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ABSTRACT 
 

LABEL-FREE AND APTAMER-BASED SURFACE-ENHANCED RAMAN 

SPECTROSCOPY FOR DETECTION OF FOOD CONTAMINANTS 

 

SEPTEMBER 2016 

 

SHINTARO PANG, B.S., BRIGHAM YOUNG UNIVERSITY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Lili He 

 

The development of analytical methods to detect food contaminants is a critical 

step for improving food safety. Surface enhanced Raman spectroscopy (SERS) is an 

emerging detection technology that has the potential to rapidly, accurately and sensitively 

detect a wide variety of food contaminants. However, SERS detection becomes a 

challenge in real complex matrix, such as food, since non-specific matrix signals have the 

potential to drown out target associated Raman peaks. In this dissertation, we focused on 

the development and application of label-free, aptamer-based SERS in order to improve 

the accuracy and specificity of target contaminant detection in food. To accomplish this, 

different types of aptamer-modified SERS substrates (i.e.  thiolated or non-thiolated 

ssDNA aptamers conjugated onto silver dendrites, gold-coated magnetic nanoparticles, 

gold nanoparticles and gold nanoparticles coated magnetic nanoparticles) were tested in 

liquid foods (e.g. apple juice and milk) to detect a variety of food contaminants including 

pesticides, antibiotics and foodborne pathogens. Next, an integration of aptamer-based 

SERS and aptamer-assisted colorimetric detection was attempted using gold 

nanoparticles as the substrate to create a rapid detection-validation protocol. Finally, we 

attempted to create a simple SELEX method that could be used to design aptamers for 
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food safety applications. Our results demonstrate that aptamer-based SERS is capable of 

detecting a variety of aptamer-specific food contaminants while drastically reducing 

Raman signal interference from food matrix. Thus, this method shows great potential as a 

rapid detection method in food, especially since sample extraction procedure can be 

simplified. Aptamer-based SERS method can also be used to validate results from the 

gold nanoparticles based colorimetric assays. It can help us understand the intermolecular 

interactions that govern the mechanism and successful interpretation of the colorimetric 

results, which can then reduce false positive and false negative results. Lastly, several 

breakthroughs were achieved using the developed “gold nanoparticle-assisted SELEX” 

procedure. This is promising to design a wider variety of target specific aptamers without 

the need for large, specialized equipment. By advancing the completion of this SELEX 

method, there is great potential for creating more label-free, aptamer-based SERS 

methods for food contamination detection and to improve food safety as a whole. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background 

Adulteration of food products is a major source of distress for consumers and food 

companies. The US FDA and EPA give certain limits as to how much unintended 

materials, i.e. physical, chemical, or microbial, are allowed in specific food products and 

fresh produce. In order to enforce this regulation, governmental agencies routinely check 

the food supply for these foreign matters and food manufacturers are expected to have a 

system in check to detect these substances. As such, the methods used to detect these 

contaminants have to be reliable and efficient to meet the demands of government and 

consumers. The traditional methods for detecting food chemical contaminants have been 

primarily HPLC and GC/LC-MS. Although these methods can give accurate and 

sensitive data, they have some limitations, including high start-up cost, need for highly 

skilled labor, long and laborious sample preparation and analysis, and a dedicated lab 

space to store bulky instrument. For food microbial contaminant detection, the plate 

count method has traditionally been used. Again, this method offers considerably 

accurate and sensitive data, but carries certain limitations such as long incubation times, 

and being incapable of distinguishing dead and live cells. 
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There is a great amount of interest in developing new technology and methods to 

improve the detection of food contaminants. Many factors have been considered for 

improvement. They include improving the accuracy and sensitivity, decreasing analysis 

time, simplifying the analytical procedure, increasing specificity to target, discrimination 

of similar substances, portability, minimizing space and waste, etc. 

 

Surface enhanced Raman spectroscopy (SERS) is an emerging detection technology 

that has the potential to rapidly, accurately and sensitively detect a wide variety of food 

contaminants. Label-free SERS is particularly useful because it relies on the unique 

molecular fingerprints of each target molecule instead of the label dyes that produce 

Raman signals. However, label-free SERS detection becomes a challenge in real complex 

matrix, such as food, since non-specific matrix signals have the potential to drown out 

target associated Raman peaks. One way to overcome this limitation is by coupling 

target-specific capture agents, such as aptamers, to SERS substrates. 

 

Aptamers are artificially engineered oligonucleotides that bind to their targets with 

high affinity, and has advantages over other biologically-derived capture agents such as 

antibodies because it is thermostable, chemically modifiable, easily amplifiable, and do 

not require animals for selection and production. The increase in use of aptamers for 

biomedical diagnostics has prompted us to explore the feasibility of its use for food safety 

applications. 



 

 

 

3 

 

1.2 Objectives 

In this dissertation, we demonstrate the development and application of label-free, 

aptamer-based SERS for the detection of food contaminants. To achieve this overall 

objective, we conducted the following specific aims:  

 Aim 1 – Fabricate an aptamer-modified SERS substrate that can be used to 

detect and differentiate multiple chemical contaminants in food. Previous 

research has shown it is possible to detect single target molecules with aptamers 

using SERS as a signaling tool. For detection methods, it would be advantageous 

to screen multiple contaminants at the same time. Hence, this study employed a 

novel, multi-pesticide specific aptamer integrated with SERS to evaluate the 

feasibility of detecting four different pesticides simultaneously using our 

developed SERS substrate. The limit of detection and the ability to differentiate 

each pesticide in a mixture during detection were then investigated in apple juice. 

 Aim 2 – Develop an aptamer-based SERS method that will detect pathogens in 

food. Unlike pesticides and many chemical compounds, pathogens are typically 

larger in size. Hence, in addition to reducing non-specificity, physical separation 

of target pathogens from large food compounds, such as proteins and 

carbohydrates, need to be addressed in order to obtain clear SERS signals. In this 

study, we tested several fabricated SERS substrates to determine the best method 

to separate and detect two foodborne pathogens, salmonella enteritidis and 

listeria monocytogenes, in milk. The Raman spectra obtained were used to 
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evaluate the limit of detection, reproducibility and specificity by comparing it 

with other non-specific bacteria. 

 Aim 3 – Integrate aptamer-based SERS with aptamer-assisted gold nanoparticle 

based colorimetric detection to create a rapid detection-validation protocol. 

Gold nanoparticles are one of the most widely used SERS substrates available. 

Their ability to change color upon induced aggregation can also be exploited to 

signal the presence of a given target. Although previous studies have shown the 

effectiveness of using aptamers in a gold nanoparticle based colorimetric 

detection method, the intermolecular interactions that causes the change in optical 

properties is not well understood. Therefore, this study focused on characterizing 

the competitive interactions that occur between gold nanoparticles, aptamers, and 

target molecules using SERS. This detection-validation study was conducted 

using two food-related antibiotics, ampicillin and kanamycin, as target models.   

 Aim 4 – Develop a suitable aptamer selection SELEX procedure that will 

enhance the application of aptamer-based detection technology for food safety. 

One of the main hindrances for the application of aptamer-based SERS and other 

aptamer-based detection methods for food safety is due to the lack of aptamers. 

This is likely due to the sophisticated, specialized procedure, i.e. systematic 

evolution of ligands by exponential enrichment (SELEX), currently being used to 

design new aptamer sequences. In an attempt to provide more food contaminant 

specific aptamers, the feasibility of developing a simple SELEX method was 
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explored using gold nanoparticles as a non-specific binding substrate and 

signaling tool. 

 The completion of these projects will help us better understand the feasibility and 

usefulness of label-free, aptamer-based SERS as a detection method for food 

contaminants in food matrix. It will also have the potential to assist the development of 

other types of analytical methods pertaining to food safety. To give the reader an 

informative background of the topics being discussed in this dissertation, a literature 

review of recent advances in SERS and aptamer-based technology will first be given. The 

details of each specific aim will then be addressed in subsequent chapters, and concluded 

with an overall summary. 
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CHAPTER 2 

LITERATURE REVIEW1 
 

2.1 Surface-enhanced Raman Spectroscopy 

2.1.1 Background 

 Surface enhanced Raman spectroscopy (SERS) is essentially an agglomeration of 

two fields, namely Raman spectroscopy and nanotechnology. Raman scattering was first 

discovered in 1928 by Raman and Krishnan[1], who observed the inelastic scattering of 

light which constitutes only about one in a million photons of incident light striking a 

surface. The rest reflect elastically, commonly known as Rayleigh scattering. It was 

further discovered that the frequency changes that occurred due to the inelastic scattering 

of light matched precisely with the differences in vibrational energy levels. This enables 

the molecule to yield distinct Raman spectral profiles since different functional groups 

possess different characteristic vibrational energies. Thus, Raman spectroscopy is capable 

of molecular fingerprint specificity for every distinct molecule/analyte. However, this 

method was not applicable for sensitive detection due to the inherently weak Raman 

signals. In the 1970s, researchers discovered that Raman signals were enhanced by 10
4
 – 

                                                

1 A part of this literature review is adapted from an invited review paper that has already been 

submitted: Pang, Shintaro and Lili He. 2016. “Recent Advances in Surface Enhanced Raman Spectroscopic 

(SERS) Detection of Synthetic Chemical Pesticides.” Trends in Analytical Chemistry 
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10
5
 if the target analyte was placed in close proximity to a roughened noble metal 

nanostructure [2]. Although the exact mechanism for this phenomenon is not yet fully 

understood, two sets of theories have become well-agreed upon by the scientific 

community; namely the electromagnetic and chemical theory. Briefly, in the 

electromagnetic theory, the enhancement of Raman signals is thought to be due to the 

excitation of the localized surface plasmon resonance (LSPR) of nanoparticles when an 

incident light hits the surface of the target analyte close to the nanomaterial. In order to 

maximize the enhancement of Raman signals, the excitation frequency of the 

nanomaterials used has to resonate with that of the incident light (i.e. for noble metals, 

this is in the UV-vis range). In the chemical theory, the Raman signal enhancement 

occurs based on the assumption that the target analyte is adsorbed on the metal surface 

and that a charge transfer is in effect. Because of the chemisorption of target analyte on 

the nanosubstrate, the electronic state of the complex is shifted to a new absorption 

maximum, which allows it to resonate with the laser excitation frequency, and thus 

enhance the Raman signals. To get a deeper understanding of the mechanisms and theory 

of SERS, the following review articles are highly recommended [3,4]. 

 

SERS has several merit-worthy properties over other analytical techniques that make 

it an excellent detection tool. First, SERS is able to detect extremely low levels of 

analytes, even down to a single molecule level [5,6]. Second, SERS is able to provide 

distinct molecular fingerprints and overall spectra based on the inherent chemical 
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structure of the target molecules[4]. Furthermore, it provides other information such as 

the surface chemistry and interface reactions of the analytes being examined [7,8]. Third, 

SERS is a rapid and convenient detection method as it typically takes a few seconds or 

less to obtain a spectrum. Sample preparation can be minimal and only a tiny speck (few 

micrometer size) is needed for analysis since the laser spot size is usually in that size 

range. Fourth, samples can be analyzed in aqueous solutions without interference from 

the solvent since water is a Raman scatterer. Because of this, SERS opens the door to a 

wider scope of application studies such as cells and bacteria that may not survive well in 

dry environments [9,10]. Fifth, SERS can be used to detect a wide variety of substances 

including small molecule, DNA, proteins, viruses, bacteria, etc. Lastly, SERS can be a 

cost effective alternative for many analytical techniques as only tiny amounts of 

nanosubstrates is required and these can potentially be fabricated at low cost. All of these 

outstanding properties of SERS have been recognized over the last two decades and has 

led to significant growth in SERS-based applications, including its use in food safety. 

 

In order to apply SERS as a detection method for food contaminants, it is important to 

understand several critical determining factors: sensitivity, selectivity, reproducibility and 

portability. Hence, the following section will highlight some of the recent work that has 

been done to address these factors. 
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2.1.2 Factors to Consider in SERS detection 

Sensitivity 

Probably the main advantage of SERS is that it is capable of detecting ultra-low 

concentrations of molecules. This is very useful in food contaminant detection since 

certain harmful substances (e.g. pathogens, carcinogenic chemicals) are not tolerated at 

all. Many pesticides are also regulated with a maximum residue level of 10 parts per 

billion in fresh produce, which is difficult to achieve using many rapid detection tools. 

The high sensitivity of SERS is largely attributed to the nanosubstrate that is placed in 

close proximity to the target. The “hot spots” and surface area/morphology determine the 

enhancement factor of SERS. Thus, efforts have been made to increase hot spot locations 

and the surface area. For example, silver particles that have aggregated forms of nanosize 

shapes such as flowers and leaves have been fabricated to take advantage of their SERS 

enhancement capabilities [11,12]. By increasing the probability of the target landing at 

the centroid position of a hot spot, ultrasensitive detection even at a single molecule has 

been achieved under optimal SERS conditions. 

 

Another way to increase the sensitivity of SERS is by preconcentrating the noble 

metal nanoparticles using an inducing chemical such as NaCl. In this way, the electric 

charges surrounding nanoparticles are neutralized by the salt and is able to pull both NPs 

and the adsorbed target together, which will subsequently enhance the SERS peak 

intensities [13]. Preconcentrating can also be done through physical means such as 
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filtration. Yu and White (2012) showed the concept by trapping silver nanoparticles on 

filter membranes in order to form a SERS active substrate, after which a large of volume 

of sample containing low levels of melamine was concentrated onto the filter [14]. 

Similarly, a membrane filter assisted SERS method was able to detect E.Coli 0157:H7 as 

low as 10 CFU/mL in 1 hr [15].  Lastly, the coupling of electrokinetic pre-concentration 

with SERS has been developed to detect polar molecules such as antibiotics and phenols 

[16,17].  

 

The sensitivity of SERS is not the same for all molecules. Sometimes, chemical 

bonding characteristics, such as the affinity of the target to nanosubstrate, can be too 

weak for adequate adsorption. For example, hydrophobic molecules such as polycyclic 

aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCBs) will not adsorb well 

on citrate stabilized gold or silver colloids due to the incompatibility of the surface 

chemistry. Hence, attempts have been made to overcome this limitation by modification 

of the nanosubstrate surface. In the case of hydrophobic molecule detection, colloidal 

hydrophobic films have been placed onto gold nanoparticles immobilized onto silanized 

quartz substrates[18] to detect PAH.  Alkylated thiols, graphene, proteins and DNA 

fragments have also been conjugated onto SERS substrate to modify the surface 

chemistry to enhance the sensitivity of SERS. Many of these studies show proof of 

concepts, but are not well studied in complex matrix such as food, hence, there is still a 

need for application based studies to take SERS into food industrial applications. 
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Selectivity 

For any detection method development that will eventually be used in applications, 

the medium in which the target is embedded in plays a crucial factor in influencing the 

sensitivity of the result. For detection of food contaminants, the matrix could be aqueous 

(e.g. milk, fruit juices, drinking water) or solids (e.g. meat, fruits, vegetable, cereal). 

Depending on the food matrix, the interference of SERS signals can differ greatly. Since 

SERS detects virtually any substance that is in close proximity to the nanosubstrate, 

nontargeted substances may produce substantial noise peaks to lower the sensitivity of 

the target analyte. Furthermore, several molecules may produce strong Raman peaks that 

are similar to the target, making it challenging for qualitative and quantitative detection. 

 

To improve the selectivity of SERS in actual food matrix, one can modify the SERS 

substrates with specific receptors such as molecular imprinted polymers (MIPs), 

antibodies and aptamers to block out the unwanted Raman signals. In fact, this approach 

has been used before to detect a variety of substances including food allergens. In this 

case, antibodies were used in ELISA methods to capture specific immunogenic protein 

targets [19,20]. 

 

Another way to improve the selectivity of SERS is to integrate SERS with a 

separation technique. This method essentially builds in a sample preparation step that 
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cleans up the matrix good enough for there to be minimal noise. Examples of separation 

methods used include capillary chromatography, thin layer chromatography, ion-pair 

chromatography and ion-pair electrophoresis. Indeed, these sample preparation 

techniques provide increased sensitivity and selectivity, while reducing false positive or 

negative results. However, the addition of a separation step may generate limitations to 

SERS, such as increased analysis time and lack of portability. 

 

Portability 

 One of the popular aspects of SERS development is the potential for it to become a 

field detection method. In order to have a portable detection system, it has to be rapid, 

light, easy-to-use and small. Furthermore, the application of field detection methods will 

only be realized if it is cost-effective. 

  

The miniaturization and commercialization of hand-held Raman spectrometers has 

enabled portable SERS detection to become a reality. However, just as crucial as the 

instrument is the development of suitable nanosubstrates. For portable applications, 

traditional colloidal based substrates may not work well due to the additional steps 

needed deposit the nanoparticles on a solid surface and concentrating/aggregating the 

substrate. Hence, solid SERS substrates are more suitable for detection that requires 

portability. A few SERS substrates have been developed to meet this need. One strategy 

is by using electron beam lithography (EBL) to graft the nanomaterials onto a solid 
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support, which allows for accurate control and precise spacing of nanoparticles [21]. 

Although this method can produce very reproducible and sensitive results, a major 

limitation is its cost. Commercial substrates such as Klarite
TM

 is based on this technique 

but they are still very expensive to manufacture and therefore may not be suitable for 

routine testing.  

 

Another approach has been the development of paper-based [22–24] or fiber-based 

[25,26] SERS sensors. For example, one study screen printed SERS active NPs onto a 

filter paper, which could then be used to screen many samples using high throughput 

analysis in a portable setting [24]. Not only were these substrates cost-effective, but they 

were able to exhibit reproducible results with less than 10% spot-to-spot variation. In 

another study, a template guided self-assembly of gold nanoparticles into ordered arrays 

of uniform clusters was prepared on an optic fiber faucet [26]. These SERS enabled optic 

fiber showed high-performance of SERS as demonstrated by using crystal violet. This 

batch method approach may pave a way for low-cost, efficient SERS nanosubstrates. 

Continued research will be needed to examine the stability of the substrates and to apply 

it with wider varieties of target analyte. 

 

Reproducibility 

 Despite the numerous advantages of SERS as an ultrasensitive detection tool, one of 

the main limitations that continue to be addressed in SERS studies is the reproducibility 
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of results, particularly with regards to peak intensities. Thus, quantitative studies remain a 

challenge in SERS if the wrong type of SERS substrates is being used. Colloidal 

nanoparticle solutions may not be as ideal for reproducibility due to uncontrolled 

aggregation and its lower stability. Well-ordered nanostructures are more promising as 

they are able to maintain even gaps between nanoparticles that give consistent hot spots 

exposed to target. Electron beam lithography (EBL) has been used to produce well-

defined arrays, and has shown highly reproducible SERS performance [27]. However, 

they are expensive to fabricate, therefore, it might not be suitable for frequent food 

industrial applications. 

 

 A lower cost alternative to more reproducible SERS enhancement substrates is the 

fabrication of silver dendrites. These leaf-like dendritic nanostructures consist of 

colloidal sphere approximately 50 nm in diameter linked closely together. Because of the 

close proximity of each nanosphere, adsorbed analytes can produce strong and consistent 

Raman signals [28]. Other studies that have shown to control the uniformity of 

nanoparticles into uniform patterns include incorporation of colloids into a sol-gel [29,30] 

and integration with a microfluidic device [31,32] 

 

2.1.3 Application of SERS in food contaminant detection 

Many of the SERS studies described in literature are focused on nanosubstrate 

development to improve the factors described above, and typically use highly SERS 
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active molecules for detection as a proof-of-concept. However, in order to bring the 

technique into industrial applications, more application studies have to be performed with 

a wide variety of target molecules and food matrix. In this section, several research 

studies that I collaborated on will be described to show how SERS has been applied to 

detect food contaminants. 

 

Acetamiprid on apple peel and in apple juice 

This study describes a simple method and high sensitivity of SERS application for 

detection of food contaminants. Briefly, a simple, rapid method was developed to detect 

acetamiprid on apple peels and in apple juice by using silver dendrites coupled with 

SERS [33]. Acetamiprid is a neonicotinoid pesticide that is frequently used in modern 

farming. The US Environmental Protection Agency (EPA) sets tolerance levels between 

0.01 and 50 ppm of acetamiprid residue, depending on the type of food (Electronic Code 

of Federal Regulations 2013). For apples, the tolerance level is 1.0 parts per million 

(1000 μg/kg) [34]. Although there have been previous studies focusing on SERS 

detection of pesticides, most of them were focused on substrate development by testing 

simple pesticide solutions [35–39], and spectral characterization [40]. For applications in 

food matrices, many of the SERS studies still used a complex extraction procedure, 

which increased the analytical time [38,41,42], or achieved unsatisfactory sensitivity 

[35,36]. In this study, the focus was on detection sensitivity of the method in food matrix. 

http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.12391/full#jfds12391-bib-0004
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Figure 2.1(a) Second derivative SERS spectra of the control water:methanol 

solution at 50 µg/mL (light blue line) vs the second derivative SERS spectra of 

acetamiprid at 0, 3, 10, and 50 µg/mL in apple juice (average of all data points); (b) 

Second derivative SERS spectra of acetamiprid in apple juice zoomed in the range 

of 610 to 640 cm
-1

 at full scale; (c) PCA plot of different acetamiprid concentrations 

in apple juice analyzed [33]. 

 

Acetamiprid was detected in water, apple juice and on apple peel. For apple juice, no 

sample preparation was done. For apple peel, a simple swab method was used. By using 

the highest acetamiprid peak at 634 cm
−1

, the SERS method was able to successfully 

detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, 

and 0.125 μg/cm
2
 on apple surfaces. The longest it took to detect the samples was 15 min 

for total 5 samples on apple peel. The spectral data was then analyzed statistically using 
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principal component analysis (PCA). In Figure 1, the spectra show that with increasing 

concentration of acetamiprid, the acetamiprid “fingerprint” peak intensity increased, 

noticeably at high concentration (50 μg/mL) while there were no intensity differences at 

low concentrations (3 and 10 μg/mL). However, the acetamiprid concentration correlated 

with the shifting of the acetamiprid peak as well. By zooming into around 610 to 640 

cm
−1

 at full scale (Figure 1B), it is clear that the apple juice samples that contain different 

concentrations of acetamiprid were “sandwiched” in between the pure apple juice peak 

(negative control) and 50 μg/mL acetamiprid in solvent peak (positive control). Although 

more studies will be needed to understand the mechanistic detail of this phenomenon, this 

study showed the feasibility of detecting acetamiprid in real apple juice at low 

concentrations. 

 

Multi-class insecticides on plant surfaces 

 The next study illustrates the potential for detecting multiple target contaminants on 

a food plant surface. In this study, a rapid SERS detection method was developed to 

examine four insecticides (i.e. Isocarbophos, Phorate, Detlamethrin, Imidacloprid) 

representing three different classes (i.e. organophosphate, pyrethroid, neonicotinoid) on 

tea leaves and apple peels. This study was also done to address the issue of  complex 

extraction procedure [38,43,44] performed in most food matrix studies. In our previous 

studies, SERS methods had been established for acetamiprid[33] and thiabendazole [45] 

on apple surfaces after a swab method. In our previous studies, SERS methods had been 

http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.12391/full#jfds12391-fig-0003
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established for acetamiprid[33] and thiabendazole [45] on apple surfaces after a swab 

method. However, until now, only a few studies had been reported on the in situ detection 

of pesticides residues on several plant surfaces using homemade SERS substrates [46,47]. 

These studies used very SERS active compounds such as thiram, methyl parathion and 

parathion. Therefore, further studies were urgently needed to investigate the in situ SERS 

methods for more pesticide residues on various plant surfaces. 

 

 The results as summarized in Table 1 show that these pesticides can be detected at 

very low concentrations. The limits of detection (LODs) of isocarbophos, phorate, 

imidacloprid and deltamethrin were 0.25, 0.25, 0.5 and 0.5 mg kg
−1

 on fresh tea leaves, 

and 0.01, 0.01, 0.02, 0.02 mg kg
−1

 on apple peels, respectively. Furthermore, principal 

component analysis showed that all four pesticides were distinguishable from each other 

based on their distinct Raman fingerprint. Hence, this study was able to show that not 

only was SERS capable of detecting a variety of pesticides at low concentrations, but it 

was able to detect them simultaneously and discriminate them based on their spectral 

peaks. 

 

Table 2.1 Quantification parameters of the four insecticides using SERS
a
  

Insecticide 

Linear conc. 

range, μg mL
−1

 

Corr. 

coeff. RMSEC 

LOD,b μg 

mL
−1

 

LOD,c mg kg
−1

 (μg 

cm
−1

) 

In solvent Tea Apple 

http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01058f#tab1fna
http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01058f#tab1fnb
http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01058f#tab1fnc
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Insecticide 

Linear conc. 

range, μg mL
−1

 

Corr. 

coeff. RMSEC 

LOD,b μg 

mL
−1

 

LOD,c mg kg
−1

 (μg 

cm
−1

) 

In solvent Tea Apple 

a RMSEC, the Root Mean Square Error of Calibration, got from PLS analysis. b Limit of detection 

of insecticides in methanol (1 : 1). c Limits of detection on plant surface.  

Isocarbophos 0–5.0 0.9993 0.0654 0.005 0.25 

(0.01) 

0.01 

(0.01) 

Phorate 0–10.0 0.9923 0.0443 0.005 0.25 

(0.01) 

0.01 

(0.01) 

Imidacloprid 0–1.0 0.9678 0.0904 0.005 0.5 

(0.02) 

0.02 

(0.02) 

Detlamethrin 0–10.0 0.9966 0.283 0.005 0.5 

(0.02) 

0.02 

(0.02) 

 

 

Semi-quantification of Ferbam using Portable SERS 

 This study was conducted to illustrate the compatibility of SERS for on-site 

detection of food contaminants and the feasibility of semi-quantification using a handheld 

Raman spectrometer traditionally used for a straightforward “Yes/No” detection of bulk 

materials. In order to do this, silver dendrites were used as the SERS susbtrate and 

ferbam was used as the pesticide of interest. 

http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01058f#tab1fnb
http://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01058f#tab1fnc
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Figure 2.2 The SERS spectrum of fungicide ferbam taken on handheld Raman 

spectrometer. (A) Illustration of the use of a handheld Raman spectrometer to point 

and shoot the Ag dendrites on a glass slide. (B) The SERS chemical structure of the 

pesticide ferbam taken by handheld Raman spectrometer. Blank Ag dendrites were 

used as the negative control and compared with ferbam at the concentration of 50 

ppm on Ag dendrites. 

 

 As shown in Figure 2, the setup of the detection method was such that the silver 

dendrite was placed on a plain glass slide, and a handheld Raman spectrometer was 

placed above so that the laser pointed directly at the sample. The pesticide showed clear 

Raman peaks at several Raman shifts, notably at 1384 cm
−1

, which was likely due to the 

γ(C–N) stretching coupled to the symmetric δ(CH3) motion. The instrument parameters 

were optimized with four “reference” concentration levels chosen to represent “No risk” 

(0 ppm), “Low risk” (4 ppm, about a half of risk level), “Risk” (7 ppm, risk level), and 

“High risk” (14 ppm, double of risk level) and because the technique was capable of 

distinguishing these concentrations clearly using principal component analysis. After 

inputting those spectra as reference points in the software library, nine different 

concentrations were tested to see if they were able to match the reference concentration 
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spectra most closely representing it. A p-value of greater than 0.05 was considered a 

positive result when comparing it against the reference. A p-value between 0.001 and 

0.05 was considered negative as they would not resemble the reference. The results 

worked flawlessly and showed the feasibility of using handheld Raman spectrometers as 

detection tools for on-site detection. 

 

Integration of colorimetric and SERS detection of melamine in milk 

 Rapid detection methods typically require another method to check the validity of 

the results when there is a positive sample. For example, although colorimetric methods 

look promising for on-site measurements of melamine, they can be greatly influenced by 

the sample matrices, resulting in high rates of false positive and false negative data. In 

this study, the intrinsic properties of gold nanoparticles were employed to integrate both 

colorimetric and SERS assays so that the benefits of both methods could be realized [48]. 

To do this, the size of gold nanoparticles and a simple sample extraction method was 

developed to be compatible for both methods. The change in color from red to purple 

indicated that melamine was potentially present due to the bridging effect induced by its 

three amine groups that bind to Au surfaces. A small portion of the sample is then 

transferred onto a gold slide and detected using SERS. The developed colorimetric–SERS 

method was able to rapidly screen and validate as low as 0.25 ppm melamine in milk 

within 20 min, displaying its advantageous as a rapid dual validation method for food 

contaminant detection. 



 

 

 

22 

 

 

Aptamer-based SERS substrate for detecting lysozyme on food handling surface 

 In order to address the issue of low selectivity when using unmodified SERS 

substrates, a study was conducted to target the egg allergen, lysozyme, using aptamers by 

modifying silver dendrites with a thiolated aptamer. After optimizing the surface 

coverage of silver dendrites with aptamers, a stainless steel surface representing a food 

handling surface was spiked with lysozyme at low concentrations. 

 

Figure 2.3 Principal Component Analysis (PCA) plot of Ag-Ap, Ag-Ly and Ag-Ap-

Ly. 

 

Figure 2.3 shows the principal component analysis of the lysozyme detection using 

aptamer-based SERS. It shows successful capture of the lysozyme by the aptamer. The 

limit of detection for lysozyme was 0.1 µg/mL in water and 5 µg/mL on a stainless steel 

food-handling surface. Quantification of lysozyme target was also shown from 0 to 6 

µg/mL and the overall method took less than 40 min. This provided an extra step of using 

SERS as a selective and sensitive tool to detect food allergens. 
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2.2 Aptamer-based biosensing 

Many rapid detection assays use a biological capture agent as a probe coupled with a 

transducing mechanism for analysis. Depending on the target of interest, the capture 

probe can be a protein (i.e. antibody, enzyme) or oligonucleotide (i.e. DNA, RNA). Over 

the last two decades, aptamers have begun to emerge as a popular alternative to other 

biological capture agents as the analytical tool of choice for many target analytes, 

including food contaminants. 

 

 Aptamers are a class of oligonucleotides that have been designed using an in-vitro 

method. The term “aptamer” is derived from the root Latin word “aptus”, which means 

“to fit” [49,50]. Although aptamers are artificially engineered molecules, similar 

compositional structure and functions have been found in molecules found in nature 

known as riboswitches [51,52]. In both of these cases, it is a single stranded RNA or 

DNA that possesses high binding affinity to their target of interest. 

 

 The underlying molecular interaction between aptamers and their target is largely 

due to the following: hydrogen bonding, electrostatic interactions, stacking of aromatic 

rings and van der Waals interaction. They typically follow an induced fit model, whereby 

the aptamer changes its 3-D structure in order to interact fully with their target. Their 

secondary structure is also characterized by stems, internal loops, bulges, hairpins, tetra 
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loops, pseudoknots, triplicates, kissing complexes, or G-quadruplex; these specific 

structures influences the binding sites of the target. 

 

Today, aptamers have been selected for a wide variety of targets including proteins, 

peptides, nucleotides, amino acids, small molecules, low-molecular organic and inorganic 

compounds, and even whole cells. The process of designing aptamers for specific targets 

originated from 1990 by three separate labs [50,53,54]. They all described a similar 

selection procedure that isolated functional oligonucleotides having high binding affinity 

to their target molecules that started from a randomly synthesized oligonucleotide library 

starting with more than 10
15

 sequences. This procedure is commonly known as 

“systematic evolution of ligands by exponential enrichment”, or “SELEX”. 

 

 Briefly, SELEX can be broken down into five essential steps: Design, Selection, 

Partition, Amplification and Acquisition. The design stage requires thoughtful planning 

on the ssDNA or ssRNA sequence, which typically consists of at least one random 

sequence flanked between two constant primer binding sites. In the selection stage, the 

target and oligonucleotide library is exposed to each other. In the partition stage, the 

target bound oligonucletoides are separated from the remaining oligonculeotides and 

subsequently eluted from the target. The amplification stage uses polymerase chain 

reaction (PCR) to amplify the sequences obtained which is then separated from its 

complementary strand. The obtained ssDNA or ssRNA is then subjected to a repeat of the 
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selection, partition and amplification procedure until the proportion of the 

oligonucleotide library binding to the target remains high and constant. In the last step, 

the acquired ssDNA or ssRNA is cloned in bacteria and then several colonies are selected 

for DNA sequencing. The sequences are then analyzed using m-fold software to 

understand its secondary structure and to predict binding site. Lastly, the sequences of 

interest will be tested for its binding affinity to target.  

 

 The dissociation constants (Kd) of aptamers to their target is usually between the 

micromolar to picomolar range, making it a highly specific capture probe. In addition to 

their high specificity, aptamers carry several advantageous over antibodies as capture 

receptors. The main important factors are listed below: 

1. Aptamers are thermally stable, hence they can be regenerated easily after 

denaturation. 

2. Aptamers can be easily modified, hence they can be labeled with a dye or 

immobilized onto a solid surface using thiol or biotin functional groups. 

3. Aptamers can be selected for virtually any type of molecules, including toxic or 

nonimmunogenic susbtances. 

4. Aptamers can be amplified easily using PCR, hence it can be reproduced rapidly 

with large amounts. 

5. Aptamers do not require scarification of live animals or in vivo immunization, 

hence getting rid of any ethical issues associated with animal-related experiments. 
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CHAPTER 3 

DEVELOPMENT OF A SINGLE APTAMER-BASED SURFACE 

ENHANCED RAMAN SCATTERING METHOD FOR RAPID 

DETECTION OF MULTIPLE PESTICIDES2 
 

3.1 Abstract 

The objective of this study was to develop a simple and rapid method that could detect 

and discriminate four specific pesticides (isocarbophos, omethoate, phorate, and 

profenofos) using a single aptamer-based capture procedure followed by Surface 

Enhanced Raman Spectroscopy (SERS). The aptamer is a single stranded DNA sequence 

that is specific to capture these four pesticides. The thiolated aptamer was conjugated 

onto silver (Ag) dendrites, a nanostructure that can enhance the Raman fingerprint of 

pesticides, through Ag–thiol bonds. It was then backfilled with 6-mercaptohexanol (MH) 

to prevent nonspecific binding. The modified SERS platform [Ag–(Ap + MH)] was then 

mixed with each pesticide solution (P) for 20 min. After capturing the pesticides, the Ag–

(Ap + MH)–P complex was analyzed under a DXR Raman microscope and TQ Analyst 

software. The results show that the four pesticides can be captured and detected using 

principal component analysis based on their distinct fingerprint Raman peaks. The limits 

                                                

2 The contents of this study have been published: Pang, Shintaro, Theodore P Labuza and Lili He. 

2014. “Development of a Single Aptamer-based Surface Enhanced Raman Scattering Method for Rapid 

Detection of Multiple Pesticides.” The Analyst. doi:10.1039/C3AN02263C.  
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of detection (LODs) of isocarbophos, omethoate, phorate, and profenofos were 3.4 μM (1 

ppm), 24 μM (5 ppm), 0.4 μM (0.1 ppm), and 14 μM (5 ppm) respectively. This method 

was also validated successfully in apple juice. These results demonstrated the super 

capacity of aptamer-based SERS in rapid detection and discrimination of multi-

pesticides. This technique can be extended to detect a wide range of pesticides using 

specific aptamers. 

 

3.2 Introduction 

 The development of rapid detection techniques for pesticide residual analysis has 

become a hot topic in recent years due to increased application of pesticides and fear of 

its health deteriorating effects.[41,55]
 
This field of analysis is termed “QuEChERS” for 

finding methods that include making the process to be Quick, Easy, Cheap, Effective, 

Rugged, and Safe.[56] Traditional/currently-used methods mostly apply chromatography 

(i.e. GC or LC) coupled with MS.[57–59] Despite its sensitivity and capability to detect 

multiple residues quantitatively, this method carries several disadvantages including 

extensive sample preparation (i.e. extraction, filtration, etc.), need for technical expertise 

and high cost. 

 

 Many alternative methods, such as ELISA,[60–62] radioimmunoassay[63,64] and 

multiarray biosensor methods,[65]  have been developed for  rapid and sensitive 

detection of pesticide residues. In these cases, a recognition element captures the target 
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analyte, and in doing so, the receptor-analyte complex produces a biochemical signal (i.e. 

change in pH, color, radioactivity, charge potential, etc.) that can be qualitatively or 

quantitatively determined by an appropriate transducer (i.e. signal probe).[66] However, 

these methods are not without drawbacks. For example, the recognition element might 

exhibit broad specificity, potentially capturing substrates that are unrelated. The signals 

produced by the transducer are also often secondary, meaning that the output can only tell 

us if something was captured. This can be disadvantageous as the analyst will not be sure 

if the signal came from the target analyte or from some other compound that triggered a 

similar signal. 

 

 Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique 

utilizing nanotechnology and Raman spectroscopy that can detect traces of closely 

adsorbed molecules on metallic nanostructures (often gold or silver).[67] Even though 

SERS methods can be conditioned to be sensitive enough to detect a single molecule, 

SERS alone will not single-handedly separate compounds present in a sample. This might 

prove to be disadvantageous, especially when detecting trace amounts of a target in a 

complex matrix like food. In this case, Raman signals from the target analyte will be 

drowned out by the signal of other ingredients/compounds present, thus making it 

impossible to detect anything.  
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 To overcome the non-specific nature of SERS, aptamers can be deployed as suitable 

capture agents. Aptamers are single stranded oligonucleotides that can be synthesized in 

vitro to capture target molecules. They have become increasingly popular as a capture 

agent because it is adaptable to various targets, convenient in screening, reproducible for 

synthesis, versatile in labelling, immobilizing, signalling and regenerating.[68,69] In 

addition, recent technological advancements have made it faster and cheaper to create 

new aptamers, particularly through the SELEX (Systemic Evolution of Ligands by 

Exponential Enrichment) protocol.[49] 

 

 Aptamer based SERS method has been previously evaluated on proteins in liquid 

foods.[70] However, the problem of non-specific binding by other food components has 

not been solved.  The objective of this study was to evaluate the feasibility of an aptamer-

based SERS technique for pesticide detection in a complex liquid food (e.g. apple juice) 

using a single aptamer that was previously synthesized to be specific to not one, but four 

commercially available pesticides (isocarbophos, omethoate, profeonofos, phorate).[71]  

The optimization of aptamer conjugation to eliminate the nonspecific binding in apple 

juice as well as the feasibility of multi-detection was emphasized and discussed. To the 

best of our knowledge, very few studies have been published on aptamer-based SERS for 

small molecule detection.[72,73] No similar study has been reported for detection in a 

complex food matrix.   
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3.3 Materials and Method 

3.3.1 Materials 

 All the chemicals were of analytical reagent grade and were purchased through 

Fisher Scientific unless otherwise noted. The multiple pesticide binding aptamer (SS2-

55) reported previously[71] with the sequence 5’-AAG CTT GCT TTA TAG CCT GCA 

GCG ATT CTT GAT CGG AAA AGG CTG AGA GCT ACG C-3’ with disulfide (S-S) 

modification at the 5' end was purchased through Eurofins Operon MWG (Ebersberg, 

Germany). Apple Juice (Stop N Shop, MD, USA) was purchased from a local grocery 

store. 

3.3.2 Preparation of dendritic silver (Ag) nanoparticles 

 Silver (Ag) dendrites were synthesized in accordance with previously published 

methods.[11,28] Briefly, a zinc metal plate was rinsed with 1M HCl to remove any metal 

oxides forming on the outer layer, then rinsed with double distilled water and dried. The 

zinc plate was then immersed in a 200 mmol AgNO3 (aq) solution for exactly 1 min, 

which produced nanoparticle size diameters of ≈50 nm. After incubation, the silver 

dendrites formed on the surface of the zinc plate was gently peeled off and washed with 

double distilled water several times. SEM images obtained from FEI Magellan 400 (FEI, 

Oregon, USA) confirmed consistent nanoparticles sizes of ≈50 nm in diameter were 

crystallized and form a dendritic structure (Fig. 3.1a). This unique structure can provide 

locally consistent enhancement factor and have been previously demonstrated as a 

sensitive and reliable SERS substrate. [28,74,75] 
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Figure 3.1 SEM image of (A) silver dendrites and (B) thiolated aptamer (S2-55) 

conjugated onto silver dendrites 

3.3.3 Conjugation of deprotected aptamer onto Ag dendrites 

The step by step sequence for developing this single aptamer-based SERS method is 

illustrated in Fig. 3.2. Aptamer was first dissolved in a 1xTE buffer (pH 7.4) to give a 

stock concentration of 129 µM. 100 µl of the aptamer stock solution was then added to 

10 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) (i.e. concentration ratio 

was 1:77) and incubated for 1 hour in order to reduce the disulfide (S-S) to thiol (SH) 

groups, which has stronger binding affinity to the Ag surface. Then, 30 µl of the aptamer 

solution was mixed with 370 µl of 1 M phosphate buffer (pH 7), after which 100 µl 

(≈400 µg) Ag was added. This mixture was homogenized by mixing them together 

briefly with a micropipette tip. The mixture was then incubated at room temperature for 4 

hours on a Nutating mixer (Fisher Scientific) at the speed of 24 rpm to allow the aptamer 

to conjugate onto the Ag through Ag-thiol binding interaction. 
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3.3.4 Addition of blocker molecule (i.e. 6-mercaptohexanol) onto silver-

aptamer complex (Ag-Ap) 

In order to eliminate all forms of non-specific binding interactions with Ag, 40 µM 6-

mercaptohexanol (MH) was incubated with Ag-Ap for 1 hour, after which it was rinsed 3 

times with double distilled water to fabricate our modified Ag dendrites [Ag-(Ap+MH)]. 

 

3.3.5 Detection of multiple specific pesticides using aptamer-based SERS 

The pesticides (isocarbophos, omethoate, phorate, profenofos) were spiked in a buffer 

containing 300 mM NaCl, 50 mM KCl, 10 mM MgCl2, 50 mM Tris/HCl, pH 8.3. 5µl of 

Ag-(Ap+MH) was added to 400 µl of spiked buffer solution, stirred and incubated for 20 

minutes. After incubation, the mixture was centrifuged at 6000 × g for 1 min to allow the 

modified Ag dendrites and the captured pesticides [Ag-(Ap+MH)-P] to settle to the 

bottom. The supernatant was then removed and Ag-(Ap+MH)-P was quickly rinsed with 

double distilled water twice before being deposited onto a glass slide to dry. If testing the 

pure pesticide solution, this washing and drying step can be minimized. But if the 

detection is in a complex matrix, i.e. apple juice, a quick wash step is necessary to 

remove food components.   
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3.3.6 Raman instrumentation  

After drying, the samples were analyzed immediately using a DXR Raman Spectro-

microscope (Thermo Scientific, Madison, WI) with the following conditions: 10× 

confocal microscope objective (3 μm spot diameter and 5 cm−1 spectral resolution), 780 

nm excitation wavelength, 5 mW laser power and 50 μm slit width for 2 s integration 

time. OMNIC
TM

 software version 9.1 was used to control the Raman instrument. Eight 

spots were selected randomly for each sample within the range of 100-3300cm
-1

. 

 

3.3.7 Data analysis 

SERS spectral data were analyzed using TQ Analyst software (version 8.0) from 

Thermo Scientific. The SERS spectra obtained from the multiple spots from each sample 

were averaged and compared against other samples. Second derivative transformation 

and smoothing were applied at times in order to reduce spectral noise and to separate 

overlapping bands. The variances of spectral data between spots and samples were then 

assessed using principal component analysis (PCA). This method focuses a 

multidimensional data set to the most dominant features while removing random 

variation so that the principal components can be used to capture the variation between 

spectra. This discriminant analysis is thus useful in evaluating SERS spectra for variance 

within a class and between classes. Generally speaking, if two data clusters (classes) do 

not overlap, then it means they are significantly different at the p = 0.05 level. The limit 

of detection LOD was determined to be the lowest concentration of the data cluster that 
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can be separated from the negative control in the PCA plot. Partial least square (PLS), a 

multivariate analysis model, was also applied to see if there was a linear relationship 

between the obtained spectral peak intensities and the actual spiked concentrations. 

Figure 3.2 The schematic illustration of the development of the single aptamer-

based SERS method for the detection of four specific pesticides (isocarbophos, 

omethoate, phorate, profenofos) 

 

3.4 Results and Discussion 

3.4.1 Optimization of aptamer conjugation with Ag 

In order to maximize Ag-Ap conjugation, various concentrations of aptamers up to 

0.512 µM were initially added to 100 µl Ag in water as the solvent. The SERS spectra 

were then analyzed to pick out the concentration with the highest aptamer peak (i.e. 

highest amount of aptamers bound to Ag).[76] Interestingly, the aptamer peak intensities 

started to decrease after 0.128 µM (Fig. 9). This could be explained due to the 

intermolecular electrostatic repulsion from the negatively charged ssDNA molecules. In 
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order to minimize the intermolecular electrostatic repulsion, 1 M phosphate buffer (pH 7) 

was used as a medium to increase the ionic strength, thus electrostatically shielding the 

charged oligonucleotides.[77] This caused the aptamer peak intensities to increase 

significantly at higher aptamer concentrations up to 5 µM (Fig. 3.3), thus proving the 

need for a higher level of salts to increase surface coverage. Other medium such as Tris 

buffers, chloride and nitrate salts were also tested to evaluate their effectiveness in 

increasing aptamer optimization, but they brought other problems (i.e. clumping/reaction 

of Ag nanoparticles), and subsequent reduction in SERS peak intensities. Incubation time 

to optimize aptamer surface coverage was also evaluated (up to 24 hours) and it was 

found that after 4 hours, the coverage was optimized (Fig. 3.10). This result was 

consistent with other findings that showed thiol-derivative oligonucleotide having 

optimized surface coverage after 4 hours.[77,78] 
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Figure 3.3 Raman spectra showing the concentration optimization of thiolated 

aptamer (S2-55) on 100 µl Ag dendrites in 1M phosphate buffer, pH 7. As the 

thiolated aptamer concentration increased, the aptamer peaks, notably around 1330 

cm
-1

, increased up to 5 µM. At the same time, the Raman intensities of other 

competing molecules in the buffer decreased. At 5 µM, the buffer peak 970 cm
-1

 is 

no longer reflected on the Raman spectra, suggesting complete displacement by the 

thiolated aptamer. 

 

3.4.2 Optimization of MH concentration and incubation time with Ag-Ap 

Since aptamers are relatively large molecules, maximizing its surface coverage on Ag 

does not ensure elimination of non-specific binding to Ag because steric hindrance can 

occur. The small, empty spaces between the aptamers can become non-specific binding 

sites for smaller molecules (e.g. pesticides, salts, food matrix). Furthermore, although  

aptamers can bind specifically to Ag with the thiolated 5’ end, they can also  interact non-
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specifically with the N1 groups present on the A, T, G, C ring functional groups of the 

aptamer,[77,79] making them possibly incapable of capturing their target agents since 

their 3D conformation will be unable to change. 

 

 In order to eliminate non-specific binding and to ensure that the aptamer is free to 

change its 3D conformation during target capture, a small blocker molecule (i.e. 6-

mercaptohexanol) was introduced.[80] Since this molecule is relatively very small, it 

does not interfere with the 3D conformational change that occurs when the aptamer is 

capturing its target. In addition, its thiol end has a strong binding affinity to Ag, thus 

enabling displacement of any non-specific binding of aptamers or other molecules (e.g. 

TCEP) that might be present in the Ag-Ap complex. Inadvertently, studies have shown 

that high concentrations and longer incubation times of MH can even displace thiolated 

oligonucleotides,[80,81] thus it was essential to optimize the time/concentration of added 

MH to fully cover the empty surface area and to displace non-specific binding, but at the 

same time, to minimize displacement of the thiolated aptamer. Varying concentrations (0-

1 mM) of MH and varying incubation times (0-1 h) were tested and their Raman spectra 

were analyzed to monitor the appearance of MH peaks and aptamer peak intensities. As 

the MH concentration and incubation time increased, the Raman peaks attributed to MH 

increased, but at the same time, the peaks attributed to the aptamer decreased, albeit at a 

lower extent. The optimized time/concentration was determined to be 40 µM for 1 h 

because the Raman peaks from MH were visible while the aptamer peak intensities did 
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not drop drastically (Fig. 3.4). This observation was in line with another study that 

showed that when MH was introduced to thiolated oligonucleotides conjugated to gold 

nanoparticles, the oligonucleotides started to become displaced after using 10 µM of MH 

for 10 mins and a significant displacement was observed when 100 µM MH was 

incubated for 10 mins.[80] 

 

Figure 3.4 Raman spectra of Ag-Ap and Ag-(Ap+MH). 40 µM MCH was incubated 

for 1 h with Ag-Ap and analyzed to produce the Raman spectra for Ag-(Ap+MH). 

The Raman peaks at 680 and 1080 cm
-1

 are both attributed to the capture of MH. 

The decrease in aptamer peaks (e.g. 1330 cm
-1

) is inevitable due to the strong 

binding dissociation nature of MH 

 

One visual test to see if the nanoparticles had been fully covered with the aptamer and 

MH was by adding it into the capture buffer solution. When bare Ag dendrites were 
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added to the buffer, they aggregated immediately. When Ag-Ap was added to the buffer, 

it remained dispersed for a few minutes, but slowly started to aggregate as time went on. 

However, when the fully modified Ag dendrites [Ag-(Ap+MH)] was added to the buffer, 

it remained dispersed for as long as 20 min without any aggregation, thus proving that the 

Ag dendrites had been fully covered by the aptamer and MH (data not shown). 

3.4.3 Detection of multiple pesticides using Ag-(Ap+MH) 

The chemical structures of the four target pesticides are shown in Fig. 3.5A. 

 Pesticides at varying concentrations (0-0.5 mM) individually or as a mixture were 

initially spiked in water before Ag-(Ap+MH) was added. However, when the Raman 

spectra were measured, there was no noticeable capture of any of the pesticides. 

Furthermore, among the 8 replicates tested for each sample, the aptamer peaks were very 

inconsistent (data not shown). This could be due to the instability of the aptamers in a 

medium that does not have cations, as they are being introduced in the buffers used to 

select the aptamers.[71] In addition, some other aptamer papers have reported the 

dependency of cations to form stable 3D conformations to ensure the capture of their 

target agents.[82,83] Therefore, the aptamer selection buffer was then employed as a 

capture buffer. 

 

 Raman spectra show a huge difference in pesticide capture peaks when the capture 

buffer was used. As shown in Fig. 3.5B, each pesticide capture produces distinct peaks at 
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different Raman shifts, signifying the capture of the target pesticides. Fig. 5B highlights 

the most noticeable difference between each pesticide and the control. Their full spectra 

are shown in the supporting information (Fig. 11). 

 

Figure 3.5 (A) Chemical structure of the four pesticides that is specific to the 

aptamer being used. (B) Second derivative transformation of the Raman spectra of 

an isocarbophos capture peak and the control between 1220-1170 cm
-1

; a profenofos 

capture peak and the control between 1110-1060 cm
-1

; a phorate capture peak and 

the control between 545-510 cm
-1

; an omethoate capture peak and the control 
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between 425-375 cm
-1

. The control was the modified Ag dendrites [Ag-(Ap+MH)]. 

The spiked concentration for the four pesticides was 0.5 mM. All samples were 

conducted in a capture buffer with a 20 min incubation period. (C) A second 

derivative Raman spectra reflecting the capture of all four pesticides (isocarbophos, 

profenofos, phorate, omethoate) by Ag-(Ap+MH). 125 µM of each pesticide was 

added. Distinct Raman peaks were produced at different Raman shifts that 

correlated with each individual pesticide capture peak. 

 

 Because each pesticide produces distinct Raman peaks, the type of pesticides being 

captured can be discriminated based on the peak intensities at various Raman shifts. 

Furthermore, by looking at the principal component analysis score, the whole spectrum 

can be analyzed to see if these peaks are significantly different from each other. In this 

case, all four pesticides that are specific to this aptamer produced significantly different 

Raman spectra peaks from each other and the control (i.e. no pesticide) (Fig. 3.6). The 

four pesticides were also added together as a mixture and measured to find out if they 

could all be detected at the same time (Fig. 3.5C). By looking at each distinct Raman 

peak from each pesticide capture, it was found to be correlated with a Raman peak that 

appeared in the mixture. Thus, this method provides a method that can identify four 

specific pesticides with one sample. On the other hand, when acetamiprid, a pesticide not 

specific to this apatamer was introduced, no visible pesticide capture peaks were seen 

(data not shown), thus validating the aptamer’s high specificity.[71] The great advantage 

of this technique is not only that it can measure multiple target analytes, but it can also 

simultaneously validate that the captured molecules are the target analytes based on their 

specific signature peaks at certain Raman peak shifts.   This unique "self-validation" 

method ensures great accuracy of this technique, superior to other sensor techniques that 
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are based on color, fluorescence or electrochemical signals and begins to satisfy many of 

the requirements of “QuChERS”. 

 

Figure 3.6 PCA plot comparing the second derivative Raman spectra of each 

pesticide (0.5 mM) captured by modified Ag dendrites [Ag-(Ap+MH)] as well as the 

control. This result shows significant differences between each pesticide capture, 

proving the detection and discrimination of the four pesticides 

 

3.4.4 Determination of the limit of detection and quantitative capability of 

this method 

Fig. 3.7A shows the relationship between the phorate capture peaks and the phorate 

concentration. The limit of detection (LOD) was determined to be 0.4 µM (0.1 ppm) by 

PCA (Fig. 7B). The LODs of other pesticides were also determined and are shown in Fig. 

12. Compared with the LOD of phorate, the LODs of iscocarbophos (3.5 µM = 1 ppm), 

omethoate (24 µM = 5 ppm) and profenofos (14 µM = 5 ppm) were much higher, 

although the reported binding dissociation constants were similar for these four 

pesticides. One hypothesis is that the phorate molecules after being captured by the 
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aptamers were positioned in a distance closer to the surface of Ag-(Ap+MH) compared 

with other molecules or the interaction between phorate and aptamer resulted in a specific 

charge transfer mechanism that enhanced the Raman scattering of phorate. More studies 

are needed to understand this phenomenon.  Nevertheless, the LODs mainly depend on 

the binding dissociation constants of the aptamer. Aptamers that are specific to smaller 

molecules tend to have a lower binding affinity due to the limited binding sites available 

for the aptamer to bind to the molecule.[84] Thus, this method can be further improved 

by selecting and applying an aptamer of higher binding dissociation constants.   

 

 The quantitative capability of this method to phorate was also evaluated. The partial 

least square line depicting the relationship between the calculated phorate concentration 

based on the phorate capture peak and the actual spiked phorate concentration added 

shows a linear relationship within the range of 0-3.8 µM (10 ppm) with a root mean 

square error coefficient of 0.9628 (Fig. 3.13). However, not all pesticides had such a 

linear response. It was found, at high concentrations (i.e. 0.5 mM), the captured 

omethoate produced the most profound peak intensities among the four pesticides. 

However, at lower concentrations (i.e. 4.8-48 µM), the captured omethoate produced 

little enhanced peaks compared to the other pesticides, suggesting that Raman peak 

intensities are not linearly correlated with omethoate concentration. Little is known about 

this relationship and more studies will be needed to understand the molecular mechanism 

behind this phenomenon. 
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Figure 3.7 (A) Second derivative Raman spectra of the phorate capture peak 

between 645-600 cm
-1

 when 0, 0.04 µM, 0.4 µM, 4 µM and 40 µM phorate were 

exposed to the modified Ag dendrites [Ag-(Ap+MH)]. This result shows an increase 

in peak intensity around 625 cm
-1

 as phorate concentration increases; (B) PCA plot 

for Raman spectra of phorate at 0 µM-Control (○), 0.04 µM (+), 0.4 µM (△) , 4 µM 

(□) and 40 µM (●). A significant difference was seen beginning at 0.4 µM. 

 

3.4.5 Method validation in apple juice to ensure elimination of non-specific 

binding and applicability in food matrix 

When Ag was exposed to liquid foods (e.g. apple juice), nonspecific binding 

interaction occurred rampantly, causing multiple Raman peaks to form that easily 

drowned the target agent peaks. In order to validate the elimination of non-specific 

binding, the prepared complex [Ag-(Ap+MH)] was incubated with apple juice by adding 

100 µL of apple juice into 900 µL of optimized Ag complex in buffer. The spectrum in 

apple juice showed no significant changes in peaks compared with the one in buffer (Fig. 

3.8), proving that non-specific binding was eliminated. When phorate was added to apple 

juice, phorate intense capture peaks appeared, signifying the capture of phorate in apple 
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juice. It is worthy to note, however, that an optimized dilution of the apple juice was 

needed to produce the most intense phorate capture peaks (data not shown). At higher 

apple juice concentrations, the food components might alter the optimized condition for 

the Ag complex to function. Nevertheless, this method can be easily applied to other food 

and beverage samples for more effective capture and analysis. 

 

Figure 3.8 Raman spectra of modified Ag dendrites [Ag-(Ap+MH)] mixed with 

(from top to bottom) capture buffer, apple juice (diluted 1:10) (AJ), and phorate 

(Ph) (0.5 mM) spiked in AJ. Spectral results show no differences between Ag-

(Ap+MH) exposed to buffer and AJ, suggesting nonspecific binding has been 

eliminated. However, when Ag-(Ap+MH) was exposed to Ph & AJ, huge spectral 

change was observed, proving the capture of phorate 
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3.5 Conclusion 

In summary, a single aptamer based SERS method for detecting multiple specific 

pesticides in complex liquid food (i.e. apple juice) was established. The elimination of 

nonspecific binding was achieved by optimization of aptamer conjugation and with the 

blocker molecule MH to fill the empty spaces. The detection, discrimination, and 

validation of multiple pesticides using aptamer-based SERS method were achieved based 

on their distinct Raman fingerprint peaks. Furthermore, simultaneous detection of 

multiple pesticides was shown using the SERS spectra obtained. Total analytical time for 

measuring six samples was 40 min. The developed aptamer SERS method shows great 

potential to analyze pesticide residues in apple juice. Further experiment is needed to 

explore the application in other food matrices.  
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Supplementary Figures 

 

Figure 3.9 Raman spectra of various concentrations of thiolated aptamer (S2-55) 

mixed with Ag dendrites in double distilled water. The largest peak intensities were 

produced at the smallest concentration (0.128 µM). As the thiolated aptamer 

concentration introduced was increased, the Raman peaks kept falling, suggesting a 

mechanism that was making less aptamer have access to the surface of the Ag 

dendrites 
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Figure 3.10 Raman spectra of silver-aptamer complex (Ag-Ap) with various 

incubation times to assess the binding time optimization of thiolated aptamer (5 µM) 

onto Ag. The aptamer capture peaks, such as the one in 1330 cm
-1

 was maximized 

after four hours incubation, which was the incubation time used for further analysis 
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Figure 3.11 Second derivative Raman spectra of modified nanoparticles [Ag-

(Ap+MH)] with iscarbophos, omethoate, phorate and profenofos respectively and 

the four pesticides mixed together at even concentrations. Total pesticide 

concentration for each sample was 0.5 mM. The distinct Raman peaks produced by 

each pesticide at different Raman shifts allows for simultaneous detection of the 

four specific pesticide 
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Figure 3.12  (a) Second derivative Raman spectra and (b) PCA plot of isocarbophos 

between 530-480 cm
-1

 for 0 µM, 3.4 µM (1 ppm) and 17 µM (5 ppm); (c) Second 

derivative Raman spectra and (d) PCA plot of omethoate between 630-610 cm
-1

 for 

0 µM, 4.8 µM (1 ppm), 24 µM (5 ppm) and 48 µM (10 ppm); (e) Second derivative 

Raman spectra and (f) PCA plot of profenofos between 1490-1460 cm
-1

 for 0 µM, 2.7 

µM (1 ppm) , 14 µM (5ppm) and 27 µM (10 ppm). A gradual increase in Raman 

peak intensities was seen when the spiked pesticide was introduced at increasing 

concentrations. Significant difference against the control (0 µM) was seen at 3.4 µM 

(1 ppm) for isocarbophos, 24 µM (5 ppm) for omethoate, and 14 µM (5 ppm) for 

profenofos 
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Figure 3.13 Partial Least Square analysis (PLS) of phorate spiked at 0 µM, 0.04 µM 

(0.01 ppm), 0.4 µM (0.1 ppm), 2 µM (0.5 ppm), 4 µM (1 ppm). This result shows a 

linear relationship between the spectral peak intensities (i.e. calculated value) and 

the actual phorate concentration.  Quantitative analysis of phorate was possible 

within this range. The root mean square error calibration (RMSEC) was 0.101 and 

the correlation coefficient was 0.9628 
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CHAPTER 4 

LABEL-FREE, APTAMER BASED SERS DETECTION OF 

SALMONELLA ENTERITIDIS AND LISTERIA MONOCYTOGENES 

FOR FOOD SAFETY APPLICATIONS3 
 

4.1 Abstract 

The overall objective of this study was to develop an aptamer-based SERS method that 

will improve the specificity of capture to salmonella enteritidis and listeria 

monocytogenes for detection in food matrix. In order to provide the best 

separation/specificity and SERS detection sensitivity, three types of fabricated SERS 

substrates, namely gold nanoparticles coated magnetic nanoparticles (Fe3O4@AuNPs), 

gold coated magnetic nanoparticles (Fe3O4@Au), and silver (Ag) dendrites were 

evaluated. Results show that although all three substrates can be separated from solution 

to detect bacteria, the aptamer-conjugated Ag dendrite was the only substrate having 

consistently, reproducible Raman intensities, and thus it was chosen as the SERS 

substrate for subsequent application studies. By conjugating onto Ag dendrites, aptamers 

were able to selectively capture their respective target bacteria, and increase aptamer 

related Raman peaks. The limit of detection for both salmonella enteritidis and listeria 

                                                

3 The contents of this study have not yet been submitted for peer-review and is under preaparation: 

Pang, Shintaro, Panxue Wang, Juhong Chen and Lili He. 2016. “Label-free, aptamer based SERS detection 

of salmonella enteritidis and listeria monocytogenes for food safety applications.” 
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monocytogenes were 107cfu/mL in milk respectively. This method can be a promising 

tool to detect pathogens in real food matrix if combined with preenrichment of samples or 

by optimizing detection sensitivity. 

 

4.2 Introduction 

Salmonella enteritidis and listeria monocytogenes are two of the most common 

pathogens that cause foodborne illnesses [85]. In order to prevent these outbreaks, food 

manufacturers have the responsibility to monitor the microbial safety of their products to 

meet safety specifications. One of the challenges of current monitoring (detection) 

techniques is that they require lengthy times, typically over 24 h. This can lead to huge 

financial losses for the company, especially if microbial contamination is discovered after 

the product had been dispatched to market and a food recall has to be initiated. 

 

To respond to this time sensitivity issue, many rapid detection methods have begun to 

emerge. These emerging techniques typically use sensors (e.g. colorimetric, 

electrochemical) that give simple readouts combined with biological agents (e.g. 

antibodies, enzymes, DNA) that selectively capture their target analyte [86,87]. To 

further improve the detection sensitivity of these assays, reporter molecules (e.g. 

fluorescein, dyes, MBA) are tagged to the target capture agent [88–90]. 
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Surface enhanced Raman spectroscopy is an analytical tool that combines 

nanotechnology and Raman spectroscopy, and can be used to detect and characterize 

trace levels of analyte, including bacteria. Although Raman signals are relatively weak, 

the placement of nanoscale roughened noble metal nanosubstrates on the sample can 

enhance these signals by at least 10
4
 times due to localized surface plasmon resonance 

and charge transfer mechanisms [3]. Hence, the main advantage of this detection method 

is that each target component which is in close proximity (< 10 nm) to the SERS 

substrate produces a strong, unique molecular fingerprint, making it much less likely for 

false positive or negative result to happen when compared to other emerging techniques. 

 

Aptamers are an increasingly popular group of biosynthesized capture agents that can 

be fabricated easily to target a range of analytes, including bacteria. By definition, they 

are comprised of oligonucleotides (i.e. single-stranded DNA or RNA) and are pre-

selected in-vitro based on their high binding affinity to their targets . These molecules can 

be easily modified chemically to attach probes such as thiol groups in order to conjugate 

it onto solid supports, and can be synthesized at high purity with low cost. When an 

aptamer is conjugated onto the SERS substrate, the method not only becomes more 

selective, but it can provide specific information of the chemical binding interaction 

between the target and capture agent. These characteristics make aptamer a promising 

capture agent, and have already become widely used in many applications such as 

diagnostic tools and drug discovery. 
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In this study, a label-free aptamer-based SERS technique was developed to detect two 

foodborne pathogens, salmonella enteritidis and listeria monocytogenes in milk. 

Recently, a study was reported based on an aptamer-based SERS technique using gold-

coated magnetic nanoparticles as SERS substrates for bacterial detection [90]. Reporter 

molecules (i.e. Mercaptobenzoic acid and 5,5′-Dithiobis(2-nitrobenzoic acid)) were used 

as signal probes to enhance Raman peak intensity. It is worthy to note, however, that 

since the detection was solely based on the Raman peaks associated with the reporter 

molecule and not from the Raman fingerprint specific to the target bacteria, it cannot be 

used as a “self-validation” tool [91]. In other words, this method is unable to verify the 

true existence of the target analyte, which could have been done by comparing it against 

Raman spectral assignment associated with the target. In order to take advantage of the 

self-validation potential of aptamer based SERS, we attempted to perform aptamer-based 

SERS without the use of reporter molecules. A prominent focus of this study was to 

select the right kind of SERS substrate to improve the selectivity and specificity of the 

target pathogenic bacteria in food matrix. While the limit of detection of this assay was 

relatively high at10
7 
cfu/mL for both target bacteria, this method was able to discriminate 

different bacteria based on the apatamer specificity, and drastically reduce the 

interference of food matrix, thus making this a potential way of detecting bacteria as a 

rapid detection method. 
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4.3 Materials and Method 

4.3.1 Materials 

All chemical reagents were purchased from Fisher scientific unless otherwise noted. 

The single stranded DNA aptamer sequences that were specific to capturing salmonella 

enteritidis and listeria monocytogenes were based on published literature [92,93], and 

purchased through Eurofins Scientific (Louisville, KY).  

 

4.3.2 Nanoparticle Preparation 

Different sizes of gold nanoparticles were synthesized using a standard procedure as 

outlined in published literature [94,95]. The nanoparticles were then coated onto ferrous 

oxide magnetic nanoparticles using another procedure as published in literature [96,97]. 

Silver dendrites were synthesized according previously published protocol [28,44].  

 

4.3.3 Aptamer preparation 

All aptamer sequences were obtained from published references with high binding 

dissociation constants to their respective targets [92,93]. The DNA sequences were then 

pre-ordered as salt-free, powder form, with a thiol-modification on the 5’ end. The 

aptamer sequence selected for salmonella enteritidis was 5’- CTC CTC TGA CTG TAA 

CCA CGC ACA AAG GCT CGC GCA TGG TGT GTA CGT TCT TAC AGA GGT -3’ 
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and the aptamer sequence for listeria monocytogenes was 5’-TAC TAT CGC GGA GAC 

AGC GCG GGA GGC ACC GGG GA -3’. 

  

 The aptamer stock solution was prepared by adding appropriate amounts of 1x Tris-

EDTA buffer, pH 7.4 to make a 100 µM solution. Then, the thiol group was activated by 

adding 100x TCEP (i.e. reducing agent that breaks dithiol bonds) and incubated for 1 h 

with stirring. The prepared aptamer solution was then immediately added to nanoparticles 

in order to conjugate the aptamer.  

 

4.3.4 Bacteria Preparation 

All bacteria were obtained either from ATCC or from a microbiological lab at Cornell 

University. For this study, Salmonella enterica subsp enterica BAA1045 (SE1045) and 

Listeria monocytogenes  (LM18) were used. E. Coli 0157:H7 (non-pathogenic strain) was 

also used for the specificity study. Initial frozen cultures were revived in tryptone soy 

agar and prepared fresh by transferring a single colony into a 10 mL soy broth at 37 ℃.  

This media was then incubated for 12 h, and centrifuged at 5000 Χ g for 5 min in order to 

collect the cells. The bacteria cells were washed three times with Dulbeco’s phosphate 

buffer saline (DPBS) and resuspended in the same buffer. 
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4.3.5 SERS measurements 

A DXR Raman Spectro-microscope (Thermo Scientific, Madison, WI) was used to 

analyze each sample spot. For silver dendrites, a 10× confocal microscope objective was 

used whereas 50× confocal microscope objective was used for gold nanoparticles for 

optimized enhancement (3 μm spot diameter and 5 cm−1 spectral resolution). 780 nm 

excitation wavelength was used with 5 mW laser power and 50 μm slit width at 2 s 

integration time. The OMNIC
TM

 software version 9.1 was used for this experiment with 

ten spots selected randomly for each sample within the range of 400-3300cm
-1

. 

 

4.3.6 Data analysis 

SERS spectral data was analyzed using TQ Analyst software (version 8.0). The SERS 

spectra obtained from the multiple spots from each sample was averaged and then 

analyzed. Depending on the sharpness of the overall peaks, second derivative 

transformation and smoothing were applied at times in order to reduce spectral noise and 

to separate overlapping bands. Principal component analysis (PCA) was used to compare 

results against different bacteria/aptamer capture and concentrations. The accuracy and 

precision of the SERS data was compared using PCA as well. Generally speaking, if two 

data clusters (classes) do not overlap, then it means they are significantly different at the 

p = 0.05 level. The limit of detection LOD was determined to be the lowest concentration 

of the data cluster that can be separated from the negative control in the PCA plot. 
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4.3.7 Preparation of aptamer-conjugated SERS substrate 

100 µL of magnetic nanoparticles solutions, gold nanoparticles coated magnetic 

nanoparticles (Fe2O3@AuNPs) or gold coated magnetic nanoparticles (Fe2O3@Au) (1 

mg/mL) were expelled into a 0.6 ml centrifuge tube and a neodymium magnet (CMS 

Magnetics, Garland, TX) was used to gather the nanoparticles. 90 µL of supernatant was 

discarded and replaced with same volume of aptamer solution at varying concentrations 

(0, 1, 5, 10 µM). Then, the mixture was incubated overnight. After incubation, the 

magnet was placed next to the sample of nanoparticles to remove 90 µL of clear solution. 

The nanoparticles were then washed three times with water. Lastly, 1 mL of 40 µM 6-

mercaptohexanol (MCH) was added and incubated for 1 hr to block any remaining 

uncovered surface, then 1 µL of nanoparticles were deposited on gold slide for Raman 

analysis to quantify aptamer coverage. 

 

For Ag dendrites, 10 µL were deposited onto 1 mL of aptamer solution at varied 

concentrations (0, 1, 5, 10 µM) and incubated overnight over a nutating mixer, after 

which the solution was centrifuged at 2000 G for 30 seconds to separate the aptamer-Ag 

substrate from the supernatant. The substrate was then washed 3X with water, then  1 mL 

of 40 µM 6-mercaptohexanol (MCH) was added and incubated for 1 hr to block any 

remaining uncovered surface. Lastly, 1 uL of sample was deposited onto a gold slide for 

Raman analysis to quantify aptamer coverage. 
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4.4 Results and Discussion 

4.4.1 Selection of appropriate aptamer-SERS substrate 

 The main objective of this study was to provide a selective detection method that 

could detect specific bacteria in a food matrix. To begin this study, three different 

nanoparticles were synthesized (Fig. 4.1). First, Ag dendrites was selected because we 

had previously discovered a strong SERS enhancement and reproducibility with its use in 

detecting other targets in both simple and complex food matrix[44,74,98]. Another 

rationale behind using this was that centrifugation could be used to separate the Ag 

dendrites from most food matrix. Gold coated magnetic nanoparticles (Fe2O3@Au) were 

selected as an alternative substrate because a magnet could be used to separate the 

magnetic nanoparticles from other non-specific materials not attached to the 

nanoparticles.  

 

Figure 4.1 SERS substrates tested in this study: (a) Ag dendrites; (b) Au coated 

magnetic NPs; (c) Au nanoparticles-coated magnetic NPs. 
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Furthermore, the gold coating would allow for SERS enhancement [99]. Another type 

of magnetic nanoparticles (i.e. Fe2O3@AuNPs), were used to increase the surface area 

coverage, thus potentially increasing the aptamer coverage. 

 

After the preparation of the three SERS substrates with conjugation to a salmonella 

specific aptamer, the target bacteria were inoculated for 30 min at 10
7
 cfu/mL. As we can 

see from Fig. 4.2, all three SERS substrates showed a similar trend, which is, the overall 

Raman peak intensity from the aptamer-conjugated SERS substrates increased. This 

suggested that all three SERS substrates were sensitive enough to detect the aptamer-

specific target bacteria at high concentrations. 

 

However, upon looking closely at the reproducibility of the generated Raman spectra, 

we saw huge differences between the different SERS substrate. To begin, Fe3O4@AuNPs 

produced a darker red color in the supernatant after adding higher concentrations of 

aptamer with magnetic separation. This suggests that the AuNPs were released from the 

Fe3O4 core, likely because the binding affinity of thiolated end of the aptamer to the 

AuNPs was much stronger than Fe3O4 core’s amine binding to AuNPs, thus displacing 

this bond. Consequently, the SERS results show discrepancies in spectral peaks and peak 

intensities, which make it hard to obtain consistent results.  
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Figure 4.2 SERS spectra of salmonella enteritidis capture (10
7
-10

8 
 cfu/mL) using 

various aptamer-functionalized SERS substrates. Their corresponding principal 

component analysis (PCA) plot is shown on the right where (○) symbolizes the 

substrate control and (+) symbolizes the substrate + salmonella enteritidis 
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For the Fe3O4@Au, there was no displacement of AuNPs from the Fe3O4 core, 

however, the peak intensities of the aptamer conjugated Fe3O4@Au varied widely, 

possibly because the aggregation of these nanoparticles between each other was not very 

consistent and/or synthesis of Au coating was not even. On the other, Ag dendrites were 

able to reproduce consistent Raman peak intensities (Fig. 4.3). Hence, based on the 

sensitivity and reproducibility of SERS, Ag dendrites were chosen as the most suitable 

SERS substrate. 

 

Figure 4.3 SERS spectra aptamer modified Ag dendrites at 10 µM aptamer and the 

principal component analysis plot of aptamer modified Ag dendrites with various 

aptamer concentration coverage. 
 

4.4.2 Influence of Food Matrix on aptamer-conjugated Ag dendrites 

One of the most challenging tasks of applying analytical techniques for bacteria 

detection is the interference of food matrix. Often, a laborious extraction method is used 

to purify the sample beforehand, which can take up valuable time and resources. In this 

study, our prepared SERS substrates were capable of removing noise signals coming 
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from food components. To do this, the first approach was to figure out a way to separate 

Ag dendrites physically from the food matrix. Since centrifugation can cause 

sedimentation of large molecules together with the Ag dendrites, a double sided tape was 

placed on the cap of a 2 mL microcentrifuge tube followed by deposition of Ag dendrites 

onto it. Hence, after mixing the sample solution with Ag dendrites in the tube, a short 

centrifugation (i.e. 2000 g for 3 sec) was sufficient to physically separate the larger food 

components from Ag dendrites (Fig 4.4). 

 

Figure 4.4 Two methods were proposed for using Ag dendrites, one that solely 

depends on centrifugation while the other largely depended on the use of a double 

sided tape to stick the Ag dendrites onto the cap of a microcentrifuge tube. 

 

The optimal coverage of aptamer and the addition of blocker molecule (i.e. 6-

mercaptohexanol) helped to remove influence of food components that might potentially 

bind to Ag dendrites (Fig 4.5). When 1 % fat milk was added to Ag dendrites, many 

sharp, Raman peaks were produced. However, when a similar milk sample was added to 

the aptamer-modified Ag dendrites, hardly any new peaks appeared. This suggests that 
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the aptamer coverage and MCH successfully eliminated the non-specific binding of food 

component molecules onto the SERS substrate. 

 

Figure 4.5 SERS spectra and principal component analysis (PCA) plots showing the 

influence of 1% fat milk on Ag dendrites and aptamer-modified Ag dendrites. 

 

4.4.3 Specificity of aptamer-modified SERS substrate 

In order to illustrate the specificity of the capture of target bacteria using the aptamer-

SERS method, two different aptamers were tested. First, the salmonella specific aptamer 

was used and compared against a negative control and a different bacterium (i.e. listeria). 

As we can see from Fig 4.6, there was a statistical difference in the Raman spectra, or to 

be more precise, an increase in aptamer peak intensity around 1080 and 1580 cm
-1

. There 

was a slight decrease in the aptamer peak intensity at both Raman shifts for listeria, 

which could be due to nonspecific layered coverage. This result is similar to adding food 

components (non-specific components) onto the SERS substrate. The increase in Raman 

peak intensity when salmonella was present could be due to a 3-dimensional 
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conformational change of the aptamer due to capture of its target, which may have caused 

certain parts of the aptamer to become closer to the Ag dendrites (< 10 nm). 

 

Figure 4.6 Specificity of salmonella aptamer and listeria aptamer based on the 

signals given by SERS analysis. 
 

In a similar fashion, when a listeria specific aptamer was used, there was an increase in 

aptamer Raman peaks when listeria was added whereas a slight drop in Raman peaks 

when other bacteria (i.e. Salmonella and E. Coli) was added. These results suggest the 

high specificity of aptamer to capture their specific target bacteria. 
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4.4.4 Detection Limit of the aptamer-based SERS method 

Fig. 4.7 shows the SERS spectra of salmonella enteritidis at different concentrations 

using aptamer modified Ag dendrites. Based on the second derivative SERS spectra and 

the 3-D principal component analysis graph, the limit of detection was found to be 10
7
 

cfu/mL in 1% milk which was diluted by one-tenth. Compared to other established 

bacteria detection methods, this may be considered high. This could be due to the large 

size of the bacteria (5-10 µm) and the far distance of it from the Ag nanoparticles, thus 

making SERS enhancement weak. 

 

Figure 4.7 The limit of detection of aptamer based SERS on the detection of bacteria 

(i.e. Salmonella enteritidis). 
 

We also attempted to lower the detection limit using Raman mapping to see if there 

were any spots that had significantly higher Raman peak intensity changes (Fig 11). 

Unfortunately, there were no significant differences in Raman peak intensities at 10
3 
– 

10
6 
cfu/mL. Thus, this method can only be used to detect higher concentrations of 

bacteria. 
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4.5 Conclusions 

The label free, aptamer-based SERS method was successfully developed to detect 

bacteria in food matrix. The Raman spectral profile had little influence from food matrix 

and only lowered Raman peak intensities. On the other hand, the addition of target 

bacteria increased the aptamer related Raman peaks, which can be seen by both the 

spectra and principal component analysis. More work should be conducted to lower the 

detection limit of this technique in order to use it as a sensitive detection tool. However, 

overall, this method serves as a model for the rapid detection of bacteria in complex 

solutions such as milk using aptamer-based SERS. 
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Supplementary Figures 

 

Figure 4.8 Irregularities in reproducibility seen in both gold nanoparticles coated 

magnetic nanoparticles (above) and gold coated magnetic nanoparticles below. 
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Figure 4.9 Raman map of salmonella enteritides at different concentrations using 

aptamer modified Ag dendrites. 
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CHAPTER 5 

UNDERSTANDING THE COMPETITIVE INTERACTIONS IN THE 

APTAMER−GOLD NANOPARTICLE BASED COLORIMETRIC 

ASSAYS USING SURFACE ENHANCED RAMAN SPECTROSCOPY 

(SERS)4 
 

5.1 Abstract 

Aptamer−gold nanoparticles (AuNPs) based colorimetric assays have become 

increasingly popular as a viable rapid detection method, but the molecular interactions 

governing the mechanism and successful interpretation of the color changes has not been 

explored well. The objective of this study was to evaluate the competitive interactions 

that occur in this detection assay at the molecular level by employing surface enhanced 

Raman spectroscopy (SERS). The SERS signals of molecules in close proximity to 

AuNPs were exploited to give information on AuNPs surface coverage as well as ssDNA 

aptamer conformational changes during target capture. Two antibiotics, ampicillin and 

kanamycin, and their respective aptamers, were used in this study. Results indicate the 

reason for the lack of AuNPs aggregation with ampicillin could be due to a stronger 

binding affinity of AuNPs to the ampicillin than to the aptamer. Kanamycin, on the other 

                                                

4 Pang, Shintaro, and Lili He. 2016. “Understanding the Competitive Interactions in the 

Aptamer−Gold Nanoparticle Based Colorimetric Assays Using Surface Enhanced Raman Spectroscopy 

(SERS).” Anal. Methods (January 20). doi:10.1039/C5AY03158C. 
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hand, induced AuNPs aggregation to produce color change and the SERS data indicate a 

stronger binding affinity of kanamycin to the aptamer compared to the AuNPs as well as 

aptamer conformational changes. The use of SERS can be a potential tool to rapidly 

screen and validate the aptamer and target interaction for application of aptamer−gold 

nanoparticles (AuNPs) based colorimetric assays. 

 

5.2 Introduction 

Gold nanoparticles (AuNPs) are popular detection probes because they are able to 

produce a range of colors, caused by the shift of surface plasmon resonance (SPR) upon 

aggregation.[100] Target induced AuNPs aggregation has been widely applied in a 

variety of AuNPs based colorimetric assays for rapid sensing of ions (e.g. Hg
2+

), small 

molecules (e.g. cocaine), complex molecules (e.g. proteins) and even cells.[101–104] 

One of the main advantages of using this kind of assay is the ability to detect changes 

with the naked eye. In addition, if an accurate and quantitative result is desired, a 

relatively inexpensive and commonly available spectrophotometer can be used to analyze 

a range of absorbance wavelength with precise optical density values. On the other hand, 

a major limitation hindering the application of many modes of AuNPs based colorimetric 

assays is the tendency for nonspecific interactions that can significantly alter the 

aggregation status of AuNPs. Indeed, a considerable number of papers have been 

dedicated to overcoming the nonspecific interactions, or biofouling, of AuNPs in the 

colorimetric detection assays.[105,106] 
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In order to reduce the non-specificity of AuNPs based colorimetric assays, aptamers 

have been employed as target specific bio-capture agents. Aptamers are single stranded 

oligonucleotides that are artificially synthesized to capture its target. They have many 

benefits as a target capture agent due to the ease in reproducibility for synthesis, 

versatility in labelling, immobilizing, signaling and regenerating.[68,69] Furthermore, 

recent technological advancements have made it faster and cheaper to create new 

aptamers.[107,108] However, the most compelling reason for choosing aptamers as 

opposed to other target capture agents (e.g. antibodies) is its ability to capture virtually 

any target, including small molecules (e.g. toxic chemicals).[95,103,109–117] One of the 

common strategies for applying ssDNA in the AuNPs based assay is to adsorb ssDNA 

onto AuNPs surfaces to stabilize the AuNPs. The flexibility of the ssDNA aptamer to 

partially uncoil its bases allows the negative charge of the phosphate backbone to be 

sufficiently distant so that van der Waals forces between the bases and the gold is strong 

enough to cause the ssDNA to stick to the gold.[118]  When a target is later introduced 

into the mixture, the aptamer will bind to the target, which can cause the aptamer to de-

attach from AuNPs due to conformational change in its tertiary structure. Hence, the 

AuNPs becomes prone to aggregation by neutralization of the surface charge with salts 

added later. 

 

 Despite the numerous benefits of using aptamers in a detection method such as the 

AuNPs based colorimetric assay, there are several limitations that can hinder the 
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successful implementation of this method. For example, aptamers are often selected in a 

buffer environment with a defined concentration of salts and pH, and thus, work 

optimally in those conditions, which happen to be critical factors contributing to the 

aggregation of AuNPs.[95] Hence, premature AuNPs aggregation may occur if sample 

solution matrix environment can significantly destabilize the AuNPs. Another challenge 

is the variable affinity of different aptamer sequences to AuNPs. For example, dT was 

found to have a much lower binding affinity to AuNPs than dG, dC, and dA., hence an 

aptamer sequence with more dTs may have lower binding affinity to AuNPs.[119] The 

same study also showed the length of oligonucleotides was able to significantly affect the 

stability of AuNPs. Lastly, there is still a possibility of other molecular interactions in the 

colorimetric assay that can significantly alter the results 

 

In this study, we aim to understand the competitive interactions between AuNPs, 

aptamers, and targets in the aptamer-AuNPs based colorimetric assay described above. 

Two aptamers for the food-related antibiotics, ampicillin and kanamycin, 

respectively[111,114] were chosen for this study.  Several key factors are considered and 

investigated. Firstly, a critical step to ensure the reliability and sensitivity of the detection 

assay is the optimization of the concentration ratio of AuNPs to aptamer. A lower than 

optimal AuNPs:aptamer concentration ratio will lead to false positives because the 

AuNPs will not be covered fully whereas a higher than optimal concentration ratio will 

lead to false positives. Secondly, for reliable application, the aptamer must have a 

stronger binding affinity to the target than to the AuNPs. Thirdly, it is equally important 
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that the target has a stronger binding affinity to the aptamer than to the AuNPs. If it was 

the other way around, the method will be unreliable and potentially give false results. 

 

Here, we applied surface enhanced Raman spectroscopy (SERS) to investigate these 

competitive interactions. SERS is a combination of Raman spectroscopy and 

nanotechnology. Raman spectroscopy is capable of molecular fingerprint specificity for 

every distinct molecule that is being analyzed. Noble metallic nanosubstrates are essential 

in the enhancement of these Raman signals, attributed to the electromagnetic and charge 

transfer mechanisms.  AuNPs are excellent SERS nanosubstrates when aggregated 

together and the chemical signatures of analytes staying in close proximity get mostly 

enhanced, and hence, the use of SERS not only requires little sample preparation, but 

allows for quick analysis of the surface interactions occurring between AuNPs, aptamer 

and/or target. 

 

 To the best of our knowledge, this is the first study that is conducted to understand 

the competitive interactions of molecules involved in the aptamer-AuNPs based 

colorimetric assay. The procedure and results from this study not only help us understand 

the interactions that occur in the molecular level, but also give us an analytical 

framework for future studies that may require understanding of competitive interactions 

in a complex system. 
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5.3 Materials and Methods 

5.3.1 Chemicals and Reagents 

Chloroauric acid (HAuCl4), was purchased from Sigma Aldrich (St. Louis, MO, 

USA). Tetrasodium citrate, potassium phosphate monobasic, potassium phosphate 

dibasic, sodium chloride, ampicillin and kanamcycin and were purchased from Fisher 

Scientific (Pittsburg, PA, USA). ssDNA aptamers were purchased as lyophilized powder 

(salt-free) through Eurofins MWG Operon (Huntsville, AL, USA). Double distilled water 

was obtained from MicroPure system UV/UF (Fisher Scientific, Pittsburg, PA, USA) and 

was used throughout the experiment. 

 

5.3.2 Synthesis of citrate-stabilized AuNPs 

13 nm diameter AuNPs, as used in many aptamer-based colorimetric 

assays[95,103,109–117], were synthesized using a citrate reduction method. [94,95,120] 

Prior to synthesis, glassware were soaked in aqua regia (3 parts HCl, 1 part HNO3), 

rinsed copiously with double distilled water and dried. Then, in a 250 ml beaker, 100 ml 

of 1 mM HAuCl4 solution was heated on a hot plate with vigorous stirring using a 

magnetic stir bar. When the aqueous 1 mM HAuCl4 solution started to boil, 10 ml of 38.8 

mM trisodium citrate was quickly added and allowed to continuously boil for 20 min. 

During the boil, the color of the mixture turned from pale yellow to colorless, then to 

dark red. After 20 min, the mixture was taken off the hot plate and cooled to room 

temperature in a clean, closed lid container. TEM was performed to verify the size and 
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consistency of the AuNPs (13 + 1.1 nm) (Fig. 7). The AuNPs concentration was then 

determined using Beer’s Law with an extinction coefficient of 1.39 Χ 10
8
 M

-1
, resulting 

in calculated value of 17 nM.[121] 

 

5.3.3 Aptamer preparation 

ssDNA aptamer specific to ampicillin and kanamycin were obtained from 

literature[111,114]. The ampicillin specific aptamer (AMP17) sequence was 5’- 

GCGGGCGGTTGTATAGCGG-3’while the kanamycin specific aptamer (Ky2) sequence 

was 5’- TGGGGGTTGAGGCTAAGCCGA-3’. Prior to use, the aptamers were dissolved 

in 10 mM potassium phosphate buffer (pH 8.0), heated to 95 °C for 2 min and cooled to 

room temperature for 1 h in order to ensure the proper, 3-dimensional ssDNA 

conformation. The aptamer solution was then further diluted with buffer to various 

concentrations for analysis. 

 

5.3.4 Procedure of aptamer-AuNPs based colorimetric assay 

In a 96-well microplate, 40 µL of AuNPs was first mixed and incubated with 60 µL 

of 600 nM aptamer solution for 5 min. Then, 60 µL of target at various concentrations 

(final: 0, 30, 300, 600, 1200 nM) were added and mixed with the aptamer-AuNPs 

solution for 5 min. After incubation, 40 µL of 500 mM NaCl solution was added to 

induce AuNPs aggregation and the mixture was left for another 5 min to equilibrate. 

Pictures were taken and absorbance spectra (i.e. wavelength range: 450-750 nm) were 
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measured using a SpectraMax M2e UV-vis spectrophotometer (Molecular Devices, 

Sunnyvale, CA, USA). Finally, the absorbance ratio (620/520) was calculated to quantify 

the degree of AuNPs aggregation for each sample. Each sample was conducted in 

triplicates. 

 

5.3.5 SERS study of molecular interactions in matrix 

One of the main advantages of using SERS to study molecular interactions is the 

ability to analyze samples in situ. Since little or no sample preparation is required, it can 

be analyzed rapidly without the limitation of time lag and destruction of samples. In this 

study, 1 µL of each sample mixture obtained from the aptamer-AuNPs-based 

colorimetric assay were deposited onto a gold-coated slide and left on a counter for a few 

minutes to dry. Then, the samples were analyzed using a DXR Raman spectro-

microscope (Thermo Scientific, Waltham, MA, USA).  

 

OMNIC
TM

 software version 9.1 was used to control the DXR Raman spectro-

microscope. The sample surface was first focused using a 50x microscope objective lens, 

then ten spots were randomly selected within the region of aggregated AuNPs to 

maximize Raman enhancement effects. Aggregated AuNPs were mainly formed around 

the sample coffee ring and were characterized by dark, black spots. 
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Raman instrumentation parameters used include a 780 nm laser excitation wavelength 

connected to a 50 µm slit width aperture, which produced a 4.7–8.7 cm
-1 

spectral 

resolution and 3.1 µm spot diameter. The laser power used was set at 5 mW with an 

integration time of 2 s per spot. The spectral range analyzed was 400 - 3000 cm
-1

. 

 

After collecting all the spectra, the data was inputted into TQ Analyst software 

(Thermo Scientific, Waltham, MA, USA) for statistical analysis. First, all the spectra 

gathered from different spots in each sample were averaged, and then normalized using 

the full spectral range (i.e. 400-3000 cm
-1

) in order to reduce peak intensity variations 

attributed to Raman enhancement differences. Then, second derivative transformation 

and smoothing were applied so as to reduce spectral noise and to separate any 

overlapping bands. Finally, the principal component analysis (PCA) function was used to 

quantitatively compare the differences between several sets of spectra. This function is 

primarily used to focus the spectral data analysis onto the most dominant features, 

thereby removing random variations that are of less significance. The extent of variation 

between different samples is then measured based on how far the sample spots are from 

each other on the PCA plot. For example, if the spots representing “A” is clustered away 

from spots representing “B”, then we can conclude that these two samples are 

significantly different from each other (p<0.05). On the other hand, if “A” and “B” spots 

overlap each other, then they are not significantly different from each other. Hence, this 
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type of discriminant analysis is useful to determine the extent of variation between 

different sample spectra.  

 

 

Figure 5.1 Chemical structures of target antibiotics and aptamers used (i.e. circled 

regions on aptamer structures indicate conserved motifs) [aptamers obtained from 

Song et. al.[111,114] Used with permission from Elsevier] 

 

5.4 Results and Discussion 

5.4.1 Target-Aptamer Interactions 

 To understand the competitive interactions in the aptamer-AuNPs colorimetric assay, 

it is important to first understand the basic mechanism for target-aptamer interactions. 

The underlying molecular interaction between aptamers and their target is largely due to 

hydrogen bonding, electrostatic interactions, stacking of aromatic rings and van der 

Waals interaction.[108] They typically follow an induced fit model, whereby the aptamer 

changes its 3-dimensional structure to interact fully with their target. Their secondary 

structure is also characterized by stems, internal loops, bulges, hairpins, tetra loops, 
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pseudoknots, triplicates, kissing complexes, or G-quadruplex; these specific structures 

influences the binding sites of the target. 

 

 The chemical structure of ampicillin and kanamycin, together with the secondary 

structure of ssDNA aptamers specific to these two compounds are shown in Fig. 5.1. 

 

 Ampicillin is a β-lactam antibiotic, and is characterized by a β-lactam ring in its 

molecular structure. Its side chain (circled) contains a primary amine functional group 

and a benzene ring. Interestingly, the ampicillin aptamer was reported to be highly 

specific to the ampicillin side chain, as other β-lactam antibiotics with similar chemical 

structures such as amoxicillin (i.e. additional hydroxyl group) and benzylpenicillin (i.e. 

lacks primary amino group) had significantly lower binding affinity to the aptamer 

(AMP17).[114] The aptamer sequence responsible for the binding of ampicillin was also 

reported to be “-GGT(T)-” in the loop region as well as “-GC-” base pairing (circled) at 

the joint of a loop and stem.[114] 

 

 Kanamycin is an aminoglycoside antibiotic, and is characterized by amino-modified 

glycoside groups in its molecular structure. Similar antibiotic structures such as 

kanamycin b (i.e. one hydroxyl group replaced by an amine ) and tobramycin (i.e. one 

hydroxyl group replaced by an amine and another hydroxyl group removed) were shown 

to have similar binding affinity to the kanamycin aptamer (Ky2).[111] Other antibiotics 

with relatively different chemical structures such as ampicillin (i.e. penicillin), 
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streptomycin (i.e. aminoglycoside) and sulfadimethoxine (i.e. sulfonamide) were reported 

to have significantly less affinity to the aptamer.[111] This suggests that this aptamer 

sequence may be broad-specific for kanamycin and its derivatives. The “-TGGA”- motif 

(circled) was also found in a stem and loop structure in every aptamer candidates, hence 

it was concluded that this structure was primarily responsible for the capture of 

kanamycin.[111]

 

Figure 5.2(a) Schematic Illustration of a suitable aptamer-based colorimetric assay; 

(b) Optimization of aptamer and NaCl concentrations using absorbance ratio (i.e. 

640/520); (c) Relative binding affinity (Kd) requirements for successful 

implementation of the aptamer-based colorimetric assay (Ap = aptamer; T = target; 

Au = gold nanoparticle) 
 

5.4.2 Optimization of Concentration-Ratios 

In order to study competitive interactions in the aptamer-AuNP based colorimetric 

assay, it is important to optimize the detection assay to best represent the implementation 
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of this method.  The use of the right concentrations of each component in the aptamer-

AuNP based colorimetric assay is crucial to not only improve sensitivity, but to also 

prevent false colorimetric results. Fig. 5.2a shows a schematic illustration of the aptamer-

AuNP based colorimetric assay.  

 
The first important optimization step is the concentration of NaCl added to induce the 

aggregation. NaCl is used in this assay to neutralize the surface charge caused by citrate-

capped (i.e. negatively charged) AuNPs. Adding too little NaCl will cause insufficient 

neutralization of the surface charge of AuNPs, hence it will not induce aggregation (i.e. 

change color) even if aptamers were not bound to the AuNPs. If too much NaCl is added, 

it can potentially neutralize the surface charge of ssDNA aptamers, and thus cause 

AuNPs to get close enough for a color change, even though steric hindrance can prevent 

full aggregation. Our results show that 30 mM NaCl was optimal for the full aggregation 

of AuNPs without aptamer (Fig. 2b), and hence this concentration was used for 

subsequent experiments in this study. 

 
 The second optimization step in this assay requires knowledge of how much aptamer 

to add to AuNPs. If insufficient aptamer is added, the AuNPs will be partially exposed 

and will be more sensitive to AuNPs aggregation. On the other hand, if there is an 

oversaturated amount of aptamer, the AuNPs will more likely still be covered by aptamer 

even after target addition as the target will preferentially bind to the aptamers not bound 

to AuNPs, hence a false negative result can occur. Fig. 5.2b shows the absorbance ratio 
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(640/520) of the samples decreasing as more aptamer is added to AuNPs until an 

optimum concentration (i.e. 180 nM), where it begins to remain constant even after more 

aptamer addition. 

 

Figure 5.3(a) UV-vis absorbance of aptamer-based colorimetric samples with 

various ampicillin concentrations; (b) Absorbance ratio (640/520) based on UV-vis 

absorbance; (c) Optical image of aptamer-based colorimetric samples with 

increasing concentrations of ampicillin (left to right). 
 

5.4.3 Competitive Interactions Influencing the Detection of Ampicillin 

Fig. 5.2c shows the key competitive interactions and their relative affinities to each 

other in order to have a reliable aptamer-AuNPs colorimetric assay. Briefly, the relative 

binding affinity between aptamer and target must be stronger than the aptamer-AuNPs 

and the target-AuNPs interactions.  The detection of ampicillin was used as the first 

example for investigating these competitive interactions. To do this, ampicillin was tested 
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at several concentrations that represented a range of aptamer:target concentration ratios 

(i.e. 16:1, 2:1, 1:1, and 1:2). The absorption spectrums of these samples are shown in Fig. 

5.3a. 

 

Surprisingly, the absorption peak for all target concentration samples was 520 nm, 

which is representative of a wine-red color (Fig. 5.3c). Fig. 5.3b shows the absorption 

ratio vs ampicillin concentration graph, where the higher the absorption ratio, the more 

aggregation of AuNPs has occurred. This result showed no significant difference 

(p<0.05) in the aggregation status of these samples. 

 

SERS was then used to elucidate the surface chemistry of AuNPs. Fig. 5.8 shows the 

full raw SERS spectra of all the samples analyzed. In order to interpret the SERS data, 

the second derivative SERS spectra after smoothing and normalization was used to 

reduce spectral noise and to focus on changes caused by the addition of ampicillin. Fig. 

5.4 includes the second derivative SERS spectra and principal component analysis (PCA) 

3-D graph of samples analyzed at a lower (i.e. 30 nM) and higher (600 nM) ampicillin 

concentration. 

 

At the lower ampicillin concentration, it is evident that the AuNPs surface coverage is 

dominated by peaks attributed to the binding of aptamers. The PCA graph shows a 

statistical similarity between the “Aptamer only” sample (i.e. AuNPs mixed only with 
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aptamer) and the “Aptamer+Ampicillin (30 nM)” sample (i.e. AuNPs mixed with 

aptamer and 30 nM ampicillin). The SERS spectra at higher ampicillin concentrations, 

however, show a different result. A quick observation of the spectra shows a huge 

difference between the “Aptamer only” and the “Aptamer + Ampicillin (600nM)” 

samples, but a very close resemblance between the “Aptamer + Ampicillin (600nM)” and 

“Ampicillin only (600nM)” samples. The PCA graph confirms this observation and thus, 

we can conclude that the AuNPs surface was almost fully covered with ampicillin and 

furthermore, displaced the aptamer previously bound to the AuNPs.  

 

Figure 5.4 Second derivative SERS spectra and principal component analysis chart 

of aptamer-based colorimetric samples at low (i.e. 30 nM) and high (600 nM) 
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ampicillin concentrations. Aptamer and ampicillin peaks are represented by orange 

lines on the spectra. Other specific peaks can be located by referring to Fig. 8. 
 

From the SERS results (i.e. structure), the colorimetric results (i.e. function) can be 

better explained. In this case, the SERS results showed that in these sample matrices, the 

AuNPs-ampicillin interaction was stronger than the AuNPs-aptamer and ampicillin- 

aptamer interactions, so that the ampicillin can replace the aptamer on the AuNPs. From 

the molecular structure of ampicillin, we speculate the interaction between ampicillin and 

AuNPs is primarily through the Au-S bond, which is very strong and commonly used for 

surface modification of Au.[122,123] After ampicillin has covered the AuNPs surface, 

the addition of salt was unable to induce aggregation due to the steric repulsion of the 

ampicillin molecules. It is also possible some aptamers were still attached to the 

ampicillin even after ampicillin covered the AuNPs, as some little aptamer signals were 

observed in the SERS spectra  of the “Aptamer + Ampicillin (600nM)” sample, and thus 

provide additional repulsive charge/hindrance to prevent AuNPs aggregation. In this 

scenario, because of the proximity of the aptamer from the AuNPs was further than the 

ampicillin, the signals of the aptamer was much weaker than the ampicillin.   In either 

case, however, the competitive interactions and their relative affinity to each other do not 

meet the assay criteria to obtain desired results in the aptamer-AuNPs based colorimetric 

assay. 
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5.4.4 Competitive Interactions Influencing the Detection of Kanamcyin 

To better understand the competitive interactions influencing the detection of analyte 

in the aptamer-AuNPs colorimetric assay, kanamycin was used as the second target with 

its specific aptamer sequence. Fig. 5.5a shows the colorimetric results as kanamycin 

concentration was added from 0 to 1200 nM. 

 
As the concentration of kanamycin increased, the absorption peak wavelength shifted 

from 520 nm to approximately 640 nm, which corresponds to the visual color change 

from red to blue (Fig. 5.5c). The absorption ratio (640/520) increased from 0.2 to 1.4 

when the kanamycin concentration was increased from 0 to 600 nM, with a linear, 

concentration-dependent curve from 30 to 600 nM (R
2
 = 0.994) (Fig. 5.5b). These 

colorimetric results show the successful aggregation of AuNPs due to kanamycin 

introduction. 
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Figure 5.5 (a) UV-vis absorbance of aptamer-based colorimetric samples with 

various kanamycin concentrations; (b) Absorbance ratio (620/520) based on UV-vis 

absorbance; (c) Optical image of aptamer-based colorimetric samples with 

increasing concentrations of kanamycin (left to right). 

 

 

The raw SERS spectra of kanamycin at different concentrations in the aptamer-

AuNPs based colorimetric assay are found in Fig. 5.9. The spectra in Fig. 5.6 use the 

same data and provide information on the surface coverage of AuNPs in this assay. At 

lower kanamycin concentrations (i.e. 30 nM), the “Aptamer + Kanamycin (30nM)” 

sample’s spectral profile was not the same as the “Aptamer only” sample’s, although 

there were several peaks that were similar to each other. The “Kanamycin only” sample’s 

spectral profile was also not the same as the “Aptamer + Kanamycin (30nM)” sample’s, 

but had some similar peaks. This suggests that the aptamer and kanamycin were both 

present on or near the surface of AuNPs, possibly due to the interaction between aptamer 
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and kanamycin. The PCA graph shows the “Aptamer + Kanamycin (30nM)” sample 

spectra had a PC1 score between the “Aptamer only” sample and the “Kanamycin only 

(30 nM)” sample, which strengthens this claim. In addition, the enhanced peak at 997 cm
-

1
 for “Aptamer + Kanamycin (30nM)” is possibly another indication of an interaction 

between aptamer and kanamcyin. 

 

Figure 5.6 Second derivative SERS spectra and principal component analysis chart 

of aptamer-based colorimetric samples at low (i.e. 30 nM) and high (600 nM) 

kanamycin concentrations. Aptamer and kanamycin peaks are represented by 

dotted lines on the spectra. Other specific peaks can be located by referring to Fig. 

5.9. 
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At the higher kanamycin concentration (600 nM), the “Aptamer + Kanamycin 

(600nM)” sample’s spectral profile was still not the same as the “Aptamer only” or 

“Kanamycin only (600nM)” sample’s. However, the spectral profile of “Aptamer + 

Kanamycin (600nM)” was different from “Aptamer + Kanamycin (30nM)”. The changes 

that occurred could be due to the wrapping of kanamycin by the aptamer, thus producing 

conformational changes that can be detected by SERS. For example, the aptamer peak at 

1160 cm
-1

 disappeared on “Aptamer + Kanamycin (600nM)”. At 965 cm
-1

, a new peak 

was seen on “Aptamer + Kanamycin (600nM)”, whereas a shift in the aptamer peak was 

spotted at 636 cm
-1

 on “Aptamer + Kanamycin (600nM)”. These SERS results suggest 

that the aggregation of AuNPs was due to the stronger affinity of aptamer binding to the 

kanamycin than the affinity of the kanamycin to the AuNPs, as seen in the case of 

ampicillin and its aptamer. The lack of resemblance of the “Kanamycin only (600nM)” 

sample’s spectral profile to “Aptamer + Kanamycin (600nM)” also suggests that the 

affinity of kanamycin binding to AuNPs was weaker than the affinity of aptamer to 

kanamycin. Hence, the aptamer-AuNPs based colorimetric assay using the kanamycin 

aptamer and its target meets the criteria to successfully interpret the colorimetric results.  

 

5.5 Conclusions 

With the increasing popularity of aptamer-AuNPs based colorimetric assay, it is 

important to understand the underlying factors that contribute to the success of this 

detection method. This study was able to evaluate the competitive interactions present in 
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the aptamer-AuNPs colorimetric assay using SERS to ensure the correct interpretation of 

the colorimetric results. The interaction between aptamer and target must be stronger than 

the interaction between AuNPs and aptamer as well as the interaction between AuNPs 

and target. In addition, SERS was employed as a simple and rapid (<30 min) method to 

investigate surface chemistry of AuNPs at the molecular level in order to ensure reliable 

colorimetric detection. Future studies would involve the investigation of the colorimetric 

assay in a complex matrix such as food. 
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Supplementary Figures 

 

Figure 5.7 TEM image of synthesized AuNPs with an average diameter of 13 nm. 
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Figure 5.8 Raw SERS spectra of ampicillin at different concentrations (0, 30, 300, 

600, 1200 nM) mixed with AuNPs or Aptamer + AuNPs 
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Figure 5.9 Raw SERS spectra of kanamycin at different concentrations (0, 30, 300, 

600, 1200 nM) mixed with AuNPs or Aptamer + AuNPs.  
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CHAPTER 6 

SELECTION OF APATMERS USING GOLD NANOPARTICLES-

ASSISTED SELEX FOR THE DETECTION OF FOOD 

CONTAMINANTS 
 

6.1 Abstract 

Biosensors are a popular, rapid analytical tool for detecting food contaminants. However, 

a crucial factor that limits its expanded use is the lack of versatile and effective bio-

capture agents to detect a wider variety of food contaminants. Aptamers are artificially 

engineered oligonucleotides that have great potential to satisfy this need, as they can be 

designed to have strong binding affinity to many types of food contaminants, including 

toxic and immunogenic molecules, ions and even bacterial cells. Unfortunately, the 

protocol for selecting aptamers is still somewhat complicated and requires highly 

specialized equipment, which may explain why there are still not many selected aptamers 

available. Therefore, the objective of this study was to develop a simpler protocol that 

could be used to expand the library of selected aptamer for food contaminants. To do this, 

we explored the feasibility of using gold nanoparticles as a non-specific ssDNA binding 

agent to control the release of ssDNA and subsequent capture of target analytes, i.e. 

ampicillin, in the sample system. A modified SELEX (i.e. systematic evolution of ligands 

by exponential enrichment) protocol was adapted in order to finish one round of SELEX 

cycle. Our results showed that gold nananoparticles are capable of monitoring the capture 

efficiency of the random ssDNA library pool to the target analyte. A significant hurdle in 
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the aptamer development process was to retrieve sufficient ssDNA after PCR 

amplification for the next round of SELEX. After attempting different methods to 

separate the dsDNA, d-PAGE was chosen as the most effective method. Future studies 

should focus on repeating the SELEX cycle multiple times.  By doing so, we anticipate 

the ssDNA library pool to be narrowed down to a few, highly target-specific aptamer 

sequence, which can then be characterized to pick out the best aptamer. 

 

6.2 Introduction 

The increase in world population and subsequent need for a larger food supply has 

created a demand for more efficient ways to monitor food safety. Current 

epidemiological data shows 1 out of 6 Americans or approximately 48 million Americans 

being infected with foodborne diseases annually, resulting in 128,000 hospitalizations 

and 3,000 deaths (CDC 2011 estimates). One way to reduce the occurrence of these 

health deteriorating cases is to develop a robust detection method that is capable of 

scanning a larger representation of food that is supplied to consumers and accurately 

deliver results. Currently, the FDA only analyses about 3,500 – 4000 samples per year 

out of the billions of tons of food crops produced domestically and imported, thus there is 

great potential to expand the sampling population by developing rapid and reliable 

detection methods. 
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Among rapid detection methods that have become increasingly popular in recent 

years, antibody and enzymatic dependent assays, such as enzyme linked immunosorbent 

assays (ELISA) and gold immunochromatography assays (GICA), have emerged as one 

of the more commonly used rapid screening methods for tackling food safety issues. 

Although these methods have overcome certain limitations of traditional detection 

technologies (i.e. HPLC, GC/LC-MS) such as expensive equipment and long analysis 

time, other challenges still persist. For example, antibodies are difficult to produce for 

toxicants and nonimmunogens, especially for small molecules. The ethical use of using 

animals to produce these antibodies persists and subsequently, the cost of producing them 

is still very high. As a result, there has been a growing trend to discover other specific 

target capture agents to overcome these challenges. Among them, aptamers have evolved 

to become of one of the more popular alternatives. 

 

Aptamers are a group of synthetic oligonucleotides (i.e. ssRNA and ssDNA) that are 

designed specifically to capture a target analyte with high binding affinity. Unlike DNA 

probes, the ability of aptamers to capture its target is not dependent on complementary 

DNA sequences, but influenced largely by numerous intermolecular interactions 

including complementarity in the geometrical shape, stacking interactions of aromatic 

rings and the nucleobases of the aptamers, electrostatic interactions between charged 

groups, van der Waals interactions, and hydrogen bonding [124]. When a target analyte is 

present, the aptamer experiences unique folding and 3-D conformational change. These 
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physical changes are characterized by stems, internal loops, bulges, hairpins, tetra loops, 

pseudoknots, triplicates, kissing complexes, or G-quadruplex. The binding affinity of 

target to aptamer is typically in the nanomolar range, and is comparable to other 

biological capture agents such as antibodies. In addition, there are several merits of using 

aptamers over antibodies (Table 6.1).  

Table 6.1 List of characteristic differences between aptamers and antibodies 

Factor Aptamers Antibodies 

Working 

environment 

Flexible; Thermostable; Can be 

regenerated easily 

Limited; Difficult to regenerate 

after denaturation 

Production 

process 
Efficient and rapid (using PCR) 

Time consuming and costly 

(using in vivo systems) 

Types of targets 
Almost any molecules, including 

toxins and nonimmunogens 

Constrained by immune response 

of in vivo systems 

Target sites 
Aptatopes can be engineered at 

specific sites by the investigator 

Animal immune system control 

epitope sites 

Chemical 

modification 

Can be easily modified with wide 

variety of labeling molecules 
Limited modification flexibility 

 

The main advantage related to food safety is that it can be designed to capture a wide 

range of target analytes, including toxicants and immunogens that are hard to produce for 

antibodies. Other notable advantages include the flexibility and easiness of preparing and 

modifying the aptamer for immobilization, longer shelf life and the capability of being 

stable in nonphysiological environments (e.g. low pH, high ionic strength, etc).  

 

 Another reason for the increasing popularity of aptamers is due to the 

technological advancement in the creation of new and more efficient aptamers. This 
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fundamental process is called systematic evolution of ligands by exponential enrichment 

(SELEX), and can be categorized into five critical steps: (1) Design, (2) Selection, (3) 

Partition, (4) Amplification and (5) Acquisition (Fig. 6.1). 

 

 

Figure 6.1 Description of the SELEX process. 

 

[1] In the design step, the starting DNA library pool (typically 10
15

 different 

sequences) is determined, including the constant length (complementary to 

primers), random length (to give a possible maximum number of total sequences), 

positioning of constant and random sequences, and modification at the 3’ and/or 

5’ end. Primer sequences are also determined to ensure optimal conditions for 

binding and subsequent selection. The type of buffer to use and ideal conditions 

for target capture that is compatible with oligonucleotides is also determined. 
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[2] The next step is the selection process, where the oligonucleotide is exposed to the 

target. In this step, concentration ratios, incubation times and environment are 

carefully monitored and optimized to give the ideal capture efficiency. Another 

important element to note in this process is the reduction of nonspecific binding to 

other materials such as the solid support, if any. In order to reduce this type of 

binding, a counter selection step could be employed to remove all 

oligonulceotides that will bind to the solid support before the final step (i.e. 

acquisition) of obtaining an aptamer. 

 

[3] The third step is partitioning, which is the separation of the bound target-aptamer 

from the unbound target and oligonucleotide sequences. This has been achieved 

using various number of ways, including filtration, centrifugation, magnetic 

separation, chromatographic separation, and electrophoretic separation.  An 

important element during the partitioning step is also the elution of the bound 

oligonucleotides from the target. This can be achieved by adding ethanol to 

precipitate the oligonucleotide and subsequently centrifuging the mixture to 

obtain the precipitate. Other ways of elution include heating, changing the ionic 

strength or pH, or using other types of denaturing agents such as urea, sodium 

dodecyl sulfate (SDS) and/or ethylenediamine tetraacetic acid (EDTA).  During 

partitioning, an important element is quantifying the proportion of bound and 
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unbound oligonucleotides to monitor the binding efficiency of the DNA pool 

tested. This has been done by tagging the DNA pool with fluorescent or 

radioactive dyes and effectively measuring the bound DNA concentration using a 

spectrophotometer. Alternatively, the unbound ssDNA concentration can be 

quantified. 

 

[4] The next step is amplification. In this step, ssRNA is amplified using RT-PCR or 

in the case of ssDNA, PCR. This will produce dsDNA. In order to separate the 

complementary strand from the sense strand, the reverse primer can be tagged 

with biotin or thiol group to bind to a solid support while the sense strand is 

released into the supernatant using a denaturing agent, which breaks the hydrogen 

bonds between the sense-antisense strands. The sense strand concentration is then 

measured and mixed together with appropriate amounts of target to go through 

another round of the selection process. The SELEX cycle, i.e. steps [2]-[4], is 

repeated until the proportion of target-bound oligonucleotides to unbound 

oligonucleotide remains high and stable for consecutive cycles, after which the 

acquisition step takes place. 

 

[5] In the acquisition stage, the target bound oligonucleotide is amplified one last 

time with unmodified primers. Then, the DNA sequence is identified by cloning 

and sequencing of the selected clones. Typically, more than 50 sequences are 
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chosen for sequencing and analyzed after. Regions of homologous sequences 

differing by only a few bases may represent important parts of the aptamer for 

target binding. These sequence analysis can be performed using software 

programs such as DIALIGN and CLUSTAL. Secondary structural analysis of the 

aptamer can also be analyzed using “m-fold” software. The secondary structure is 

predicted based on free energy minimization algorithm. The potential binding 

sites of the target can then identified, which is often found in the stem-loop or G-

quadruplex structures. Lastly, the acquired aptamer sequences are individually 

tested for binding affinity and specificity in a defined environment to obtain their 

dissociation constants for future method applications. 

 

The first aptamers were selected in 1990 by two separate labs[54,125], which gave 

the fundamental procedural basis of obtaining new aptamers, now known as SELEX. 

Over the last 25 years, the SELEX method has evolved to obtain aptamers for different 

types of applications. Although aptamers have been studied mainly for biomedical and 

pharmaceutical applications, the selection and characterization of aptamers relevant to 

food safety has begun to emerge and has been noted by several researchers in recent 

years[126,127]. However, all of them agree that the development of aptamers for food 

safety applications is limited and is still in its infancy. In an industry where investments 

in high risk technology development are constrained by minimal budget, it is essential to 

provide new and cost-effective ways to explore that technology. Although numerous 
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SELEX variations have been published over the past two decades, there are still limited 

resources available for food industry to explore new aptamer development for food safety 

applications. With our previous success in the development of aptamer-based detection 

methods, this study attempted to focus on the development of a new type of SELEX 

method that would not only be cost-effective, but would provide the food industry and 

governmental agencies with a suitable method that would work for its applied field (i.e. 

food matrix). Specifically, we attempted todevelop a gold nanoparticle-assisted SELEX 

method that can potentially be used to develop aptamers in a simple and effective way. 

 

6.3 Materials and Method 

6.3.1 Materials 

All chemicals were purchased through Fisher Scientific unless otherwise noted. DNA 

oligonucleotides were purchased from Eurofins OWG. PCR kits were obtained from New 

England Biolabs. Cloning Kits were obtained from Invitrogen. Micropure water (Fisher 

Scientific) was autoclaved before use. Citrate capped gold nanoparticles 13 nm in size 

was synthesized using the method as described by Grabar and Freeman [94,95]. 

 

6.3.2 Design 

 The initial DNA library pool contained 18 base pairs each in the two primer 

regions and a centralized random sequence of 30 base pairs with possibilities of A, T, G, 
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C in each base. The forward primer (FP) sequence was: 5’-CGT ACG GAA TTC GCT 

AGC-3’ while the reverse primer (RP) sequence was: 5’- CAC GTG GAG CTC GGA 

TCC-3’. This sequence gave a possible maximum of 10
18

 sequences. The primer 

sequences were chosen based on the reported success of developing other aptamers with 

it [128]. The melting temperature of these primers, Tm, were as follows: FP – 59.9 °C; RP 

– 64.5 °C. The GC contents of the primers were as follows: FP – 55.6%; RP – 66.7%. 

The reverse primer was modified with a biotin label on the 5’end. The purification levels 

of the ssDNA purchased were salt-free and came in 1 µmole aliquots that was prepared as 

a 100 µM stock solution before further dilution. Before aptamer selection, the ssDNA 

solution was heated to 95°C for 5 mins, then immediately cooled in an ice-water bath for 

a few minutes. 

 

6.3.3 Selection 

 

Figure 6.2 Schematic Illustration of the aptamer selection process using AuNPs 

 

The first requirement for this step is to have at least 10
14

 random sequences available 

for the selection pool. 100 µL of 2µM of this sequence in water was mixed with 
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equimolar ratio of target (i.e. ampicillin-100 µL in water) for 1 h at room temperature 

with constant shaking using an orbital shaker that rotated at 24 rpm. 100 µL of 5 nM 

AuNPs (in citrate buffer) was then added to the mixture and incubated for an additional 1 

h (Fig 6.2). 2 µM aptamer concentration was chosen because it was the minimum 

concentration that prevented aggregation of AuNPs when 10 µL of a 75 mM NaCl 

solution was added (i.e. this was the minimum NaCl concentration that caused maximum 

aggregation of AuNPs without ssDNA). This is another important optimization step 

because the aggregation of AuNPs after adding NaCl will be used as an indicator later on 

to determine the ratio of target bound ssDNA to unbound ssDNA. 
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6.3.4 Partition 

After incubation, the mixture was centrifuged at 10,000 Χ g for 15 minutes in order to 

separate the ssDNA coated AuNPs from the supernatant (Fig 6.3). After centrifugation, 

200 µL of the supernatant was transferred to a separate tube. This solution contained the 

target bound ssDNA. 1 µL of the remaining AuNPs was dropped onto a gold slide and 

analyzed under Raman microscope to verify the presence of AuNPs bound ssDNA.  

 

Figure 6.3 Partitioning of target bound/unbound ssDNA and their subsequent step. 

 

 The Raman instrument parameters and data analysis protocol used was based on 

Pang and others 2014 [44]. The target bound ssDNA solution then subjected to ethanol 

precipitation. Briefly the ssDNA-target solution was mixed with 20 µL of 3 M sodium 
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acetate, pH 5.2, followed by 440 µL of cold 100% ethanol. After mixing thoroughly, the 

mixture was placed in ice for 20 min. Then the solution tube was centrifuged at 20,000 Χ 

g for 10 min at 4°C. The supernatant was slowly decanted, then 1 mL of 70% ethanol was 

mixed in and centrifuged again at 20,000 for 10 min. The supernatant was removed again 

and the precipitate was left to air dry for approximately 5 min. The dried ssDNA pellet 

was then reconstituted with 50 µL double distilled water and the ssDNA concentration 

was then measured using Nanodrop 2000c.   

 

6.3.5 Amplification 

PCR optimization and amplification was performed based on modification of Sefah et 

al 2010 [128]. First, the optimization of PCR was performed using a two-step process. In 

the first step, ten PCR cycles were performed by adding 45 µL of ssDNA sample 

template into the PCR cocktail (Table 6.2) with a standard PCR protocol (Table 6.3). 

 

Table 6.2 PCR cocktail used in the first step of PCR optimization 

 Reagents Volume Final Concentration 

Autoclaved water 32.7 µL  

10x PCR buffer 10 µL 1x 

dNTP mix (10 mM) 2 µL 200 µM 

Taq Polymerase 0.3 µL  

Forward Primer (10 µM) 5µL 0.5 µM 

Reverse Primer (10 µM) 5µL 0.5 µM 

   

Total 55 µL  
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Table 6.3 PCR protocol used in the first step of PCR optimization 

Step Temp (°C) Time (s) 

Hot Start 95 150 

Amplification (10x)   

Denaturation 95 30 

Annealing 56.3 30 

Extension 72 30 

Final Extension 72 180 

Hold 4 ∞ 

 

The second step of the PCR optimization was performed by adding 5 µL of the PCR 

product from the first PCR optimization step into five PCR tubes each containing PCR 

cocktail (Table 6.4). 

Table 6.4 PCR cocktail used in the second step of PCR optimization 

Reagents Volume Final Concentration 

Autoclaved water 33.85 µL  

10x PCR buffer 5 µL 1x 

dNTP mix (10 mM) 1 µL 200 µM 

Taq Polymerase 0.15 µL  

Forward Primer (10 µM) 2.5 µL 0.5 µM 

Reverse Primer (10 µM) 2.5 µL 0.5 µM 

   

Total: 45 µL  

 

 A sixth PCR cocktail was prepared without ssDNA template (i.e. buffer as a 

replacement) to be used as the negative control. The six prepared PCR tubes were placed 

in the thermal cycler and amplification was performed using the same procedure outline 

above (Table 6.3). However, one sample was taken out after 4 cycles, 8 cycles, 12 

cycles, 16 cycles and 20 cycles respectively. The negative control sample was taken out 

after 20 cycles. 
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 The 6 samples and one DNA ladder (50 bp ladder – furthest band at 25 bp) were 

run using agarose gel electrophoresis. 3% agarose gel was prepared with Midori green 

(Bulldog, NH, USA) as the DNA staining dye and 1x TBE as the buffer. The power 

supply used to run the gel was 100V for 40 mins. 6x loading dye were added to PCR 

sample at 1:6 concentration ratios before inserting into gel holes. Then, the gel 

electrophoresis was run. After the procedure, UV light at long wavelength (365 nm) was 

shone over the gel and a picture was taken using an 8 MP camera to identify the number 

of PCR cycles that produced the clearest DNA band. 

 

After determining the optimized number of PCR cycles, the remaining sample from 

the first PCR optimization step was amplified accordingly. This was followed by the 

separation of ssDNA from its complementary strand (Fig 6.4). 
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Figure 6.4 Schematic Illustration of the separation of dsDNA after PCR 

amplification  

 

To do this, the amplified dsDNA was first conjugated onto streptavidin-coated 

sepharose beads through the biotin labeled antisense strand with the following setup: On 

one end of a DNA synthesis column, a filter (that came with the “DNA synthesis 

column”) was fitted. The plunger was removed from a 10 ml sterile syringe and the 

syringe was placed into the other end of the DNA synthesis column. The setup was 

placed on a clamp. 200 µL of streptavidin sepharose beads were added into the syringe 

by aiming at the middle of the hole in the bottom. Then the plunger was used to slowly 
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press down the liquid until it started to drain. Once the liquid was all drained out, the 

plunger was pushed all the way. 2.5 mL water was then added to the syringe and the 

plunger was pressed again to drip out the water slowly. Then, the sample was passed 

through the column. The eluate was collected with the same centrifuge tube and this 

process was repeated three times. 

 

Next, a freshly prepared 200 mM NaOH solution was used as a denaturing agent to 

release the ssDNA complementary strand from the biotin-labeled anti-sense strand. This 

was done by adding 500 µL of NaOH solution into the syringe and slowly pushing the 

plunger down to collect the supernatant. (Be careful not to push the plunger too hard).  

 

The final step was to desalt the collected ssDNA. One NAP5 column was prepared by 

draining out all the liquids vertically on a clamp. Then, 15 ml of water was added to rinse 

the column. 500 µL of the eluted ssDNA was then placed in the column and allowed to 

drain into a tube. Then, the sample was concentrated for 3 hours on a SpeedVac. The 

ssDNA concentration was then determined using Nanodrop 2000c. 

 

6.4 Results and Discussion 

6.4.1 Optimization of target capture and separation 

For the gold nanoparticle-assisted SELEX to operate optimally, it is important to have 

the right amount and concentration ratio of ssDNA, target (i.e. ampicillin) and AuNPs. 
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This will not only maximize the number of possible target-specific aptamers available, 

but will also help to improve the monitoring of target capture efficiency. For instance, if 

there are more ssDNA molecules than the maximum amount capable of binding to 

AuNPs, then there is no way to find out if the ssDNA molecules not bound to AuNPs 

were actually  captured by target after AuNPs were separated out. Therefore, the optimal 

volume and concentration of ssDNA was determined (Fig 6.5). 

 

Figure 6.5 Absorabance ratio (720/520) and color of gold nanoparticles exposed to 

different concentrations of ssDNA after the addition of 75 mM NaCl. 

 

In order to use a manageable volume for this study, 100 µL of ssDNA was used. 

Since the optimal ssDNA concentration was 2 µM, the total number of possible ssDNA 

sequences in this sample was approximately 10
14

 sequences, which is comparable to the 

starting amount of many SELEX procedures[108]. 
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Another important optimization step was to separate the target bound ssDNA from the 

rest of the sample mix. This was performed using centrifugation at different speeds and 

time. The optimal centrifugation condition was determined to be 10,000 Χ g for 15 

minutes. Other speeds and times were tested but the lower the speed and time, the less 

effective was the separation. The presence of ssDNA on AuNPs was monitored using 

surface enhanced Raman spectroscopy (Fig 6.6). As ssDNA can produce strong Raman  

peaks when attached to AuNPs, we can potentially use this as a monitoring tool to 

measure the amount of ssDNA that is left on the surface of AuNPs.

 

Figure 6.6 SERS spectra and principal component analysis score of the supernatant 

after AuNPs-based SELEX selection. 

 

Alternatively, the aggregation status of AuNPs after adding NaCl can also be used to 

calculate the proportion of ssDNA that is bound to AuNPs after target addition and 

centrifugation by using a standard curve such as the one presented in Fig 6.5. 
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6.4.2 Amplification and Extraction of ssDNA 

Prior to the amplification of all extracted ssDNA, the optimization of PCR cycles is 

an important step in SELEX in order to maintain the purity and accuracy of the ssDNA 

sequences being replicated. Hence, the target extracted ssDNA was first subjected to a 

preparative PCR step to partially increase each ssDNA sequence population. The results 

show that 10+16 cycles produced the sharpest and clearest band (Fig 6.7). Beyond that, 

the DNA band began to become blurred, suggesting mutation or production of side 

products.  

 

Figure 6.7 Agarose gel results showing DNA bands at the appropriate distance 

corresponding to its length. Also, 10+16 cycles is shown to have the clearest peak. 
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When all the ssDNA had undergone PCR, the products (i.e. dsDNA) were initially 

conjugated onto streptavidin coated sepharose beads and subjected to alkaline 

denaturation to extract the sense strand ssDNA sequences. However, we found that our 

alkaline denaturation step was unable to release the ssDNA strand we wanted. We 

confirmed this hypothesis by first comparing the DNA gel of the sample mix right after 

PCR and right after sample mix was added to beads to verify that the DNA was bound to 

streptavidin sepharose beads. Then, we checked the ssDNA concentration of the eluted 

ssDNA after alkaline denaturation (i.e. 200 mM NaOH) using Nanodrop (i.e. absorption 

peak at 260 nm). Little to no ssDNA was detected (<2 ng/µL). An electrophoreses gel run 

also indicated no DNA. 

 

Figure 6.8 Agarose electrophoresis gel image of DNA library (50 bp ladder), DNA 

products after PCR, and supernatant (SUP) after streptavidin (STV) beads 

exposure. 
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In order to overcome the problem of extracting ssDNA, several tests were done. First, 

the denaturing agent solution used to elute ssDNA was modified using NaOH at 0.2, 0.5, 

1, 2 and 5 M. Urea was also used at 5, 6,7,8 M. Unfortunately, none of these denaturing 

agents and concentrations worked. The next factor that was considered was the 

incubation time. Based on other studies, the release of ssDNA should be quick (i.e. within 

a few seconds), hence, the initial experiments were done by adding the denaturing agent 

to the DNA conjugated beads and slowly pushing the supernatant out of the column (i.e. 

approximately one minute). To increase the incubation time, the experiment was 

conducted in a centrifuge tube and the mixture of DNA conjugated beads and the 

denaturing agent was incubated for 0.5 or 2 hr. Another factor that was studied was the 

temperature. Initially, the experiment was conducted in room temperature, and hence, the 

incubation was conducted at 95C.  In all of these tests, little to no ssDNA was detected 

(<2 ng/µL). At 95°C, an absorption peak appeared at 280 nm, suggesting the release of 

protein (i.e. streptavidin) in the sample system. 

 

Since alkaline denaturation was not able to release ssDNA in this study, denatured 

polyacrylamide gel electrophoresis (dPAGE) was explored as an alternative extraction 

method (refer to Appendix B). dPAGE works on the principle of adding denaturing agent 

directly to PCR products and then separating the ssDNA based on their length. Therefore, 

the complementary strands must be different in base length. To test whether this method 

was capable of separating PCR products for our application, two ssDNA strands 
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complementary to each other, but one having an elongated sequence (i.e. extra 20 bases, 

all As) was separated using dPAGE (Fig 6.8). 

 

Figure 6.9 dPAGE gel showing three clear bands, representing ssDNA with 86, 66 

and 38 base lengths respectively 

 

The gel containing DNA bands were cut, crushed and soaked overnight at 37°C, after 

which the supernatant was collected and measured. The ssDNA concentrations were high 

enough for detection using Nanodrop as long as there was at least 239 ng of ssDNA 

present. In order to successfully finish one round of SELEX cycle, the extraction of 

ssDNA after PCR can be done using dPAGE. However, this requires that the reverse 

primer used have an elongated sequence that will not be fully replicated during PCR. 

This can be done by adding a hexaethylene glycol spacer between the elongated portion 

of the primer sequence and the parts that are complementary to the sense DNA strand. 
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6.4.3 Other considerations for using gold nanoparticles-assisted SELEX for 

the selection of aptamers 

 Once a full round of SELEX cycle is accomplished, the ssDNA concentration has to 

be adjusted to ensure optimal coverage of AuNPs. Then, the next round of SELEX cycle 

can continue. The number of SELEX cycles to be performed is dependent on the 

proportion of ssDNA that is bound to the target during the last round. If the proportion is 

similar to the previous round and is capable of causing AuNPs aggregation after adding a 

defined amount of NaCl, then the selection of aptamer sequences is assumed to be highly 

enriched. Then, the ssDNA pool is amplified using non-biotinylated primers and the 

eluted ssDNA can be cloned into the pGEM-T easy vectors provided by Promega. High 

efficiency, E. coli competent cells obtained from Promega can then be transformed using 

the vectors containing DNA fragments of interest. The successful transformation can then 

be verified using the bacterial colonies for PCR to amplify the inserts, and subsequently 

using a 3% agarose gel for electrophoresis. Several colonies can then be chosen at 

random for sequencing , after which the secondary structure can be analyzed using m-

fold software to identify the sequences with the probability of the highest binding affinity 

using free energy minimization algorithm. 

 

Another consideration to take with this SELEX procedure is the type of targets that 

can be compatible for the selection of aptamers. The aptamer selection mechanism relies 

on the fact that the target will have relatively lower binding affinity to the AuNPs 
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compared to non-specific binding of ssDNA to AuNPs. Furthermore, in order to use the 

AuNPs-colorimetric data to monitor the capture efficiency of ssDNA to target, the 

sample environment (i.e. pH, ionic strength) and target should not affect the aggregation 

of AuNPs. In our study, we suggest using both colorimetric data and SERS data to 

validate the proportion of ssDNA that is bound to AuNPs. We have shown through our 

previous studies that SERS is capable of monitoring the surface chemistry of AuNPs, and 

hence, there is still great potential in using the gold nanoparticle assisted SELEX method 

to monitor the selection of aptamers for various food contaminants. 

 

6.5 Conclusion 

 This study has provided several breakthroughs in order to advance the 

development of gold nanoparticle-assisted SELEX. This includes designing the ssDNA 

library pool, figuring out the optimal concentrations of ssDNA and AuNPs to use, 

establishing methods for monitoring target capture efficiency of ssDNA, as well as the 

extraction procedure for collecting ssDNA after PCR. The successful selection of an 

aptamer using this protocol would require repetition of SELEX cycles and acquisition of 

aptamer candidates. Gold nanoparticle assisted SELEX continues to show great promise 

in bringing a simple procedure that the food industry might use to create more aptamers 

relevant to the detection of food contaminants and the realm of food safety.  
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CHAPTER 7 

SUMMRARY AND OUTLOOK 
 

 The development and application of label-free, aptamer-based SERS for food 

contaminant detection was presented in this dissertation using three main ways. First, the 

fabrication of different aptamer-modified SERS substrates were explored together with 

the testing of different types of food contaminants ranging from small molecules (i.e. 

pesticides, antibiotics) and foodborne pathogens (i.e. salmonella, listeria). These studies 

show that label-free aptamer-based SERS has great potential for becoming a standard 

rapid detection tool for a wide range of food contaminants in food matrix. Although the 

accuracy and specificity of target analyte detection was improved from traditional SERS, 

future work can be focused on improving the sensitivity (i.e. limit of detection) of this 

method. In order to do this, attempts could be made to get the target analyte to be closer 

to the SERS substrate (< 10 nm) by picking aptamer sequences of shorter length or with a 

specific 3-D configuration. Another way is to use aptamers with stronger binding affinity. 

Sandwich assays could also be explored to increase sensitivity as the SERS enhancement 

effect could be even greater if the target analyte was bound to several SERS substrates. 

 

Another way that this dissertation described the development and application of label-

free, aptamer-based SERS was through the integration of aptamer-based SERS with 

aptamer-assisted gold nanoparticle based colorimetric detection for the detection of food 
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related antibiotics, ampicillin and kanamycin. Our results were able to explain the 

competitive interaction between gold nanoparticles, aptamers and the target occurring at 

the molecular level based on the ability of SERS to study the surface chemistry of gold 

nanoparticles. Future work could also be done to integrate label-free, aptamer-based 

SERS with other detection methods including SPR (surface plasmon resonance) and 

AFM (atomic force microscopy). The integration of these rapid detection methods can 

help to complement the advantages of each analytical tool, which could provide solutions 

to analytical challenges that would otherwise be hard to resolve. 

 

Another focus of this dissertation study was to develop a simple and cost-efficient 

SELEX method that would create aptamers relevant to food safety. Several important 

portions of the protocol was established, including the design of ssDNA library pool, the 

optimal concentrations of ssDNA and AuNPs to use, the establishment of methods for 

monitoring target capture efficiency of ssDNA, and the extraction procedure for 

collecting ssDNA after PCR. By continuing to develop the other components of this 

protocol, aptamers can potentially be developed in a simple and cost-efficient way, which 

will provide great potential for the advancement of label-free, aptamer-based SERS and 

other aptamer-based detection methods to detect food contaminants.  

  

Many analytical methods have been studied and are continued to be studied for the 

detection of food contaminants. Our study has shown that label-free, aptamer-based 



 

 

 

123 

 

SERS has its advantages and limitations as described. We anticipate that this work will 

be a useful tool for researchers who are interested in developing this method as well as 

other techniques that have not yet been developed. 
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Appendix A 
 

dPAGE for separating ssDNA from PCR product 

Ethanol precipitation of DNA samples (2 h) 

Supplies needed: 

1.5 mL centrifuge tube, 1 per 0.5 ml PCR sample 

3 M sodium acetate, pH 5.2, 45 uL per 0.5 mL sample 

Pipets and tips (1mL and 50uL) 

Vortex 

100% Ethanol (cold), 1.25mL per sample 

Centrifuge 

70% ethanol (cold), 1mL per sample 

Tube hot plate 

1xTE buffer, pH 7.4 

 

Method: 

1. In every 1.5 mL centrifuge tube, add 500 uL of PCR product and 45 uL of 3M 

sodium acetate, pH 5.2 together. Vortex well. 

2. Add 1.25 mL of 100% cold ethanol. Vortex well. 

3. Place the sample tube in freezer for at least 1 h. 

*During this time, you can prepare the gel-casting apparatus assembly and prepare the gel 

solution. 

4. Centrifuge at maximum speed for 15 min. There should be a white precipitate at 

the bottom. 

5. Remove supernatant with a pipette. 

6. Add 1mL 70% cold ethanol and vortex sample. 

7. Centrifuge at maximum speed for 10 min. 

8. Remove supernatant with pipet and evaporate the ethanol completely using tube 

hot plate @ 40C. It should take about 10 min. 

9. Add 20 uL of 1xTE buffer, pH 7.4 to DNA sample and mix with pipet tip. 
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Gel-casting apparatus assembly (30 min) 

Supplies needed: 

PAGE setup (plates, comb, gel setting station, clamp, foam pad) 

 

Method: 

1. Clean all PAGE setup thoroughly, especially the parts that will touch the gel. 

Wash with soapy water, then rinse with water, and lastly, with ethanol. 

2. Prepare the PAGE setup as follows: 

 

 

Prepare gel solution (1 h) 

Supplies needed: 

50 mL centrifuge tube 

Hot water bath, set at 55C 

Pipet and tips (10uL, 200uL, 1mL and 10mL) 

 

Method: 

1. Prepare the loading gel in a 50 mL centrifuge tube using the following recipe to 

make 20 mL (2 gels): 

Chemicals Volume 

Acrylamide (30%) 6.6 mL 

10x TBE 2 mL 

Urea 9.6 g 

dd H2O Add up to total 20 mL 
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2. Incubate for 5 min in a hot water bath that was pre-set at 55C. Then, cool the 

solution by placing under running cold water. 

 

3. Add the following chemicals to loading gel solution to induce gelling, then 

immediately place loading gel solution into the space between plates using a 10 

mL pipet. 

Chemicals Volume 

APS (10%) 200 uL 

TEMED 10 uL 

 

4. Let the gel sit in the plate for 30 min. 

 

Running the gel (3 hr) 

1. Prepare 1.5 mL of 1xTBE by adding 150 mL of 10xTBE buffer in to 1350 mL of 

micropure water. 

2. Unclamp the gel plates and place it in an electrophoresis plate which is contained 

in the PAGE running container. 

3. Load the 1xTBE buffer into the container until the max line. 

4. Prerun the gel for 45 min at 100 mV. While waiting, perform the next steps. 

5. Prepare the formamide loading buffer (FLD) using the following recipe (there 

might be enough leftover from previous run in the fridge): 

Chemicals Volume 

Formamide 950 uL 

*0.5 M EDTA solution, pH 8.0 10 uL 

Water 40 uL 

To make 0.5 M EDTA solution, dissolve 9.305 g of EDTA in 45 mL water. Then, add 

2.5 mL of 10 M NaOH. Measure pH of solution and add more NaOH if it is not at 

least 8.0 or did not dissolve the EDTA completely. It will take awhile to dissolve 

EDTA, > 10 min. 

6. Mix 20 uL of FLD with the 20 uL DNA sample.  

7. Using a tube hot plate, heat the sample at 95 C for 5 min, then place in ice 

immediately. 

8. Pipet in and out the solutions surrounding the comb. 

9. Load the samples. Load one of the comb with 10 uL loading dye to track the flow 

of gel. 
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10. Start the power supply at 120 mV for 90 min. 

 

Crush and soak method (overnight) 

1. Remove gel from the plates carefully using a pick. Cut the gel and insert into 

1.5 mL centrifuge tube. 

2. Use a pipette tip to crush the gel. 

3. Add 25 uL of 1xTE buffer 

4. Incubate tube @ 37C overnight. 

5. After incubation, centrifuge @ low speed (5000 G) for 3 min 

6. Transfer supernatant into a clean 0.6 mL tube 

7. Measure the ssDNA concentration using Nanodrop. 
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Appendix B 

 

PEER-REVIEWED MANUSCRIPTS THAT HAVE BEEN PREPARED AND/OR 

PUBLISHED DURING THIS PH.D. STUDY 

[16] Pang, Shintaro, Panxue Wang, Juhong Chen and Lili He. 2016. “Label-free, 

aptamer based SERS detection of salmonella enteritidis and listeria 

monocytogenes for food safety applications.” (Under Preparation). 

[15] Pang, Shintaro and Lili He. 2016. “Recent Advances in Surface Enhanced 

Raman Spectroscopic (SERS) Detection of Synthetic Chemical Pesticides.” 

Trends in Analytical Chemistry (Submitted and under review). 

[14] Boushell, Victoria, Shintaro Pang and Lili He. 2016. “Aptamer Based SERS 

Detection of Lysozyme on a Food Handling Surface.” Journal of Food Science 

(Submitted and under review). 

[13] Chen, Juhong, Shintaro Pang, Lili He and Sam Nugen. 2016. “Highly Sensitive 

and Selective Detection of Nitrite Ions Using Fe3O4 Au Magnetic Nanoparticles 

by Surface-Enhanced Raman Spectroscopy." Analytical Chemistry. (Submitted 

and under review).  

[12] Hou, Ruyan, Zhiyun Zhang, Tianxi Yang, Shintaro Pang, John Clark and Lili 

He. 2016. “Alteration of the non-systemic behavior of the pesticide ferbam on tea 

leaves by engineered gold nanoparticles.” Environmental Science & Technology 

(Submitted and under review). 

[11] Dornath, Paul, Stephen Ruzycky, Shintaro Pang, Lili He, Paul Dauenhauer and 

Wei Fan. 2016. "Adsorption-enhanced hydrolysis of Glucan Oligomers into 

Glucose over Three-Dimensionally Ordered Mesoporous Carbon Catalysts." ACS 

Catalysis. (Submitted and under review)   

[10] Pang, Shintaro, and Lili He. 2016. “Understanding the Competitive Interactions 

in the Aptamer−Gold Nanoparticle Based Colorimetric Assays Using Surface 

Enhanced Raman Spectroscopy (SERS).” Anal. Methods (January 20). 

doi:10.1039/C5AY03158C.  

[9] Pang, Shintaro, Changchu Ma, Naijie Zhang, and Lili He. 2015. “Investigation of 

the Solubility Enhancement Mechanism of Rebaudioside D Using a Solid 
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Dispersion Technique with Potassium Sorbate as a Carrier.” Food Chemistry 174 

(May 1): 564–70. doi:10.1016/j.foodchem.2014.11.113.  

[8] Pang, Shintaro, Theodore P Labuza and Lili He. 2014. “Development of a Single 

Aptamer-based Surface Enhanced Raman Scattering Method for Rapid Detection 

of Multiple Pesticides.” The Analyst. doi:10.1039/C3AN02263C.  

[7] Wang, Panxue, Shintaro Pang, Juhong Chen, Lynne McLandsborough, Sam R 

Nugen, Mingtao Fan, and Lili He. 2016. “Label-Free Mapping of Single Bacterial 

Cells Using Surface-Enhanced Raman Spectroscopy.” The Analyst (January 11). 

doi:10.1039/c5an02175h.  

[6] Wang, Panxue, Shintaro Pang, Hua Zhang, Mingtao Fan, and Lili He. 2016. 

“Characterization of Lactococcus Lactis Response to Ampicillin and 

Ciprofloxacin Using Surface-Enhanced Raman Spectroscopy.” Analytical and 

Bioanalytical Chemistry 408 (3) (January): 933–41. doi:10.1007/s00216-015-

9184-2.  

[5] Hou, Ruyan, Shintaro Pang, Lili He. 2015. “In situ SERS detection of multi-class 

insecticides on plant surfaces.” Analytical Methods (June 29). doi: 

10.1039/C5AY01058F  

[4] Lang, Tingting, Shintaro Pang, Lili He. 2015. “Integration of colorimetric and 

SERS detection for rapid screening and validation of melamine in milk. ” 

Analytical Methods (June 16). doi: 10.1039/C5AY00955C  

[3] Zheng, Jinkai, Shintaro Pang, Theodore P Labuza, and Lili He. 2014. 

“Evaluation of Surface-Enhanced Raman Scattering Detection Using a Handheld 

and a Bench-Top Raman Spectrometer: A Comparative Study.” Talanta 129 

(November): 79–85. doi:10.1016/j.talanta.2014.05.015.  

[2] Wijaya, Wisiani, Shintaro Pang, Theodore P Labuza, and Lili He. 2014. “Rapid 

Detection of Acetamiprid in Foods Using Surface-Enhanced Raman Spectroscopy 

(SERS).” Journal of Food Science 79 (4) (April): T743–7. doi:10.1111/1750-

3841.12391.  

[1] Zheng, Jinkai, Shintaro Pang, Theodore P Labuza, and Lili He. 2013. “Semi-

Quantification of Surface-Enhanced Raman Scattering Using a Handheld Raman 

Spectrometer: a Feasibility Study.” The Analyst 138 (23) (December 7): 7075–8. 

doi:10.1039/c3an01450a.  
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