP compared with global minima
structures.

Figure 5.5: Comparison of stability of clusters between FCC, HCP and global minima
structures. The magicity of stable clusters is well predicted for sizes upto N ∼ 35.
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