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ABSTRACT 

EFFECTS OF ADOLESCENT ALCOHOL BINGE DRINKING ON 
PREFRONTAL MYELIN 

 
SEPTEMBER 2016 

 
WANETTE M. VARGAS RODRIGUEZ, B.A., UNIVERSITY OF PUERTO RICO 

MAYAGUEZ 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Heather N. Richardson 
 

Alcohol binge drinking is highly prevalent in teenagers and is associated with various 

harmful health effects and social problems. During adolescence, brain regions such as the 

prefrontal cortex (PFC) are still undergoing active development, characterized by 

increases in white matter volume. While the morphological details and the cellular and 

molecular sequences governing adolescent white matter development are not fully 

known, it is known that this development process is sensitive and can be disrupted. 

Although consumption of alcohol in a binge drinking pattern has been linked to lower 

white matter integrity in humans, it is important to determine if alcohol is causing this 

change or if predisposing factors can influence drinking. A rodent model of voluntary 

binge drinking was used to elicit high alcohol intake during a short developmental 

window in adolescence. Myelin was then assessed using several histochemical measures. 

Results showed that adolescent development is marked by an increase in myelinated 

fibers in the PFC that accompanied an increase in conduction velocity, and alcohol 

reduces prefrontal white matter and myelinated fiber density. In addition, heavy drinking 

was associated with long-term cognitive deficits. I also investigated sex differences in the 

effects of adolescent alcohol consumption on PFC myelination, showing that males 
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appear to be more vulnerable than females. The findings altogether increase our 

understanding of the developmental process of prefrontal myelination in adolescence and 

the maladaptive effects alcohol can have on this critical process. 
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CHAPTER 1 
 

GENERAL INTRODUCTION AND BACKGROUND 

1.1 Alcohol, adolescent consumption pattern, and consequences 

Alcohol (ethanol) is a small molecule that is soluble in water and is absorbed by 

the stomach and small intestine (Paton and McCune, 2015). Alcohol is considered to be a 

sedative that influences brain regions involved in reward and pleasure (Paton and 

McCune, 2015). However, it also acts as a stressor by activating the hypothalamic 

pituitary adrenal axis, producing physiological responses such as sweating and increases 

in blood pressure in humans (Wand and Dobs, 1991; Hundt et al., 2001; Thayer et al., 

2006; Paton and McCune, 2015). In addition, alcohol induced-activation of the 

hypothalamic pituitary adrenal axis has been shown in rodent models (e.g., Richardson et 

al., 2008). 

Although buying alcohol in the United States is illegal for any person under 21 

years of age, adolescents (12-18 years) have both a vast experience with this substance 

and a great deal of active use (Johnston et al., 2009). In fact, alcohol is the most 

consumed drug among young people today (Witt, 2010). Approximately 47% of the 

underage adolescent population consumes alcohol, and they do so at higher rates than 

adults (Miller et al., 2006). Underage drinking has an estimated annual cost of roughly 

$60 billion for the US, including medical and property loss costs (Miller et al., 2006). 

More specifically, the adolescent population has a particularly high prevalence of binge 

drinking (Miller et al., 2007; Johnston et al., 2009), which is defined as an excessive 

pattern of alcohol intake that brings a person’s blood alcohol level to 0.08 gram% or 
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higher; equivalent to 5 or more drinks for males and 4 or more drinks for females in a 

two-hour period (Wechsler and Nelson, 2001; NIAAA, 2005). 

Binge drinking is associated with various harmful health effects and social 

problems such as injuries, poor academic performance, increased risky behavior, 

sexual/physical assault, death, etc. (NIAAA, 2005; Rehm et al., 2009; Schuckit et al., 

2008). Binge drinking is one of the leading preventable causes of death in the United 

States (Rivara et al., 2004; NIAAA, 2005). Studies in humans indicate that heavy alcohol 

consumption may cause damage to the brain, especially in adolescents (Crego et al., 

2009; Maurage et al., 2012), and may have negative long-term consequences, such as a 

higher risk of developing alcohol dependence in adulthood (Boden and Fergusson, 2011; 

McCambridge et al., 2011). 

1.1.1 Adolescent voluntary alcohol binge drinking rodent model 

The present dissertation used a recently developed operant rodent model that 

elicits voluntary alcohol binge drinking during early adolescence (Gilpin et al., 2012). In 

this model, adolescent Wistar rats without a genetic predisposition for alcohol abuse are 

trained to self-administer alcohol by pressing a lever. This is an ideal model to determine 

causality (whether alcohol drinking induces changes in the brain) while being able to 

accurately model human adolescent alcohol consumption. Particularly, it is a useful 

model to understand the effect of alcohol consumption on myelin, using a level of 

analysis and anatomical detail that cannot be accomplished using conventional 

neuroimaging methods in humans. 

The traditional method for modeling excessive alcohol consumption in rodents 

uses forced or involuntary administration of alcohol via gavage (Yamaguchi et al., 2007), 
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injections (Markwiese et al., 1998; Ristuccia and Spear, 2008) or vapors (Becker and 

Lopez, 2004; O'Dell et al., 2004). However, rats that passively receive a drug can exhibit 

different behaviors and physiological responses from those who self-administer the drug. 

For example, rats that were injected with alcohol in adolescence showed reduced 

voluntary alcohol consumption later in adulthood (Gilpin et al., 2012). To avoid this 

limitation, operant self-administration models are used to elicit and control voluntary 

intake of drugs and control solutions in adolescent animals (Deroche-Gamonet, 2004). In 

addition, the operant self-administration model used for the research of this dissertation 

captures some of the characteristics of drinking behavior observed in human adolescents 

(e.g., moderate to heavy episodic drinking of sweetened alcohol with access to food and 

water at all times) (Windle et al., 2008; Gilpin et al., 2012).  

Our model implements an alcohol exposure schedule in which the operant lever is 

only accessible for six 30-minute sessions (bouts) every night for a two-week period, 

lasting from postnatal days (PD) 28 to 42. These 30-minute bouts are evenly distributed 

across 8 hours, with 1-hour breaks between bouts, during which the levers retract 

(Karanikas et al., 2013). Access to food and water is ad libitum. In our laboratory, the 

combination of sweetened alcohol and an intermittent drinking schedule has been 

successful in promoting moderate (around 50 g/kg) to high (around 75 g/kg or more) 

alcohol intake in ~90-95% rats tested so far. While rats do not reach the blood alcohol 

level of 0.08 grams% in every session/bout, they do reach this level at least a few times 

during the two-week period (84 bouts in total) resulting in high cumulative intake within 

a short developmental window.  
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1.2 White matter and myelination 

White matter is composed of neuronal fibers coated with myelin, a compacted cell 

membrane composed of lipids and proteins (Fields, 2008). Multiple layers of myelin are 

wrapped around axons of neurons in the brain, providing electrical insulation for action 

potentials (Fields, 2008). In the central nervous system (CNS), myelin is produced by 

oligodendrocytes, a class of glial cells capable of insulating multiple axons 

simultaneously (Fields, 2008; Kearns et al., 2015). This process, known as myelination, is 

critical for development as it augments the rate of neuronal communication (Giedd, 2004; 

Fields, 2008; Deoni et al., 2012). Indeed, past research in humans has shown a positive 

relationship between cognitive performance in tasks and increased myelination in the 

frontal cortex (Paus et al., 1999; Yurgelun-Todd et al., 2002; Blakemore and Choudhury, 

2006; Silveri et al., 2006). 

The molecular process of myelination in the CNS involves several steps 

(Baumann and Pham-Dinh, 2001; Simons and Trajkovic, 2006; Simons and Trotter, 

2007; Simons and Nave, 2016). First, oligodendrocyte precursor cells (OPCs) proliferate, 

a process moderated by various growth factors secreted by neurons and astrocytes. 

Second, OPCs migrate into their final positions in brain regions that will eventually 

become rich with white matter. Next, axons and glia interchange signals that promote the 

differentiation of OPCs into myelinating oligodendrocytes. Finally, after OPC 

differentiation, myelin formation occurs and is composed of 5 main steps (Baumann and 

Pham-Dinh, 2001; Simons and Trajkovic, 2006; Simons and Nave, 2016). (1) 

Oligodendrocytes identify and make contact with the proper axon. (2) Oligodendrocytes 

transcribe, produce, and transport to the axons the proteins necessary for myelin 
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synthesis. (3) The myelin membrane grows/expands and wraps around the axons in a 

spiral fashion. (4) After wrapping, myelin undergoes compaction, leaving dense segments 

of myelin. (5) Finally, segments of axon are left unmyelinated, forming gaps along the 

axon known as the nodes of Ranvier. 

 There are numerous players involved in myelination, but their roles are not well 

known yet, and we are just starting to understand the multitude of interactions necessary 

for CNS myelination (Nave, 2010).  Platelet-derived growth factor subunit A and 

fibroblast growth factor-2 regulate OPC proliferation and migration (Pringle et al., 1992; 

Baron et al., 2000; Mitew et al., 2014). OPC differentiation is orchestrated by several 

molecules: Notch 1 (Genoud et al., 2002), Olig2 (Lee et al., 2005), fibroblast growth 

factor-2 (Baron et al., 2000), leucine rich repeat and immunoglobulin domain containing-

1 (Mi et al., 2005), and thyroid hormone 3 (T3) (Durand and Raff, 2000).  

Thyroid hormone is in fact important for several stages of oligodendrocyte 

development (Rodriguez-Pena, 1999), in addition to oligodendrocyte differentiation 

(Barres et al., 1994; Gao et al., 1998), as mentioned above. T3 is also involved in 

regulating myelin regeneration (Dugas et al., 2012) and in oligodendrocyte survival as it 

protects oligodendrocytes from apoptosis (Jones et al., 2003; Schoonover et al., 2004). 

Recent work has shown that oligodendrocyte differentiation and myelin regeneration are 

regulated through the induction of the KLF9 gene by T3 (Dugas et al., 2012). 

After OPC differentiation, Neuregulin-1 signaling ensures proper oligodendrocyte 

maturation and survival (Simons and Trajkovic, 2006). Axonal caliber is a strong 

stimulator for myelination initiation, and laminin-α2 is involved in the initial 

oligodendrocyte process extension toward the axon (Hu et al., 2006). Neuregulin-1 type 
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III binding to ErbB2/B3 is thought to be involved in the transcription, production, and 

transport to the axons of myelin components, such as myelin basic protein (MBP), 

proteolipid protein and other proteins important for myelin synthesis (Simons and 

Trajkovic, 2006). Finally, it is thought that the instructions for how much myelin to 

produce are relayed by Neuregulin-1 type III axonal expression (Simons and Trajkovic, 

2006), particularly in mediating experience-dependent myelination (Makinodan et al., 

2012). 

1.2.1 Corpus callosum and forceps minor 

The corpus callosum (CC) is the largest white matter tract in the mammal brain 

(Bloom and Hynd, 2005; Chao et al., 2009; Pfefferbaum et al., 2010; Elofson et al., 

2013), and contains from 200 to 800 million fibers (Bloom and Hynd, 2005). The CC is 

important for facilitating the integration of diverse inputs and communicating information 

between the left and right hemispheres of the brain (Bloom and Hynd, 2005; Chao et al., 

2009; Pfefferbaum et al., 2010; Elofson et al., 2013). This brain region has been divided 

into four main sub-regions (from anterior to posterior CC): the genu, body, isthmus, and 

splenium (Keshavan et al., 2002). Most of the CC sub-regions contain fiber tracts that 

connect different brain cortices (Standring, 2005; Moore and Puri, 2012). The forceps 

minor in the genu connects the frontal cortices, the body passes through the corona 

radiata and connects neocortical areas, and the forceps major in the splenium connects the 

occipital lobes. Just like white matter in general, the CC develops caudally first and then 

rostrally, from the splenium to the genu (Hynd et al., 1995; Bloom and Hynd, 2005; 

Vincze et al., 2008).   
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The genu is the anterior portion of the CC of the brain and consists of fibers from 

the left and right prefrontal cortex (Bloom and Hynd, 2005). The forceps minor is a small 

fiber bundle that interconnects the medial and lateral prefrontal cortices and crosses 

through the genu of the CC (Wing and Osborn, 1977; Raybaud and Girard, 2005; 

Standring, 2005; Kulkarni, 2007; Orrison, 2008; Jackson et al., 2011). The medial and 

lateral prefrontal cortices connected by the forceps minor are responsible for cognitive 

control (Taren et al., 2011) and have been implicated with risk-taking behavior (Crone et 

al., 2008). 

1.2.2 White matter development during adolescence and sex differences 

A large amount of white matter development studies have been carried out using 

imaging studies in humans. Two of the most common methods for measuring white 

matter are magnetic resonance imaging (MRI), which measures white matter volume 

(Karlsgodt et al., 2012) and, more recently, diffusion tensor imaging (DTI), which 

measures water movement within fibers to assess white matter integrity (Ladouceur et al., 

2012). DTI is therefore helpful for determining the microstructure of white matter. The 

most common DTI measures are fractional anisotropy (FA) and mean diffusivity (MD) 

(Brenhouse and Andersen, 2011). FA is a measure of water diffusion restricted by 

direction (Bava et al., 2010), and a higher measure of FA means greater white matter 

integrity. MD, also called trace, indexes the average overall diffusion (Ladouceur et al., 

2012), and a higher measure of MD is related with less white matter.  

As mentioned above, myelination in the CNS is similar in many species as it 

progresses from caudal to rostral areas (Hynd et al., 1995; Bloom and Hynd, 2005; 

Doretto et al., 2011; Downes and Mullins, 2014). It is still occurring in the human brain 
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throughout adolescence up to the third decade of life, particularly with higher-level 

association regions such as the frontal cortex, which is fully myelinated last (Yakovlev 

and Lecours, 1967; Hynd et al., 1995; Baumann and Pham-Dinh, 2001). During 

adolescence, white matter volume in brain areas such as the frontal cortices increases 

usually in a linear fashion, while gray matter volume decreases (usually in an inverted-U 

manner) (Giedd et al., 1999; Paus et al., 1999; 2001; Sowell et al., 2003; Barnea-Goraly 

et al., 2005; Brenhouse and Andersen, 2011). This increase in white matter volume may 

be linked to increases in axonal diameter, increases in myelin thickness, or both (Paus, 

2010; Karlsgodt et al., 2012). Similar to humans, myelination in rodents continues 

throughout adolescence and into early adulthood (Juraska and Markham, 2004; Markham 

et al., 2007; Doretto et al., 2011; Mengler et al., 2014; Willing and Juraska, 2015). There 

is a massive increase in myelination during postnatal days 15-30, a period corresponding 

to early adolescence (Salvati et al., 2000; Karlsgodt et al., 2012).  

A great deal of research regarding white matter development during adolescence 

has investigated developmental sex differences in humans. Although both human males 

and females show general increases in white matter during adolescence, there are several 

developmental differences between the sexes. Male teenagers showed greater overall 

white matter volume and CC area than female teenagers (De Bellis et al., 2001). Males 

also showed higher fractional anisotropy than females in overall white matter (Herting et 

al., 2012), in frontal regions (Schmithorst et al., 2008), and in white matter regions 

(Silveri et al., 2006). Moreover, male adolescents had higher proportions of prefrontal 

white matter volume to overall white mater volume than female adolescents (Nagel et al., 

2006). Although males show more white matter volume in general, white matter in 
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females develops earlier than in males (De Bellis et al., 2001; Asato et al., 2010; Wang et 

al., 2012). In fact, males showed a linear relationship between age and frontal white 

matter volume, while females showed a curvilinear relationship (Brain Development 

Cooperative Group, 2012). In addition, female teens showed a higher FA than male teens 

in the splenium of the CC (Schmithorst et al., 2008).  

Similar to humans, male and female rodents show general white matter increases 

throughout adolescence, also with particular sex differences in white matter development. 

The increase in frontal cortex white matter volume between 35- and 90-day old male rats 

was greater (approximately 40%) than between 35- and 90-day old female rats 

(approximately 25%) (Markham et al., 2007). There were no differences between sexes 

in frontal white matter at postnatal day 35. Similar to frontal white matter, both males and 

females showed a similar increase in glial cell number with age in the dorsal mPFC. 

However, in the ventral mPFC, only males displayed an increase between age groups. 

There were no differences between sexes in glial cell number in the ventral or dorsal 

mPFC at postnatal day 35 (Markham et al., 2007). Similarly, males and females showed 

no differences in myelinated axon number in the splenium of the CC at postnatal day 25 

(Juraska and Markham, 2004). Taken together, these results suggest there are sex-based 

differences in white matter development during adolescence. 

1.3 Prefrontal cortex 

The prefrontal cortex (PFC) is the brain region responsible for executive cognitive 

functions such as emotion regulation and impulse control (Clark et al., 2008; Alfonso-

Loeches and Guerri, 2011). The PFC can be roughly divided into the medial prefrontal, 

orbitofrontal, and dorsolateral cortices (Hamid, 2014). An important aspect of the PFC is 
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that its development/maturation continues throughout adolescence (Spear, 2000; Gogtay 

et al., 2004; Crews et al., 2007; Markham et al., 2007; Casey et al., 2008; Guerri and 

Pascual, 2010). In humans, as mentioned above, frontal cortex development during 

adolescence is characterized by an increase in white matter volume and a decrease of 

gray matter volume (independent of white matter) (Giedd et al., 1999; Paus et al., 1999; 

2001; Sowell et al., 2003; Barnea-Goraly et al., 2005), which are thought to enhance 

cognitive processing (Giedd, 2004). Similarly, rodent studies also show an increase in 

myelination during this period. For example, myelinated fibers projecting from the 

basolateral amygdala into layers II and V of the anterior cingulate and infralimbic 

subdivisions of the medial PFC increased in number during adolescent development 

(Cunningham et al., 2002). In addition, the myelinated fiber density of female Long 

Evans rats significantly increased from young-aged (4-6 months old) to middle-aged rats 

(18 months) (Yang et al., 2009), suggesting that myelination continues into adulthood. 

The dynamic changes occurring in the developing PFC during adolescence (Casey 

et al., 2008) may make this brain region more vulnerable to toxic external stimuli, such as 

alcohol (Blakemore and Choudhury, 2006; Crews et al., 2007). In fact, the PFC is 

hypothesized to be particularly susceptible to alcohol exposure during adolescence (Clark 

et al., 2008; Nixon and McClain, 2010; Alfonso-Loeches and Guerri, 2011). In support of 

this, binge drinking during adolescence is associated with reduced white matter 

quality/integrity in the PFC (McQueeny et al., 2009), and with smaller PFC white matter 

volume in human adolescents (De Bellis et al., 2005). If alcohol interferes with 

myelination of axons in the PFC during adolescent development, it could permanently 

impair the normal development of executive functions. Indeed, binge drinking during 
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adolescence is related to greater susceptibility to cognitive deficits (Brown et al., 2000; 

Hartley et al., 2004; Guerri and Pascual, 2010). 

1.3.1 Medial prefrontal cortex 

The medial prefrontal cortex (mPFC) is an important brain region directly 

involved in higher order cognitive functions such as goal directed behavior and emotional 

processing (Fuster, 2000; 2001; Hoover and Vertes, 2007). The three major subdivisions 

of the mPFC in rodents are the anterior cingulate, prelimbic, and infralimbic cortices 

(Uylings and van Eden, 1990; Groenewegen and Uylings, 2000; Ongür and Price, 2000; 

Vertes, 2004). The anterior cingulate cortex is part of the dorsal mPFC and the 

infralimbic cortex is part of the ventral mPFC (Hoover and Vertes, 2007; Linley et al., 

2013).  

The subdivisions of the mPFC are thought to have specific functions (Vertes, 

2004). The anterior cingulate division of the mPFC is important for planning motor 

behaviors, specifically eye movements in the rat (Hall and Lindholm, 1974), but also for 

motor reaction memory and temporal and spatial information (Dalley et al., 2004). In 

addition, the anterior cingulate cortex may be important for response flexibility (Seamans 

et al., 1995). The prelimbic cortex of the mPFC connects to the limbic system, plays a 

role in working memory, and is important for processing limbic-cognitive functions 

(Delatour and Gisquet-Verrier, 1996; Hoover and Vertes, 2007). The infralimbic cortex 

of the mPFC also connects to the limbic system and is important for regulation of 

autonomic (“visceromotor”) activity such as respiration, heart rate, and blood pressure 

(Hardy and Holmes, 1988; Hoover and Vertes, 2007) and also for some cognitive 

functions (Kesner and Ragozzino, 2003). It is important to mention that the subdivisions 
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of the mPFC are interconnected as well. For example, all three subdivisions of the mPFC 

have projections to the basolateral amygdala, indicating all three subdivisions are 

involved in emotional responses and fear conditioning (Gabbott et al., 2005). 

The mPFC is composed mostly of pyramidal cells, which mainly transmit 

glutamatergic/excitatory signals (De-May and Ali, 2013; Miguéns et al., 2015), and 

GABAergic interneurons, which represent roughly 20% of mPFC cells (De-May and Ali, 

2013; Riga et al., 2014). There are five layers in the mPFC, with layers II, III, and V 

being some of the most studied. Layers II and III are often grouped together and are the 

main layers for processing information within the mPFC. Layer V is the main output 

layer of this region (Goodfellow et al., 2009; van Aerde and Feldmeyer, 2015). 

The mPFC has numerous efferent and afferent projections, which can sometimes 

be unique to a particular mPFC subdivision. This contributes to the distinct functions 

observed in the different subdivisions of the mPFC. Summarizing mPFC efferents, as 

mentioned above, the mPFC projects heavily to the basolateral amygdala (Gabbott et al., 

2005), sending glutamatergic projections to the local interneurons (Rosenkranz and 

Grace, 2001). The interneurons in the basolateral amygdala suppress sensory inputs to the 

cortex, and therefore play a role in the regulation of affective behaviors (Rosenkranz and 

Grace, 2001). The ventral mPFC also projects heavily to the ventral tegmental area, a 

connection involved in reward learning and motivation (Carr and Sesack, 2000). In 

addition, the mPFC projections to the striatum are abundant. Particularly, the infralimbic 

cortex projects heavily to the nucleus accumbens shell, while the dorsal part of the 

prelimbic cortex projects predominantly to the nucleus accumbens core (Heidbreder and 

Groenewegen, 2003), both of which are implicated in addictive behaviors and reward 
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learning (Hodge et al., 1995; Di Chiara et al., 2004; Russo et al., 2010). mPFC efferents, 

specifically those from the infralimbic subdivision to the striatum, have been shown to be 

necessary for the expression of habitual behaviors (Smith et al., 2012), whereas 

projections from the prelimbic subdivision to the striatum are activated during decision-

making tasks (Friedman et al., 2015). The mPFC also projects to the thalamus, 

hypothalamus, spinal cord, and raphe nuclei (Heidbreder and Groenewegen, 2003). 

Some of the main afferent projections to the mPFC are summarized below. In 

general, the dorsal mPFC receives mostly sensorimotor input from the cortex and 

thalamus, which suggests that the dorsal mPFC takes in abundant information from 

sensory modalities (Heidbreder and Groenewegen, 2003; Hoover and Vertes, 2007). In 

contrast, the ventral mPFC receives more limbic input from higher association cortices, 

suggesting that this subdivision is involved in the integration of information (Heidbreder 

and Groenewegen, 2003; Hoover and Vertes, 2007). Both dorsal and ventral mPFC 

receive projections from the basolateral amygdala, which may involve integrating 

emotional responses (Cunningham et al., 2008). In addition, the mPFC in general 

receives projections from the ventral tegmental area and is involved in the regulation of 

voluntary motor execution (Seamans and Yang, 2004). The dorsal and ventral mPFC also 

receive input from the hippocampus (Gabbott et al., 2002; Heidbreder and Groenewegen, 

2003). Particularly, the infralimbic cortex receives the most abundant projections from 

this region (Hoover and Vertes, 2007). Other brain regions that send projections to the 

mPFC are the thalamus, hypothalamus, and raphe nuclei (Heidbreder and Groenewegen, 

2003). 



	  
	  

 
 

14 

1.4 Effects of adolescent alcohol consumption on the prefrontal cortex   

Human studies have shown correlations between alcohol consumption and 

alterations in the PFC. Adolescents with alcohol use disorders displayed a significantly 

reduced PFC size (De Bellis et al., 2005) and decreased blood flow in frontal regions 

(Norman et al., 2011), when compared to control adolescents. Interestingly, there are sex 

differences in the effects of alcohol on PFC. Adolescent female binge drinkers displayed 

less activation of frontal lobes than control adolescent females when completing a spatial 

working memory task. Conversely, in the same study, adolescent male binge drinkers 

showed higher activation of this region than adolescent male controls when completing 

the same task (Squeglia et al., 2011). In addition, males with alcohol use disorders 

showed larger PFC volume than healthy control males, while females with alcohol use 

disorders displayed smaller PFC volume than healthy control females (Medina et al., 

2008). However, as is clearly noted and due to the limitations of the methodology, it is 

not understood whether a reduction in PFC size is a predisposing factor or a maladaptive 

consequence of alcohol use disorders (De Bellis et al., 2005).  

Drug use and addiction are associated with deficits in PFC-dependent functions, 

such as executive control of behavior and impulse control (Bechara, 2005; Oscar-Berman 

and Marinkovic, 2007). In fact, behavioral similarities exist between drug addicts and 

patients with physical trauma to the PFC (Bechara, 2005), suggesting the dysfunction in 

the PFC is highly correlated with addictive behaviors. Moreover, alcohol-dependent 

women displayed significantly reduced activity in prefrontal regions during a spatial 

working memory task (Tapert et al., 2001). In addition, both male and female binge 
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drinkers showed a marked deficit in PFC-dependent executive functions, such as spatial 

working memory and pattern recognition (Weissenborn and Duka, 2003).  

In rodents, adolescent alcohol exposure dampened the brain response to alcohol 

later in adulthood; particularly alcohol dampened the activation of the PFC and amygdala 

(Liu and Crews, 2015). This suggests that alcohol exposure during adolescence has long-

term effects to the PFC. Concurrently, adolescent consumption of alcohol markedly 

reduced spike activity of PFC neurons in a dose-dependent manner, as observed via in 

vivo electrophysiological recordings (Tu et al., 2007). Interestingly, chronic intermittent 

alcohol exposure in adolescence did not induce significant acute deficits in certain PFC-

dependent behaviors, such as set-shifting (Badanich et al., 2011), suggesting that 

behavioral repercussions may not be immediate but may occur later in adulthood. In 

contrast, adolescent alcohol exposure sensitizes brain areas involved in addictive 

behaviors, such as nucleus accumbens and ventral tegmental area, both of which 

displayed exacerbated activation to alcohol consumption later in adulthood (Liu and 

Crews, 2015). 

1.5 Effects of adolescent alcohol consumption on frontal white matter  

Human studies have shown correlations between adolescent alcohol consumption 

and reduction in frontal white matter integrity. For example, binge drinking adolescents 

showed a significant reduction in FA (white matter integrity) in major white matter 

frontal pathways when compared to controls (Jacobus et al., 2009; McQueeny et al., 

2009). In addition, the number of hangover symptoms was significantly correlated with 

lower FA in the genu and body of the CC (McQueeny et al., 2009). Similarly, increased 
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alcohol consumption in adolescents was correlated with higher MD (lower white matter 

quality) in fiber tracts of frontal regions (Bava et al., 2012).  

Other human studies have examined the effects on white matter in adolescents 

with alcohol use disorders, showing some inconsistencies and sex differences. For 

example, one study showed smaller PFC white matter volume in both male and female 

teenagers with alcohol use disorders (De Bellis et al., 2005). Similarly, another study 

showed that females with alcohol use disorders displayed smaller PFC white matter 

volumes than healthy control females (Medina et al., 2008). However, males with alcohol 

use disorders showed larger PFC white matter volumes than healthy control males, 

suggesting inconsistencies in sex differences in the effect of alcohol on PFC white matter 

(Medina et al., 2008). Interestingly, De Bellis et al. (2008) showed that adolescents with 

alcohol use and comorbid mental disorders showed increased FA, as compared to 

controls, in the rostral body and isthmus of the CC. This increase in FA may suggest an 

accelerated myelination, which could function as a compensatory response in adolescents 

with heightened risk for substance use and other comorbid mental disorders (De Bellis et 

al., 2008).  

Very few studies have been conducted in adolescent rodents to investigate the 

effect of alcohol exposure on myelin. In one study, adolescent mice that were injected 

with 3 g/kg of alcohol showed down-regulation of myelin proteins and aberrant 

compaction of myelin in the PFC, when compared to saline controls (Montesinos et al., 

2015). Koss et al. (2012) showed that male adolescent rats injected with 3 g/kg of alcohol 

had fewer mPFC glial cells later in adulthood than male controls, indicating long-term 

effects of alcohol on mPFC glial cell count. Females, however, did not display significant 
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differences in glial cell count between the alcohol and control groups in adulthood, which 

indicate sex differences exist in the interaction between alcohol exposure and glial cell 

count (Koss et al., 2012).  

The majority of rodent studies investigating the effect of alcohol exposure on 

myelin have been conducted in adult animals. For example, adult mice treated with 10% 

v/v alcohol (replacing water) for 5 months showed a reduction of MBP immunoreactivity 

in the PFC, a downregulation of proteins and mRNAs involved in myelination in the 

cortex, an increase in oligodendrocyte cell death in the mPFC, and disruptions in myelin 

compaction in the CC and cortex when compared to controls (Alfonso-Loeches et al., 

2012). In addition, adult rats exposed to chronic intermittent ethanol vapor exposure 

displayed reduced MBP expression in the mPFC compared to controls (Kim et al., 2015). 

Another study showed a reduction in CC thickness, area, and myelin thickness in adult 

rats exposed to alcohol for 1 year (3 bottle-choice paradigm), as compared to controls 

(He et al., 2007). 

1.6 Objectives  

Based on the current literature regarding adolescent alcohol consumption and 

white matter development discussed above, the present dissertation is composed of three 

aims. The first aim is to examine the morphological changes associated with 

developmental increases in myelination of the PFC and forceps minor of the CC during 

adolescence (Chapter 2). The second aim is composed of two sections: (1) Determine the 

factor(s) that could drive the previously observed relationship between increased alcohol 

consumption and decreased white matter, and (2) Determine the functional significance 

of alcohol consumption during adolescence at the behavioral level (Chapter 3). The third 
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aim of this dissertation is also composed of two sections: (1) Test for sex differences in 

the effects of adolescent alcohol consumption on PFC myelination, and (2) Identify a 

potential process that may be involved in how alcohol impacts prefrontal myelin structure 

(Chapter 4). 
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CHAPTER 2 
 

MYELINATION OF PREFRONTAL AXONS IS ACCOMPANIED BY 

INCREASED SPEED AND INTEGRITY OF CORTICAL 

NEUROTRANSMISSION IN RATS 

 
In preparation.  

Note: My work (WMV) for this manuscript focused on carrying out the histological 

experiments to study the morphology of myelin. We collaborated with Dr. Geng-Lin Li 

and his laboratory for the electrophysiological experiments, which were conducted by 

Sean McDougall. I have included both histological and electrophysiological experiments 

in the present chapter in order to provide the complete story of the manuscript. 

2.1 Abstract 

The anterior cingulate is a sub-region of the prefrontal cortex involved in 

emotional and cognitive processing. Cells in the anterior cingulate project to—and 

receive projections from—other cortical and subcortical structures via the anterior 

branches of the corpus callosum, specifically the forceps minor. Improvements in 

cognitive ability during adolescent development correspond with increases in frontal 

white matter—the fiber tracts comprised primarily of myelinated axons. Myelin is a lipid-

rich coating wrapped around the axons of neurons, and myelination of axons during 

adolescence may serve to increase the speed of communication between neurons. 

Alternatively, the developmental increases in white matter may correspond with other 

functions such as the integrity of firing, e.g., the probability that action potentials 

successfully propagate along the axon to the terminal. We tested whether the 
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developmental increase in white matter corresponds with increased speed or with 

enhanced integrity of neural transmission by examining the microstructural changes in 

myelinated axons in the medial prefrontal cortex (mPFC) and the neurophysiological 

properties of these axons. We found a significant increase in the number of myelinated 

axons in mPFC from postnatal days (PD) 15-43, which corresponded with a significant 

increase in conduction velocity during PD 15-22. The relationship between response 

latency and transmission distance depended on the level of stimulation used, suggesting 

that different levels of stimulation preferentially activate separate fiber populations. High 

stimulation intensity produced a positive relationship between latency and distance in all 

age groups. Conversely, stimulation at threshold intensity produced no correlation 

between latency and distance, but did produce a positive relationship between conduction 

velocity and transmission distance. This indicates that for this population of fibers, 

increased conduction velocity in longer fibers may serve as a mechanism to keep 

response latency constant over different distances so signals may be received at the same 

time. Disruption in myelination of these axons in developing animals could impair the 

speed, integrity, and synchronization of neural signals, which could have long-term 

effects on cognitive processing in adulthood.  

2.2 Introduction 

Myelination of axons in the brain is a critical process that can increase the rate of 

neuronal communication (Giedd, 2004). Myelination continues from birth into adulthood 

in some brain regions in both rodents and humans. The brain undergoes a general 

posterior to anterior process of myelination, with the prefrontal cortex (PFC) in the 

anterior portion of the brain one of the last structures to finish myelinating (Aubert-
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Broche et al., 2008). The PFC is a structure crucially involved in different aspects of 

executive function and emotional regulation. A positive correlation between myelin 

density in the PFC and performance on different cognitive tasks has been demonstrated in 

both humans and rats, so it is important to understand how prefrontal axons change 

structurally and functionally during development (Fuster, 2002). As will be described in 

Chapter 3, research in our lab has also demonstrated that myelin density in the anterior 

cingulate cortex (Cg1), a specific sub-region of the mPFC, is decreased by voluntary 

alcohol binge drinking in adolescent rats (Vargas et al., 2014). This cortical region has an 

important role in the affective perception of pain (Fuchs et al., 2014), stress response 

regulation (Law et al., 2009), working memory (Seamans et al., 1995), behavioral control 

(Takenouchi et al., 1999), and attention (Rushworth et al., 2003; Kaping et al., 2011). To 

fully understand the role of Cg1 myelin in complex cognitive processing or how this is 

affected by alcohol, we must first determine how myelination of axons changes within 

the Cg1 during adolescence. This was the objective of the present study. 

In humans, myelination begins prenatally and continues into adolescence. In 

contrast, when rats are born, their central nervous systems show almost no myelin. 

Myelination begins shortly after birth, with the first myelinated fibers being observed in 

the forebrain by postnatal day (PD) 7 (Downes and Mullins, 2013). The corpus callosum 

starts to undergo a steady increase in myelination by PD 8, and continues to myelinate 

until PD 34 (Downes and Mullins, 2013).  

Electron microscopy has been used to examine microstructural changes in myelin 

that occurred over the course of rats’ adolescent development in the genu of the corpus 

callosum (Calabrese and Johnson, 2013) —the most anterior part of the corpus callosum 
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that includes the forceps minor (FM) (Fitsiori et al., 2011). The FM has axon connections 

with cells in the Cg1 (Higashi et al., 1991). These axons were almost devoid of myelin at 

birth, but showed evidence of early myelination by PD 12, showing a rapid increase in 

myelin between PD 12 and PD 24 animals (Calabrese and Johnson, 2013). Calabrese and 

Johnson also used diffusion tensor magnetic resonance imaging to quantify changes in 

functional anisotropy and diffusivity in different white matter structures of the rat brain 

over the course of adolescent development. These parameters can be used as markers of 

myelin development in white matter structures. They found that rats underwent a period 

of rapid myelination in most white matter structures between PD 10 and 20, and that 

measures of myelination were relatively stable after this point up to adulthood (PD 80). 

This corroborates other studies showing that most of the myelination process is 

completed by about PD 24 in the entire brain, including the PFC (Downes and Mullins, 

2013). However, many of the studies measured the degree of myelination only in the 

white matter regions such as the corpus callosum of the forebrain. It is possible that 

changes in myelin within the gray matter could follow a different, and perhaps later, time 

course than that for white matter. For example, aging tends to promote a loss of myelin 

density in white matter, but not gray matter, structures in the brain of humans (Piguet et 

al., 2009). Similar age-related losses of myelin density in white matter structures have 

also been observed in rats (Yang et al., 2009). 

Several studies have demonstrated that myelination does not progress to the same 

extent in all mature fibers (Tomassy et al., 2014). In particular, differential myelination 

can be used as a mechanism to keep conduction times synchronous despite differences in 

pathlength of individual fibers that target the same regions (Lang and Rosenbluth, 2003; 
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Seidl, 2014). Differential myelination has been observed in various regions of the brain: 

retinal ganglion cell axons traveling to the lateral geniculate nucleus (Stanford, 1987), 

connections between the ventrobasal nucleus of the thalamus and layer IV cells in the 

primary somatosensory cortex (Salami et al., 2003), and axonal projections from 

perirhinal cortex neurons to lateral amygdala (Pelletier and Paré, 2002). These studies 

show that axon populations can have different relationships between latency and 

transmission distance, even within the same anatomical area. 

It is generally assumed that cognitive improvements that accompany normal 

myelin development in the PFC, or behavioral changes induced by drugs that affect 

myelin density, such as alcohol, result from changes in action potential conduction 

velocity. The goal of our study was to take the first step in answering this question by 

measuring action potential conduction velocity changes relative to distance in the PFC 

over the course of adolescent development. We targeted gray matter fiber connections 

between the FM and the Cg1, based on previous research implicating myelin in this 

region as being especially susceptible to interference from adolescent alcohol 

consumption (Vargas et al., 2014). This study provides the necessary baseline data to 

interpret future results on how environmental deviations from normal developmental 

circumstances (e.g. alcohol) affect action potential conduction velocity in this important 

region of the PFC. 
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2.3 Materials and Methods 

2.3.1 Animals  

A total of 45 male Wistar rats were used in the present study (eight for the 

histological portion and 37 for the electrophysiological portion of this study). For the 

histological studies, rats arrived from Charles River with dams on PD 11 (pre-adolescent 

group) or without dams on PD 39 (adolescent group). PD 11 animals were housed with 

mothers and PD 39 animals were housed in pairs. For the electrophysiological studies, 

animals were divided into four age groups: PD 8-15 (juvenile), PD 22-28 (pre-adolescent 

period), PD 43-52 (mid-adolescent period), and PD 81-93 (early adulthood). All animals 

were kept on a 12-hour cycle (lights on at 8am), with ad libitum food and water. All 

procedures were performed according to the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals and approved by the Institutional Animal Care and 

Use Committee. 

2.3.2 Semi-thin tissue processing  

Brains were collected in pre-adolescent (PD 15) and adolescent (PD 43) male rats 

following intracardial perfusions with 1% paraformaldehyde/ 1.25% glutaraldehyde. 

After 4 days of post-fixation, brains were sectioned coronally with a vibratome into 150-

µm sections to isolate the PFC (between 3.20 mm - 1.85 mm away from Bregma) 

(Paxinos and Watson, 1998). Tissue was contrasted with the lipid cross-linker osmium 

tetraoxide and with the negative stain uranyl acetate to visualize phospholipids, nucleic 

acids, and myelin sheaths, dehydrated with various percentages of alcohols and propylene 

oxide, embedded in epoxy resin, and mounted on epoxy blocks. Digital images from the 
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150-µm sections were taken at 10x and the semi-thin (2.5 µm) coronal sections were 

collected using an RMC MT6000-XL ultra microtome and glass knives. Sections were 

then stained with 0.1M toluidine blue in borax, dehydrated with graded alcohols, and 

cover slipped for microscopic analysis. 

2.3.3 Semi-thin microscopic analysis  

Photomicrographs were taken in layer V of the mPFC using a Leica microscope 

(100x oil objective) attached to a DP71 Olympus camera. We focused on layer V because 

it is the main output layer of the mPFC (Goodfellow et al., 2009; van Aerde and 

Feldmeyer, 2013). In addition, PFC layers II/III display more heterogeneity than layers 

V/VI (Tomassy et al., 2014). Layer V was identified by locating its characteristic large 

pyramidal neurons with apical dendrites that project towards layer I of the cortex 

(Kiernan and Hudson, 1991; Swenson, 2006; Wang et al., 2006; Fénelon et al., 2011; 

Vostrikov and Uranova, 2011).  

The number of myelinated axons and the thickness of myelin relative to axonal 

size (g-ratio) were quantified using Image J software (Rasband, 1997) (modified from 

(Michailov et al., 2004). Axons were identified by matching the characteristics (e.g. 

shape) that previous studies using ultra-thin sections and electron microscopy found 

(Peters et al., 2001; Chomiak and Hu, 2009; Liu et al., 2012). We quantified g-ratio in at 

least 100 randomly selected myelinated axons for each animal as an index of myelin 

thickness. For consistency purposes, we only selected axons that had its entire myelin 

sheath visible, and thus did not select any axon that had a partial myelin sheath visible. 

G-ratio was calculated by dividing the axon area by the area of the axon plus the myelin 

sheath combined. We used area-based g-ratio as opposed to the standard diameter-based 
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g-ratio (as Bakken and Stevens, 2011) because axons in the central nervous system are 

not perfectly circular in cross sections (Almeida et al., 2011; Perge et al., 2012). 

2.3.4 Electrophysiology tissue processing 

Following euthanasia, brains were rapidly removed and placed in ice-cold cutting 

solution, which contained 89.1 mM sucrose, 13.88 mM glucose, 87.27 mM NaCl, 2.48 

mM KCl, 1.25 mM sodium phosphate monobasic monohydrate, 25 mM sodium 

bicarbonate, 7 mM MgCl2 ·6H2O, and 0.37 mM CaCl2. Coronal sections were cut at 

300-µm thickness with a vibratome (Leica VT1200 S with Vibrocheck) while submerged 

in ice-cold cutting solution. The sections were then incubated in artificial cerebral spinal 

fluid (aCSF) at 33°C for 45 minutes, which contained 127 mM NaCl, 25 mM sodium 

bicarbonate, 25 mM glucose, 2.5 mM KCl, and 1.25 mM sodium phosphate monobasic 

monohydrate.  

2.3.5 Recordings  

Sections were then transferred with a pipet to a recording chamber, where they 

were perfused with aCSF for the duration of recording. While submerged in either cutting 

solution or aCSF, tissue was always continuously bubbled with 95% O2 and 5% CO2 

gas. During recording, neurons were located using an Olympus BX51W1 microscope 

with 4x and 60x objectives. Cells in the Cg1 were then patched under whole-cell mode 

(amplifier was HEKA EPC10/2 USB with PatchMaster for data acquisition). 

Micropipettes had a bath resistance between 3-11MΩ (pipet puller Narishige PC-10), 

with an internal solution containing 130 mM KGlu, 10 mM KCl, 10 mM HEPES, 1 mM 

EGTA, 3 mM MgATP, and 0.5 mM NaGTP combined with Alexa 594 fluorescent dye. A 
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concentric bipolar stimulating electrode was used to excite fibers in the dorsal-medial 

region of the FM branches of the corpus callosum (stimulator used was Analog Stimulus 

Isolator Model 2200 from S-M Systems). For animals in which the FM was visibly 

myelinated, this region was easy to locate microscopically under 4x magnification. 

However, for all animals, including those that had no visible myelin under 4x 

magnification, the boundary of the FM white matter and the beginning of the cortex 

could easily be discerned under 60x magnification. The cortex could be determined from 

the presence of neurons, while the FM could be determined by the presence of fiber 

bundles. Excitatory postsynaptic currents (EPSCs) were recorded in the patched cells 

under voltage clamp at -80mV. Initially, a stimulation ramp protocol was run to see how 

the EPSC profile changed with increasing stimulation voltage, and then the cell was 

repeatedly stimulated with constant intensity stimulation, in order to establish a stable 

response.  

2.3.6 Stimulation paradigms  

Two different stimulation paradigms were used. The first used high intensity 

stimulation (10-200uA, 1ms) to generate maximal amplitude EPSCs. The EPSC onset 

was determined as the time point following the artifact when the current changed by 20 

pA from baseline. A threshold stimulation paradigm was also used (10-200uA, 0.2ms). 

Threshold was determined by lowering the stimulation intensity to the minimum level at 

which EPSCs could still be evoked, accompanied by frequent failures. The EPSC onset 

was measured as the time point where the slope of the current changed from baseline 

following the EPSC artifact. 
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2.3.7 Analysis  

Images of the patched cells were taken under 60x magnification for identification 

of cell type. Images taken under 4x magnification, showing the placement of the 

stimulation electrode relative to the recorded cell, were used to determine the 

transmission distance. This was estimated as the distance between the cell and the 

stimulating electrode. For each cell that showed a stable EPSC response, these distances 

were plotted against the EPSC onset time. Two different methods were used to determine 

the response latency. The first method used the time difference between the start of the 

stimulation artifact and the point following the post-artifact current change that fell below 

the baseline current of the cell prior to applying stimulation. The second method 

determined the latency between the start of the artifact and the peak of the resulting 

EPSC. One drawback of this method was that the EPSC peak did not necessary reflect the 

most accurate measure of EPSC onset because cell-to-cell EPSCs exhibited a wide range 

of different kinetics, i.e. the time difference between the baseline and the EPSC peak 

varied widely between cells. However, the second method also had advantages. One 

advantage was that calculations of the average response latencies and standard deviations 

in latency could easily be determined using an automated program in Igor Pro for a series 

of stimulations (usually ≥10 traces for each cell). Another advantage of this method was 

that it allowed for the determination of the response latency jitter for each cell.  

Jitter is the variability in response latency observed throughout various 

stimulations and it is important because it can reliably discriminate between mono- and 

polysynaptic pathways (Doyle and Andresen, 2001). Jitter for each series of stimulations 
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was calculated as the standard deviation of the response latencies using ≥10 individual 

traces.  

2.3.8 Statistical Analyses  

ANOVAs and t-tests were used to assess the difference in conduction velocity and 

myelinated axon number between the different age groups. Pearson correlation analyses 

were used to assess relationships between latency and transmission distance, and between 

g-ratio and axon diameter. In addition, a multiple regression analysis was performed to 

examine whether axon diameter, age, and their interaction predicted g-ratio in the FM. 

Statistical significance was defined as p ≤ 0.05 using two-tailed tests. Statistical analyses 

were performed using R statistical software package (R Core Team, 2014). 

2.4 Results 

We noted that young animals (PD 8-14) had minimal amounts of myelin visible in 

the FM. By PD 15, some myelination was visible on the lateral regions of the FM. By PD 

22, the entire FM appeared to be myelinated. We therefore used histological methods 

(Fig 2.1) to explore the microstructural features underlying developmental increases in 

myelin. As shown in Fig 2.2, myelin was visible within the dorsal-lateral, but not the 

dorsal-medial region of the FM of pre-adolescent animals (PD 15). In adolescent animals 

(PD 43), the medial and lateral regions of the FM were visibly myelinated. Moreover, 

measurements of cross-sectional area of the FM in embedded tissue showed a significant 

increase in PD 43 animals, when compared to PD 15 animals (t(4.06) = 4.95, p < 0.007, 

Fig 2.3).  
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Microscopic analysis of semi-thin slices of embedded tissue from the Cg1 in the 

mPFC showed that the number of myelinated axons increases significantly between PD 

15 and 43 (t(6) = 14.17, p < 0.0001, Fig 2.4), similar to the changes in the FM white 

matter seen over a comparable age range (Calabrese and Johnson, 2013). The number of 

pyramidal cells in the mPFC did not differ between groups (t(6) = 0.31, p = 0.78, not 

shown), indicating that the images were actually from the mPFC. Most importantly, no 

changes in pyramidal cell number, alongside an increase in myelinated axons, show that 

no new pyramidal neurons are being formed in the mPFC after PD 15. Therefore, it is 

very likely that the axons are already present at PD 15 without yet being myelinated. This 

is assuming that the myelinated axons counted originate from the pyramidal cells in the 

mPFC. We cannot rule out the possibility that these axons originate from cells in other 

cortical regions or from other brain regions, such as the amygdala which projects to the 

mPFC. The latter is less likely, however, because most brain regions are myelinated by 

this time (Baumann and Pham-Dinh, 2001) and layer V is mainly an output layer 

(Goodfellow et al., 2009; van Aerde and Feldmeyer, 2013).  

Very few myelinated fibers could be identified in the PD 15 animals. However, a 

nearly seventy-fold increase in the number of myelinated fibers was observed when 

compared to tissue from PD 43 animals. Although there were not enough myelinated 

axons in the PD 15 animals required to measure their g-ratio (>100 axons required per 

animal), there was a positive relationship between the g-ratio and axon diameter in the 

mPFC of PD 43 animals (all regressions with p < 0.05, Fig 2.5). 

In early experiments, we found that stimulation of the dorsal-medial portion of the 

FM reliably induced EPSCs in cells of the Cg1. The dorsal-medial portion of the FM is 
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the area of the FM closest to the cingulum, which may be the source of some of the fiber 

connections onto the recorded cells. Stimulation of this region of the FM was used 

throughout this study (Fig 2.6a).  

The waveforms of maximal amplitude responses were often complex, while those 

evoked with threshold stimulation were often monophasic (Fig 2.6). This indicates that 

maximal stimulation tended to activate many fibers that synapse on the same cell, often 

showing different latencies despite traversing to the same final distance from the 

stimulation site. In contrast, the monophasic responses as well as frequent response 

failures obtained using threshold stimulation indicate that only one or possibly a few 

fibers were activated using this level of stimulation. 

Using the change from baseline criteria to determine EPSC latency (Fig 2.7), a 

significant increase in conduction velocity was observed between PD 8-15 animals and 

older animals (≥ PD 22) using both maximal amplitude (F(3, 113) = 3.93, p = 0.0104, Fig 

2.7a left) and threshold stimulation (t(29) = 5.08, p < 0.0001, Fig 2.7a right). Planned 

comparisons between the PD 8-15 group and all the other groups were significant (all 

paired t-tests p < 0.05, Fig 2.7a left). No significant increase in conduction velocity was 

observed after this age point. Threshold and maximal amplitude stimulation varied 

significantly in the relationship between latency and transmission distance. While there 

was a strong positive relationship between latency and distance for the maximal 

amplitude stimulation (r = 0.73, p < 0.0001, Fig 2.7b), no such correlation was observed 

with the threshold stimulation (r = 0.16, p = 0.31, Fig 2.7c). However, there was a 

moderately strong linear relationship between velocity and transmission distance for the 

threshold stimulation data (r = 0.61, p < 0.0001, Fig 2.7d).  
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The overall trends observed using peak latency to determine EPSC onset largely 

agreed with those seen using the baseline current criteria (Fig 2.8). However, larger 

standard errors were observed in the maximal stimulation data set and the latency was 

significantly larger between PD 8-15 and PD 43-52 groups (t(52) = 3.53, p = 0.001, Fig 

2.8a left). A significant increase in latency jitter was observed in PD 43-52 animals, as 

compared to PD 8-15 animals, using maximal stimulation (t(72) = 2.15 p = 0.035, Fig 

2.8d) and between PD 8-15 and PD 22-58 animals using threshold stimulation (t(27) = 

1.68, p = 0.032, Fig 2.8e). No statistically significant differences in jitter were observed 

between PD 8-15 and either PD 22-28 or PD 81-93 groups using maximal stimulation 

(both p > 0.05).  

2.5 Discussion 

The objective of this study was to determine how conduction velocity changes in 

axonal fibers of the Cg1 over the course of adolescent development, and to identify 

whether this change was consistent with periods of significant myelination. This is 

important baseline information for future studies investigating conduction velocity in this 

region, particularly those examining the effects of substances, such as alcohol, that can 

interfere with the myelination process. We used electrophysiology to measure conduction 

velocity in rats from four age groups ranging from neonates to early adulthood, and 

histology of semi-thin sections of the mPFC to determine myelin changes between pre-

adolescent and adolescent rats. A great degree of variability in conduction velocity was 

observed on a cell-to-cell basis between animals of the same age group, and even within 

the same animal. Still, a significant increase in conduction velocity was observed 

between the second and third postnatal weeks, which was consistent with the significant 
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myelination increase observed in the mPFC from PD 15 and 43. This conduction velocity 

increase also corresponded with a period of rapid myelin development (Calabrese and 

Johnson, 2013). However, different stimulation intensities produced differential 

relationships between response latency and transmission distance. These findings suggest 

that the same response latency may be maintained over different transmission distances. 

This has implications for substances that interfere with myelin development, since they 

could cause disruption and aberrant network activity.   

The observed increase in conduction velocity between PD 15 and 22 corresponds 

with the increased myelination observed in our embedded and semi-thin tissue. The FM 

cross-sectional area increased from PD 15 to PD 43, and the number of mPFC myelinated 

axons increased dramatically at PD 43, after being almost non-existent in PD 15. This 

increase in mPFC myelinated axon number indicates that myelin is increasing because 

more axons are undergoing de novo myelination during adolescence, and the effect 

observed is not only due to myelin sheaths thickening on myelinated fibers already 

present. Therefore, the amount of myelinated axons plays an important role in adolescent 

myelin development in the PFC. These results confirmed previous research showing an 

increase in myelination during adolescence (Downes and Mullins, 2013). 

Our data also provided new information regarding myelinated axons within the 

cortex (gray matter), particularly in the mPFC, by analyzing specific axonal populations 

at the microstructural level. The results showing an increase in mPFC myelinated axons 

in the adolescent group, with no group changes in pyramidal cell number, help explain 

that the increase in conduction velocity is likely due to an increase in myelinated axons 

(de novo myelination) rather than thickening of the sheath on axons that were already 
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myelinated. The observed positive relationship between g-ratio and axon diameter 

indicates that axons with larger diameters require less myelin to maintain an adequate 

conduction velocity, as has been previously suggested (Purves et al., 2008). This finding 

is consistent with previous literature illustrating the same relationship in other brain 

regions (Taveggia et al., 2007; Liu et al., 2012), but provides new information regarding 

microstructural measures of axonal myelin thickness relative to axonal size in the 

adolescent Cg1 of the mPFC.  

These results are consistent with our predictions that increases in myelination 

should correspond with increases in average conduction velocity. However, it is 

important to remember that our current investigation examined changes in conduction 

velocity in the gray matter between the FM and cells in the cortex, not in the white matter 

itself. It is possible that subtle increases in myelination occur after this period of 

significant myelin development in these gray matter connections, but have small enough 

impacts on conduction velocity that we were not able to detect. There was a high degree 

of variability in conduction velocity between cells from animals of the same age, and 

even between cells within the same animal. As a result, smaller average increases in 

conduction velocity would likely be hard to detect.  

While our results demonstrate a massive increase of myelinated mPFC fibers 

between PD 15 and PD 43, further work is still necessary to quantify changes in myelin 

density in gray matter over the entire course of adolescent development. Furthermore, it 

would be valuable to know whether the time course for myelin development is different 

for afferent versus efferent fibers between the FM and the Cg1. It is likely that some of 

the fibers that were observed during our tissue embedding procedure represent axonal 
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projections from Cg1 cells to the FM. These would not contribute to the EPSCs recorded 

electrophysiologically, and it is important to differentiate them in order to establish 

correlations between myelin density in the Cg1 and measures of conduction velocity. 

This is particularly important for future experimentation examining substances that affect 

myelination, such as alcohol. For example, in previous research in our laboratory we 

observed a reduction in overall myelin density in the Cg1 in response to adolescent binge 

drinking in rats (Vargas et al., 2014). However, we do not know if this myelin loss 

affected afferent and efferent projections equally. Expanded electrophysiology data over 

the entire course of adolescent development, in particular between PD 50 to PD 80, is 

necessary in order to more effectively probe the relationship between conduction velocity 

and myelin density. It is possible that a larger number of animals would be required to 

detect subtle changes in conduction velocity after the PD 15 to PD 22 period. 

Regarding the threshold stimulation data, most of the cells recorded from this data 

set had shorter transmission distances for the younger animal group (PD 8-15), because 

their brains were physically smaller (Fig 2.8c). The observed correlation between 

distance and velocity holds even in the younger PD 8-15 animals (Fig 2.7d), before 

significant myelination has occurred. This indicates that myelin differences may not be 

the only factor that leads fibers that project over longer distances to have faster average 

velocities. These fibers may also have larger diameters, even when unmyelinated, which 

could account for the differences in velocity. 

The question remains as to why high intensity stimulation produces a positive 

correlation between latency and transmission distance, while threshold stimulation 

produces a positive correlation between velocity and transmission distance. A similar 
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phenomenon was observed by Pelletier and Paré (2002) with reciprocal connections 

between the lateral amygdala and perirhinal cortex. The authors of this study suggest that 

different subpopulations of fibers, in their case afferent and efferent populations, were 

responsible for the different relationships. Using minimal stimulation should increase the 

probability that only direct monosynaptic connections are being activated, as triggering 

an EPSC through a purely polysynaptic connection will likely require more stimulation 

than through a monosynaptic connection, since the intermediary neuron would have to 

reach threshold. We found that the minimal amount of stimulation that could be applied 

to get an all-or-none EPSC response from a cell was typically about 10-30 uA for a 

period of 0.2 ms. For comparison, Kumar and Huguenard (2001) reported that to achieve 

minimal stimulation, defined for them as 1.2 times the threshold for a response, they 

typically applied 100-500 uA of current for a period of 0.05-0.3 ms (Kumar and 

Huguenard, 2001). They used a minimal stimulation paradigm in order to isolate purely 

monosynaptic responses, and the levels of stimulation that they used are comparable to 

our own. Presumably, cells that respond with this low amount of stimulation are triggered 

by monosynaptic inputs. In addition, an increase in response jitter, or variability in 

latency over the course of multiple stimulations, should indicate an increased contribution 

of polysynaptic inputs (Doyle and Andresen, 2001). This is because the signal must pass 

through an additional intermediary neuron, and the time it takes to do this can vary due to 

a number of factors (e.g. excitability, neurotransmitter release). The higher degree of 

latency jitter that we observed in older animals using both threshold and maximal 

amplitude stimulation may indicate a higher proportion of polysynaptic connections in 

our data for older animals, regardless of the type of stimulation used (Fig 2.9). 
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The two stimulation paradigms are likely preferentially activating different sub-

populations of fibers. High intensity stimulation presumably activates many fibers that 

project onto the same cell at once. However, the measured latency is determined only by 

the fastest fiber. For threshold stimulation, the fiber that is physically closest to the 

stimulating electrode and has the lowest resistance to electrical activation will likely 

determine the measured velocity. It has been shown that larger diameter fibers have a 

lower electrical threshold for action potential initiation via artificial stimulation (Sundar 

and González-Cueto, 2006). However, other factors could influence which fiber 

determines the EPSC onset time. A fiber that synapses directly on the soma may have a 

shorter response latency than one that synapses on a distal dendrite. If the fiber synapses 

on a distal dendrite, it may also require more stimulation to generate an EPSC of 

sufficient magnitude to be detected by the recording electrode in the cell soma. The 

simplest explanation may be that most cells typically have at least one “fast” (i.e. large 

diameter and/or heavily myelinated) fiber connection from the FM that is typically 

activated when all fibers that connect to the cell are activated at once with high intensity 

stimulation (Fig 2.9a left). As a result, conduction velocity appears to be more or less 

independent of transmission distance. Threshold stimulation may randomly activate one 

of the many fibers that synapse on a single cell. There is a high degree of variability in 

individual fiber conduction velocity, as well as myelin thickness relative to axonal size 

(g-ratios ranging from 0.5 to 0.9) and fiber diameter (ranging from 0.5 to 3 µm²), even 

within a single animal. As a result, the velocity of individual fibers that are randomly 

activated with threshold stimulation may show no strong relationship with the distance 

they travel, which explains why latency is not correlated with distance (Fig 2.9a right and 
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b). This also indicates that individual fibers may have mechanisms (i.e. increased myelin 

or diameter) that compensate for differences in pathlength, in order to keep response 

latencies constant over different transmission distances. Such functional organization 

could be important computationally in synchronizing cellular responses in different 

cortical layers.    

A limitation of this study is that we have not identified the source of the fibers 

from the FM onto the cells from which we have recorded. While these fibers may 

originate from the contralateral mPFC, they could also originate from other areas of the 

brain. Little and Carter (2013) demonstrated the presence of reciprocal connections 

between pyramidal cells in the mPFC and the contralateral mPFC that extend throughout 

the different layers of the mPFC. However, they also showed that there are reciprocal 

connections between pyramidal cells in the mPFC and the basolateral amygdala, although 

these connections are localized predominately to the layer I-II boundary, and in our 

experiments data was sampled from cells across the different cortical layers. It is likely 

that the fibers stimulated during our study originate from the contralateral mPFC, 

although other origins are possible. Therefore, further histological work is necessary to 

determine the origin of these fibers. It is possible that the differences in the latency versus 

distance relationship in our data could be explained by different fiber populations 

originating from different anatomical areas.    

This study will serve as an important baseline for future investigations that will 

determine how alcohol interferes with the normal myelination process in this region. The 

data in the present study suggest that alcohol could potentially reduce conduction velocity 

in mPFC axons by damaging existing myelin, rather than by preventing myelination. In 
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our previous study, animals binged on alcohol from PD 28-42 (Vargas et al., 2014), 

which is after the period of significant myelination during PD 15-22 (Calabrese and 

Johnson, 2013). However, the mPFC may be undergoing active myelination even if white 

matter such as the corpus callosum has been fully myelinated by this time (Downes and 

Mullins, 2013) as more myelinated fibers appear in the Cg1 gray matter by PD 43. 

Myelination is a gradual process in which the initial sheath becomes encapsulated by 

additional layers of myelin, and the layers transition from a loose arrangement to a 

compact structure (Calabrese and Johnson, 2013). If the Cg1 myelin sheaths are not fully 

compact by the binge drinking period, alcohol may interfere with the transition from a 

loose to a compacted myelin. The biochemical composition of myelin differs in 

adolescent and adults. Throughout adolescent development, the concentration of 

galactolipids, myelin basic protein, and myelin proteolipid protein increases, while the 

concentration of phosphatidylcholine and various other proteins decreases (Quarles et al., 

2006). Alcohol could also interfere with these biochemical transitions in non-compact 

myelin, which could affect the final structure and functional properties of myelin. In 

future experimentation, it will be important to determine whether substances that interfere 

with myelination in the Cg1 disrupt the positive relationship between velocity and 

transmission distance observed with threshold stimulation in our study. If myelin is 

acting to increase the velocity of the longer fibers relative to the shorter ones, and a loss 

of myelin reduces or abolishes this relationship, then the threshold stimulation data may 

start to show a positive relationship between latency and distance similar to the maximal 

stimulation data. 
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2.6 Figures and Tables 

 

 

 
Figure 2.1. Microstructural myelin analysis and processing for semi-thin analysis. 
Left: Summary of brain fixation and tissue embedding for semi-thin sections. Brains were 
fixated in 1% paraformaldehyde/1.25% glutaraldehyde, sectioned on a vibratome into 
150 µm-thick sections, and embedded in Polybed 812. Right: Summary of semi-thin 
section processing and analysis. The mPFC of the embedded tissue was further sectioned 
into 2.5 µm-thick semi-thin sections and stained with 0.1% toluidine blue. Semi-thin 
sections were analyzed microscopically.  
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Figure 2.2. Representative photomicrographs of myelin development over 
adolescence in the FM and of semi-thin analysis. Top. Left: Embedded tissue of a PD 
15 animal. No myelin was visible on the dorsal-medial region of the FM, although some 
was visible on the lateral portions. Right: Embedded tissue of a PD 43 animal. By PD 43, 
all of the FM was visibly myelinated. Bottom. Left: Image showing the anatomy of a 
semi-thin mPFC section. Right: Image used for the g-ratio analysis of a semi-thin mPFC 
section. 
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Figure 2.3. Significant increase in FM cross-sectional area in adolescence. 
Adolescent (PD 43) rats (dark bar) showed a significant increase in FM cross sectional 
area in comparison to the pre-adolescent (PD 15) rats (t(4.06) = 4.95, p < 0.007). Data 
expressed as mean ± SEM. 
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Figure 2.4. Significant increase in mPFC myelinated axons in adolescence. PD 43 
rats showed a significant increase in mPFC myelinated axons in comparison to the PD 15 
rats (t(6) = 14.17, p < 0.0001). Data expressed as mean ± SEM. 
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Figure 2.5. Significant positive correlation between the g-ratio and diameter of 
mPFC myelinated axons in adolescence. There was a positive relationship between the 
g-ratio and axon diameter in the mPFC of PD 43 animals (all regressions with p < 0.05). 
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Figure 2.6. Electrophysiology overview and example recordings taken from a PD 15 
rat. a. Schematic of a coronal section illustrating placement of the stimulating and 
recording electrodes, in the forceps minor and Cg1 cortex, respectively. b. A series of 15 
superimposed traces taken from a single cell using constant amplitude threshold 
stimulation. Responses did differ in the maximum amplitude of their current, but were 
still all-or-none, seen by the frequent instances when stimulation failed to evoke any 
response from the cell. c. Recordings from the same cell taken with maximum amplitude 
stimulation. The latency of the EPSC onset was shifted earlier, and the maximum 
amplitude was increased. Arrow in b and c represents the stimulation. 
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Figure 2.7. Significant increase in conduction velocity in adolescence, relationship 
between latency and distance was positive using maximal stimulation, and 
disappeared using threshold stimulation (using change from baseline current 
criteria). a. Left: There were significant differences between the age groups in average 
conduction velocity using maximal amplitude stimulation (F(3, 113) = 3.93, p = 0.0104). 
The PD 8-15 group (10 animals, 48 cells, white bar) showed a significant decrease in 
conduction velocity in comparison to each of the older groups: PD 22-28 (5 animals, 20 
cells, light gray bar), PD 43-52 (7 animals, 38 cells, dark gray bar), and PD 81-93 (4 
animals, 11 cells, black bar) (all t-tests with p < 0.05). Right: Average conduction 
velocity using threshold stimulation. The PD 22-58 (6 animals, 24 cells, gray bar) showed 
a significant increase in conduction velocity compared to the younger PD 8-15 group (5 
animals, 26 cells, white bar) (t(29) = 5.08, p < 0.0001). b. A strong positive correlation 
was observed between latency and transmission distance for recordings taken with 
maximal amplitude stimulation (r = 0.73, p < 0.0001). Each dot represents data from a 
single cell, with colors white, light gray, dark gray, and black representing the age groups 
PD 8-15, PD 22-28, PD 43-52, and PD 81-93, respectively. c. There was no correlation 
between latency and transmission distance in recordings taken with threshold stimulation 
(r = 0.16, p = 0.31). d. There was a moderately strong correlation between velocity and 
distance using threshold stimulation (r = 0.61, p < 0.0001). This correlation holds even 
when only the youngest age group (PD 8-15, white dots) is considered (r = 0.61, p = 
0.0036). Data expressed as mean ± SEM. 
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Figure 2.8. Significant increase in conduction velocity in adolescence, relationship 
between latency and distance was positive using maximal stimulation, and 
disappeared using threshold stimulation (using peak latency criteria). a. Left: There 
were significant differences between the age groups in average conduction velocity for 
maximal stimulation (F(3, 103) = 3.93, p = 0.011); specifically the PD 43-52 group (dark 
gray bar) showed a significant increase in conduction velocity compared to the PD 8-15 
group (t(52) = 3.53, p = 0.001). However, the increase observed when comparing the PD 
8-15 group to either the PD 22-18 or the PD 81-93 group was only marginally significant 
(t(19) = 1.7, p = 0.10 and t(12) = 2.14, p = 0.053, respectively). Right: The PD 22-58 
showed a significant increase in average conduction velocity for threshold stimulation 
compared to the younger PD 8-15 group (t(22) = 3.98, p = 0.00064). b. Linear regression 
showed a weak relationship between response latency and transmission distance for 
maximal stimulation (r = 0.33, p = 0.001). c. Similarly, there was no relationship between 
response latency and transmission distance for threshold stimulation (r = 0.03, p = 0.85). 
d. Conduction time jitter as a function of age for maximal amplitude. A statistically 
significant increase in conduction time jitter was observed between PD 8-15 and PD 43-
52 animals in the maximum amplitude data set (PD 8-15 mean = 2.07; PD 43-52 mean = 
2.95; t(72) = 2.15, p = 0.035). e. Conduction time jitter as a function of age for threshold 
stimulation. A statistically significant increase in conduction time jitter was observed 
between PD 8-15 and PD 22-58 animals in the threshold stimulation data set (PD 8-15 
mean = 1.80; PD 22-58 mean = 3.49; t(29) = 2.25, p = 0.032). These increases in jitter 
correspond with age groups in which a statistically significant increase in average latency 
was also observed. Data expressed as mean ± SEM. 
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Figure 2.9. Proposed model to explain differences in latency versus distance 
relationship between maximal and threshold stimulation. a. Left: Maximal amplitude 
stimulation triggers action potentials in many fibers that synapse on the recorded cell, as 
indicated by complex EPSC waveforms in the current trace. At least one of these is a 
large diameter or myelinated fiber. Right: Threshold stimulation randomly activates a 
thick or myelinated fiber, resulting in short response latency. b. Threshold stimulation 
randomly activates a thin or unmyelinated axon, resulting in a long response latency. 
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CHAPTER 3 
 

ALCOHOL BINGE DRINKING DURING ADOLESCENCE OR DEPENDENCE 

DURING ADULTHOOD REDUCES PREFRONTAL MYELIN IN MALE 

RATS 

Published in Journal of Neuroscience Oct. 2014 

 

Vargas, W. M., Bengston, L., Gilpin, N. W., Whitcomb, B. W. & Richardson, H. N. 

(2014) Alcohol Binge Drinking during Adolescence or Dependence during 

Adulthood Reduces Prefrontal Myelin in Male Rats. Journal of Neuroscience 34, 

14777–14782. 

3.1 Abstract 

Teen binge drinking is associated with low frontal white matter integrity and 

increased risk of alcoholism in adulthood. This neuropathology may result from alcohol 

exposure or reflect a pre-existing condition in people prone to addiction. Here we used 

rodent models with documented clinical relevance to adolescent binge drinking and 

alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal 

cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or 

sweetened water intermittently for 2 weeks during early adolescence. In adulthood, 

drinking behavior was tested under nondependent conditions or after dependence induced 

by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was 

examined 1 month into abstinence. Adolescent binge drinking or adult dependence 

induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps 

minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in 
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adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge 

rats indicated myelin was damaged on axons in the medial prefrontal cortex (mPFC). In 

follow-up studies we found that binge drinking reduced myelin density in the mPFC in 

adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the 

T-maze working memory task in adulthood (Experiment 3). These findings establish a 

causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons 

that are both sensitive to alcohol and could contribute to the behavioral and cognitive 

impairments associated with early onset drinking and alcoholism.  

3.2 Introduction 

Adolescence is a period of heightened vulnerability when teenagers engage in 

high risk activities like binge drinking (Romer, 2010) as the frontal lobes undergo 

developmental processes including axonal myelination (Barnea-Goraly, 2005). 

Myelination increases conductance speed in axons and enhances information processing 

and cognitive performance (Blakemore and Choudhury, 2006). If prefrontal fiber tracts 

are sensitive to alcohol exposure during this time of plasticity, drinking could 

significantly impair the social and mental health trajectories of teenagers because the 

prefrontal cortices are responsible for evaluating reward (Taren et al., 2011) and 

regulating risk-taking behavior (Crone et al., 2008). 

Early onset of alcohol use predicts increased impulsivity (Stephens and Duka, 

2008), cognitive performance impairments (Konrad et al., 2012), and alcoholism in 

adulthood (Grant and Dawson, 1998). Heavy episodic (binge) drinking is related to lower 

white matter integrity in the corpus callosum (CC) of teenagers (McQueeny et al., 2009) 

and in alcoholic adults (Pfefferbaum et al., 2006). The link between reduced white matter 
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and increased addiction vulnerability in humans suggests alcohol exposure may damage 

myelin. Alternatively, predisposing factors could explain the relationship between 

adolescent drinking and frontal white matter. 

The present study tested the hypothesis that alcohol damages CC myelin tracts 

within the prefrontal cortex. Preclinical models of adolescent binge drinking (Gilpin et 

al., 2012) and adult dependence (Becker, 2013; Vendruscolo and Roberts, 2014) were 

used to elicit different in vivo alcohol exposures in outbred rats. Myelin was labeled 1 

month into abstinence in adulthood to quantify white matter changes in the frontal lobes. 

We show that voluntary binge drinking reduces myelin density in the mPFC in adolescent 

rats, relates to working memory deficits in adulthood, and produces enduring prefrontal 

white matter loss comparable to that observed after alcohol dependence. Moreover, 

greater severity of prefrontal white matter neuropathology was correlated with higher 

levels of relapse-like drinking in adulthood. These findings give insight into myelinated 

prefrontal axons that are vulnerable to alcohol and may underlie adverse mental health 

outcomes associated with early alcohol use in humans. 

 3.3 Materials and Methods 

3.3.1 Animals  

Male Wistar rats were shipped with their mothers on postnatal day (PD) 18 from 

Charles River, weaned, and housed in triads beginning on PD21. All procedures were 

performed according to the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and approved by the Institutional Animal Care and Use Committee. 
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3.3.2 Study Design  

3.3.2.1 Experiment 1: Effect of binge drinking and dependence on prefrontal white 
matter 

The experimental design is shown in Fig 3.1a. Rats (N = 27) were given 

differential exposure to alcohol during adolescence and adulthood (described briefly 

below; details in Gilpin et al., 2012). After operant training, PD28 rats were randomly 

assigned to control (n = 9) or binge (n = 18) treatment [see below, Adolescent alcohol 

exposure (experiments 1–3)]. A priori, a larger binge group was planned to account for 

anticipated variability in alcohol self-administration. After 5 weeks of abstinence 

(beginning on PD78), binge and control rats were tested for baseline drinking in 

adulthood. At PD130, groups were further divided after balancing for adolescent and 

adult drinking behaviors, and animals were either made dependent [1 month of 

intermittent alcohol vapors; target blood alcohol levels (BALs) were 0.15– 00.20 g/dl] or 

remained nondependent (1 month of ambient air control) and tested for relapse-like 

drinking, i.e., augmented drinking after short deprivation periods. Details on tail nick 

blood collection and Analox measurement of BALs are described in Gilpin et al. (2012). 

Brains available for this myelin study were from (1) control nondependent (n = 4), (2) 

control dependent (n = 5), (3) binge nondependent (n = 9), and (4) binge dependent (n = 

9) rats that were perfused 1 month after vapor/air treatment ended. Brains were processed 

for quantification of prefrontal white matter loss and myelin damage, as described below. 
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3.3.2.2 Experiment 2: Effect of binge drinking on myelinated axons in the mPFC of 
adolescent rats 

The experimental design is shown in Fig 3.3a. Rats (N = 25) underwent binge (n 

= 8) or control (n = 8) drinking from PD28–PD42, or remained naive to operant training 

and alcohol (n = 9). The day after the binge period ended, animals were perfused and 

brain tissue was processed and analyzed for myelin density (described below). Brain 

sections from a small proportion of these animals were used in a previous study 

(Karanikas et al., 2013).  

3.3.2.3 Experiment 3: Effect of binge drinking on working memory (T-maze) 

The experimental design is shown in Fig 3.3a. Animals (N = 27) underwent 

adolescent binge (n = 13) or control (n = 14) drinking from PD28–PD42. After the binge 

period, animals were tested on PD43, PD44, and PD48 for performance on the T-maze 

spontaneous alternation task as described below, and were tested again in adulthood after 

6 weeks of abstinence (PD88 –PD89). 

3.3.3 Adolescent alcohol exposure (Experiments 1–3)  

Beginning on ~PD25, animals were trained to self-administer sweetened water 

(3% glucose/0.125% saccharin/tap water). On PD28, rats were either switched to 

sweetened alcohol (8–10% w/v ethanol/3% glucose/0.125% saccharin/tap water; binge) 

or remained on sweetened water (control). Overnight operant sessions consisted of six 30 

min bouts divided by time-out periods when the levers were retracted and alcohol was 

unavailable. Time-out periods lasted 90 min in Experiment 1 (Gilpin et al., 2012) and 

were reduced to 60 min in Experiments 2 and 3 to maximize operant box usage in our 



	  
	  

 
 

72 

laboratory. Food and water were available ad libitum in the operant boxes throughout the 

binge exposure period.  

3.3.4 Perfusions and brain sectioning (Experiments 1–2)  

Animals were intracardially perfused the day after the two-week binge period 

ended (PD43, Experiment 2) or several months later after drinking behavior was tested in 

adulthood (PD196, Experiment 1, Gilpin et al., 2012). After 4 h post fixation and 24–48 h 

in 20% sucrose, brains were snap frozen using isopentane (2-methylbutane; Sigma) and 

dry ice, and stored at 80°C until sectioning. Thirty-five micrometer coronal sections were 

sliced on a freezing microtome and stored at 20°C in cryoprotectant (50% 0.1 M PBS, 

30% ethylene glycol, and 20% glycerol).  

3.3.5 Myelin labeling and microscopic analysis of prefrontal white matter 
(Experiment 1)  

Black Gold II (BG-II) was used to impregnate myelin and label white matter in 

every eighth brain section (Schmued et al., 2008). For white matter microscopic analysis, 

brain sections were classified as (1) forceps minor (CCFM), anterior to the CC joining 

across hemispheres, 2.10 –1.85 mm from bregma or (2) genu (CCGenu), posterior to the 

joining of the left and right CC, 1.60 –1.35 mm from bregma (Paxinos and Watson, 1998; 

Fig 3.1b). Fifteen to 20 photomicrographs were taken using a Leica microscope (5x 

objective) attached to a DP71 Olympus camera and were digitally montaged for a single 

hemisphere. Two to four hemispheres were used for microscopic analysis of each 

anatomical classification for each animal. CCFM and CCGenu cross-sectional areas were 

quantified using ImageJ software (Rasband, 1997). 
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3.3.6 Degraded myelin basic protein labeling and microscopic analysis (Experiment 
1) 

Using a marker of degraded myelin basic protein (dMBP), we quantified myelin 

damage in the center and the borders of the CCFM where these axons extend into the 

mPFC or the striatum Fig 3.2a. Free-floating sections were prepared using the 

immunohistochemistry standard protocol for dMBP (Millipore) primary antibody 

(1:1000), as described previously (Matsuo et al., 1997; Li and Stys, 2000), and Cy3 

fluorescent secondary antibody (1:300, Jackson ImmunoResearch). Photomicrographs 

were taken 2.2 mm from bregma (20x objective) using constant imaging parameters, and 

were analyzed for intensity quantification using ImageJ software; the threshold function 

was used to highlight dMBP-positive regions. Percentage of dMBP-positive area within 

the total area was calculated.  

3.3.7 Myelin labeling and microscopic analysis of myelin density in the mPFC 
(Experiment 2) 

Every 10th section was labeled for BG-II (Schmued et al., 2008), and dorsal 

mPFC photomicrographs were taken 2.2 mm from bregma (5x objective). Aperio 

ImageScope software was used to quantify myelinated fiber density in cortical layers II–

V by thresholding the images. Percentage of myelinated fiber area within the total area 

was calculated. 

3.3.8 T-maze spontaneous alternation task (Experiment 3) 

T-maze assays were conducted as previously described (Deacon and Rawlins, 

2006), with the modification of a 70 s delay between trials, making this task mPFC 
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dependent (Delatour and Gisquet-Verrier, 1996; Lalonde, 2002). In total, animals 

underwent 10 trials during adolescence and 6 trials during adulthood. 

3.3.9 Statistical Analyses  

Overall effects of adolescent alcohol exposure and adult dependence on white 

matter cross-sectional area and dMBP intensity were analyzed using between-subjects 

two-way ANOVAs. One-way ANOVAs were used to analyze the effect of adolescent 

alcohol exposure on mPFC myelinated fiber density and on T-maze performance. 

Pearson correlation analyses were used to assess relationships between white matter and 

adolescent alcohol intake and adult baseline and relapse-like drinking behaviors, and to 

examine the relationship between adolescent alcohol intake and T-maze performance. 

Statistical significance was defined as ≤0.05 using two-tailed tests. Statistical analyses 

were performed using R statistical software package (RCoreTeam, 2013).  

3.4 Results 

Binge drinking during adolescence and/or dependence during adulthood reduced 

frontal white matter. This reduction persisted well into abstinence (over 5 months after 

adolescent binge ended and 1 month after vapor exposure ended). Binge rats had smaller 

CCFM areas than control rats (adolescent treatment main effect, F(1,21) = 10.50, p = 

0.004; Fig 3.1c). Likewise, alcohol-dependent rats had smaller CCFM areas than 

nondependent rats (adult treatment main effect, F(1,21) = 9.47, p = 0.006, Fig 3.1c). No 

significant interaction between adolescent and adult treatments was detected (p = 0.15). 

The CCGenu, which is located just posterior to the mPFC, was not significantly altered 

after a history of adolescent binge drinking and adult dependence, and there was no 
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interaction between these treatments (all ps > 0.05; Fig 3.1d). However, CCGenu size was 

significantly inversely related to adolescent alcohol consumption (r = 0.64, p = 0.005; 

data not shown), suggesting that higher alcohol levels may be necessary to reduce CCGenu 

size. 

We next examined behavioral correlates of white matter loss. CCFM size was not 

significantly correlated with baseline drinking levels (g/kg/30 min, r = 0.26, p = 0.21; Fig 

3.1e). Conversely, smaller CCFM size predicted higher drinking after short deprivation 

periods, indexed by percentage increase in intake relative to baseline (r = 0.47, p = 0.02; 

Fig 3.1f). No significant correlations were detected between CCGenu size and any adult 

drinking behaviors. 

A marker of dMBP was next used to index myelin health and identify the axonal 

population of the CCFM axons damaged by alcohol. We detected significantly elevated 

dMBP at the dorso-medial border of the CCFM (CCFMmPFC) in rats with a history of 

adolescent binge drinking (adolescent treatment main effect, F(1,23) = 7.00, p = 0.01; Fig 

3.2b). Dependence did not significantly increase dMBP in the CCFMmPFC (p > 0.05; Fig 

2b). 

dMBP was detected in the CCFMCenter and CCFMStriatum, but the intensity did 

not significantly differ between groups (ps > 0.05; Fig 3.2c,d). Based on the findings 

above, we next tested the hypothesis that binge drinking decreases myelinated axons in 

layers II–V of the mPFC of adolescent rats. Indeed, the day after the last binge session, 

mPFC myelinated axonal density was reduced in binge drinking rats compared with 

control and naive rats (F(2,21) = 8.43; p = 0.002; Fig 3.3b). 
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We next explored whether binge drinking related to performance on the mPFC-

dependent, spontaneous alternation T-maze working memory task. There was no main 

effect of binge drinking on performance (p > 0.05), but the amount of alcohol consumed 

early in adolescence predicted poor performance on the T-maze in adulthood (r = 0.69, p 

= 0.009; Fig 3.3c). Conversely, this relationship between sweetened water drinking and 

T-maze performance was not observed in control rats (r = 0.14, p = 0.63; Fig 3.3c). There 

were no significant relationships between adolescent drinking and T-maze performance at 

the end of the adolescent treatment period for either group (ps > 0.05; data not shown). 

Table 3.1 summarizes average daily alcohol intake over the two-week adolescent 

binge period for rats in Experiments 1–3. BALs ranged between 0.0 and 0.17 g/dl after 

0.0 –2.20 g/kg alcohol consumption in single, 30 min self-administration bouts, which 

were randomly assessed from animals in the three experiments. These BALs are 

moderate and similar to what has been reported for adolescent rats consuming sweetened 

alcohol in the home cage (Walker et al., 2008; Gilpin et al., 2012; Broadwater et al., 

2013). 

3.5 Discussion 

The current study examined the effect of adolescent and adult alcohol exposure on 

myelin in the frontal lobes of male rats. Similar to human studies, we found negative 

correlations between adolescent alcohol drinking and white matter. We also provide 

empirical evidence that alcohol reduces myelin density in adolescent rats and causes 

enduring white matter deficits in the mPFC. Alcohol treatment—adolescent binge 

drinking or adult dependence—reduced the size of the CCFM and this neuropathology was 

predictive of higher levels of relapse-like drinking. Adolescent drinking predicted poor 
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performance on an mPFC-dependent task. Structural changes in white matter and 

degraded myelin health persisted well into abstinence in adulthood, suggesting that 

adolescent binge drinking produces irreversible changes in prefrontal circuitry. 

The effect of alcohol on CCFM axons may have broad implications for adolescent 

and adult mental health outcomes. This anterior fiber bundle connects the mPFC to the 

lateral prefrontal cortex and striatum, and is implicated in depression, multiple sclerosis, 

Tourette’s syndrome, and chronic schizophrenia (Cader et al., 2006; Friedman et al., 

2008; Jackson et al., 2011; Tadayonnejad et al., 2014). The structures interconnected by 

the CCFM are also implicated in addiction (Everitt and Robbins, 2005; Volkow et al., 

2005) and our current data suggest impaired connectivity may influence drinking risk in 

adulthood. Reduced CCFM size predicted augmented drinking during relapse tests, but did 

not predict increased baseline drinking behavior. Importantly, relapse-like drinking 

behavior was normalized for each animal to his own baseline. This suggests that the link 

between CCFM structure and relapse is not simply reflecting the effect of alcohol dose on 

CCFM axons. Instead, these axons may help control the magnitude of increase in alcohol 

intake, or “over-doing it,” after experiencing short periods of abstinence from drinking. 

Adolescent alcohol drinking and adult alcohol dependence produced changes of 

similar magnitude in the CCFM. This is remarkable considering the substantial difference 

in the duration and dose of alcohol exposure between the two treatment groups. Binge 

rats consumed alcohol voluntarily, reaching 0.08 g/dl BALs in only some of the drinking 

bouts over a two-week adolescent drinking period that took place early in adolescence, 

>5 months before the brains were processed in adulthood. Conversely, dependence was 

induced in adulthood by 1 month of exposure to daily cycles of alcohol vapor-induced 
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intoxication that maintained BALs between 0.15 and 0.20 g/dl for 14 h/d—an exposure 

that produces mild physical dependence (Richardson et al., 2008). The fact that the 

adolescent alcohol exposure duration and amount was much less than vapor exposure in 

adulthood suggests that the adolescent brain has heightened sensitivity to alcohol and the 

effects are enduring. The data support the hypothesis that the dynamic changes occurring 

in the developing prefrontal cortices during adolescence (Casey et al., 2008) increase 

susceptibility to potentially toxic external stimuli such as alcohol (Crews et al., 2007). 

The fact that dependence induction did not further reduce CCFM size in the binge group 

suggests a ceiling effect of alcohol on degradation of this axonal bundle. 

The lack of group changes in CCGenu structure suggests that higher doses and a 

more prolonged exposure to alcohol, perhaps in combination with vitamin B1 deficiency, 

may be required to significantly impair white matter structure, as previously suggested 

(He et al., 2007; Pfefferbaum et al., 2008). This notion is supported by the significant 

inverse correlation between adolescent alcohol consumption and CCGenu size observed in 

this study. It will be important in future studies to determine how prefrontal myelin is 

damaged by alcohol using other models of alcohol use disorders (Simms et al., 2008; 

Crabbe et al., 2009) and to extend these findings to females. 

Finally, to assay functional integrity of the mPFC, we tested rats for spontaneous 

alternation on the T-maze using a 70 s delay to increase working memory demand 

(Delatour and Gisquet-Verrier, 1996; Lalonde, 2002). Higher binge drinking levels 

during adolescence predicted poorer performance on the T-maze task in adulthood. This 

relationship was not evident in control rats, suggesting that alcohol consumption 

produces enduring functional changes in mPFC circuitry. Nevertheless, without a 



	  
	  

 
 

79 

significant main effect, we cannot exclude the possibility that the correlation between 

alcohol and performance may reflect a relationship that is not causal in nature. The lack 

of a significant main effect could be due to variability in intake, as well as limitations in 

assaying a subtle cognitive impairment. In future studies, treatment differences in 

performance might be detected after increasing the retention interval, i.e., a larger delay 

between sample and choice phases (Deacon and Rawlins, 2006). 

In conclusion, the present study provides causal evidence for alcohol-induced 

reductions in myelin in prefrontal circuits. To the best of our knowledge, this is the first 

study to show that adolescent voluntary binge drinking reduces the density of myelinated 

axons in the mPFC and has long-lasting effects on prefrontal white matter. Future work 

exploring the mechanisms by which alcohol damages prefrontal myelin may lead to new 

therapeutic strategies for the treatment of alcohol use disorders. 

3.6 Figures and Tables 
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Figure 3.1. Alcohol causes reductions in prefrontal white matter that predict higher 
levels of relapse-like drinking in adulthood (Experiment 1). a. Schematic illustrating 
the alcohol exposure timeline during adolescence and adulthood. Male rats underwent 
voluntary, binge self-administration sessions with sweetened alcohol (binge) or 
sweetened water (control) during early adolescence. In adulthood, rats were tested for 
baseline alcohol drinking, then exposed to chronic alcohol vapors (dependent) or ambient 
air (nondependent), and tested for relapse drinking (details in Gilpin et al., 2012). b. 
Schematic illustrating the anatomical location of CCFM and CCGenu sections. c, d. Alcohol 
reduced cross-sectional area of the CCFM (c; main effect of adolescent binge drinking, #p 
= 0.004; main effect of adult alcohol dependence, *p = 0.006), but not the CCGenu (d; all 
ps > 0.05). e, f. CCFM cross-sectional area did not predict baseline alcohol intake (e), but 
did predict the percentage increase from baseline levels after short abstinence periods, 
i.e., relapse-like drinking (f; p = 0.02). Data expressed as mean ± SEM (n = 4–9 
rats/group). 
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Figure 3.2. Adolescent alcohol causes enduring damage to mPFC myelin 
(Experiment 1). a. Schematic illustrating the anatomical regions analyzed. b–d. 
Adolescent alcohol increased myelin damage, indexed by dMBP, in the gray matter just 
medial to the CCFM (CCFMmPFC; main effect of adolescent binge drinking, #p = 0.02). 
Adult dependence did not significantly increase dMBP in the CCFMmPFC (b; p > 0.05) 
and neither treatment significantly increased dMBP in the center of the medial branch of 
the CCFM (CCFMCenter; c, p > 0.05) or striatum (CCFMStriatum; d, p > 0.05). Data 
expressed as mean ± SEM (n = 4–9 rats/group). 
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Figure 3.3. Adolescent alcohol decreases myelinated fiber density in the mPFC and 
predicts poor T-maze performance in adulthood (Experiments 2 and 3). a. Schematic 
illustrating the timeline of alcohol exposure during adolescence and neural and 
behavioral measures. Male rats underwent voluntary, binge self-administration sessions 
with sweetened alcohol (binge) or sweetened water (control) during early adolescence. 
Rats were tested on the T-maze as adolescents and again in adulthood after 6 weeks of 
abstinence. b. Schematic illustrating the anatomical location of the myelinated fiber 
density measurement (left). Alcohol reduced myelinated fiber density in the mPFC (*p = 
0.002). c. There was a significant negative correlation between daily adolescent 
consumption and percentage correct responses in the T-maze in adulthood in binge rats 
(left graph; p = 0.009). This relationship was not observed in control rats (right graph; p > 
0.05) and no relationships were detected between drinking behavior and T-maze 
performance tested in adolescence (ps > 0.05; data not shown). Data expressed as mean ± 
SEM (b, n = 8–9 rats/group; c, n = 13–14 rats/group). 
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Table 3.1. Adolescent binge drinking (g/kg/day) 

      
 

Experiment 1 
 

Experiment 2 
 

Experiment 3 
Groups Mean ± SEM   Mean ± SEM   Mean ± SEM 
Binge 

  
3.21 ± 0.38 

 
2.96 ± 0.31 

Binge Non-Dep 4.36 ± 0.16 
    Binge Dep 4.52 ± 0.15         

 

Table 3.1. Alcohol binge consumption during adolescence (g/kg/d) for the groups in 
each experiment. Data shown as mean ± SEM.  
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CHAPTER 4 
 

EFFECTS OF ALCOHOL BINGE DRINKING ON MYELINATED AXONS, 

OXIDATIVE STRESS, AND MYELIN-ASSOCIATED GENES IN THE 

PREFRONTAL CORTEX OF ADOLESCENT RATS 

4.1 Abstract 

Adolescent binge drinking is associated with lower white matter volume in the 

frontal lobe of human adolescents. We recently showed that binge drinking reduces 

myelin density in the prefrontal cortex (PFC) of adolescent male rats. It is currently 

unknown if alcohol also reduces PFC myelin density in females as well. Here we used a 

preclinical model of adolescent binge drinking to determine the effect of alcohol on the 

PFC myelin of female rats. We also assessed if the alcohol-induced changes in males are 

associated with an increase in oxidative stress, a reduction in myelin related genes, or 

both. Thus, the present study also explored whether alcohol exposure alters oxidative 

stress levels and mRNA expression of myelin-related genes in the PFC. Outbred male 

and female Wistar rats underwent a voluntary two-week binge drinking model during 

early adolescence. Adolescent binge drinking in females did not reduce PFC myelin as 

was observed in males. In addition, oxidative stress levels were elevated in the PFC only 

in males. Binge drinking does not appear to affect myelin-related genes in the PFC of 

males or females. Future studies will examine the mechanisms underlying adolescent 

alcohol-induced alterations in myelinated axons in the PFC and differential sensitivity in 

males and females, as aberrant development of this circuitry during adolescence may 

have long-term impacts on several executive functions in adulthood. 
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4.2 Introduction 

The adolescent population (12-18 years) has a particularly high prevalence of 

binge drinking (Johnston et al., 2009). In fact, almost 25% of high school students have 

reported binge drinking within the preceding month (Centers for Disease Control and 

Prevention, 2013). Alcohol consumption during adolescence can have detrimental effects 

on the developing brain, particularly on myelination. Heavy episodic (binge) drinking has 

been linked to lower white matter volume in human adolescents (De Bellis et al., 2005; 

Medina et al., 2008; McQueeny et al., 2009), and reduces myelin in the PFC of 

adolescent male rats (Vargas et al., 2014). It is unknown, however, if heavy alcohol 

consumption would have a similar effect on prefrontal myelin of adolescent female rats, 

and how alcohol might impact prefrontal myelin is also poorly understood.  

Research suggests that women may be more vulnerable than men to the 

neurotoxic effects of alcohol in general (Alfonso-Loeches et al., 2013). However, 

research regarding sex differences in the effects of adolescent alcohol consumption on 

myelination in particular is limited and has shown some inconsistencies. In humans, some 

studies show that alcohol affects white matter equally in both male and female 

adolescents (De Bellis et al., 2005; McQueeny et al., 2009). However, other studies 

suggest that adolescent females may be more vulnerable to alcohol consumption than 

males (Medina et al., 2008).  

The processes underpinning the observed alcohol-mediated reduction of PFC 

myelin are also unclear. One possible factor contributing to the reduced level of 

myelination after alcohol consumption is oxidative stress, the imbalance between the 

production of antioxidants and oxidants (Durackova, 2010; Xiao et al., 2015; Cabello-
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Verrugio et al., 2016). Oxidative stress is induced by intraperitoneal injection of alcohol 

(Sultatos, 1988; Wu and Cederbaum, 2003; Wu et al., 2006), and has been linked to 

demyelination (Lynn et al., 2005).  

Another possible explanation for the alcohol-induced myelinated fiber decrease is 

a reduction of genes important for myelination. Many myelin-related genes, such as 

proteolipid protein (PLP) and myelin basic protein (MBP) can be affected by alcohol 

consumption (Alfonso-Loeches et al., 2012) and are reduced in demyelination (Gregg et 

al., 2009). Several lipids and proteins are necessary for proper myelination (Simons and 

Trotter, 2007), with PLP and MBP being the most abundant proteins in myelin (Umemori 

et al., 1999; Baumann and Pham-Dinh, 2001; Quarles et al., 2006; Simons and Trajkovic, 

2006; Simons and Trotter, 2007; Jahn et al., 2009). PLP is important for compaction of 

the extracellular apposition of the myelin membrane (Baumann and Pham-Dinh, 2001; 

Quarles et al., 2006; Aggarwal et al., 2011; Inouye and Kirschner, 2015) and for axonal 

integrity (Griffiths et al., 1998; Nave, 2010). MBP is essential for generation of myelin in 

the central nervous system, and it mediates adhesion of compact myelin layers by 

interacting with lipids in the myelin membrane (Boggs, 2006; Jahn et al., 2009). MBP is 

also important for myelin compaction (Baumann and Pham-Dinh, 2001; Simons and 

Nave, 2016). Myelin-associated glycoprotein (MAG), located in the periaxonal 

membrane of the myelin sheath (non-compact myelin), is important in the maintenance of 

myelinated axons, and is involved in the inhibition of neuronal regeneration (Quarles, 

2007; Nave, 2010). Myelin-associated oligodendrocytic basic protein (MOBP), like 

MBP, is present in the major dense line of compact myelin (Baumann and Pham-Dinh, 

2001; Montague et al., 2006). Although MOBP has been thought to have a similar role to 
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MBP in compaction of myelin, only MBP is considered to be the essential protein for 

myelination (Baumann and Pham-Dinh, 2001; Montague et al., 2006). MOBP may also 

be involved in myelin membrane-associated signaling, but the exact function of MOBP is 

still unknown (Montague et al., 2006). 

The present study tested the hypothesis that adolescent alcohol consumption 

affects myelination differentially in male and female adolescent rats, and that these 

effects are explained by changes in oxidative stress and in myelin-associated gene 

expression. Our hypothesis is based on previous literature suggesting that females are 

more vulnerable to the effects of alcohol consumption. We used a preclinical model of 

adolescent binge drinking (Gilpin et al., 2012) to elicit voluntary binge alcohol drinking 

in outbred Wistar rats. In order to determine the effects of alcohol during adolescence, 

myelin and oxidative stress measures were taken after the binge drinking period. Results 

show that binge drinking affects males and females differently and increases oxidative 

stress in the medial prefrontal cortex (mPFC) of adolescent male rats. The present 

findings provide insight into understanding sex differences in the effects of alcohol on the 

brain. In addition, these findings provide some understanding on what could modulate the 

alcohol-mediated reductions in myelin. This understanding is foundational in determining 

a mechanism between alcohol consumption and myelin reduction.  
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4.3 Materials and Methods 

4.3.1 Animals  

Male and female Wistar rats were shipped from Charles River with their mothers 

on postnatal day (PD) 18 or 19. They were weaned and housed in same-sex triads starting 

on PD 21, with ad libitum food and water. All procedures were performed in accordance 

to the National Institutes of Health Guide for the Care and Use of Laboratory Animals 

and approved by the Institutional Animal Care and Use Committee.  

4.3.2 Study Design  

4.3.2.1 Experiment 1: Effect of binge drinking on prefrontal myelinated axons of 
female adolescent rats 

The experimental design is shown in Fig 4.1. From PD 28–PD 42, female rats (N 

= 25) underwent binge (n = 8) or control (n = 8) drinking. Another group remained naive 

to operant training and alcohol consumption (n = 9). The three female groups were run 

alongside the male groups described earlier in the dissertation (Vargas et al., 2014, 

Chapter 3). Animals were perfused one  day after the binge period ended (described 

below), and brain tissue was processed and analyzed for myelin density (described 

below).  

4.3.2.2 Experiment 2: Effect of binge drinking on oxidative stress in the mPFC of 
adolescent rats 

The experimental design is shown in Fig 4.1. From PD 28–PD 42, male and 

female rats (N = 52; 26 per sex) underwent binge (n = 9) or control (n = 9) drinking.  
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Another group remained naive to operant training and alcohol consumption (n = 8). 

Brains were extracted one day after the binge period ended. The mPFC, along with other 

brain regions, were dissected and homogenized, and the 2, 7-Dicholorofluorescein (DCF) 

and bicinchoninic acid (BCA) assays were conducted as described below. 

4.3.2.3 Experiment 3: Effect of binge drinking on myelin-related gene mRNA in the 
mPFC of adolescent rats  

The experimental design is shown in Fig 4.1. From PD 28–PD 42, male and 

female rats (N = 53; 27 males, 26 females) underwent binge (n = 9) or control (n = 9) 

drinking.  Another group remained naive to operant training and alcohol (n = 8-9). Brains 

were extracted one day after the binge period ended. The mPFC was dissected and fresh 

frozen until RNA extraction and qPCR was performed, as described below. 

4.3.3 Adolescent alcohol exposure (Experiments 1–3) 

Animals were exposed to the voluntary adolescent binge drinking model 

described previously (Karanikas et al., 2013). Briefly, animals were trained to self-

administer sweetened water (3% glucose/0.125% saccharin/tap water) starting on ~PD 

23. On PD 28, rats remained on sweetened water (control) or were switched to sweetened 

alcohol (10% w/v ethanol/3% glucose/0.125% saccharin/tap water; binge). Overnight 

operant sessions consisted of six 30-min bouts with 1 hour timeout periods in which the 

levers were retracted and alcohol was unavailable. Food and water were always available 

in the operant boxes during the binge exposure period. 
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4.3.4 Perfusions and brain sectioning (Experiment 1)  

The day after the two-week binge period ended, animals were intracardially 

perfused with 4% paraformaldehyde in 0.1 M borate buffer, pH 9.4. After post fixation in 

4% paraformaldehyde for 4 hours and 24–48 h in 20% sucrose, brains were snap frozen 

with isopentane (2-methylbutane; Sigma) and dry ice, and stored at -80°C until 

sectioning. Coronal sections with a thickness of 35 µm were sliced on a freezing 

microtome and stored at -20°C in cryoprotectant (50% 0.1 M PBS, 30% ethylene glycol, 

and 20% glycerol).  

4.3.5 Brain dissections/ Tissue preparation (Experiments 2-3)  

The day after the two-week binge period ended, animals were lightly anesthetized 

with CO2 and decapitated, and their brains were collected. The mPFC was rapidly 

dissected from a ~1 mm-thick section cut from the front of the brain (Fig 4.1). For 

Experiment 2, the tissue was immediately homogenized (111.11 mg tissue/mL medium) 

in a medium made in 1:1:1:2 ratios of 0.5 M Sodium Phosphate, 700 mM KCl, 5 mM 

EDTA, and distilled MilliQ water, respectively. The homogenized tissue was then stored 

in -20°C. For Experiment 3, the dissected tissue was snap frozen on dry ice and stored at 

-80°C. 

4.3.6 Myelin labeling and microscopic analysis of myelin density in the mPFC 
(Experiment 1) 

Black Gold II was used to label every 10th section (Schmued et al., 2008), and 

photomicrographs of the dorsal mPFC were taken 2.2 mm from bregma (5x objective). 

Myelinated fiber density in cortical layers II–V was quantified using Aperio ImageScope 
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software by thresholding the images. Percentage of myelinated fiber area within the total 

area was calculated.  

4.3.7 2, 7-Dichlorofluorescein Assay (Experiment 2) 

In order to determine oxidative stress in the mPFC, the DCF assay was used 

(HaMai et al., 2001). The DCF assay is one of the most commonly used methods to 

detect oxidative stress (Wang and Joseph, 1999; Pavelescu, 2015). In this assay, 2′,7′ 

dichlorofluorescin diacetate (DCFH-DA) is hydrolyzed to 2′,7′ dichlorofluorescin 

(DCFH) by intracellular esterases. The DCFH is rapidly oxidized by the presence of 

reactive oxygen species (ROS) to the highly fluorescent 2′,7′ dichlorofluorescein (DCF) 

(Bass et al., 1983; LeBel and Ischiropoulos, 1992; Lu et al., 2015). The DCFH oxidation 

rate is interpreted as the general oxidative stress level found in the neural tissue. 

Therefore, it provides a measurement for the overall ROS concentration rather than 

targeting a specific ROS (LeBel and Ischiropoulos, 1992; Chen et al., 2010; Pavelescu, 

2015). 

DCF stock (10 mM) was made by adding DCF (Sigma Aldrich, Catalogue No. 

35848) to dimethyl sulfoxide (Fisher Scientific), and was diluted to 100 nM DCF for 

making standards. Homogenized tissue was centrifuged at 3,000 rpm for 10 minutes at 

4°C, and 10.2 µL of tissue supernatant were added to 1.5 mL of homogenizing medium. 

10mM DCFH-DA was made by adding DCFH-DA (Sigma Aldrich, Catalogue No. 

D6883) to dimethyl sulfoxide (Fisher Scientific). In duplicate, 200 µL of the diluted 

homogenates were pipetted into a 96-well microplate (Fisher Scientific). Then, under 

low-light conditions, 15.3 µL of DCFH-DA were added to each well. After a 30-minute 
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incubation at 37°C of the samples, fluorescence readings were taken using a SpectraMax 

M5 (Molecular Devices) multi-mode microplate reader with excitation at 485 nm and 

emission at 538 nm. A DCF standard curve (0-60 nM) was used to convert fluorescence 

readings into pmol DCF/mg of tissue.  

4.3.8 Bicinchoninic acid Assay (Experiment 2) 

The Pierce BCA assay kit (Thermo Scientific) was used to measure protein 

concentration in the mPFC (as previously described) (Smith et al., 1985; Walker et al., 

2008). This assay depends on the conversion from Cu2+ to Cu+, which is detected by 

reacting the tissue with BCA. Briefly, 25 µL of the diluted tissue homogenates were 

pipetted in duplicate into a 96-well microplate (Fisher Scientific). Then, 200 µL of the 

working reagent (50 parts of BCA reagent A to 1 part of BCA reagent B) were added to 

each well. After a 30-minute incubation at 37°C, absorbance readings were taken using a 

SpectraMax M5 (Molecular Devices) multi-mode microplate reader with a maximum 

absorbance of 562 nm. A BCA standard curve (0-2,000 µg/mL), which uses bovine 

serum albumin, was used to convert absorbance readings into milligrams of tissue. 

4.3.9 Reverse transcription and real time quantitative polymerase chain reaction 

(RT-qPCR) (Experiment 3)  

RNA was extracted from 10-15 mg of mPFC tissue using the RNeasy Lipid 

Tissue kit (Qiagen). Its quantity and quality were estimated using a NanoDrop 1000 

spectrophotometer (Thermo Fisher). cDNA was synthesized from 5-6.25 µL of total 

RNA from the mPFC using the SuperScript® III First-Strand Synthesis SuperMix for 
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qRT-PCR kit (Thermo Fisher Scientific). Quantitative PCR reactions (20 µL) were 

carried out in duplicates using the QuantiFast SYBR Green PCR kit (Qiagen) in a 96-well 

plate RealPlex machine (Eppendorf). Different amounts of cDNA were used for these 

reactions in order to obtain a very similar Ct score (around 20) between the different 

target and housekeeping genes, which were beta-actin (Actb) and general transcription 

factor IIB (Gtf2b). The amount of cDNA was: 2.5 µL for the MOBP and Gtf2b genes, 10-

1 µL for the MAG gene, and 10-2 µL for the MBP, PLP, and Actb genes. The forward and 

reverse primers and their sequences, identical to those used from Gregg et al. (2009), are 

listed on Table 4.1. In addition, no-template controls were included in duplicates. Finally, 

the ΔΔCt method (Livak and Schmittgen, 2001) was used to normalize the obtained Ct 

scores to the average of the two housekeeping genes and control group, and therefore, to 

calculate relative gene expression changes. The formula below was used:  

2-
ΔΔ

Ct 

where ΔΔCt = (Ct Target gene – Ct Housekeeping gene)Alcohol - (Ct Target gene – Ct Housekeeping gene)Control 

average  

The actual steps used to calculate this formula were the following: 

#1: Calculate ΔCt using the equation below. 

Ct Target gene – Ct Housekeeping gene 

#2: Calculate the average ΔCt of control animals. 

x̅ ΔCt Control animals 

#3: Calculate ΔΔCt by subtracting both ΔCt values as shown below. 

ΔCt Alcohol animal - ΔCt Control animals average 

#4: Input ΔΔCt in the formula 2-
ΔΔ

Ct (also shown above). 
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4.3.10 Statistical Analyses  

Two-way ANOVAs were used to analyze the effect of adolescent alcohol 

exposure on mPFC myelinated fiber density, on oxidative stress levels, and on myelin-

related gene expression in males and females. In addition, t-tests were conducted to 

examine any differences in alcohol or glucose consumption between the sexes. 

Differences in body weight between treatment groups were assessed by 1-way ANOVAs. 

Statistical significance was defined as p ≤ 0.05 using two-tailed tests. Statistical analyses 

were performed using the R statistical software package (R Core Team, 2014).  

4.4 Results  

In Experiment 1, alcohol consumption during adolescence had differential effects 

on male and female rats. In myelinated fiber density, the overall ANOVA was significant 

(F(5,44) = 3.21, p = 0.015), with significant main effects of treatment (p = 0.005) and sex 

(p = 0.037), and a significant interaction between treatment and sex (p = 0.01). Thus, 

myelinated fiber density was reduced in alcohol binge male rats (see also Vargas et al., 

2014 or Chapter 3), but was not significantly altered in females after adolescent binge 

drinking (Fig 4.2). Although there was a sex difference in myelinated fiber density after 

alcohol consumption, the average cumulative alcohol consumption was not different 

between the sexes (t(10.71) = 0.032, p > 0.05, Table 4.2). Similarly, there were no 

significant differences in glucose intake between treatment groups or sexes (all p > 0.05, 

Table 4.3). In addition, alcohol treatment did not affect the body weight of the animals (p 

> 0.05, Table 4.4).  
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Based on the findings above, we next tested the hypothesis that adolescent binge 

drinking increases oxidative stress in the mPFC of adolescent rats. The overall ANOVA 

of oxidative stress in the mPFC was not significant (F(5,46) = 1.23, p = 0.309), with no 

significant main effect of sex (p = 0.969) or interaction between treatment and sex (p = 

0.145), but with a borderline significant main effect of treatment (p = 0.076) for males 

only (Fig 4.3a). The results therefore show trends of an increase in pmol DCF/mg of 

tissue in the mPFC in alcohol binge male rats, but no significant differences in females 

(Fig 4.3b). It is important to mention that when a sex subgroup analysis was performed 

(1-way ANOVA in males), the treatment effect observed had the same magnitude as the 

previous 2-way ANOVA, but the p-value was slightly lower, becoming statistically 

significant (F(2,23) = 3.48, p = 0.048). In Experiment 2, average cumulative alcohol 

consumption was higher in the binge females when compared to the binge males 

(t(15.04) = -2.835, p < 0.05, Table 4.2). However, even when females consumed more 

alcohol than males, the trend of increased oxidative stress was only observed in males. 

Glucose intake was not significantly different between treatment groups or sexes (all p > 

0.05, Table 4.3). Similarly, the body weight of the animals was not affected by alcohol 

treatment (p > 0.05, Table 4.4). 

We next used real time quantitative polymerase chain reaction to explore whether 

adolescent binge drinking decreases mRNA of some of the genes important for 

myelination of axons (Experiment 3). The overall ANOVA of the fold change of mRNA 

expression of the myelin-related genes was not significant, with no significant main 

effects or interactions, and no trends in males or females (Fig 4.4, all p > 0.05). This 

suggests that adolescent binge drinking does not seem to alter the mRNA expression of 



	  
	  

 
 

100 

genes related to myelination in males or females. The average cumulative alcohol 

consumption was not different between binge males and females (t(12.64) = -1.492, p > 

0.05, Table 4.2). Likewise, there were no significant differences in glucose intake 

between treatment groups or sexes (all p > 0.05, Table 4.3). Finally, as observed in the 

experiments above, alcohol treatment had no effect on the body weight of the animals (p 

> 0.05, Table 4.4).  

4.5 Discussion  

The present study investigated sex differences in the effect of adolescent alcohol 

consumption on PFC myelin of rats. In addition, this study examined potential 

explanations for how alcohol may impact prefrontal myelin structure. We found that 

alcohol affects myelination differently in males and females. In contrast to males, 

adolescent females did not show a significant reduction in myelinated fiber density after 

alcohol consumption. Similarly, the alcohol group showed a subtle increase in measured 

oxidative stress in the mPFC of males, but not female rats, suggesting that oxidative 

stress may be involved in the alcohol-induced reduction of myelin.   

Our results suggest sex differences exist in the effect of adolescent alcohol 

consumption on myelin. Particularly, the prefrontal myelin of adolescent males seems to 

be more vulnerable to voluntary alcohol binge drinking, when compared to females. 

Studies in humans have also found sex differences, but females tend to have higher levels 

of vulnerability compared to males. For example, Medina et al. (2008) found lower 

prefrontal white matter volume in females with alcohol use disorders, but higher 

prefrontal white matter volume in males with alcohol use disorders, compared to control 
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males (Medina et al., 2008). In addition, female rodents were more vulnerable to 

neuroinflammation after chronic alcohol consumption starting during adolescence 

(Alfonso-Loeches et al., 2013). Conversely, there are human studies that have found 

alcohol affected both sexes similarly and thus found no sex differences. For example, De 

Bellis et al. (2005) found that both males and females with adolescent-onset alcohol use 

disorders showed smaller prefrontal cortex white matter volume (De Bellis et al., 2005). 

Similarly, binge drinking male and female teenagers showed impaired white matter 

integrity in the corpus callosum (McQueeny et al., 2009). These inconsistencies may be 

due to the varied alcohol exposures, species, and myelin measures used in each study.  

The mechanism by which alcohol disrupts prefrontal myelin remains unknown 

(Alfonso-Loeches et al., 2012). It is well known that alcohol induces oxidative stress. 

However, this has not been shown particularly in the brain until recently, when studies 

showed the induction of oxidative stress using chronic alcohol administration through 

gavage (Reddy et al., 2013; Teixeira et al., 2014) or by replacement of drinking water 

(Kharchenko, 2015). We show trends of an increase in oxidative stress, particularly 

induced by adolescent binge alcohol consumption. This suggests that oxidative stress and 

inflammation may be involved in the myelin disruptions caused by voluntary binge 

alcohol consumption. In fact, Alfonso-Loeches et al. (2012) provide evidence for a role 

for alcohol-induced inflammation in myelin disruption (Alfonso-Loeches et al., 2012). 

Oxidative stress has also been linked to demyelination. Specifically, myelin and 

oligodendrocytes have been shown to be highly vulnerable to oxidative stress 

(Bongarzone et al., 1995; Dewar et al., 2003; Yoshioka et al., 2014), and reactive oxygen 

species result in oligodendrocyte death (Smith et al., 1999). In addition, oligodendrocyte 
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precursor cells are very sensitive to ROS and, in their earlier stages, can be easily 

damaged (Husain and Juurlink, 1995). 

Based on the lack of group changes in the mRNA of myelin-related genes, we 

suggest that reductions in myelin-related genes do not seem to be involved in alcohol-

induced damage to myelin, at least in this particular binge drinking model. In this model, 

alcohol exposure duration and amount is less than other models of alcohol use disorders 

and dependence (Simms et al., 2008; Crabbe et al., 2009; Gilpin et al., 2012). In fact, 

some of the genes we tested (PLP, MBP, MAG) were down-regulated in the 

hippocampus of adult rats after alcohol injection (Lee et al., 2010), and in the cortex, 

hippocampus, and corpus callosum after chronic alcohol consumption (Alfonso-Loeches 

et al., 2012). In addition, these mRNA transcripts of MBP, PLP, MAG, and MOBP are 

directly linked to myelin, as they were reduced in the mPFC of adolescent rats (Gregg et 

al., 2009) and in the cerebellum of adult mice (Groebe et al., 2009) after cuprizone 

treatment, a widely used model in rodents to study demyelination (Denic et al., 2011; 

Silvestroff et al., 2012). Moreover, human studies have shown that postmortem alcoholic 

brains had a reduction in most myelin-related genes in comparison to controls (Lewohl et 

al., 2000; Liu et al., 2004). We can therefore assume that, although myelin-related gene 

transcription is reduced in alcoholism or after chronic alcohol consumption, adolescent 

binge drinking does not seem to reduce transcription of these genes in the mPFC. 

In conclusion, the present investigation provides evidence of sex differences in 

alcohol-induced effects in prefrontal myelin. To the best of our knowledge, this is the 

first study to investigate the effect of adolescent voluntary binge drinking on the density 

of myelinated axons in the mPFC of female rats. Therefore, this research contributes to 
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the understanding of the inconsistencies in the sex differences alcohol literature across 

time. In addition, this study suggests there may be subtle alcohol-induced increases in 

oxidative stress in the prefrontal cortex of adolescent males. Future work is necessary to 

further explore oxidative stress as a mechanism by which alcohol disrupts prefrontal 

myelin and to precisely determine whether sex differences exist in this process. These 

findings will be foundational and an important step in creating new treatment of alcohol 

use disorders. 

4.6 Figures and Tables 
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Figure 4.1. Study design. a. Timeline of Experiments 1-3. Rats were trained from 
postnatal day (PD) 22-27 and underwent binge drinking from PD 28-42. Brains were 
collected for perfusions (Exp. 1) or dissections (Exp. 2 and 3) on PD 43. b. Schematic 
showing the main area of interest: the medial prefrontal cortex (mPFC). The mPFC was 
dissected from the fresh frozen brains for assays of reactive oxidative species (Exp 2) and 
myelin genes (Exp 3). Myelinated fiber density was analyzed in perfused tissue sections 
within the same region (Exp 1). 
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Figure 4.2. Effect of adolescent binge drinking on myelinated fiber density in 
females. Alcohol binge drinking during adolescence did not significantly reduce 
myelinated fiber density in the medial prefrontal cortex (mPFC) of adolescent female rats 
(p > 0.05). This was a different effect from adolescent binge mPFC of male rats, which 
showed a significant reduction in myelinated fiber density (Vargas et al. 2014, or refer to 
Chapter 3). Data expressed as mean ± SEM (n=8–9 rats/group). 
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Figure 4.3. Effect of adolescent binge drinking on oxidative stress in the medial 
prefrontal cortex. a. Adolescent male alcohol rats showed trends of an increase in 
oxidative stress in the mPFC (p = 0.076). b. No significant changes in oxidative stress 
were observed in the mPFC of adolescent female alcohol rats. Data expressed as mean ± 
SEM (n=8–9 rats/group). 
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Figure 4.4. Effect of adolescent binge drinking on myelin gene expression in the 
medial prefrontal cortex of male and female rats. Alcohol did not significantly change 
myelin gene expression in the mPFC of (a) male or (b) female adolescent rats. Data 
expressed as mean ± SEM (n=8–9 rats/group). 
 
 

a
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Table 4.1. Primer sequences used in Experiment 3 
Gene name Forward primer Reverse primer 
MAG ATCCTTCTGGAATCGCACTG CCCTCTCTGTCTCGTTCACA 

   
MBP ACAGGAAACGGGGACTTAGG TGGGCTCTGAGAGGAAACAG 

   
MOBP TACAAGGAAGTCCGGCTCAC CTGGAGGAAGGAAGGGTTTC 

   
PLP GCATCACCTATGCCCTGACT AGCATTCCATGGGAGAACAC 

   
Actb AGGGAAATCGTGCGTGACAT AAGGAAGGCTGGAAGAGAGC 

   
Gtf2b TGCGATAGCTTCTGCTTGTC TCAGATCCACGCTCGTCTC 

 
Table 4.1. Primer sequences used in the RT-qPCR (Experiment 3). These same 
primers were used in Gregg et al., 2009. 
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Table 4.2. Summary of adolescent alcohol consumption (g/kg) 

      
 

Experiment 1 
 

Experiment 2 
 

Experiment 3 
Groups        
Binge Male 48.35 ± 7.00 

 
42.29 ± 4.67 

 
39.11 ± 4.19 

      
Binge Female 48.11 ± 3.75   62.74 ± 6.06   51.08 ± 7.41 
 
Table 4.2. Alcohol consumption during the two-week binge drinking period during 
early adolescence (cumulative total g/kg) for the groups in each experiment. Data 
shown as mean ± SEM.  
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Table 4.3. Summary of adolescent glucose intake (g/kg) 

      
 

Experiment 1 
 

Experiment 2 
 

Experiment 3 
Groups        
Control Male 17.44 ± 1.28  15.30 ± 1.90  11.82 ± 1.11 

      
Control Female 17.18 ± 1.73  19.16 ± 1.91  15.21 ± 2.11 

      
Binge Male 16.41 ± 2.36 

 
13.02 ± 1.43 

 
11.77 ± 1.25 

      
Binge Female 18.00 ± 1.74   18.87 ± 1.84   15.33 ± 2.22 
 
Table 4.3. Glucose intake during the two-week binge drinking period during early 
adolescence (cumulative total g/kg) in each experiment. Data shown as mean ± SEM.  
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Table 4.4. Summary of body weight (g) on PD 42 for experiments 1–3  

      
 

Experiment 1 
 

Experiment 2 
 

Experiment 3 
Groups        
Naive Male 214.4 ± 6.1 

 
201.6 ± 12.0 

 
203.0 ± 8.0 

      
Control Male 212.8 ± 8.7  211.3 ± 12.0  213.3 ± 9.9 

      
Binge Male 216.4 ± 5.3  201.6 ± 12.9  197.7 ± 9.9 

      
Naive Female 164.3 ± 4.2  162.5 ± 6.4  155.4 ± 4.8 

      
Control Female 180.6 ± 5.5 

 
162.8 ± 8.0 

 
159.8 ± 5.8 

      
Binge Female 172.9 ± 3.1   162.9 ± 5.4    152.8 ± 2.4 

 
Table 4.4. Body weight (g) of animals on postnatal day 42 in each experiment. Data 
shown as mean ± SEM. 
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CHAPTER 5 
 

GENERAL DISCUSSION 

5.1 Main Findings 

The present dissertation consisted of three main aims. First, it was important to 

understand the developmental increases in myelination of the prefrontal cortex (PFC) and 

forceps minor of the corpus callosum by examining the morphological changes in myelin 

in these regions. Results in Chapter 2 showed an age-related increase in myelinated axons 

in the PFC during early adolescence, but no changes in myelin thickness. This suggests 

that unmyelinated axons may be undergoing de novo myelination during this time.  

The second aim established the relationship between decreased white matter and 

increased alcohol consumption, and identified the behavioral effects of alcohol 

consumption during adolescence. Chapter 3 results showed that binge rats displayed 

myelin damage and a reduction in myelinated fiber density and white matter area in the 

PFC. This implies that alcohol exposure may reduce and damage myelin, as opposed to 

predisposition factors, such as low myelin, increasing alcohol consumption. In addition, 

results showed a negative relationship between performance in a working memory PFC-

dependent task and the amount of alcohol consumption during adolescence, suggesting 

alcohol may be related to deficits in cognitive performance.   

The last aim determined potential sex differences in alcohol-induced PFC myelin 

changes, and contributed to our understanding of how alcohol alters myelin in the PFC. 

Chapter 4 results showed that unlike males, binge drinking females did not show 

evidence of reduced myelin in the PFC, indicating sex differences exist in the interaction 

between alcohol consumption and PFC myelin. In addition, trends of an increase in 
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oxidative stress were observed for male, but not female, binge rats, indicating that 

oxidative stress/inflammation may be related to myelin changes after alcohol 

consumption.  

5.2 Proposed Model 

Based on the results of the present studies, and in combination with previous 

literature, I have created a working model to help increase our understanding of the 

effects of alcohol exposure on prefrontal myelin, particularly the potential mechanisms 

underlying these effects, and of the functional significance of prefrontal myelination 

during adolescence. Refer to Fig 5.1 for a schematic illustrating the model. I propose that 

intermittent alcohol exposure may reduce myelin in white and gray matter: (1) by 

preventing oligodendrocyte maturation via reduction of glutamate levels, or (2) by 

promoting injury/damage and death of mature oligodendrocytes via oxidative 

stress/inflammation. It is also possible that it may be a combination of these two potential 

mechanisms. Also, I deduce that this reduction in myelin in white and gray matter areas 

is accompanied by a compensatory response meant to promote remyelination.  

5.2.1 Potential mechanism #1: Reduction of glutamate levels by alcohol, preventing 
oligodendrocyte maturation 

It is known that chronic alcohol exposure affects glutamate. Particularly, 

administration of 2 g/kg of alcohol significantly reduced glutamate levels in the nucleus 

accumbens, and this reduction persisted for two hours (Ferrer et al., 2007). In addition, it 

is known that intermittent and chronic alcohol exposure interferes with glutamatergic 

transmission (Stuber et al., 2008; Zhao et al., 2015). Ion channels, most notably NMDA 
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(N-methyl-D-aspartate) receptors, displayed significantly reduced ion currents in 

response to alcohol exposure (Lovinger et al., 1989). NMDA receptors are involved in 

excitatory neurotransmission, synaptic plasticity, cognitive function, and some behaviors. 

Alcohol inhibits NMDA receptors in the PFC, (Weitlauf and Woodward, 2008), nucleus 

accumbens, and ventral tegmental area (Ding et al., 2012), and in a dose-dependent 

manner in the hippocampus (Lovinger et al., 1989). NMDA inhibition potentially 

contributes to some of the perturbations in neural excitation, plasticity, and behavior 

associated with exposure to alcohol. Chronic alcohol exposure is thought to affect 

plasticity by increasing calcium/calmodulin dependent kinase type II (CaMKII) activity, 

impacting long-term potentiation of NMDA receptors (Zhao et al., 2015). 

Withdrawal from alcohol is marked by drastically increased extracellular 

concentrations of glutamate (Rossetti and Carboni, 1995). The exact mechanism by 

which withdrawal induces increases in glutamate levels is still poorly understood. 

However, deficits in glutamate clearance (Ding et al., 2013) and glutamate transport and 

reuptake proteins (Schreiber and Freund, 2000) have been observed. Excessive excitatory 

synaptic transmission, correlated with increased glutamate levels, has been observed in 

the ventral tegmental area 24 hours following chronic voluntary alcohol exposure (Stuber 

et al., 2008). This indicates that while alcohol intoxication acutely inhibits excitatory 

synaptic transmission, chronic alcohol exposure and withdrawal exacerbates excitatory 

synaptic transmission. The result is aberrantly high levels of excitation in the brain, 

particularly in areas involved in addictive behaviors and drug seeking behavior. 

In addition to being influenced by alcohol exposure, recent research has 

demonstrated that glutamate is involved in CNS myelination. Martinez-Lozada et al. 
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(2014) explained a potential mechanism underlying the relationship between glutamate 

and CNS myelination. Sodium-dependent glutamate transporters in oligodendrocytes are 

activated by glutamate secreted from, for example, an unmyelinated axon. The glutamate 

transporter, in turn, produces a transient increase in intracellular calcium, which leads to 

phosphorylation of the actin-binding/-stabilizing domain of calcium/calmodulin 

dependent kinase type IIβ (CaMKIIβ). CaMKIIβ is a kinase that comes from a highly 

conserved family of serine/threonine kinases (Waggener et al., 2013) and is associated 

with the actin skeleton in differentiating oligodendrocytes (Martinez-Lozada et al., 2014). 

After its phosphorylation, CaMKIIβ detaches from the actin cytoskeleton, allowing actin 

phosphorylation and cytoskeleton remodeling in oligodendrocytes. Finally, the actin 

cytoskeleton stabilizes when CaMKIIβ binds actin again after phosphorylation. Cycles of 

binding and unbinding of CaMKIIβ to actin result in a reorganization of the actin 

cytoskeleton, promoting oligodendrocyte maturation (Martinez-Lozada et al., 2014). 

To summarize this first potential mechanism in my proposed model, intermittent 

alcohol exposure is thought to reduce glutamate levels, preventing oligodendrocyte 

maturation and ultimately myelination. In contrast, alcohol withdrawal is thought to 

increase glutamate transmission via interfering with its reuptake/clearance. Glutamate, in 

turn, promotes maturation of oligodendrocytes, thereby promoting myelination via 

sodium-dependent glutamate transporters and CaMKIIβ. The alcohol-induced reduction 

of glutamate would thereby perturb myelin in white and gray matter. 
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5.2.2 Potential mechanism #2: Induction of oxidative stress/inflammation by alcohol 
leading to mature oligodendrocyte injury and death  

 Alcohol exposure, especially binge-like alcohol exposure, is correlated with brain 

degeneration and inflammation (Crews et al., 2006). However, the mechanism by which 

consumption of alcohol induces damage to the brain is poorly understood. Inflammation, 

generated via oxidative stress and free radical damage, is thought to play a role in this 

process. There are several key players involved in the inflammatory response to alcohol 

consumption. 

Central to alcohol’s capability to promote an inflammatory response is the widely 

expressed transcription factor nuclear factor-kappa B (NF-kB) (Crews et al., 2006). This 

transcription factor is necessary for activating the inflammatory response, and it is 

important for cell proliferation, growth, and adhesion (Surh et al., 2001). Normally, NF-

kB is inactive and bound to IkappaB (IkB) kinase. Alcohol consumption acts on a 

member of the toll-like receptor family, TLR4, to phosphorylate and degrade IkB 

(Murakami and Ohigashi, 2007). This in turn disinhibits NF-kB, allowing for nuclear 

translocation and subsequent activation of inflammatory genes. NF-kB is then free to 

bind on the promoter region of the pro-inflammatory genes cyclooxygenase (COX-2 

isoform) and inducible nitric oxide synthase (iNOS). Both COX-2 and iNOS promoter 

regions contain NF-kB binding sites, and thus could be dually activated by the same 

stressor, i.e. alcohol. 

COX-2 mRNA increases Prostaglandin E2 activity, which in turn promotes an 

inflammatory response. In parallel, NF-kB activation, coupled with NADPH oxidase, 

promotes iNOS mRNA expression and iNOS enzyme activity, enhancing the generation 

of nitric oxide (Wu et al., 2008; Koppula et al., 2012). This in turn generates reactive 
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oxygen species (ROS), capable of denaturing and degrading proteins, DNA, and various 

other biological components (Murakami and Ohigashi, 2007). These ROS subsequently 

activate and promote inflammation, as mentioned above. These series of cellular and 

molecular events form a bridge between alcohol consumption, inflammatory response, 

and subsequent degradation of brain areas. 

The role of oxidative stress in demyelination was reviewed by Smith et al. (1999). 

Many in-vitro studies have shown that ROS can affect myelination in a variety of 

manners. For example, ROS production can result in oligodendrocyte death, which leads 

to demyelination (Smith et al., 1999). In fact, apoptosis in oligodendrocytes was mediated 

by ROS (Yeo et al., 2012). It is known that oligodendrocytes are much more vulnerable 

to ROS than astrocytes because oligodendrocytes produce low levels of antioxidants. 

Indeed, oligodendrocyte death occurs at a much lower dose of ROS than that required for 

astrocyte death (Griot et al., 1990).  

Another way ROS production affects myelination is by directly affecting the 

lipids and proteins that make up myelin (Konat and Wiggins, 1985). Incubating myelin 

with ROS caused myelin decompaction and peroxidation of myelin basic protein (MBP), 

lipids, and proteolipid protein (PLP) (Bongarzone et al., 1995). In addition, some matrix 

metalloproteinases, neutral endoproteinases that degrade all components of the 

extracellular matrix, have been shown to degrade MBP when released as a consequence 

of ROS production (Chandler et al., 1995; Smith et al., 1999). 

To summarize the second potential mechanism in my proposed model, 

intermittent alcohol exposure is thought to induce oxidative stress/inflammation through 

the TLR and NF-kB pathway, promoting injury to oligodendrocytes and apoptosis. 
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Interference with the function of oligodendrocytes will likely affect the expression of 

myelin-related genes, such as MBP or PLP. In addition, intermittent alcohol exposure is 

expected to downregulate myelin-related genes, similar to the downregulation of myelin-

related genes observed in mice after chronic alcohol exposure (Alfonso-Loeches et al., 

2012). The alcohol-induced disruption in oligodendrocyte function and/or the down-

regulation of myelin proteins will lead to reduction of myelin in white and gray matter. 

5.2.2.1 Compensatory response to inflammation: remyelination  

As mentioned above, the inflammatory response degrades myelin through mature 

oligodendrocyte death, peroxidation of MBP and PLP, etc. However, there are 

compensatory and regenerative effects of inflammation that can also promote 

remyelination, and occur through activation of a different member of the toll-like 

receptor family, TLR2, (Choi et al., 2014). During the inflammatory response, 

macrophages are activated and secrete the pro-myelinating cytokine endothelin-2 (Yuen 

et al., 2013). Activation of endothelin-2 receptors promotes OPC migration and 

differentiation (Gadea et al., 2009), which in turn increase production of MBP mRNA 

expression (Jung et al., 2011). OPCs express receptors for endothelin-2, which when 

activated promote remyelination and when blocked inhibit remyelination (Yuen et al., 

2013).  

5.2.3 Functional significance of prefrontal myelination during adolescence 

The present working model will also aid in the understanding of the functional 

significance of adolescent myelination, at both the physiological and behavioral levels. 

During adolescent development, myelin in white and gray matter increases and 
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corresponds with an augmentation in the conductance speed for fibers in the mPFC 

(Chapter 2). In addition, it is well known that myelination increases conduction velocity 

of fibers (Purves et al., 2008). Therefore, I conclude that increasing the conduction speed 

along axons in the mPFC is a functional outcome of increased myelination of these axons 

during adolescence.  

It is also important to determine if alcohol causes structural and physiological 

changes in PFC myelin and whether these changes affect behavior. Indeed, reduced 

frontal white matter correlated with increased relapse-like drinking in adulthood (Chapter 

3). Myelination of the PFC correlates with an improvement in performance of cognitive 

tasks (Fuster, 2002). I found that adolescent drinking reduced myelin in the mPFC, and 

the amount of alcohol consumed was inversely related to performance in a working 

memory PFC-dependent task (Chapter 3). Finally, adolescent alcohol consumption 

augmented relapse-like drinking in adulthood (Gilpin et al., 2012). Therefore, based on 

the evidence outlined above, I can also conclude that myelination in the PFC has 

functional significance at the behavioral level as well. 

5.3 Concluding Remarks 

The results of the experiments in this dissertation have confirmed adolescent 

development is characterized by an increase in myelin in the PFC. Results have 

demonstrated that consumption of alcohol during adolescence reduces white matter and 

myelin involved in the prefrontal circuits, and is associated with long-term cognitive 

deficits. In addition, the present work suggests that alcohol consumption during 

adolescence induces subtle increases in oxidative stress in the PFC. This suggests that 

inflammation may be involved in the myelin reduction induced by alcohol consumption. 
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The present results identify that there are sex differences in the interaction between 

adolescent alcohol consumption and prefrontal myelin, with males appearing more 

vulnerable than females.  

Therefore, this dissertation contributes to our understanding of the developmental 

increases in prefrontal myelination during adolescence and identifies a specific effect of 

alcohol consumption on adolescent myelin development. Future work investigating the 

cellular and molecular mechanisms underlying alcohol-induced reduction in prefrontal 

myelin and the sex differences observed could lead to novel treatment and prevention 

strategies for alcohol use disorders.
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5.4 Figures and Tables 

 
 
Figure 5.1. Schematic illustrating the proposed model. Solid lines signify inducing and dotted lines signify inhibiting. 
Abbreviations: NMDA, N-methyl-D-aspartate; COX-2, cyclooxygenase-2; iNOS, nitric oxide synthase; ROS, reactive oxygen 
species; OPC, oligodendrocyte precursor cells; MBP, myelin basic protein; PLP, proteolipid protein; é, increase; ê, decrease. 
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