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ABSTRACT

A QUANTITATIVE MEASUREMENT OF STRUCTURAL
CHANGES OF RNA KISSING COMPLEXES USING

FLUORESCENCE RESONANCE ENERGY TRANSFER

SEPTEMBER 2016

SHEEMA RAHMANSERESHT

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lori Goldner

Many RNA interactions in cells occur in the form of loop-loop interactions, also

known as a “kissing complex”. In the bacterial and viral systems discussed here,

there are transiently bound proteins involved that modulate the function of kissing

complex. These proteins either stabilize the kissing complex or facilitate its conversion

to extended duplex. I studied R1inv-R2inv kissing complex (KC), derivatived from

RNAI-RNAII complex of E.Coli. Rop protein is known to stabilize the bent R1inv-

R2inv KC against dissociation. The goal was to study structural change of this kissing

complex after binding of the stabilizing Rop protein.

In this work for the first time I used the orientation sensitivity of Fluorescence

Resonance energy transfer (FRET) to measure an angular change in the structure

of R1inv-R2inv kissing complex upon binding of Rop protein. Single-molecular-pair-

FRET (spFRET) is often used to study distance fluctuations of single molecules, it

is harder to capture angular changes using FRET, because rotational motion of the

dyes tends to wash out the angular sensitivity.
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The e↵ect of Rop protein on the conformation of the kissing complex is not known.

Using fluorescence microscopy techniques we observe a change in twist angle of the

KC with protein binding. The eight minimized energy structures reported for R1inv-

R2inv KC show a small di↵erence in end-to-end distance and a larger di↵erence

in twist and bend angles. From MD simulations I modeled FRET for these eight

structures, also for these structures with addition of twist. By comparing the spFRET

data with results of this first-principle model, I found the result is consistent with a

-25� change in twist angle.

My preliminary work on another kissing complex, Dimerization initiation site

(DIS) of HIV-1 retrovirus, is also discussed. Nucleocapsid protein (NCp7) plays an

important role in facilitating the kissing complex to extended duplex transition for

DIS. My work on DIS kissing complex, was aimed at studying possible intermediates

in kissing complex to duplex transition, and investigating the e↵ect of proteins like

Rop and NCp7. The construction of the TIRF-FRET instrument, methods for surface

passivation, and the RNA sequence design are discussed.
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INTRODUCTION

RNA loop-loop interactions, known as kissing interactions are ubiquitous in bio-

logical processes. In these interactions two stem-loops which are complementary in

their loop form Watson-Crick base pairs. Kissing interactions are common in prokary-

otic cells in the form of antisense-sense interactions [89]; these often have a regulatory

function. Small non-coding RNAs in eukaryotes also often have a regulatory function

[8]. For example, complementary small RNAs known as microRNA (miRNA) inter-

fere with protein expression by binding to target mRNA transcripts [46, 16]; it is also

reported that recognition of microRNAs and their target can be mediated by kissing

interactions [18]. Another example of kissing complexes is in the dimerization initia-

tion site (DIS) of HIV-1 genome which is responsible for encapsidation of genome. A

similar DIS is seen in other retroviruses such as HIV-2, MuLV, HFV, BLV [17].

Loop-loop interactions are part of a larger class of RNA interactions referred to

as “Antisense” because they involve complementary strands (sense and antisense)

binding. Antisense RNA refers to a short (65-110 nt), untranslated transcript which

can bind to the complementary regions on the sense RNA and control its biology [30].

These small RNAs commonly have one or more stem-loops, and the sense RNA usually

has complementary stem-loops. The loops, which are usually 5-8 nucleotide long, are

the initial RNA recognition sites. Kinetic studies on many antisense- sense RNA

complexes gives an association rate of about 106 M�1s�1, independent of sequence.

Dissociation rate of these complexes depends on the loop sequence suggesting the

importance of base stacking. Stems do not have an e↵ect on the association rate

of hairpins, but they are important to the stability of the complex. The model

proposed for high stability of kissing complexes considers Watson-Crick base paring
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between complementary nucleotides of the loop region in stem-loop RNAs and their

further rearrangement to stacking between stem helices, as the main reason for high

stability. The overall structure resembles an A-form double-stranded RNA [30]. In

this work two important examples of kissing interactions will be studied: (I) R1inv-

R2inv kissing complex (KC) derived from RNA I-RNA II complex in E. coli which

is important in control of replication of ColE1 plasmid [64] and is the longest known

naturally occurring antisense RNA, and (II) loop-loop interaction in Dimerization

Initiation Site (DIS) in the HIV-1 retrovirus which initiates dimerization of genomic

RNA [90]. In both complexes transiently bound proteins are involved in modulating

the structure and function of the RNA. Stability and flexibility of the initial loop-

loop “kissing” complex, and structural transformations that often ensue from this

intermediate state, modulate the function of RNA.

The challenge is to identify and control the underlying physical principles that

guide RNA function. The aim of this work is to use single-molecule FRET (Fluores-

cence Resonance Energy Transfer), time-resolved fluorescence lifetime measurement,

and other fluorescent techniques such as FCS (Fluorescent Correlation Spectroscopy),

to study conformation of these kissing complexes before, during and after binding of

proteins. This will give a better insight into the relationship between conformation

and function of kissing complexes. For R1inv-R2inv KC, our specific aim is to under-

stand e↵ect of protein binding on the structure of the KC.

Chapters 1-4 include my work on R1inv-R2inv kissing complex system, and its

conformational change upon binding of Rop protein. Chapter 1 provides a summary

of the work done by other researchers on R1inv-R2inv KC. Using a dye labeling

scheme that minimizes the rotational motion of the dyes with respect to the RNA,

I use spFRET to measure an angular change in structure of RNA KC upon protein

binding. Chapter 2 introduces di↵erent fluorescence techniques we used to study

this system. In chapter 3, the results of the measurements are discussed. Finally,
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in chapter 4 the result of modeling FRET from Molecular Dynamics simulation is

discussed.

Chapters 5, 6 and 7 includes my preliminary work on the DIS KC dynamics

project. These chapters summarize my setup of TIRF-FRET microscope, preparation

of DIS samples and sample chamber, and passivation of the surface. Images and

movies of DIS KC labeled with Cy3B and Cy5 were taken to evaluate the performance

of the setup and e�ciency of the samples. I also discuss the problems with our

measurements and make suggestions for modifying the system.
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PART 1: R1INV-R2INV KISSING COMPLEX
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CHAPTER 1

BACKGROUND: R1INV-R2INV COMPLEX

In E. coli, replication of ColE1 plasmid requires an RNA primer (RNA II) whose

function is modified by interaction with an antisense strand (RNAI) that is also en-

coded by the plasmid. Binding of antisense RNAI to RNAII prevents it from forming

the complex required for its hybridization with the template DNA [64]. Secondary

structure of RNA I-RNA II complex [32] is shown in Fig. 1.1(b), and secondary struc-

ture of complete RNA II is shown in Fig. 1.1(a) [94]. The color code on stem-loops of

RNA II (Fig. 1.1(b)) is analogous to the color code shown in Fig. 1.1(a). Stability of

this complex and therefore the function of primer is modulated by protein binding.

Rop (RNA one repressor) also known as Rom (RNA one modulator) [7] is a plasmid

encoded protein which binds to the kissing complex and decreases its equilibrium

dissociation constant. Rop acts to suppress replication of the plasmid by stabilizing

the intermediate RNA I-RNA II complex [33].

The model system often used in the study of this kissing complex is a short deriva-

tive (RI- I18 and RII- I18 with 18 nucleotides) of a single stem-loop (RI-I and RII-I)

of the RNAI-RNAII antisense complex (Fig. 1.1 (c)). Stability of complex has been

studied using stem-loop pairs with di↵erent size loops, loop complemetarity and stem

sequence. Loop complementarity, loop closing base pair at position one and seven of

the loop, sequence of the first base pair in the stem adjacent to the loop, and orien-

tation of the loop highly a↵ects kissing complex stability [33, 43]. The dissociation

constant for a complex with only five complementary bases in the loop is 100-fold

larger than fully complementary loop sequences; furthermore a complex with only
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Figure 1.1. (a) Secondary structure of complete RNA II [94]. (b) Secondary struc-
ture of RNA I-RNA II complex [32]. The color code on RNAII in part b corresponds
to the same sequence in part a. (c) RI- I18 and RII- I18 with 18 nucleotides are short
derivative of RI-I and RII-I stem-loops from RNAI-RNAII. Loop closing base pairs
(positions 1 and 7) are important in stability of complex.
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three complementary bases is unstable. Inverting the loop of wild type RNA hair-

pins 50 to 30 significantly improves the stability of kissing complex without changing

equilibrium constant for Rop binding, this complex has a dissociation constant of

0.6 nM which is 10000 times smaller than wild type [43, 31]; this enhanced stability is

convenient in structural studies [43, 61, 59]. These inverted loop structures are called

R1inv and R2inv (Fig. 1.2(a)). Structural studies of R1inv-R2inv kissing complex us-

ing NMR, shows all seven bases in the loop participate in Watson-Crick base pairing

and they are continuously stacked on the 30 side of respective stem helices. From the

local constraints provided by NMR, eight minimized energy R1inv-R2inv structures

(Fig.1.2(b)) were identified; these structures are bent at the loop-loop junction with

bend angles ranging from 49� to 96�. The average structure has a bend angle of

approximately 80� [59]; its tertiary structure along with the curvilinear helical axis

is shown in Fig. 1.2(c). The bend in structure can facilitate stem exchange and ex-

tended duplex formation by putting the stems in closer vicinity. Rist and Marino [83]

propose a two step mechanism for formation of kissing complex. First, a loop-loop

helix is formed by Watson-Crick base pairing between the two complementary loops.

Second, the formed complex rearranges until the loop-loop helix is stacked between

the two stem helices.

Rop is a homodimer of 63 residues [6] forming a four-helix bundle, Fig. 1.2(d): it

binds at the loop-loop junction to complexes with 6, 7, or 8 nucleotides in their loops,

[79] but does not bind linear duplex RNA or RNA hairpins [43, 31]. The binding

site of Rop protein is identified using mutational analysis and NMR [92, 23]. It is

known that residues Lys3, Asn10, Phe14, Gln18, and Lys25 which are located on

helix I and I0 of the protein are the main residues contributing to binding. Phe14 is

identified as the key element in binding and it is proposed that this residue stacks

on RNA bases of the kissing complex or intercalates between them [79, 19]. Crystal

structure for Rop protein shows Phe14 and Phe140 residues on the helices to be
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partially stacked; this suggests formation of a hydrophobic surface with a specific

geometry that complements the protein binding site on R1inv-R2inv kissing complex

[92]. The bend angle of the kissing complex was thought to play a role in Rop binding.

However, the e↵ect of Rop binding on the global structure of a bound complex has

previously been observed only indirectly, through circular permutation assays [101]

that rely on the di↵erent gel mobilities of bent RNA. The result of these assays

appeared consistent with an increase in the bend angle of the kissing complex upon

Rop binding from 45� to 60�[61].
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Figure 1.2. (a) Secondary structure for R1inv and R2inv. For the R1inv-R2inv-C
structure the terminal base pairs were swapped so that there is a 50 terminal C, instead
of a 50 terminal G, on each hairpin. (b) Tertiary structure for the eight minimized-
energy R1inv-R2inv complexes (PDB 1bj2) with bend angles ranging from 65� to
90� [59]. (c) Average structure for R1inv-R2inv (PDB 2bj2) with bend angle of 80�

[59], helical axis obtained by Curves+ package [58] is shown with a red curved line.(d)
Tertiary structure for Rop protein(PDB 2ijk) [7].

We use single-molecular-pair fluorescence resonance energy transfer (spFRET) to

show that there is indeed a change in the structure of the R1inv-R2inv complex upon
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Rop binding. Moreover, by using time-resolved lifetime measurements and sensitivity

of Cyanine dyes to their environment, we have been able to seperate distance changes

in structure from angular changes using FRET. Rather than a change in bend, we

found that twist angle of R1inv-R2inv kissing complex plays an important role in

binding of Rop protein. Presumably, Rop protein recognizes and stabilizes relatively

untwisted complexes.

We base our conclusion on a direct model of FRET from each of the eight mini-

mized energy states [59]. This model includes the full structural fluctuations of the

dye on the RNA as predicted from MD simulations. The method used to calculate

FRET from the MD trajectories is exact [14, 42, 48, 66]: There are no adjustable

parameters and no assumptions made regarding the behavior of the dyes. In addition,

the method we introduce for investigating the change in twist is generalizable to any

change in structure, so long as a set of proposed or possible structures exist or can

be generated. Here the eight minimized energy states [59] for unbound R1inv-R2inv

as determined from the NMR constraints serve this purpose; these structures di↵er

primarily in twist and bend angle.
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CHAPTER 2

SINGLE MOLECULE FLUORESCENT TECHNIQUES

2.1 Förster Resonance Energy Transfer (FRET)

2.1.1 Theory of FRET

FRET is non-radiative transfer of energy from a donor fluorophore to an acceptor

fluorophore. If we consider a weak Coulomb interaction between two particles, ex-

pansion of this energy gives terms resulting from charge-charge, charge-dipole, dipole-

dipole and higher order quadrupole interactions. For particles with no net charge the

charge-charge and charge-dipole terms can be ignored, and in our case the quadrupole

terms, which are of much shorter range than considered her, will be ignored. The

dipole-dipole interaction gives rise to Förster energy transfer. The potential decays

as R�3 and depends on dipole orientations (Fig. 2.1(d)) [54]. Förster Energy Trans-

fer is a photophysical phenomenon, Fig. 2.1(c) shows a simplified kinetic scheme for

FRET. Donor molecule can be excited with the rate of k
ex

to the first singlet state.

The excited donor molecule can either decay radiatively with decay rate of k
D

, or can

transfer its energy to the acceptor molecule with a rate of k
ET

[42]:

k
ET

= k
D

(
R

F

R
)6, (2.1)

The e�ecieny of this energy transfer decreases as the fluoropores become farther

apart:
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Figure 2.1. (a) double stranded DNA labeled with Cy3 and Cy5 (b) Orientation
of the transition dipole moments for Cy3 (D) and Cy5 (A) are along the conjugated
chains and are shown with black arrows. The end-to-end distance (R) is the line
connecting the two dipoles. (c) Simplest kinetic scheme for FRET, k

ex

is the excitation
rate, k

ET

is the rate of energy transfer and k
A

and k
D

are the donor and acceptor
emission rates. (d) Dependence of FRET to the distance between the two dyes and
relative orientation of dyes. In the extreme case were fluorophores are freely rotating
(2= 2/3) FRET decreases smoothly as a function of distance, when dyes are not
freely rotating, there will be modulations in FRET as a function of distance [50].
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E =
1

1 + ( R

R

F

)6
, (2.2)

R is the distance between the two fluorescent dyes, and R
F

is Förster radius which

is a function of photophysical properties of dyes and their relative orientation. R
F

is

typically in the range of 2-9 nm and is defined as:

R
F

=
AJ⌘

D

2

n4
, (2.3)

where J is the spectral overlap of donor emission and acceptor absorption, ⌘
D

is the

quantum yield of donor in absence of acceptor, 2 is the relative orientation of the

dyes, n is the refractive index of solvent and A is a constant. The relative orientation

of the dyes (2) is described by:

 = (µ̂1 · µ̂2)� 3(µ̂1 · R̂)(µ̂2 · R̂), (2.4)

where µ̂1 and µ̂2 are the dye transition dipoles and R̂ is the displacement from donor

dye to acceptor dye.

The spectral overlap, J(�), is defined as:

J =

+1Z

0

F
D

(�)✏
A

(�)�4 d�, (2.5)

where F
D

(�) is the normalized emission spectrum of donor molecule and ✏
A

(�) is the

extinction coe�cient for acceptor molecule (M�1cm�1).

At the condition were the rotational di↵usion of dyes happens in a timescale much

faster than the lifetime of donor dye, and dyes can freely rotate, the mean value of

h2i= 2/3 can be used. For convenience we define R0 (Eq. 2.6) as the Förster radius

calculated with 2= 2/3. In fact free rotation is generally assumed in the literature
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so most authors report on R0. For Cy3-Cy5 pair R0 is reported within the range of

5.6 - 6.5 nm in literature [74, 102, 71, 81]. Here I use R0= 5.8 nm.

R0 =
6

r
2

32
R

F

(2.6)

The largest problem in calculating FRET from Eq. 2.2 comes from 2. Fluo-

rophores used as FRET pairs have di↵erent behavior depending on their chemical

structure and the site of attachment [91, 76, 74], and this makes assumption of freely

rotating dyes not always correct. Iqbal et al. [50] measured FRET for a duplex

DNA (labeled with Cy3-Cy5 pair) with di↵erent lengths and observed modulations

in FRET as a function of distance (Fig. 2.1). This is strong evidence that dyes are

not freely rotating. Cyanine dyes spend a large fraction of their time stacked on the

terminal base pairs, and therefore almost never in the limit of free rotation. In order

to make accurate distance measurements using FRET, it is important to consider

orientation dependency of FRET. More importantly, the dependency of FRET on 2

makes it a great tool not only to study distance changes in structure but also to study

angular changes in structure.

2.1.2 Ratiometric FRET measurement technique for di↵using molecules

Single-molecule-sensitive FRET measurements were performed using a homebuilt

confocal microscope with 514 nm excitation from an Argon-Krypton laser with 60 µW

entering the scope. Emitted donor and acceptor photons were detected using two

avalanche photodiodes (MPD ⌧ -SPAD) and homemade photon timing circuitry based

on an FPGA [40]. A schematic for the confocal FRET setup and a typical signal

detected in donor and acceptor channels are shown in Fig. 2.2(a,b,c).

In single-molecule-sensitive solution FRET experiments, emitted photons from

donor and acceptor fluorophores is detected and used for calculating FRET e�ciency.

The emitted photons arrive in short bursts with duration of 100-1000 µsec correspond-
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Figure 2.2. (a) Schematic for a confocal FRET setup. (b) Donor (green) and
acceptor (red) time traces using 5 ms bins. (c) drawing for FRET setup as been used
for ratiometric experiments.
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ing to the time a molecule spends di↵using through the confocal detection region. To

measure FRET, we bin photons in to 1-5 ms bins and calculate the proximity ratio

(P). Many of these bins are noise originating from dark counts of detectors, or any

background fluorescence in solution, therefore by applying a threshold (N
th

) to the

sum of acceptor and donor photons the number of these bins can be minimized. Fi-

nally proximity ratio (P), also known as apparent FRET e�ciency, will be defined as

the total number of acceptor photons divided by sum of donor and acceptor photons

in each bin (Eq. 2.7).

P =
N

a

N
a

+N
d

(2.7)

where N
a

(N
d

) is the number of acceptor (donor) photons in 1- 5 ms bins. To

observe the distribution of proximity ratios a histogram will be constructed. For the

case were the interdye distance is fixed, we expect this histogram to have two peaks,

each with a variance. The first peak with a low FRET value  0.2 is typically from

leakage of donor emission in the acceptor channel. The second peak with higher FRET

value is the FRET peak resulting from transfer of energy from the donor molecule to

acceptor. The Poissonian nature of photon counts gives a variance [42]:

�
s

2 = hP i (1� hP i)/hN
a

+N
d

i. (2.8)

However, the variance of each peak is often larger than that predicted by shot

noise. This can be due to existence of a heterogeneous mixture of states with fluctua-

tions faster than bin time but slower than the fluorescent lifetime, or conformational

dynamics slower than the inter arrival time of photons. In the case that the molecule

has more than one discrete conformational state that can interconvert in the timescale

slower than the bin time, separate proximity ratio peaks will be observed. For a thor-

ough understanding of single molecule FRET e�ciency histograms, the book chapter

by Gopich and Szabo is highly recommended [42].
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In constructing the proximity histograms the peak due to donor-only labeled

molecules can be removed from the histograms by assigning each data bin to a spe-

cific peak using Gibbs sampling. The mean value of the proximity ratio hP i and the

standard deviation of the distribution �
p

are returned by a nonlinear least-squares fit

of a Gaussian with two adjustable parameters to the proximity histograms.

The absolute value of FRET can be calculated by taking the correction factor �

in to account (Eq. 2.9). � is the relative detection e�ciency (�) and quantum yield

(⌘) of the acceptor and donor dyes, � = ⌘

A

�

A

⌘

D

�

D

. Absolute FRET e�ciency will be as

Eq. 2.9:

E
FRET

=
N

a

N
a

+ � N
d

. (2.9)

The average proximity ratio (P) is related to absolute FRET by [42]:

hEi = hP i /[hP i+ �(1� hP i)]. (2.10)

Figure 2.3. Jablonski diagram for a molecule from Ref. [60]. blue arrow shows
excitation of molecule from ground state to excited states by absorption of a photon.
Red arrows show relaxation through internal conversation, and vibrational relaxation.
Green arrow shows relaxation to ground state through fluorescence by emitting a
photon.
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2.1.3 FRET e�ciency using time-resolved fluorescence lifetime measure-

ments

When a fluorophore is excited with light, several photophysical events may hap-

pen. As shown in the Jabloski diagram of Fig. 2.3, these photophysical processes

include internal conversion, vibration relaxation, intersystem crossing and fluores-

cence which are each occurring with di↵erent rates [10]. One of the quantities that

can be measured in time-resolved fluorescence measurements is fluorescence decay

time (lifetime) which is basically the reciprocal of the fluorescent decay rate. Fluo-

rescent lifetime is the average time it takes for a fluorophore to decay from its excited

state to ground state (Eq. 2.11). Lifetime for organic dyes is in the order of 0.1-10 ns.

The fluorescent lifetime ⌧ is given by:

h⌧i = 1

k
r

+ k
nr

. (2.11)

Here k
r

is the radiative decay rate and k
nr

is the non-radiative decay rate. In the

absence of any quenching process (k
nr

=0), lifetime is called the intrinsic or natural

lifetime (⌧0). Fluorescent lifetime is an intrinsic property of fluorphores, and de-

pends on the local environment, refractive index, viscosity, pH and interactions with

other molecules [15]. Fluorescent lifetimes can be used to measure FRET and it has

the advantage of not needing �. Förster resonance energy transfer (FRET) causes

quenching of the donor molecule, therefore lifetime of donor molecule decreases due

to this non-radiative process (k
nr

= k
ET

). FRET e�ciency can be defined in terms

of the fluorescent lifetime of donor fluorophore in absence and presence of acceptor

fluorophore:

E = 1� ⌧
DA

⌧
D

. (2.12)

Fig. 2.4 shows a schematic of the experimental setup we used for data acquisition.

Fluorescence lifetime decay of di↵using molecules through a femtoliter focal volume
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was measured using time-resolved polarization anisotropy. Fluorescence sample was

excited using an 80 MHz femtosecond Ti:Sapphire laser (Tsunami, Spectra physics)

tuned to a center wavelength of 514 nm and power of 80 µW. Fluorescence photons

were acquired in two polarization channels and denoted Ik and I? respectively. Fast

avalanche photodiodes (MPD PDM series) with a timing accuracy of about 25 ps were

used for photon detection along with time correlated single photon counting (TCSPC)

electronics (Picoquant PicoHarp 300) with 4 ps resolution. TCSPC registers the

arrival time of each photon, with respect to the excitation pulse arrival time [9, 96].

By collecting data over many cycles of excitation and emission a histogram of photon

arrivals per time bin can be constructed which is representative of the time decay

profile. This is only correct when not more than one photon is detected in each cycle.

To satisfy this condition the photon count rates should be kept low, so that as a rule

of thumb only one photon should be detected at every 20-100 cycles . For example for

a 80 MHz repetition rate not more than 4⇥106 cps (counts per second) is expected.

For a free fluorophore in solution with one fluorescence lifetime, the decay curves

depend on both the fluorescence lifetime (⌧), and rotational lifetime (✓) of the dye,

and have a functional form [55, 75]:

Ik(t) = Akexp

✓
�t

⌧

◆
(1� r

i

(t)) (2.13a)

I?(t) = A?exp

✓
�t

⌧

◆
(1 + 2r

i

(t)) , (2.13b)

where r(t) is the time dependent polarization anisotropy. For a simple spherical

rotator: r(t) = r0 exp
��t

✓

�
, where r0 is the intrinsic anisotropy of the fluorophore.

When the dye is attached to a larger, freely rotating molecule, polarization anisotropy

will include the rotational lifetime of the large molecule (�) and dye (✓) seperately:

r(t) = r0
⇥
(1� C)exp

��t

✓

�
+ C

⇤
exp

⇣
�t

�

⌘
[10, 55]; C represents the degree of motional
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restriction of the dye. For a fast fluctuating dye with no hinderance from the molecule

it is attached to, C will be close to zero. While for a dye stacked on the molecule, C

is expected to be close to 1.

Cyanine dyes are well known to have fluorescent lifetimes that depends on the

rigidity of their environment [91, 76]. For Cy dyes on RNA, we consistently find

three distinct rotational/fluorescence lifetime configurations [66]. We find that Cya-

nine dyes have multiple lifetimes tied to di↵erent rotational anisotropies. We ex-

pect short-lifetime components of the fluorescence to arise from relatively free and

rapidly rotating dyes, whereas longer-lifetime components arise from dyes that are

base-stacked. In a base-stacked configuration, Cyanine have longer lifetimes, while

freely-rotating Cyanines have a significantly shorter lifetime. It is therefore possible

to separate the rotational motion by fluorescent lifetime. Apart from the rotational

lifetime of the fluorophores, there is a rotational lifetime (�) associated with the over-

all tumbling of the RNA which is expected to be longer that rotational lifetime of

dyes [10].

For donor-only data we propose the following model for the decay of the fluo-

rescence intensity components parallel and perpendicular to the polarization of the

incident beam:

Ik(t) = B1

"
3X

i=1

F
iD

exp

✓
�t

⌧
iD

◆
(1 + 2r

i

(t))

#
(2.14a)

I?(t) =
3X

i=1

F
iD

exp

✓
�t

⌧
iD

◆
(1� r

i

(t)) (2.14b)

and the anisotropy for dyes attached to RNA is approximated as:

r
i

(t) = ↵


(1� C

i

)exp

✓
�t

✓
i

◆
+ C

i

�
exp

✓
�t

�

◆
(2.15)

Here F
iD

s are the intensity amplitudes, ⌧
iD

and ✓
i

are the fluorescence and rotational

lifetimes of dyes, � is the rotational life time of RNA, ↵ is the intrinsic anisotropy
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Figure 2.5. An example of instrument response function (Red), and fluorescent
signal (Black).

of the fluorophore and is fixed to 0.38, and B1 is a factor to account for di↵erences

in collection e�ciency of the two channels and C
i

describes the degree of motional

restriction of the dye in state i. Therefore for the case were the dye rapidly rotates

and doesn’t experience any restriction from the RNA we would expect C
i

to be zero.

Note that F
iD

s are the same for the parallel and perpendicular channels.

To find FRET from Eq. 2.12 we need to find the fluorescence lifetime of Cy3

(donor) dye in presence of Cy5 (acceptor) dye. For FRET data, the persistent pres-

ence of a donor-only population (due to acceptor bleaching and blinking) required

that we also include the donor-only terms for each of the three rotational states:

Ik(t) = B2

"
3X

i=1

✓
F
i

exp


�t

⌧
i

�
+ F

iD

exp


�t

⌧
iD

�◆
(1 + 2r

i

(t))

#
(2.16a)

I?(t) =
3X

i=1

✓
F
i

exp


�t

⌧
i

�
+ F

iD

exp


�t

⌧
iD

�◆
(1� r

i

(t)) (2.16b)
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similarly, r(t) is approximated by Eq. 2.15. Here F
i

and F
iD

are FRET and donor-only

amplitudes respectively, and ⌧
i

’s are the lifetimes associated with FRET from each

dye configuration. The relative donor-only population of the three configurations is

determined by a separate donor-only measurement, so there are only one additional

parameter (F3D) for the FRET data: F1D = p1⌧3

p3⌧1
F3D and F2D = p2⌧3

p3⌧2
F3D. p1,

p2 and p3 are the donor populations and defined as p
i

= A

iD

⌧

iDP3
j=1 AjD

⌧

jD

. There are 8

fitting parameters in this fit, only ⌧3 is globally fitted across all Rop concentrations.

We don’t expect the fluorescence lifetime of the donor-only population change in the

FRET measurements, therefore ⌧
iD

s are fixed to values given by the donor-only fit

results. For FRET data we don’t expect a change in ✓
i

, �, and C
i

for Cy3, so the

values for these parameters are also fixed to donor-only fit results.

We find adequate fits with the above model and best-fit parameters that are

consistent with our expectation that shorter fluorescence lifetimes are correlated with

shorter rotational lifetimes. Conversely, extant models that assume a decoupling of

the rotational and fluorescence lifetime fail to produce adequate fits.

The models for fluorescene decay curves were convolved with the IRFs (Eq. 2.17)

and then fit to Ik and I? using a nonlinear least-squares fit. Instrument response

function (IRF) is the distribution of photons from a non-fluorescent scattering sample

excited by the pulsed laser light. In an ideal condition were the excitation pulse is

infinitely sharp and detectors and electronics are infinitely accurate, IRF should have

a delta function shape. In reality the timing uncertainty introduced by detectors

and excitation source causes broadening of the IRF. Width of IRF can be measured

experimentally by collecting data from a non-fluorescent medium which scatters some

of the laser light. In this work, instrument response functions (IRFs) were determined

using the water Raman lines and the same excitation and emission filters used for

donor lifetime measurements. Fig. 2.5 shows an example of an instrument response

function and compares it with a fluorescent decay curve.
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F (t, ⌧) = IRF (t0)⌦ Ik,?(t) =

Z
t

0

IRF (t0) Ik,?(t) dt
0 (2.17)

Donor lifetime measurements were acquired for both donor-only and donor-acceptor

labeled samples with 50 nM RNA and various Rop concentrations. To find FRET,

donor lifetime measurements were acquired for both donor-only and donor-acceptor

labeled samples with 50 nM RNA and various Rop concentrations. A nonlinear

least-squares fit to the data that incorporated the IRF into the model was used to

distinguish between and evaluate single, double, and triple exponential decays of the

fluorescence.

2.2 Fluctuation Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) characterizes fluctuations in fluores-

cence intensity [87]. The fluctuations in fluorescence originates in fluctuations in

local concentration, reversible changes in fluorescence due to a chemical reaction or

photophysical transitions to triplet state, and conformational changes like reversible

isomerization. We used FCS to rule out artifacts that might be associated with Rop-

dependent dye photophysics. Also FCS was used in an attempt to measure binding

kinetics of Rop to R1inv-R2inv KC.

In FCS it is common to use a confocal microscope were the laser light is focused

on to the sample using a high numerical aperture objective. Therefore a very small

volume of sample (⇡ fL) is excited, and only molecules in this volume can emit

fluorescence. Emitted photons are registered using an avalanche photodiode after

passing through a pinhole (field aperture) that rejects out of focus light. Fluctuations

in fluorescence are induced by chaneges in the number of molecules in the focal volume

as molecules di↵use in and out. I take F
i

(t) to be the fluorescent signal from photons

emitted by fluorophores of species i di↵using in detection volume (V
eff

). Fluorescent
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fluctuations (�F
i

⌘ F (t)�hF (t)i) are proportional to intensity of the excitation laser

(I
ext

(r)) and local concentration (C
i

(r, t)) of fluorescent species:

�F
i

= 
i

Z

V

I
ex

(r)S
i

(r)�(�
i

q
i

C
i

(r, t)) dV, (2.18)

where 
i

is the detection e�ciency, S
i

(r) is the optical transfer function of the

objective-pinhole combination, and �
i

and q
i

are the cross section and quantum yield

of the fluorophores respectively [87].

Eq. 2.18 can be simplified by defining the distribution function for emission light

as, W
i

(r) = S
i

(r) ⇤ I

ex

(r)
I0

and defining brightness of each species as ⌘
i

= I0i

�
i

q
i

.

Brightness is the count rate per detected molecule. The simplified form for �F
i

(t) is

as follow:

�F
i

=

Z

V

W (r)�(⌘
i

C
i

(r, t)) dV, (2.19)

�(⌘
i

C
i

(r, t)) term shows that source of fluctuation is either concentration or bright-

ness.

W (r) is usually assumed to be a Gaussian with lateral and axial 1/e2 distribution of

r0 and z0:

W (r) = exp(
�2(x2 + y2)

r20
)exp(

�2z2

z20
) (2.20)

Fluorescent fluctuations can be quantified by autocorrelating the intensity signal

(Eq. 2.21). The autocorrelation function (G(⌧)) is a measure of the probably of

detecting a photon emission from a molecule at time t+⌧ , if a photon has already

been detected from the same molecule at time t:

G(⌧) =
h�F

i

(t)�F
i

(t+ ⌧)i
hF

i

(t)i2
(2.21)

The brackets represent time averaging over all time t. Eq. 2.21 can be solved by

inserting Eq. 2.19 for fluorescent fluctuations. The solution for G(⌧) is di↵erent

depending on the source of fluctuations [34]. In the simplest case where molecules of
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species i are freely di↵using in the 3D focal volume (V
eff

) with a di↵usion constant

of D
i

, the solution for G(⌧) will be:

G
D,i

(⌧) =
1

V
eff

hC
i

i
1

1 + ⌧

i

⌧

D

1

(1 + ⌧

⌧

D,i

!

2 )
1
2

, (2.22)

where V
eff

= ⇡3/2r0z
2
0 can be found with a calibration using a dye of known di↵usivity.

V
eff

hC
i

i is the measured amplitude of the autocorrelation function ((G
D,i

(0))�1), and

represents the average number of molecules in the focal volume (N). The aspect ratio

of the detection volume is, ! = z0
r0
. The radial di↵usion time for species i is: ⌧

D,i

= r

2
0

4D
i

.

Two important quantities that can be found by fitting to this model are the number

of molecules in the detection volume and the di↵usion time (or as a result di↵usion

coe�cient).

For multiple non-interacting fluorescent species, each with brightness ⌘
n

, Eq. 2.22

can be generalized as:

G
M

(⌧) =
1

V
eff

P
n

⌘
n

hC
n

iM
n

(⌧)

(
P

n

⌘
n

hC
n

i)2 , (2.23)

Here,

M
n

(⌧) =
1

1 + ⌧

i

⌧

D

1

(1 + ⌧

⌧

D,i

!

2 )
1
2

(2.24)

Fluctuations in fluorescence can also be due to fluctuations in brightness (�⌘
i

)

either from intermolecular dynamics or intramolecular dynamics. Two common pho-

tophysical processes in fluorophores which causes changes in fluorescent are transitions

to triplet state [99], and photo-induced isomerization and back isomerization of some

dyes [100].

For any fluorescent reaction with fluctuations faster than di↵usion time, functional

form of autocorrelation function will be as follow:
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G
x

(⌧) = 1�X +X exp(�⌧

⌧

x

), (2.25)

where ⌧
x

is the correlation time and X is population of that state. Overall correlation

function is multiplication of all the correlation functions involved in the process:

G
tot

(⌧) = G
D

(⌧)G
x

(⌧) (2.26)

A fluorescent molecule can have reversible transitions to the first excited triplet

state as shown in the Jablonski diagram of Fig. 2.3. This process can be considered

as a two state system with transitions between bright (B) and dark (D) states. The

autocorrelation function (G
T

(⌧)) for this process is as in Eq. 2.25. Relaxation time

for triplet dynamics is defined as ⌧
T

, and T is defined as the average fraction of

molecules in the dark state. When the dark state is not completely dark (�⌘
D

6= 0),

T = k

D

k

B

(⌘
B

�⌘

D

)2

k

D

+k

B

. k
D

and k
B

are the rate of transitions to the dark and bright states

respectively.

Isomerization is another photophysical process which is common in some fluo-

rophores like Cyanine5. Isomerization and back isomerization involves transitions

between the trans and cis states of the fluorophores. Autocorrelation function result-

ing from isomerization (G
I

(⌧)) is as defined in Eq. 2.25, with relaxation time of ⌧
I

and isomerization fraction of I.

Thus, when studying a molecular system with dynamics in the time scale < 1ms,

fluctuations due to photophyscial e↵ects on the time scale of one to tens of microsec-

ond, should be taken in to account.

The model I used for describing dynamics of the RNA-protein complex with Cy3-

Cy5 as the fluorescent probes, includes di↵usion, triplet and isomerization terms. The

complete model for G(⌧) that I used for fitting to the experimental data is:
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G(⌧) = G
D

(⌧)
Y

X=T,I

1

1�X
(1�X +X exp(

�⌧

⌧
i

)), (2.27)

where G
D

(⌧) is defined in Eq. 2.22. If more reactions are involved which cause

fluorescent fluctuations, they can be added through multiplication of more terms in

the form of G
x

(⌧). Obviously the presence of multiple reactions with timescales close

to each other makes it di�cult to resolve the coherence times.

FCS data were acquired on donor-only, acceptor-only and donor-acceptor labeled

RNA, with and without Rop in an attempt to measure binding kinetics of Rop to

R1inv-R2inv kissing complex. The same experimental setup as the FRET setup,

shown in Fig. 2.2, is used for these measurements. Emitted donor and acceptor pho-

tons were detected using two avalanche photodiodes (MPD ⌧ -SPAD) and homemade

photon timing circuitry based on an FPGA [40]. Data on a particular sample were

typically acquired for 30 minutes. The uncertainty on the correlation function was

determined by dividing the data set into 10 sequential runs, calculating the correla-

tion function for each, and taking the standard deviation of the ten functions at each

lag time.

2.3 Design and preparation of R1inv-R2inv constructs

The design of the RNA strands was informed by our prior work regarding the

behavior of dyes attached to the 50 terminus of double-stranded RNA [66]. MD simu-

lations performed on dye-labeled RNA had indicated that indocyanine dyes tethered

by a short linker to a 50 terminal guanine visit several sites on the RNA, whereas

the same dyes attached to a 50 cytosine remain nearer a position in which the dye

is “stacked” on the end of the RNA duplex. Furthermore, earlier work that demon-

strated a dependence of FRET on helical twist, as well as length, of a DNA duplex

made use of Cy3 and Cy5 attached at 50 terminal cytosines [74, 50, 51]. We therefore

expected that Cy3-Cy5 dye pair attached at 50 cytosines would have better sensitivity
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to angular changes than Cy3-Cy5 attached at 50 guanine: this turned out to be the

case, but perhaps for a di↵erent reason.

Two distinct complexes were used in this study, di↵ering only in the terminal base-

pair. The R1inv-R2inv complex, whose constituent hairpins are shown in Fig. 2.6(a),

has 50 guanines to which Cy3 and Cy5 were attached. Cyanine dyes stack best on

RNA when attached at terminal 50 cytosine [66], so we also made use of RNA that was

identical to the complex of Fig. 2.6(a), except that the 30 and 50 bases were swapped

(Fig. 2.6(b)). We refer to this complex as R1inv-R2inv-C.
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Figure 2.6. R1inv-R2inv kissing complexs, with Cy3 and Cy5 labeled on (a) terminal
50 Guanine (R1inv-R2inv) and (b) terminal 50 Cytosine (R1inv-R2inv-C).

RNA and dye-labeled RNA were purchased from Integrated DNA Technologies

(IDT). RNA strands at 12 µM were heated for 3 minutes at 93 �C, then snap cooled
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on dry ice for 3 minutes to form the hairpins. To form kissing complexes, the R1inv

hairpins (2.4 µM) were combined with R2inv hairpins (3 µM) in 20 mM Tris bu↵er,

100 mM NaCl and 5 mM MgCl2 and then incubated for 30 minutes on ice. For FRET

measurements, this solution was diluted again to a final concentration of 100 pM

or 200 pM R1inv-R2inv, after which Rop was added. The final solution contained

20 mM Tris bu↵er (pH 7.8) with 100 mM NaCl and 5 mM MgCl2. To minimize

photobleaching and blinking of fluorophores, 15 nM protocatechuate3,4-dioxygenase

(PCD) and 5 mM protocatechuic acid (PCA) were added as an enzymatic oxygen

scavenger system [2] and methylviologen (MV) was added as part of the reducing and

oxidizing system (ROXS) [95].
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CHAPTER 3

RESULTS AND ANALYSIS

3.1 Gel shift assay

Binding of Rop to R1inv-R2inv was confirmed using an electrophoretic mobility

shift assay, shown in Fig. 3.1. The electrophoretic mobility shift assay was performed

using a 15% (0.15 g/mL) polyacrylamide gel as described by Predki et al. [79]. Proto-

col for preparation of gel can be found in Appendix A. The gel was run at 20 mA in a

1x TBM bu↵er (89 mM Tris at pH 8.3, 89 mM boric acid and 5 mM MgCl2). Ethid-

ium bromide was used for staining the gel and visualizing the bands. Lane 1 contains

duplex DNA (10 bp DNA ladder from Promega) from 10 bp to 100 bp. Lanes 8 and

9 contain 2 µM of R1inv-Cy3 and R2inv-Cy5 hairpins separately. All the other lanes

contain 1 µM of R1inv-R2inv complex with Rop concentration ranging from 0 µM to

250 µM. A clear shift attributed to Rop binding is evident in lanes 6 and 7 at Rop

concentrations of 100 µM and 250 µM respectively. Some evidence of binding is also

noted in lane 5 at 10 µM. Note that gel shift assays result in much higher apparent

dissociation constants for Rop binding [79] than other assays [83, 31], presumably due

to the instability of the complex under electrophoresis, but are still useful to confirm

binding.

3.2 Results and Analysis: Solution Ratiometric FRET

Single molecular-pair FRET (spFRET) was used to investigate the structural

changes of the R1inv-R2inv complex. To make use of the sensitivity of FRET to

changes in dye orientation, we also studied R1inv-R2inv-C, in which the terminal
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Figure 3.1. Electrophoretic gel demonstrating the binding of Rop to the RNA loop-
loop complex. The first lane is a DNA ladder. Note that R1inv is labeled with Cy3
and R2inv with Cy5, and the gel is stained with ethidium bromide, which may account
for the apparently brighter signal from R1inv at nominally the same concentration.
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base-pair on the stem of each hairpin was flipped, so that the 50 terminal base in

both cases is a cytosine instead of guanine. This change does not a↵ect Rop binding,

which is known to depend only on the structure of the kissing interface and nearest

bases [31] and is not sensitive to changes in the terminal base pair.

The results of single-molecule-sensitive FRET measurements on freely-di↵using

R1inv-R2inv-C show a clear shift in the average proximity ratio with increasing Rop

concentration. Typical results are shown in Fig. 3.2(a) and Table 3.1. The maxi-

mum shift in the average proximity ratio hP i upon addition of Rop is small, but it

is approximately an order of magnitude larger than the uncertainty on the average

values; see Table 3.1 for a complete reporting of fit parameters. The mean value of

the proximity ratio hP i and the standard deviation of the distribution �
p

are returned

by a nonlinear least-squares fit of a Gaussian with two adjustable parameters to the

proximity histograms of Fig. 3.2. The uncertainties on these parameters are returned

by the fit; however, it is worth noticing that the uncertainty in the mean of a distri-

bution is also given by �
p

/
p
N , where �

p

is the standard deviation of the distribution

and N is the total number of FRET measurements (bins) in the measurement. The

uncertainty in hP i calculated in this way agrees with the uncertainty returned by the

fit. Complete fit parameters are given in Table 3.1.

In Fig. 3.2(a) the 50 C labeled RNA complex is present at a nominal concentration

of 100 pM, and Rop when present is at 10 nM, 100 nM, 1 µM, 10 µM and 50 µM.

Without Rop present, two separate measurements gave hP i = 0.504±0.002 [shown as

the grey vertical line in Fig. 3.2] and hP i = 0.492± 0.003. These two measurements

were taken at the beginning and end of data acquisition to check for instrument drift:

they show a small drift in the direction opposite the shift with Rop, implying that the

observed shift in hP i is probably a lower limit. In contrast, for the R1inv-R2inv duplex

at 200 pM, with dyes attached to a terminal 50 G, there was no significant change in

the FRET distribution upon the addition of Rop, Fig. 3.2(b). These measurements
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Figure 3.2. Proximity ratio histograms for (a) R1inv-R2inv-C kissing complex and
(b) R1inv-R2inv kissing complex at various Rop concentrations from 0 to 50 µM. The
threshold for inclusion in the histogram is 25 photons in a 5 ms bin. The black curves
are the best fits of a Gaussian to the data. The vertical line represents the hP i for the
data with no Rop in the top panel. A small but distinct shift in FRET is apparent
with the addition of Rop in (a) but not in (b). The data are displayed in the order
they were taken: to check for drift, data with no Rop were acquired at the beginning
and end of the sequence.

Table 3.1. Results of fits to the data of Fig. 3.2. hP i is the mean and �
p

is the
standard deviation of the proximity ratio histogram for the R1inv-R2inv-C complex or
the R1inv-R2inv complex at di↵erent concentrations of Rop. The standard deviation
attributable to shot-noise alone, �

sn

, and the total number of bins under each peak,
N , are also given.

R1inv-R2inv-C R1inv-R2inv

[Rop] (µM) hP i �
p

�
sn

N hP i �
p

�
sn

N
0 0.504 ± 0.002 0.111 ± 0.002 0.086 3014 0.606 ± 0.004 0.099 ± 0.003 0.087 839

0.01 0.510 ± 0.003 0.103 ± 0.002 0.086 2321 - - - -

0.1 0.520 ± 0.003 0.103 ± 0.002 0.084 1795 0.614 ± 0.003 0.097 ± 0.002 0.086 1095

1 0.527 ± 0.003 0.105 ± 0.002 0.084 1663 0.610 ± 0.004 0.100 ± 0.003 0.086 977

10 0.534 ± 0.003 0.099 ± 0.002 0.084 1339 0.616 ± 0.004 0.094 ± 0.003 0.086 772

50 0.537 ± 0.004 0.105 ± 0.003 0.084 862 0.616 ± 0.004 0.089 ± 0.003 0.084 619

0 0.492 ± 0.003 0.114 ± 0.002 0.088 1883 0.603 ± 0.006 0.095 ± 0.004 0.084 371
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were also repeated later with similar results, giving hP i = 0.598 ± 0.003 for R1inv-

R2inv without Rop present, and hP i = 0.605 ± 0.009 for R1inv-R2inv with 50 µM

Rop. Here the small shift observed in average proximity ratio upon binding of protein

is negligible in comparison with that of the R1inv-R2inv-C complex.

In Table. 3.1, �
s

denotes the expected shot-noise-limited width of the distributions

[42], which is given by �
s

2 = hP i (1� hP i)/hN
a

+N
d

i, where N
a

+ N
d

is the total

number of photons in a bin which is typically 34. For R1inv-R2inv with 50 G attached

dyes the width of the proximity distributions in Fig. 3.2(b) is close to shot-noise

limited . For R1inv-R2inv-C, the width of the proximity distributions in Fig. 3.2(a)

are clearly larger than would be expected from shot-noise. This is not unusual for

the Cy3-Cy5 dye pair, and the broadening is usually attributed to the isomerization

of Cy5 [52]. This would not, however, explain the apparent di↵erence in width of

the proximity distribution for the two RNA kissing construct. There is also weak

evidence for a small but systematic reduction in width with the addition of Rop to

R1inv-R2inv-C, Table. 3.1. It is therefore possible that at least some of the width

observed in the FRET histograms may be due to structural heterogeneities of the RNA

kissing complex that are evident in for 50 C attached dyes but not for 50 G attached

dyes. A broadening of the proximity histogram for the 50 C complex would require

structural sub-species that have lifetimes longer than the interphoton arrival time,

typically 20-200 µs here; from the already identified minimized energy structures, we

infer that these subspecies probably vary primarily in twist or bend angle. If this is

indeed the case, then Rop binding might suppress some structural sub-species, which

would be consistent with both a narrowing and a shift in the FRET distribution for

the 50 terminal C labeled complexes. The narrower width of the data for the R1inv-

R2inv 50 G labeled complexes would also seem to support this idea: because the

transition dipole moments of dyes attached to 50 terminal G are oriented parallel to

each other and show smaller fluctuations, FRET is almost maximized for this complex
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and subtle angular changes in RNA kissing complex structure will not be resolvable

by this complex.

Figure 3.3. Proximity ratio for 100 pM R1inv-R2inv-C at di↵erent concentrations
of Rop (squares). Solid line shows the best fit binding curve, giving k

d

of 33.2±17 nM
and a change in hP i of 0.034±0.004. For fitting, hP i at zero Rop was fixed at the
average of the two measurements.

The average proximity ratio as a function of Rop (Fig. 3.3) was used to determine

the dissociation constant for Rop binding. We find k
d

= 33.2± 17 nM, in agreement

with prior measurement of 60 ± 24 nM [83] and 45 nM [31]. The data and resulting

fit, using a single site equilibrium binding equation [3, 83] are shown in Fig. 3.3. The

fit model was found by considering a reaction as follow for the RNA-protein complex:

RNA + protein *) complex

Dissociation constant for this reaction is defined as:

K
D

=
[RNA][protein]

[complex]
, (3.1)

where [RNA] and [protein] are concentrations of free RNA and protein. Since these

quantities are not easy to measure we are going to write K
D

in terms of total concen-
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tration of RNA and protein ([RNA]
tot

and [protein]
tot

), these are the concentrations

added initially.

[RNA] = [RNA]
tot

� [complex]

[protein] = [protein]
tot

� [complex]

Substituting them in Eq. 3.1,

K
D

=
([RNA]

tot

� [complex])([protein]
tot

� [complex])

[complex]
(3.2)

Organizing Eq. 3.2 will give a second order polynomial equation, and we are trying

to solve for [complex]:

[complex]2�([RNA]
tot

+[protein]
tot

+K
D

)[complex]+[RNA]
tot

[protein]
tot

= 0 (3.3)

For convenience we are defining b = [RNA]
tot

+ [protein]
tot

+ K
D

. Solving for con-

centration of complex ([complex]) results in:

[complex] =
�b±

p
b2 � 4[RNA]

tot

[protein]
tot

2
(3.4)

The probability of being bound (P
b

) is the amount of RNA being bound in complex

divided by total concentration of RNA:

P
bound

=
[complex]

[RNA]
tot

=
�b±

p
b2 � 4[RNA]

tot

[protein]
tot

2[RNA]
tot

(3.5)

At zero concentration of protein there is no complex formed, therefore P
bound

is

zero. Here our probe for binding is FRET, and even the unbound RNA has nonzero

FRET. Therefore to model binding curve derived from FRET results, we need to
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scale P
bound

and consider the initial value of FRET. To express the fluorescent data

in terms of binding probability, we assumed a linear relationship between FRET and

probability of binding. The model we used for fitting to the binding curve is as follow:

PR = [(PR)
final

� (PR)
init

] P
bound

+ (PR)
init

(3.6)

For the two-parameter fit, the value of hP i measured at zero Rop concentration

was fixed at the mean value of the two data points, hP i = 0.498. A total increase of

6.6 ± 0.8%, to hP i = 0.532 ± 0.002, is observed upon Rop binding for the data of

Fig. 3.2(a). The second run with R1inv-R2inv-C at 200 pM gave similar results, with

a shift in hP i of 8.6 ± 0.8%. The di↵erence can be due to systematic drift.

In summary: Since Rop binding is not sensitive to the terminal base pair, the

same structural change should be present for both constructs. However, only R1inv-

R2inv-C reports a change in FRET upon Rop binding. This result is consistent with

the model we discuss later that Rop induces a change in twist of the complex.

3.3 Results and Analysis: Time-resolved lifetime measure-

ments

To find FRET before and after binding of Rop protein, we first measure the fluo-

rescence polarization anisotropy decay of Cy3 on donor-only labeled R1inv-R2inv-C

and R1inv-R2inv as a function of [Rop]. The results are fitted with the model de-

scribed by Eqs. 2.14a and 2.14b and convolved with IRFs (Eq. 2.17). Fig. 3.4 and

Fig. 3.5 shows the fluorescence decay curves in perpendicular and parallel channels

(I? and Ik) and the corresponding fits to this data for R1inv-R2inv-C KC at dif-

ferent Rop concentrations. Fig. 3.6 and Fig. 3.7 shows the results of a similar fit

to the fluorescence decay curves in perpendicular and parallel channels (I? and Ik)
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for R1inv-R2inv complex at di↵erent [Rop]. These figures also include the residuals

corresponding to each fit.

No Rop

10nM Rop

100nM Rop

1µM Rop

10µM Rop

50µM Rop

Figure 3.4. Fluorescence lifetime decay curves and the corresponding fits to them
for Cy3 on donor-only labeled R1inv-R2inv-C at di↵erent [Rop] in perpendicular
polarization channel (I?). Residuals corresponding to fits are included.

The donor-only fluorescence lifetime for both R1inv-R2inv-C and R1inv-R2inv

revealed three fluorescence lifetimes, which had no systematic variation with [Rop].

This would indicate that there is no quenching associate with the addition of Rop

alone.

We therefore did a global fit for the ⌧
iD

across all Rop concentrations, and found

for R1inv-R2inv-C ⌧1 = 1.315±0.005 ns, ⌧2 = 0.705±0.008 ns and ⌧3 = 0.193±0.004

ns. The population associated with each state is given by A
iD

⌧
iD

/
P

i

A
iD

⌧
iD

and
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No Rop

10nM Rop

100nM Rop

1µM Rop

10µM Rop

50µM Rop

Figure 3.5. Fluorescence lifetime decay curves and the corresponding fits to them for
Cy3 on donor-only labeled R1inv-R2inv-C at di↵erent [Rop] in parallel polarization
channel (Ik). Residuals corresponding to fits are included.
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No Rop

10nM Rop

100nM Rop

1µM Rop

10µM Rop

50µM Rop

Figure 3.6. Fluorescence lifetime decay curves and the corresponding fits to them
for Cy3 on donor-only labeled R1inv-R2inv at di↵erent [Rop] in perpendicular polar-
ization channel (I?). Residuals corresponding to fits are included.

40



No Rop

10nM Rop

100nM Rop

1µM Rop

10µM Rop

50µM Rop

Figure 3.7. Fluorescence lifetime decay curves and the corresponding fits to them
for Cy3 on donor-only labeled R1inv-R2inv at di↵erent [Rop] in parallel polarization
channel (Ik). Residuals corresponding to fits are included.
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found to be about 61%, 33% and 3.5% for i = 1, 2, 3 respectively, Fig. 3.8(a). Note

that, there is no significant systematic change in the populations with [Rop]. The

intensity weighted lifetime, used in calculating average FRET, was calculated using

[97] h⌧i =
P

i

A

i

⌧

2
iP

i

A

i

⌧

i

= 1.06 ± 0.005 ns. The result of the fit to R1inv-R2inv-C lifetime

data is reported in Table. 3.2.

For R1inv-R2inv the lifetime results were similar, with ⌧1 = 1.488 ± 0.005 ns,

⌧2 = 0.689 ± 0.003 ns and ⌧3 = 0.185 ± 0.002 ns. The corresponding amplitudes

showed no systematic change with [Rop], and the populations were 45%, 46% and

6.5%, respectively, Fig. 3.8(b). Again, there is no significant systematic change in

the populations with [Rop]. The intensity weighted lifetime was calculated to be

1.0 ± 0.004 ns. Table. 3.5 summarizes the result of the fits for R1inv-R2inv KC

labeled on 50C and 50C with Cy3-only and Cy3-Cy5 pair.

The rotational correlation times for R1inv-R2inv-C were consistent with the notion

that shorter fluorescent lifetimes are associated with rotationally freer dyes, we found

that the shorter the lifetime, the shorter the rotational correlation time. Individual

fits for ✓
i

s indicated no systematic change with [Rop]; this confirms our prediction

that binding of Rop doesn’t change rotational lifetime of Cy3. We therefore fit ✓
i

globally across all data sets giving ✓1 = 0.461 ± 0.024 ns, ✓2 = 0.054 ± 0.005 ns

and ✓3 = 0.007 ± 0.003 ns. The long-lifetime state (✓1) represents Cy3 stacked on

RNA, and therefore has the longest rotational lifetime. The rotational correlation

time of the RNA molecule (�), has the longest lifetime and increases with binding of

Rop protein. At di↵erent concentrations of Rop there is a population of bound and

unbound RNA molecules, therefore what we measure is h�i for bound and unbound

RNA molecules. Using h�i, population of bound RNA was calculated and by fitting a

single site equilibrium binding equation to the data (Eq. 3.5), as shown in Fig.3.8(c),

K
d

= 779.3±191.8 nM was measured. C
i

s, which are the degree of the motional

restriction of the dye, were also globally fitted across all Rop concentrations, giving:
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Table 3.3. Results of the fits to the fluorescence lifetime decay curves for R1inv-
R2inv-C (top panel) and R1inv-R2inv-G (bottom panel), labeled with Cy3. ⌧1D, ⌧2D,
⌧3D, ✓1, ✓2, ✓3, C1, C2 are globally fitted.

Rop ⌧
D1 (ns) ⌧

D2 (ns) ⌧
D3 (ns) F

D1 F
D2 F

D3 ✓1 (ns) ✓2 (ns) ✓3 (ns) � (ns) C1 C2 C3 B

0 nM 1.314 (0.005) 0.703 (0.008) 0.192 (0.004) 1.60 (0.03) 1.75 (0.02) 0.61 (0.02) 0.46 (0.02) 0.054 (0.005) 0.007 (0.003) 8.4 (0.55) 0.63 (0.01) 0.52 (0.03) 0 1.16 (0.02)
10 nM 1.314 0.703 0.192 1.58 (0.03) 1.57 (0.02) 0.6 (0.01) 0.46 0.054 0.007 8.98 0.63 0.52 0 1.17 (0.02)
100 nM 1.314 0.703 0.192 1.48 (0.03) 1.42 (0.02) 0.57 (0.01) 0.46 0.054 0.007 10.3 0.63 0.52 0 1.14 (0.02)
1 µM 1.314 0.703 0.192 1.92 (0.04) 1.76 (0.02) 0.7(0.01) 0.46 0.054 0.007 26.5 0.63 0.52 0 1.13 (0.02))
10 µM 1.314 0.703 0.192 2.14 (0.04) 1.87 (0.02) 0.82 (0.02) 0.46 0.054 0.007 29.9 0.63 0.52 0 1.10 (0.02)
50 µM 1.314 0.703 0.192 1.55 (0.03) 1.31 (0.02) 0.63 (0.01) 0.46 0.054 0.007 31.3 0.63 0.52 0 1.18 (0.02)

0 nM 1.509 (0.006) 0.698 (0.004) 0.186 (0.002) 0.413 (0.006) 1.066 (0.005) 0.509 (0.006) 0.227 (0.006) 0.003 (0.001) 0.008 (0.001) 8.4 0.196 (0.007) 0.396 (0008) 0 1.317 (0.008)
10 nM 1.509 0.698 0.186 0.651 (0.01) 1.549 (0.007) 0.826 (0.008) 0.227 0.003 0.008 8.98 0.196 0.396 0 1.311 (0.007)
100 nM 1.509 0.698 0.186 0.436 (0.006) 0.766 (0.004) 0.545 (0.005) 0.227 0.003 0.008 10.3 0.196 0.396 0 1.78 (0.01)
1 µM 1.509 0.698 0.186 0.495 (0.007) 1.111 (0.005) 0.643 (0.006) 0.227 0.003 0.008 26.5 0.196 0.396 0 1.80 (0.01)
10 µM 1.509 0.698 0.186 0.583 (0.008) 1.188 (0.006) 0.742 (0.006) 0.227 0.003 0.008 29.9 0.196 0.396 0 1.57 (0.01)
50 µM 1.509 0.698 0.186 0.557 (0.008) 1.157 (0.006) 0.710 (0.006) 0.227 0.003 0.008 31.3 0.196 0.396 0 1.64 (0.01)

Table 3.4. Results of the fits to the fluorescence lifetime decay curves for R1inv-
R2inv-C (top panel) and R1inv-R2inv-G (bottom panel), labeled with Cy3 and Cy5.

Rop F
D1 F

D2 F
D3 ⌧1 (ns) ⌧2 (ns) ⌧3 (ns) F1 F2 F3 B

0 nM 0.18 0.20 0.07 1.06 (0.03) 0.51 (0.01) 0.136 (0.002) 1.5 (0.1) 1.6 (0.2) 0.62 (0.04) 1.14 (0.002)
10 nM 0.10 0.10 0.04 1.06 (0.03) 0.50 (0.01) 0.136 (0.002) 1.35 (0.09) 1.38 (0.13) 0.55 (0.04) 1.16 (0.002)
100 nM 0.31 0.30 0.12 0.99 (0.03) 0.47 (0.01) 0.136 (0.002) 1.17 (0.05) 1.14 (0.09) 0.42 (0.02) 1.15 (0.002)
1 µM 0.44 0.41 0.16 0.96 (0.02) 0.44 (0.01) 0.136 (0.002) 1.29 (0.03) 1.12 (0.07) 0.42 (0.02) 1.19 (0.002)
10 µM 0.51 0.45 0.2 0.91 (0.01) 0.43 (0.008) 0.136 (0.002) 1.19 (0.02) 0.95 (0.04) 0.39 (0.02) 1.20 (0.002)
50 µM 0.63 0.53 0.26 0.91 (0.01) 0.43 (0.008) 0.136 (0.002) 1.31 (0.03) 1.11 (0.05) 0.4 (0.02) 1.18 (0.002)

0 nM 0.14 0.36 0.17 (0.01) 0.939 (0.019) 0.472 (0.004) 0.180 (0.002) 0.65 (0.01) 1.43 (0.01) 0.79 (0.02) 1.414 (0.002)
10 nM 0.15 0.36 0.19 (0.02) 0.956 (0.02) 0.467 (0.004) 0.180 (0.002) 0.66 (0.01) 1.56 (0.04) 0.75 (0.02) 1.400 (0.002)
100 nM 0.29 0.50 0.36 (0.01) 0.861 (0.019) 0.469 (0.003) 0.180 (0.002) 0.57 (0.01) 1.52 (0.04) 0.67 (0.02) 1.309 (0.001)
1 µM 0.20 0.45 0.26 (0.02) 0.946 (0.024) 0.483 (0.003) 0.180 (0.002) 0.57 (0.01) 1.58 (0.05) 0.80 (0.02) 1.067 (0.001)
10 µM 0.16 0.33 0.21 (0.02) 0.970 (0.025) 0.488 (0.003) 0.180 (0.002) 0.51 (0.01) 1.49 (0.04) 0.73 (0.02) 1.301 (0.002)
50 µM 0.17 0.36 0.22 (0.02) 1.010 (0.025) 0.501 (0.003) 0.180 (0.002) 0.62 (0.02) 1.88 (0.05) 0.92 (0.02) 1.238 (0.001)

44



T
a
b
le

3
.5
.
R
es
u
lt
s
of

th
e
fi
ts

to
th
e
fl
u
or
es
ce
n
ce

li
fe
ti
m
e
d
ec
ay

cu
rv
es

fo
r
R
1i
nv

-R
2i
nv

-C
la
b
el
ed

w
it
h
C
y3

on
ly

(t
op

p
an

el
),

an
d
la
b
el
ed

w
it
h
C
y3

-C
y5

(b
ot
to
m

p
an

el
).

F
or

d
on

or
-o
n
ly

d
at
a,

⌧ 1
D

,
⌧ 2

D

,
⌧ 3

D

,
✓ 1
,
✓ 2
,
✓ 3
,
C

1
,
C

2
ar
e
gl
ob

al
ly

fi
tt
ed
.
F
or

F
R
E
T

d
at
a,

on
ly

⌧ 3
is
gl
ob

al
ly

fi
tt
ed
.
⌧ 1

D

,
⌧ 2

D

,
⌧ 3

D

,
✓ 1
,
✓ 2
,
✓ 3
,
C

1
,
C

2
,
�
ar
e
fi
xe
d
to

th
e
va
lu
es

fo
u
n
d
fr
om

d
on

or
-o
n
ly

fi
ts
.

R
op

⌧ 1
D

(n
s)

⌧ 2
D

(n
s)

⌧ 3
D

(n
s)

F
1
D

F
2
D

F
3
D

✓ 1
(n
s)

✓ 2
(n
s)

✓ 3
(n
s)

�
(n
s)

C
1

C
2

C
3

⌧ 1
(n
s)

⌧ 2
(n
s)

⌧ 3
(n
s)

F
1

F
2

F
3

B
1

↵
B

2

0
n
M

1.
50
9
(0
.0
06
)

0.
69
8
(0
.0
04
)

0.
18
6
(0
.0
02
)

0.
41
3
(0
.0
06
)

1.
06
6
(0
.0
05
)

0.
50
9
(0
.0
06
)

0.
22
7
(0
.0
06
)

0.
00
3
(0
.0
01
)

0.
00
8
(0
.0
01
)

8.
4

0.
19
6
(0
.0
07
)

0.
39
6
(0
00
8)

0
-

-
-

-
-

-
1.
31
7
(0
.0
08
)

0.
38

-
10

n
M

1.
50
9

0.
69
8

0.
18
6

0.
65
1
(0
.0
1)

1.
54
9
(0
.0
07
)

0.
82
6
(0
.0
08
)

0.
22
7

0.
00
3

0.
00
8

8.
98

0.
19
6

0.
39
6

0
-

-
-

-
-

-
1.
31
1
(0
.0
07
)

0.
38

-
10
0
n
M

1.
50
9

0.
69
8

0.
18
6

0.
43
6
(0
.0
06
)

0.
76
6
(0
.0
04
)

0.
54
5
(0
.0
05
)

0.
22
7

0.
00
3

0.
00
8

10
.3

0.
19
6

0.
39
6

0
-

-
-

-
-

-
1.
78

(0
.0
1)

0.
38

-
1
µ
M

1.
50
9

0.
69
8

0.
18
6

0.
49
5
(0
.0
07
)

1.
11
1
(0
.0
05
)

0.
64
3
(0
.0
06
)

0.
22
7

0.
00
3

0.
00
8

26
.5

0.
19
6

0.
39
6

0
-

-
-

-
-

-
1.
80

(0
.0
1)

0.
38

-
10

µ
M

1.
50
9

0.
69
8

0.
18
6

0.
58
3
(0
.0
08
)

1.
18
8
(0
.0
06
)

0.
74
2
(0
.0
06
)

0.
22
7

0.
00
3

0.
00
8

29
.9

0.
19
6

0.
39
6

0
-

-
-

-
-

-
1.
57

(0
.0
1)

0.
38

-
50

µ
M

1.
50
9

0.
69
8

0.
18
6

0.
55
7
(0
.0
08
)

1.
15
7
(0
.0
06
)

0.
71
0
(0
.0
06
)

0.
22
7

0.
00
3

0.
00
8

31
.3

0.
19
6

0.
39
6

0
-

-
-

-
-

-
1.
64

(0
.0
1)

0.
38

-

0
n
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
17

(0
.0
1)

0.
22
7

0.
00
3

0.
00
8

8.
4

0.
19
6

0.
39
6

0
0.
93
9
(0
.0
19
)

0.
47
2
(0
.0
04
)

0.
18
0
(0
.0
02
)

0.
65

(0
.0
1)

1.
43

(0
.0
1)

0.
79

(0
.0
2)

-
0.
38

1.
41
4
(0
.0
02
)

10
n
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
19

(0
.0
2)

0.
22
7

0.
00
3

0.
00
8

8.
98

0.
19
6

0.
39
6

0
0.
95
6
(0
.0
2)

0.
46
7
(0
.0
04
)

0.
18
0
(0
.0
02
)

0.
66

(0
.0
1)

1.
56

(0
.0
4)

0.
75

(0
.0
2)

-
0.
38

1.
40
0
(0
.0
02
)

10
0
n
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
36

(0
.0
1)

0.
22
7

0.
00
3

0.
00
8

10
.3

0.
19
6

0.
39
6

0
0.
86
1
(0
.0
19
)

0.
46
9
(0
.0
03
)

0.
18
0
(0
.0
02
)

0.
57

(0
.0
1)

1.
52

(0
.0
4)

0.
67

(0
.0
2)

-
0.
38

1.
30
9
(0
.0
01
)

1
µ
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
26

(0
.0
2)

0.
22
7

0.
00
3

0.
00
8

26
.5

0.
19
6

0.
39
6

0
0.
94
6
(0
.0
24
)

0.
48
3
(0
.0
03
)

0.
18
0
(0
.0
02
)

0.
57

(0
.0
1)

1.
58

(0
.0
5)

0.
80

(0
.0
2)

-
0.
38

1.
06
7
(0
.0
01
)

10
µ
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
21

(0
.0
2)

0.
22
7

0.
00
3

0.
00
8

29
.9

0.
19
6

0.
39
6

0
0.
97
0
(0
.0
25
)

0.
48
8
(0
.0
03
)

0.
18
0
(0
.0
02
)

0.
51

(0
.0
1)

1.
49

(0
.0
4)

0.
73

(0
.0
2)

-
0.
38

1.
30
1
(0
.0
02
)

50
µ
M

1.
50
9

0.
69
8

0.
18
6

-
-

0.
22

(0
.0
2)

0.
22
7

0.
00
3

0.
00
8

31
.3

0.
19
6

0.
39
6

0
1.
01
0
(0
.0
25
)

0.
50
1
(0
.0
03
)

0.
18
0
(0
.0
02
)

0.
62

(0
.0
2)

1.
88

(0
.0
5)

0.
92

(0
.0
2)

-
0.
38

1.
23
8
(0
.0
01
)

45



C1 = 0.626 ± 0.01, and C2 = 0.520 ± 0.03. C3 is associated with the freely rotating

state of the dye and is fixed to zero.

For R1inv-R2inv the results for rotational correlation times are similar, here

we find a global fit yields ✓1 = 0.222 ± 0.005 ns, ✓2= 0.002 ± 0.001 ns and ✓3=

0.007 ± 0.001 ns; individual fits for rotational lifetimes of Cy3 shows no systematic

change with [Rop]. In comparison with rotational correlation lifetimes of R1inv-

R2inv-C complex, here the lifetimes are shorter which suggests more freedom for the

fluorophores. In these fits the rotational lifetime of RNA at di↵erent [Rop] are fixed to

be same as R1inv-R2inv-C, this is because we do not expect the di↵erence in terminal

base pairs to change the overall tumbling of the RNA molecule with Rop binding.

C
i

s were globally fitted across all Rop concentrations, giving: C1 = 0.206 ± 0.007,

and C2= 0.405 ± 0.007. C3 is fixed to zero.

For FRET labeled molecules, FRET e�ciency is typically found using [55]

hEi = 1� ⌧
DA

⌧
D

(3.7)

where ⌧
DA

is lifetime of quenched donor in presence of acceptor and ⌧
D

is lifetime

of donor in absence of acceptor. We also report here on the apparent change in

FRET calculated separately from each of the three dye lifetimes, since this allows us

to separate angular changes in structure from distance changes. We also calculated

FRET using the change in the average donor lifetime.

The fluorescence polarization anisotropy decay of Cy3 on FRET labeled R1inv-

R2inv-C and R1inv-R2inv was measured as a function of [Rop], and the results were

fit with the model described by Eqs. 2.16a and 2.16b using the measured IRFs. There

are 7 fixed parameters in this fit: ⌧
iD

, ✓
i

, �, C
i

, ↵; the values for these parameters are

taken from the donor-only fits. The constraints on the F
iD

’s, mean that there is only

one overall amplitude to fit. Amplitudes and ⌧
i

’s are fit separately for every data set.
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5'C

5'G

(a)

(b)

(c)

Figure 3.8. Time-resolved fluorescence lifetime fit results for R1inv-R2inv-
C and R1inv-R2inv donor only data. Populations (p1, p2, p3) corresponding to
the three fluorescence lifetimes of Cy3 on RNA, for (a) R1inv-R2inv-C (b) R1inv-
R2inv. (c) Population of bound RNA at di↵erent [Rop] for both 50C and 50G labeled
R1inv-R2inv constructs, and the corresponding fit to it using a single site equilibrium
binding equation (Eq. 3.5). The result of fit gives K

d

= 779.3±191.8 nM.

The results for R1inv-R2inv-C and R1inv-R2inv are shown in Figs. 3.9(a) and 3.9(b)

respectively. The result of the fits is reported in Table. 3.2 and Table. 3.5.
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5'C

5'G

(a)

(b)

Figure 3.9. Fluorescence lifetimes ⌧1 and ⌧2 for quenched Cy3 in presence of Cy5
as a function of [Rop], for (a) R1inv-R2inv-C (b) R1inv-R2inv. Intensity weighted
lifetimes are shown with red crosses in both (a) and (b). ⌧3 is globally fitted across
all [Rop] and found to be 0.136 ± 0.002 ns for R1inv-R2inv-C and 0.176 ± 0.002 ns
for R1inv-R2inv.

For R1inv-R2inv-C (3.9(a)), ⌧1 and ⌧2 show a shift with [Rop]. Since ⌧3 doesn’t

show a systematic change with [Rop], it is globally fitted across all concentrations

of Rop and found to be 0.136 ± 0.002 ns. For R1inv-R2inv (3.9(b)), ⌧1, ⌧2 show

no systematic change with Rop binding, although there is weak evidence for a small

increase in ⌧2 with Rop binding. For consistency ⌧3 is globally fitted and found to be

0.176 ± 0.002 ns.

Fig. 3.10(a) shows apparent FRET e�ciencies for R1inv-R2inv-C measured from

the two longest lifetimes as a function of [Rop]. E1 and E2 increase with Rop binding,
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5'C

5'G

(a)

(b)

Figure 3.10. Measured FRET from fluorescence lifetimes as a function
of [Rop]. (a) R1inv-R2inv-C (b) R1inv-R2inv. E1 (squares) and E2 (circles) are
measured from the two longest lifetimes, hEi (red cross) is measured from h⌧

D

i and
h⌧

DA

i.

and E3 is found to be 0.295 ± 0.02 for all [Rop]. Average FRET e�ciency calcu-

lated from the average lifetimes (Eq. 3.7) shows a similar increase with [Rop]. The

data for average FRET e�ciency is fitted to a single-site binding curve (Eq. 3.6),

with the values of FRET at 50 µM Rop and K
d

as the free parameters. This fit

gives: K
d

= 289.6 ± 120.9 nM and FRET([Rop]=50 µM)= 0.303 ± 0.004 (Fig. 3.11).

Therefore a 0.105 overall increase in FRET upon Rop binding is found.

For R1inv-R2inv, E1, which is expected to report more about the orientation

changes in structure, shows no systematic change with [Rop] (Fig. 3.10(b)), while E2

which is more sensitive to distance changes in structure shows a very small decrease
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in FRET with [Rop]. This might suggest that there is a small increase in distance

with Rop binding.

Figure 3.11. Average FRET e�ciency for 10 nM R1inv-R2inv-C at di↵erent
Rop concentrations. Solid line shows the best fit binding curve (Eq. 3.6), giving
K

d

= 289.6 ± 120.9 nM and a change in FRET of 0.105.

The relatively large shift in the larger fluorescent lifetime, and absence of any

shift in the shorter lifetime, can be taken as additional evidence that the observed

change is FRET is due to a change in the angular relation of the dyes, and not

the distance between the dyes. Attached at the 50 terminus of duplex nucleic acids,

they develop additional, longer lifetimes that are associated with, e.g, more ”rigid”

base-stacked conformations. That the longer-lifetime component reports on a change

in FRET while the shorter lifetime – preumably freer-rotating – component does

not, is consistent with a change in angle between the dyes. The longer rotational

lifetimes and the larger population of the longest fluorescence lifetime for Cy3 on 50C

terminus, suggests less rotational freedom for dyes on a 50C terminus in compare with

50G; therefore the R1inv-R2inv-C complex should have better sensitivity to angular

50



changes in structure. This can explain the observed shift in FRET with Rop binding

for R1inv-R2inv-C and not for R1inv-R2inv complex. As I will show in chapter 4,

this will be consistent with a change in twist of the RNA complex.

3.4 Results and Analysis: FCS

To rule out artifacts that might be associated with Rop-dependent dye pho-

tophysics, we used fluctuation correlation spectroscopy (FCS) on donor-only and

acceptor-only labeled RNA. FCS data were acquired under the same conditions as

FRET data, except that R1inv-R2inv-C was labeled with either Cy3 on R1inv or

Cy5 on R2inv but not both. No significant change in kinetic terms attributed to dye

photophysics (triplet and isomerization lifetime and amplitude) was observed as a

function of Rop concentration, indicating that changes in FRET can not be due to

changes in photophysics of dyes with Rop binding.

Fig. 3.12(a) shows FCS data and the corresponding fit to this data for 10 nM

R1inv-R2inv complex labeled with Cy3 (10 nM) with 0 nM, 100 nM and 10 µM Rop

concentrations. The fit model is given in Eq. 2.27. A global fit was performed onFCS

data by taking ⌧
T

and ⌧
I

as the global fit parameters between the three autocorrelation

functions and fitting for T , I and N of each curve separately. The results for fit

parameters are provided in Table 3.6. Di↵usion time for all three measurements is

in the order of 300 µs, with ⌧
T

= 4.5 ± 0.3 µs and ⌧
I

= 121 ± 4.9 µs. Triplet

and isomerization relaxation times are globally fitted. The fact that the global fits

give better fit results, makes this assumption valid: binding of Rop protein does not

change photophysics significantly. Residuals corresponding to the fits shown in panel

(b-d) of Fig. 3.12 indicates the goodness of fit.

Fig. 3.13(a) shows FCS data and the corresponding fit to this data for R1inv-R2inv

complex labeled with Cy5 (10 nM) with 0 nM, 100 nM and 10 µM Rop concentration.

Similar to the donor only data, a global fit was performed on these ACFs by taking
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⌧
T

and ⌧
I

as the global fit parameters between the three autocorrelation functions

and fitting for T , I and N of each curve separately. The di↵usion times for these

data are slightly larger than the donor only data but still in the order of 300 µs, this

is due to the di↵erence in the size of the detection volume as a result of excitation

with longer wavelength (647 nm Ar-Kr laser).

Table 3.6. Results of the global fit to the FCS data for donor only and
acceptor only R1inv-R2inv-C at three di↵erent concentrations of Rop pro-
tein. ⌧

T

and ⌧
I

are the global fit parameters and find to be ⌧
T

= 4.5 ± 0.3 µs and
⌧
I

= 121± 4.9 µs for R1invCy3-R2inv-C and ⌧
T

= 10.2±0.3 µs and ⌧
I

= 56.9±1.6 µs
for R1inv-R2invCy5-C. ⌧

D

, N, A
T

and A
I

are the other fit parameters.

R1invCy3-R2inv-C R1inv-R2invCy5-C

[Rop] (µM) ⌧
D

(µs) hNi T I ⌧
D

hNi A
T

A
I

0 302.6 ± 5.3 0.922 ± 0.013 0.230 ± 0.009 0.262 ± 0.01 344.14 ± 2.29 1.161 ± 0.005 0.243 ± 0.004 0.293 ± 0.004

0.1 326.3 ± 5.0 0.701 ± 0.008 0.229 ± 0.009 0.210 ± 0.009 457.51 ± 6.19 1.129 ± 0.008 0.227 ± 0.007 0.414 ± 0.005

10 317.5 ± 4.9 0.716 ± 0.008 0.236 ± 0.01 0.190 ± 0.01 342.46 ± 2.65 0.841 ± 0.004 0.236 ± 0.005 0.200 ± 0.006

FCS was also used in an attempt to investigate binding of Rop to the R1inv-R2inv-

C labeled with both donor and acceptor. We found no evidence for contribution of

another kinetic term that might be attributed to Rop binding: however, even if there

are kinetics on a timescale suitable for observation with FCS, the small change in

donor brightness necessary to account for the small change in FRET e�ciency may

be too small to observe in FCS. Results are shown in Fig. 3.14 and Table 3.7.

There was also no clear evidence of a change in di↵usion time upon Rop binding.

Given the small size of Rop, this is also not surprising. There should be a factor of 1.6

change in di↵usion time in order to be resolvable by FCS [47]. This corresponds to a

factor of⇠4-8 change in molecular weight of complex. Molecular weight for R1invCy3-

R2invCy5 is 13.5kDa, and molecular weight for Rop is 15kDa, therefore the change

in molecular weight with protein binding is not large enough to be resolvable in FCS.

In performing all these fits the aspect ratio (!) for the focal volume is fixed to

8.3. != 8.3 is found by using a calibration sample, here I used TMR (tetramethyl-

rhodamine) which has a known di↵usion coe�cient of 280 µm2/s [88]. ACF for TMR

was measured at three di↵erent concentrations of 5 nM, 10 nM and 20 nM. These
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(a)

(b)

(c)

(d)

µ

Figure 3.12. Global fit to ACFs for donor-only R1inv-R2inv-C (a) Auto-
correlation (ACF) functions (symbols) and corresponding fits (black lines) for 10 nM
R1inv-R2inv-C labeled with Cy3-only at 0 (circle), 100 nM (square) and 10 µM (tri-
angle) Rop. Global fit to the ACFs gives ⌧

T

= 4.5 ± 0.3 µs and ⌧
I

= 121 ± 4.9 µs
with �2 ⇡ 1.6. The result of the fit for the other fit parameters (N, ⌧

D

, A
T

and A
I

)
are provided in Table. 3.6. (b-d) Residuals corresponding to the fits in (a).

ACFs were fitted using global parameters ⌧
D

and ⌧
T

and !; number of molecules in

volume (N) and fraction of triplet (T ) was fitted individually for each plot. ⌧
D

and

53



µ

(a)

(b)

(c)

(d)

Figure 3.13. Global fit to ACFs for acceptor-only R1inv-R2inv-C.(a) Auto-
correlation (ACF) functions (symbols) and corresponding fits (black lines) for 10 nM
R1inv-R2inv-C labeled with Cy5-only at 0 µM (circle), 100 nM (square) and 10 µM
(triangle) Rop. Global fit to the ACFs gives ⌧

T

= 10.2±0.3 µs and ⌧
I

= 56.9±1.6 µs
with �2 ⇡ 1.1. The result of the fit for the other fit parameters (N, ⌧

D

, A
T

and A
I

)
are provided in Table. 3.6. (b-d) Residuals corresponding to the fits in (a).

⌧
T

were found to be 79.6 ±1.8 µs and 11.1 ±1.4 µs, respectively. This results in:

r0= 0.3µm, z0= 2.5µm, and V
eff

= 0.3 fL.
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(a)

(b)

(c)

(d)

Figure 3.14. Global fit to ACFs for donor-acceptor labeled R1inv-R2inv-C.
(a) Autocorrelation (ACF) functions (symbols) and corresponding fits (black lines) for
200 pM R1inv-R2inv-C labeled with Cy3 and Cy5 at 0 µM (circle), 100 nM (square)
and 10 µM (triangle) Rop. Global fit to the ACFs gives ⌧

T

= 3.0 ± 0.3 µs and
⌧
I

= 65.3 ± 3.4 µs with �2 ⇡ 1.3. The result of the fit for the other fit parameters
(N, ⌧

D

, A
T

and A
I

) are provided in Table. 3.7. (b-d) Residuals corresponding to the
fits in (a).
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Table 3.7. Results of the global fit to FCS data for R1invCy3-R2invCy5-C
at three di↵erent concentrations of Rop protein. ⌧

T

and ⌧
I

are the global fit
parameters and find to be ⌧

T

= 4.5± 0.3 µs and ⌧
I

= 121± 4.9 µs. ⌧
D

, N, A
T

and
A

I

are the other fit parameters.

R1invCy3-R2invCy5-C

[Rop] (µM) ⌧
D

(µs) hNi A
T

A
I

0 332.7 ± 3.5 0.281 ± 0.002 0.29 ± 0.02 0.228 ± 0.007

0.1 332.5 ± 3.8 0.195 ± 0.002 0.30 ± 0.02 0.224 ± 0.01

10 352.6 ± 4.4 0.197 ± 0.002 0.29 ± 0.003 0.266 ± 0.01
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CHAPTER 4

MODELING

To understand the structural change that gives rise to the observed FRET data,

we first calculated FRET for a set of static model structures, using MD simulations

to account for the dynamics of the dyes. The details about the MD procedure can

be found in Appendix B. The models used were the eight known minimized energy

structures [59], which vary widely in bend and twist and to a lesser extent in the

end-to-end distance. The use of these structures therefore permits us to investigate

any trends in FRET, particularly with bend or twist of the complex.

The dye trajectories were determined from 300 ns molecular dynamic (MD) sim-

ulations of the dye-labeled R1inv-R2inv-G and R1inv-R2inv-C complexes. Results

were stored every 1 ps. MD runs were completed with di↵erent initial conditions for

the dyes and with and without NMR constraints applied to the RNA complex. The

distance and relative angle of the dyes with respect to the the final base is summarized

in the two dimensional histograms of Figs. 4.1 and 4.2, and the relative orientation of

dyes with respect to each other is summarized in Fig. 4.3. Adding NMR restraints to

the kissing complex made little di↵erence to the final behavior of the dyes, as should

be expected since there are no restraints on the dyes. Di↵erent initial positions for the

dyes (stacked or unstacked) made a larger di↵erence, especially for Cy5 on 50 terminal

C, Figs. 4.1(b) and 4.2(b), but were still more similar than not. One run with dyes

initially stacked was extended out to 2 µs with resulting histogram indistinguishable

from that of Fig. 4.1.
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5’C Cy3 5’C Cy5

5’G Cy3 5’G Cy5

(a) (b)

(c) (d)

Figure 4.1. Distance/Angle 2D histogram of dyes attached to 50C and 50G
terminal bases. For this simulation, no NMR restraints on the kissing complex were
not used, and the dyes were initially stacked on the RNA. Distance is the distance
between dye and nearest base pair and angle is the relative orientation for them.(a)
Cy3 on 50 terminal C, (b) Cy5 on 50 terminal C, (c) Cy3 on 50 terminal G, (d) Cy5
on 50 terminal G.

For the MD simulations represented by Figs. 4.1 and 4.2, the dye trajectories

with respect to the terminal base-pairs were recorded and used to calculate FRET for

each of the eight underlying RNA kissing structures [59]. In these calculations, the

coordinates of the dyes with respect to the terminal base-pair in each MD frame were

mapped onto the eight static RNA kissing structures. This process gave 16 sets of

dyes trajectories, one for each of the two simulated structures (R1inv-R2inv with 50G

attached dyes, and R1inv-R2inv-C with 50C attached dyes) mapped onto each of the
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(a) (b)

(c) (d)

5’C Cy3 5’C Cy5

5’G Cy3 5’G Cy5

Figure 4.2. Distance/Angle 2D histogram of dyes attached to 50C and 50G terminal
bases. For this simulation, NMR restraints [28, 29, 73, 72] was used. Distance is the
distance between dye and nearest base pair and angle is their relative orientation in
the plane of the base pair. (a) Cy3 on 50 terminal C, (b) Cy5 on 50 terminal C, (c)
Cy3 on 50 terminal G, (d) Cy5 on 50 terminal G.

eight kissing structures, which were then integrated to calculate FRET as described

below.

This should be adequate to investigate trends in FRET with changes in structure

if RNA structural fluctuations about each minimized energy state are small and fast

compared to the lifetime of the donor dye (⇡ 1 ns). The dynamics of the dyes on the

RNA do not satisfy these requirements [66] and so are dealt with explicitly using this

model.

The 16 dye-pair trajectories di↵ered in the relative positions and orientations of

the dyes because of the di↵erences in the bend and twist of the underlying RNA
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5’C

(a)

5’G

(b)

5’C

(c)

5’G

(d)

Figure 4.3. R vs. cos�1(µ1.µ2) 2D histograms for structure number 3 of the eight
structures calculated from MD trajectories, for (a) 50C, (b) 50G. R vs.  2D histograms
for structure number 3 of the eight structures calculated from MD trajectories, for
(c) 50C, (d) 50G.

structure, and because of di↵erences in the positions of 50C and 50G on the RNA. The

trajectories are described by the interdye distance, R, and the orientational factor

 = (µ̂1 · µ̂2)� 3(µ̂1 · R̂)(µ̂2 · R̂), (4.1)

here µ̂1 and µ̂2 are the dye transition dipole unit vectors and R̂ is the unit vector

describing the distance from donor dye to acceptor dye. An example of trajectories

for R̂ and 2 and their histograms is shown in Fig. 4.4.
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(a)

(b)

(c)

Figure 4.4. Trajectories and histograms for 50C: (a) The distance R between
the center of the the two dyes, and the corresponding histogram with hRi = 56.6±
2.8 Å, (b) 2 and its histogram with hi2 = 0.34 ± 0.25, (c) Instantaneous FRET
(Eq. 2.2, E, and its histogram with hE

inst

i = 0.32± 0.17

FRET was calculated as described by Gopich [42]. From the R and 2 trajectories,

we determine k
ET

= k
D

(RF

R

)6, the rate of energy transfer at each 1 ps time step, where

R
F

6 is proportional to 2 and k
D

is the decay rate of donor fluorescence [21, 54]

(k
D

=1/⌧
D

= 1 ns�1). The trajectory for rate of energy transfer is used to calculate

average value of FRET by repeated integration over segments of the trajectory [14,

42]. We sampled 50000 starting times and integrated over the next 15 ns of the
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trajectory from each start point, to obtain:

hEi = 1� k
D

+1Z

0

I(⌧) d⌧, (4.2)

where

I(⌧) =

⌧
exp(�

Z
⌧

0

[k
D

+ k
ET

(t)] dt)

�
. (4.3)

We applied this technique to find hEi for each of the 16 structures: the results,

which were generated using R0 = 6

q
2

32RF

= 5.8 nm [66], are given in Table. 4.1,

along with the structural parameters that describe each structure.

It should be apparent from Figs. 4.1 and 4.2 that direct determination and in-

tegration of dye trajectories is necessary here: for example, the dyes are clearly not

freely-rotating. Indeed, the minimal rotational freedom of the dyes is what gives

sensitivity to twist. More generally, correlations between R and 2, and structural

fluctuations of the dyes with respect to the RNA that have a timescale similar or

longer than the donor fluorescence lifetime (⇡ 1 ns) [66], make it necessary to use a

complete description of the dye dynamics in the FRET calculation.

Table 4.1. Results of modeling FRET for each of the eight minimized
energy RNA structures.

R1inv-R2inv-C R1inv-R2inv
structure bend angle( �) twist angle( �) hRi h2i hEi hRi h2i hEi

1 96 4.4 58.1 0.25 0.27 57.4 0.91 0.58

2 82 -2.4 58.6 0.49 0.41 58.4 0.8 0.53

3 71 4.1 57.2 0.11 0.15 57.1 0.6 0.49

4 66 9.8 62 0.17 0.14 61.6 0.55 0.35

5 86 5.9 60.9 0.09 0.08 60.2 0.98 0.53

6 49 -1 55.1 0.17 0.26 55.3 0.76 0.6

7 64 -12.8 57.6 0.45 0.41 57.7 0.83 0.56

8 83 5.1 59.5 0.08 0.09 59.2 0.79 0.5
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To understand which structural changes might account for the observed FRET

data, we first plot hEi vs. hRi, hEi vs. h2i, and hEi vs. the bend and twist of

the kissing complex, Fig. 4.5. The corresponding Pearson’s coe�cients, r, which

characterize the linear correlation between two parameters, are given in the insets.

Pearson’s coe�cients run from -1 to 1, with values near zero denoting no correlation

and absolute values near 1 denoting a strong linear correlation.

Twist and bend angles of the eight minimized-energy structures [59] were deter-

mined using the nucleic acid conformational analysis program Curves+ [58], and are

recorded in Table 4.1. The twist angle is the sum of the twist angles between base

pair: twist angle modulo 360� gives the number of complete turns along the helix.

Since the average twist angle of the minimized-energy structures for the R1inv-R2inv

kissing complex corresponds to about 1.5 turns, we report the di↵erence from 540� in

Table. 4.1. A typical bent helical axis obtained by the program is shown in Fig. 1.2(c)

in red. The bend angle is defined as the angle between the first and last segment of

the helical axis: a bend angle of zero corresponds to a linear duplex. Note that the

kissing structures have 47� range of bend and 23� range of twist.

For R1inv-R2inv-C, there is a very strong correlation, r > 0.9, between hEi and

h2i for all MD runs, Fig. 4.5(a) and Fig. 4.6(a). There is also a correlation between

hEi and h2i for R1inv-R2inv-G, but this correlation depends strongly on a single

structure, number 4 in Table 4.1, that has the largest twist angle, largest inter-dye

distance, and smallest FRET. The di↵erence in the mean interdye distance hRi for

the eight structures is relatively small, and there is a weaker negative correlation

with hRi that is similar for both R1inv-R2inv and R1inv-R2inv-G (see particularly

Fig. 4.6).

The substantial correlations between hEi and 2 confirm again that the dyes

cannot be treated as fast, free rotators [66]. That 2 is near 2/3 for some of the
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(a) (b)

(c) (d)

(e) (f )

r(G)=-0.78
r(C)=-0.47

r(G)=0.71
r(C)=0.96

< > < >

Figure 4.5. Results of modeling: of the R1inv-R2inv-C complex with dyes at-
tached to the 50 terminal C (open circles), and the R1inv-R2inv complex with dyes
attached to the 50 terminal G (filled circles). The panels show the predicted depen-
dence of FRET e�ciency on (a) 2 , (b) R, (c) bend angle and (d) twist angle.

structures is not an indication of free rotation, but rather related to the average

relative orientation of the dyes for those structures.
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(a) (b)

(c)

(e)

(d)

(f )

< > < >

Figure 4.6. Results of Modeling for the second MD simulation with NMR
constraints: for R1inv-R2inv-C complex with dyes attached to the 50 terminal C
(open circles), and the R1inv-R2inv complex with dyes attached to the 50 terminal G
(filled circles). The panels show the predicted dependence of FRET e�ciency on (a)
2 , (b) R, (c) bend angle and (d) twist angle.

To which angle, then, should the observed change in FRET be attributed, and

why is no or little change observed when the dyes are attached at a terminal 50G? In
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Fig. 4.5(c-f) and 4.6(c-f) we explore the correlations of hEi with bend and twist for

the two kissing structures. The only decidedly significant correlation is between hEi

and twist of the R1inv-R2inv-C complex, for which r = �0.81, -0.93 in the two MD

runs. A smaller correlation between hEi and twist for R1inv-R2inv again depends

strongly on a single structure, number 4 in Fig. 4.5. The correlation with bend angle

is insignificant in both structures, despite the large range of bend angles, from 49�

to 96� represented here. It is worth noting that a change in bend angle from 45� to

60� upon Rop binding, as suggested by Marino [61], also results in a 0.32 nm change

in R. For freely-rotating dyes, we would expect to see a change in FRET, for both

complexes, from 0.54 to 0.62 for this distance change.

The shift in FRET for the R1inv-R2inv-C structure, and the absence of shift for

the R1inv-R2inv structure, can be attributed to the di↵erence in the relative freedom

of the dyes attached at a terminal 50C or 50G (Fig. 4.3). The fact that for R1inv-

R2inv complex, dyes spend a large fraction of their time parallel with respect to

each other (cos�1(µ1.µ2) near zero and  near 1), makes this complex to lose its

sensitivity to angular changes in structure (Fig. 4.3 (b,d)). On the other hand, for

R1inv-R2inv-C complex dyes are stacked on the RNA and are free to have di↵erent

angles with respect to each other, which makes it more sensitive to angular changes

in structure. Therefore if large changes in end-to-end distance of complex happens

we would expect to resolve it with both 50C and 50G structures, while changes in

orientation of structure are only resolvable by R1inv-R2inv-C complex.

To investigate the result of the change in twist or in other words the change in

FRET, we artificially twist the coordinates of the last base pair around the helical

axis, and recalculate FRET from the re-oriented dye trajectories and plot FRET as

a function of twist angle for each of the eight minimized energy structures. This is

illustrated in Fig. 4.7 for structure number three, with hEi = 0.15. Modulation in

FRET vs. twist angle is due to changes in 2 resulting from the helical twist.
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For R1inv-R2inv (diamonds) in the range of twist angles (0 and -50�) that span

a range greater than the twist for the eight structures, average FRET is near a

maximum and doesn’t change significantly with twist angle, in agreement with the

data (Fig. 4.7(b)). In contrast, for R1inv-R2inv-C (squares), the somewhat di↵erent

orientation of the dyes with respect to the final base pair result in a linear slope for

FRET in the same range of twist angles (Fig. 4.7(b)). Average FRET for the unbound

R1inv-R2inv-C structure (0.198) is shown with red circle and bound structure (0.303)

with green circle. For this structure the 0.104 increase in FRET, observed in the

experiment, with protein binding corresponds to �24� change in twist angle. This

�24� change in twist angle for 50-C structure corresponds to only a 0.029 change in

FRET for 50-G (shown with red triangles). For five of the eight minimized energy

structures a change in twist of between �20�- �20� was measured. FRET as a

function of twist angle plots for the other structures are included in Appendix C.

We conclude that a decrease in twist could explain the shift in FRET upon Rop

binding for the R1inv-R2inv-C structure. That there is smaller change in FRET for

the R1inv-R2inv-G structure is consistent with its smaller correlation between hEi

and twist. Changes in hRi between the eight proposed structures are not big enough

to discern here, but if Rop binding resulted in a larger change in hRi, we would see

it in both structures. The 15� change in bend upon Rop binding proposed by Marino

[61] would result in an end-to-end decrease of about 0.3 nm, which is probably not

large enough for us to resolve here. So while our data are neutral regarding any

change in bend upon Rop binding, they do show a change in hEi that is most likely

explained by a decrease in the twist of the structure.

The best possible approach would use the change in FRET data as a constraint

on the MD simulations of the bound complex, but as determining FRET requires

integrating over a long trajectory, this needs very fast computers.
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Figure 4.7. Calculated FRET at di↵erent twist angles for structure 3:
(a) total twist from -360 to 360, (b) total twist from -100 to 100. Diamonds show
FRET at each twist angle for 50-G and squares for 50-C construct. Dashed and solid
lines are interpolated spline curves to the points for 50-G and 50-C respectively. In
panel (b) the red circle and triangle show FRET for the unbound RNA (50C=0.198
and50G= 0.537), and the green circle and triangle shows FRET for the bound RNA
(50C=0.303 and 50G= 0.567). The blue square represents twist angle for the initial
untwisted structure.

It should be clear that while we do not expect the modeled values of hEi to

be quantitative, we do expect that the general trends revealed by this method are

valid. In short, both complexes show a correlation between hEi and FRET, but this

correlation is more pronounced in R1inv-R2inv-C. A correlation between hEi and R

is also predicted, and this correlation is similar for both complexes: if changes in R

accounted for the observed change in FRET, we would see a similar shift for both
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molecules. Our observation of a small change in FRET upon the addition of Rop for

the R1inv-R2inv-C, but not R1inv-R2inv, is consistent with a change in twist, but

not in R, of the Rop-bound complex. Because the RNA complex is not static, the

observed change in FRET is small: for R1inv-R2inv with its larger distribution of

dye orientations and smaller correlation with twist, the e↵ect is apparently washed

out altogether.

We cannot completely rule out that Rop changes the bend angle of the kissing

complex. The lack of correlation between hEi and bend means that we are likely

insensitive to bend. However, a change in bend angle should be correlated with a

change in R, and the absence of a change in hEi for R1inv-R2inv-G would seem to

obviate that possibility. It is not impossible, but very unlikely, that the change in

R and change in twist conspire in such a way as to give no change in FRET for the

R1inv-R2inv complex.
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PART 2: DIMERIZATION INITIATION SITE (DIS) OF
HIV-1 GENOME

In part II of my dissertation I include the preliminary work on another kissing

complex. First, I give a background about the DIS kissing complex and the ultimate

goals we are trying achieve in this project. Next, I will proceed with the initial work

I did to prepare the experiments for the next student to continue the project.
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CHAPTER 5

BACKGROUND: DIMERIZATION INITIATION SITE
(DIS)

HIV-1 (Human Immunodeficiency virus type 1) is a retrovirus known as the cause

of the Acquired Immunodeficiency Syndrome (AIDS). Similar to other retrovirus,

HIV-1 has two identical RNA genomes that are linked near their 50 ends within the

Dimer Linkage Structure (DLS) [63, 57]. A schematic of HIV-1 genome RNA is shown

in Fig.5.1(a).

Dimerization of genomic RNA is known to be important in modulating di↵erent

steps in the retroviral life cycle such as, encapsidation, translation of the gag gene

into viral proteins, reverse transcription. Therefore dimerization of genomic RNA

is a target in designing antiviral drugs for HIV-1 and other retroviruses. During

the last two decades there has been a lot of e↵ort to understand the mechanism

of retroviral genome dimerization. Contrary to previous studies proposing an RNA

region downstream of the splice donor site (SD) as the dimerization site [62, 26],

Skripkin et al. [90] showed that dimerization of HIV-1 genome initiates from an

RNA sequence upstream of SD. This region, located between the primer binding site

(PBS) and SD [63], is called the Dimerization Initiation Site (DIS) (Fig. 5.1(a)).

Mutations in this region of the HIV-1 genome destroys the dimerization ability [90].

The observation that synthetic RNAs corresponding to the 50 region of HIV-1 genome

dimerize [26], has facilitated the in vitro studies on the HIV-1 system. The 35-nt DIS

sequence, shown in Fig. 5.1(b), forms a stem-loop. In the loop region, DIS consists of

a highly conserved self-complementary sequence with 6-nt which is flanked by three

purines, one on 30 side (A280) and two on 50 side (A272, A/G273). These purines
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(a)

(d)

(b)

(c)

Figure 5.1. (a) Secondary structure of the 50 UTR region of HIV-1 genomic RNA.
Dimerization Initiation site and its complementary stem-loop from the other genome
are shown in red [17]. (b) Dimerization mechanism for HIV-1 genomic RNA starts
with a kissing interaction at the DIS and proceeds in to a mature duplex [17]. (c)
DIS loop sequence for di↵erent HIV-1 subtypes [38]. (d) NCp7 structure, Zinc coor-
dinating residues and the basic residues in the N-terminus are shown in bold [1].
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are critical for stability of DIS kissing complex [78, 22]. HIV-1 has several subtypes

which are shown in Fig. 5.1(c). In HIV-1 subtype A (Mal) and all the other subtypes,

except HIV-1 subtype B (Lai) and subtype D, the self-complementary sequence is

GUGCAC; in HIV-1 subtype B (Lai) this sequence is GCGCGC.

According to the kissing-loop model proposed for dimerization of HIV-1 genome,

the core of dimerization is the 6 nucleotide auto-complementary sequence in the loop.

At certain ionic condition these palindromes form Watson-Crick base pairs between

loops, known as a kissing interaction. This kissing complex can also form an extended

duplex [56, 77] (Fig.5.1(b)). In vitro experiments have shown formation of a stable

duplex dimer from the kissing complex happens either by incubation at 55� [56, 69]

or by incubation in presence of the viral protein nucleocapsid protein (NCp7) [70].

NCp7 is a 55 amino acid protein (Fig. 5.1(d)). It contains two zinc fingers that

are linked by a basic seven amino acid sequence. In one side it has a highly basic

N-terminus and on the other end a short six amino acid C-terminus [11, 27]. NCp7

coats nucleic acids by either specific or non-specific binding. NCp7 is known for

its chaperone activity [24] which means it binds to nucleic acids and changes the

conformation of nucleic acid to its final structure. Experiments using NCp7 mutants

show zinc fingers and positive charge of the N-terminus in NCp7 are critical in DIS

mature dimer formation [1].

Takahashi et al. [93] studied the minimal RNA sequence containing DIS which

shows both a kissing complex and a DIS duplex. Takahashi et al. deduced the

minimal RNA sequence for DIS to mimic this two step conversation is a sequence

with optimal stability in stem. Low stability makes kissing step undetectable, and

high stability makes duplex formation di�cult.

The sturcture of the DIS kissing complex and duplex have been studied using NMR

[67, 41, 5] and X-ray [35, 36]. Most of these studies are performed on a truncated
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DIS stem-loop with 23 base pairs. The main di↵erence between the crystal and NMR

solution structures are di↵erent conformations for A272 and R273.

Crystal structure of DIS kissing complex for Mal and Lai subtypes shows complete

coaxial alignment and stacking of the two purines A272 and R273 in a bulged out

conformation (Fig. 5.2(a)) [35]. Here A280 is unpaired and always stacked inside the

helix. DIS (Lai) kissing complex structure obtained by NMR [67] is di↵erent from

the crystal structure. The loop helix for this structure deviates from an A-form helix

(Fig. 5.2(c)). The observed bend in this structure indicates possibility of a hing-like

flexibility. The NMR structure determined by Baba et al. [5] for DIS subtype F

(similar to Mal) shows A272 and A273 are stacked inside the helix. In compare with

the structure resolved by Mujeeb et al. they observe a di↵erent conformation for

R273. Therefore the global structure reported by Baba et al. does not show a bend

(Fig. 5.2(d)).

Crystal structure of DIS duplex [36] shows a complete coaxial alignment similar

to kissing DIS. In Mal subtype, A272 is bulged out and duplex shows two G273-A280

Watson-Crick like mismatches in vicinity of A272 (Fig. 5.2(b)). In subtype Lai two

unpaired A272, A273 are bulged out and stacked, and A280 is unpaired and stacked

inside. The overall NMR structure of DIS extended duplex measured by Baba et al.

[41, 5] is similar to the crystal structure, but for both subtypes unpaired adenines are

stacked inside the helix (Fig. 5.2(e)). Baba et al. used the complete DIS stem-loop

with 39 nucleotides for the NMR solution measurements.

In the kissing complex model which is the proposed model for DIS hairpins, the

first step is base pairing of the two hairpins from complementary loops: then the

structure rearranges to reach coaxial alignment. Salim et al. [85] studied kinetics

and thermodynamics of RNA hairpins; they used HP1and HP2 hairpins, which are

derivatives of the E. coli DsrA-rpoS bulge-loop, as their model system. Using ITC

(isothermal titration calorimetry), UV melting, smFRET and SPR (surface plasmon
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(a)

(b)

(c)

(d)

(e)

Figure 5.2. (a) Secondary structure for DIS(Mal) and DIS(Lai) with 23 nucleotides,
the x-ray and NMR structures shown in part (a-c) have the same sequence. From
left to right x-ray tertiary structures for DIS(Mal) and DIS(Lai) kissing complex. In
both types, purines A272 and R273 from each stem-loop are bulged out and stacked.
The red circles represent Mg+2 ions (PDB2b8s and PDB2b8r) [35]. (b) X-ray tertiary
structure for DIS(Mal) extended duplex(PDB1y99) [36]. (c) NMR solution struc-
ture for DIS(Lai) kissing complex (PDB1bau) [67]. (d) NMR solution structure for
DIS(Mal) kissing complex with 39 nucleotides (PDB2d1b) [5]. (e) NMR solution
structure for DIS(Mal) extended duplex with 39 nucleotides (PDB2d1a) [5].
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resonance) data, they proposed an energy landscape for kissing complex formation

and its conversion to extended duplex (Fig. 5.3). Their data indicates kissing complex

to duplex transition requires overcoming to a large energy barrier, and proteins like

NCp7 can facilitate this transition by decreasing the energy barrier. The hairpin to

duplex ratio is found to be highly dependent on concentration of hairpins [12, 93] and

self-complementarity of loops [12, 53].

Figure 5.3. From Ref. [85]: Putative potential energy surface for KC and ED forma-
tion. Thermodynamic (�G

ij

) and activation energies (�G⇤
ij

) for pathways associated
with KC formation and their conversion to EDs. Thermodynamic data were obtained
using ITC, UV melting, and smFRET, and activation parameters were derived from
kinetic data obtained by SPR and smFRET. Reaction coordinates are defined by the
number of intramolecular (X) and intermolecular (Y) basepairs present in the molec-
ular ensemble of a particular state. Stabilization energies are plotted along the z axis.
Four di↵erent states are shown: unfolded strands (A), free hair- pins (B), the KC (C),
and the ED (D). The energy of unfolded strands (A) was used as the reference state
(�G

A

).

Rist and Marino [82] used 2-AP (an adenosine base analogue) labeled stem-loops

to report on kinetics of DIS kissing complex and its conversion to extended duplex.

2-AP is bright in its unstacked state and its fluorescence decreases once it stacks by
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base pairing. By substituting 2-AP with an adenosine in the loop and monitoring

the change in fluorescence in time, they found an equilibrium binding constant of

K
D

= 3 ± 1 nM for DIS kissing complex. In a similar measurement, by substituting

2-AP with an adenosine in the stem and in presence of enough concentration of

NCp7 they found a kissing to dimer conversion rate of K
conv

= 0.46 ± 0.024 min�1 for

100 nM kissing complex and 250 nM of NCp7. An equilibrium dissociation constant

of K
D

= 61± 12 nM was found for binding of NCp7 to DIS kissing complex. Divalent

ions such as Mg+2 stabilize DIS in its kissing form and transition to mature duplex is

only possible in presence of enough NCp7. This protein accelerates rate of conversion

from kissing DIS to extended duplex; the maximum DIS conversion rate is obtained

for a 2:1 stochiometry for NCp7:DIS. Since previous studies indicate necessity of

one NCp7 per seven nucleotides RNA for NCp7 to have its chaperone function, it is

suggested that DIS stem-loop needs to be saturated with NCp7 to have its complete

catalytic e↵ect [82]. Rist et al. propose a secondary structure rearrangement model

for kissing complex to duplex conversion. According to this model, kissing complex

has structural dynamics and at an intermediate transient state NCp7 binding and

stem exchange might be favored. A bend structure, similar to the NMR solution

structure of R1inv-R2inv kissing complex, might be a possible conformation; such a

conformation can bring the two stems closer and facilitate stem exchange. Our initial

goal was to resolve this intermediate bent structure using single molecule FRET.

Mihailescu et al. [65] used NMR spectroscopy and reported on localized confor-

mational dynamics for DIS kissing complex with time scale of micro- to milli- seconds.

They attribute the observed dynamics to protonation of the N1 nitrogen of A272 in

the loop near pH 6.5. They measured C2 and C8 chemical shifts at di↵erent pHs from

5.5 to 8.2 for all the adenines in the stem-loop and found a pK
a

of 6 ± 1 for A272

and pK
a

of 4.5 for all the other adenines. This explains the local dynamics observed

at near physiological pH. The rate of conversion to extended duplex was measured at
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pH 6 and 7.2; and found to be five times faster at pH 6. For this measurement 2-AP

was substituted with an adenine in the loop, as discussed earlier, and the change in

fluorescent was monitored in time. At pH 6 and pH 7.2, 72% and 20% of A272 is

protonated, respectively. The acceleration in catalyzing e↵ect of NCp7 is attributed

to A272 protonation [65].

Ennifar et al. [37] showed the crystal structure of HIV-1 DIS kissing complex is

very similar to the bacterial 16S ribosomal aminoacyl-tRNA site (A-site). Similarities

between ribosomal A-site and DIS kissing complex is shown in Fig. 5.4(a). Since

ribosomal A-site is a target for amino glycoside antibiotics, it is expected that DIS

kissing complex also be a target. Current antiviral drugs, target viral enzymes such

as reverse transcriptase and protease. Due to observed resistance to some of the drugs

and their side e↵ects, targeting other viral sites such as locations within the HIV-1

RNA genome might provide an alternative solution.

Binding of a variety of aminoglycoside antibiotics to DIS kissing complex was stud-

ied using gel shift, lead-induced cleavage and footpring experiments. Among di↵erent

antibiotics (such as amikacin, kanamycin, gentamicin, geneticine, neomycin, ribo-

tamycin, paromomycin, spectinomycin and tobramycin) only a few (such as neomycin

and paromomycine) bind to DIS kissing complex with high a�nity[39]. The footprint

of neomycin on DIS kissing complex and ribosomal A-site is shown in Fig. 5.4(b).

ITC (isothermal titration calorimetry) microcalorimetry measures a high a�nity of

⇡ 30nM for DIS kissing complex and neomycin or lividomycin, and lower a�n-

ity of ⇡ µM for paromomycin and apramycin [13]. In general, 4,5-disubstituted

2-desoxystreptamine (2-DOS) amino glycoside antibiotics (with 5 rings), such as

neomycin, paromomycin and lividomycin have high a�nity for DIS kissing complex;

while this is not true for 4,6-disubstituted 2-DOS antibiotics (with 3 rings), such as to-

bramycin and kanamycin. Chemical structure for aminoglycoside antibiotics is shown

in Fig. 5.4(c). Neomycin and promomycin binding to DIS kissing complex increases
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stability of the complex. Stability was studied using UV-melting; at 100 mM NaCl,

melting temperature of DIS kissing complex (65.6 �C) increases by 6.4 �C in presence

of neomycin and 1.7 �C in presence of paromomycin [39]. Increase in stability of DIS

kissing prevents it from converting to an extended duplex [13].

(a) (c)(b)

(d) (e)

Figure 5.4. (a) Sequence similarities between HIV-1 DIS (subtype A and B) and
ribosomal A-site [39]. Open symbols represent the conserved residues involved in
antibiotic binding and boldface symbols represent the A-site motif residues. The dif-
ference between sequences is highlighted with a grey box. (b) Neomycin footprint on
23-mer DIS kissing complex and ribosomal A-site. Essential bases for antibiotic bind-
ing are in bold [37]. (c) Chemical structure of 4,5-disubstituted 2-desoxystreptamine
(top) and 4,6-disubstituted 2-desoxystreptamine (bottom) aminoglycoside antibiotics
[38]. (d) Molecular model for binding of two antibiotic molecules to DIS (subtype
A) kissing complex. Orange circles represent positions on RNA that are protected
against chemical modification upon binding of antibiotic [39]. (e) Observed contacts
between DIS kissing complex and neomycin and paromomycin [39].
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Mundigala et al. [68] used single molecule FRET and reported on kinetics of KC

formation and its conversion to duplex. For KC formation they measure k
on

= 105 M�1s�1

and a short lived KC with k1
off

= 0.9 min�1 and a long lived KC with k2
off

= 0.15 min�1.

These measurements are made at 20 mM Tris (pH 7.4), 5 mMMg2+ and 150 mM KCl.

They also observed a bent intermediate required for KC to duplex conversion; this

intermediate highly relies on Mg2+ ions. Figure. 5.5 describes the proposed kinetics

model for DIS kissing complex to duplex transition [68]. In absence of NCp7 only

13% of the kissing complexes reach the duplex state. They also show by mutating

A272, the long lived KC population disappears; similar behavior happens to DIS KC

in absence of Mg2+. Therefore binding of Mg2+ most probably happens near A272.

Figure 5.5. From Ref. [68]: Minimal kinetic model for HIV-1 RNA dimerization.

Our goal for DIS dynamics project is to observe the intermediate bent structure,

predicted by Rist and Marino [82] and reported by [68], and study the e↵ect of NCp7

and antibiotics on the dynamics of DIS KC to duplex conversion and formation of

the bent intermediate structure. NCp7 facilitates stem exchange and extended duplex

formation and antibiotics like Neomycin prevent duplex formation by stabilizing the

KC state, in both cases we would expect a change in conformation of the intermediate

state.
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Another aim is to study the e↵ect of Rop protein on the dynamics and kinetics

of DIS KC to duplex conversion. Rop protein is known to bind to RNAI-RNAII

KC by recognizing its bent structure and stabilizing the KC. We have evidence that

Rop protein binds to DIS KC. We ran a gel shift assay for DIS kissing complex in

presence of di↵erent concentrations of Rop protein. The gel was prepared in the same

condition as for R1inv-R2inv/Rop complex. Interestingly the gel result shown in

Fig. 5.6 indicates binding of Rop to DIS kissing complex. Therefore it is possible that

Rop have the same stabilizing e↵ect as it has for R1inv-R2inv KC. Also it probably

a↵ects the conformation of the intermediate state. Rop protein can be introduced to

the system at the same time as NCp7, if Rop protein binds to the KC competitively

it can either abolish the role of NCp7 or enhance its function. If Rop protein can

stop dimerization to happen, this will introduce a new insight in designing anti HIV

drugs.

Better understanding of conformational dynamics of DIS kissing complex can give

us insight into the mechanism of kissing complex to duplex conversion, and as a result

a way to control dimerization as an antiviral drug. It can also provide a model for

understanding other short RNA dynamics.
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Figure 5.6. Electrophoresis gel demonstrating the binding of Rop to DIS kissing
complex. First lane is a DNA ladder. DIS(GA) and DIS(UC), both at concentration
of 1.5 µM, are labeled with Cy3 and Cy5 respectively, and the gel is stained with
SYBR green I dye (invitrogen) which is a nucleic acid gel stain.
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CHAPTER 6

PRELIMINARY WORK: FRET-TIRF MEASUREMENTS
ON DIS

My intent was to use Total Internal Reflection Microscopy (TIRF) to study con-

formational changes of DIS kissing complex and its conversion to dimer duplex. The

millisecond resolution of TIRF microscopy makes observation of intermediate states,

if any, possible.

TIRF microscopy uses the phenomenon of total internal reflection. Even at total

reflection from surface an evanescent field exists in the low refractive index medium

(water) to excite the fluorescent molecules in the vicinity of the coverslip [4]. The

evanescent field decays exponentially with increasing distance normal to the surface.

The small penetration depth (in the order of wavelength of incident light) of evanes-

cent waves suppresses the background fluorescence from other parts of the sample.

Also this technique has the advantage of observing hundreds or thousands of molecules

simultaneously.

We used an objective-type TIRF microscope, shown in Fig. 6.1(a). The 514 nm

Ar laser light is sent to fluorescent molecules immobilized on the coverslip surface.

The emitted fluorescent signal from fluorophores (Cy3B and Cy5) are collected with

a high numerical aperture objective (Olympus 60x NA 1.45).

To measure FRET, the donor and acceptor emitted light should be separated and

imaged side by side on a CCD camera (iXon 879 DU, Andor), for that I added a

dual-view to the TIRF microscope. The design for dual view is shown in Fig. 6.1(b).

An adjustable slit is placed in the image plane of the side port of the micrsocope
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to restrict the imaging area to half the size of the CCD chip. Donor and acceptor

emission is split using a dichroic mirror and imaged on the CCD.

(a) (b)

DM

Objective

Lens

Microscope side port

LaserOlympus TIRF arm 

Sample

Figure 6.1. (a) Schematic for an objective type TIRF microscope. Single molecules
tethered to surface are excited with laser light. Collected fluorescent light from donor
and acceptor molecules are separated and imaged using a dual view. (b) Design for
the home-built dual view, an adjustable slit is positioned at the image plane of the
microscope. The first dichoric mirror (DM) separates the donor and acceptor emission
and the second DM sends them to the CCD camera.

Dynamics of DIS KC conversion to duplex happens at timescales longer than a

few milliseconds, therefore solution FRET measurements using a confocal microscope

is not capable of identifying the intermediate states in KC to duplex conversion. By

immobilizing molecules on the surface, it would be possible to observe them over

longer periods of time.

6.1 Surface passivation and attachement

Two di↵erent strategies can be used for surface immobilization (Fig. 6.2). In one

method we can coat a glass slide with biotinylated BSA and Neutravidin (or Strep-

tavidine). The biotinylated RNA molecules can bind to BSA through Neutravidin
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(or Streptavidine) [103]. For measurements including a protein, it is recommended to

passivate the surface with PEG (Polyethylene Glycol) to suppress nonspecific binding

to surface (BSA coated surface is too adhesive for protein studies) [44]. For passi-

vating the surface with PEG, slides and coverslips are incubated with a solution of

NHS esters of PEG and biotin PEG (Fig. 6.2). I used the PEGylation method for

surface preparation; the detailed protocol for surface immobilization procedure and

required materials can be found in Ref. [20]. In Fig. 6.3 I summarized di↵erent steps

for surface passivation.

(a) (b)II

I

II

I

Figure 6.2. (a) immobilization strategies: (I) Surface is passivated with biotinylated
BSA and biotinylated RNA molecules are tethered to surface through Neutravidin,
(II) Passivating the surface with NHS ester PEG and biotin PEG. Neutravidin binds
to biotin PEG species, and biotinylated RNA molecules are tethered through Neu-
ravidin [45]. (b) Sample chamber: (I) double sided tape sandwiched between a glass
slide and coverslip. two holes are drilled in the glass slide to allow solution exchange,
(II) a pipette tip is plugged into the inlet hole, and a string containing the solution
is connected to the pipette [45, 84].
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I) Cleaning glass slide and coverslip
1) water (sonication in MilliQ water several times)

2) Aceton (sonication in Acetone for 20min, rinsed with water 3 times)

4) Piranha etching (keeping in 600ml mixture of H2SO4: H2O2 (3:1) for 20min, rinse with water)
3) KOH 1M (sonication in KOH 1M for 20min, rinse with water 3 times)

* Piranha etching step makes the glass hydrophilic with OH groups

II) Amino-Silanization of surface
1) While preparing the amino-silanization solution keeping slides in Methanol.

2) incubation in amino-silanization solution for 20-30min

NH2 NH2 NH2 NH2 NH2 NH2 amino-silanization solution:

100ml Methanol + 5ml Acetic acid + 3ml APTES

3) Rinse with Methanol and keep in Methanol.

III) Surface passivation using NHS-ester PEG (First round)
1) Dry with N2 gas and place them in pipette boxes

2) Drop 70µl of PEGylation mixure on the slide, and place a dried coverslip over it.

APTES

PEGylation mixture:
mixing 0.2 mg biotinylated NHS-ester PEG (5kDa) + 8 mg NHS-ester mPEG (5kDa) in 1.5 ml tube + 64ul sodium bicarbonate buffer

NHS-ester

NHS-ester

Biotin

NHS-ester reaction chemistry

http://www.piercenet.com/method/amine-reactive-crosslinker-chemistry

Laysan Bio

Laysan Bio

NH NH NH NH NH NH

glass slide

NHNHNH
Biotinylated-PEG

(5 KDa)

(5 KDa)

Biotin

3) Incubate overnight or at least for 2 hours.

PEG

Then put a clean coverslip on it.

4) Dissamble slide and coverslip, and dry them. For imediate use go to next step which is second round of PEGylation. 
     For storing put them in a tube and vuccume the tube and fill it with N2, and store it in freezer.

IV) Assembling a Microfluidic Chamber: 
       place a PEGylated coverslip on the PEGylated side of the glass slide. double sided tap will be sandwitched between the two 
       glasses making a small channel. The edges can be sealed by epoxy.

The solid lines show the glass slide, dotted lines shows the coverslip and hashed lines show double sided tape.

NH NH NH NH NH NH

glass slide

NHNHNH
Biotinylated-PEG

NH NH NH NH NH NH NHNHNH

Neutravidin

coverslip

adding 50 µl of 0.1 mg/ml of Neutravidin solution in the buffer of 10 mM Tris-HCl [pH 8] with 50mM NaCl.
After 1min incubation, flush with 100µl of buffer.

Finally, adding the biotinylated biological molecules.

Surface passivation for single molecule experiments

Figure 6.3. Summary of surface passivation steps
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Density of RNA molecules on surface shouldn’t be too high or too low; for a

25 µM⇥50 µM field of view, having ⇡200 molecules is reasonable [45]. We used a

30 pM concentration of biotinylated DIS-Cy3 molecules.

6.2 Design of DIS kissing complex constructs

We are studying a short derivative of dimerization Initiation Site (DIS). Each

stem-loop has 21 nucleotides, and with respect to the wild-type they are mutated

in the loop (Fig. 6.4(b)). One base pair in the loop is flipped to prevent formation

of homodimer complexes with two similar color dyes on them. Also the G-C base

pair at the end of stem gives the stem-loops the proper stability to reproduce the

two step kissing complex to duplex conversion. These RNA constructs are similar

to the DIS sequence used in the study by Mundigala et al. [68]. DIS1 is labeled on

the 50 guanine terminus with Cy3B, the 30 terminus has a short UAU extention to

minimize RNA interaction with surface. The 30 end is biotinylated, and DIS1 hairpin

will be tethered to surface from this end. The other construct DIS(m) (Fig. 6.4(c)) is

mutated in the stem to prevent it from duplex formation; this construct will be used

in control experiments were we don’t want extended duplex to form. A schematic

for DIS kissing complex tethered to surface is shown in Fig. 6.4(e). In the KC state,

Cy3B and Cy5 will be in distance and we would expect to measure low FRET. While

in the extended duplex form, dyes are in close proximity and we would expect to

measure high FRET.

6.2.1 Fluorescence dyes

Some characteristics that make fluorescent dyes suitable for single molecule flu-

orescence experiments are as follow: 1) high brightness, 2) high quantum yield, 3)

photostability and 4) being small and water soluble. These fluorophores make a good
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Cy5
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DIS duplex

DIS1

(e)

Cy3B

Cy5

Biotin
PEG

Neutravidin
Biotin

DIS2
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C G
U A
G C

A A
G C
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U G C

5’

272 280

subtype A
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U A
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G G

U C
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Figure 6.4. (a) A 21bp derivative of wild type DIS A-type. (b) DIS1 sequence with
21 nucleotides and its complementary sequence DIS2; both with one base pair flipped
in the loop to prevent homodimer formation. Mutations are shown in red. (c) DIS(m)
has mutations in the stem, shown with the box, to avoid duplex formation. (d) On
left side of glass slide DIS kissing complex is shown immobilized on surface through
a UAU short strand. In this conformation Cy3B and Cy5 fluorophores are distant.
On right side of the glass slide, DIS is shown after conversion to extended duplex; in
this state dyes are in close proximity.
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Table 6.1. Some characteristics of common fluorescent dyes in FRET measurements
(this data are from atdbio and GE life technologies websites).

Dye �
max

(excitation) �
max

(emission) ✏(M�1cm�1) quantum yield ⌧(ns)

Cy3 550 570 136000 0.15 0.3
Cy5 649 670 250000 0.3 1
Cy3B 558 572 130000 0.67 2.8

Atto647N 644 669 150000 0.65 3.5

FRET pair if the spectral separation between donor and acceptor emission is large

and their quantum yields and detection e�ciencies are similar [84].

Common FRET pairs are Cy3-Cy5 and Cy3B-Atto647N. In Table. 6.1 some char-

acteristics of these dyes are summarized. Cy3 can undergo cis-trans isomerization

because of its conjugated chain. While Cy3B has a rigid aromatic chain which pre-

vents isomerization. This makes Cy3B brighter and more photostable in comparison

with Cy3, we used it as the donor dye and kept Cy5 as the acceptor. As it will be

shown in the next section, it seems Cy3B-Cy5 do not make a good FRET pair and

this is most probably because of the large di↵erence in their quantum yields. There-

fore we decided to use Cy3B-Atto647N for the experiments. Figure. 6.5 shows the

chemical structure for Cy3, Cy5, Cy3B and Atto647N[86].

6.2.2 Sample Preparation

RNA, dye-labeled RNA molecules (biotinylated on its 30 terminus and labeled

with Cy3B on the 50 terminus) are purchased from Integrated DNA Technologies

(IDT). NCp7 was provided by Michael Miller in Daniele Fabris Lab at University at

Albany. DIS hairpins can be formed with the same method used for R1inv-R2inv

complex: heating RNA strands for 3 minutes at 93 �C, then snap cooling on dry ice

for 3 minutes. First DIS1-Cy3B stem-loop was added to the chamber and imaged

and then the complementary DIS2 strand was added to form the KC. To improve
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Figure 6.5. Chemical structure for: (a) Cy3 phosphoramidite (IDT website), (b)
Cy5 phosphoramidite (IDT website) (c) Cy3B (GE lifesciences websit) (d) Atto647N
NHS ester[86].

photophysics of the fluorophores and minimize photobleaching and blinking of them,

protocatechuate3,4-dioxygenase (PCD) and protocatechuic acid (PCA) was added to

the RNA mixture as an enzymatic oxygen scavenger system [2] and methylviologen

(MV) was added as part of the reducing and oxidizing system (ROXS) [95].

Sample chamber was prepared by sandwiching double sided tape between a pre-

cleaned slide and coverslip, and sealing it with grease. Since we want to exchange

bu↵er solution and inject protein during the measurement, we drilled two holes in

the glass slide; this allows pipetting or pumping and therefore exchange of solution

(Fig. 6.2(b)). For exchanging solution through the holes we used Cole Parmer 30

gauge tubings, and used epoxy to seal it.

6.2.3 Preliminary work

First I calibrated the system to find the pixel size. To find the pixel size I imaged

a micrometer scale (0.01 mm) centered on a glass slide (Fig. 6.6(a)) and measured
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the number of pixels between two grids several times (Using ImagJ) and found and

average of 183 pixels between every two grids. Knowing the distance between two

grids is 10 µm I found a pixel size of 54 nm.

(a) (b) A

D

Figure 6.6. (a) Image for 0.01mm micrometer scale, (b) Image for multicolor fluo-
rescent beads excited at 514 nm.

The image in donor and acceptor channels are not completely on top of each

other, therefore it is necessary to overlay them by making a transformation map.

Before taking movies of the RNA samples, I take an image of multicolor fluorescence

beads (Spherotech, 0.14 µm cat# FP0257-2) immobilized on surface (Fig. 6.6(b)).

By finding a few beads in the donor channel and the corresponding beads in the

acceptor channel it will be possible to generate a linear transformation between the

two images.

Next I checked the background by flowing in a solution of bu↵er containing Tris,

NaCl and MgCl2 (Fig. 6.7(a)), background image shows there are not many contam-

inants in the bu↵er. Next, I injected the DIS1-Cy3B sample to check for non-specific

binding (Fig. 6.7(b)). There are a small number of molecules binding nonspecifically.

After injecting a 0.1 mgr/mL solution of Neutravidin in the flow cell and incubat-

ing it for 2 minutes, I washed it with bu↵er two times and injected a solution of
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biotinylated DIS1-Cy3B with concentration of 30 pM. Finally, I washed the chamber

with bu↵er to remove DIS molecules that are not tethered successfully and filled the

chamber with bu↵er containing the oxygen scavenger components. In Fig. 6.7(c), one

frame of the movie taken on this sample is shown. In the donor channel area, 54

DIS-Cy3B molecules are identified. After adding 50 nM of DIS-Cy5, formation of

KC is expected, and we would expect to have fluorescent molecules in the acceptor

channel due to FRET. .

For identifying the features I used the Python version of Dr. Maria Kilfoil’s particle

tracking package. This code is based on an IDL code by John Crocker. It identifies

the high intensity regions on the image, and then excludes the false features based

on their intensity and shape. Fig. 6.8 shows features found for an image of tethered

DIS1 molecules labeled with Cy3B in the donor channel. First the feature finding

algorithm finds about thousands of bright spots, since many of these high intensity

regions are noise. After false features are removed, 54 features were identified which

are shown with red circles. The right panel of Fig. 6.8 shows the intensity profile

for one of these features. The number of photons is calculated from pixel intensities

using: # of photons = counts ⇥ sensitivity

EM ⇥ qe

, here counts is the intensity of each pixel,

sensitivity for our camera is 3.94, EM gain is set to 300 and quantum yield (qe) is

0.95. Average background is about 3 photons per pixel.

In order to form the kissing complex I added a high concentration of DIS2-Cy5 (50

nM). Once the kissing complex forms we would expect to have bright molecules both

in donor and acceptor channels. Fig. 6.9(a) and (b) shows an image for donor and

acceptor channels respectively. The corresponding intensity profile for one feature of

each image is shown on the right. The signal to noise ratio is better in the donor

channel this is because molecules are excited directly with 514 nm laser light. The

emission from molecules in the acceptor channel is due to FRET and shows a smaller

signal to noise. Considering the length of DIS strands a FRET e�ciency of 0.4-0.5 is
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(a) (b)

(c) (d)

Figure 6.7. In all panels the top of the image is acceptor channel and bottom of
image is donor channel, (a) Background image from a bu↵er only sample, (b) non-
specific binding of DIS1-Cy3B to the chamber, (c) Image for DIS1-Cy3B tethered
to surface, (d) Image for DIS1Cy3B-DIS2Cy5 kissing complex. For all these images
sample is excited with 514 nm laser light at 6 mW and CCD is set to: exposure time
of 1 sec, EM gain of 300 and pre-amplifier of 2.5x.
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Figure 6.8. (left) Image of 30 pM DIS1-Cy3B molecules tethered to surface; identi-
fied features are shown with red dots. (right) intensity profile in terms of number of
photons for one the molecules (green cross)

expected, but here there are not much fluorescence in the acceptor channel. In the

duplex form the donor and acceptor fluorophores will be in close proximity and we

would expect to measure a FRET e�ciency of about 1.

Since I wasn’t getting a large enough FRET signal for the DIS1Cy3B-DIS2Cy5

KCs, I did a TIRF-FRET measurement for a duplex DNA (OligoAD) with large

FRET of about 1. OligoAD [71] shown in Figure. 6.11 is a double stranded DNA

with a short single stranded DNA hanging from one of the strands, this construct has

a high FRET value and we often use it to check the alignment of our microscopes for

FRET measurements.

Figure. 6.9 shows the fluorescent signal in donor and acceptor channel for OligoAD,

the signal in acceptor channel is definitely stronger and likely to be near 1. This made

me believe that Cy3B-Cy5 is not a good FRET pair. In order to check this I did

solution FRET measurements on the DIS system to see whether I get similar results

to the FRET-TIRF measurements. These experiments are described in chapter 7.
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(a)

(b)

Figure 6.9. Image for DIS1Cy3B-DIS2Cy5 molecules in the (a) donor channel and
(b) acceptor channel. Features are labeled with red dots, and the intensity profiles
are shown on the right side of images.
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(a)

(b)

Figure 6.10. Image for OligoAD (DNA duplex labeled with Cy3-Cy5) moleclues in
the (a) donor channel and (b) acceptor channel. Features are labeled with red dots,
and the intensity profiles are shown on the right side of images.
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For the FRET-TIRF experiments all the analysis described in this section are

qualitative, in future for better evaluation of the e�ciency of samples and setup, it is

important to develop or use a software package for FRET calculations. There are a

few packages that are available to use for single molecule FRET analysis, for example

iSMS [80] a package written in Matlab for TIRF-FRET analysis, and twotone [49]

analysis software provided by Kapanidis group at Oxford university.

Figure 6.11. 18bp double stranded DNA with a dT
N

tail with 13 bases labeled
with Cy3 at the 30 end of the tail and Cy5 on the 50 terminal of the dsDNA and
biotinylated on the 30 end [71].
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CHAPTER 7

DIS SOLUTION FRET : CY3B-CY5 PAIR VS. CY3-CY5
PAIR

In this section I’m reporting on di↵erent solution FRET measurements I did on

DIS KC and duplex complex labeled with Cy3B-Cy5 or Cy3-Cy5. These measure-

ments are performed in di↵erent salt conditions. The main purpose of this section

is to investigate whether the low FRET observed in FRET-TIRF measurements are

due to the samples.

Figure. 7.1(a-c) shows proximity ratio histograms for 50 pM DIS kissing complex

(with 1.2x excess of DIS2-Cy5) prepared in 20 mM Tris (pH 7.8), 5mM MgCl2 and

50 mM, 100 mM and 200 mM NaCl. All these samples show a very low FRET of

about 0.2, although we would expect to have larger FRET of about 0.4 for KC. For

DIS duplex a large FRET e�ciency of about 1 is expected. A sample of duplex DIS

was prepared by mixing the DIS hairpins in 20 mM Tris (pH 7.8) and 200 mM of NaCl

with no MgCl2 at final concentration of 2 µM, incubating it for 30 minutes at 55 �C

and finally diluting it to 100 pM concentration. The proximity ratio histogram for

duplex DIS, shown in Figure. 7.1(d), is very similar to DIS KC and doesn’t show any

population at high FRET e�ciencies. To better investigate the formation of duplex,

I prepared duplex DIS at di↵erent conditions and with di↵erent Mg+2 concentrations.

Figure. 7.2 shows proximity ratio histograms for these di↵erent trials. Still neither

of them shows high FRET e�ciency. My hypothesis is that Cy3B-Cy5 is not a good

FRET pair and this is probably because of the large di↵erence in their quantum

yields.
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(a)

(b)

(c)

(d)

Figure 7.1. Proximity ratio histograms of DIS kissing complex prepared in 20 mM
Tris (pH 7.8), 5mM MgCl2 with (a) 50 mM NaCl (b) 100 mM NaCl (c) 200 mM NaCl
(d) DIS duplex at 200 mM NaCl.
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(a)

(b)

(c)

(d)

Figure 7.2. Proximity ratio histograms of DIS duplex prepared by mixing
DIS1Cy3B, DIS2Atto647N hairpins and incubating them at 55 �C in 20 mM Tris,
200 mM NaCl with (a) 5 mM MgCl2 (b) 2 mM MgCl2 (c) DIS duplex prepared in
PCR machine (d) DIS duplex prepared by mixing DIS strands before forming the
hairpins and incubating them at 55 �C.
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We also have some older DIS strands in our lab labeled with Cy3 and Cy5; these

strands have 24 bases and the mutation in their loop is di↵erent from the strands

we used for TIRF measurements. I tested my hypothesis about the ine�ciency of

Cy3B-Cy5 pair by preparing a duplex DIS labeled with Cy3 and Cy5 and measuring

FRET for it. The sequence for DIS24(GA)Cy3 and DIS24(UC)Cy5 and the corre-

sponding proximity ratio histogram for the duplex formed from them is shown in

Figure. 7.3(a,b). This histogram shows an a population of FRET near 1 consistent

with duplex formation. I believe this observation is evidence for Cy3B-Cy5 not being

a good FRET pair. To confirm our speculation, we have to get DIS strands labeled

with Cy3 and Atto647N and repeat the FRET measurements with Cy3-Cy5 pair and

Cy3B-Atto647N pair.

I used fluorescence lifetime measurements to measure FRET for DIS labeled with

Cy3B-Atto647N in presence and absence of NCp7. In presence of NCp7 we expect

formation of duplex DIS which has a high FRET e�ciency. The fluorescence lifetime

decay curves, shown in Figure. 7.4, for DIS labeled with Cy3B-Atto647N shows a

larger decrease in fluorescence lifetime in presence of NCp7, this indicates formation

of duplex DIS.
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(a)

(b)

Figure 7.3. Proximity ratio histograms for DIS24(GA)-DIS24(UC) duplex labeled
with Cy3 and Cy5 prepared at 20 mM Tris (pH 7.8), 150 mM NaCl and 5 mM MgCl2
(a) newer samples from 2012 (b) older samples from 2004
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Figure 7.4. Fluorescence lifetime decay curves for DIS labeled with Cy3B only and
Cy3B-Atto647N in presence and absence of NCp7
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APPENDIX A

ELECTROPHORETIC MOBILITY SHIFT ASSAY
PROTOCOL

The DNA-protein or RNA-protein complexes can be separated from unbound

DNA or RNA by electrophoresis through a nondenaturing polyacrylamide gel. Since

formation of hairpins is Mg2+ dependant, these gels have been prepared in TBM

bu↵er (Tris-borate, MgCl2), which has Mg2+ in it.

Procedure:

1) Prepare a 15% polyacrylamide gel

Resolving gel

ddH2O 4.65 mL

polyacrylamide (30%) (BioRad) 5 mL

TBM⇤ bu↵er (5x) 2 mL

Glycerol (2.5%) 1.25 mL of 20% glycerol

APS⇤⇤⇤ (10%) 100 µL

TEMED(BioRad) 8 µL

Stacking gel

ddH2O 3.35 mL

polyacrylamide(30%) (BioRad) 625 µL

TBM⇤ bu↵er (5x) 1mL

APS⇤⇤⇤ (10%) 100 µL

TEMED(BioRad) 8 µL
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2) Prerun the gel at 10 mA in 1x TBM bu↵er for 30min.

3) Load the gel with 15-20 µL of sample. Sample can be a mixture of DNA or RNA

with protein and the loading dye**.

4) Run the gel at 10mA while keeping it on ice(4�C) for the desired time.

5) Take the gel out and put it in 1x TBM bu↵er with one drop of EtBr in it for

staining.

* 5x TBM bu↵er: 54 g Tris base + 27.5 g boric acid in 1L ddH2O + 10 mL Mg2+

(500 mM) (1x TBM bu↵er is 90 mM Tris-Borate, 1 mM Mg2+ .)

**loading dye 6X: Promega G190A

***APS (Ammonium Persulfate) 10% (1 g APS (BioRad 161-0700) in 10 mL ddH2O)

store at 4�C.

Note: TEMED should always be added at the end.

For DNA samples or RNA oligos which are not in hairpin form the regular Tris bu↵er

can be used instead of TBM bu↵er. Also the gel does not need to be kept on ice.

Here is an example for a 15% polyacrylamide gel:

15% polyacrylamide gel:

Resolving gel

ddH2O 5.4 mL

polyacrylamide (30%) 5 mL

resolving bu↵er⇤ (5x) 2.5 mL

APS (10%) 100 µL

TEMED(BioRad) 8 µL
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Stacking gel

ddH2O 3.1 mL

polyacrylamide (30%) 625 µL

stacking bu↵er⇤⇤ 1.25 mL

APS (10%) 100 µL

TEMED(BioRad) 8 µL

* Resolving bu↵er(4x): 90.75 gr Tris base in 500 mL ddH2O, pH=8.8

** Stacking bu↵er(4x): 30 gr Tris in 500 mL ddH2O, pH=6.8
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APPENDIX B

MOLECULAR DYNAMICS SIMULATIONS

MD simulations used in this work are done with Louis Parrot and Peker Milas

from Goldner lab. Molecular dynamics simulations were run to calculate FRET using

the cpptraj module of Amber 12 [25] and the FF12SB force field. Trajectories for

Cy3 and Cy5 attached to 50 terminal G or C were extracted from 300 ns runs of

the dye-labeled R1inv-R2inv or R1inv-R2inv-C kissing complex, respectively. TIP3P

water was used with 22 Na+ ions giving a concentration of about 160 mM.

NMR restraints were converted from 1bj2 PDB file to a format compatible with

Amber using the NMR Restraints grid website [28, 29, 73, 72]. Four simulations of at

least 300 ns each were performed using the process described in Ref. [66], one for each

model with and without NMR dihedral restraints. In all simulations we observed a

significant deviation in the molecular bend angle in less than 1ns during the heating

phase. We believe this is an artifact of the FF12SB force field incorrectly modeling

the interactions in the kissing region. However, the dye stacking and orientation

behavior relative to the nearest base pair were consistent with previous work [66]. It

is important to note that the MD simulations were run primarily to extract the dye

trajectories, and not to gain any insight into the RNA structure or dynamics.
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APPENDIX C

FRET VS. TWIST ANGLE FOR THE EIGHT
MINIMIZED ENERGY STRUCTURES

Fig. C.1 shows FRET vs. twist angle for four of the eight minimized energy

structures. The change in twist angle corresponding to the experimental change in

FRET for structures number 4, 5, 7 and 8 is: -20�, -25�, -31�, -25�, respectively.
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(a) (b)

(c) (d)

Figure C.1. Calculated FRET at di↵erent twist angles for structures (a) four, (b)
five (c) seven (d) eight. Diamonds show FRET at each twist angle for 50-G and
squares for 50-C construct. Dashed and solid lines are interpolated spline curves to
the points for 50-G and 50-C respectively. The red circles and triangles in all panels
show FRET for the unbound RNA, and the green circles and triangles show FRET
for the bound RNA. The blue square represents twist angle for the initial untwisted
structure.
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APPENDIX D

PCD, PCA AND MV RECIPES

Recipe for 100 µM PCD (protocatechuate 3,4-Dioxygenase): Mix 50 µL

KCl⇤ (1M) + 200 µL Glycine⇤⇤ (500 mM, pH9)+750 µL DEPC⇤⇤⇤ =1 mL Then take

971 µL of this mix and add it to the bottle which contains PCD. Then start making

10 µL or 20 µL aliquots and store them at -80�C freezer. PCD is from Sigma-Aldrich

with code of P8279.

KCL (1M)*: dissolving 2.2365 grams of KCl in 30 mL of DEPC water. Then filtering

the solution and autoclaving it.

Glycine (500 mM, pH 9)**: dissolving 1.1260 grams of Glycine in 30 mL of DEPC

water, then adjusting the pH to 9 using NaOH. Finally, filtering and autoclaving.

DEPC water ***: Add 1 mL of DEPC(Diethylpyrocarbonate) to 1L of ddH2O

(double-distilled water) and after mixing it place it in oven at 37�C overnight or at

least for 2 hours. Then Autoclave it using the liquids cycle and let it cool down and

store it in refrigerator.

Recipe for PCA (3,4-Dihydroxybenzoic acid):

Add a small tablet of NaOH to 10 mL of DEPC water. To prepare 100 mM (40x)

concentration of PCA (M
w

= 154.12 gr/mol) add 0.23118 gr of PCA to it (without

NaOH PCA won’t dissolve). Then check the pH with pH meter and set it to 9 using

NaOH. Then make the volume 15 mL by adding more DEPC water. Filter it using

0.22 µm syringe filter and prepare aliquots of 50 µL or larger and store them in -20�C

freezer. PCA is from Sigma-Aldrich with code of 37580-25G.
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Recipe for MV (Methylviologen): To prepare a 200 mM (100x) solution of MV

(M
w

= 257.2 gr/mol), add 0.0514 gr MV to 1 mL DEPC water. Filter it using 0.22 µm

syringe filter and prepare 10 µL aliquots and store then in -20�C freezer.
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APPENDIX E

TRIS BUFFER, MGCL2 AND NACL SOLUTIONS

Tris bu↵er (400mM, pH 7.8): Dissolve 3.152 gr of Tris (M
w

= 157.6 gr/mol) in

50 mL of DEPC water. Then setting the pH with HCl or NaOH to 7.8. Taking 25 mL

of the bu↵er and adding 25 mL of DEPC water to it, to make 200mM Tris bu↵er.

Then filter and autoclave the bu↵er and store it in refreigerator.

MgCl2 solution (100 mM): Dissolve 1.0165 gr MgCl2 (Mw

= 203.3 gr/mol) in 50 mL

DEPC water. Filter and autoclave it and store it in refrigerator.

NaCl solution (1 M): Dissolve 2.922 gr NaCl (M
w

= 58.44 gr/mol) in 50 mL DEPC

water. Filter and autoclave it and store it in refrigerator.
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fret, Olivier, and Mély, Yves. Flexible nature and specific functions of the HIV-1
nucleocapsid protein. Journal of molecular biology 410, 4 (July 2011), 565–81.

[28] Doreleijers, Jurgen F., Mading, Steve, Maziuk, Dimitri, Sojourner, Kassandra,
Yin, Lei, Zhu, Jun, Markley, John L., and Ulrich, Eldon L. BioMagResBank
database with sets of experimental NMR constraints corresponding to the struc-
tures of over 1400 biomolecules deposited in the Protein Data Bank. Journal
of Biomolecular NMR 26, 2 (2003), 139–146.

[29] Doreleijers, Jurgen F., Nederveen, Aart J., Vranken, Wim, Lin, Jundong, Bon-
vin, Alexandre M J J, Kaptein, Robert, Markley, John L., and Ulrich, Eldon L.
BioMagResBank databases DOCR and FRED containing converted and filtered
sets of experimental NMR restraints and coordinates from over 500 protein PDB
structures. Journal of Biomolecular NMR 32, 1 (2005), 1–12.

[30] Eguchi, Y, Itoh, Tateo, and Tomizawa, JI. Antisense RNA. Annual review of
biochemistry (1991).

[31] Eguchi, Y., and Tomizawa, J. Complexes formed by complementary rna stem-
loops - their formations, structures and interaction with cole1 rom protein.
Journal of Molecular Biology 220, 4 (1991), 831–842.

[32] Eguchi, Yutaka, and Tomizawa, Jun-ichi. Complex formed by complemetary
RNA stem-loops and its stabilization by a protein: Function of ColE1 Rom
protein. Cell 60, 2 (Jan. 1990), 199–209.

115



[33] Eguchi, Yutaka, and Tomizawa, Jun-ichi. Complexes formed by complementary
RNA stem-loops. Journal of Molecular Biology 220, 4 (Aug. 1991), 831–842.

[34] Elson, Elliot L. Fluorescence correlation spectroscopy: past, present, future.
Biophysical journal 101, 12 (Dec. 2011), 2855–70.

[35] Ennifar, E, Walter, P, Ehresmann, B, Ehresmann, C, and Dumas, P. Crystal
structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization
initiation site. Nature structural biology 8, 12 (Dec. 2001), 1064–8.

[36] Ennifar, E, Yusupov, M, Walter, P, Marquet, R, Ehresmann, B, Ehresmann,
C, and Dumas, P. The crystal structure of the dimerization initiation site
of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges.
Structure 7, 11 (Nov. 1999), 1439–1449.

[37] Ennifar, Eric, Paillart, Jean-Christophe, Bernacchi, Serena, Walter, Philippe,
Pale, Patrick, Decout, Jean-Luc, Marquet, Roland, and Dumas, Philippe. A
structure-based approach for targeting the HIV-1 genomic RNA dimerization
initiation site. Biochimie 89, 10 (Oct. 2007), 1195–203.

[38] Ennifar, Eric, Paillart, Jean-Christophe, Bodlenner, Anne, Walter, Philippe,
Weibel, Jean-Marc, Aubertin, Anne-Marie, Pale, Patrick, Dumas, Philippe,
and Marquet, Roland. Targeting the dimerization initiation site of HIV-1 RNA
with aminoglycosides: from crystal to cell. Nucleic acids research 34, 8 (Jan.
2006), 2328–39.

[39] Ennifar, Eric, Paillart, Jean-Christophe, Marquet, Roland, Ehresmann,
Bernard, Ehresmann, Chantal, Dumas, Philippe, and Walter, Philippe. HIV-1
RNA dimerization initiation site is structurally similar to the ribosomal A site
and binds aminoglycoside antibiotics. The Journal of biological chemistry 278,
4 (Jan. 2003), 2723–30.

[40] Gamari, Benjamin D., Zhang, Dianwen, Buckman, Richard E, Milas, Peker,
Denker, John S., Chen, Hui, Hongmin, Li, and Goldner, Lori S. Inexpen-
sive electronics and software for photon statistics and corerlation spectroscopy.
American Journal of Physics (2013).

[41] Girard, F, and Barbault, F. Dimer initiation sequence of HIV-1 Lai Genomic
RNA: NMR solution structure of the extende duplex. . . . Structure and . . .
(1999).

[42] Gopich, Irina V., and Szabo, Attila. Theory of single-molecule fret e�ciency
histograms. In Single-molecule biophysics: Experiment and theory, T Komat-
suzaki, M Kawakami, S Takahashi, H Yang, and RJ Silbey, Eds., vol. 146 of
Advances in Chemical Physics. 2012, pp. 245–297.

[43] Gregorian, R S, and Crothers, D M. Determinants of RNA hairpin loop-loop
complex stability. Journal of molecular biology 248, 5 (May 1995), 968–84.

116



[44] Ha, Taekjip, Rasnik, Ivan, Cheng, Wei, Babcock, Hazen P, Gauss, George H,
Lohman, Timothy M, and Chu, Steven. Initiation and re-initiation of DNA
unwinding by the Escherichia coli Rep helicase. Nature 419, 6907 (Oct. 2002),
638–41.

[45] Ha, Taekjip, and Selvin, Paul R. The New Era of Biology In Singulo. 1–36.

[46] Hannon, Gregory J. RNA interference. Nature 418 (2002), 24–26.

[47] Hess, Samuel T, and Webb, Watt W. Focal volume optics and experimental
artifacts in confocal fluorescence correlation spectroscopy. Biophysical journal
83, 4 (Oct. 2002), 2300–17.

[48] Hoefling, Martin, Lima, Nicola, Haenni, Dominik, Seidel, Claus A. M., Schuler,
Benjamin, and Grubmueller, Helmut. Structural heterogeneity and quantitative
fret e�ciency distributions of polyprolines through a hybrid atomistic simula-
tion and monte carlo approach. PLOS One 6, 5 (2011), e19791.

[49] Holden, Seamus J., Upho↵, Stephan, Hohlbein, Johannes, Yadin, David, Le
Reste, Ludovic, Britton, Oliver J., and Kapanidis, Achillefs N. Defining the
limits of single-molecule FRET resolution in TIRF microscopy. Biophysical
Journal 99, 9 (2010), 3102–3111.

[50] Iqbal, A., Arslan, S., Okumus, B., Wilson, T. J., Giraud, G., Norman, D. G.,
Ha, T., and Lilley, D. M. J. Orientation dependence in fluorescent energy
transfer between cy3 and cy5 terminally attached to double-stranded nuclelic
acids. Proceedings of the National Academy of Sciences of the United States of
America 105, 32 (2008), 11176–11181.

[51] Iqbal, A., Wang, L., Thompson, K. C., Lilley, D. M. J., and Norman, D. G. The
structure of cyanine 5 terminally attached to double-stranded dna: Implications
for fret studies. Biochemistry 47, 30 (2008), 7857–7862.

[52] Kalinin, Stanislav, Sisamakis, Evangelos, Magennis, Steven W., Felekyan,
Suren, and Seidel, Claus A. M. On the origin of broadening of single-molecule
fret e�ciency distributions beyond shot noise limits. Journal of Physical Chem-
istry B 114, 18 (MAY 13 2010), 6197–6206.

[53] KIRCHNER, R. Secondary structure Dimorphism and interconversion between
hairpin and duplex form of oligoribonucleotides. Antisense & nucleic acid drug
development and Nucleic Acid . . . (1998).

[54] L Novotny, B Hecht. Principles of Nano-Optics. Cambridge University Press,
2006.

[55] Lakowicz, Joseph R. Principles of Fluorescence Spectroscopy, vol. Second.
Kluwer Academic/Plenum Publishers, New York.

117
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