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ABSTRACT 

INTEGRATED URBAN METABOLISM ANALYSIS TOOL  
(IUMAT) 

 
SEPTEMBER 2016 

 
SEYED NARIMAN MOSTAFAVI, B.S., AMIRKABIR UNIVERSITY OF TECHNOLOGY (TEHRAN 

POLYTECHNIC) 
 

M.S., ROYAL INSTITUTE OF TECHNOLOGY (KTH) 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Simi T. Hoque 
 
 
 
 
 

A number of tools are available today for simulating different aspects of urban activity. 

But these efforts are fragmented and do not effectively reflect the interrelationships between 

very diverse groups of urban sectors and resource flows. There is a critical need for robust and 

reliable urban metabolism analysis tools that integrate socio-economic elements of urbanization 

and physicality of the built environment into evaluating sustainability in cities. 

This dissertation outlines the development of an Integrated Urban Metabolism Analysis 

Tool (IUMAT) that dynamically measures the environmental impacts of land cover, transportation, 

and consumption of energy, water and materials by employing a holistic framework. It includes 

examination of the existing scholarship on urban metabolism as well as description of the 

calculative framework for IUMAT. The scope of work is establishment of the Residential Energy 

Model that would serve as a template for the larger Energy, Water and Materials (EWM) Model. 

The EWM model takes a bottom-up approach to generate spatial resource demand profiles based 

on building and neighborhood characteristics. The Residential Energy Consumption Survey (RECS) 

2009 data is used to explain how the proposed framework makes use of actual data to find 
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determinants of resources’ demand and unravel correlations between environmental 

consequences and myriad of urban variables. Quantile regression is explored as a robust method 

for large-scale energy modeling that is a prototype for resource use projection within other urban 

sectors. 
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INTRODUCTION 

 
More than half of the world’s population live in cities, contributing to more than 70% of 

the global GHG emissions (Feng et al., 2013). Cities are rapidly growing especially in developing 

economies of Asia and Africa, extending their environmental footprint beyond their official 

municipal borders. Accordingly, development and dissemination of reliable urban planning and 

policy tools that can address environmental concerns is a grand challenge of the future. 

Quantifying and predicting the effectiveness of urban sustainability initiatives and the 

environmental impacts of growth scenarios are crucial for the urban designers and city planners. 

One of their major concerns over the past decades has been to establish new development 

practices and visions towards building sustainable new communities and lowering the 

environmental footprint of the existing building stock. Hampering the growing consequences of 

urban sprawl has triggered a wide range of practice and policy adaptation, from national and 

regional climate action plans to specific building energy requirements or transportation demand 

reduction mandates. These efforts are considered to effectively push in a positive direction, 

however, their partial or aggregate influence on the overall sustainability of urban regions cannot 

be precisely indexed. In addition, due to the location based nature of the proposed plans, effective 

solutions for a specific region could be entirely fruitless for another.    

“Metabolic” analysis has been a popular term for referring to efforts that aim at 

quantifying the flows of mass and energy through urban areas. Recent studies on analyzing the 

metabolism of cities underline the importance of integrating both physical and socio-economic 

factors that govern the patterns of change and their environmental impacts. Understanding the 

big picture of metabolism in cities could significantly benefit urban design and planning 

disciplines, especially for incorporations of sustainability principles in the processes of analysis, 
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design and policy making. Productive harvesting of the benefits associated with a metabolic 

analysis approach, requires development of urban scale simulation software tools, in addition to 

defining the indicators of urban sustainability. The puzzling interconnectedness of urban 

subsystems requires simulation approaches that simultaneously consider social, economic and 

environmental aspects of urban life. However, most of the urban resource consumption modeling 

packages in use today, focus on particular urban sectors with very specific simulation objectives. 

The Integrated Urban Metabolism Analysis Tool (IUMAT) aims to create a large-scale sustainability 

modeling framework that considers and integrates various urban subsystems and is capable of 

handling the overlapping features of urban activity and life.  

Research Objectives  

Integrating the implications and impacts of built and natural forms, open space, 

transportation, sanitation and municipal services is essential to prioritizing how to best conserve 

natural resources and reduce GHG emissions for each unique urban area. This Ph.D. project aims 

to address this need by developing an Integrated Urban Metabolism Analysis Tool (IUMAT), a 

modeling structure that quantifies the “metabolism” of urban spaces in terms of inlet and outlet 

flows of energy, water, materials and waste. Principally, urban metabolism has been defined as 

‘the sum total of the technical and socio-economic processes that occur in cities resulting in 

growth, production of energy and elimination of waste’ (Kennedy et al., 2007, p.44). This projects 

aims to enable a comprehensive analytical understanding of city scale metabolism for urban 

design and policy making, and as a result, lay out foundations for developing simulation tools for 

sustainability evaluation in urban regions; a quantitative basis for understanding the 

environmental impacts caused from collaborative decisions made by a population of human 

beings within municipal borders of a city.  



 

 
3 

We have series of objectives that accomplishment of each is starting point for the 

proceeding. The ultimate sustainability aid tool goal for IUMAT requires environmental impacts 

evaluation by reporting sewage and waste production, atmospheric emissions, energy 

consumption breakdown, transportation demand and land use change. This would require: 

 

a. Prioritizing urban sustainability indicators into a hierarchical setup of net 

sustainability index calculative module as the first objective. Our primary goal is to integrate 

interrelated features of urban dynamics in order to figure out the system-wide repercussions 

resulting from any occurrence of change or disturbance in different attributes of urban life.  

 

b. Creating an evaluative/calculative structure in order to enable useful calculative 

integration among intertwined sectors of urban activity.  

 

c. Developing a framework for intensive collection and use of actual data in the 

process of simulation and forecasting. We aim to provide researchers and planners a compact set 

of essential information needed for understanding and analyzing metabolism of metropolitan 

areas based on consumption of resources and negative environmental impacts associated with it, 

as well as setting an actual example on how real data can be used to understand and improve 

metabolic performance of cities.  

Dissertation Outline 

This dissertation includes an exhaustive review of the literature on simulation of 

sustainability at large scales to better define the achievements and gaps in the existing research 

in Chapter 1 (written by myself as the lead author, with co-authorship of Mohamad 

Farzinmoghadam, Benjamin Weil and Simi Hoque). The next chapter is dedicated to defining an 
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evaluative/calculative structure for integration of urban subsystems and the interrelations 

between different sectors of urban activity/life by incorporating socio-economic factors (written 

by myself as the lead author, with co-authorship of Mohamad Farzinmoghadam and Simi Hoque). 

Chapter 3 details the development of IUMAT’s residential energy model using actual energy 

consumption data that functions as a prototype for commercial and manufacturing energy models 

(written by myself as the lead author, with co-authorship of Mohamad Farzinmoghadam and Simi 

Hoque). The residential model also provides groundwork for calculating the environmental 

footprint of urban water and material use. Chapter 4 addresses some of the data collection and 

availability challenges for bottom-up urban modeling structures, and hints at possible future steps 

towards accomplishing models other than the residential energy model.   
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CHAPTER 1 

INTEGRATED URBAN METABOLISM ANALYSIS TOOL (IUMAT) 

 
The following chapter is published in the Urban Policy and Research Journal, Volume 

32(1), October 2013. Mohamad Farzinmoghadam, Dr. Simi Hoque (Corresponding Author), and 

Dr. Benjamin Weil are other co-authors of this chapter. To cite this chapter: 

Mostafavi, N., Farzinmoghadam, M., Hoque, S., & Weil, B. (2014). Integrated urban metabolism 

analysis tool (IUMAT). Urban Policy and Research, 32(1), 53-69. 

 
 

1.1 Abstract  

The determinant share of cities in global primary energy use and greenhouse gas 

emissions highlights the importance of dissemination and development of reliable urban planning 

and policy tools. To reach sustainable urban development, having a comprehensive 

understanding of the concept of urban metabolism is critical. This work is the first step toward 

the development of an Integrated Urban Metabolism Analysis Tool (IUMAT) that seeks to consider 

all three social, economic and environmental capitals of an urban region in a multidisciplinary 

context. This tool is intended to provide a quantitative approach to assessing the sustainability 

indicators in a city. A literature review on the urban metabolism and urban-scale simulation tools 

is carried out to highlight the achievements as well as scientific gaps in the existing research, and 

to determine the objectives and functionalities that are expected from IUMAT. 

 

1.2 Introduction  

Cities are responsible for 67 per cent of the primary energy use and nearly 71 per cent of 

greenhouse gas (GHG) emissions on a global scale (International Energy Agency, 2008). The 

majority of the world’s population resides in urban areas, and cities are expected to experience a 
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48 per cent growth by 2030, with the fastest rate of growth in the developing economies of Asia 

and Africa (UN Population Fund, 2007). Moreover, smaller cities and towns are expected to have 

a dominant role in urban population growth. This means that the development and dissemination 

of reliable urban planning and policy tools that address environmental concerns will be crucial in 

the decades ahead. To mitigate the consequences of this growth, city counsellors have initiated 

climate action plans, adaptation and mitigation policies, and energy conservation mandates to 

spur the development of high performance buildings, sustainable transportation, and increased 

green space. Although these efforts are assumed to have some positive impacts on the urban 

context, it is still unknown to what extent these actions can influence the overall sustainability of 

a city. A set of policy and planning options may be optimal for one city while counterproductive 

for another. Integrating the implications and impacts of built and natural forms, open space, 

transportation, sanitation and municipal services is essential to prioritizing how to best conserve 

natural resources and reduce GHG emissions for each unique city. 

 

1.3 Background and Literature Review 

Many different terms have been used to refer to the characterization, quantification and 

analysis of urban energy and mass flows, among which ‘metabolic’ analysis is the most popular. 

This section provides a review of studies useful in guiding the development of an urban 

metabolism analysis tool. The following does not completely cover the growing body of literature 

regarding the concept of urban metabolism analysis, but highlights key approaches and methods 

that have been adopted by researchers so far. 

Forty years ago, in the wake of rapid urban expansion, Abel Wolman (1965) published a 

pioneering article on the metabolism of cities, which is regarded as a fundamental basis for 

researchers working on quantitative assessments of city energy and resource flows. The concept 
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of urban metabolism was developed by Wolman as a response to deteriorating urban water and 

air quality in America, a trend that remains a challenge to urban sustainable development 

worldwide. He quantified the overall input and output flux of energy, water, materials and waste 

in a hypothetical American urban region with a population of 1 million. Since then, many 

researchers have conducted urban metabolism studies all around the world, using different 

perspectives, methodologies and frames. 

Urban metabolism can be defined as “the sum total of the technical and socio-economic 

processes that occur in cities resulting in growth, production of energy and elimination of waste” 

(Kennedy et al., 2007, p. 44). Urban metabolism analysis is a way to qualify inlet and outlet flows 

of materials, water, energy and waste in an urban area (Sahely et al., 2003). The first studies of 

urban metabolism for actual cities were conducted in the 1970s on Tokyo (Hanya and Ambe, 

1976), Brussels (Duvigneaud and Denayeyer-De Smet, 1977) and Hong Kong (Newcombe et al., 

1978). The Brussels metabolism study was distinctive in that it included natural energy balances, 

going beyond quantification of human-activity induced energy flows (Kennedy et al., 2011). After 

these formative studies in the 1970s, interest in urban metabolism waned for almost a decade. 

During the last 20 years, the concept has gained traction, with tens of papers published on the 

subject. 

Generally, there are two popular methodological frameworks used in metabolism studies. 

Some focus on qualitative methods categorized under a political science context (e.g. Heynen et 

al., 2006), while others are categorized under a quantitative or historical context (e.g. Tarr, 2002). 

Some researchers such as Swyngedouw and Heynen (2003) and Keil (2003) suggested the 

approach of urban political ecology to solve interconnected political, social, economic and 

ecological processes. Heynen et al. (2006) addressed the importance of regarding urbanization as 

a socio-ecological process of change. Tarr (2002) explored the use of land, water and air resources 
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from 1800 to 2000 in the city of Pittsburgh. Lennox and Turner (2004) suggested long multi-

decadal time-frames and regional context for temporal and spatial scales for settlement studies. 

Douglas et al. (2002) investigated changes in land use, material flows and river morphology in the 

Manchester urban area over the last two centuries. 

A review of papers published in the last decade on urban metabolism shows that, within 

the quantitative context, two different analytical approaches are common. Metabolism has been 

described in terms of energy equivalents (e.g. Odum, 1983) or, in terms of mass flux with respect 

to a city’s flows of water, materials and nutrients—also known as Material Flow Analysis (MFA). 

Odum applied his method for a case study on Paris using the data provided by Stanhill (1977). His 

approach has been used in a study on Miami, Florida by Zucchetto (1975) who studied the 

relationships between natural systems, energy data and economics. The introduction of the 

emergy concept in ecology and ecological economics provided a tool for analyzing natural systems 

and investigating the interface between natural and human systems. Odum (1996) clarified the 

fundamentals of an emergy theory, suggesting a thermodynamic approach to urban metabolism 

models which includes embodied energy or emergy (solar energy equivalents) flows. Some 

proposed that indices and ratios based on emergy flows can be calculated and used to evaluate 

different types of systems (Brown and Ulgiati, 1997). While Odum’s method has not become 

main-stream, it was used by Huang and Hsu, for Taipei, Taiwan (Huang, 1998; Huang&Hsu, 2003), 

who studied the connection between ecological systems and urban economics. Zhang et al. (2009) 

used an emergy-based indicator system to evaluate metabolic factors of Beijing for the period 

1990–2004. 

Material flow analysis (MFA) of stocks and flows of resources is quantified in terms of 

mass, and is unlike Odum’s approach, which concentrates on energy equivalents. These studies 

typically report energy flows in terms of joules, and a city’s flows of water, materials and nutrients 
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in terms of mass fluxes (Kennedy et al., 2011). Baccini and Brunner (2012) explained the use of 

MFA applications in examining metabolic characteristics of urban areas. They studied the 

metabolism of the anthroposphere by exploring effects of material fluxes on the biosphere. Using 

the MFA method, Warren-Rhodes and Koenig (2001) updated the Newcombe et al. (1978) study 

on urban metabolism of Hong Kong focusing on the trends in waste generation and resource 

consumption. Hendriks et al. (2000) illustrated MFA as a tool for environmental policy making, 

carrying out case studies of Vienna and the Swiss lowlands. Codoban and Kennedy (2008) 

employed MFA to explore flows of water, energy, food and waste in Toronto neighborhoods. 

Schulz (2007) used MFA to examine overall environmental effects of urban systems in Singapore. 

The challenge of implementing MFA is that the specific environmental impacts associated with 

material flows must also include consumption and post-consumption processes (disposal 

technologies for example). In addition, an ecosystem’s vulnerability to urban processes is a 

function of geographic factors (Schulz, 2007). In response to this problem, some studies such as 

Wackernagel and Rees (1996) (for Vancouver, Canada) and Folke et al. (1997) (for cities in Baltic 

Europe) have assessed the urban metabolism using the application of ecological footprint 

techniques. Fischer-Kowalski and Hüttler (1998) analyzed characteristic features of MFA 

according to system level, frame of reference, and types of flows being studied. Barrett et al. 

(2002) applied the MFA method to the City of York, UK followed by ecological footprint analysis 

to understand the pressure on the environment by material flows. Niza et al. (2009) quantified 

the material balance of Lisbon for 2004. Zhang and Yang (2007) explored the efficiency of urban 

material metabolism for Shenzhen City in China regarding socio-economic development during 

1998–2004. Browne et al. (2009) measured the change in total materials metabolic inefficiency 

for Limerick, Ireland from 1996 to 2002. 
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Some researchers, such as Sahely and Kennedy (2007), analyzed the urban metabolism 

by addressing water-related issues. Hermanowicz and Asano (1999) highlighted water 

metabolism in a city and investigated applications of wastewater reuse, correlating reuse 

application with patterns of water use. Gandy (2004) addressed the importance of water as a key 

dimension to the social production of urban space. Kane and Erickson (2007) explored water 

supply for New York City from an urban metabolism perspective considering interactions between 

urban cores and rural hinterlands. Baker et al. (2009) emphasized the importance of developing 

hydrologic balance for cities as a strong and fundamental tool for urban water managers. Thériault 

and Laroche (2009) studied hydrologic metabolism in the administrative boundaries of the 

Greater Moncton region, New Brunswick, by quantifying water input and output and carrying out 

a water balance for the period 1984–2004. 

Studies based on nutrient flows are the least common, and most of them have focused 

on individual substances such as phosphorus and nitrogen, such as Færge et al. (2001) for Bangkok 

and Burström et al. (2003) for Stockholm. Færge et al. developed a nutrient balance model 

considering the nitrogen and phosphorous cycle for Bangkok province. Burström et al. explored 

the municipal material flow of nitrogen and phosphorus for the city of Stockholm. Barles (2007) 

studied flows of food and nitrogen in Paris for the period 1801–1914. Bohle (1994) studied the 

urban food metabolism by using an urban metabolism perspective to explore supply, production, 

consumption and distribution of food in developing countries. Forkes (2007) developed a nitrogen 

balance of the urban food cycle for the city of Toronto, Canada. 

Some studies have taken approaches that cannot be categorized exactly under what was 

explained above. For instance, Bergbäck et al. (2001), Sörme et al. (2001) and Svidén and Jonsson 

(2001) studied the urban metal flows in Stockholm. Fung and Kennedy (2005) presented a 
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macroeconomic model to link economic drivers with urban metabolism parameters. Deilmann 

(2009) studied the relationship between the surface of the cities and urban metabolism. 

However, the conception of urban metabolism has not remained devoid of alterations 

over time. Newman and co-workers (Newman et al., 1996; Newman, 1999) studied the 

metabolism of Sydney proposing the inclusion of livability factors toward an extended metabolism 

model, by considering indicators of employment, health, housing, education, income, leisure and 

community activities. Inclusion of quality of life in urban metabolism is also mentioned by Stimson 

et al. (1999), who have emphasized the livability and long-term viability of cities in addition to 

environmental sustainability. 

Kennedy et al. (2007) suggest that consequent impacts of growth and development of 

cities, such as water accumulation in urban aquifers, imported construction materials, trapped 

heat in rooftops and pavements, and nutrients deposited in the soil and waste dumps, gradually 

cause changes in the metabolism of cities. They used available data from previous urban 

metabolism studies in eight different cities across the world and analyzed four fundamental cycles 

of energy, materials, water and nutrients, and related the differences between the metabolism 

of the cities to cultural factors, stage of development and age in addition to urban population 

density and climate conditions.  

Shimoda et al. (2004) simulated residential energy consumption by end use in Japan’s 

Osaka City by summing up every one-hour energy use by 23 types of household and 20 dwelling 

types and multiplying the results by the number of households in each category based on weather 

data, set temperatures of heating and cooling, set temperature and amount of hot water supply, 

occupants’ schedule of activities, appliances’ energy performance and thermal properties of the 

buildings. They published a related paper in 2007 on quantitative evaluation of the effects of 
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different energy conservation measures on residential energy consumption in Osaka City 

(Shimoda et al., 2007). 

Ngo and Pataki (2008) conducted a metabolic study by analyzing input and output flows 

of energy, water, food and pollutants for Los Angeles County in California in 1990 and 2000. Their 

intent was to determine whether the urban development in Los Angeles County was moving 

toward environmental sustainability or away from it by comparing per capita input and output 

flows of energy, water, solid waste, food and GHG emissions for the study period 1990–2000. 

Baynes et al. (2011) addressed some of the contrasts between two different methodologies of an 

input–output consumption approach and a regional production method for urban energy 

consumption analysis of the metropolitan area of Melbourne, Australia. 

Jin et al. (2009) suggested a policy-making platform for urban sustainability by 

incorporating system dynamics into the ecological footprint instead of snapshots, focusing on a 

case study of Wanzhou, China in 2005. Turner and West (2011) underlined the importance of 

capturing the long-term dynamics for strategic planning of infrastructural electricity generation 

for the state of Victoria, Australia. Huber and Nytsch-Geusen (2011) suggested some 

simplifications to accelerate largescale urban districts’ simulation process via coupling building 

and plant simulation integrated with a three-dimensional (3D) computational energy analysis 

simulation for a case study of a new German–Iranian project of an urban area with 2000 planned 

residential buildings in northern Iran. Strzalka et al. (2011) developed a method for urban scale 

heating energy demand forecasting by 3D city modelling of a case study area with over 700 

buildings in Ostfildern, Germany, outlining the feasibility of linking simulation tools with 3D 

geographical information system (GIS)/3D city models by making use of a GIS interface that 

provides inputs for a simulation model. 
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Some Canadian researchers incorporated an object- and agent-based micro-simulation 

framework called ILUTE for urban systems modelling that integrates demographics evolution, land 

use and transportation. In this framework, the system state that changes from initial base case to 

an end state is defined in terms of the agents as dwelling units, households, firms, individuals, etc. 

that together define the urban area which is to be modelled. ILUTE simulates the behavior of 

these agents (changes in labor force participation, residential location, travel and activity 

attributes, etc.) over specified time steps (Chingcuanco and Miller, 2011). 

Howard et al. (2012) apportioned the energy consumption by end use in New York City’s 

building sector using a spatial model for almost 860 000 tax lots. They performed a multiple linear 

regression method to develop annual end-use energy consumption by obtaining total fuel and 

electricity intensities for eight different building types. 

 

1.4 Urban Metabolism and Sustainability 

During the first years of the 20th century, city planners developed a utopian vision of an 

urban environment in which humans live in harmony with nature (Fishman, 1982). Although this 

vision disregarded social, economic and ecological differences between the communities, it was 

revived during a period of rapid urban renewal in Europe after the Second World War. As a short 

term consequence, cities faced noticeable social and economic conflicts due to daily life 

interactions between culturally and economically diverse communities. However, the ecological 

problems had a more long-term impact that designers, planners and researchers started 

responding to in the late 20th century by presenting climate action plans, adaptation and 

mitigation policies and other sustainable policies; efforts that can smooth the way toward 

development of urban sustainability. 
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After the 1987 report published by the Brundtland commission (United Nations (UN) 

World Commission of Environment and Development), the concept of sustainable development 

entered the lexicon of administrators, planners and community representatives. One of the most 

critical challenges is to introduce sustainable development into current urban activities by 

relevant stakeholders. This is a concern that requires ambitious strategies to better protect 

natural resources, limit energy consumption and reduce atmospheric pollution (NÆSS, 2001). 

Conceptually, sustainability is related to improving or maintaining the integrated systems 

of the natural networks that collectively make up the life on this planet. The planet’s capacity to 

support its population is decided by natural limitations and human behavior regarding 

environmental, economic, cultural and demographic variables. Sustainability deals with the level 

of impacts on the earth caused by the human population. It is not only concerned with the 

magnitude of the population, but also with the choices made by that population. 

In the past two decades, the fundamental concepts of sustainable development have 

been applied to more and more sectors at different scales. For example, the growing awareness 

of the harmful impacts of the construction industry and its diverse features’ contribution to 

environmental degradation has led to the establishment of building environmental assessment 

methods in different countries such as LEED (USA), LEED Canada (Canada), BREEAM (UK), CASBEE 

(Japan) and NABERS (Australia) (Papadopoulos and Giama, 2009). 

Cities are undoubtedly the main sources of GHG emissions as they are major consumers 

of materials, energy, water and food. However, it may be important to include suburbs and peri-

urban areas in some analyses (Lenzen and Peters, 2010), as these areas represent the interactions 

between the rural and urban regions, where land and landscape are being consumed as a food 

source (Lehmann, 2011). Today, many cities have extended their ecological footprint far beyond 

the lands they actually occupy, while the number of fast-growing cities in developing nations is 
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increasing at an alarming rate. Given the consumption of resources and consequent generation 

of waste, cities should essentially evolve into more sustainable ecosystems (Kenworthy, 2006). 

This reduction in use of natural resources and waste generation should take place simultaneously 

with improvement of cities’ livability in an extended model of urban metabolism (Newman, 1999). 

Simultaneous protection of the environment with increasing social equity in a steady state 

economy may be the most prominent challenge of urban sustainable development (Campbell, 

1996). 

The UN action plan for sustainable development, which was an outcome of the UNCED 

(United Nations Conference on Environment and Development) held in Rio de Janeiro in 1992, 

known as Agenda 21, outlines principal action plans toward sustainability (Doyle, 1998), but does 

not clearly demonstrate how those can be applied to cities (Newman, 1999). Although most of 

the challenging environmental arguments and debates were fought outside the circle of 

management of the cities in the past, governments, environmentalists and industry universally 

have recognized the need for coming back to cities today (Newman, 1999). 

Sustainable urban development can be better understood by considering both notions of 

urban environmental sustainability and urban development simultaneously (Ravetz, 2000). 

Achieving a balance between human activities in a city and urban environmental resources must 

be viewed in a multidisciplinary context by socio-political, economic– industrial and resource–

environmental systems. The familiar sustainable development triangular model with three 

vertices of environment, economy and society contains a multitude of combinations of strategies 

and targets that bring together socio-political issues with physical sciences (see Figure 1.1). 

In the early 1990s, researchers such as Girardet (1992) began to investigate the 

connection between sustainable development and urban metabolism. Kennedy et al. (2011) 

proposed four practical applications of urban metabolism for planners and designers as defining 
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sustainability indicators, urban GHG accounting, developing dynamic mathematical models for 

policy analysis and creation of design tools. Pivo (1996) suggested that the six basic principles for 

urban sustainable development are compactness, completeness, conservation, comfort, 

coordination, and collaboration. Krajnc and Glavic (2005) used a framework of sustainability 

indicators grouped into three categories of social, economic and environmental. Both positive and 

negative indicators were then normalized and weighted using an analytic hierarchy process and 

by summing up the values from sub-indices, a composite sustainable index was obtained. There 

are some other studies that have studied the impacts of technological methods such as water and 

waste management, low carbon emissions and air pollution control on sustainable urbanization 

and protection of the urban environment (Shen et al., 2012). 

 

 

Figure 1.1: Triangular model of sustainable development 

 
In the field of urban planning, designers and planners have presented different guidelines 

toward the goal of developing sustainable cities, but most generally addressed qualitative rather 
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than quantitative features, which leaves many of the problems of the evaluation process 

unresolved. Urban metabolism studies have driven designers toward qualitative results, giving 

them a better perspective of urban ecology changes with design strategies. In terms of 

applications of urban metabolism, two different attitudes can be distinguished among 

contemporary studies on urban metabolism. The first outlook analyses the current data from 

different sources and summarizes the available data on usually one specific feature of urban 

metabolism. This approach mainly concentrates on data collection to be presented to policy 

makers, planners and designers. These kinds of studies do not present any quantitative methods 

for future prediction, or provide metrics for evaluating design sustainability. The other outlook 

focuses on one urban feature such as water, land use or transportation and suggests quantitative 

methods for further studies. None of these attitudes offers a comprehensive picture of the 

connections between the multiple interacting physio-morphological flows and stocks that 

characterize urban metabolism. Another challenge is that for some of the urban stocks, 

straightforward methods are not available for accurate quantifications of trajectory or state of 

flows and even disaggregating the different kinds of flows and stocks does not necessarily reduce 

the complexities. For example, urban green space can be measured in terms of area or number 

of trees, but to what level and how it affects the public wellbeing or amenity is difficult to quantify. 

In addition, ecosystems are exposed to continuous change even without human-related activities, 

which adds uncertainty in linking ecosystem evolutions to urban activities. A scientific 

measurement method to assess the pros and cons of a holistic urban design proposal has yet to 

be developed. 

1.5 Urban Metabolism Simulation Tools 

Indicators for measuring urban metabolism factors need to be defined and delimited 

based on the goals and objectives of the study. Intertwined environmental, technological, spatial, 
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physical, cultural, ethical, political and economic features of urban life will result in a 

multidimensional urban metabolism assessment framework. Demographic transitions, growing 

urbanization and social disparities, loss of habitat and biodiversity, progressive increase in 

demand for resources, and growing energy and material-intensive industries in rapidly expanding 

cities should be understood by researchers who are trying to formulate urban responses 

(Lehmann, 2011). 

There are a large number of tools available for simulating different aspects of urban 

activities, but these efforts are fragmented and do not reflect the interrelationships between 

different stocks and flows. In some cases, two or more of these tools are coupled and combined 

in order to simulate different scenarios, for example, a plant simulating tool with a building 

simulation tool (Huber and Nytsch-Geusen, 2011). For urban energy analysis as an example, 

disaggregate approaches have been popular historically, where only an individual static 

component of the urban system is investigated such as residential energy demand (e.g. 

Nesbakken, 1999) or urban transportation (e.g. Berkowitz et al., 1990). However, energy 

consumption in urban areas is the outcome of human decisions and activities, and energy demand 

of different interrelated urban sectors (commercial, residential and transportation) is connected 

through this system of human activity (Chingcuanco and Miller, 2011). Understanding the 

interactions between different sectors is critical to assessing or evaluating new policies. As an 

example for a city such as 

Toronto, due to higher residential per capita energy demand in central areas compared 

to the suburbs as a result of looser construction codes and old infrastructure, higher heating 

demands can offset savings created by shorter commutes in the long term (Chingcuanco and 

Miller, 2011). The importance of a holistic approach to urban metabolism analysis can be realized 

from this simple example. 
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A modest number of tools have recently been developed for modelling in urban scale. 

Some of them such as iTEAM (Integrated Transportation and Energy Activity-Based Model), which 

is a tool for policy evaluation, employ agent-based micro-simulation to project and give a 

perspective of the future of the urban region’s energy consumption. These tools model decisions 

taken by the agents and convert them into energy demands (Almeida et al., 2009). 

Some other tools implement a normative methodology and concentrate on optimizing 

energy consumption within the urban system rather than drawing projections of the future state. 

As an example, CitySim has been conceived to simulate a building’s energy flows with an 

engineering approach, aiming to develop a more comprehensive model by incorporating flows of 

materials, water and waste to optimize urban resource flows (Robinson et al., 2009). 

SynCity is another toolkit for integrated modelling of urban energy systems. It has a layout 

model as the first component that seeks an optimal city design to minimize energy consumption, 

cost and carbon emissions. The agent activity micro-simulation model creates the demand for 

resources by simulating daily activities of the citizens in that layout. Afterwards a macro-level 

resource technology network model that takes available process types in addition to spatially and 

temporally distributed resource demands as inputs, is designed to interface with engineering 

models and provide technical end-use detailed maps (Keirstead et al., 2009). 

UrbanSim is another micro-simulation discrete choice model of relationships between 

land use, transportation and the environment (Vanegas et al., 2009). It is an open source urban 

simulation system that takes a dynamic, disequilibrium approach for temporal basis in contrast to 

a cross-sectional, equilibrium approach (Waddell, 2002). The design of UrbanSim attempts to 

create models (demographic transition model, household location choice model, etc.) that 

represent behaviors of an essential set of agents (household, person, business, developer, 

market) (Waddell, 2011). 
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1.6 IUMAT 

Despite the recent 30-year attention to the concept of urban metabolism, urban 

policymaking has been slow to use urban metabolism analysis as a decision aid. Although concerns 

about the environmental characteristics of cities have grown in the last decades, ‘greening cities’ 

has mainly been interpreted as improving the visual appearance of urban areas by creating more 

green spaces. However, cities not only should be environmentally pleasant, but also ecologically 

viable. The urgent need to develop accurate and effective sustainable policies is not well enough 

incorporated into urban planning tools, although the significance of sustainable urban 

development is understood by most city planners and urban managers (Yan et al., 2003). 

The difficulties in simulating connections between variables of urban systems such as 

natural and built forms, network infrastructures and transportation, microclimate impacts and 

shading, waste management and water systems, and location and orientation make the process 

of sustainable urban design a complicated procedure. Hence, urban modelling tools often fail to 

give an accurate prediction and a robust quantification of relations between urban characterizing 

parameters (Noth et al., 2003). Most of the tools that are in use today apply an aggregate, cross-

sectional, equilibrium approach. Simplifications that ignore continual dynamics of change in urban 

systems produce outcome results that deviate greatly from actuality. 

An integrated analysis of the complicated and inextricably bound up global issues of 

environment–health and consumption–lifestyle, needs approaches and methods that go beyond 

traditional boundaries between familiar disciplines. A new methodology and modelling tool for 

urban metabolism analysis is needed, using an approach that identifies and integrates five major 

indicators of urban metabolism: land use, energy consumption, material flows, water and 

resources, and air quality. Furthermore, different sectors of urban area/activity must be classified 
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as part of this matrix of indicators. These sectors are residential, commercial, industry, education, 

government, transportation and open space. 

An accurate analysis of urban metabolism should address water and material 

consumption, sewage and waste production, energy use, emissions to the atmosphere and urban 

heat island effect in urban regions under alternative scenarios. Buildings, as indices of an urban 

area in addition to spaces that connect them together, are the recipients and transmitters of 

numerous flows and streams based on multiple sets of variables (see Figure 1.2). Robust and 

accurate results from any kind of simulation of an urban complex require all three capitals of 

social, economic and environmental be studied with rigor. To assess both morphological and 

psychological attributes of urban life, with a focus on the environmental/analytic side of urban 

metabolism assessment, the study will be stabilized on two linked axes of environmental–

economy and environmental–society fragments. As shown in Figure 1.3, resource inputs to a city 

(land, energy, food, water, materials and resources) are used due to regular dynamics of 

settlement (transportation, economic and cultural priorities) and generate livability and the waste 

generation associated with that (sewage, solid and liquid waste, toxics and air pollutants, GHGs, 

waste heat and noise) (Newman, 1999). 
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Figure 1.2: Variables and outcomes of the urban metabolism analysis tool 

 

 

Figure 1.3: Trend from resources to livability and waste 
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Given most strategic urban planning tools are focused on energy use, transportation and 

land use, a new integrated urban metabolism analysis tool (IUMAT) should be designed with a 

framework that observes the interactions among quality of life, urban transformation processes, 

resource flows and waste streams (Rotmans and Van Asselt, 2000). Such an IUMAT will do the 

following: 

 

1. Reconsider the urban footprint. Urban metabolism requires redefinition of the 

urban ecosystem and its borders and limits. 

2. Assess current trends in a city. IUMAT provides possibilities to examine ongoing 

flows in a city such as energy, water and material consumption, waste and sewage production, 

and GHG emission rates. 

3. Integrate interrelated features of urban dynamics. IUMAT creates more 

evaluative/calculative integration among intertwined sectors of urban life. 

4. Increase urban efficiency and effectiveness. By addressing connections between 

the urban divisions, IUMAT can prepare a prolific ground toward more efficient utilization of 

natural resources and a more sustainable future. 

5. Improve urban control and planning systems. IUMAT can provide a systematic 

and coherent structure for strategic planning in urban scale. 

  

To achieve the objectives of IUMAT, five main functions can be expected from the tool: 

1. Organizational function. Improvements that IUMAT can cause to control and 

planning systems, gives more flexibility to city planners in managing resource utilization and 

energy and material flows in an urban area. 
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2. Monitoring function. IUMAT enables effective and applied use of the available 

existing data. It simplifies harmonization of the data and points out were the data is scattered. 

3. Evaluative/calculative function. IUMAT examines the current situation and 

alternative policies with regard to their social, economic and environmental consequences. 

4. Comparative function. The tool enables comparison between alternative 

planning and design scenarios based on the evaluative assessments. 

5. Policy function. IUMAT helps development of sustainable strategic planning 

toward reaching a balance between social, economic and environmental domains of an urban 

area and its surroundings. 

IUMAT will take both normative and predictive approaches by taking advantage of 

positive features of both statistical and engineering methodologies, and making proper use of 

statistics in favor of engineering models. 

With respect to the conceptual urban triangle, IUMAT’s evaluative/calculative instrument 

will observe inter-flows within the environmental capital along with intra-flows in environmental–

social and environmental–economic axes (see Figure 4). The evaluative/calculative instrument 

will include a calculative simulation model (linked to a GIS) to assess the quantitative trends for 

urban indices within specified geographic/ time borders, which is a mathematical approach to the 

conceptual triangular model. GIS improves the process of keeping records and enables better 

visualization of distributions in the urban area. IUMAT will use buildings as a reference point to 

indicate urban areas and will categories buildings and spaces between them as components of 

the urban area that are sources of different flows in the model, due to natural processes and 

human activities. 
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Figure 1.4: Inter-flows and intra-flows to be investigated by IUMAT 

 
1.7 Conclusions 

Environmental concerns associated with the worldwide growth of the urban sector 

outline the importance of development of reliable urban planning and policy tools. Although 

different guidelines have been presented by researchers and urban planners toward the goal of a 

sustainable urban ecosystem, qualitative features have been addressed most generally rather 

than quantitatively so far. The concept or urban metabolism can be applied as a basis for 

quantitative evaluation of the overall sustainability in a city. However, to carry out a realistic 

study, realms of the urban metabolic analysis should be extended as to integrate social, economic 

and environmental capitals of a city within the borders of the study. A holistic/integrative 

approach should be considered in the process of designing the tools that aim to simulate and 

analyze the intertwined physiological and morphological characteristics of the urban metabolism. 

Most of the available tools for simulation of different flows and streams in urban scale take a 

cross-sectional, equilibrium approach on usually one component of urban life such as land use, 
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transportation and energy consumption. Development of tools such as IUMAT provides a ground 

for formulating urban responses that reflect the dynamics of natural and human-induced change 

in urban systems. The holistic design proposal employed by IUMAT will monitor/evaluate 

trajectory and state of interrelated urban flows and stocks in order to enable comparison between 

alternative planning scenarios in favor of sustainable urban design and strategic planning. Hence, 

IUMAT will have the capability to continually switch between normative and predictive 

frameworks, and statistical and engineering methodologies to enable effective use of available 

statistical data in the process of policy making. Buildings and spaces that connect them together 

are transmitters and recipients of different flows and streams that will be referred to by IUMAT 

as indices of an urban area. IUMAT will apply a matrix of variables that considers five major 

indicators of urban metabolism (land-use, energy consumption, material flows, water and 

resources, and air quality) within different sectors of the urban area/activity (residential, 

commercial, industry, education, government, transportation and open space) based on type, 

location, occupancy, etc. of the buildings and other indicators that are related to quality of life, 

such as level of income, education, etc. It will report sewage and waste production, atmospheric 

emissions, energy consumption breakdown and transportation (in terms of vehicle miles 

traveled), and will develop a basic framework for quantitative overall sustainability evaluation in 

cities. IUMAT applies a mathematical approach to the conceptual triangular model of 

sustainability and investigates inter-flows within the environmental capital along with intra-flows 

in environmental–social and environmental–economic axes. By connecting to GIS, IUMAT will 

enable designers and city planners to manipulate geographical/time borders of the analysis and 

provide an accessible structure for assessing ongoing trends and transformation processes in a 

city and improving urban control and planning systems. This will also ease the process of data 

harmonization and mapping the availability or absence of useful information.  
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CHAPTER 2 

A FRAMEWORK FOR INTEGRATED URBAN METABOLISM ANALYSIS TOOL (IUMAT) 

 

The following chapter is published in the Building and Environment Journal, Volume 82, 

in December 2014. Mohamad Farzinmoghadam and Dr. Simi Hoque (Corresponding Author) are 

other coauthors of this chapter. To cite this chapter: 

Mostafavi, N., Farzinmoghadam, M., & Hoque, S. (2014). A framework for integrated urban 

metabolism analysis tool (IUMAT). Building and Environment, 82, 702-712. 

 

 

2.1 Abstract 

IUMAT (Integrated Urban Metabolism Analysis Tool) is a system-based sustainability 

analysis tool. It quantifies and aggregates the social, economic and environmental capitals of 

urban activity in an integrated framework focusing on the metabolic flows of urban development. 

This paper builds on previous work on urban metabolism and advances an analytical framework 

that defines how the consumption of resources and resulting environmental impacts are 

calculated as indices of sustainability in an urban region. The benefits of integrated urban 

modeling using the proposed framework as well as the data sources are detailed. The underlying 

analytical framework for the proposed tool applies the dynamics of choice, time, and scale 

towards dynamically interpreting demographic and economic factors. IUMAT's calculative 

modules for land cover, transportation, and energy/water/resource use are described as well as 

the modality of connections between the modules. 
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2.2 Introduction 

Cities are on the front line of climate change. Government officials are aggressively 

targeting cities to reduce energy waste and cut carbon emissions. Today, cities are major 

consumers of resources and producers of waste having extended their ecological footprints far 

beyond their official borders. A secure plan for future global development will require cities to 

evolve into more sustainable ecosystems (Lenzen and Peters, 2010; Næss, 2001). However, due 

to their large size, socioeconomic structures and geopolitical attributes the patterns of change in 

cities are very complex (Hall, 1998). A comprehensive analysis of the dynamic of urban resource 

flows is critical to understand and address ecological challenges in the path towards a sustainable 

urbanized planet (Akimoto et al., 2008; Vera and Langlois, 2007). In this context, urban planning 

researchers have made great strides in developing methods to understand and model resource 

usage among different demographic populations (Pérez -Lombard et al., 2008). This knowledge 

base has extended to quantify how building type, location, and clustering impacts urban flows 

(Ratti et al., 2005). This paper describes the framework for an integrated urban metabolism 

analysis tool (IUMAT) to enable policymakers to assess the impact of changes to demographics, 

economics, land cover, transportation, energy and water and material resources. IUMAT is 

expected to promote greater understanding about the impact of environmental policies and 

development strategies at an urban scale, focusing on areas where sustainable urban planning 

and growth are critical to climate change mitigation and greenhouse gas reduction.  

Urban metabolism is an analytical method for understanding the impact of urban 

development (Niza et al., 2009). It is a way of integrating and rationalizing the disciplinary 

boundaries between urban analysis, planning and policy (Gonz_alez et al., 2013). The use of urban 

metabolism in planning urban developments has the potential to greatly advance efforts to assess 

the overall sustainability in urban regions (Kennedy et al., 2011). A major challenge for 
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policymakers and planners is to bridge the gap between field measurements and numerical 

studies (Park et al., 2012), associated with connecting and integrating the different functions and 

outputs to characterize the total urban system (Shen et al., 2013). While urban scale analytical 

tools exist for a wide range of applications, including land use/cover mapping, wind and solar 

analysis, traffic simulations, and building performance, integrated assessments of the aggregate 

environmental consequences of urban development remain a grand challenge (Mostafavi et al., 

2014). This limitation may critically undermine our understanding of the benefits and tradeoffs of 

programs and policies intended to improve the overall sustainability of a city. 

 

2.3 Background 

There are a multitude of methods and tools available for analyzing urban processes and 

activities. In general, urban policymakers use BMPs, or Best Management Practices, rather than 

quantitative data to support policy decisions (Punter, 2007). Many BMPs are derived from singular 

case studies that have been scaled up for an urban region. For example, greening the roof of one 

building may alleviate storm water management for the building, improve the microclimate 

around the building, and reduce energy loads for the building. However, this does not mean that 

greening all the roofs on all the buildings will necessarily have the same benefits for an entire city. 

The concept of simulating urban sectors to support design decisions is not new. In 1989, 

SimCity, a city management simulation environment was released for gamers to build houses, 

streets, factories, airports, and parks with metrics for crime, pollution, and economic stability. The 

most recent version, SimCity 4, offers sustainable design measures such as solar and wind power 

generation, sustainable transportation choices, and energy efficient building standards (SimCity, 

2016). SimCity and others, such as ESRI's CityEngine, are mainly design tools that emphasize 
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visualization and data reporting, and offer little opportunity for quantitative analyses. In the 

research community, tools to quantify urban performance measures are emerging. 

UrbanSim, developed at the University of Washington, combines land use and 

transportation development with economic impacts, and has been applied to actual urban 

contexts (Patterson and Bierlair, 2010). The intended users are Metropolitan Planning 

Organizations (MPOs) and non-governmental organizations. UrbanSim calculates the effects of 

infrastructure and policy decisions with outcomes, such as motorized and non-motorized 

accessibility, housing affordability, greenhouse gas emissions, and the protection of open space 

and environmentally sensitive habitats. SUNtool is a European urban neighborhood-modeling tool 

that integrates building performance with its surrounding microclimate effects (Robinson et al., 

2007). The focus of SUNtool is buildings, particularly predicting the optimal built form of an urban 

neighborhood with regard to optimizing pedestrian comfort and building energy efficiency. At the 

Massachusetts Institute of Technology, the Sustainable Urban Design Lab is developing an urban 

modeling tool that analyzes day-lighting potential, walkability, and operational energy use 

(Reinhart et al., 2007). UMI is a Rhino-based design environment that is intended to be used at 

the early stages of urban design and planning interventions to assess the environmental 

performance of urban neighborhoods. Mostafavi et al. (2014) present a comprehensive 

perspective of the characteristics of existing urban scale modeling tools. 

UrbanSim, SUNtool, and UMI are important to understanding how targeted features 

within an urban environment perform. These urban simulation packages are designed for specific 

areas and with specific goals. Yet, the interdependence of subsystems in a city necessitates the 

application of methodologies that bring together the social, economic and environmental capitals 

of urban life to predict, analyze, and evaluate sustainability measures. 



 

 
31 

For most of the existing tools, singular static components of urban activity/life are the 

focus. In some cases, a few subsystems are combined (transportation and land use for instance), 

but the relationships within the flux of urban flows are not aggregately investigated. IUMAT aims 

to develop an integrated modeling structure that defines the urban area as a single system, rather 

than dividing it into different sectors to be solved separately. It is capable of handling overlapping 

features. The IUMAT integrative/analytical framework defines buildings and spaces that connect 

them as indicators of an urban area. In other words, the existence of building or land defines the 

study area for IUMAT. This perspective forecloses the rural-urban dichotomy in planning tools and 

approaches. 

Developing a simulation framework for urban metabolism analysis is not trivial. The 

framework must include different scales of spatial interaction that dynamically influence how 

urban system parameters are affected. The resulting model must balance precision and accuracy, 

parsing the range of variables that characterize an urban area. Increased complexity may lead to 

loss of flexibility or unmanageable time steps. The boundaries of the system need to be well 

defined and the statistical dependences between random variables need to be meticulously 

tracked to minimize the chances of correlations being interpreted as causation patterns. 

In self-organizing systems, dynamics will automatically drive the system toward a state of 

equilibrium. In cities that are large disordered systems, some properties can be reliably described 

by averaging over a sufficiently large population that can represent the whole system (Wilson, 

2000). Quantities that are regarded as self-averaging produce a normal distribution of variations 

around a frequent mean, which itself is generated as the result of random interplays between 

factors from highly disordered subsystems. The challenge is where these borders should be drawn 

to make use of averaging techniques. 
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Buildings are complex systems and that complexity is intensified when combined with 

other urban systems such as transportation or land use. The major task in simulating complex 

systems is simulating the complexity itself. This may require maximizing the number of 

independent variables that affect the desired dependent variable. Moreover, the mathematical 

formulation must describe real world interdependency and nonlinearity. Designing an urban 

simulation methodology that can capture all the complexities of the real world examples is not 

possible. Even if it is assumed that the paths of change are governed by simple mechanisms in an 

urban region, complexity still exists due to the number of possible initial conditions the 

subsystems might have. In addition, due to the interdependence of subsystems in a city, the 

system is always oscillating between different possible equilibriums. Regional system 

mathematical models can be used as triggers that enable pointing out the separating leaps from 

one specific state of equilibrium to another. The IUMAT framework will determine these critical 

points for different states in different urban arrangements. 

The format of results and visualizing techniques for the simulation outcomes need to be 

analyzed. The display of large collections of urban data should take aggregation approaches that 

combine city blocks and buildings into legible clusters without limiting the user's perspective on 

the data or obstructing their mental model of the urban region (Chang et al., 2007). The efforts 

toward urban modeling visualization are mostly independent, with graphics researchers focusing 

on visualizing spatial representations while the planning community focuses on quantifying urban 

dynamics and patterns (Vanegas et al., 2010). A participatory urban planning decision making 

platform can reasonably take advantage of improvements in visualization techniques (Drettakis 

et al., 2007) to produce complex spatial descriptions of the urban region that are consistent with 

cognitive insight. IUMAT will advance this further with coherent simulation results view models. 
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2.4 Overview of IUMAT framework 

The IUMAT framework focuses on the urban region primarily as a collection of buildings, 

rather than an economic system. Therefore the urban dynamics are modeled in terms of any kind 

of change caused to these core elements of the city, whether it is variation in the number of 

existing buildings or changes in building program or demographic and economic factors inside the 

buildings. Any of these changes can affect the spatial distribution of transportation patterns and 

other urban flows or even the shape of urban development during the desired time intervals of 

study. The IUMAT framework simulates changes in demographics, economics, land cover, 

transportation, energy and water and material resources as reflected in the core urban elements. 

Three specific analytical models characterize the dynamics of choice, time, and scale in the IUMAT 

framework. The modeling structure is further defined by levels of resolution and associated 

methodologies.  

 

2.4.1 Dynamics of Choice 

Buildings, as core elements, effect changes to the surroundings as they go through phases 

of transformation. Aside from the impact of natural forces, patterns of change take place as urban 

agents take actions that can have repercussions throughout the entire system. Agents as 

producers and consumers of services and goods are expected to make choices about their 

locations and activities in a way that best serve their primary interests. The choices made by 

different types of agents are limited by the environment in which they act. Associations and inter-

dependencies within the regional systems and urban agents impact the process of decision 

making over the course of time. In addition, the environment is itself not static. Understanding 

the behavior of the agents underpins much of regional and urban theory. This is done through 

discrete choice modeling of continuous variables by defining intervals (Hoyos, 2010). Engineering 
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modeling techniques are used to analyze the boundary conditions within the borders of each 

interval. 

 

2.4.2 Dynamics of Time 

In addition to agent choice, associations and inter-dependencies within the regional 

systems and urban agents impact the process of decision-making (Tian and Qiao, 2014). Many 

parameters are defined or at least influenced by the joint decisions of agents in the past. These 

previous decisions create a backdrop against which new decisions are made. But how rapidly 

change occurs in the backdrop depends on the phase and stage of development.  

 

2.4.3 Dynamics of Scale 

A third issue is the scale at which the dynamics of choice and time should be introduced 

and simulated. To illustrate with an example, simulating the changes in population growth at the 

scale of a household or block, is meaningless in terms of overall urban environmental impacts. 

But at the scale of the county, it can offer insights into how the urban system may be influenced. 

By zoning the city into smaller subdivisions based on type of activity, demographics and economic 

drivers, the modeling structure can be underpinned by several levels of resolution, demanding a 

certain type of method assigned at different scales. In discrete zone conceptualization of the 

space, flows are assumed to be migrating back and forth between the centroids of the zones. The 

movement of phenomena within any of these zones or regions, or the spatial interactions 

between collections of regions are modeled. This requires and enables as well, an ability to swing 

from fine to coarse gradients. Depending on the output or phenomenon being analyzed, 

simulating urban flows must occur at a range of different scales. 
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2.5 Demographic Factors 

IUMAT's approach to simulation in larger scales implicitly forces collecting and collating 

statistical information on population dynamics, characterizing the ways that demographic factors 

influence diverse urban processes. The U.S. Census Bureau keeps track of census count and 

publishes a public report every decade that summarizes demographic data at both state, county 

and town levels. These reports are helpful in understanding urban population and defining 

directions of growth and patterns of change in demographic texture to support projections. Both 

demographic (e.g. ethnicity, age, sex) and non-demographic (e.g. unemployment, public 

amenities) parameters can impact the trends of population growth and the decision making 

process by the people. 

Complex structural models are used to analyze the effect of non-demographic variables 

on population growth. Simple trend extrapolation methods use straightforward mathematical 

techniques to find the best fit to the observed pattern of population growth (Smith and Sincich, 

1992). The latter kind of projection based on historical trends does not account for the causes 

behind the pattern (Smith et al., 2001). In the middle of the spectrum are cohort-component 

methods that divide the population into an assortment of cohorts that are subject to births, 

deaths and migration. These methods are more data intensive compared to extrapolation 

methods (Alho, 1990). IUMAT employs cohort-component methods to make projections of 

population growth and composition over the time based on availability of data and level of details 

desired. These methods are best for this framework since they do not completely disregard 

assortments of the population that can relate to environmental consequences and at the same 

time do not necessitate dealing with details in an unwanted rigid fashion. As an example, the 

extent that an adult who is active in the job market travels or uses energy is not the same of an 

infant or a retired elderly member of the household. So in this case the population is divided into 
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four different age/sex groups of 0-6, 6-18, 18-65 and 65 plus. For making projections for cohort 

population in k-years, we use the following equation: 

𝑃𝑖(𝑡 + 𝑘) =  𝑃𝑖(𝑡) ∗  𝑆𝑖(𝑡, 𝑡 + 𝑘) + 𝑁𝑖 + 𝑀𝑖 − 𝑂𝑖  
 

where 𝑃𝑖(𝑡 + 𝑘) is the population of cohort i in k-years after t; 𝑃𝑖(𝑡) is the population of cohort i 

at t; 𝑆𝑖(𝑡, 𝑡 + 𝑘) is the survival ratio between t and t + k; 𝑁𝑖  is the number of new population in i 

group both from birth or aging from the lower age group; 𝑀𝑖 is the net migrants number; and 𝑂𝑖 

is the population that goes to the upper age group in k years. These elements are calculated based 

on specific characteristics of the study area. 

The main goal of IUMAT is to provide a basis for understanding the environmental impacts 

of collaborative decisions made by a population of human beings within municipal borders of an 

urban region. As long as comparing environmental impacts of different scenarios is of concern 

and the projection of population is not geared to strategic planning for facilities and public 

services provisions, cohort-component methods are acceptable and reliable, since they allow 

grouping of the population based on characteristics that impact the resources use intensity, 

without addition of unnecessary details. Demographic factors that could be practical in such a 

study are actual size, age composition and spatial distribution of a population. How the population 

is distributed into households and how those households can be grouped based on size and age 

composition can become important as well. Crude birth, mortality and migration rates are 

demographic components of change that should be applied to each defined subdivision of the 

population to enable projections for a desired time period. 
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2.6 Economic Factors 

The environmental impact of a set of economic variables (e.g. income, employment, 

energy pricing, and taxing regulations) is a key part of the IUMAT framework. By using an 

arrangement of multipliers (factors) to estimate changes in environmental impacts, alterations in 

economic variables are modeled. Overall processes of economic transformation, patterns of 

growth or decline in regional economy, or if the economy is export or import oriented are beyond 

the scope of this framework. However, how certain economic statistics are related to behavioral 

aspects of acting agents will be analyzed and the general structure of the economy will be 

considered in identification of decision makers and active agents. 

 IUMAT defines governments, households and businesses as the three main economic 

decision makers in urban life. Transactions are governed by supply and demand forces operating 

in merchandise, financial and labor markets. To illustrate, the buying power of an average 

household is influenced by generic characteristics of the regional economy, but a parameter such 

as the average amount of savings per household might not necessarily have immediate 

environmental impacts, though it can make a difference to behavioral attributes and lead to a 

gradual changes in overall status of local economy in long term. Moreover, the aggregated income 

of families directly impacts household energy consumption. 

The consumption of resources by households can be represented as functions of 

household level of wealth, gross income, or perceived economic security. IUMAT simulates 

economic indicators related to energy consumption and environmental conservation. This 

enables mapping correlations between specific economic indicators and environmental impacts. 

Variables such as population size, average age, educational achievements, average 

household/family size, average family compositions, median household/family income, earnings 

per job, per capita income by location, number of owner/renter occupied units, employment 
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factors, and multitude of other possible indicators define default average values in scattered sets 

of data. This enables comparative analysis of the study region against other standards at different 

scales and facilitates immediate evaluation of baseline economic features of the area. A data set 

for employment by main industries will identify how different industrial activities influence 

regional economic prosperity. 

The economic theory applied to a region depends on scale of the study and size of the 

economy being analyzed as well as availability of data at various geographic levels. Determining 

the economic borders of the study needs to be carried out coherently to enable tracking the flows 

of interaction between the local economy and larger economies of which the study region is a 

part. Economic base theory is widely implemented in urban economic studies and assumes that 

households spend money either to import services and goods exogenously or endogenously from 

local businesses (Rutland and O'Hagan, 2007). Input-output analysis is another economic 

accounting analysis method to investigate inter-industry transactions (Leontief, 1974). This kind 

of analysis focuses on the intermediate flows of goods and services within the industrial and 

producer division of the economy.  

Analyses based on households or industrial transaction oversimplify and overcomplicate 

the IUMAT framework. Defining the demand only with regards to final consumer side of the 

economy in the economic base theory is inaccurate and simplistic. The addition of value to the 

final products as they flow down the economic chain to consumers creates unnecessary 

complexity. A new method needs to be defined. The unit of economic analysis in the IUMAT 

framework is the building, which forms the unit structure of urban economy. Regardless of the 

building's placement in the production-consumption chain, its part in transmitting and receiving 

varied flows can be tracked as separate economic transactions in contact with other separate 

units. 
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2.7 Land Cover 

In the IUMAT framework, land is defined in spatial coordinates that characterize land 

cover and use. Prevailing land cover characteristics influence, inform, or control possible 

prospects of use. And, certain types of land use necessitate alterations to the existing land cover. 

Changes to land use and cover are also governed and limited by rules and regulations enacted by 

public or private administrative authorities. 

Notwithstanding government rules and regulations, there are multiple elements that 

shape the way a parcel of land is used. Different economic and physical drivers such as the price 

of land, accessibility, capacity to support different types of use, as well as distribution of activities 

in the surrounding pieces influence land use (Verburg et al., 2004). Land cannot exist isolated and 

land development could force changes to the surrounding area. For an in-depth land use analysis 

all parcels of land have to be classified into different categories of use and land cover as a means 

to characterize the human-land relationship. 

Changes in land use are not free of environmental consequences (Lambin and Meyfroidt, 

2010). Sustainable land use planning is predicated on minimizing transformation of green-sites 

into brown-sites with simultaneous sufficient provision of land for urban activities (Schädler et al., 

2012). Replacing permeable land with impervious surfaces increases the risk of flooding (Pattison 

and Lane, 2012). Intense use of air conditioning units and dark paving materials trigger the heat 

island effect in urban areas (Tremeac et al., 2012). New developments require roads to support 

traffic to and from developed sites. Contamination of soil or groundwater may occur if toxic 

materials permeate. Development of land may also disturb the ecosystem and pose threats to 

biodiversity of the region (Schiesari et al., 2013). Although quantification of all these various 

impacts is beyond the scope of the IUMAT framework. Net carbon emissions from development 
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due to differences in carbon sequestration capacity of alternative land covers, and the urban heat 

island effect are quantified. 

Cities are made up of varied types of land use each possessing unique quantifiable 

demographic and economic characteristics that are best represented and understood using 

Geographical Information Systems (GIS) (Geyer et al., 2010). GIS land use mapping uses discrete 

zones (versus continuous space representation) that treat borders of properties as geographic 

boundaries between zones. Discrete conceptualization of the space enables mathematical 

formulation and use of computational techniques. Land use mapping is the starting point in 

embedding functionalities of GIS approaches into urban simulation where discrete zones can be 

referenced and identified using algebraic subscripted and superscripted factors such as Zone 

No. (𝐶𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟
𝑈𝑠𝑒 𝑡𝑦𝑝𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

). Using GIS features for planar conceptualization of space allocation of 

activities in buildings and other spatial units enables appending non-spatial data to layer attribute 

tables. The accurate mapping of land use location is necessary for the integration of 

transportation and resource consumption patterns. The IUMAT framework employs two 

distinctive GIS approaches, distinguishing between mapping and modeling techniques. 

In 1965, a classifying numeric coding scheme that was based on the Standard Industrial 

Classification system (SIC), the Standard Land Use Coding Manual (SLUCM), was introduced by the 

Bureau of Public Roads (Federal Highway Administration) and the Urban Renewal Administration 

(Department of Housing) (Standard land use coding manual, 1965). In 1994 American Planning 

Association (APA) provided a report for the Federal Highway Administration (FHWA) to update 

the 1965 SLUCM and create a more comprehensive and up to date coding system with better 

adaptability to GIS networks (Lawson et al., 2012). APA's Research Department introduced Land 

Based Classification Standards (LBCS) via five main dimensions: activity, function, structure type, 
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site development character, and ownership based on different case studies at different scales 

(American Planning Association, 2014). IUMAT uses the APA's 2001 LBCS tables and the associated 

color-coding system as a standardized land use coding system for mapping purposes. 

For modeling objectives, a different system is required. Changes in land cover may occur 

naturally due to climate conditions as well as human induced alterations. The IUMAT framework 

employs Anderson et al. (1976) land coding system for monitoring conversion of natural land to 

built environment. Since transformations of green-fields into brown-fields usually originate from 

new construction or change of use projects, this system classifies land into nine basic categories 

as urban/built-up, agricultural, rangeland, forest land, water, wetland, barren land, tundra, 

perennial snow/ice. The impact of changes in land cover is quantified in the context of buildings 

as core elements. Land cover is the cornerstone of the land use analysis and is based on 

transformation of land cover between nine principal categories introduced in the Anderson land 

use classification system (See Figure 2:1). 

 

Figure 2.1: Land Use analysis algorithms for IUMAT 
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2.8 Transportation 

Transportation systems are designed to support mobility associated with land use 

allocation in a community. Urban transportation planning is aimed at creating the most viable 

alternative systems of transportation based on the type and volume of activity and compactness 

of settlement. The transportation simulation implemented by IUMAT determines the traffic-

related environmental consequences of change in land use, and characterizes mobility within the 

urban region. This is the fundamental distinction between the IUMAT framework and other 

methods of transportation modeling. In transportation modeling scenarios, individuals make 

choices for their urban travels based on many factors such as cost, comfort, availability of public 

transport, time, and privacy (Klöckner, 2004). In contrast, the IUMAT framework focuses on the 

environmental consequences resulting from the demand for various traffic modes. 

The IUMAT study area is divided into a network of separate traffic analysis zones (TAZs). 

The TAZs are buildings grouped as neighborhoods with relatively uniform distribution of activity 

throughout the zone. Every TAZ is assigned a centroid that is at an optimal distance from buildings. 

The centroid connects the street network nodes. The path taken from the centroid of a zone 

(origin) to one's destination is called a trip. The number of the trips originating from or ending in 

a TAZ changes according to land use types in a zone and the amount of attractions a zone has to 

offer, along with demographic and economic factors that are directly related to the trip 

generation process. Traffic demand models are specified to include the demand for travel as well 

as specific features of the traffic analysis zones. After comparing the traffic flows calculated by 

the travel demand model against the actual collected traffic flow data, the calibrated model can 

be used to forecast traffic flows generated by different cases of growth and alternative types of 

human activity. The most common travel demand modeling process, commonly known as Four 

Step Travel Demand prediction incorporates four separate key parts (McNally, 2008). Trip 
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generation predicts trip frequency from and to a traffic analysis zone as an origin or destination. 

Trip distribution in which the generated trips are distributed between the TAZs, mode choice that 

predicts the proportion of trips by alternative modes of travel, and finally route choice whence 

the trips are assigned to routes of transportation network that connect the TAZs (See Figure 2.2). 

 

 

Figure 2.2: Four step travel demand prediction model used by IUMAT 

 

Traffic analysis zones are connected to the street network nodes from the centroid of the 

zones. In this framework based on the land use type (or building type), the trip generation process 

will be carried out in trip/building and trip/acre format for indoor and outdoor types of activity 

respectively. This indicates that IUMAT's travel demand model generates the trips at a lower level 

(buildings) before assigning them to the TAZ centroids compared to conventional transportation 

modeling software. Within every building, parameters such as number of workers and students 

per household, level of education and income, number of vehicles owned by the household, size 

and age distribution of the family, and availability of attractions at the nearby zones are all factors 

that impact the number of trips being produced by a residential building. At the scale of the zone, 
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parameters such as density of development and distribution of land use type are effective as they 

specify overall characteristics of the zones. Trip distribution is carried out using the well-known 

gravity model based on number of produced and attracted travels and impeding factors between 

the zones such as time and cost (Erlander, 1990): 

 

𝑇𝑖𝑗 =
𝐴𝑗 𝐹𝑖𝑗  𝐾𝑖𝑗

∑ 𝐴𝑗  𝐹𝑖𝑗  𝐾𝑖𝑗

𝑛

𝑗=1

∗ 𝑃𝑖 

 

where Tij is the number of trips generated at zone i and destined at zone j; Pi is total number of 

trips generated at zone i; Aj is the total trip attraction at zone j; Fij is the friction factor relating to 

travel impedance between i and j; and Kij is a socio-economic adjustment factor. 

The mode choice model estimates the percentage of trips assigned to different 

transportation modes based upon trip characteristics, quality of public transportation systems, 

vehicle ownership, environmental literacy and behavior of travelers. Route choice modeling 

focuses on using a minimum time route algorithm. In this method trips that cross the boundary 

of the study area are ignored. These four steps are not necessarily followed in a sequential chain. 

For instance, availability of transportation modes at/to a zone will impact trip 

production/attraction of the zone. Also the impedance associated with different transportation 

modes (such as expected time for public transportation vehicles) might affect decisions made by 

travelers. 

The travel demand produced by buildings is assigned to a TAZ centroid, and the origin-

destination matrices show the number of trips between different zones and within each zone, 

involving different modes of travel. These matrices are introduced to the route choice model to 

calculate miles travelled in different traffic modes. Quality of the public transportation fleet, 
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efficiency of personal cars, and types of fuel put into vehicles are factored by calculating carbon 

emission based on results from the route choice model. IUMAT has the capacity to project factors 

such as traffic volume, average peak hour traffic (PHV) and average daily traffic (ADT) for all of the 

traffic links. 

This approach differentiates between person trips (public transportation) and vehicle 

trips (automobile), but does not require characterizing the trips as home based work, home base 

non-work or any other type. Trip chaining is not IUMAT's intent. However, it has advantages over 

conventional transportation modeling structures that may assume transportation demand is only 

generated at residential TAZs. IUMAT accounts for commercial and industrial transportation as 

well as public transportation. Given that the number of public transportation trips is not directly 

influenced by decisions made by individual travelers (bus system runs on a given schedule 

regardless of how many people choose the bus mode on a certain day), public transportation 

emissions are calculated separately and added up to the aggregate transportation emissions 

figure. The demand for public transportation produced by residents of individual buildings is 

estimated by modeling the public transportation schedules of different modes. This methodology 

enables analyzing traffic demand based on distribution of human activity (land use) and 

emphasizes environmental impact analysis of the transportation related issues tailored towards 

analyzing policies towards mitigation of negative environmental impacts (see Figure 2.3). 
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Figure 2.3: Transportation algorithms for IUMAT 

 

2.9 Energy, Water and Materials 

Creating environmentally sound policies requires the ability to analyze and project 

impacts and implications of different growth and development scenarios. Energy, water and 

material (EWM) flows must be optimized to mitigate resource consumption. IUMAT's model for 

EWM is a bottom-up model for generating daily spatial distribution demand profiles for a large 

number of buildings from different urban sectors. Detailed information on buildings and 

neighborhood characteristics extend the accuracy of the model to higher levels. The flexibility of 

the model enables switching between statistical and engineering methodologies, even in the 
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absence of fine scale data. By employing regression analysis methods, electricity and fuel 

intensities are determined for building types based on size, location, and year of construction. 

The EWM model works in connection with the GIS mapping model that stores land use 

(building type and land cover) data in attribute tables. This component is critical since the building 

type and land cover are the physical factors with most substantial impacts on resource use. 

Moreover, mapping provides an effective visual communication of the physical structure of the 

urban area. Connector tools that associate the databases with various data layers tag the 

buildings' geometry by type of use including social and economic characteristics required for 

predicting EWM profiles. 

The layers contain analytical components to convey land use and cover. Generic EWM 

templates based on loads, gross area, window-to-wall ratio, year of construction, activity types 

etc. are stored in the background to be accessed when collected data is insufficient. 

The templates reflect the building codes based on location, type of use and year of construction. 

Depending on the technology used for energy generation, different amounts of water may be 

consumed. Supplying the required water is itself associated with energy use. The IUMAT EWM 

model characterizes the energy, water and material use dependencies between five 

subcategories (land cover, transportation, energy, water, materials) using calculative algorithms. 

The constructed network of algorithms is presented in Figures 2.4 and 2.5. 
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Figure 2.4: Energy use algorithms for IUMAT 
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Figure 2.5: Water and material use algorithm 
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For a list of organizations and manufacturing unit types the North American Industry 

Classification System (North American industry classification system, 2014) which has replaced 

the Standard Industrial Classification (SIC) in 1997 (Standard industrial classification, 2014) is used 

by IUMAT. To collect primary template energy data, end use consumption surveys provided by 

the U.S. Energy Information Administration (EIA) that are Residential Energy Consumption Survey 

(RECS), Commercial Building Energy Consumption (CBECS), Manufacturing Energy Consumption 

(MECS), and Transportation (RTECS) for the establishments classified within NAICS subsector 

codes provide the basis for a general understanding of patterns of energy use in different sectors 

(EIA consumption and efficiency, 2014). 

The deterministic component of the models is critical in showing the correlations 

between independent variable and the environmental impact which is of interest. Initial 

examination of the data and the interpretation of the expected patterns provide the basic insight 

for choosing the models. In order to deduce the parameters of deterministic models, fitting 

techniques need to be applied. In addition, a complete understanding of the physical nature of 

patterns is essential. For example, having a constant number of residents, energy and water usage 

of the household should increase with the living space area. But this increase is not expected to 

be of the same nature: the impact of increasing square footage on water use is less significant 

compared to its impact on energy use. Dividing a household of four into two separate households 

of two is not expected to affect the amount of potable water use, to the same extent that it does 

for the energy demand. 

The functional response for water usage versus living area is more likely to be of a f (x) =

𝑎𝑥2

𝑏2 + 𝑥2 type function (since a maximum limit is expected for a constant number of residents), 

compared to energy use versus living area which is likely to follow a power functional response of 
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response of g (x) = 𝑐𝑥𝑑 (0 < d < 1) nature. However, the existence of noise around the expected 

pattern (deterministic model) is theoretically unavoidable. The noise appears in the system due 

to both measurement (variability in measurements) and process (unmeasurable randomness in 

the system) errors, and leads to larger confidence intervals and lower statistical power for 

inferring the desired environmental patterns. The errors need to be explained by probability 

distributions that stand for variations around the expected (fitted) value. The probability 

distribution can be regarded as a mechanism for data generation in simulation cases that 

generates data points in a random fashion that are expected to occur in real case examples. Since 

the desired outcome of simulation processes by IUMAT is basically numeric values (numbers for 

resource use intensity for example) which is a continuous range, normal distribution and other 

probability distributions (if necessary) for continuous data will be used for describing the 

stochastic component of the models. 

 

2.10 Aggregation 

IUMAT holistic framework (Figure 2.6) incorporates four primary components: 

a. Input/output interfaces that directly communicate with the user through setting, translating, 

coding, and exporting data. 

b. Spatial storage unit that holds the spatial compiled simulation results. This unit keeps record of 

socio-economic attributes as well. 

c. Modules that are the main simulation engines for capturing the urban metabolism features. 

d. Coordinators that are responsible for data distribution between the modules. 
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Figure 2.6: IUMAT holistic structure 

 

These components each consists of different sub-units such as data generator module, 

spatial data store, IUMAT wizard connector, metabolism modules, and data exporter. Raw data 

and user inputs are introduced at the input entry, while topography, land use and socio-economic 

elements are spatially compiled and disaggregated. The data generator takes advantage of 

compiled data to generate large samples. The Energy, Material and Water Module (EMW 

Module), Transportation Module and Land Use Module work within the IUMAT Wizard connector. 

This connector is responsible for querying data from/to the data storage unit. This unit also 

controls the data distribution and facilitates communication between metabolism modules. With 

respect to local regulations and policies, users are able to actively manage modeling coefficients 
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and parameters within the modules. The Wizard connector forwards projected data and real-time 

data to the Calibration Module that provides statistical comparison results and marginal errors 

for users' review. Based on statistical results, this Module also provides suggestions for calibration 

of the simulation modules. The Result Aggregator Module compiles and aggregates simulation 

results and creates a detailed report. Finally, user is able to create different comparative maps or 

spatial data exports of simulation results by adjusting preferences in the Exporter and Visualizer 

Tool. 

 

2.11 Conclusion 

Cities are complex systems that require large-scale simulation tools to quantify, analyze, 

and predict environmental impacts. IUMAT aims to simulate the inter-dependencies between the 

variables and subsystems of an urban region to create an integrated framework for computing 

urban environmental performance. 

IUMAT uses spatial and temporal data for comprehensive microscale analysis. There are 

high levels of uncertainty in urban temporal and spatial dynamics, plus cities are open systems 

that are continually interacting with the environment. This requires conceptualizing the urban 

simulation framework in a way that maximizes the prospects for practical collection of data 

(statistical methods) and enables executing randomization procedures based on probability 

functions of different variables (engineering methods). IUMAT models the city as a complex 

system using an iterative network of distribution models that generate and assign locational 

variables in patterns derived from maximized probability distribution functions. Inductive 

statistical methods and data fitting techniques are employed to examine how different 

parameters (atomic elements of the model) relate urban variables to observed patterns of data. 
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Practical limitations of the framework are the availability of data and capability of mathematical 

analysis methods in handling large numbers of parameters. 

The IUMAT framework supports collection of a database that reflects the syntax of the 

urban study area. It motivates understanding buildings as individual agents that are embedded 

with relationships and rules to mimic real scenarios of change in the urban context. To achieve 

both mapping and modeling goals, statistical methods are employed to create functional data 

patterns wherever the existing information is unavailable. The presented framework 

demonstrates a method to investigate the influence of dynamics and demographic/economic 

factors in an intertwined network of land cover, transportation, and energy/water/materials use 

analysis. IUMAT is distinctive from existing land use/energy/transportation simulation tools 

because it focuses on the environmental consequences of development rather than correlated 

outcomes. 

IUMAT models the impacts of social/economic/physical factors on the environmental 

footprint of a group of buildings at varying scales. It is a calculative/evaluative tool not restricted 

to rural/urban dichotomies. Its outputs help to inform the overall sustainability of different classes 

of urban settlement in terms of energy/water/materials use, waste/sewage production, and 

atmospheric emissions. 
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CHAPTER 3 

URBAN RESIDENTIAL ENERGY CONSUMPTION MODELING IN THE INTEGRATED URBAN 

METABOLISM ANALYSIS TOOL (IUMAT) 

  

The following chapter is submitted to an academic journal for review. Mohamad 

Farzinmoghadam and Dr. Simi Hoque (Corresponding Author) are other coauthors of this chapter.  

 
3.1 Abstract 

The Integrated Urban Metabolism Analysis Tool (IUMAT) is a system-based computational 

platform for quantifying the environmental impacts of urban development. IUMAT’s EWM 

module is a bottom-up approach to generate energy, water, and material resources demand 

profiles based on building and neighborhood characteristics. This paper presents the EWM 

approach using national and regional datasets to identify the relationships between 

environmental impacts and resource use determinants within a simulation platform for urban 

metabolism analysis. We focus on residential energy consumption, which will serve as a template 

for how the EWM module will be used to simulate commercial and industrial demand profiles. 

Quantile regression methods are applied to Residential Energy Consumption Survey (RECS) 2009 

data to describe the impacts of physical and socio-economic parameters on end use residential 

energy profiles. A method for quantifying CO2 emissions and water consumption associated with 

energy production is also described.   

 
3.2 Introduction 

Urban areas account for 67-76% of the energy use and 71-76% of the carbon dioxide 

emissions at a global scale as reported by the Intergovernmental Panel on Climate Change (IPCC) 

(Seto et al., 2014). Cities currently accommodate 54% of the world’s population and are projected 

to add 2.5 billion new inhabitants by 2050 (UNPD, 2014). This predicted growth of urban areas 
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will further stress energy security and environmental conditions, as sustainable development and 

operation of urban communities remain a grand challenge. Energy conservation mandates and 

climate action plans are intended to offset greenhouse gas emissions and reduce energy use and 

associated air pollution and waste production, as well as improving the standards of living for the 

city inhabitants. However, there exists a knowledge gap between a given set of sustainability 

policies and the outcomes expected. This is because the goals of city masterplans are based on 

outputs from discrete and disaggregate analytical models or existing Best Management Practices 

(BMPs) that are used to characterize specific urban sectors and are neither combinatory nor 

complementary (Cullen, 2013). Disaggregated one-dimensional models do not adequately 

address the complex interrelationships between urban sectors. Equivalently, sector-based models 

are insufficient for high level decision making as they may result in policies that improve the 

outcomes for one sector and negatively impact others with unintended consequences. An 

integrated and systematic approach for assessing the overlapping and sometimes conflicting 

relationships between urban sectors is critical to advance sustainable development and planning. 

This work builds on previous research by the authors to create an urban metabolism analysis tool 

for evaluating the overall sustainability in cities. In this paper, we focus on the mathematical 

methods and outputs for an urban residential energy use model, as a part of the broader 

Integrated Urban Metabolism Analysis Tool (IUMAT).  

 

3.2.1 Urban Residential Energy Modeling  

Identifying the parameters that determine consumption rates of urban resources through 

energy-water-materials use, transportation, and land use analysis is essential for effective policy 

decision making.  In 2012, the residential sector was responsible for 21% of the total U.S. primary 

energy use and 20% of the national CO2 emissions (EIA, 2015). According to the Residential Energy 
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Consumption Survey (RECS), U.S. homes used 2.99 Trillion kWh of energy in 2012, indicating an 

8.9% growth since 1980. While federal and state governments attempt to reduce and regulate 

energy consumption rates, municipalities and county planners are focused on local climate 

improvements and sustainability initiatives (Parshall et al., 2010). Urban energy systems are socio-

technical systems comprised of combined processes in which energy is acquired and used by a 

given economy or society (Keirstead et al, 2012; Jaccard 2006). In larger metropolitan areas, due 

to the high density and diversity of demand, a wide range of technological and policy options that 

could mitigate per capita energy use and carbon emissions are available. However, decentralized 

platforms for energy policy making, the lack of reliable datasets and models, and complications 

around shaping local policy in alliance with federal and state regulations are some of the major 

challenges yet to be overcome by the planning authorities and practitioners. Large scale energy 

modeling has the capacity to inform building regulations and energy conservation policies by 

quantifying the performance of the building stock and its outputs can be used to update building 

codes, development standards, and refurbishment incentives. Modeling results can provide 

scientific support that decision makers need to create performance targets, compare baselines, 

set realistic reduction goals, and monitor the outcomes in the long run.  

Energy modeling at the single building level does not account for the impact of 

uncertainty in the modeling process. Most of the current tools require deterministic values at data 

entry. In addition to deterministic rejection of uncertainties, the challenging nature of simulating 

human-building interactions, average dwellings/dweller identification, and the modeling tools’ 

inability to include future datasets and emerging information are other limitations of current 

building energy modeling methods (Natarajan et al., 2011; Mostafavi et al., 2015a). Scaling from 

a single building energy model to neighborhood and urban models requires a shift from fixed data 

inputs to more complex probabilistic datasets. Urban energy modeling processes need to include 



 

 
58 

physical, behavioral and regional complexities. Energy consumption determinants such as climate 

variables, housing mix, and economic factors change from one location to another and analytical 

methods such as the one presented here can be of significant assistance in establishing 

sustainability targets as well as optimizing energy reduction policies.  

The interactions between energy systems and social economies are represented by two 

modeling paradigms (Böhringer and Rutherford, 2009). Top-down models take a macro level 

perspective to represent the economy in a wide scale and lack the required details for 

investigating technologies from an engineering standpoint (Tuladhar et al., 2009) featuring 

market fluctuations, financial flows, and economic power of agents at different levels (van Vuuren 

et al., 2009). Bottom-up models in contrast, are partial equilibrium portrayals of energy systems, 

underscoring discrete technologies to track replacement of energy carriers, enhanced efficiencies 

and process changes (Hourcade et al., 2006; Böhringer and Rutherford, 2008). Recently, 

alternative approaches are being developed as hybrids to overcome particular disadvantages of 

single approach models, by integrating elements of one approach into another, or introducing 

outputs of bottom-up models as external inputs to top-down frameworks (Bhattacharyya and 

Timilsina, 2009; Barker et al., 2007; Fleiter et al., 2011), and soft-linking (Dai et al., 2016) the two 

types of models is being considered as a pragmatic solution for narrowing the gap between them. 

The IUMAT residential energy module relies on large national survey-based datasets to 

predict energy form mix, type of appliances and end-use energy figures based upon climate 

variables, physical attributes of buildings, and socio-economic characteristics of occupants. The 

inclusion of socio-economic factors is important for connecting the energy model to other 

modules (water, material, transportation, and land use) and may represent a hybridizing 

modification between bottom-up and top-down approaches. Demographic and economic 

characteristics could have contrasting impacts on different categories of consumption, and 
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therefore emphasize the importance of connecting the modules. For example, although higher 

income can increase the household's budget allocated to air conditioning, it allows families to 

choose their desired downtown residential location with less transportation demand, or the other 

way, depending on the regional culture, towards wealthier neighborhoods in the peripheries that 

require more traveling.  

 

3.2.2 Human-Building Interactions in Urban Residential Energy Modeling  

Building occupant behavior plays an important role in household energy consumption 

(Masoso and Groble, 2010). Strong correlations exist between household characteristics and 

ownership of appliances, equipment energy rating and level of domestic appliances’ use 

(Lutzenhiser and Bender, 2008; Weber and Perrels 2000). In most energy modeling tools, 

however, human-building interactions (i.e. occupant behavior) are rarely simulated, and are 

usually represented solely through occupancy schedules that assume average behavior for all of 

the building occupants. These behavioral patterns are based on surveys that in many cases have 

not been updated for decades and have questionable relevance today (Gaetani et al., 2016; 

Shipworth, 2013). As the number of modeled dwelling units increases, the influence of behavioral 

variances in the energy model intensifies. And, as building energy codes improve, the impact of 

behavior becomes more significant (Newton and Meyer, 2010). Quantifying the influence of 

design-driven consumption and behavior-driven consumption is therefore critical. Research to 

improve the dynamic and stochastic characterization of occupant behavior in energy models is 

emerging. Yohanis et al. (2008) used half-hour load metering to measure household electric use 

against occupancy schedule and occupants’ employment status. Seryak and Kissock (2003) report 

that even after accounting for number of occupants and schedule, the variation in energy use 

among similar residential units can be significant. Muratori et al. (2013) used a heterogeneous 
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Markov chain to model the activity patterns of individuals for energy demand prediction. 

Richardson et al. (2010) suggest a modeling approach to combine occupancy patterns with daily 

activity surveys to simulate domestic appliance use. Widen and Wackelgard (2010) used empirical 

data to create models to generate synthetic activity sequences and their associated energy 

demand. Zaraket et al. (2015) recommend an occupant-based energy modeling method to be 

integrated into the residential building design process.  

Besides the challenge of accurately reflecting the behavior of the occupants over a large 

area, obtaining geometrical detailed data at district scales is not uncomplicated. Measuring all the 

physical attributes of the built environment is impractical and inputs to urban models at best are 

good estimates (Ryan and Sanquist, 2012). Engineering models have the weakness of making so 

many assumptions regarding the impact of behavioral elements on energy use (Kavgic et al., 

2010). Such precise calculation of energy use by physics-based models often obscures the extent 

to which the results of these models are dependent on the blackbox assumptions. However, 

extended-scale neighborhood housing models and analytical inference methods such as the one 

presented, provide reliable estimations and reduce the need to measure the performance of large 

number of buildings which is costly as well as time consuming.  

Defining “behavior” and its physical attributes contributes greatly to the uncertainties in 

household energy prediction. Behavior in many cases is taken to be interchangeable with 

‘occupancy’, and yet, most models only handle electricity use. Improved occupant-based 

modeling of residential energy use should result from analyzing data on the households’ priorities, 

choices and patterns of use, and accordingly, improved reflection of socio-economic and 

demographic factors that impact end use profiles. Socio-economic factors, if accounted for 

properly, can be reliable predictors of behavior. Cheng and Steemers (2011) illustrated that 85% 

of the residential energy consumption variance can be allocated to type of use and socio-



 

 
61 

economic status of the household. They introduced a method that adopts an occupancy pattern 

simulation based on the dwelling’s employment status and acts within a domestic energy and 

carbon model. Gadenne et al. (2011) propose age, gender, occupation, income and highest level 

of education as factors that drive environmental behavior. Newton and Meyer (2010) emphasize 

income level and environmental literacy, suggesting that by increasing knowledge on the life cycle 

impacts of the built environment materials and manufacturing chains, behavioral changes can be 

achieved. From the literature, ranking each variable’s impact on energy use in descending order 

is as follows: type of use, income level, appliances, household size, location, household 

composition, head of household age, floor area, heating type, dwelling age, employment status, 

insulation quality, disposable income, social group, number of bedrooms and education level 

(McLoughlin et al., 2012). 

Large datasets from large population surveys can reveal the relationships between socio-

economic parameters and heating and cooling equipment, lighting installations and number/type 

of appliances such as cookers, microwave ovens, freezers, washing machines, washer-driers, 

dishwashers and computers. The IUMAT framework applies socio-economic indicators with 

environmentally significant consequences to quantify the weight of human-building interactions 

in energy use.  

 

3.2.3 Methods for Urban Residential Energy Modeling  

Swan and Ugursal (2009) present a comprehensive review of modeling techniques for 

residential energy consumption. They classify bottom-up models into two categories of statistical 

and engineering models. IUMAT aims to develop a hybrid of the two techniques that enables the 

use of statistics of empirical data, to create reliable average figures and archetypes that can be 
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used in physics-based models. Its modeling framework depends on detailed datasets to estimate 

the influence of physical and behavioral parameters on annual energy consumption profiles. 

Bottom-up methods rely on extensive sets of empirical data that are built on 

disaggregated components. Over the last two decades, bottom-up models have been developed 

to close the gap between quantitative evaluation and policy making in the residential sector. 

Farahbakhsh et al. (1998) introduced CREEM (Canadian Residential Energy End-use Model) to 

study the carbon reduction impact of renovations or fuel switching policies for single-attached 

and single detached dwellings. Snäkin (2000) proposed a numerical model for annual heating 

demand and CO2 emissions in North Karelia, Finland based on building type, heating system/fuel, 

and construction year. The Building Research Establishment’s Domestic Energy Model (BREDEM) 

(Dickson et al., 1996) and the Building Research Establishment’s Housing Model for Energy Studies 

(BREHOMES) (Shorrock and Dunster, 1997) were developed in the UK, using historical data, 

empirical correlations and a series of energy balance equations to project monthly consumption 

by single units for space heating and cooling, lighting, cooking, water heating and appliances 

(Anderson et al., 2002; Shorrock et al., 2005). Huang and Brodrick (2000) developed a DOE-2 

model of prototypical buildings (112 single-family and 66 multi-family prototypes) to analyze 

energy loads assigned to particular building components. Hens et al. (2001) constructed a set of 

960 reference dwellings based on year of construction, type, total floor area, primary fuel, and 

heating system to predict heating energy and carbon emissions for Belgium’s residential stock 

under alternative efficiency scenarios. There are other approaches that use BREDEM as their 

energy analysis engine. Natarajan and Levermore (2007) developed an object-oriented housing 

stock and carbon model, DECarb, and concluded that higher disaggregation in the modeling 

approach increases the credibility of the results. Firth et al. (2010) created the CDEM (Community 

Domestic Energy Model) with 47 house archetypes. Johnston et al. (2005) furthered the work of 

http://www.sciencedirect.com/science/article/pii/S0306261900000350
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Shorrock et al. (2001) to find the most feasible alternatives for reducing UK carbon emissions by 

2050.  

Modelling the physical complexities of building energy consumption requires simplifying 

the building stock. Archetypes models are based on defining templates for building type 

(residential, industrial, etc.), morphology and form (apartment, detached, etc.), mechanical 

systems, age, envelope construction materials and other parameters. Uncertainty in identifying 

these input parameters is significant. Measurements of U-factors, HVAC efficiencies, and 

ventilation and infiltration rates are not possible across the entire building stock. Building stock in 

most bottom-up modeling methods is categorized into average performance groups and scaled 

up to represent larger districts. The level of disaggregation determines the accuracy of the results 

since averaging methods can significantly skew the individual consumption profiles and increase 

unpredictability. The crucial challenge in this method is defining the number of categories that is 

neither too coarse nor too detailed, and success depends on the availability of data and level of 

detail in the model libraries. Information provided by energy use survey datasets controls the 

number of averaging groups relative to the variables that the inquiry covers. More disaggregation 

is possible by conducting geographically widespread building surveys drawn from an unbiased 

sample of the larger population.  

Regression is a common statistical method that has widely been employed to describe 

the relationship between energy model coefficients and input parameters. Bianco et al. (2009) 

employed multiple regression to project Italy’s household and non-domestic annual electricity 

consumption using population time series and GDP. Sanquist et al. (2012) used multiple 

regression of lifestyle factors such as ownership of appliances, thermal comfort, family 

composition and routines as predictors of electricity consumption. Asadi et al. (2014) applied 

Monte Carlo algorithms to generate different types/levels of building variables as inputs to the 



 

 
64 

DOE-2 simulation software, and used multi-linear regression to explain the relationship between 

annual energy consumption and seventeen generated explanatory variables. In comparison, the 

IUMAT residential energy module combines regression statistical techniques and engineering 

models using Quantile Regression and emissions calculation equations, described in the next 

section.  

 

3.3 Methodology 

3.3.1 Quantile Regression 

Quantile Regression (QR) was first introduced by Koenker and Bassett (1978) as a robust 

alternative to the classical Least Squares Estimator due to the deficiency of Least Squares in linear 

models with non-Gaussian errors. It extends the conventional least squares estimation to 

conditional quantile functions (Davino et al., 2013).  

In IUMAT’s urban residential energy module, QR is used to track how different resource 

consumption groups are impacted by changes in physical and socio-economic factors. Upper and 

lower tails of energy use distribution may arise from different levels of sensitivity to climate or 

income variables. Applying Ordinary Least Square (OLS) regression will not accurately predict the 

marginal policy impacts on different tiers of energy consumers. QR methods are appropriate 

because of the heterogeneous variations between energy use indicators, specifically, when 

specific populations are a subset of the distribution. Furthermore, with a skewed distribution of 

attributes of interest, QR methods provide more insight into the distribution compared to simple 

measures of central location and dispersion (Hao and Naiman, 2007). QR demonstrates effects of 

individual independent variables on quantiles of the variable of interest, and since it runs the 

analysis through the entire sample not only the conditional mean, it rules out subjective inference 

due to sampling bias. QR describes the functional relations between variables throughout a 
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distribution. If  𝐹𝑌(𝑦|𝑋𝑖) is the probability distribution of 𝑌𝑖  given 𝑋𝑖, conditional quantile function 

(τth quantile of Y) can be defined as (Chen, 2005): 

 

 

𝑄𝜏(𝑌𝑖|𝑋𝑖) =  𝐹𝑌
−1(𝜏|𝑋𝑖) 

 

By solving 

 

�̂�(𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐸 [𝜌𝜏(𝑌𝑖 − �́�𝑖𝛽)] 

𝜌𝜏(𝑧) = {
−𝑧(1 − 𝜏), 𝑧 < 0

𝑧𝜏,                      𝑧 ≥ 0
 

 

where �̂�(𝜏) is the τth regression quantile, the linear quantile function is produced as  

 

𝑄𝜏(𝜏|𝑋𝑖 = 𝑥) = �́�𝛽(𝜏) 

 

with β and X as the vector of estimator coefficients and the set of covariates respectively (Angrist 

and Pischke, 2008). This is an extension of minimizing the sum squared residuals for the sample, 

to the linear conditional mean function 𝐸(𝑌𝐼|𝑋𝑖 = 𝑥) = �́�𝛽. In a QR run, a result of β0.05< 0 

indicates that the 5th percentile of the response variable is negatively influenced by the increase 

in the predictor variable and β0.95> 0 implies that the correlation is positive for the 95th percentile, 

compared to an OLS run which may yield β ≈ 0, indicating no correlation at all. In instances of high 

variability in the data and large number of explanatory variables, results of OLS regression are less 

reliable compared to QR, as the outliers on left or right can significantly influence the average 

estimates (Yu et al., 2003).  



 

 
66 

QR is invariant to monotonic transformations (such as log), which therefore makes it 

easier to interpret the independent variable’s effect on the original response variable in cases that 

nonlinear monotone transformations are applied to the dependent variable. If P is a monotone 

transform of y, the quantiles of P(y) are P(Qq(y)) and for translating the results back to y the 

inverse transformation can be used. This is not the case for the conditional mean function E since 

E(P(y)) ≠ P(E(y)) (Hao and Naiman, 2007). Also, analogous to standard linear regression techniques 

that estimate the relationship between energy use and a set of variables based on the conditional 

mean function, QR provides the capacity to assess these relationships for different quantiles of 

data with heterogeneous conditional distributions, using the conditional median function which 

is more robust to outliers and non-normality of errors (Koenker and Hallock, 2001) as it makes no 

assumptions about the distribution of error within the model.  

One example of QR’s applicability to energy conservation policy is the use of tiered utility 

price structures. Tracking the extent to which upper and lower tails of energy consumption 

distribution respond to changes in energy pricing demonstrates how prices should change in order 

to meet expected reduction goals. To effectively employ QR, the variables to be included should 

be carefully chosen. IUMAT relies on actual data to identify indicators of regional, social, and 

economic conditions that are related to energy consumption and environmental conservation, 

and uses the correlation matrices as well as the literature to select predictors.  

The use of QR on energy surveys for identifying patterns of change was first suggested by 

Kaza (2010). He used a series of QR models for dwellings clustered by the magnitude of their 

energy use on a national scale. But because he ignored municipal or state divisions, regional 

effects that could complicates the interpretation of different variables’ impact on energy 

consumption were ignored in his study. Tso and Guan (2014) introduced a multilevel regression 

model to examine regional and socio-demographic effects on total residential energy 
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consumption, without categorizing heating, cooling or other parameters of consumption. The 

method demonstrated in this paper builds upon Kaza’s work, advancing the QR beyond an 

inference-only tool to create an energy forecasting platform that includes regional 

cultural/contextual indicators in the analysis to predict space heating, cooling, lighting and 

appliances, water heating and refrigeration residential energy use . We attempt to minimize the 

impact of climatic and geographical perturbations on the inference by running the analysis 

through individual Census divisions. We also address the influence of physical and socio-economic 

variables on heating, cooling and other categories of energy consumption separately. The analysis 

is carried out using the “quantreg” package (Koenker, 2013) in R software (Venables and Smith, 

2009) that tabulates the estimated coefficients with p-values, standard errors and t-statistics for 

parametric components of the model.  

 

3.3.2 Data 

The Residential Energy Consumption Survey (RECS) conducted by the U.S. Energy 

Information Administration (EIA) is a nationally representative sample that has collected 

household demographics, usage patterns, and energy characteristics of housing units since 1978. 

The 2009 survey (the thirteenth RECS) incorporates energy data from 12,083 households 

representing 113.6 million primary residence housing units. The publicly available microdata is 

tabulated for ten Census divisions and higher resolution location attributes are clipped out of the 

report. However, climate variables such as heating and cooling degree days are provided and can 

be used to locate the dwelling units. End use residential energy consumption is sorted in three 

categories of heating, cooling and other (lighting/electronic/appliances, water heating and 

refrigerators) energy use. The fundamental characteristics of RECS 2009 are summarized in Tables 

3.1 and 3.2. 
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Table 3.1: Basic distribution of some of the analysis variables in RECS (2009) 
 

Variable   
1st 

quartile Median 
3rd 

quartile Mean 
Standard 

dev. 

Heating Energy (KWh)  943 7,998 16,308 10,804 10,428 
Cooling Energy (KWh)  0 751 2,290 1,685 2,479 

Other Energy (KWh)  2,379 6,745 10,196 7,876 5,822 
Total Energy (KWh)  9,297 23,643 34,351 26,375 15,963 
Heating Degree Days  1,151 4,502 5,854 4,135 2,260 
Cooling Degree Days  439 1,179 1,842 1,444 1,022 
Total Cooling Area (m2)  0 95 170 117 114 
Total Heating Area (m2)  51 130 200 156 112 
Total Area  69 173 261 202 135 
Number of Household  1 2 4 2.67 1.51 
Average Cost per MWh  50 79 103 85 32 
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Table 3.2: Descriptive statistic of independent RECS variables (2009) 

Variable   Count  % 

Housing type    
Mobile Home  541 4 
Single-Family Detached  7,803 65 
Single-Family attached  890 7 
Apartment in Building        (2-4 Units)  926 8 
Apartment in Building       (5+ Units)  1,923 16 
    
Neighborhood    
Rural  2,427 20 
Urban  9,656 80 
    
Ownership    
Owned by someone in the household  8,140 67 
Rented  3,801 32 
Occupied without payment of rent  142 1 
    
Year Built    
Before 1950  2,063 17 
Year Built 1950-1969  2,869 23 
Year Built 1970-1989  3,825 32 
Year Built 1999-2000  2,598 22 
Year Built 2000+  728 6 
    
Income    
Income Level < $25K  3,000 25 
$25K < Income Level < $50K  3,533 29 
$50K < Income Level < $75K  2,149 18 
$75K < Income Level < $100K  1,359 11 
$100K < Income Level  2,042 17 
    
Education    
Education: K-12  1,233 10 
Education: High School-Some College  5,894 49 
Associate's or Bachelor's Degree  3,621 30 
Master's Degree and above  1,335 11 
    
Age of Householder    
Age of Householder < 25  604 5 
25 < Age of Householder < 40  3,114 26 
40 < Age of Householder < 60  4,911 41 
60 < Age of Householder < 80  2,787 23 
80 < Age of Householder  584 5 
    
Total observations  12,083  

 

IUMAT generates large square matrices that incorporate the bivariate correlation 

coefficients between every two variables provided in the data (Pearson, Cramer, Spearman, or 

point bi-serial depending on the type of variables) in order to select the variables to be included 
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in the analysis. For example in the case of RECS 2009, the inverse correlation between HDD and 

CDD is robust (ρ= -0.80) as expected. The correlation matrix shows no strong correlation between 

type of housing and urbanization state (φc = 0.18) or ownership status and urbanization (φc = 

0.17), and rather moderate relationships exist between income and education (ρ= 0.45), and 

between household size and age of householder (ρ= -0.35). The detailed graphs and tables 

regarding the QR results are attached in the appendices. Instead of intercept, the “centercept” 

concept is used in this analysis for the sake of easier interpretation of the regression results. 

Centercept is the value of the dependent variable when the independent variable is at its middle 

value (Wainer, 2000). The regression is run for the deviation score as the explanatory variable. 

The centercept based on the 2009 RECS data is the estimated conditional quantile function for 

the distribution of annual energy consumption by an average household with an income less than 

$25K, that pays $85.1 per MWh of energy, and lives in a single family detached unit of 202 m2 

built before 1950, in a rural area located in a climate zone with 1415 CDD and 4141 HDD. Based 

on the OLS estimates, national average figures for the average household space heating, cooling 

and other uses are 12.6, 2.0 and 12.8 MWh respectively. Note that energy consumption of the 

average household should not be confused with average household energy consumption (average 

household can also be referred to as typical household). In the lower and upper tails of the 

consumption distribution (τ =0.1 and 0.9), air conditioning energy use of an average household is 

0.4 and 3.3 MWh, respectively 5 times less and 1.65 times greater than the 2 MWh average. The 

QR results are compared against baselines that are less than $25K for income, single family 

detached for housing type, rural for neighborhood density, renting for ownership status, under 

25 for householder age, built before 1950 for building age, and householder holding a masters or 

PhD degree for education. In Figure 3-1, the “multi-family 5+” row shows the change in energy 

use from single family detached to multi-family unit in a 5+ units complex, keeping every other 



 

 
71 

parameter constant, or the “$100k<Income Level” in Figure 3-4 is compared against households 

with income below $25K.  

The results indicate that household size does not impact gross heating and cooling energy 

as strongly as it affects other energy (lighting/electronic/appliances, water heating and 

refrigerators). On the national scale, a one person increase in the household size results in a 1.8 

MWh growth in other energy on average (1.2 and 2.3 MWh for tau = 0.1 and 0.9) and 

consequently increases the total energy to almost the same extent (1.3 and 2.1 MWh for tau = 

0.1 and 0.9). The influence of age of householder (AH) is highly dependent on the age groups. 

Compared to AH<25 which is the baseline, cooling loads are marginally (almost 0.1 MWh) 

increased for 25<AH<60 and decreased for AH>80. However, space heating energy use is 

increased by 0.1, 0.8, 1.6 and 3.0 MWh respectively for 25<AH<40, 40<AH<60, 60<AH<80 and 

AH>80, which is likely due to higher thermal comfort expectations with advanced age. Other 

energy use rises by around 0.8 MWh for 40<AH<80 and drops by 0.3 MWh for AH>80, because 

senior households are typically smaller size families that may use fewer electric and electronic 

devices (OLS estimates, for QR results see the Appendices). The impact of ownership on heating 

and air conditioning is not statistically significant; however, owners are likely to use slightly more 

(0.37 MWh) energy on lighting, appliances and water heating compared to renters. The 

relationship between education and energy use is fairly inconsistent across the groups and often 

insignificant. Nonetheless, in some cases the correlation is strong and those with high-school or 

some-college education are likely to use more other energy (+0.6 MWh) annually compared to 

households with a masters or PhD degree. 

Age of the house (year built) primarily affects space heating rather than cooling and other 

energy use. It is remarkable that while the 50 years change in the age of the building can lead to 

9.5 MWh annual difference in heating energy in the upper tail, it can be as small as 0.83 MWh in 
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the lower tail (see the row “year built 2000+”). This emphasizes that weatherization measures 

and environmental literacy have the potential to substantially counter the influence of age of the 

house. Energy price is not significantly correlated with air conditioning and its impact on space 

heating is nearly two times greater than other energy. Overall, a 10 USD per MWh rise in price 

has the same impact of 15-50 m2 (≈161-538 ft2) reduction in the house area from the upper to 

lower tail on the total energy use.  

Conventional wisdom suggests that by moving from detached single family housing to 

more clustered housing blocks, gross energy consumption will be reduced (Druckman and T. 

Jackson, 2008). Based on the regression results, this reduction is greatest in large apartment 

complexes, single family attached, multifamily 2-4 units in descending order. In other words, the 

outcome suggests that single family attached housing is more energy efficient than small 

multifamily compounds. The reduction in space cooling energy is minimal and negligible for most 

of the tiers and surprisingly most of this reduction is attributed to other energy and not to heating 

energy. Heating energy use actually increases in the 50th+ percentiles by moving a household 

from a single family detached to a 2-4 units apartment complex. The rise in other energy can be 

attributed to the fact that there are not large enough number of households to reduce the energy 

use per household figure in smaller compounds of 2-4 units, where more energy intensive 

equipment are required for hot water or common area exterior lighting compared to single family 

attached. 

The marginal impacts of some covariates of interest on quantiles of three categories of 

other energy is shown in Figure 3.1. Lighting/appliances, water heating and refrigerators make 

nearly 7.9, 3.8 and 1.2 MWh of annual energy use. None of the three categories, show a strong 

correlation with the climate variables. However, an extra family member adds 560 MWh to water 

heating energy on average. The impact of the one person increase in the household size is twice 
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as high on lighting and appliances. Likewise, square footage has a higher influence on electronic 

devices energy use compared to water heating. Interestingly, higher energy prices is nearly four 

times more effective in lowering hot water energy use as to lighting and appliances. Another 

interesting finding is that by moving from rural to urban settings, energy for lighting, electronics 

and miscellaneous uses decreases (by 0.8 MWh) which is almost entirely (0.6 MWh) offset by 

higher hot water demand in urban housing.  
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Figure 3.1: Marginal impacts of some variables on different quantiles of residential lighting, 

water use and refrigeration energy use distribution 
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3.3.3 QR for forecasting  

The equations obtained from the 2009 RECS data QR analysis have been applied to RECS 

2005 dataset in order to examine the applicability of QR to large scale energy forecasting. The 

2009 dataset is larger and was collected using more advanced surveying methods. This justifies 

using 2005 data for validation purposes (2005 dataset includes 4,383 observations compared to 

12,083 in 2009). The model already takes into account the climatic differences between 2009 and 

2005 by including HDD and CDD, and adjusts the value of the dollar based on inflation rates for 

the impact of energy cost. A standard approach for testing the predictive power of the model is 

to use mean absolute deviation of sample and model (MAD) as a summary measure of out-of-

sample forecast error:  

 

𝑀𝐴𝐷 =  
∑ |𝑌𝑖 − �̂�𝑖(𝜏)|

𝑛
=  

∑ |𝜀�̂�(𝜏)|

𝑛
 

 
 

where �̂�𝑖(𝜏) is modeled value at the selected quantile and 𝜀�̂�(𝜏) is the model errors at the quantile 

τ. As shown in Table 3.3, the data for almost all of categories of consumption are highly skewed 

to the right. Both measures of skewness and kurtosis (sharpness of the peak of the distribution 

curve) are very high, indicating significant deviation from normality.  

 

Table 3.3: Distribution of the energy consumption breakdown in the RECS 2005 data 

 Mean SD Skewness Kurtosis Median 

Space Heating 13,301 12,881 1.99 8.95 10,220 

Cooling 2,121 2,568 2.32 10.23 1,267 

Lighting and Appliances 8,050 5,255 2.24 14.32 7,146 

Water Heating 5,742 4,507 2.21 8.53 4,653 

Refrigeration  1,850 1,427 2.37 12.87 1,436 
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QR has been used frequently across different fields for identifying patterns of change in 

data. However, the literature on the use of QR for modeling purposes is limited and in the few 

examples in which QR is used for forecasting (e.g. Furno, 2014), the specific quantile estimated 

coefficient have been applied to an entire population, regardless of conditional quantile 

distributions. Figure 3.2 shows density plots obtained from equations based on 2009 QR 

coefficient estimates. For space heating and cooling categories, the model fails to include the tails 

of the distribution due to high non-normality of the 2005 data. The models show better 

performance in capturing the other energy category; however, they all poorly represent the 

subcategories of other energy as the skewness increases.  
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Figure 3.2: Density plots for actual vs. modeled 2005 distribution using quantile estimated 
coefficients for 2009 data 
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Table 3.4 shows the mean absolute errors of prediction for both OLS and conditional 

quantile regression. At this stage, the forecast of the 2005 RECS data is based on the 2009 data 

quantile regression estimated coefficients, regardless of the 2005 data distribution. All of the 

equations yield MADOLS and MADτ within one standard deviation of the corresponding category 

of consumption data. Yet, in nearly all of the cases, OLS and the median regression (τ=0.5) are 

comparable with very minor discrepancies, although they do not necessarily provide the most 

precise forecasts compared to other equations obtained from regression for other quantiles.   

 
Table 3.4: Mean absolute errors of modeling when applying estimated conditional QR 

coefficients to the 2005 data regardless of the distribution 

  OLS τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 

Space Heating 6,448.7 9,364.6 7,376.7 6,639.6 6,418.5 6,453.5 6,660.0 7,123.4 8,001.0 10,147.3 
Cooling   1,182.7 1,912.0 1,648.3 1,476.4 1,327.2 1,240.8 1,194.7 1,233.8 1,362.2 1,748.0 
Lighting and 
Appliances 2,852.7 4,355.7 3,684.6 3,269.9 2,999.2 2,842.5 2,836.6 3,006.5 3,506.5 4,913.3 
Water Heating 2,734.0 3,647.0 3,079.7 2,807.8 2,675.0 2,645.8 2,721.2 2,905.5 3,337.7 4,405.7 
Refrigeration 942.9 1,336.5 1,221.2 1,125.6 1,055.4 991.8 937.8 902.2 903.2 997.9 

 
 
 

Using OLS or median regression for modeling purposes could limit the forecasting 

capacity of the models since usually the difference between 10th and 90th quantiles of energy 

use are major and not represented by the conditional mean/median. Not surprisingly, the 

conditional quantile estimates for 2009, yield best forecasts when applied to corresponding 

quantiles of 2005 data. Table 3.5 shows the MADOLS and MADτ for 10th, 50th and 90th quantiles 

of five categories of energy consumption in 2005 RECS data, when predicted by corresponding 

quantile regression estimate coefficients of 2009 data. The smallest values are marked with (*), 

indicating best predictions for matching quantiles in almost all of the cases (the results for the 5-

15th percentile for cooling are shown as not available, since the buildings that fall in that range 

do not use any cooling). An important factor is that partitioning the quantity that is to be modeled 

is not theoretically possible before actual modeling. However, for applications such as residential 
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energy in which modelers can intuit a range of results based on historical data and previous 

benchmarking efforts, applying the suggested quantile-for-quantile forecasting technique can 

increase the precision of the modeling process. This method provides a range of results, instead 

of unrealistic definite values for energy consumption, and offers more flexibility to satisfy diverse 

needs of energy modeling customers. For instance, for a capital investment infrastructure 

development project, a utility operation and planning company might be mainly concerned with 

securing the supply for a greater number of consumers in the middle, or alternatively with 

ensuring the demands of consumers in the upper tail and this framework allows forecasting the 

needs of various subgroups.      

Table 3.5: MAD in predicting the 2005 energy consumption with a different equation per 
different quantiles 

 OLS τ=0.1 τ=0.5 τ=0.9 

Space Heating     

    (5-15th percentile) 4,732.2 1374.9* 4,293.1 8,892.4 

    (45-55th percentile) 4,440.9 5,339.8 3644.5* 10,370.4 

    (85-95th percentile) 10,573.9 23,596.0 12,159.6 5601.2* 

Air Conditioning     
    (5-15th percentile) Na na na na 

    (45-55th percentile) 861.9 853.2 574.0* 1,846.5 

    (85-95th percentile) 1,984.5 4,517.6 2,471.4 1653.0* 

Lighting and Appliances     
    (5-15th percentile) 2,011.6 1016.8* 1,705.4 4,705.2 

    (45-55th percentile) 1,948.6 3,214.7 1743.9* 5,225.7 

    (85-95th percentile) 4,709.4 9,307.7 5,449.0 3432.8* 

Water Heating     
 (5-15th percentile) 2,833.2 507.3* 2,293.4 5,460.5 

 (45-55th percentile) 1,574.0 2,346.2 1079.3* 4,557.5 

 (85-95th percentile) 4,083.9 8,497.9 4,997.6 2269.3* 

Refrigeration     
(5-15th percentile) 499.4 122.2* 388.6 1,257.5 

(45-55th percentile) 306.4 917.7 406.7* 656.7 

 (85-95th percentile) 2,309.8 3,094.9 2,472.3 1284.6* 
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Figure 3.3 shows the energy consumption breakdown of 5 hypothetical neighborhood 

cases with a population of 40 as predicted by IUMAT residential energy model (for simplicity only 

τ=0.1, 0.5 and 0.9 results are shown). The model uses different equations to forecast the amount 

of energy use. For comparative purposes, the results of the median regression (τ=0.5) can be used 

to reliably choose the most energy efficient setting of all. Nonetheless, for more accurate 

prediction of the actual energy use, the specific equation to be chosen needs modeler expertise 

and input to identify where in the distribution of each category of energy consumption their 

particular project stands. This can be obtained by looking at the data for similar projects operating 

in analogous climate conditions, and is challenging in new projects. In cases of renovations, these 

data is usually already available to design teams. As can be seen in Figure 3, in all cases the 

difference between different quantiles is significant, which underlies the importance of a more 

detailed approach compared to OLS as well as the risks involved in failing to get the right estimates 

for strategic energy planning.   
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Figure 3.3: Energy modeling results for 5 hypothetical scenarios for neighborhoods of forty people  
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The large gap between first and ninth quantiles in not only because there are a large 

number of variables involved in the analysis, but also the regression is run for a vast geographical 

spread. In the data patterns, the inter-quantile differences can be explained by different sets of 

variables for different categories of consumption. Heating and cooling energy use inter-quantile 

changes are due to regional and climate variables, as opposed to other energy categories that can 

be attributed to household demographics and urbanization regressors. Tails of the consumption 

categories do not necessarily overlap. For example, the buildings that are in the upper tail of the 

space heating distribution, are more likely to be on the opposite side of the air-conditioning 

distribution. In addition to the suggested quantile to quantile technique, the impact of regional 

and climate regressors can be controlled by narrowing the scope of inference to finer geographical 

resolutions if sample size permits.  

To reduce the inter-quantile change and increase the forecast precision, the analysis is 

repeated for the ten U.S. Census Divisions (New England, Middle Atlantic, East North Central, 

West North Central, South Atlantic, East South Central, West South Central, Mountain North, 

Mountain South, and Pacific). These divisions have unique geography, cultural values, building 

practices, and climate factors that have the potential to influence the outputs of an energy model. 

Although this influence is at the neighborhood, city, regional, and national scales, running a 

detailed analysis beyond the Census division level is not viable with this dataset. Results from the 

West North Central (IA, KS, MN, MO, ND, NE and SD), West South Central (AR, LA, OK and TX) and 

Pacific (AK, CA, HI, OR and WA) divisions with major differences in climate and cultural factors are 

provided to demonstrate the substantial discrepancies between divisional regression coefficients 

and underscore the importance of higher resolution analyses.  

Figure 3.4 highlights the utility of analyzing smaller geographical districts. The influence 

of total area on cooling demand for the Pacific (PC) and West South Central (WSC) divisions is 



 

 
84 

almost 1.5 and 3 times greater across the distribution compared to West North Central (WNC) 

division. In the PC division, income does not affect air conditioning (AC) energy use for the first 5 

tiers, indicating AC being more a requirement than a life-style choice. The rise in income from 

income level (IL) less than $25K to IL>$100K has a three times greater of an impact on air 

conditioning in WSC compared to WNC. The effect of energy price on space heating is not 

statistically significant in PC. However, a $10 per MWh increase in price leads to 0.1-0.7 MWh 

reduction in heating loads for WSC, compared to 1.7-2.3 MWh reduction for WNC. Interestingly, 

AC use is not affected much by the price, either at national or division levels. The impact of total 

area on space cooling energy in WNC is two times than WSC and PC. Influence of income on space 

heating is much greater in PC and WSC compared to WNC, demonstrating space heating is likely 

driven by lifestyle in those divisions. Age of the building, is more of a factor in WNC rather than 

WSC and PC. A building built after 2000 in contrast to the same building built before 1950, uses 

0.2-4.5, 0.1-6.9 and 2.1-10.4 MWh less for PC, WSC and WNC respectively for space heating. This 

can be attributed to the higher HDD and more severe winters in the WNC division. The influence 

of neighborhood density (urban/rural) is not statistically significant on any of the heating, cooling 

or other energy for the three aforementioned regions. But the impact of neighborhood 

urbanization index is unexpected at the national level. Moving from rural to urban settlements 

negatively impacts cooling and increases heating demand, counter to urban heat island 

predictions (more details in Appendix B). The lack of detailed locational neighborhood density and 

microclimate site data makes these results difficult to explain, especially since the RECS data now 

classifies neighborhood density as urban/rural in 2009 compared to rural/city/suburbs/town in 

2005. However, the data shows that buildings in urban neighborhoods are likely to use 0.1-0.5 

MWh less other energy compared to rural houses which is a minor difference. The influence of 
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the variables of interest on other energy is more or less similar across the three divisions and 

resembles the national patterns.   
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Figure 3.4: Conditional quantile estimates of household energy use for WNC, WSC and PC Census 
Divisions 
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3.4 Impacts of Consumption 

What are the environmental impacts of the estimated residential energy consumption 

whether it is supplied for plug loads (electricity) or for heating and/or cooling (fuel)? For electric 

use, energy production datasets at the county level are required to analyze lifecycle stream stages 

including extraction of resources, transportation, production, generation and transmission. 

IUMAT’s urban residential energy model does not take all these stages into account (see 

Mostafavi et al., 2014b for overall IUMAT framework). Since the EWM module uses 

buildings/parcel as the smallest unit of the analysis, it focuses on the supply side, on energy 

generation in the plant and during the transmission process. Emissions beyond the plant such as 

the mine in the extraction phase, are calculated by IUMAT separately since the mine is an 

independent unit and assigning the mine emissions to the plant would lead to double calculating 

the primary process emissions. The well-to-meter approach to energy consumption calculates the 

supply energy as: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 (𝑠𝑢𝑝𝑝𝑙𝑦)

= ∑ ∑ ∑(𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑢𝑒𝑙 𝑢𝑠𝑒 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑)

𝑝

𝑘=1

(𝑀𝑊ℎ)𝑗,𝑘

𝑚

𝑗=1

𝑛

𝑖=1

∗ (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒 𝑓𝑜𝑟 1 𝑀𝑊ℎ 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑢𝑒𝑙)(
𝑀𝑊ℎ

𝑀𝑊ℎ
)𝑖.𝑗 

 
 
where i is the primary energy, j is the process fuel, and k is the stage of energy generation. Primary 

fossil energy use from well to meter includes both direct energy for extraction and indirect 

upstream energy use for transportation and process fuel. However, the urban residential energy 

model deals with direct emissions only. There is also secondary energy consumption during the 

cycle for plant construction, manufacturing of the machinery, and labor that are calculated by the 

EWM module separately. In the urban residential energy model, emissions from electricity use 
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are reported in terms of direct emissions tracked to the power plant (p=2 for the two stages of 

power generation and transmission-distribution) and for domestic use of any fuels other than 

electricity, direct on-site emissions are calculated. This is a pseudo-disaggregated well-to-meter 

approach to environmental impacts calculation.  

The applicable unit of resolution for the analysis is 1 MWh of supplied energy. For this 

level, the supply energy is classified into two groups of fossil fuel based and renewably sourced 

groups. In the fossil-fuel category, for a comprehensive and effective assessment, more than 

twenty different primary and secondary fossil fuel types are included. Process fuel for energy 

demand (PFED) which is the amount of process fuel combusted at the plant based upon the 

efficiencies of the generation technology and the distribution system is calculated as: 

 

(𝑃𝐹𝐸𝐷) =  
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 
 

 
 

The MWhsupply/MWhdemand estimate that takes into account plant characteristics and the 

transmission and distribution stage is used to measure the CO2 emission/MWhsupplied figure. With 

respect to the fuel consumption for energy production, CO2 emissions (CE) can be calculated using 

fuel type and oxidation rates:  

 

𝐶𝐸 (
𝑔

𝑀𝑊ℎ
) = ∑ ∑(𝑃𝐹𝐸𝐷)

𝑝

𝑘=1

(
𝑀𝑊ℎ

𝑀𝑊ℎ
)

𝑗,𝑘
∗

𝑚

𝑗=1

(𝑓𝑢𝑒𝑙 𝑡𝑦𝑝𝑒′𝑠 𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)𝑗 (
𝑔

𝑀𝑊ℎ
)

∗ (𝑓𝑢𝑒𝑙′𝑠 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒)𝑗 ∗ 44/12 

 

where 44/12 is the mass conversion factor from carbon to carbon dioxide. Depending on the fuel 

type and combustion completeness factor, other greenhouse gases such as CH4, N2O and beyond 

that volatile organics are emitted into the troposphere. CO2 equivalent emissions (CEE) is 

calculated conforming to the global warming potential of the GHGs: CO2 



 

 
89 

 

𝐶𝐸𝐸 (
𝑔

𝑀𝑊ℎ
) =  ∑ ∑(𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑢𝑒𝑙 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑) (

𝑀𝑊ℎ

𝑀𝑊ℎ
)

𝑘,𝑗

𝑝

𝑘=1

𝑚

𝑗=1

∗ (𝐶𝑂2 + 23𝐶𝐻4 + 296𝑁2𝑂 + ⋯ )𝑗(
𝑔

𝑀𝑊ℎ
) 

 
 

For any fuels other than electricity, direct on-site emissions are calculated. There are 

substantial variations in the on-site direct emissions even between the same fuel technologies 

due to the large number of variables such as carbon content and climate conditions. Direct 

emissions figures are highly site-specific based on input fuel conditions and technological and 

operational disparities. Extreme variation in emissions are also expected at the downstream and 

upstream stages of fuel cycle and technology (Weisser, 2007). EPA emission factors for 

greenhouse gas inventories are used for calculating direct GHG emission from on-site combustion 

of fossil fuels or renewable generation for meeting thermal or electrical demands. In cases of 

district heating, emissions by heating energy use are counted by factoring the EPA constants into 

the efficiency of combustion and heat generation method. This is done by implementing average 

district efficiencies of coal, gas and oil fired plants. Among non-fossil fuel heat and power 

generation methods wind, hydropower, geothermal, nuclear, solar are accounted for with 

regional emission factors.  

EIA maintains a database (EIA-923 database) of monthly and annual power generation, 

fuel consumption and various environmental data for every power plant in the United States with 

1 MW capacity or greater (EIAa, 2016). Another database that stores information for every single 

active generator at United States’ power plants (EIA-860 database) includes location, generation 

capacity, status of operation and primary fuel source (EIAb, 2016). In Figure 3.5, we have 

connected the two datasets to determine the plant that is most likely to serve a specific zip code 

based on proximity analysis, and identify the type of fuel burned in the plant (forty different 



 

 
90 

primary and secondary fuel types are used in the plants, according to the EIA). Efficiency at every 

plant is determined as net generation, fuel combustion and electric use figures are available for 

every coal, petroleum, natural gas, nuclear, hydro, wind, solar geothermal and wood plants with 

location resolution at the county level. 

 

 

Figure 3.5: Plant selection based on proximity analysis and fuel data from EIA-923 and EIA-860 
datasets. 

 

 

Energy production is associated with water consumption, typically involving the use of 

large amounts of chilled water and steam. Water is also used for equipment cleaning in energy 

generation plants. For example, coal plants use a lot of water for the crude coal purification. 
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Nuclear plants as well as oil, coal and natural gas fired plants have significant rates of water 

consumption to provide cooling and process steam. NREL (National Renewable Energy 

Laboratory) factors (Macknick et al., 2011) can be used to estimate the water usage (WU) from 

energy production technologies: 

𝑊𝑈 =  ∑(𝑀𝑊ℎ 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑)𝑗

𝑛

𝑗=1

∗ (𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟)𝑗(
𝐺𝑎𝑙𝑙𝑜𝑛

𝑀𝑊ℎ
) 

 
 
where j is the generating technology. Other forms of water use such as industrial or domestic 

water consumption are adjusted separately by other IUMAT models, mainly the water module. 

The amount of water use is key in determining the amount of sewage discharged. By using the 

outputs of QR analysis, energy demand and its breakdown is analyzed for heating, air 

conditioning, lighting, equipment, appliances, and water heating. EIA-860 database is used to 

identify the plant that serves the unit, and the EIA-923 data provides technology, fuel mix and the 

plant efficiencies that are used for calculating carbon emissions, water usage, and sewage 

production associated with residential energy use.  

 

3.5 Discussion 

This work presents the opportunities and challenges of applying nationwide datasets for 

urban modeling and energy policy making. The larger the sample sizes and the more regional 

details provided, local level inferences can be carried out with higher confidence. In the RECS 

datasets used for this work only a few number of states are specifically identified and all the other 

states are coded at census division level. However the climate data can be used as a quasi-spatial-

locator for drawing conclusions at local levels. The work presented here does not offer more 

details (although the data allows the analysis to be carried out for sixteen individual states) since 
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we focused on describing how dataset such as RECS can be used by IUMAT rather than explicitly 

calculating energy and emissions for a specific region. Our results show that narrowing down the 

scale of the analysis to census division level, considerably reduces the inter-quantile change and 

therefore increases the prediction power of the model for heating and cooling energy categories, 

since they are more affected by climate and regional variables. However, the zooming in does not 

provide more insight on lighting and appliances, water heating and refrigeration, since the 

categories of other energy use are more influenced by demographic household parameters other 

than climate and regional factors. The RECS data is a random cross-sectional sample, and does 

not enable assessment of marginal impacts over time or due to behavioral changes. Our other 

goal in this paper is to describe how QR can be applied to illustrate the differential effects of 

marginal changes on energy use and consequent emissions. 

According to RECS, the average energy use by a household in 2009 was almost equivalent 

to 1980 figures (with only 2% rise), despite the 30% increase in average home size. This suggests 

that the 56%, 18% and 3% increase in air conditioning, lighting/electronic/appliances, and water 

heating is nearly entirely offset by energy efficiency measures and more stringent codes that have 

cut the space heating by 21%. Considering the 52% increase in the total residential floor area, the 

energy use intensity (EUI) of the residential sector has decreased by 43.1% per square foot over 

the same time frame. IUMAT provides the means to efficiently run the same kind of analysis for 

different datasets (such as previous RECS versions) and compare how energy use and the variables 

that influence its magnitude have changed over time. For example, the model shows that a 50 m2 

(≈ 538 ft2) increase in the house area has the same impact of a 10-30 USD per MWh cut in the 

energy price on the total energy use for the lower to upper tail in 2009. However, for the 2005 

data the 50 m2 is equivalent to 5-12 USD change in price per MWh, indicating that consumer price 

sensitivity is decreasing and tougher energy market regulations are having less of an impact. As 
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such, strategic conservation policies need to go beyond price management. Despite a 35% 

population growth, the energy use per household index has declined by 24.2% during 1980-2009 

due to the 33% increase in the total number of households. The trend does not point to a 

significant change in the average U.S. household size and the shift to smaller families. If this trend 

holds through 2015-2060, the projected US population growth from 321 to 417 million (US 

Census, 2016), will result in almost 28% more households of the same family sizes of today. This 

must be taken into account when planning for the future. RECS data also show that the share of 

heating and cooling energy in the total residential site use energy has decreased from 57.7% to 

47.7% in the 1993-2009 period, showing significant energy-saving potential in the other energy 

category (lighting/electronic/appliances and water heating), and that this category is minimally 

affected by energy price and building age. Instead, promoting urban communities and shifting 

away from single family detached housing type have the highest impact on reducing other energy. 

These results could be different for every region, and IUMAT EWM module will be able to identify 

effective policies for a specific region or town upon availability of data.  

While analytical results from tools such as the one presented here cannot be the sole 

decision aid in sustainable master planning, it is still a valuable resource as part of a suite of 

analytical tools for city planners.  For example, there has been strong support for increasing the 

density of cities over the last decade, and there are arguments that although compact urban 

construction reduces the residential energy demand, at the same time it reduces the potential for 

PV due to the reduction of usable area for PV installation (e.g. Yamagata and Seya, 2013). Of 

course, in dense urban settings all empty places can be optimally used, and there may be 

opportunities for neighborhood scale PV installations or vegetation to reduce the UHI effect. 

However, a planning board’s concern is not only energy conservation and the final decision needs 

to consider the urban morphology and livability as well. IUMAT estimates the resources needed 
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for urban development under alternative growth scenarios and enables planners to use spatial 

demand profiles to create aggregate neighborhood energy figures to better understand the 

magnitude of carbon emissions as well as the geographical relationship between supplying sites 

and peak demand generation zones. 

The QR method for urban residential energy can analyze environmental impacts of 

alternative energy technologies and simulate the regional energy demand profiles from a bottom-

up approach. It lays the groundwork for calculating transmission losses, as well as emissions, 

water, waste and sewage production associated with the energy source and generation 

technology. Unlike most large scale simulation tools, IUMAT reports model uncertainties through 

confidence intervals. However, the validation process remains a challenge. Validating the results 

is much easier in extra-large scales using very coarse level governmental energy information or at 

the building level by comparing the outcomes to specific buildings’ performance data, but actual 

energy profiles are required at sub-urban geographical resolutions to determine the accuracy of 

the model. It is challenging to obtain energy consumption data for the residential sector because 

detailed sub-metering for household energy consumption is not cost effective, and privacy 

concerns restrict the comprehensive collection of energy consumption data for given households. 

As a next step, data from other randomly sampled case studies will be used to verify the inference 

power of the model. IPUMS (Integrated Public Use Microdata Series) dataset as an example shows 

the households’ expenditure on natural gas, fuel oil and electricity. Regional price data enables 

converting energy dollars to KWs and comparing it against the model results.   

The link between urban climatology and building performance in most current urban 

modeling tools is weak. For example, the overshadowing or shading effect among buildings in a 

city block influences both outdoor and indoor climate as well as building energy consumption. 

This interaction has yet to be satisfactorily modeled. Given the occupancy patterns in residential 
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and office spaces, one viable energy saving strategy may be to minimize solar gain (and cooling 

load) by assigning the daytime shaded units to office spaces, where there is greater occupancy 

during the day. In effect, this strategy would force buildings that overshadow the office spaces to 

be zoned as residential spaces. However, this is contrary to how spaces are typically zoned in 

cities, where low-rise buildings are typically residential while high-rise buildings are typically 

commercial/office. The urban residential energy use model offers both operational energy use 

and management policy impacts, especially as more detailed energy use, geometry, and street 

characteristics are available.  

The next step is to develop a similar approach to apply to the Commercial Buildings Energy 

Consumption Survey (CBECS) and Manufacturing Energy Consumption Survey (MECS) in order to 

build the urban industrial and commercial energy models. By combining these with the residential 

energy model described in this paper, IUMAT will more fully represent real neighborhoods that 

include various types of buildings in an urban area. 
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CHAPTER 4 

CONCLUSION 

4.1 Summary  

 
IUMAT is fundamentally comprised of five connected primary models (energy, water, 

materials, land use and transportation) that consider different urban sectors (e.g. residential, 

commercial, industry, and open space) and quantify the aggregate consumption of resources, 

waste and sewage production, and GHG emissions under different scenario choices. It is a tool for 

overall sustainability evaluation in cities that enables urban planners to better understand the 

performance of each sector and discover better practice or improvement potentials for new 

projects and the existing stock. The framework allows manipulating geographic/time borders of 

the study and provides quantitative results for assessment of ongoing trends and processes of 

change in cities towards advancing urban control and planning systems. Results generated by 

IUMAT can be used by executive and legislative authorities at various levels to interpret the 

performance of building stock and understand the effectiveness of refurbishment and mitigation 

policies to adequately act and reduce the undesirable environmental consequences by taking 

most sustainable pathways. 

 

4.2 Advantages of the Residential Energy Model 

Cities are complex, open systems with many interdependencies between variables and 

sub-systems that produce many prediction and measurement uncertainties. Dealing with these 

uncertainties is not a point of strength for energy modeling at the building level as most of the 

commercial tools take a deterministic approach and only take fixed values at the data entry. Urban 

modeling requires a shift from fixed data input deterministic arrangements to more complex 
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probabilistic simulation designs. The residential energy model provides possible ranges of 

consumption, instead of definitive absolute predictions.  

Exploring the determinants of urban resources use that underpin energy/water/materials 

consumption, space use, urban transportation, and domestic appliances is critical to point out the 

direction of public policy. For every city, it is important to understand what percentage of 

consumption is design driven and how much of it is related to the residents’ discretion or climate 

variables. All-inclusive bottom-up arrangements such as IUMAT residential energy contribute to 

this objective by segregating the explicit impact of unique variables on different categories of 

consumption. For instance IUMAT energy model results show that residential hot water use is not 

affected much by heating or cooling degree days or urban form, but highly influenced by occupant 

characteristics or energy prices. Or, the outdoor lighting demands are highly correlated with urban 

form and by shifting away from detached structures towards denser neighborhoods and 

connected buildings street lighting loads can be effectively controlled. 

For a confident use of energy modeling in policy evaluation, the model should be ready 

to capture behavioral complexities as well as climatic aspects that surround urban flows of 

consumption. Research shows that up to 85% of the consumption variance can be allocated to 

type of use and behavior of the household members. Within the same patterns of activity, 

variability between energy-efficient housing is very significant compared to the average 

residential stock. Environmental literacy of the occupants and their increased awareness on the 

life cycle impacts of the built environment materials and manufacturing chains have the potentials 

to achieve behavioral change. The residential energy model results emphasize the importance of 

behavior by showing that energy saving behaviors can greatly counter the impact of an aged 

housing stock. Imperfect simulation of user behavior is usually recognized as another significant 

source of error in energy modeling. Human-building interactions in building scale energy 
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simulation are usually reflected via schedules that assume a normal behavior by all of the 

occupants. The normal behavior identifications are usually based on outdated surveys with 

disputable relevance today. 

In an urban area with large numbers of building units, the impact of behavioral variances 

not being captured in the process of energy modeling only intensifies. However, unlike for small 

scale simulation, predicting the behavior of a city population is logically impossible. Currently 

IUMAT takes physical parameters such as floor space, type of use, location, etc., and augments 

the framework by pseudo-behavioral models that take into account a set of socio-economic 

parameters in order to predict the diurnal consumption of resources and the traffic that a given 

building absorbs and generates in a bottom-up analysis framework. Factors such as age, 

employment status, gender, occupation, income, highest level of education are some of the socio-

economic variables that determine environmental behavior of urban agents and still, different 

people, even at the same income and literacy level, do not respond similarly to the incentives and 

environmental knowledge. IUMAT looks for sets of socio-economic indicators that are 

determinants of behaviors with environmentally significant consequences to establish the 

individual/attitudinal backbone of the model. Results of the energy model, form an evidence-

based structure of calculative assessment that atones for the current lack of urban behavior-

configuration integration in strategic governmental and industrial policy making and development 

programs. The energy model is designed to help understand the extent to which the procurement 

of more efficient energy appliances, using renewable energy sources, and energy conservation 

and recycling habits are influenced by socio-economic factors. 

Flows of consumption span a long path form the source to their end-use site. Another 

advantage of the overall framework designed for IUMAT is the disaggregated approach it takes to 

indexing these passages that complicate allocation of the flows to specific sectors or activities. 
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Therefore, the immediate impacts of project landscaping as an example that includes energy, 

water and material use for construction, and operation and maintenance of the landscape are 

separately calculated by the water and materials use models, not the energy model. This is similar 

to the way irrigation water usage, energy use for water treatment and distribution, sewage 

disposal, roads and infrastructure material use, materials transportation and disposal energy 

consumption are calculated on a project basis.  

There is a wide variety of strategies for controlling the urban energy demand and the 

associated GHG demands including dissemination of building energy efficiency measures, 

improving the technologies, optimizing the energy generation and distribution cycles, land use 

and spatial urban form management, and reducing carbon intensity of the grid electricity. For 

establishing a reliable city level energy modeling method and setting a baseline for urban GHG 

emission accounting, performance of building systems, equipment and appliances should be 

considered at the same time with distribution and generation systems in relation to urban form. 

The impact analysis module within the residential energy model enables drawing comparisons 

within a wide spectrum of sustainable energy production technologies for urban areas ranging 

from on-site renewable generation to higher efficiency fuel use methods such as cogeneration in 

terms of carbon emissions.   

Energy master-planning, harvesting renewable sources and integrating new capacity into 

the grid needs a thorough understanding of the spatial load profiles. High resolution topological 

and geospatial data on regional energy demand help to understand what the transmission and 

distribution technical and economic costs will be to the destinations that power demand usually 

peaks. Blending renewable electricity generation into the grid is not always straightforward. 

Viability of renewables integration plans also depends on the magnitude of demand and storage 

technologies available in cases of over-generation for the times that demand falls below supply. 
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Considering the fluctuating nature of renewable energy production technologies and their lower 

power capacity relative to other sources, more state of the art storing and management 

technologies and smarter grids might be required in order to maximizing the carbon emission 

benefits of renewables. Planning for renewable energy production by balancing the non-

predictable fluctuating supply with relatively predictable demand is critical along with providing 

a certain level of generation system security to meet the hourly needs of various urban sectors. 

Calculative IUMAT framework allows assessing and comparing alternative energy plan options 

(e.g. centralized vs scattered renewable energy plan) with regards to need for new infrastructure, 

distribution losses and meeting the peak loads. IUMAT energy model provides the means for 

improved forecasting needed for successful and efficient integration of renewables into the 

energy network. But, additional improvements to the transmission lines, storage facilities, and 

mobility systems are usually required in addition to operational enhancements such as 

establishing virtual power plant frameworks (central-holistic control systems) or integrating 

cogeneration district heating plans with non-dispatchable energy sources. 

The energy model projects the environmental consequences of alternative energy 

technologies by simulating regional energy demand profiles corresponding to supply systems. It 

also calculates water use, waste and sewage production, as well as carbon emissions and 

transmission losses associated with the energy source and generation technology and takes into 

account appliances at the same time with energy sources. Electric vehicles are not always 

environmentally beneficial and can even lead to higher CO2 emissions in cases of carbon intensive 

electricity for battery charging. IUMAT’s other models (such as the materials model) upon 

completion would be able to estimate the amount of resources that go into developing and 

providing the infrastructure for the new renewable plants. So, for any proposed development of 

an energy plant or a building zone, planning authorities based on the IUMAT models’ outputs will 



 

 
101 

be able to compare the magnitude of material use, energy consumption, and the net emissions 

difference of the proposed plans. They can also use the spatial demand profiles and create 

aggregate neighborhood energy figures and get a better understanding of the distance of the 

supplying sites to peak demand generation zones. However, politics around the suggested 

development scenarios, opinion of the public on the projects, and cultural aspects of any kind of 

change can be very region specific and the final proper decision making would highly depend on 

the community needs, foresight of the policy makers and the vision they have for their 

communities. Furthermore, there sometimes exists a competition between categories of saving 

with sustainable scenarios. As an example, densification of communities could moderate solar 

energy harvesting potentials and IUMAT’s energy model enables drawing comparisons between 

alternative conservation measures using a net sustainability index analysis mode.   

Based on RECS data, there has not been a significant rise in average household energy 

use, despite a 30% increase in average home size over the past three decades suggesting 

effectiveness of conservation measures and more stringent construction codes in countering 

higher air conditioning and other energy use by cutting the space heating loads. IUMAT provides 

the tools necessary for relating the energy use and variables that characterize it over time for 

example, how price sensitivity of consumers has been decreasing since 1980, pointing out the 

need for new public policy directions rather than market-control-only approaches. Sustainable 

urban planning should have trepidations about population projection subject matters, as 

economic developments, housing issues, providing facilities and public services, environmental 

impacts, and accordingly sustainable development are all highly correlated with nose counts. Not 

only the magnitude of the population, but also demographic characteristics of it such as race, age 

and gender distribution can be of concern depending on the specificity of the study. Both 

demographic and non-demographic parameters can impact the trends of population growth and 
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the decision making process of the population. Chapter 3 explains how factors such as size of the 

household are related to residential energy use and how population projections and demographic 

characteristics can be implemented in planning for future energy. Breaking down the categories 

of consumption shows that greatest opportunities for energy saving are in water heating and 

lighting/electronic/appliances and therefore, less achievable with more strict building codes or 

rigorous energy market regulations. The presented framework is distinctive in the way that it has 

the capability to specify for every region which of the behavioral change, community densification 

or physical alterations of the building stock should be the priority of energy conservation master 

planners.  

The quantile regression method indicates how other partial models acting within the 

greater EWM model can implement actual data to draw patterns of change in regional demand 

profiles and calculate distribution losses and carbon emissions accordingly. Although IUMAT takes 

a non-deterministic approach by reporting the results via confidence intervals, next steps of the 

framework development should include some robust validation procedures by using other 

independent national surveys that are randomly sampled. Commercial and manufacturing energy 

models should take the same approach using CBECS, MECS and analogous regional datasets. 

However, the goal of the holistic framework for projecting the full picture of environmental 

consequences will depend on the accomplishment of all IUMAT models that represent the urban 

area as a mixed use and interconnected community.  

For the intended comprehensive microscale analysis of different categories of 

consumption, a diverse range of spatial and temporal data collection methods may be 

appropriate. The suggested method for large-scale simulation depends on laying out the 

simulation framework geared towards maximizing the practical opportunities for methodological 

surveying improvements as well as providing modeling flexibility for employing engineering 
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methods in absence of data with desired quality. IUMAT models use, generate and assign 

locational variables and unravel relationships between parameters of interest and observed 

patterns in the data. Every model should demonstrate a unique approach that considers the 

impacts of dynamics and socio-economic factors on the environmental footprint of an intertwined 

network of urban energy/water/materials use, transportation and land use. This complex city 

network is represented by buildings as individual agents that determine the performance and 

form the patterns of change within the wider urban context. The proposed structure’s point of 

strength for planning disciplines beyond its all-inclusive nature, is the adaptability quality it has to 

perform in both urban and rural settings.  

 

4.3 Future Steps 

Formulating convenient responses to the environmental consequences of rapid 

urbanization requires a full understanding of all of the contributing parameters. The platform 

designed for IUMAT relies on actual data for unraveling the relationships between the built 

environment characteristics and flows of resource consumption in an extended platform of urban 

metabolism analysis. This could be an opportunity to expand urban planners’ scope of work and 

provide a comprehensive perspective of inter-connected urban sectors for policy makers at 

community, regional and national levels. The Residential Energy Model explained in the previous 

chapter provides a template on how real data can be employed by bottom-up modeling structures 

to construct an integrated system of urban activity. Although currently the most developed 

IUMAT models are the Residential Energy and Land Use models, a brief description of how the 

current models can be improved and other models will be built and linked within the existing 

framework is presented next.   
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4.3.1 Improving the Residential Energy Model 

4.3.1.1 Urban Form Influence 

Built environment has lots of intricacies and inputs to urban models at their best cases 

are good estimates. Measuring the geometry, envelope properties, system efficiencies and 

occupant characteristics is not uncomplicated for small projects and impossible throughout the 

entire stock. In addition to site-specific qualities, consumption rates within the built environment 

are also highly dependent on the climate condition in which they operate in. Climate differences 

caused by urban architecture and activity change the natural balance of flows and resources in 

cities compared to untouched lands. Urban function and morphology have spatial and temporal 

aspects that especially influence energy performance of urban buildings and are rarely taken into 

account by conventional building energy performance analysis tools. The discrepancies between 

the actuality and energy modeling simulation results is often partially attributed to the micro 

climate differences between weather stations and the actual construction sites. Most of the 

buildings are exposed to a modified urban climate that is itself the product of many micro-scale 

climate exchanges between so many units and surfaces that create the urban structure. 

Mainstream energy simulation tools, by default, assume that all buildings are stand-alone entities 

interacting with a non-urban environment, unrealistically disregarding the impact of the micro-

climate in the energy performance calculations. Decisions made at building level, whether about 

the structural format and choice of materials for the envelope, or about the type of activity that 

the building is supporting produce and engage with the neighborhood climate that is overlooked 

in most of the building performance analysis tool scripts. 

One factor that is not adequately explored by the current residential model is the impact 

of urban landscape. Urban landscape is comprised of roads, buildings, trees, open space, water, 

etc. and their configuration and composition (spatial and non-spatial attributes) determines the 
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mechanism by which land use elements influence resource consumption patterns (Zhou et al., 

2011). Since the utility of IUMAT is to assist urban planners and policy makers as a decision tool, 

incorporating the connections between land-cover, regional building standards, and building site 

characteristics in the modeling process is necessary for comparing detailed site-specific design 

solutions. At this stage of development, the impact of landscape function is accounted for by 

defining different groups of space activity and building use. But the dynamic impacts of landscape 

elements on resource consumption is not trivial and should be addressed directly. The structure 

of a particular type of landscape surrounding a building influences its energy and water 

performance in many direct and indirect ways. The urban composition around a building, for 

instance, the existence of recreation areas or shopping centers, affects the number of trips 

generated by a household and the overall transportation energy use as a consequence. Also, the 

land cover class of the surrounding lots impacts the urban surface energy balance as low albedo 

paved surfaces slow down the night time cooling process compared to naturally covered land, 

resulting in higher summer power peak demand and lower winter heating loads (Lenzholzer and 

Brown, 2013). Heat sources are less concentrated in sprawling urban areas, but transportation 

requirements are more than high-rise areas at the same time, leading to more emissions. Clearly, 

the impact of urban landscape composition is a vital and critical factor in urban areas.  

It is both physical form and function that urban planners aim to efficiently manage for an 

efficient, productive interaction of a given population. Neighborhood and street characteristics 

influence choices made by residents as well as the natural urban energy flows. Urban form affects 

the residential energy in many ways including transmission efficiency and distribution loss, 

housing stocks energy requirements, and cooling and heating needs due to the UHI effect. Urban 

morphology modifies air patterns and flows around buildings, reduces solar gains due to 

overshadowing effect by adjacent units, and controls patterns of heat gain from radiation 
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exchange between different exposed surfaces. For instance, the mutual shading effect among 

buildings in a block can interact with both outdoor and indoor microclimates and building energy 

systems. Even minimal reductions in minimizing heating and cooling loads produced by improved 

energy management and zoning regulations can have significant impacts when applied to large 

metropolitan areas, and most commercial energy modeling software do not have a way to 

account for zoning strategies. These interactions are not easy to track. As an example, aerial 

imagery has been partially effective in enhancing the Urban Heat Island effect analysis models, 

but this technique only reflects the two dimensional heat gradient for the urban surface, and the 

3D context which includes the urban canopy and the buildings’ exterior walls is substantially more 

complicated and difficult to measure. IUMAT energy model’s use of actual data in the modeling 

process serves as a starting point for linking urban climatology and building performance analysis. 

As more comprehensive methods for geometry, energy balance and form data collection are 

developed, improved strategies for operational energy modeling in the energy management 

process will emerge.  

Another obstacle to incorporating urban configuration parameters in resource use 

modeling is the difficulties of defining and measuring urban form. It is not simple to exactly 

delineate indicators of urban form such as density, concentration, proximity, continuity, 

centrality, accessibility and compactness with consensus. These terms are mostly neutral and very 

objective (Churchman, 1999). For instance, some planners use the number of people per square 

mile as an index of density, and some use the recorded number of vehicles between urban 

centers. The correlation between these figures is not strong. Better urban form indicators that 

enable bringing together population, physical environment, and the generated traffic are yet to 

be defined to inform the integrated metabolism analysis framework. 
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For specific cases where more geometry and neighborhood qualities are known, the 

suggested statistical inference method can be coupled with engineering modeling tools to 

improve the predicting power of the models. IUMAT models are aimed to be as inclusive as 

possible by accounting for a relatively large number of variables in the modeling process. 

Nevertheless, there needs to be a balance between data inputs’ level of detail, the accuracy of 

the simulation results and the cost and time of the simulation process. Another compromise is 

needed between indoor-based and outdoor based modeling techniques. After careful 

consideration of the literature on urban form, for a bottom-up method employing tool such as 

IUMAT, with myriad of input parameters to be considered, height-to-width ratio (H/W) is the only 

urban configuration feature that IUMAT aims to add to the current framework. Height of the 

building divided by the street width (height to width ratio) is a commonly used morphological 

description of urban canyon for airflow and energy analysis at the street level, but usually 

overlooked as a potential form indicator in urban scale building energy demand analyses. 

However, making some basic assumptions is necessary for the applicability of the model. IUMAT 

would need to assume that the factors affecting energy consumption are independent and its 

analysis builds upon an assumption that there are no connections between building forms, system 

efficiencies, occupancy schedules, and urban texture until extended inquiries and advanced 

surveying methods enable confirming otherwise.   

 

4.3.1.2 Impact of Trees 

The other factor that needs to be added to the current framework is the impact of urban tree 

canopy. Inclusion of the relationship between city parks/street trees and neighborhood energy 

and water consumption increases the precision and applicability of the models to energy, water 

and storm water management practices. Tree canopy reduces the heat island effect in urban areas 
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as well as reducing the cooling loads by providing shading (Solecki et al., 2005; Shashua-Bar et al., 

2009). But planting and maintenance of trees are not free of energy and cost. The optimal 

selection of tree species towards serving the cooling reduction goal, requires planting types with 

high shading coefficients and reasonable crown size to minimize the maintenance costs 

(Akamphon and Akamphon, 2014). Trees also act as shading elements depending on their relative 

location to the building. Donavan and Burty 2009 imply trees are more effective in reducing 

unwanted solar heat gain and thus peak air-conditioning electric demand, when planted on west 

side of the building. In order to assess the benefits of a tree from the energy savings standpoint, 

the analysis needs to be extended to integrate cost/energy modeling of maintenance and planting 

of surrounding trees into building energy and water use calculations. Computing the tree energy 

benefits or irrigation demand would require capturing growth rates and shading coefficients by 

using tree shading and geometry models that are linked to tree maintenance and building energy 

analysis frameworks.  

Energy modeling optimization efforts usually do not include external shading in the HVAC 

design and system sizing process, although studies show considerable differences between 

shaded and non-shaded facades in terms of air and wall temperatures, humidity, heat transfer 

rates through the façade and wind speed (Gómez-Muñoz et al., 2010). In addition, the evaporative 

cooling resulting from the plants has the potential to reduce the temperature around shaded 

facades. Some studies (e.g. Wilkinson, 1995) suggest the use of geometric solid shapes instead of 

tree crowns to simulate the shading provided by trees. However, capturing the impact of tree 

shadows on energy saving can be complex since tree configuration (height, species and 

positioning), density and number on trees, building characteristics (size, glazing area and 

placement, insulation properties, orientation, adjacent buildings) and  local climate conditions 

can affect the direction and magnitude of savings thus the feasibility of shading (Balogan et al., 
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2014). IUMAT is currently incapable of quantifying energy saving from trees for the building 

sector, but the water and energy models allow incorporation of planting and maintenance energy 

and water use. Although most of the case studies so far are done for a handful of species and 

specific building types, upon availability of national data on the impact of surrounding trees on 

cooling loads reduction, empirical correlation can be found and used by the framework. Linking 

the current framework to tools such as i-Tree Eco (www.itreetools.org) could be a starting point. 

i-Tree Eco is a tool based on the UFORE (Urban Forest Effects) models, for assessing the properties 

and the environmental benefits of community trees  (Nowak et al., 2008). It should also be noted 

that the influence of tree shading on reducing cooling loads decreases as the number of building 

floors rises, and accordingly, inclusion of trees in the modeling gets less beneficial.  

 

4.3.2 Commercial Energy 

Commercial activities are usually defined as businesses established out of residential, 

industrial and transportation sectors (EIAc , 2016). In the residential sector, location and size are 

the key elements of energy use. Among the next decisive factors are design, mechanical systems 

and socio-economic household characteristics. Within the non-domestic sector, activity is the key 

determinant of energy consumption. However, due to the lack of consensus in classification, 

assessing the relationship between type of use and energy consumption is not as straightforward 

as in the residential sector. Based on EIA International Energy Outlook 2016, global residential, 

commercial, industrial and transportation sectors are projected to grow by 48%, 54%, 39% and 

49% from 2012 to 2040 (EIAd , 2016). Demand growth is fastest for the commercial sector which 

is currently responsible for 18% of the U.S. national energy use. Better understanding of the 

available data will benefit the research community as well as policy makers to regulate the 

expanding demand and control the unwanted environmental impacts. 
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Buildings are the main contributors to energy consumption within the commercial sector, 

while only a small fraction goes to non-building services such as street lighting and city water 

systems (EIA, 2013). In fact, residential and commercial sectors have this quality in common that 

in both sectors, energy consumption can be attributed mainly to end-use building level 

consumption. As estimated by CBECS 2012, United States has 87 billion square feet of commercial 

building floor space, comprised of 5.6 million buildings. There were 3.8 million buildings making 

up 55 billion square feet in 1979, indicating increased building size for the new commercial stock 

(EIAe, 2016). In fact, the top 2% of the buildings in terms of size, represent 35% of the total square 

footage. Since 2003, the energy end-use has been increased by 7% despite a 22% growth in the 

total commercial floor space, suggesting the effectiveness of newer construction standards. (Of 

course, the location of major developments and type of activity in the new buildings need to be 

considered in attributing partial causes of the performance improvement). By and large, 

expansion of the commercial building sector is impacted more by economic conditions compared 

to residential. Cultural aspects of design are also key factors, as per capita office space in the U.S. 

(4m2) is two times the Europe figure (Pérez-Lombard et al., 2008). In most of the countries, retail 

and office are the most energy intensive activity types within the commercial buildings. 

RECS and CBECS are among the most reliable sets of data available on the energy 

consumption of U.S. residential and commercial building stock. They are both annual snapshots 

in time and do not provide temporal information such as peak demand details or daily 

distributions. In the same way that RECS data was used to show the implications of actual data in 

residential energy modeling, the base for IUMAT commercial energy model will be drawn from 

the Commercial Building Energy Consumption Survey (CBECS) data. CBECS 2012 (the most recent 

update) contains 6,721 observations for buildings from fifty three specific building activity types. 

1,120 variables are reported for each observation including capacity, percent occupancy, number 

http://www.eia.gov/forecasts/aeo/nems/documentation/commercial/pdf/m066(2013).pdf)
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of employees, weekly operating hours, imputed square footage and basic construction 

information for nine Census divisions.  

In the same way that RECS 2005 was used to validate the prediction power of the model 

based on RECS 2009, CBECS 2003 can be used for validating the commercial energy model results. 

CBECS 2003 contains the data for 5,216 buildings, grouped in 51 categories of primary activity. 

The commercial energy model aims to predict the demand data for ten categories of energy 

services (heating, cooling, ventilation, hot water, lighting, cooking, refrigeration, office 

equipment, computing and miscellaneous). Some location variables such as HDD and CDD, form 

variables (e.g. number of floors, floor to ceiling height, building shape, total floor area), fabric 

variables (e.g. window glass type, floors-roof-exterior wall construction material), and equipment 

variables (e.g. lighting, HVAC, refrigeration and water heating systems) will be included within 

different activity type categories. At the next stage, based on spatial distribution of the generated 

demand profiles, geographical information can be used to assign the energy supply technology 

that satisfies the predicted demand.  

Other CBECS-based approaches have been used by researchers for commercial energy 

modeling as well. For instance, in a report published by National Renewable Energy Laboratory 

(NREL), Griffith et al., (2008) used building descriptions of CBECS 2003 for EnergyPlus simulations 

and compared the results from 4,820 unique energy models to the 2003 survey. The risk of 

creating prototype models based on large data sets such as CBECS are a few. There is no question 

that considering the level of details provided by CBECS on building characteristics, the individual 

energy models that take them as inputs, are not going to be sophisticated enough. In addition, it 

is relatively easy to produce results within 15-20% of the actual mean of such large data set for 

each subsector, which is usually considered the threshold for determining the validity of 

methodologies.  Their method only allows making projections for the future end-use for the major 
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sub-sectors (such as education and food sales), assuming certain growth rates for those sub-

sectors. However, since the method validation is based on average end-use figures, no credible 

comparison can be made regarding alternative scenarios of development within each sub-sector. 

Furthermore, CBECS buildings’ exterior wall and roof compositions, HVAC systems features, 

equipment performance levels and schedules are basically assumptions and not suitable for non-

comparative deterministic analyses. The discrepancy gets more problematic when dealing with 

parameters from big datasets with relatively large standard deviation and non-normal distribution 

that make the 20% proximity of the results and actual data even a less significant measure of 

analysis robustness.  

Another advantage of the proposed method over prototype approaches is related to 

simulation run time. Usually, prototype styles of modeling that build on large datasets require 

thousands of energy models and take hundreds of hours to produce results for each scenario, and 

yet, in some categories fall short to meet the 20% error threshold, while reducing the number of 

prototypes reduces the accuracy of the predictions. Though, they are still quite reliable for smaller 

sectors and reference data set productions.  

IUMAT energy models and similar structures, underscore the practical challenges of 

working with large datasets as well as developing nationally representative surveys. Improved 

understanding of the residential and commercial end use energy and better evaluation of energy 

saving potential with specific design and technology require advancement of data collection 

methods. RECS and CBECS data are the most comprehensive datasets of their own kind of detailed 

data on the residential and commercial building sectors. Yet, there is room for improvement. 

More detailed identification of the building sector is necessary to modify simplification such as 

describing major buildings as full air conditioned or not conditioned at all. Schedules are not 

realistically portrayed in the CBECS that confines to reporting weekly hours of operation and 
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whether the facility is open on weekends. Although CBECS 2012 includes building shape, roof 

shape and floor to ceiling height, more building form features such as orientation and height to 

width ratio can still be added. The scope of future EIA energy consumption surveys could 

justifiably expand to include more accurate building site measurements, sub-metering the end 

uses, and measurement of the air quality and water use and lighting levels. Reporting monthly 

energy use data and peak information would greatly enhance possibilities for validation and 

calibration of bottom-up energy models, and make the model results applicable to energy 

management practices. 

 

4.3.3 Water Consumption 

As a result of migration from rural to urban areas starting at the end of the Second World 

War (Greenwood, 2014), larger energy and water supply systems are needed in order to respond 

to the growing demand created by households and industries in the urban areas. In the case of 

urban water, being able to predict the hourly demand in relation to climate change uncertainties 

is the key supply management factor of the future (Herrara et al., 2010). Design and operation of 

regional and municipal water supply systems require long-term understanding of industrial and 

residential demand as well as natural stream flows and aquifers (Runfola et al., 2013). Securing 

the water supply for urban population at desired quality and pressure is becoming more vital with 

a changing climate in addition to the rapidly growing population numbers (Pingale et al., 2014). 

As a result, decentralized supply systems and water re-use innovations are increasingly more 

favorable practical solutions every day. However, budget issues, regulatory barriers and 

behavioral resistance have delayed quicker adaptation of those practices (Krozer et al., 2010; 

Giurco et al., 2011).   
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United States Geological Survey (USGS) operating within the Department of the Interior 

maintains a nationwide ground water and surface water withdrawal data set at county level 

resolution that is updated every five years (USGS, 2016). According to USGS data, despite the 

economic growth and the population rise, national water use has been in decline during the past 

thirty years with a steeper drop since 2005. Total water consumption (saline and freshwater) has 

been reported as 440, 400 and 350 billion gallons per day (bgd) in 1980, 1985 and 2010 

respectively. Per capita water use peaked at 1,900 gallons per day in 1980, and shrunk by 17% 

between 2005 and 2010, dropping to 1,100 gallons per capita per day (gpcd). Thermoelectric 

power is the major consumer of water (saline and fresh), ranging from 0.4-75 gallons/kWh from 

Arizona to Rhode Island. In 2010, water consumption by municipal/industrial, agriculture and 

thermoelectric sectors were 268, 480 and 640 gpcs respectively. Residential sector that is a subset 

of municipal/industry category used 88 gpcd in 2010, ranging from 50 to 170 gpcd from Wisconsin 

to Idaho (Donnelly and Cooley, 2015). As reported by EPA, of the 300 gallons of water that an 

average American family uses every day, 70% occurs indoors (EPA, 2016), however, this varies a 

lot in different climate zones across the country based on irrigation and landscaping water 

requirements. Studies suggest that replacement and retrofitting of residential appliances and 

devices have the potential to reduce the per capita urban indoor water use by up to 50% (Inman 

and Jeffrey, 2006; Mayer et al., 2004). 

Reducing end use water demand eases the pressure on natural water sources and reduces 

the life cycle cost of city water provision and the carbon footprint by lowering energy 

consumption for distribution and waste water treatment. The fact that the correlation between 

population growth and water has been getting smaller over the last decades is encouraging, but 

makes water use modeling and planning for the future more challenging since more 

http://water.usgs.gov/watuse/data/2010/index.html
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demographic/technological information and process details are required for the accuracy of 

water use simulation.  

A major step for linking sub-categories of water use to physical and socio-economic 

variables is accurate water end-use metering. Overall, developing technologically advanced water 

use measurement methods have not gained the same attraction from the planning community as 

compared to energy metering, due to unmatched prices of water and energy. As an example, for 

residential water use, conventional water metering usually reports the annual water consumption 

based on two or four data points throughout the year (Britton et al., 2008). Quarterly recorded 

water use data not only fails to portray a complete description of weekly or monthly data, it does 

not enable breaking the aggregate figure that is usually in a unit of volume, into different end use 

categories (such as showers, toilets, garden irrigation, dish washers and laundry). Smart metering 

technologies, in contrast, provide comprehensive insight into water-use patterns, and enable 

analyzing the influence of socio-economic parameter on categories of water use. Also, reliable 

evaluation of the effectiveness of water reduction measures depends on availability of high 

quality data produced via automated sub-metering technologies and smart end use analyses 

methods. 

Location specific research needs to occur regarding pricing structures, consumption 

behaviors, government regulations, efficiency profiles of water appliance stock, public 

environmental literacy and other factors that can impact the validity of water saving strategies. 

Reliable data sets and nation-wide surveys are required for identifying the categories of water 

consumption and assess the influence of water saving measures on different socio-economic 

clusters. For instance, Willis et al., 2013 recruited 151 homes in Gold Coast City in Australia with 

distinct socio-economic makeups to investigate the impact of factors such as family size, age of 

infrastructure and ownership status on differing end use categories. They used data loggers to 
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gather pulse counts for 10 second intervals as a part of a smart metering network and used 

surveys to investigate water behavior as well as the appliance stock and found correlations 

between household makeup, income and appliances efficiency of residential end use. For large 

scale simulation of water use, IUMAT needs to rely on similar datasets that cover larger 

geographical spreads. Residential end-use water data such as the Aquacraft, Inc. survey 

commissioned by EPA (DeOreo, 2011) that was created with participation of nine water utilities 

across the nation can be used to simulate household water use profiles and calibrate the hot 

water models based on energy data.   

In addition, water sector is a major consumer of energy. Due to high energy-water 

interdependences, most of the water related energy use inside homes is consumed by large 

groups of small individual users (Reffold et al., 2008). Most of these energy and water related 

GHG emissions are associated with residential hot water use, that is influenced by climate 

conditions, pricing regimes, household makeup, appliances efficiency and behavioral parameters 

(Arbués et al., 2003). RECS 2009 is basically an energy database, and it is difficult to find its 

counterpart for residential water consumption. However, RECS includes information for 

residential water heating energy use. Engineering methods can be used by the IUMAT water 

model to convert water heating energy use to actual amount (gallons) of hot water use. Total 

energy used for providing hot water can be estimated in accordance to variables such as water 

heater size/age, type/number of water heaters and number of tank-less/storage heaters. RECS 

also includes valuable information regarding water use behavior of households. Type of dish 

washer and washing machines and the frequency of use based on basic household characteristics 

can be obtained from RECS 2005 and 2009.  

Although benchmarking and continuous measurement are crucial to any sector of 

business or industry that relies on optimized management practices for improvement, water end-
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use surveys for commercial and industrial sectors are much less frequent compared to residential 

sector and the available surveys are usually conducted for cities or smaller subsectors (e.g. 

Northcutt and Jones, 2004). CBECS 2012 only reports water for heating and cooling purposes and 

its 2007 data release only includes water data for large hospitals. Building Performance Database 

(BPD) administered by the U.S. Department of Energy provides a web-based energy explorer of 

residential and commercial buildings across the United States. The dataset it relies on is the 

largest in the nation, but the explorer mostly supplies adjustable distribution charts and basic 

statistical characteristics regarding energy consumption in different commercial and residential 

sub-groups. However, the BPD has made public relatively large Benchmarking Ordinance datasets 

for seven metropolitan areas (Boston, Chicago, Minneapolis, New York City, Philadelphia, San 

Francisco and Washington D.C.) that encompasses total energy/water use and square footage 

information. Although detailed building characteristics are not provided, the datasets could be 

very insightful on total energy use figures and beneficial for commercial water consumption 

modeling purposes (BPD, 2016).     

Commercial end-use water simulation needs reliable information about building 

footprint, lot size and equipment features as well as consumption information for domestic uses, 

commercial kitchens, landscaping and outdoor uses, heating and cooling, processes, and 

sanitation and washing. Industrial water demand models have mostly been relying on 

econometric and statistic regression methods aiming at making projections regarding the whole 

stock demand rather than taking bottom-up disaggregated approaches (e.g. Wei et al., 2010) or 

similar to commercial water models, are based on surveys that target a particular industry (e.g. 

Saha et al., 2005). Therefore, obtaining data for non-domestic water simulation in a way that a 

diverse group of businesses and industries are represented is not uncomplicated and needs 
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integration of scattered sub-sector specific studies and datasets to create a stronger base for large 

scale water consumption simulation.  

 

4.3.4 Manufacturing Energy 

In the United States, end-use delivered energy to industrial sector has been 24.5, 

compared to 11 and 8.8 quadrillion Btu for residential and commercial sectors in 2015 (EIAf, 2016). 

According to Manufacturing Energy Consumption Survey (MECS 2010), although the aggregate 

energy demand of the manufacturing sector has reduced by almost 17% over the past decade, 

the gross output of the sector has dropped merely 3% over the same span. This indicates an 

improved overall energy efficiency for the whole sector. The 14 quadrillion Btu 2010 fuel 

consumption of the industrial sector can be mostly (over 80%) attributed to the five most energy 

intensive industries (petroleum and coal, chemicals, paper, primary metals and food) (MECS, 

2014).  

Similar to the commercial energy sector, most of the existing energy models operate in 

regional and national scales and the datasets with finer resolutions are only available for 

particular industries or plants. Subsector specific energy and water models (e.g. Worrell et al., 

1997) enable incorporating detailed factors that are overlooked in other simulation contexts, and 

provide templates that can inspire new vision for other sectors integration and larger scope 

modeling frameworks. These surveys allow development of analysis tools for risk assessment of 

capital energy investments and finding optimized solutions for the environment and economy. 

They are useful for more accurate allocation of emissions and other environmental impacts to 

particular production stages or activity subsets. However, due to the lack of interaction between 

the models based on subsector specific surveys and other businesses and the broader economic 

backdrop, the scope of analyses is not extendable to other areas. 

http://www.eia.gov/forecasts/ieo/pdf/ieorefendusetab_3.pdf
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MECS dataset reports the energy consumption data for 84 type of industrial subsectors 

and manufacturing establishments for eight categories of fuel type. The aggregated MECS data 

does not represent technological and process details and therefore, can have limited implication 

for energy services simulation or any other non-economic policy modeling. In the absence of 

higher levels of disaggregation in the data, general equilibrium or input-output methods can be 

applied to the data in order to characterize macro-economy interplays between market issues, 

energy consumption and industrial subsectors’ total output. The models that can be established 

using MECS type of data can have implications for analyzing overall interactions between energy 

consumption, environmental policy and economic growth.  

Bottom-up structures similar to the IUMAT residential energy model and other hybrid 

engineering and statistical models lay out instruments for high resolution inquiries in favor of 

behavioral intelligence and equilibrium responses. Although such simulation frameworks require 

high quality detailed data, as compensation, by recognition of particular mechanisms and 

technologies and identifying different energy market scenarios and policy platforms, they allow 

for consideration of energy source/price/demand changes as well as penetration of new 

technologies in the modeling process. Therefore, bottom-up structures can have more 

implications in resolving cost effective directions for mitigation programs and projecting future 

technological and market energy trends. 

  

4.3.5 Material Flows 

Material Flow Analysis (MFA) techniques are suitable to evaluate flows and stocks of 

materials through different systems and provide a good basis for system control in view of 

sustainable development (Hendriks et al., 2000). MFA is a means for understanding the metabolic 

performance of urban activities and processes in a materials input-output context that links 
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different sectors in a city. However, an important step for analyzing the flow of substances and 

goods into and out of the system, as well as processes and stocks within the system is to carefully 

identify time and space boundaries of the system.  

Overall, MFA-related analyses are specific to substances, materials or products over the 

scope of single firms/households, sectors or regions (Bringezu and Moriguchi, 2002). For the 

scope of IUMAT material use model, obtaining detailed data for raw materials or substances 

further complicates the platform. However, incorporating the environmental impacts of specific 

products, not only is associated with easier consumption data collection, but also is more 

comprehensive in terms of capturing the bigger picture. This precisely mirrors the Life Cycle 

Assessment (LCA) approach. The primary interest of IUMAT, rooted in its inherent bottom-up 

structure, is the flow of products through limited scope of specific firms or households.  

The application of MFA to planning has been very limited compared to its high influence 

in the field of industrial ecology. The integration of MFA into policy has remained challenging due 

to scarcity of models that are capable of mapping and disaggregating the flows of materials in 

sub-regional scales or linking these flows to regional and national data (Sinclair et al., 2005). There 

are few examples (e.g. Druckman and Jackson, 2009) where disaggregated input-output models 

are employed to assign carbon footprint at household level.  MFA further needs to be combined 

with spatial allocation (Roy et al., 2015) to enable community-level policy analysis pertaining to 

the distribution of material consumption flows. Although tracking the flows and data collection 

for products is more straightforward than it is for materials and substances at fine resolutions, 

the limited scope of the end units in bottom-up structure such as IUMAT may occasionally require 

adjusting the study method to take broader systems approaches (such as LCA), confining to 

inclusion of specific major products, or rescaling the study to neighborhood, county or regional 
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economies. These details will get clearer in later stages of IUMAT development as more models 

and data frameworks become available.  

 

4.3.6 Land Use 

IUMAT Land Use Model (IUMAT-LUM) that is being developed parallel to the energy 

model, is a major step towards the goal of geographical resource use allocation. The model uses 

GIS, Remote Sensing and Artificial Neural Networks (ANNs) to make projections on land use 

change and urban growth. The current focus of the land use model is to generate building-form 

variables by obtaining Light Detection and Ranging (LIDAR) data using normal equations and 

Density-Based Spatial Clustering and use the form variables as the new determinant factor of 

land-use change. Currently the model is able to predict non-urban to urban transitions and 

transformations between urban categories of land use type based on form and spatial variables 

in addition to proximity variables such as distance to commercial, industrial, residential and 

educational zones and some density variables. The results from IUMAT-LUM have shown that 

inclusion of form variables improves the prediction power of the land use change models by up 

to 11% and 19% for non-urban and urban case study areas respectively. 

IUMAT-LUM converts land cover estimates, building forms information, transportation 

arteries and other physical attributes into a spatial grid system with a high cell resolution (6x6 

meters). GIS and LIDAR data are used by the building form generator in order to detect geometric 

clusters using Mean Shift, Density-Based Spatial and Fuzzy clustering algorithms. Three pre-

defined normal equation models are fitted for form identification. In future steps, a more 

comprehensive archive of predefined geometry models should be developed to enable identifying 

more complex geometries. Due to the predictive nature of the IUMAT-LUM, it can act as the 

medium for incorporating dynamics into the overall IUMAT framework. Also, the prediction of 
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geometry and form variables such as height, number of floors and gross area can be used by other 

modeling units (e.g. energy model) in combination with socio-economic and environmental 

factors.   

 

4.3.7 Developing Data Harmonization Methods  

Surveys that are used for data collection by the EWM model potentially contain very 

diverse types of categorical and numerical variables. The energy model follows a measurement 

algorithm that enables statistical inference to relate energy use to physical, demographic, 

behavioral and attitudinal parameters. It relies on regression patterns to find the associations 

between variables for making observational inference (causal inference is not possible since the 

results are usually not from randomized control experiments). Square matrices of regression 

variables are employed to prevent multicollinearity of the variables from skewing the estimations 

and complicate the analysis. Residential energy modeling using RECS data depicts implications of 

reliable regional datasets in the policy making process as well as some major shortcomings and 

challenges of big-data-based urban modeling. In some cases, confidence intervals based on 

national data may not be applicable to specific locations. Fragmentary portrayal of detailed 

location specifications in nation-wide datasets such as RECS further complicates high confidence 

localized policy analysis. In addition, most of the large datasets published by public organizations 

are cross sectional observations that do not allow tracking of marginal changes over time. The 

residential model results suggest that conditional analysis methods such as quantile regression 

are capable of providing means for assessment of marginal impacts of behavioral and physical 

transitions on resource use and carbon emissions with improved panel data collection methods.  

There are more imperfections to the common data collection methods other than their 

usually static approach. Although there is a multitude of building datasets available to 
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researchers, most of the public or privately funded surveying efforts are uncoordinated and 

fragmented, focusing primarily on energy related issues and information on water or material 

flows are more scarce and laborious to find at household, business or plant level. Yet, these 

usually do not provide systems, operational, geometry, envelope and occupant detailed 

characteristics that are required for a fundamental analysis that aims to piece together sub-

systems of urban resources use.   

For the energy and water consumption in the commercial and industrial sectors the 

surveys are usually very location specific and stripped of important details that are required for 

setting up reliable modeling structures. As an example, California Energy Commission (CEC) 

produced a randomly sampled survey (California Commercial End-use Survey known as CEUS) of 

2,790 commercial buildings located in California (CEC, 2006), but the micro-data is not made 

available to public due to non-anonymity in the survey’s design and the finest grain of information 

provided is the aggregated energy results. Building Energy Data Book is another dataset (last 

updated in 2011) on residential and commercial energy use with statistics of building 

technology/construction, energy use and physical building attributes. However, it also does not 

go beyond sector end-use fuel types or average household/firm by region (Building Energy Data 

Book, 2012). 

Surveys that do not report necessary physical and attitudinal information limit the 

forecasting capability of modeling to regional levels. For instance, National Energy Modeling 

System (NEMS) is a large scale energy model of the EIA that generates projection reports on 

energy supply, demand, market pricing and technological advancements and is used for 

environmental policy making and energy perspective evaluation (Wilkerson et al., 2013) and its 

Commercial Demand Module (CDM) makes projection for energy consumption at division level 
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for eleven categories of commercial buildings, based on engineering and macro-economic 

relationships.  

Datasets that are specific to businesses/industries or miss detailed building characteristics 

are not the best kind of IUMAT input material. Still, they are valuable on explaining general 

direction and aggregate outcomes of change. IUMAT EWM structural design needs to get more 

advanced to handle connecting datasets from different sources, and more flexible to allow 

adjusting to the quality and scope of the available data for EWM modeling of non-domestic 

sectors. Therefore, the challenging diversity in scope and style of the surveys on consumption of 

resources, can at the same time be an opportunity in disguise for model enhancement. The 

implementation of the actual data for analyzing environmental consequences of urban activity 

can also address the definitive needs for data updates and parameter refinements.     

 

4.3.8 Completing the Holistic IUMAT Model  

IUMAT’s central research goal is to provide quantitative support for understanding the 

collective environmental impacts caused from collaborative decisions of a population of human 

beings within specifically drawn borders for urban regions. The carried out literature review on 

simulation towards sustainability evaluation at large scales points out wide knowledge and 

methodological gaps within the existing frameworks and the need for introducing 

evaluative/calculative structures that integrate urban subsystems and the interrelations between 

different sectors of urban activity/life. The results from the residential model that functions as a 

prototype for commercial and manufacturing energy models provide further evidence that 

calculating the environmental footprint of transportation, EWM (energy, water and materials 

use), and land use needs to go beyond seeing urban sub-sectors as stand-alone entities, or solely 

including physical variables.  
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Increasing concerns for the environment coupled with the massive projected growth of 

the global urban sector, underline the immediate need for development of reliable planning and 

policy analysis tools. Tools with stronger quantitative capabilities and focus are yet to be initiated 

despite significant achievements of planning and design researchers in devising guidelines and 

protocols towards building more sustainable communities. The notion of urban metabolism can 

facilitate quantitative measurement of sustainable performance for urban areas. Such analysis 

would require inclusion of social, economic and environmental capitals of urban life within an 

integrated analysis structure that studies physiological and morphological aspects of urban 

metabolism. Most of the tools in use today apply equilibrium, cross sectional approaches to 

singled-out aspects of urban life such as energy consumption, land use and transportation and 

therefore, do not go far enough in reflecting the interdependencies and combined consequences 

of change in urban systems. IUMAT aims at laying out the foundations required for monitoring 

and evaluating the trajectory and alternative design and planning scenarios in a holistic platform 

that considers the inter-relationships between various urban flows and sub-sectors. This would 

require completion of the separate, but connected models that are designated to land use, 

transportation, energy, water and material use simulation.  
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APPENDIX A 

MARGINAL IMPACTS ON QUANTILES OF 2009 DATA 

 

Figure A.1: Marginal impacts of some physical, weather and market variables (non-household) on 
different quantiles of residential energy use distribution 



 

 
127 

 

Figure A.2: Marginal impacts of household socio-economic variables on different quantiles of 
residential energy use distribution  
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The figures show conditional quantile estimates of energy consumption measures. The Y-

axis represents the conditional influence of a specific variable of interest against quantiles of the 

response variable (heating, cooling or other energy use) on the X-axis. The gray area shows the 

90% confidence interval. Accordingly, one unit of increase in heating degree days (HDD) will 

result in 0.66 kWh and 2.67 kWh higher space heating energy use for the 10th and 90th percentiles. 

While the extreme ends of the spectrum respond very differently to HDD increase, the OLS average 

estimate is constantly 1.79 kWh across the entire distribution (horizontal lines). An upward slope 

reflects that the positive impact of the intended variable on the energy use increases from the lower 

to the upper quantiles. A U-shaped graph indicates strongest effect in the middle (either negative 

or positive). A horizontal line or alternating change of direction suggests that the OLS estimates 

would be robust for the analysis. 
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APPENDIX B 

SUMMARY OF QR RESULTS 

 
Table B.1: Conditional Quantile and OLS estimates of household energy use based on 2009 RECS data. 

Coefficients  Type Tau= 0.1 Tau=0.3 Tau=0.5 Tau=0.7 Tau=0.9 OLS 

Centercept CE 433.2 (23.8)*** 1015.9 (23.3)*** 1609.6 (33.2)*** 2321.9 (50.1)*** 3370.8 (84.4)*** 2024.1 (102.8)*** 

HE 2251.5 (301.4)*** 7816.8 (388.6)*** 11658.6 (362.2)*** 16035.2 (427.3)*** 24866.5 (729.2)*** 12650 (483.9)*** 

OE 5536.4 (309.1)*** 8654.7 (317.5)*** 11506.3 (313.9)*** 14435.1 (442.7)*** 21563.9 (844.8)*** 12790 (438.6)*** 
Cooling Degree Days CE 0.3 (0)*** 0.6 (0)*** 0.9 (0)*** 1.2 (0)*** 1.4 (0)*** 1.2 (0)*** 

HE 0.0 0.0 0.0 0.0 0.0 0.0 

OE 0.4 (0.1)*** 0.4 (0.1)*** 0.4 (0.1)*** 0.3 (0.1)*** 0.4 (0.1)*** 0.4 (0.1)*** 
Heating Degree Days CE 0.0 0.0 0.0 0.0 0.0 0.0 

HE 0.7 (0)*** 1.3 (0)*** 1.7 (0)*** 2.1 (0)*** 2.7 (0.1)*** 1.8 (0)*** 

OE 0.2 (0)*** 0.2 (0)*** 0.2 (0)*** 0.1 (0)** 0.2 (0.1)** 0.1 (0)** 
Household Size CE -1.9 (2.3) -1.8 (2) 3.8 (3.8) 10.9 (4.3)* 3.4 (9.2) 11.7 (10.5) 

HE -146.5 (21.5)*** -55.2 (31.5) -19.4 (36.8) 53.2 (27.2) -108.5 (63.9) -2.4 (49.9) 

OE 1201.9 (45.7)*** 1505.5 (37.2)*** 1751.5 (42.5)*** 2002.8 (53.5)*** 2359.6 (82.4)*** 1774 (45.3)*** 
Total Area (m2) CE 3.1 (0.1)*** 4.7 (0.1)*** 6.6 (0.1)*** 8.6 (0.2)*** 13.4 (0.3)*** 10.3 (0.2)*** 

HE 7.4 (0.5)*** 14.8 (0.7)*** 17.5 (0.6)*** 21.2 (0.8)*** 32.6 (1.4)*** 20.6 (0.8)*** 

OE 8.2 (0.8)*** 11.9 (0.7)*** 16.5 (0.7)*** 21.1 (1)*** 33.5 (2)*** 19.7 (0.6)*** 
Average Energy Cost CE 0.2 (0.1) 0.5 (0.1)*** 0.9 (0.1)*** 0.6 (0.3)* 0.3 (0.4) -0.5 (0.5) 

HE -33.3 (1.9)*** -71.1 (1.3)*** -70.9 (1.8)*** -62.7 (1.8)*** -42.1 (3.5)*** -77.8 (2.3)*** 

OE -28 (0.9)*** -32.8 (1)*** -35.3 (1.5)*** -37.5 (2)*** -48.6 (1.2)*** -44.5 (2.1)*** 
$25K < Income Level < 
$50K 
(Baseline < $25k) 

CE 16.7 (7.4)* 16.6 (6.7)* -1.7 (10.5) -49.9 (15.8)** -49 (34.9) -9.8 (40) 

HE 135.3 (99.3) 197.7 (104.9) 211.8 (125.2) -137.9 (128.7) -76.9 (246.8) 134.8 (188.1) 

OE 293.9 (113.2)** 300.4 (100.7)** 184.1 (111.6) 0.9 (158.1) -387.5 (204.6) -39.5 (170.6) 
$50K < Income Level < 
$75K 
(Baseline < $25k) 

CE 30.6 (10.6)** 54.9 (8.1)*** 52.2 (12.6)*** 6.2 (19.3) -43 (48.2) 76.2 (47.4) 

HE 73.9 (124.1) -22 (116.7) 42.1 (157.8) -367.4 (155.2)* -309.5 (256.2) -124.6 (222.8) 

OE 640.3 (152.6)*** 670.5 (139.4)*** 528.3 (130.2)*** 356.1 (182.3) -281.1 (272.2) 379.8 (202.1) 
$75K < Income Level < 
$100K 
(Baseline < $25k) 

CE 45.4 (14.3)** 78.4 (10.2)*** 80.5 (15.6)*** 53.6 (32.7) 47.3 (33.3) 179.3 (55.9)** 

HE 81.1 (137.8) 402.1 (181.6)* 357.6 (158.1)* 224.4 (206.2) 1063.1 (327.2)** 643.8 (263.1)* 

OE 1102.6 (253.8)*** 1034.4 (165.8)*** 1109.2 (207.8)*** 1248.8 (217.2)*** 892.2 (449.5)* 1064 (238.8)*** 
$100K < Income Level 
(Baseline < $25k) 

CE 46.2 (10.3)*** 67.9 (10.9)*** 94.3 (14.8)*** 137 (34.5)*** 209.2 (50.8)*** 351.9 (53.9)*** 

HE 477.6 (156.1)** 971.6 (161.2)*** 1380.7 (195)*** 1579.1 (235.7)*** 2324.2 (377.2)*** 1968.2 (254.8)*** 

OE 1915.6 (216.2)*** 2314.1 (186.2)*** 2673.6 (221.6)*** 3221.4 (292.5)*** 3407.8 (510.2)*** 3057 (232.6)*** 
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Mobile House 
(Baseline : SFD) 

CE 85.2 (19.3)*** 44.9 (20.7)* 7.4 (19.9) 51.4 (49.1) 94.1 (78.1) 113.8 (72.3) 

HE 613.8 (157.9)*** 702.9 (150.2)*** 590.2 (243.1)* 59 (248.1) -773.8 (443.3) 150.9 (341.7) 

OE -253.6 (253.1) -26 (250) 425.4 (212.8)* 252.4 (351.5) 69.1 (296.4) 189.9 (313.6) 
Single Family Attached 
(Baseline : SFD) 

CE -0.1 (12.2) -60.2 (13.7)*** -107.9 (17.1)*** -200.7 (26.4)*** -107.4 (76.2) -157.7 (57.3)** 

HE -222.6 (148.3) -515.5 (131.2)*** -692.4 (150.4)*** -794.6 (258.4)** -1256.4 (365.2)*** -816.2 (270.2)** 

OE -1236.9 (204.4)*** -1623.5 (183.3)*** -1775 (186.7)*** -1947.1 (270.2)*** -2166.9 (492.5)*** -1620 (246.1)*** 
Multifamily 2-4 Units 
(Baseline : SFD) 

CE 6.3 (9.1) -59.2 (11.4)*** -70.7 (13.9)*** -136.9 (27.6)*** -124.1 (38.8)** -119.5 (63) 

HE -299.1 (138.8)* -631.7 (195.1)** -372.3 (232.4) -231.5 (198.6) 225.1 (335.8) -21.6 (297.3) 

OE -1642.1 (181.4)*** -1724 (171.5)*** -1787.7 (181.5)*** -1909.5 (271.3)*** -1319.2 (428.8)** -1296 (272.1)*** 
Multifamily 5+ Units 
(Baseline : SFD) 

CE 19.3 (8.9)* -120.4 (10.5)*** -137.4 (14.9)*** -217.9 (22.3)*** -212.1 (43.3)*** -243.2 (53.9)*** 

HE -948.1 (126.7)*** -1164.1 (125.8)*** -1384.2 (160.5)*** -1796.5 (160.9)*** -2549.7 (293.8)*** -2074.3 (256)*** 

OE -1983.1 (156.6)*** -2301.9 (143.8)*** -2673.2 (160.2)*** -2939 (212.1)*** -3499.6 (333.9)*** -2633 (237.3)*** 
Year Built 1950-1969 
(Baseline: before 1950) 

CE -25.6 (6.9)*** -52.2 (6.4)*** -78.5 (9.9)*** -94.2 (16.9)*** -70.8 (29.8)* -168.9 (45)*** 

HE -301.8 (222.8) -1845.3 (245.2)*** -2758.4 (187.1)*** -3443.5 (273.6)*** -5458.5 (416.3)*** -2795.8 (212.2)*** 

OE 798.1 (168.2)*** 710 (124.4)*** 523.7 (157.2)*** 600 (199.2)** 330 (398.8) 667.4 (192.7)*** 
Year Built 1970-1989 
(Baseline: before 1950) 

CE -43.9 (7.8)*** -61.4 (7.1)*** -65.7 (10.6)*** -44.9 (17.5)* -33 (32.2) -229.4 (43.7)*** 

HE -721.5 (208.3)*** -3014.7 (233.9)*** -4203.7 (173.9)*** -5116.7 (266.3)*** -8118.8 (366.7)*** -4803.9 (204.6)*** 

OE 965.7 (150.2)*** 634.2 (113.2)*** 350.5 (140.8)* 165.9 (194) -497 (410.1) 330.2 (185.4) 
Year Built 1989-2000 
(Baseline: before 1950) 

CE -21.6 (9.8)* 16.9 (13.9) 16.6 (15.1) 14.2 (39.1) 25.7 (63.9) -161.9 (53.5)** 

HE -763.3 (214)*** -3225.8 (239.8)*** -4512.2 (209)*** -5918.1 (279.5)*** -8983.2 (449.9)*** -5266.8 (248.6)*** 

OE 1334.8 (193.3)*** 750.1 (129.7)*** 338.5 (169.2)* 204.9 (225.2) -1126.7 (420.1)** 130.5 (224.8) 
Year Built 2000+ 
(Baseline: before 1950) 

CE -37.4 (9.8)*** -11.1 (16.7) -35.6 (17.8)* -52.1 (30.6) -61.7 (52.9) -280 (55.2)*** 

HE -839.1 (221.1)*** -3460.4 (241.8)*** -4638.5 (191.8)*** -5924.5 (275.9)*** -9536.1 (439.1)*** -5565.5 (255.6)*** 

OE 286.7 (193.1) 228.7 (160.1) -152.6 (168.4) -611.3 (236.4)** -1558.6 (471.5)*** -272.8 (231.5) 
Urbanization Category: 
Urban 
(Baseline: rural) 

CE -42.5 (10.5)*** -109.1 (9.1)*** -164.5 (12.9)*** -213.5 (22.1)*** -184.8 (32.9)*** -235.9 (38.4)*** 

HE 999.3 (93.2)*** 1366.5 (117.4)*** 1295.1 (145.7)*** 1023.1 (169.1)*** 580.3 (343.5) 1573.2 (182)*** 

OE -108.2 (148.5) 119.1 (126.6) -26.3 (146.9) -335.6 (203.7) -597.9 (285)* -262.5 (164.9) 
Ownership Category: 
Own 
(Baseline: rent) 

CE 20.4 (7.3)** -9.8 (9.5) -11.6 (12.4) -88.8 (20.4)*** -75.8 (31.8)* -65.2 (44.2) 

HE 145.5 (104) 217 (107.4)* 154.4 (141.1) 86.3 (147.7) -87.5 (265.8) 177.3 (208.5) 

OE 415.1 (135.4)** 393.3 (125.3)** 162.2 (133.8) 380.3 (179.6)* 419.4 (275.5) 368.6 (189.2)* 
Occupied Without Rent 
(Baseline: rent) 

CE -3 (60.5) 18.2 (81.2) 45.5 (69.8) 50.1 (72) 134.7 (40.5)*** 94.9 (133.6) 

HE 689.1 (199.2)*** 703.6 (538.2) 508.6 (348.6) -53.2 (763.6) -1081.2 (685.6) 79.7 (629) 

OE -222.2 (147.8) 542.2 (211.7)* 936.9 (657.1) 532.3 (679.6) 1873.3 (2510.5) 1051 (570.4)* 
Education: K-12 
(Baseline: MSc or PhD) 

CE -34.8 (15.4)* -38.2 (10.8)*** -59 (17.9)*** -25.1 (31.7) -122.1 (52.2)* -79.4 (67.1) 

HE -452.9 (161.9)** -831.9 (239.9)*** -782.8 (248.3)** -549.7 (246)* -55.5 (487.3) -884.9 (315.9)** 

OE 268 (202.8) 180.7 (182.4) 89.1 (213.8) 273.9 (279.9) 440.6 (586.2) 82.9 (286.8) 
Education: High School-
Some College 
(Baseline: MSc or PhD) 

CE 39.4 (13.1)** 42.3 (8.4)*** 20.2 (14.7) 16.5 (20.6) -59.5 (47.4) 5.7 (49.9) 

HE 139.2 (121.4) -144.6 (211.7) -200 (171.1) -314.5 (179.4) -373.2 (410.6) -503.6 (235.2)* 

O 779.8 (159)*** 661.7 (149.4)*** 682.4 (170.6)*** 777.6 (222.2)*** 632 (522.9) 599.1 (213.7)** 

CE 16.6 (12.9) 25.9 (9.3)** -8.6 (14.6) 39.4 (21.3) 26.9 (49.7) -0.4 (50.1) 
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Associate's or 
Bachelor's Degree 
(Baseline: MSc or PhD) 

HE 117.7 (123.4) -0.4 (213.2) -166.7 (168) -286.5 (175.9) -527 (396.6) -495.2 (235.9)* 

OE 318 (162.4) 271.3 (147.3) 454.7 (176.1)** 416.3 (226.5) 10.6 (521.7) -1.4 (213.9) 
25 < Age of 
Householder < 40 
(Baseline < 25 years) 

CE 20.6 (13.2) 60.2 (8.4)*** 87.4 (16.5)*** 24.7 (32.8) 36.9 (51.9) 13.4 (69.8) 

HE 443.5 (149)** 379.5 (194.4) 176 (231.4) 14.4 (226.2) -490 (341.4) 122.3 (328.5) 

OE 536.7 (114.3)*** 203.6 (219) -22.1 (167.3) -75.2 (263.4) -645.2 (462.9) -61.3 (297.9) 
40 < Age of 
Householder < 60 
(Baseline < 25 years) 

CE 7.4 (14) 43.8 (7.3)*** 69.2 (16.4)*** 49.6 (33.5) 87.1 (53) 57.5 (69.3) 

HE 513.2 (149.3)*** 657.9 (194.3)*** 631 (236.2)** 502.6 (228.4)* -149.1 (366.6) 808.8 (326.3)* 

OE 1000.8 (141)*** 913.3 (225.3)*** 880.9 (169.6)*** 870.9 (259.1)*** 92 (456.6) 792.7 (295.9)** 
60 < Age of 
Householder < 80 
(Baseline < 25 years) 

CE -13.9 (15.3) 19 (9.5)* 69.3 (17.2)*** 62.5 (36.8) 104 (54.4) 60.5 (73.3) 

HE 645 (160)*** 1029.7 (206.7)*** 994.4 (242.8)*** 1030.2 (232.1)*** 1331.6 (433.1)** 1606.1 (345.4)*** 

OE 867.8 (154.8)*** 591.4 (233.3)* 611.6 (184.5)*** 536.8 (276.9) 369.9 (478.1) 656 (313.3)* 
80 < Age of 
Householder  
(Baseline < 25 years) 

CE -3 (15.7) -27.4 (8.3)*** -9.9 (21.8) -84.1 (42.5)* 19.2 (90.5) -98.1 (90.9) 

HE 791.1 (239.2)*** 1899.3 (330.3)*** 2058.8 (380.1)*** 2297.5 (328.7)*** 2616.1 (575.7)*** 3038.8 (428.5)*** 

OE 252.2 (157.1) 165.6 (276.4) 45.1 (213.7) -232.6 (348.2) -1546.7 (563.4)** -373.9 (388.6) 

 

(CE: Cooling Energy, HE: Heating Energy, OE: Other Energy) 

(p:  0 <***< 0.001 <**’ 0.01 <*< 0.05)  
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