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ABSTRACT

KINETICS AND DYNAMICS OF

ELECTROPHORETIC TRANSLOCATION OF

POLYELECTROLYTES THROUGH NANOPORES

SEPTEMBER 2016

HARSHWARDHAN HEMANT KATKAR

B.Tech., INSTITUTE OF CHEMICAL TECHNOLOGY MUMBAI

M.Tech., INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Murugappan Muthukumar

The idea of sequencing a DNA based on single-file translocation of the DNA

through nanopores under the action of an electric field has received much attention

over the past two decades due to the societal need for low cost and high-throughput

sequencing. However, due to the high speed of translocation, interrogating individual

bases with an acceptable signal to noise ratio as they traverse the pore has been a

major problem. Experimental facts on this phenomenon are rich and the associated

phenomenology is yet to be fully understood. This thesis focuses on understanding the

underlying principles of polymer translocation, with an emphasis on pore-polymer in-

teractions, polymer architecture, and polymer chain fluctuations. Langevin dynamics

simulations are used to study a variety of polymer and pore designs. For a uniformly

charged linear polymer, a nanopore with charge patterns along its length is proposed.

Variation in the charge pattern length reveals the existence of a critical length at

vi



which the polymer is trapped, causing a significant delay during the pore emptying

stage. This trapping is modeled using an appropriate free energy landscape and the

Fokker-Planck formalism. The predictions of this theory are in qualitative agreement

with the simulation results across different pore and polymer lengths. Moreover, a

linear polymer with charge patterns along its backbone passing through such a charge-

patterned pore shows rich kinetic behavior; a significant delay is introduced even in

the pore entrance and threading stages due to pattern matching, suggesting the use

of pore-polymer interactions to slow down translocation. In a related study, the

translocation of charged star polymers through an uncharged pore is simulated. Star

polymers with different functionalities show rich translocation kinetics while passing

through such a pore. The mean translocation time varies non-monotonically with the

polymer functionality, suggesting the use of nanopores as a filtering and analytical

technique for star polymers.

Recent experiments have suggested the use of phi29 polymerase in conjunction

with a protein pore (α-Hemolysin) in the presence of an electric field to slow down the

polymer translocation speed, enabling reasonably successful base-calling. The role of

polymer chain fluctuations inside the nanopore is evaluated using Langevin dynamics

simulations on models of this construct. By monitoring the contributions of the con-

formational fluctuations of the polymer, the diffusional behavior of monomers of the

chain under the speed resulting from the polymerase activity and externally imposed

voltage gradients is computed. The simulations show that even if the translocation

speed is slowed down considerably by using the polymerase-nanopore construct, the

conformational fluctuations of ssDNA inside the pore are always present at high levels,

resulting in high levels of noise in the detection signal.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

PERSPECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. POLYMER TRANSLOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Physical insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Modeling polymer translocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Overview of theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2.1 Coarse-graining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2.2 Stretched conformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2.3 Translocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2.4 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Effective charge of a translocating polyelectrolyte . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Counter-ion adsorption and confinement . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

viii



2. ROLE OF PORE-POLYMER INTERACTIONS . . . . . . . . . . . . . . . . . . 34

2.1 Review of control strategies for translocation . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 A uniformly charged polymer translocating through a patterned

nanopore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 The Fokker-Planck model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 A patterned polymer translocating through a patterned nanopore . . . . . . 50

2.3.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3. ROLE OF POLYMER ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Star polymers in bulk and in confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Effect of polymer functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Effect of nanopore radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.3 Effect of nanopore length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Insights into the mechanism of transport of star polymers . . . . . . . . . . . . . 69

3.4.1 One leading arm vs. two leading arms . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Contributions to the mean translocation time . . . . . . . . . . . . . . . . . 71

3.4.2.1 Path length and Driving force . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2.2 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Phenomenology of star polymer translocation . . . . . . . . . . . . . . . . . 73

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4. ROLE OF POLYMER CHAIN FLUCTUATIONS . . . . . . . . . . . . . . . . . 77

4.1 Polymer translocation using motor protein . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Model and simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Coarse-graining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Voltage profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.3 Driving forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDICES

A. LANGEVIN DYNAMICS SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . 98

B. MOLECULAR DYNAMICS SIMULATIONS . . . . . . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



LIST OF TABLES

Table Page

2.1 Parameter values corresponding to results in Figure 2.2. . . . . . . . . . . . . . . 40

3.1 Probability of successful translocation, psuccess, for a star polymer
with two leading arms, for various functionalities f of the star
polymer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



LIST OF FIGURES

Figure Page

1.1 Schematic of a typical polyelectrolyte translocation setup. . . . . . . . . . . . . . . 9

1.2 A typical ionic current trace showing the signature of a translocation
event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Schematic for the translocation setup showing a polyelectrolyte chain
(blue) captured from the bulk, followed by its translocation from
the donor compartment to the receiver compartment (right to
left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Schematic for the two-state tension propagation model. . . . . . . . . . . . . . . . 16

1.5 Comparison of Zimm relaxation time (blue line) with experimentally
measured translocation time (+ [1] △ [5] ! [12] × [34] " [35]
" [36] • [38] ∗ [37]) as a function of chain length N . . . . . . . . . . . . . . . . 16

1.6 Schematic showing systematic stretching of the polyelectrolyte chain
conformations when subject to a fluid flow inside a cylindrical
channel for short and long time, as indicated, keeping the left
chain end fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Average aspect ratio α = ∆x/2r of the polyelectrolyte chain as a
function of the time for which the chain is subject to flow in the
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Snapshot of the coarse-grained translocation simulation setup with
two initial polyelectrolyte chain conformations overlaid. . . . . . . . . . . . . 22

1.9 Mean translocation time ⟨τ⟩ as a function of trans-membrane voltage
V for polyelectrolytes with stretched initial conformations,
indicated by α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Probability of successful translocation for polyelectrolytes as a
function of the level of initial stretching α. . . . . . . . . . . . . . . . . . . . . . . . 25

xii



1.11 The three average principal moments of inertia of the polyelectrolyte
chain undergoing relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.12 A log-linear plot showing the faster than exponential initial decay of
λ2 and λ3, followed by a systematic exponential decay. . . . . . . . . . . . . . 26

1.13 Comparison of relaxation timescale τ0 and translocation time ⟨τ⟩ for
stretched polyelectrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.14 Effective degree of ionization of the polyelectrolyte chain αeff as a
function of the center-of-mass position of the chain. . . . . . . . . . . . . . . . 32

2.1 Schematic of charge patterns along the nanopore. . . . . . . . . . . . . . . . . . . . . 39

2.2 Histogram of translocation time, with parameters shown in Table
2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Histogram of translocation time with (a) αp = 0.05, E = 0.215595
and (b) κ−1 = 0.26 (1M monovalent salt), with the rest of the
parameters as shown in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Histogram of translocation time with (a) rc2 = 4 and (b) N = 120
and the rest of the parameters as shown in Table 2.1. . . . . . . . . . . . . . . 42

2.5 Histogram of translocation time with (a) M = 64, N = 120 and (b)
M = 4, N = 60 with the rest of the parameters as shown in Table
2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Average translocation time as a function of the length of a section
Ls = M/(2Ns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Schematic showing the translocation setup along with the three
stages of translocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Cumulative translocation time distribution for a nanopore of length
M = 32 and N = 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Free energy landscape for the translocation of a polymer of length
N = 60 translocating through a nanopore of length M = 32. . . . . . . . . 48

2.10 Snapshots of simulation at different times. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.11 Schematic of charge patterns along the polyelectrolyte chain. . . . . . . . . . . 50

xiii



2.12 Mean translocation time for different patterns along the nanopore
and the polyelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 Mean nanopore filling time for different patterns along the nanopore
and the polyelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.14 Mean nanopore emptying time for different patterns along the
nanopore and the polyelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.15 Mean threading time for different patterns along the nanopore and
the polyelectrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.16 Free energy landscape for polyelectrolyte chains with different
patterns Nps translocating across a nanopore with patterns
corresponding to Ns = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Schematic of the simulation setup for a star polymer of functionality
f = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Mean translocation time ⟨τ⟩ of star polymers of equal mass as a
function of their functionality f for a nanopore of radius rp = 3.2
and length M = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Translocation time distribution for polymers with different
functionalities f for a nanopore of radius rp = 3.2 and length
M = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Mean translocation time ⟨τ⟩ of star polymers as a function of their
functionality f for different nanopore radii rp. . . . . . . . . . . . . . . . . . . . . 67

3.5 Mean translocation time ⟨τ⟩ of star polymers as a function of the
nanopore length M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Translocation time histograms for star polymers of different
functionalities f for different nanopore lengths M . . . . . . . . . . . . . . . . . 68

3.7 Detailed time taken for each stage of the translocation, for different
nanopore radii corresponding to Figure 3.4. . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Average time for the trailing arms filling stage < τ3 > for star
polymers of different functionalities, plotted versus the star
polymer arm length Lf = 120/f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 A typical snapshot of the simulation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



4.2 Voltage profile inside the nanopore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Trajectories of marked sugar beads s in z-direction. . . . . . . . . . . . . . . . . . . 85

4.4 Trajectories of marked sugar beads s in x-direction. . . . . . . . . . . . . . . . . . . 86

4.5 Relaxation time tr of a bead s as a function of its position from the
active site ∆s = s− s0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Characteristic displacement Zmax of a bead as a function of its
relative position ∆s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Mean square displacement in x-direction for beads near the
interrogation point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Mean square displacement in z-direction for beads near the
interrogation point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Fitting the Rouse relaxation time given by Equation 4.10 to the
simulation results, for trelax = 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xv



PERSPECTIVE

Motivation

Transport of charged polymers through nanopores, which includes the transport of

genetic materials across nuclear nanopores, is one of the fundamental processes that

occurs in a living cell. The transport of the genetic materials, DNA and RNA, through

protein pores across the nuclear membrane under the action of electro-chemical po-

tential gradients takes place at very high rates and yet remains extremely selective.

The fundamental understanding of the physics behind such a process is yet to be

fully developed. Attempts to mimic this translocation process through synthetic or

biological pores in a laboratory setup have fallen short due to the lack of good con-

trol over the process. Such a laboratory setup is desired because of its applications

in separation devices for macromolecules and its potential in DNA sequencing. The

motivation behind this thesis is to understand the translocation of charged polymers

through nanopores and to evaluate different strategies to achieve better control over

the process.

Background

Transport of charged particles through small pores has been used widely in the

industry since the inception of the Coulter counter, which is used to measure size of

particles suspended in a salt solution. The Coulter counter consists of two compart-

ments containing electrolyte solution connected by a small pore, with one compart-

ment having charged particles. Under the action of externally applied electric field,

the charged particles pass through the pore to reach the respective electrodes. The
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salt ions cause a certain level of ionic current in a particle-free pore. Particles of dif-

ferent sizes cause different impedance changes when inside the pore; these changes are

reflected in the ionic current measured across the pore, making it possible to measure

the particle size distributions by performing a statistical analysis of the ionic current.

Identification of either the partial or complete sequence of a DNA is crucial in

diagnosing many diseases such as cancer and Alzheimer’s disease. Kasianowicz and

coauthors [1] have reported one of the first experiments where a setup based on

the Coulter counter was used to transport DNA through a nanopore. This experi-

ment demonstrated that the single-file translocation of large DNA molecules through

nanopores is possible, and proposed the use of nanopores for DNA sequencing. The

working principle is similar to the Coulter counter and is based on the structural

differences in nucleotides that results into different changes in the ionic current traces

as these nucleotides pass through the pore [2]. Thus, in principle, one could monitor

the real-time data for ionic currents as each nucleotide passes through the nanopore

during translocation of the DNA and would be able use these ionic current traces to

estimate the sequence of the DNA.

However, a key requirement for success of this technique is to enable measurement

of the ionic currents at higher rates relative to the rate of translocation. In addition,

the inherently stochastic nature of the process limits the accuracy of the ionic current

traces. Although this experiment was performed using α-Hemolysin pore, other bio-

logical pores (for example, MspA) and solid-state nanopores have also been used in

performing translocation experiments [3–5]. Typical speed of translocation in experi-

ments of double stranded DNA through nanopores is of the order of a few nucleotides

per microsecond [6,7]. This speed is too fast to be able to reliably measure the ionic

current traces, as the fastest measurement time for the supporting electronics used in

experiments today (e.g. patch-clamp amplifier) is ∼ O(1µs). Hence, it is necessary

to control the speed of translocation.
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Purpose of the thesis

The purpose of this thesis is to develop a fundamental understanding of the

translocation of polyelectrolytes through nanopores. Development of such an un-

derstanding is required in order to guide the design of the translocation setup for

DNA sequencing and to develop newer applications using nanopores. It is of utmost

importance to understand the significance of various interactions such as electrostat-

ics and excluded volume between the nanopore and the translocating polymer at a

fundamental level, since these interactions can be used to gain the required control

over the otherwise highly stochastic translocation process. Additionally, the broader

purpose of this thesis is to understand dynamics of the polyelectrolyte chain during

its translocation through nanopores.

In the direction of this broader purpose, this thesis focuses on understanding the

effects of the characteristics of the nanopore and that of the polymer on the kinetics of

translocation. Specifically, the goal of this thesis is to answer the following questions:

• Nanopore characteristics

– What is the role of electrostatic interactions in translocation kinetics? Can

specific charge patterns along the nanopore be used to control translocation

kinetics?

– Can pattern matching between the nanopore and polymer be used to detect

a specific sequence along the polymer?

• Polymer characteristics

– What is the effect of polymer architecture? Is the mechanism of translo-

cation fundamentally different for polymers of different architectures?

– Can nanopores be used to characterize polymers based on their architec-

ture?
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• Modeling polymer translocation

– What timescales are involved in polymer translocation? Can the conforma-

tional fluctuations of the polymer chain inside the nanopore be controlled?

– Can we use equilibrium theories to describe the process at a fundamental

level?

These questions are directly relevant to control of the translocation process as

demanded by its applications. They also help to develop an understanding of the

basic control parameters that can be used in achieving such a control, and suggest

the level up to which control can be achieved.

Thesis organization

The thesis begins with a general introduction of the translocation process in Chap-

ter 1 followed by a brief presentation of the background knowledge of the field avail-

able in the literature. Approaches towards modeling the translocation process are

discussed and the choice of Fokker-Planck theory is justified. The effective charge of

a polyelectrolyte as it translocates across a nanopore is quantified towards the end of

the chapter. The role of patterns along the nanopore on kinetics of translocation is

discussed in Chapter 2, revealing an interesting pattern matching phenomenon that

can be harnessed in characterizing patterned polymers. The system used in this chap-

ter is also used as a model system to demonstrate the use of Fokker-Planck theory.

Chapter 3 discusses the effect of polymer architecture on translocation kinetics. Here,

a new approach to characterize polymers based on their architectures is demonstrated.

Chapter 4 discusses the inherent fluctuations present in translocation of polymers in

presence of a pulling motor, and demonstrates the limitations of certain strategies

in trying to control the kinetics of translocation. Conclusions based on this work
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are discussed in Chapter 5 and an outline suggesting directions for future research is

proposed.
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CHAPTER 1

POLYMER TRANSLOCATION

Polymer translocation is ubiquitous in nature. It is a fundamental process in cell

division in eukaryotic organisms. The replication of DNA inside the nucleus typically

requires proteins to translocate into the nucleus from the cytoplasm. On the other

hand, after transcription of the genetic information, the messenger RNA translocates

from the nucleus into the cytoplasm in order to synthesize proteins. In a typical

mammalian cell, this exchange happens across 3000-4000 nuclear pore complexes.

In spite of the high exchange rate at which this bi-directional exchange takes place,

the process is so meticulously controlled that collisions of translocating materials or

congestion of the nuclear pore complexes almost never happens [8].

Developments in our understanding of materials have enabled fabrication of syn-

thetic nanopores, typically made by drilling of Silicon Nitride, Hafnium Oxide, etc. us-

ing ion-beam sculpting or electron-beam drilling [9,10]. Naturally occurring nanopores

such as MspA and α-Hemolysin pore are also formed in the lab using self-assembly

of corresponding proteins. Electrophoresis experiments are performed using these

nanopores to study the phenomenon of single-file polymer translocation [1], since

these nanopores are narrow enough to prevent any folding of the polymer inside

the nanopore. A typical experimental setup used in these experiments consists of

two reservoirs containing a salt solution, separated by a membrane embedded with

a nanopore (schematic shown in Figure 1.1). Polyelectrolyte is added to the donor

reservoir and translocates across the nanopore due to an applied trans-membrane

voltage V . Small ions transported due to the resulting electric field towards corre-
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sponding electrodes cause a nearly constant level of ionic current across the pore. This

ionic current (example shown in Figure 1.2) undergoes a significant drop when the

polymer is present inside the nanopore while undergoing translocation. The blocked

ionic current can be used to extract enormous information about the polymer. Each

polymer chain blocks the ionic current for a certain duration. This information can be

used to characterize polymers based on their chain length or chemical identity. The

goal is to measure the ionic current with enough accuracy to facilitate the detection

of individual nucleotides based on their unique signature in the ionic current. With

such an accuracy achieved, nanopores can be used as a low-cost, high-throughput

devices for sequencing of DNA.

1.1 Physical insights

A schematic of a polyelectrolyte translocating single-file through a nanopore under

the action of an applied trans-membrane voltage is shown in Figure 1.1. The voltage

drops significantly only inside the nanopore. However, a weak voltage gradient also

exists in the vicinity of the nanopore. Far from the nanopore, the applied trans-

membrane voltage is nearly constant. The polyelectrolyte, initially in the bulk of the

donor reservoir, has to diffuse from the bulk to a capture region near the nanopore.

Once the polyelectrolyte is in this region, it experiences a drift that helps to capture

the polyelectrolyte into the nanopore. The capture involves an entropic barrier [11]

since the free polyelectrolyte chain loses its conformational entropy as one of its end

enters the nanopore. This barrier during capture can be overcome by the forces due to

the weak extended electric field, which can be further enhanced by electro-osmotic flow

[12] and electrostatic attraction from the nanopore [13]. Nonetheless, the presence of

an entropic barrier introduces an inherent stochasticity to the translocation process.

Once the translocation process is nucleated by capturing one end of the polyelec-

trolyte chain into the nanopore, the electric field compensates for the entropic loss
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resulting from the chain losing its entropy as it fills the nanopore. After the nanopore

is filled, the rest of the translocation process involves threading of the chain across

the nanopore, where for every trailing section of the chain that enters from the donor

reservoir, a leading section of the chain comes out of the nanopore into the receiver

compartment. This continues until the entire chain disappears from the donor reser-

voir. Beyond this stage, the polyelectrolyte simply depletes the nanopore and the

translocation process is completed.

A nucleated polyelectrolyte chain has a finite probability of translocating success-

fully across the nanopore instead of being rejected back to the donor reservoir. The

translocation process is stochastic in nature also due to the coupled counter-ion dy-

namics and the kinetics of sticking-unsticking with the nanopore [14, 15]. Moreover,

the chain can have different conformations when captured [16,17], which contributes

towards making the process stochastic in nature. Controlling the stochastic nature of

the process, however, is a major challenge in devising an experimental system based

on this technique.

1.2 Modeling polymer translocation

Translocation of a polyelectrolyte through a nanopore is inherently a complex

process. An example of the complex nature of the process is the various suggested

scaling laws of the mean translocation time ⟨τ⟩ of a polymer of length N undergo-

ing the translocation process. Sung and Park [18] proposed two regimes of scaling

behavior based on the applied potential difference for a polymer undergoing translo-

cation through a hole, assuming the chain friction is dependent on the chain length N .

For small favorable trans-membrane voltage, they predicted a scaling of ⟨τ⟩ ∼ N (2+γ)

while for larger driving trans-membrane potential difference, ⟨τ⟩ ∼ N (1+γ), with γ = 1

when hydrodynamics can be ignored. Muthukumar [19] used a friction coefficient that

is independent of N , and predicted that for a favorable potential difference and for
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longer chains, τ ∼ N . For a small electro-chemical potential difference, the scaling

τ ∼ N2 is recovered. This scaling relationship was recently observed in Monte Carlo

simulation studies of unbiased translocation also by Polson and McCaffrey [20], with

modified scaling of τ ∼ (N − M)2 for cylindrical pores of length M . The scaling

of τ ∼ N1+ν , with ν being the Flory exponent, was predicted by Kantor and Kar-

dar [21] for a polymer translocating through a hole in the presence of a chemical

potential difference assuming that the polymer is in equilibrium at the translocation

time scales. de Haan et al. [22] studied non-driven translocation of polymers using

Langevin dynamics simulations across a range of pore diameters and found that the

scaling exponent α in τ ∼ Nα varies between 2.2 − 3 with variations in pore diam-

eter. Similarly, in two-dimensional Monte Carlo simulations performed by Luo et

al. [23], the scaling exponent α in the scaling equation τ ∼ Nα is found to depend on

the pore length and polymer length, for the same applied electric field. The general

disagreement in the scaling behavior shows the richness of the phenomenon, empha-

sizing that making realistic assumptions is crucial in developing a model to describe

translocation.

As discussed earlier, the polyelectrolyte chain has to transport from the bulk into

the tiny nanopore in order to undergo translocation. To model this phenomenon,

the entire process is divided into (a) transport of the polyelectrolyte chain from the

bulk into a capture region, followed by (b) capture of the chain into the nanopore

and (c) crossing the energy barrier and eventual translocation of the chain across the

nanopore [11]. In the bulk, the chain transport is modeled as a combination of drift

and diffusion. Major sources of the drift are the applied trans-membrane potential,

and any flow that might be induced by pressure difference between the two compart-

ments or by electro-osmotic flow. The chain transport is governed by a steady state

convection-diffusion equation that governs the flux of the polyelectrolyte chains into

the capture region [11,24]. Once the polyelectrolyte is inside the capture region, which
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is assumed to be a hemi-spherical region near the nanopore entrance that is charac-

terized by a capture radius, it is forced towards the nanopore due to a strong drift

in step (b). The drift is primarily caused by the extended electric field outside the

nanopore entrance and a strong electro-osmotic flow that might be present when the

nanopore is charged. The presence of surface charges inside the nanopore gives rise to

a surface potential that can be used as a boundary condition for solving the Poisson-

Boltzmann equation to estimate the salt concentration profile inside the nanopore.

The fluid velocity and hence the strength of the electro-osmotic flow can be predicted

for a given salt concentration profile by solving the corresponding Navier-Stokes equa-

tion. This model predicts that for high salt concentrations, the velocity profile inside

charged cylindrical nanopores is essentially flat and can give rise to strong electro-

osmotic flow. If the surface of the nanopore bears a charge that is opposite to the

charge of the polyelectrolyte, the resulting electro-osmotic flow is in the direction of

translocation. Additionally, velocity gradients in the vicinity of the nanopore cause

a transition in the polyelectrolyte chain, from a coil-like conformation in the bulk to

a stretched conformation in the capture region. This coil-stretch transition is used

to define the capture region, and the required velocity gradient is predicted to be of

the order of inverse of the Zimm relaxation time for the polyelectrolyte. For step (c),

there is an entropic barrier involved due to the requirement that the translocation has

to be nucleated with one end of the polyelectrolyte chain finding the nanopore. When

the polyelectrolyte chain is captured, it is typically in a jammed state and has to ex-

plore its conformational space until nucleation occurs. This step is slightly different

for an α-Hemolysin nanopore due to the specific pore geometry. The vestibule region

of the nanopore traps the polyelectrolyte chain. The trapped polyelectrolyte chain

undergoes conformational fluctuations while colliding with the vestibule surface until

translocation nucleates [25]. The Poisson-Nernst-Planck theory adequately predicts
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the two experimentally observed levels of ionic current blockade as the polyelectrolyte

chain first enters the vestibule and eventually translocates across the nanopore [26].

The capture radius can be tuned by manipulating the extended electric field and

also by the electro-osmotic flow, as seen in the above theoretical discussion. Motivated

by this, a lower salt concentration in the donor reservoir with respect to that in the

receiver reservoir has been shown to assist capture of the polyelectrolyte. Specifically,

the capture rate (number of capture events per unit time) of a DNA into a silicon

nitride nanopore is shown to increase by an order of magnitude (∼ 30) for a salt

concentration ratio of 20 between the two reservoirs, in comparison with the capture

rate for the symmetric salt condition [27]. For α-Hemolysin nanopore, however, this

enhancement in the capture rate is shown to be dependent on the trans side (receiver

reservoir) salt concentration as well, with lower salt concentration on the trans side

causing a non-monotonicity in the capture rate as a function of the cis side (donor

reservoir) salt concentration such that the capture rate is maximum at an optimum

salt concentration ratio at high pH (≥ 7.5) [13]. An asymmetric pH between the two

sides of an α-Hemolysin nanopore is shown to affect the capture significantly, with a

two-fold increase in the capture rate as the pH on the trans side of the nanopore is

reduced from 7.5 to 4.5 [12]. Furthermore, the reduction in the trans side pH reduces

the net negative charge near the trans end of the nanopore, increasing the fraction of

events that lead to successful translocation. Although the estimated electro-osmotic

flow rate would contribute towards the capture rate, its magnitude is shown to be

insignificant in affecting the fraction of events that lead to successful translocations.

A combination of pH and asymmetric salt concentrations across the nanopore can be

used to further optimize the capture rate, which varies between 0.1s−1µM−1 (at a pH

of 7.5 and cis, trans salt concentrations of 0.2M, 0.5M) and 400s−1µM−1 (at a pH of

4.5 and cis, trans salt concentrations of 0.5M, 2M) [13].
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Muthukumar [28] modeled the post-nucleation single-file translocation of a poly-

electrolyte chain across a finite length nanopore using a model based on the Fokker-

Planck formalism (discussed in Chapter 1.2.1). The model captures many rich as-

pects of the translocation phenomenon including the presence of an entropic barrier

for weak driving forces and the importance of interactions between the nanopore and

the polyelectrolyte chain. In presence of the latter, a non-monotonic dependence of

mean translocation time on the length of the nanopore is predicted, owing to the

competition between the entropic barrier and the pore-polymer interactions. The

origin of the pore-polymer interactions can be electrostatic due to surface charges

along the nanopore. Motivated by this idea, Forrey and Muthukumar [29] performed

coarse-grained Langevin dynamics simulations of a ds-DNA translocating through a

cylindrical nanopore using Langevin dynamics simulations to study the role of pore-

polymer interactions. By optimizing the cylindrical nanopore size to mimic the essen-

tial feature of the α-Hemolysin nanopore (the narrowest constriction), the simulations

were able to show that the mode of translocation is predominantly single-file and that

hairpin-like conformations do not translocate. More importantly, the essential fea-

ture in reproducing experimentally observed event diagram (blockade in ionic current

versus event duration) for an α-Hemolysin nanopore was shown to be the presence of

charged ring near the receiver end of the nanopore. This result emphasizes the crucial

role of surface charge pattern along the nanopore that leads to specific pore-polymer

interactions during certain stages of translocation. Experiments based on this idea,

involving either site-mutations of the α-Hemolysin nanopore [30] or surface modifica-

tion of a solid-state nanopore [31] to manipulate the surface charge distribution have

shown to be effective in controlling translocation kinetics. The effect of sequences

along the polyelectrolyte was studied using the Fokker-Planck model for a di-block

copolymer, showing that translocation kinetics are sensitive to the sequences [32].

This theory was extended to the general case of patterns of charges along the poly-
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mer chain and verified using Langevin dynamics simulations [33], demonstrating that

the sequences along a block polymer can be identified using a nanopore.

The above discussion emphasizes the role of surface charge patterns along the

nanopore and the charge patterns along the polyelectrolyte on kinetics of transloca-

tion. A systematic study of this role is required and is the focus of Chapter 2.

Translocation of polyelectrolytes is a non-equilibrium phenomenon due to the

externally applied electric field. The above discussion also raises an important issue

related to the conformation of the polyelectrolyte chain as the translocation process

is nucleated. The strong drift present in the capture region can cause the chain to

stretch significantly. On the other hand, the entropic barrier during nucleation can

allow sufficient time for relaxation of the stretched chain. The fundamental issue of

the multiple timescales involved in translocation has led to two distinct approaches

towards modeling this phenomenon. If the polyelectrolyte chain is relaxed at the

timescale at which it translocates, a quasi-equilibrium assumption can be effective. If,

on the other hand, the chain relaxation is not fast enough, non-equilibrium effects have

to be taken into consideration. A brief description of the two widely used theoretical

approaches that differ with respect to the quasi-equilibrium assumption, the Fokker-

Planck model and the tension propagation model, is presented below. The issue

of multiple timescales involved in translocation of polyelectrolytes is addressed using

Langevin dynamics simulations that help to validate the quasi-equilibrium assumption

and the applicability of the Fokker-Planck model used in Chapter 2.

1.2.1 Overview of theoretical models

Figure 1.5 shows experimentally measured mean translocation time ⟨τ⟩ as a func-

tion of the polyelectrolyte length N from translocation experiments in the litera-

ture [1, 5, 12, 34–38]. An α-Hemolysin nanopore is used in all these experiments

(solid-state nanopore in Ref. [5]), with the polyelectrolyte being NaPSS [12, 34, 36],
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Figure 1.3. Schematic for the translocation setup showing a polyelectrolyte chain
(blue) captured from the bulk, followed by its translocation from the donor compart-
ment to the receiver compartment (right to left). A sketch of the trans-membrane
voltage profile V (x) extending beyond the nanopore (red curve) that assists in chain
capture is also shown. The Fokker-Planck model assumes that the chain is in quasi-
equilibrium during the entire translocation.

Dextran Sulfate Sodium [35], ss-DNA [1, 37, 38] or ds-DNA [5]. Multiple data points

for a given N correspond to variation in other parameters (trans-membrane volt-

age [1, 5, 34–36, 38], temperature [37], and pH [12]). The applied trans-membrane

voltage V across all these experiments is 40 − 260mV. The corresponding Zimm re-

laxation time curve is shown by a solid line. Note that the Zimm relaxation time

is calculated using a persistence length of 2nm and a monomer size of 2.5Å and a

temperature of 300K. As seen from the figure, a polyelectrolyte chain at equilibrium

is believed to relax at a much faster timescale (lower Zimm time) compared to its

translocation time for the range of polyelectrolyte lengths used and for typical trans-

membrane voltages applied in these studies. Based on these data, a polyelectrolyte

chain initially at equilibrium can be assumed to be in quasi-equilibrium as it translo-

cates across the nanopore (Figure 1.3). A one-dimensional free energy landscape

can be constructed for the translocation process, using the equilibrium scaling the-

ory for polymers [28, 39] to calculate entropic contribution towards the free energy.

This entropic contribution becomes less significant as the trans-membrane voltage

increases [15]. Other significant contributions to the free energy are the effective

15



donor tension
front

blobs

equilibrium

receiver

m
em

br
an

e

stretched

Figure 1.4. Schematic for the two-state tension propagation model. A part of the
chain near the nanopore on the donor side is stretched, giving rise to frictional blobs
of increasing size. The dotted line shows the tension front that propagates with time
to encompass the chain.

10 100 1000
N

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

<τ
> 

(m
s)

τZimm

Figure 1.5. Comparison of Zimm relaxation time (blue line) with experimentally
measured translocation time (+ [1] △ [5] ! [12] × [34] " [35] " [36] • [38] ∗ [37])
as a function of chain length N . Multiple values of ⟨τ⟩ for the same chain length N
correspond to variation in other experimental parameters as described in the thesis.
A clear separation of translocation and Zimm relaxation timescales is evident for
polymers of length up to N ∼ 3000.

16



pore-polymer interaction strength, the driving electric field, and the electro-chemical

potential difference between the two reservoirs. All experimentally relevant param-

eters can be taken into consideration while constructing the free energy. Chemical

details of the nanopore such as electrostatics and hydrophobicity are modeled using

the effective pore-polymer interaction strength, while the salt concentration and pH

in the two reservoirs can be accounted for in the entropic contribution. Temperature

of the system provides a scale for the free energy. A model based on Fokker-Planck

formalism is used to describe the translocation process, with an effective friction co-

efficient as the only parameter [18, 28]. With the appropriate free energy landscape

as an input, the Fokker-Planck equation can predict the mean translocation time and

the translocation time distribution (histogram). Excellent agreement with the model

prediction is obtained for translocation time histograms from simulations [15] and

experiments [40].

For high trans-membrane voltages, however, the quasi-equilibrium assumption

can break down and demands an alternative approach. The tension propagation

model [41–44] assumes a two-state picture, whereby only a part of the polyelectrolyte

chain near the nanopore entrance is stretched during early stages of translocation.

The rest of the polyelectrolyte is stationary. The stretching of part of the chain results

into formation of blobs of increasing size starting from the nanopore entrance (Figure

1.4). A balance between the driving force and the friction due to formation of blobs

gives rise to the dynamic tension propagation equation. The boundary separating

the stretched and stationary parts of the chain propagates towards the trailing end

according to this equation until it encompasses the entire chain. The reminder of

the translocation is assumed to be relatively quick [41, 43]. This gives rise to a time

dependent friction coefficient resulting from the stretched part of the polyelectrolyte

chain in the donor reservoir, in contrast to a constant effective monomer friction

coefficient used in the Fokker-Planck model.
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The Fokker-Planck model predicts that for a polyelectrolyte of length N translo-

cating under an applied trans-membrane voltage V , the mean translocation time

scales as ⟨τ⟩ ∼ N/V . Tension propagation model predicts different scaling regimes

based on the force due to the trans-membrane voltage: ⟨τ⟩ ∼ N2ν/V for a weak force

and ⟨τ⟩ ∼ N1+ν/V for extreme driving force. For intermediate driving forces, the

scaling relation is ⟨τ⟩ ∼ N
1+3ν

2 /V
3ν−1

2ν if the velocity of the smallest blob is used as a

velocity scale for tension propagation [45] otherwise ⟨τ⟩ ∼ N1+ν/V
2ν−1

ν if the velocity

of the largest blob is chosen [16, 46] or if a constant monomer flux is assumed in

the stretched chain [43]. Brownian dynamics simulations based on a time dependent

friction derived from the tension propagation model [47] show that for short poly-

mers and for narrow nanopores, a significant part of the total friction comes from the

friction with the nanopore [48, 49]. In other words the friction of the stretched chain

in the donor reservoir is relatively small for narrow nanopores and short polymers

and the observed scaling is in agreement with that predicted by the Fokker-Planck

model. Moreover, the mean translocation time obtained from simulations scales as

1/V for a wide range of the driving force [48, 50]. These simulations predict that

the fraction of the total translocation time spent after the tension encompasses the

polymer chain is ∼ 0.5− 0.6 with chain stiffness reducing it further [51], making the

tension propagation stage less relevant for stiffer chains.

Initial polyelectrolyte chain conformations can be far from equilibrium at the

onset of translocation because the strong electro-osmotic flow (predicted [24] to be

as high as 35cm/s for a typical charge density of 0.14e/nm2). In addition to creating

a strong electric field inside the nanopore, the applied trans-membrane voltage also

creates a weak electric field near the nanopore entrance that helps in capturing the

polyelectrolyte from the bulk into the nanopore that can cause stretching of the

polyelectrolyte chain during capture.
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The issue of timescales involved in translocation of polyelectrolytes is addressed in

this section by using Langevin dynamics simulations to study translocation kinetics

and relaxation dynamics of a polyelectrolyte chain. The effect of chain stretching on

the kinetics of translocation is investigated in detail and a comparison of the computed

mean translocation time with a characteristic relaxation timescale for these out-of-

equilibrium polymer chains is reported.

1.2.2 Simulation methodology

The LAMMPS [52] package is used to perform coarse-grained Langevin dynamics

simulations. A set of systematically stretched polyelectrolyte conformations is de-

liberately generated and subjected to two separate sets of simulations: translocation

simulations and relaxation simulations. Details of generating the stretched confor-

mations and the two sets of simulations are given below. Reduced units based on a

length-scale of 3Å, energy scale of kBT and mass scale of 130g/mol are used, unless

noted otherwise. kB is the Boltzmann constant and T = 300K is the temperature.

1.2.2.1 Coarse-graining

Details of the simulation setup are similar to those presented in Ref. [15] and are

described in Appendix A, with the difference in the choice of length-scale = 3Å and

energy scale = kBT . Briefly, the polyelectrolyte is represented using an array of 120

negatively charged beads of size 1 connected linearly by harmonic springs, with Debye-

Hückel electrostatics corresponding to a Debye length of 1.23. For translocation

simulations, the cylindrical nanopore and the vertical membrane walls are modeled

using stationary uncharged beads and a constant electric field corresponding to the

trans-membrane potential V is applied inside the nanopore (Figure 1.8). A time-step

of 0.005 is used to integrate the Langevin equation for each polyelectrolyte bead using

the velocity-Verlet algorithm.
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1.2.2.2 Stretched conformations

The polyelectrolyte chain length in our simulations is kept fixed at N = 120. To

deliberately generate stretched chain conformations, we adopt a two step strategy.

In the first step, an equilibrium polyelectrolyte conformation is generated by simu-

lating a polyelectrolyte chain near a wall for 40000 time units, with one end of the

chain fixed near the wall. In the next step, the chain conformation at the end of

this simulation is subjected to fluid flow inside a cylindrical channel, with one end

of the polyelectrolyte held fixed at a certain location inside the channel. The fluid

flowing in the positive x-direction drags the rest polyelectrolyte chain along, gener-

ating stretched chain conformations. A set of chain conformations with increasing

levels of stretching is generated based on the time that the chain is subject to flow.

The above procedure is repeated to generate 500 independent conformations for each

level of stretching (Figure 1.6). An average aspect ratio α is used to characterize

each set of chain conformations. We define α = ∆x/(2r) where ∆x is the maxi-

mum span of the polyelectrolyte chain in the x-direction and r is its maximum radius

(r =
√

y2max + z2max) from its center of mass (inset of Figure 1.7), averaged over all

500 conformations. We generate systematically stretched sets of conformations using

this strategy, characterized by a monotonic increase in α with the time of flow as

shown in Figure 1.7.

1.2.2.3 Translocation

The uncharged cylindrical nanopore used for translocation simulations is 16 units

long with a radius of 1.8. We choose these dimensions based on geometry of an

α-Hemolysin nanopore. Translocation simulations are performed by using a set of

500 conformations corresponding to a given α, nucleating the translocation process

by placing one end of the polyelectrolyte just inside the nanopore with the rest in

the donor reservoir. A constant electric field equal to V/16 is applied inside the
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nanopore and the simulation is continued until the polyelectrolyte either retracts

back to the donor reservoir (failed translocation) or translocates across the nanopore

into the receiver reservoir (successful translocation). Translocation time, defined as

the time taken by the polyelectrolyte to exit the nanopore for successful transloca-

tions, is measured for 2500 independent simulation runs (5 statistically independent

simulation runs per conformation) and averaged to calculate the mean translocation

time ⟨τ⟩. Probability of successful translocations is calculated as the fraction of the

2500 runs that lead to successful translocations. The same procedure is repeated for

different values of stretching and the trans-membrane potential (α and V ). Figure

1.8 shows a snapshot of our simulation setup with two polyelectrolyte conformations

corresponding to two distinct levels of stretching (α) at the beginning of translocation

simulations.

1.2.2.4 Relaxation

The relaxation simulations are performed in absence of the nanopore and the

electric field. Each polyelectrolyte chain with a conformation corresponding to a given

α undergoes Langevin dynamics for sufficiently long time (16000 time units) until

the initially stretched polyelectrolyte relaxes to an equilibrium shape. An average

moment of inertia tensor is calculated from the 2500 independent simulation runs

by re-centering each conformation using its center of mass, and average principal

moments of inertia λi (with i = 1, 2, 3) computed from this tensor are used as a

metric of relaxation. As a reminder, a conformation corresponding to a shape with

one symmetric axis is characterized by two identical moments of inertia (λ2 = λ3)

and one smaller moment of inertia (λ1). A spherically symmetric object, such as the

conformation of a polyelectrolyte when it is relaxed, has all three principal moments

of inertia identical (λ1 = λ2 = λ3).
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Figure 1.6. Schematic showing systematic stretching of the polyelectrolyte chain
conformations when subject to a fluid flow inside a cylindrical channel for short and
long time, as indicated, keeping the left chain end fixed. As the chain stretches,
it assumes a trumpet-like shape. Each image consists of 500 chain conformations
overlaid.
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Figure 1.7. Average aspect ratio α = ∆x/2r of the polyelectrolyte chain as a
function of the time for which the chain is subject to flow in the channel. Inset shows
definitions of the maximum x-directional span of the chain ∆x and its maximum
radius r.
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Figure 1.8. Snapshot of the coarse-grained translocation simulation setup with two
initial polyelectrolyte chain conformations overlaid. The chain with red beads is less
stretched compared to the chain with blue beads.
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1.2.3 Results and discussion

The probability of successful translocations obtained from the translocation sim-

ulations is plotted in Figure 1.10, as a function of various levels of stretching of the

initial conformations α at various trans-membrane voltages V . The mean translo-

cation time ⟨τ⟩ of the polyelectrolyte at various values of α is plotted as a function

of the inverse of the trans-membrane voltage V in Figure 1.9. As stretching of the

initial conformation of the polyelectrolyte increases, it is more likely to retract back

into the donor compartment than to translocate across the nanopore. This is re-

flected in the probability of successful translocations that decrease with increase in α

for all applied voltages. The pull from the initially stretched entropic spring becomes

relatively stronger in comparison with the driving electric field, making the probabil-

ity of successful translocations nearly zero beyond a certain level of stretching for a

given voltage (for example, beyond α = 2.73 for V = 0.35V). This decrease in the

probability with increasing α is delayed with increase in the driving trans-membrane

voltage. The mean translocation time increases with increase in initial stretching,

since the pull from the entropic spring has to be overcome by the applied electric

field, causing a delay in the translocation time. However, the increase in ⟨τ⟩ is only

moderate across the range of initial stretching studied. A more significant variation

in ⟨τ⟩ is observed with respect to the applied trans-membrane voltage. Moreover, a

scaling of ⟨τ⟩ ∼ 1/V is observed for each level of stretching. The observed scaling

is in agreement with the prediction of the Fokker-Planck model, albeit the latter is

developed within the quasi-equilibrium assumption. The tension propagation model

predicts the same scaling, but only for very weak (V = 0.0015V) and very strong

(V = 0.457V) driving forces [45].

The relaxation simulations performed to study the effect of initial stretching of

polyelectrolyte chains on their relaxation behavior show interesting relaxation dy-

namics. Figure 1.11 shows the trajectories of the three principal moments of inertia
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of the polyelectrolyte chain as it undergoes relaxation from the initially stretched

state, for different values of initial stretching α. The initially stretched chain is in

a trumpet-like shape with one axis of symmetry (Figure 1.6). Hence, at time t = 0

the first principal moment λ1 corresponding to the principal direction along the axis

of symmetry of the trumpet is small in comparison with the other two principal mo-

ments that are large and nearly equal due to symmetry (λ2 ∼ λ3). The difference

between λ1 and λ2 increases with increasing α, since the initial chain conformation

is more stretched. As the initially stretched chain relaxes while undergoing Langevin

dynamics, λ1 increases while λ2 and λ3 decrease until all three become equal, which

corresponds to a spherically symmetric chain conformation.

The mean of the larger principal moments of inertia relative to their value when

the chain is completely relaxed is defined as ⟨∆λ2,3⟩ =
∑

i=2,3(λi(t) − λ∞i )/2, where

λ∞i is the average value of λi for t > 8000. We assume an exponentially decaying form

⟨∆λ2,3⟩ ∼ e−t/τ0 to extract the characteristic decay time τ0. Figure 1.12 shows the

trajectory of ln(⟨∆λ2,3⟩) for different values of α. A faster than exponential decay is

observed in the initial stages of relaxation of the stretched chain due to quick initial

retraction of the polyelectrolyte chain, followed by a systematic exponential decay.

Nevertheless, we identify the slope of the linear region in Figure 1.12 as the relaxation

timescale τ0 for the stretched chain and note that this is an overestimate of its true

relaxation timescale since the quick initial retraction of the chain is unaccounted for

while obtaining τ0.

A comparison of the mean translocation time from the translocation simulations

with the relaxation time τ0 calculated from the relaxation simulations is shown in

Figure 1.13. For all levels of stretching, the relaxation timescale τ0 is nearly con-

stant. Slight variations in τ0 are due to the specific time-span used in identifying

the linear region in Figure 1.12. The absolute value of τ0 is only an estimate of

the true relaxation time, as discussed above. More important observation is that
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Figure 1.9. Mean translocation time ⟨τ⟩ as a function of trans-membrane voltage V
for polyelectrolytes with stretched initial conformations, indicated by α. The dotted
red line is shown as a guide to emphasize the observed scaling of ⟨τ⟩ ∼ 1/V .
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Figure 1.10. Probability of successful translocation for polyelectrolytes as a function
of the level of initial stretching α. Legend indicates trans-membrane potential in volts,
applied across the 4.8nm long nanopore. Translocation becomes less probable as the
initial chain conformation is stretched more.
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Figure 1.11. The three average principal moments of inertia of the polyelectrolyte
chain undergoing relaxation. Legend indicates the initial level of stretching. Initially,
the stretched chain has a trumpet-like shape and hence λ1 (along x-axis) < λ2 = λ3
at t = 0. As the chain relaxes, the three moments become equal.
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Figure 1.12. A log-linear plot showing the faster than exponential initial decay of
λ2 and λ3, followed by a systematic exponential decay. We define the average decay
⟨∆λ2,3⟩ =

∑

i=2,3(λi(t) − λ∞i )/2 ∼ e−t/τ0 , where λ∞i is the average value of λi for
t > 8000 and τ0 is the characteristic decay time. The dotted line is shown as a guide
to show the exponential behavior at longer times.
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Figure 1.13. Comparison of relaxation timescale τ0 and translocation time ⟨τ⟩ for
stretched polyelectrolytes. Noting that τ0 is an overestimate of the true relaxation
time, the polyelectrolyte chain can be assumed to be in quasi-equilibrium while un-
dergoing translocation.

even the overestimated relaxation timescale is of the same order of magnitude as the

mean translocation time for the ranges of initial stretching and the trans-membrane

voltage studied. As discussed in Chapter 1.2.1, the trans-membrane voltage applied

across a 5nm long α-Hemolysin nanopore in typical experiments is in the range of

0.04 − 0.26V. Even with the overestimation of the relaxation time, τ0 and ⟨τ⟩ are

quantitatively comparable for the experimentally used trans-membrane voltage range

for small initial stretching.

1.2.4 Summary

The results of the above simulations address the fundamental issue of relative

timescales for translocation and relaxation and the use of quasi-equilibrium assump-

tion in developing a theoretical description of the translocation process. The two

timescales are found to be comparable and the quasi-equilibrium assumption is jus-

tified even for the out-of-equilibrium initial chain configurations used in this study,

especially for experimentally relevant trans-membrane voltages that are typically less

than 300mV across 5nm long nanopores. The deliberate initial stretching of the

27



polyelectrolyte chain delays the translocation kinetics and makes translocation less

probable due to strong retracting force due to entropy.

The Fokker-Planck model has recently been under criticism due to the quasi-

equilibrium assumption made in developing this model. Nonetheless, the model is

able to describe the rich phenomenology in polymer translocation and is widely used

to gain insights into translocation experiments [38, 40, 53]. The results of above sim-

ulations establish the validity of this model for experimentally relevant parameter

space. We make use of this model to gain insights into our simulation results in

Chapter 2.

1.3 Effective charge of a translocating polyelectrolyte

An important parameter that governs the kinetics of driven translocation of a

polyelectrolyte chain across a nanopore is the electrophoretic mobility of the chain

that determines how fast the chain moves in response to the electric field created

by the applied trans-membrane voltage. The electrophoretic mobility of the chain

is directly proportional to the number of charges along the chain. In this section,

we provide a quick measurement of the effective charge of a polyelectrolyte chain

undergoing translocation.

1.3.1 Counter-ion adsorption and confinement

A polyelectrolyte chain releases counter-ions when dissolved in water. However,

due to the high charge density along the chain backbone, not all of the counter-

ions are free. A certain fraction of the total counter-ions remain adsorbed onto the

chain backbone. This fraction can be estimated from the free energy of the system

and is an equilibrium quantity, meaning that the free and adsorbed counter-ions are

continuously exchanged. Each adsorbed counter-ion decreases the total charge of the

polyelectrolyte by an amount equal to the counter-ion’s valence. As a result of this,
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the effective charge of a polyelectrolyte chain in solution can be lower than the chain’s

chemical valence. Confinement can further enhance counter-ion adsorption. Due to

confinement, the volume available for a free counter-ion is reduced in comparison to

the bulk. This reduces its entropic gain upon release and hence shifts the equilibrium

such that more counter-ions are adsorbed. Simulations predict that the effective

charge of a polyelectrolyte chain confined in an infinite cylindrical channel reduces by

a factor of about 3 when the channel radius is decreased from asymptotically large to

twice the size of the polyelectrolyte backbone [54]. Such a reduction in the effective

charge would reduce the driving force due to electric field and hence the speed of

translocation.

While undergoing translocation through a finite length nanopore, a polyelectrolyte

chain experiences varying degrees of confinement. To begin with, the polyelectrolyte

is in bulk where the free counter-ions have a large volume available. Once captured, it

passes through a strongly confined region as it translocates across the nanopore before

entering the receiving compartment where it enters bulk again. This change in con-

finement as the chain translocates leads to a rich counter-ion behavior. Additionally,

the small ions consisting of the counter-ions and the salt ions can partition themselves

differently between the nanopore and the two reservoirs. Both these phenomena can

significantly affect the degree of counter-ion adsorption on the polyelectrolyte chain

backbone as it translocates. Thus, the effective charge on the polyelectrolyte is ex-

pected to change continuously during translocation. To quantify this, coarse-grained

molecular dynamics simulations are performed, taking into account the long-range

hydrodynamic and long-range electrostatic interactions. Details of the simulations

are discussed next, followed by preliminary results.
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1.3.2 Simulations

Coarse-grained molecular dynamics simulations are performed to study the effec-

tive charge of a polyelectrolyte chain as a function of its position along the nanopore.

A length-scale of 2.5Å, an energy scale of kBT , with T = 300K and a mass scale

of 130g/mol are used to derive reduced units. Details of the simulation setup are

described in Appendix B. Briefly, the polyelectrolyte is represented as an array of 20

negatively charged beads of size 1 connected linearly by harmonic springs. All the

small ions comprising of the counter-ions and salt ions, are represented as beads of

size 1. In addition to the 20 counter-ions, small ions corresponding to given salt con-

centration are explicitly simulated. For a salt concentration of 0.1M, the total number

of positive small ions is 32 + 20 = 52, while the total number of negative small ions

is 32. Electrostatic interactions are modeled using a pair-wise Coulomb interaction

that is implemented using the particle-particle-particle-mesh algorithm (See Ref. [55]

for implementation details). The nanopore is modeled using excluded volume rep-

resented by a truncated Lennard-Jones potential at the boundaries. Hydrodynamic

interactions are implemented using the multi-particle collision dynamics technique

(also known as the stochastic rotation dynamics technique) with parameters chosen

to represent a viscosity of 8.7 in reduced units. The simulated box size is 40×40×40

and the nanopore length is 20, while its radius is varied between 3 and 5. A constant

electric field corresponding to a trans-membrane potential of 250mV is applied across

the nanopore. Velocity-Verlet algorithm is used to integrate the resulting equation of

motion with a time-step of 0.005.

1.3.3 Results and discussion

To expedite the calculations, the translocation process is nucleated with the lead-

ing arm of the polyelectrolyte at a distance of 5 inside the nanopore (from the donor

side) so that every simulation results into a successful translocation. Under the ac-
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tion of the applied electric field, the negatively charged polyelectrolyte translocates

along with negatively charged small ions in the direction opposite to the electric field,

while most of the positively charged small ions move in the direction of the electric

field. The polyelectrolyte chain starts with certain effective charge due to counter-ion

adsorption. As the chain translocates, it drags some of these adsorbed counter-ions

along with it.

A counter-ion is defined as adsorbed if it is within a distance of 2.0 from the poly-

electrolyte, consistent with the definition used in Ref. [54]. The number of adsorbed

counter-ions is calculated at every step during our simulations using this definition.

The effective degree of ionization is then calculated as the ratio of the number of

free ions to the total number of counter-ions. Over 100 independent simulation runs

are performed for each set of parameters for statistical averaging, each run beginning

with a different equilibrium chain conformation. A binning based on the position of

the center-of-mass of the polyelectrolyte chain along the x-direction is performed to

calculate the average effective degree of ionization of the chain, αeff, as a function of

its center-of-mass position, xcm.

Figure 1.14 shows data obtained from the simulations. A profile of the degree of

ionization αeff is shown, as the polyelectrolyte chain translocates, for two different

nanopore radii as indicated in the legend. The position of the nanopore is also

shown as a guide. The degree of ionization of the polyelectrolyte chain undergoes a

dramatic change as it translocates across the nanopore. As the polyelectrolyte enters

the strongly confined nanopore region, the effective degree of ionization systematically

increases. When the center-of-mass of the chain is at the center of the nanopore, the

effective degree of ionization of the chain becomes approximately twice compared to

its value in the bulk. This observation is due to the finite length of the nanopore,

and is in contrast to the case of a polyelectrolyte confined in an infinite channel [54].
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Figure 1.14. Effective degree of ionization of the polyelectrolyte chain αeff as a
function of the center-of-mass position of the chain.

Note that in the simulation setup, the electric field is acting only inside the

nanopore, while in the donor and receiver compartments, the electric field is zero.

Electric field is known to increase the degree of ionization [54], since the counter-

ions have a stronger driving force to desorb from the polyelectrolyte. In agreement

with this, in our simulations, as larger fraction of the polyelectrolyte chain enters the

nanopore, more counter-ions desorb from its backbone, leading to an increase in αeff.

1.3.4 Summary

The effective charge of a polyelectrolyte is computed using molecular dynamics

simulations, incorporating the long-range hydrodynamic and long-range electrostatic

interactions. Preliminary data shows that the effective degree of ionization of the

polyelectrolyte increases as it enters the nanopore and the initial degree of ionization is

recovered when the translocation is complete. Detailed simulation study is required to

address the role of salt concentration and the identity of the small ions. Additionally,

the current simulation methodology can be improved to incorporate the effect of

dielectric mismatch between the membrane and the two compartments. A future

study in this direction is outlined in Chapter 5. Our preliminary set of simulations
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shows that a rich small ion behavior is exhibited in polyelectrolyte translocation,

which can be explored in details.
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CHAPTER 2

ROLE OF PORE-POLYMER INTERACTIONS

Typical speed of translocation measured in experiments using solid-state nanopores

is on the order of 10− 100 nanoseconds per nucleotide [6,7]. This speed is too fast to

be able to detect the ionic current traces reliably. Hence, it is necessary to slow down

translocation. In this chapter, we address the role of charge distributions along the

nanopore on the kinetics of translocation of a uniformly charged polyelectrolyte. We

also study the effect of charge distributions along the polyelectrolyte on translocation

kinetics.

2.1 Review of control strategies for translocation

A few strategies have been suggested in the literature to achieve slower transloca-

tion kinetics. Experimentally, equivalent salts of different ionic sizes are found to have

different effects on the translocation speed [7]. With longer pores, the interaction be-

tween nanopore wall and monomers of the polymer becomes increasingly significant.

By introducing a parameter ϵ for the pore-polymer interaction in a model to describe

polymer translocation, Muthukumar [28] demonstrated the importance of this pore-

polymer interaction on the mean first passage time. In the present context, ϵ is a

measure of the strength of the electrostatic attraction between the negatively charged

monomers and the positively charged nanopore wall. For large values of ϵ, these inter-

actions become significant even for shorter pores. Two-dimensional Langevin dynam-

ics simulations of a polymer with Lennard-Jones attractive interaction for relatively

wide pores by Luo et al. [56] show both a higher success rate and a slower average
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time of translocation with increased strength of attractive interactions. Using p and

n type dopants, Luan et al. [57] simulated translocation through a nanopore with a

p-n junction at the center. The computed electric field is different in the p-doped

and n-doped sections, with a reverse electric field at the nanopore center that helps

to stretch the polymer. The resulting mean translocation time is also found to be

affected due to presence of the two sections.

Effective driving force, defined as the difference between the force due to elec-

tric field and the opposing force due to electro-osmotic flow, has been predicted to

be dependent on the surface charge density of the nanopore [58]. Ding et al. [59]

performed similar numerical electro-hydrodynamic calculations based on the balance

between the viscous forces and electric forces that include the effect of surface charge.

They found that the surface charge density significantly affects the mean transloca-

tion time and suggest the use of surface charges to mediate translocation dynamics.

The importance of pore-polymer interactions has also been highlighted in simulations

of translocation into a spherical nanopore [60]. He et al. [61] proposed that switching

the applied voltage after the DNA capture step can substantially increase the translo-

cation time due to presence of charges along the nanopore walls. The translocation

dynamics of a heterogeneous polymer shows rich sequence dependence. The mean

translocation time of a multi-block polymer translocating through uncharged pores

depends not only on the length of each block [62], but also on the sequence of these

blocks [33, 63]. In charged pores [14], an additional dependence is observed on the

arrangement of charges along the nanopore walls.

pH is known to protonate charged amino acid residues along protein pore. Wong

and Muthukumar [12] studied the effect of pH on translocation of NaPSS through

α-Hemolysin and found that, using pH gradient, the charges along the nanopore can

be manipulated to increase the probability of successful translocation events. Site-

directed mutagenesis can be used to manipulate the charge distribution along protein
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pores [30]. Manipulating charges in different regions (both the entrance region and

the narrowest constriction) of an α-Hemolysin nanopore is found to change the rate

of translocation events significantly. For solid-state nanopores, a pH sensitive coating

can be used to tune the charges along the nanopore to control polymer translocation.

Both experimentally and theoretically, this has been shown to affect translocation

time [31], emphasizing the importance of pore-polymer interactions in the transloca-

tion process.

Thus, charge distribution along the nanopore wall seems to have significant effect

on the translocation dynamics. In most of the studies so far, however, the pore-

polymer interaction is assumed to be constant. Specifically, a uniform charge density

is assumed along the nanopore wall. In this work, we investigate the effectiveness

of charge distribution along the nanopore wall on translocation dynamics. Keeping

the total charge along the nanopore to be constant, we decorate the nanopore with

alternate charged and uncharged sections of different lengths. Using Langevin dy-

namics simulation, we study the translocation dynamics of a uniformly negatively

charged flexible polymer through the charge-decorated nanopore. We find that the

mean translocation time depends non-monotonically on the length of charged sec-

tion. The slowest translocation is observed for one particular charge distribution.

Numerical calculations based on one dimensional free energy landscape capture the

non-monotonic trend observed in simulations. We also study the translocation dy-

namics of a charge-patterned flexible polymer through the charge-decorated nanopore

and find an interesting pattern-matching behavior.

Simulation details are discussed next, followed by the results for translocation

time distribution of a uniformly charged polymer translocating through a patterned

nanopore. A theoretical framework based on free energy landscape is discussed in

Chapter 2.2.2. Simulation results for a patterned polymer translocating through a

patterned nanopore are discussed towards the end.
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2.2 A uniformly charged polymer translocating through a

patterned nanopore

Langevin dynamics simulation of a charged uniform polyelectrolyte undergoing

translocation through a partly charged nanopore (with charge patterns) under an

applied electric field is performed using the LAMMPS [52] package. A length scale of

12Å is used. This choice is made to reflect the Kuhn length of a flexible polyelectrolyte

chain such as the single stranded DNA. We have taken the energy scale as kBT/6,

where kB is the Boltzmann constant, and T = 300K is the temperature. Simulation

details are given in Appendix A. Briefly, the polyelectrolyte is represented by a

bead-spring model made of N beads, with unit negative charge on each bead. A

membrane of length M with a cylindrical nanopore of radius rp = 1 is represented

by stationary beads along the nanopore walls. The nanopore length is divided into

2Ns number of sections, such that beads belonging to odd sections from the nanopore

entrance are decorated with a positive charge of 0.1e, where e is the elementary

charge. These sections of the nanopore are, thus, attractive to the negatively charged

polyelectrolyte beads. By changing Ns, we can create different charge patterns along

the nanopore length, as shown in Figure 2.1. In addition to the excluded volume and

harmonic potentials included in the the bead-spring model, the model also accounts

for the interaction of the charged polyelectrolyte beads with all other charges through

a short-ranged Debye-Hückel potential corresponding to an implicit monovalent salt

with a concentration of 0.1M. Further, when inside the pore, each polyelectrolyte

bead is acted upon by an electric force, along with additional forces originating from

viscous drag and random kicks from the implicit solvent. A time-step of 0.003 is

used to integrate the Langevin equation. At the beginning of each simulation run,

the translocation process is nucleated by placing one end of the polyelectrolyte chain

just inside the nanopore with the rest of the polyelectrolyte beads still in the donor
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reservoir. The electric field drives the polyelectrolyte through the nanopore towards

the receiving reservoir.

Simulation procedure

An equilibrium polyelectrolyte configuration is required as the initial configura-

tion for the simulation. A polyelectrolyte chain conformation is manually generated

and taken as a starting configuration for generating the initial equilibrium configu-

rations. The position of first bead is fixed just inside the nanopore while the rest of

polyelectrolyte beads are on the donor side of the pore. The system is then allowed to

equilibrate by solving the equation of motion for 105 time steps, significantly larger

than the Rouse time for the polyelectrolyte chain, with no electric field applied. A

velocity-Verlet algorithm is used in LAMMPS to solve the equation of motion.

The polyelectrolyte chain configuration obtained during the last time-step of the

equilibration process is taken as an initial equilibrium polyelectrolyte configuration

for simulating polyelectrolyte translocation under applied electric field. A uniform

electric field E = 0.43119 is applied across the pore, with no electric field in the

donor and receiver reservoirs. Random velocities with a uniform distribution at the

given temperature are assigned to all the polyelectrolyte beads. The equation of

motion is then integrated in time using Verlet algorithm until all the polyelectrolyte

beads are outside the nanopore on either side. In a successful translocation, the entire

polyelectrolyte is translocated to the receiver side of the pore. Translocation time for

a successful translocation is calculated as the time at which the last polyelectrolyte

bead exits the nanopore on receiver side, starting with the initial configuration of first

polyelectrolyte bead just inside the donor end of the pore.

For a given set of parameter values, 2000 runs are performed, almost all of them

leading to a successful translocation. The same equilibrated polyelectrolyte chain is

taken in each of these runs, with different initial random velocities and random forces
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Figure 2.1. Schematic of charge patterns along the nanopore. Ns represents the
number of charged sections. Positively charged (blue) and uncharged (white) sections
of equal length are placed alternately along the nanopore length.

on the polyelectrolyte beads. We have also performed simulations with 2000 different

equilibrium conformations as initial states. The final results are the same as long as

the initial chain conformations are equilibrated. A distribution of translocation times

for successful translocations is then obtained based on these runs, using which the

mean successful translocation time can be computed.

2.2.1 Results and discussion

A nanopore with a total of half the length being charged can be patterned in

different ways. In the simplest pattern (Ns = 1), the nanopore is divided into two

sections, each of length M/2, with the first section on the donor side being charged

and the second section being uncharged. Ns is the number of pairs of charged and

uncharged sections. Yet another pattern (Ns = 2) can be formed by having four

sections, with each of length M/4. In this case, the first and third sections (from

the donor side) are charged, while the second and fourth sections are uncharged. In

general 2Ns number of sections of length M/(2Ns) will have odd numbered sections

from the donor side being charged, while even numbered sections are uncharged, with

the same total charge in the pore. A schematic of the charge patterns along the

nanopore is shown in Figure 2.1. This distribution of charges inside the nanopore

significantly affects the translocation process, as observed in the following results.
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Polyelectrolyte length N 60(×1.12)
Nanopore length M 32(×1.12)
Debye Hückel cutoff rc2 3
Debye length κ−1 0.81
Charge on nanopore beads αp 0.1
Electric field E 0.43119

Table 2.1. Parameter values corresponding to results in Figure 2.2.

Figure 2.2 shows the translocation time distribution for a uniformly charged poly-

electrolyte with a chain length N = 60 units. The nanopore has alternate charged and

uncharged sections, with varying patterns as described above. Each polyelectrolyte

bead carries a unit negative charge, while each nanopore bead in the charged sections

carries a fractional positive charge of αp. Thus, charged sections of the nanopore are

attractive to the polyelectrolyte. A Debye length corresponding to 0.1M monovalent

salt is used for screening electrostatic interactions. The first bead of the polyelec-

trolyte is placed inside the nanopore to nucleate the translocation process. Under a

constant applied electric field inside the pore, the polyelectrolyte undergoes translo-

cation from the donor reservoir to the receiver reservoir. The values of parameters

used in obtaining these results are given in Table 2.1. Results using these parameters

are shown in Figure 2.2 and are used as a base case for comparison with the rest of

the results.

For smaller value of Ns (=1,2), the translocation time follows approximately a

normal distribution, with a small standard deviation (not presented). As the number

of charged sections Ns increases to 4, the distribution gets skewed, with a longer tail

corresponding to a slower translocation as shown in Figure 2.2. The translocation time

further increases at Ns = 8, with a non-normal distribution having a long exponential

tail. However, with any further increase in the number of sections, the translocation

time is significantly lower. In other words, all the curves for Ns > 8 fall to the left

of the histogram for Ns = 8. This indicates that slowest translocation occurs at an

40



200 400 600 800
τ

0

0.2

0.4

0.6

0.8

1

p(
τ)

/p
m

ax

4
8
16
128

Figure 2.2. Histogram of translocation time, with parameters shown in Table 2.1.
Different symbols indicate different numbers of charged sections Ns.

optimum number of sections in a given length of pore, with corresponding optimum

in the section length (Lopt = 2(×1.12) units).

If the charge on each nanopore bead is reduced to half (αp = 0.05) and the electric

field is also halved (E = 0.215595), the resulting translocation time distributions

show a similar behavior as seen from Figure 2.3(a). A broader translocation time

distribution is seen for an optimum length of section (Lopt = 2(×1.12) units). The

observed optimum disappears with increase in salt concentration. This can be seen

from Figure 2.3(b), which corresponds to a salt concentration of 1M. For such a high

salt concentration, the charges on the nanopore are considerably screened, thereby

reducing the attractive nature of the pore. Hence, the effect of patterns is negligible

and the histograms for different patterns almost overlap.

To check if the optimum section length is affected by the cutoff (rc2) used for elec-

trostatic interactions, simulations were performed at a different value of rc2 with the

rest of the parameters as in Table 2.1 . Figure 2.4(a) shows the resulting histograms

for different patterns. It can be seen that the slowest translocation takes place for the

same Ns, i.e., charge pattern. Thus, the optimum in section length is not an artifact

of the cutoff distance used for electrostatic interactions. Length of the polyelectrolyte
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Figure 2.3. Histogram of translocation time with (a) αp = 0.05, E = 0.215595 and
(b) κ−1 = 0.26 (1M monovalent salt), with the rest of the parameters as shown in
Table 2.1. Different symbols indicate different numbers of charged sections Ns.
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Figure 2.4. Histogram of translocation time with (a) rc2 = 4 and (b) N = 120 and
the rest of the parameters as shown in Table 2.1. Different symbols indicate different
numbers of charged sections Ns.
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Figure 2.5. Histogram of translocation time with (a) M = 64, N = 120 and (b)
M = 4, N = 60 with the rest of the parameters as shown in Table 2.1. Different
symbols indicate different numbers of charged sections Ns.

chain (N) also does not seem to affect the optimum section length (Figure 2.4(b)).

The slowest translocation is observed at the optimum number of sections, Ns = 8.

Increase in the nanopore length to twice the value in Table 2.1 results into shift

of the optimum number of sections to Ns = 16 (Figure 2.5(a)). This clearly indicates

that the section length is an important parameter that governs the translocation

time distribution. The slowest translocation takes place at a section length of Lopt =

2(×1.12). This is also verified from Figure 2.5(b), where the nanopore length is equal

to twice of Lopt. The optimum in this case is at Ns = 1 which also corresponds to an

optimum section length of Lopt = 2(×1.12).

The average translocation time obtained from the distributions is plotted as a

function of length of a section Ls = M/(2Ns) in Figure 2.6. Each curve represents

the results obtained with parameters for corresponding figures as indicated in the

legend. It can be seen that independent of the values of the parameters studied,

the maximum in translocation time, when present, is observed at the same optimum

value of Lopt = 2(×1.12).
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Figure 2.6. Average translocation time as a function of the length of a section Ls =
M/(2Ns). Different symbols indicate results with parameters of the corresponding
figure.

2.2.2 The Fokker-Planck model

As seen from the results in the previous section, the translocation time distribution

is a non-monotonic function of the charge distribution. As we dilute the charges

inside the pore, the translocation time first increases and then decreases. This non-

monotonicity is universally observed at an optimum charge dilution, independent

of the lengths of nanopore and the polyelectrolyte, within the range of parameters

studied. To understand this, we consider a polymer of length N , with a charge q1 on

each monomer, translocating under an applied trans-membrane potential difference

V0 through a nanopore of length M with alternate charged and uncharged sections.

The process of translocation can be divided into three stages [28]: the nanopore filling

stage, the translocation stage and the nanopore emptying stage (Figure 2.7). In each

of these stages, the free energy of the system has four major components to it: pore-

polymer electrostatic interaction (Fele), energy due to externally applied electric field

(Fext), electro-chemical potential difference between the donor and receiver sides (Fµ)

and the chain entropy (Fent). For a segment of the polymer with (b − a) monomers

inside the pore,
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Figure 2.7. Schematic showing the translocation setup along with the three stages
of translocation.

Fele(a, b) = Nr
q1

4πϵϵ0

b
∑

i=a

M
∑

j=1

q2(j)
exp(−κr(i, j))

r(i, j)
(2.1)

where Nr accounts for interaction between a monomer bead at position i and a ring

of Nr nanopore beads at axial position j, r(i, j) is the radial distance between the

monomer bead and the nanopore ring and q2(j) is the nanopore charge at position

j along the nanopore axis. Note that the sum over index j is performed taking

overlapping nanopore beads into account. The corresponding contribution due to

external electric field can be written as

Fext(a, b) =
b

∑

x=a

q1V0
x

M
. (2.2)

For every monomer that is translocated from the donor reservoir to the receiver

reservoir, the electro-chemical potential gradient causes free energy to change by a

factor of µ = q1V0. Thus, for x monomers on receiver side, Fµ(x) = µx. The

entropic contribution for a chain with n monomers on donor(or receiver) side is given

from the entropy for a polymer with one end anchored to a wall [19], Fent(n) =

kBT (1 − γ) ln(n). Using these components with appropriate limits, a free energy

landscape can be constructed in terms of a translocation coordinate m. For the

nanopore filling stage (0 < m < M), m monomers are inside the pore, while the rest

monomers are on donor side. The free energy of the system is given by

F (m) = Fele(0, m) + Fext(0, m) + Fent(N −m). (2.3)
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In the second stage of translocation (M < m < N), M monomers are inside the pore,

N −m on the donor side, and the rest on the receiver side. In this stage,

F (m) = Fele(0,M) + Fext(0,M) + Fµ(m−M) + Fent(N −m) + Fent(m−M). (2.4)

For the nanopore emptying stage (N < m < N +M), m−M monomers are on the

receiver side, while the rest are inside the pore. The free energy can be written as

F (m) = Fele(m−N,M) + Fext(m−N,M) + Fµ(m−M) + Fent(m−M). (2.5)

The contribution of chain entropy Fent is found to be negligible in comparison to

other components within the range of parameters used and is ignored henceforth.

The probability of finding a state corresponding to the translocation coordinate m at

time t is governed by the Fokker-Planck equation [11],

∂P (m, t)

∂t
=

∂

∂m

(

k0
kBT

dF (m)

dm
P (m, t) + k0

∂P (m, t)

∂m

)

. (2.6)

Here, k0 is a phenomenological parameter related to the effective friction coefficient

per monomer on average. This parameter sets the scale for the time variable in

the Fokker-Planck theory. Equation 2.6 can be integrated numerically to get the

probability P (m, t), using the appropriate free energy from equations 2.3, 2.4, and

2.5. The probability density for observing the translocation time τ is [11, 64, 65]

g(τ) = −
d

dτ

∫ N+M

0

P (m, τ)dτ. (2.7)

The derivative of free energy in Equation 2.6 is obtained by using a second order

finite difference approximation at internal points and a first order finite difference at

the endpoints (m = 0 and m = N +M). The right hand side of Equation 2.6 is then
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discretized using a second order finite difference scheme, with absorbing boundary

conditions [11] at m = 0 and at m = N +M . Numerical integration is performed in

Octave using the standard LS-ODE solver. A first order backward difference is used

to approximate the derivative in Equation 2.7 to compute the probability density

function.

A comparison of the resulting translocation time distribution with that obtained

in simulations for a nanopore of length M = 32 is shown in Figure 2.8, by taking the

phenomenological parameter k0 as the only fitting parameter. As seen in Figure 2.8,

the theory predicts that the slowest translocation time occurs for Ns = 8, as in the

simulations. The choice of k0 = 3125 in the theory enables the quantitative agreement

with simulation results. However, the key result, that the broadest histogram occur-

ring at Ns = 8, is independent of the choice for the value of k0. Similar agreements

are borne out for other sets of parameter values used in the present simulations as

well. Such a good agreement on the non-monotonic dependence of the translocation

histogram on the number of charged sections offers an opportunity to go into the

theory, and specifically the free energy landscape, in order to identify the physical

reason behind this novel phenomenon.

A typical free energy landscape for the process is shown in Figure 2.9. The translo-

cation process is downhill for the most part along the translocation coordinate, for

all charge distributions. However, a free energy well is present towards the end of the

nanopore emptying stage (inset of Figure 2.9). This free energy well exists only for

a few charge distributions, with varying steepness of the well. The presence of this

well results in the long exponential tail observed in the translocation time distribu-

tion. This is because the polyelectrolyte gets trapped inside the well and needs to

escape the free energy barrier to exit the pore. The trapping of the polyelectrolyte

inside the free energy well can be understood as a balance between the driving force

due to electric field and the opposing force due to electrostatic attraction with the
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Figure 2.8. Cumulative translocation time distribution for a nanopore of length
M = 32 and N = 60. Symbols represent data obtained from simulations for different
numbers of charged sections Ns, while solid lines represent theoretical predictions
from Equation 2.7 (for k0 = 3125).
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Figure 2.9. Free energy landscape for the translocation of a polymer of length
N = 60 translocating through a nanopore of length M = 32. Inset shows a part of
the same data towards the end of translocation process.
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(a)

Figure 2.10. Snapshots of simulation at different times. (a) Ns = 4, (b) Ns = 8 and
(c) Ns = 16. The chain translocates from the right-hand-side to the left-hand-side.

pore. In the nanopore emptying stage, the number of polyelectrolyte beads inside the

nanopore keeps on decreasing. Thus, the total charges inside the nanopore keep on

reducing as the nanopore becomes more and more empty, thereby reducing the total

force due to electric field. When only a few monomers are present inside the pore,

the electric driving force is very weak. Thus, if there are enough charges towards the

nanopore end, then the driving force becomes insufficient to overcome the attractive

forces. At very low number of charged sections (Ns), the nanopore end is neutral

and hence the net attractive forces are weak. However, as Ns increases, more and

more charges begin to appear near the nanopore end, resulting in increasing attrac-

tive forces. However, at very large values of Ns, even though charges are present near

the nanopore end, their concentration towards the nanopore end decreases, thereby

reducing the net attractive forces. Thus, only at intermediate values of Ns, the elec-

trostatic attraction of the nanopore is strong enough to cause significant trapping of

the polyelectrolyte. Sample snapshots of the simulation at different times are shown

in Figure 2.10. It can be clearly seen that for Ns = 8, the polyelectrolyte is trapped

towards the nanopore end for much longer times.
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Figure 2.11. Schematic of charge patterns along the polyelectrolyte chain. Nps

represents the number of charged sections. Negatively charged (red) and uncharged
(black) sections of equal length are placed alternately along the polyelectrolyte chain
length N , with section length = N/(2Nps).

2.3 A patterned polymer translocating through a patterned

nanopore

Translocation of a multi-block polymer through a uniform nanopore has been

studied widely [14,33,62,63]. The kinetics of translocation is found to be sensitive to

the charge pattern along the polymer. In this section, the kinetics of driven translo-

cation of a charge patterned polyelectrolyte through a charge patterned nanopore is

studied using Langevin dynamics simulations.

Simulations are performed using the LAMMPS package. The simulation details

are similar to those discussed in Chapter 2.2 with the difference in the model for

the polyelectrolyte. The polyelectrolyte chain used in this section is not uniformly

charged, but instead is decorated using charge patterns as shown in Figure 2.11.

Keeping the total charge on the chain to be constant, its distribution is varied as

follows. The total length of the polyelectrolyte N = 128 is divided into 2Nps sections

and only those beads which belong to an alternate section are assigned a charge of

1e.

2.3.1 Results and discussion

The polyelectrolyte is decorated with patterns represented by the parameter Nps

that governs the number of charged sections along its contour length. Additionally,
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Figure 2.12. Mean translocation time for different patterns along the nanopore and
the polyelectrolyte.

the nanopore is decorated with patterns that are represented by the number of charged

sections Ns along its length. We vary the values of Ns and Nps, taking care that at

least a part of a charged section of the polyelectrolyte is present inside the nanopore

during the entire simulation. This is to make sure that the polyelectrolyte is always

driven by the electric field.

The translocation process can be divided into three stages: (1) the nanopore

filling stage, (2) the threading stage, and (3) the nanopore emptying stage. Figure

2.7 shows a schematic of these stages. In addition to the total translocation time

t, we also calculate the time taken by the polyelectrolyte to complete each of these

stages. The time taken by the polyelectrolyte to fill the nanopore is denoted by t1,

the time taken for the threading stage is denoted by t2, while t3 denotes the time

taken for the emptying stage. Figure 2.12 shows the mean total translocation time

⟨t⟩, averaged across 100 simulation runs, as a function of Nps for different values of

Ns as indicated in the legend. Since the absolute values of ⟨t⟩ vary significantly for

different patterns (inset of Figure 2.12), the y-axis is rescaled by the largest value

of ⟨t⟩ for a given pattern Ns on the nanopore. The raw data as well as the rescaled

plot clearly highlights the sensitivity of translocation kinetics on the patterns along
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Figure 2.13. Mean nanopore filling time for different patterns along the nanopore
and the polyelectrolyte. The mean filling time is rescaled for clarity, with the inset
showing the raw data. Different symbols are for different patterns along the nanopore
as shown by the legend.

the nanopore and the polyelectrolyte. For example, the mean translocation time for

Ns = 4 changes by an order of magnitude between various values of Nps.

For a uniformly charged polyelectrolyte translocating through an oppositely charged

patterned nanopore, an energy barrier is present in the nanopore emptying stage [15].

The presence of this barrier results into a significant delay in translocation kinetics

during the nanopore emptying stage. Even in the absence of any patterns, location of

the barrier depends on the nature of the interactions between the nanopore and the

polyelectrolyte [11, 28]. For the patterned polyelectrolyte used in the current study,

a significant contribution to the total translocation time comes from the nanopore

filling and the nanopore emptying stages. Figures 2.13 and 2.14 show the contribution

to the total translocation time from the nanopore filling stage ⟨t1⟩ and the nanopore

emptying stage ⟨t3⟩. The threading stage is the most important stage of transloca-

tion for DNA sequencing applications. The mean translocation time for the threading

stage ⟨t2⟩ is shown as a function of the patterns along the polyelectrolyte Nps for var-

ious nanopore patterns Ns, in Figure 2.15. The most remarkable result of this work

is the strong dependence of ⟨t2⟩ on the patterns along the nanopore and the polyelec-
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Figure 2.14. Mean nanopore emptying time for different patterns along the nanopore
and the polyelectrolyte. The mean emptying time is rescaled for clarity, with the inset
showing the raw data. Different symbols are for different patterns along the nanopore
as shown by the legend.
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Figure 2.15. Mean threading time for different patterns along the nanopore and the
polyelectrolyte.The mean threading time is rescaled for clarity, with the inset showing
the raw data. Different symbols are for different patterns along the nanopore as shown
by the legend. The combination of charge patterns along the nanopore Ns and those
along the polyelectrolyte chain Nps also affect the speed of translocation during the
threading stage.
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Figure 2.16. Free energy landscape for polyelectrolyte chains with different patterns
Nps translocating across a nanopore with patterns corresponding to Ns = 8. Inset
shows a part of the same data during the threading stage.

trolyte. For example, for a nanopore with Ns = 8, there is a five-fold difference in the

mean threading time for polyelectrolytes with varying patterns. As discussed earlier,

even though the charge distribution along the polyelectrolyte length is different for

different values of Nps, the total driving force acting on the polyelectrolyte chain due

to electric field during the threading stage is constant across all the charge distribu-

tions studied. In other words, the total number of negatively charged polyelectrolyte

beads present inside the nanopore is constant during the threading stage. Thus,

the dramatic change in the translocation time during the threading stage is due to

matching of the charge patterns between the nanopore and the polyelectrolyte. The

observed delay in the threading time indicates the presence of energy barriers even in

the threading stage. Figure 2.16 shows the free energy landscape for the transloca-

tion of polyelectrolytes with different patterns Nps across a nanopore with patterns

corresponding to Ns = 8. Inset is the free energy profile during the threading stage,

showing that the gradient in the free energy is the weakest for Nps = 16. Based on

the free energy landscape for Ns = 8, the slowest threading time τ2 for this nanopore

is predicted for a charge pattern corresponding to Nps = 16 along the polyelectrolyte

chain, in agreement to the simulation results.
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2.4 Summary

We have studied the effect of charge distributions along the nanopore wall on

translocation kinetics of a homo-polymer. The translocation is observed to be slowest

at an optimum charge distribution, independent of the nanopore and polymer lengths.

This is due to the presence of a free energy well near the nanopore end that results in

trapping of the polymer. A simple description based on the Fokker-Planck formalism

is shown to be able to explain the observed non-monotonic behavior qualitatively.

We have also studied the translocation kinetics of a polyelectrolyte with charge

decorations along its backbone, through a charge decorated nanopore. We observe

that the translocation kinetics are significantly slowed down for specific combinations

of charge patterns along the nanopore and the polyelectrolyte. More importantly, the

translocation kinetics are slowed down in all three stages of translocation. Our results

are pertinent to the use of nanopores for DNA sequencing applications. Particularly,

our results emphasize the role of polyelectrolyte-nanopore interactions on the speed

of translocation and can be extended to non-electrostatic interactions as well.
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CHAPTER 3

ROLE OF POLYMER ARCHITECTURE

3.1 Star polymers in bulk and in confinement

Polymers with specific architectures find many useful applications. Recent devel-

opments in polymer chemistry have enabled synthesis of new polymer architectures

such as ring polymers, branched polymers, etc. Star polymers are a subset of branched

polymers with only one branch point. These polymers are used in the industry as

viscosity modifiers, in manufacturing of adhesives and in optically clear resins [66].

Biological star polymers made of DNA also exist, typically as three arm [67] and as

four arm [68] DNA. Recently, star polymers with various functionalities, defined as

the number of arms connected at the branch point, have also been synthesized in the

lab [69].

Since these polymers are architecturally different from linear polymers, they show

different dynamic behavior under various experimental conditions. The mechanism

of transport of star polymers is different than the free reptation mechanism by which

linear polymers move in concentrated polymer solutions and in gels [70]. For exam-

ple, in Ref. [71], a linear DNA versus a three arm DNA were compared in terms of

their mobilities in polymer solutions. It was found that a linear DNA exhibits a mo-

bility that is independent of polymer concentration in highly concentrated polymer

solutions. In contrast, the mobility of a three arm star DNA always depends on the

concentration of the polymer solution. While star polymers with higher functionali-

ties result into increasing viscosity of micro-emulsions, linear polymers are found to

be more effective in slowing the dynamics of micro-emulsion droplets [72].
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On the theoretical front, two different mechanisms have been suggested to under-

stand the transport of star polymers in presence of obstacles such as in a concentrated

polymer solution. The reptation mechanism by which linear polymers diffuse in such

a system can be extended to star polymers. This extended model assumes that for

the center-of-mass of the star polymer to move by a unit length, all but two of its

arms have to retract towards its branch point. Such a move would involve an entropic

penalty that reduces the diffusion coefficient dramatically, with a multiplicative fac-

tor of exp(−c1Nb)/Nb relative to the linear polymer reptation model, where Nb is the

number of monomers in each arm and c1 is a constant related to the entropic poten-

tial [73]. A similar exponential dependence is predicted for a three arm star polymer

based on the entropic penalty of one arm retracting towards the branch point [74].

A different choice of the potential related to the arm retraction results into a similar

scaling with Nb [75]. On the other hand, an alternate mechanism by which a star

polymer can diffuse is by dragging all but two of its arms along the direction of motion

of the branch point. In other words, the arm ends are not required to retract to the

branch point, but are dragged along with it. This mechanism, in combination with

reptation, predicts a scaling of exp(−c2Nb)×Nb for the diffusion coefficient, relative

to the linear polymer reptation model [76, 77].

Understanding the behavior of star polymers under confinement has been the fo-

cus of various recent studies. This is an interesting problem because the distribution

of arms of the star polymer under confinement can lead to rich dynamics and devel-

oping such an understanding is required in devising certain applications of interest.

For asymmetric star polymers, arm length has been found to have profound effect on

transport properties of the polymer in gel electrophoresis [78]. For a three arm star

polymer confined in a channel, simulation results reveal that an arm from doubly

occupied side of a channel flips side using an equilibrium barrier crossing mecha-

nism [79]. Langevin dynamics simulations show that a four arm star polymer inside a
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channel with all arms on the same side of the branch point transitions to the equilib-

rium configuration of two arms on each side by flipping one arm at a time by forming

a loop near the branch point instead of retracting the arm end [80]. In presence of

a flowing fluid, conformational dynamics of a star polymer becomes even more im-

portant. The critical capture rate of a star polymer into a nanopore is predicted to

have a strong dependence on its functionality for certain arm lengths [81, 82]. The

star polymer is found to migrate away from the walls of a wide cylindrical pipe due

to the flow along the pipe length, with the extent of migration increasing for stars

with higher functionalities [83]. Consequently, star polymers with higher functional-

ity flow with a higher average velocity through the cylindrical pipe. These studies,

however, are focused on dynamics and equilibrium conformations of star polymers in

infinitely long channels. Even in the absence of any confinement, flow of the fluid in

the neighboring regions of the star polymer is affected to different extents depending

on the functionality of the polymer [84]. Individual arms of the star polymer show a

coil-stretch transition similar to linear chains in presence of a fluid undergoing either

extensional flow or shear flow [85,86]. The critical strain rate or critical shear rate at

which such a transition occurs, is related to the arm-length instead of the molecular

weight of the star polymer. Thus, conformational dynamics of a star polymer are

strongly dependent on its functionality.

Translocation of linear polymers through finite-length nanopores itself is a rich

problem due to the large number of parameters involved. For example, in the simplest

case of charged linear polymers, the charge patterns along the polymer and the pore-

polymer interactions play an important role in the translocation kinetics, as seen

from simulations [33, 56, 63], experiments [30] and from the theoretical description

based on the Fokker-Planck formalism [11,15]. In experimental work involving DNA

translocation, the ionic size of the salt used [7] and the mismatch in salt concentration

across the nanopore [13] change the kinetics of translocation. The problem gets even
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more complex when polymer architecture is added to the parameter space. For short

finite-length pores, hydrodynamic simulations show that the time taken by a star

polymer to translocate across the nanopore depends on the initial distribution of

the number of arms inside (leading) and outside (trailing) the nanopore [87]. If the

translocation process begins with one or more leading arms inside the nanopore,

the translocation time is found to increase with increasing number of trailing arms

in the initial configuration. On the other hand, increasing number of leading arms

beyond small numbers does not affect the translocation time significantly. Note that

increasing the number of arms in either case leads to increase in the molecular weight

of the star polymer. To arrive at specific conclusions about the role of polymer

functionality, a systematic comparison between translocation kinetics of star polymers

with varying functionalities but with the same molecular weight is necessary.

In this chapter, we look at the kinetics of translocation of charged star polymers

of varying functionalities driven through narrow finite length nanopores. We find

a non-monotonic dependence of translocation time on the functionality of the star

polymers for a nanopore of given dimensions. The effect of varying the dimensions of

the nanopore on the translocation kinetics is also studied. We also comment on the

mechanism of translocation of star polymers through nanopores.

Simulation details are described next, followed by the results for kinetics of translo-

cation obtained from these simulations along with a detailed discussion. Key conclu-

sions are summarized at the end of the chapter.

3.2 Simulation methodology

The translocation of star polymers of different functionalities through an un-

charged solid-state nanopore under the influence of an electric field is studied using

coarse-grained Langevin dynamics simulations. Figure 3.1 shows a schematic of the
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Figure 3.1. Schematic of the simulation setup for a star polymer of functionality
f = 3. The nanopore is made of static beads shown as black circles. The arms of the
star polymer are made of charged beads shown as red circles, connected to a central
uncharged bead (branch point) shown as a black circle.

setup. The coarse-grained models for the polymer and the nanopore are explained

below.

A bead-spring model is used to represent the star polymer. A spherical bead, con-

nected to other beads using harmonic springs, is used to represent a monomer. The

mass and length scales are chosen such that the mass of a monomer bead m = 1 (cor-

responding to a mass of 130g/mol) and size of a monomer bead σ = 1 (corresponding

to a length of 3Å). Independently, we choose the energy scale to be kBT where kB

is the Boltzmann constant and T = 300K is the temperature. All other quantities

are converted to reduced units using these scales and are reported in reduced units

henceforth, unless noted otherwise.

The total number of monomer beads, N = 121, is kept constant across star

polymers of different functionalities. f linear arms are connected to a central bead

(branch point) to form a star polymer with a functionality f . Consequently, each arm

consists of Lf = (N − 1)/f beads connected linearly. The branch point is uncharged,

while the rest of the beads carry a unit negative charge q = −1e (e is the elementary

charge).
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The functionality f of the star polymer is varied between 2, 3, 4, 5, 6, 8 and

10. Additionally, a star polymer with a high functionality of 120 is studied. For

f = 120, however, a slightly different model is used. The uncharged branch point

bead is connected to 10 arms, each consisting of 2 beads. The free ends of each of

these arms are then connected to 10 beads to form a star-like polymer corresponding

to a high f .

The three-dimensional simulation box is divided into two reservoirs, the donor and

the receiver, by an M unit thick rigid membrane modeled using two vertical walls. A

small hole of radius rp is present in both the walls and is connected using a cylindrical

nanopore of length M . The membrane and nanopore walls are made of immobile and

uncharged spherical beads of sizes 1 and 0.25 respectively.

In a typical translocation experiment (Chapter 1), an electric potential difference

is applied across the nanopore using electrodes placed in the two reservoirs. The

electric potential drops significantly only inside the nanopore. To simulate this in an

approximate sense, we set a constant electric field E = 0.061 inside the nanopore,

acting along the nanopore axis. The electric field is zero in the donor and receiver

reservoirs.

Excluded volume between a pair of beads (monomer-monomer or monomer-wall)

is modeled using the truncated Lennard-Jones interaction potential (ULJ),

ULJ =

⎧

⎪

⎨

⎪

⎩

4ϵLJ
[

(

σ
r

)12
−

(

σ
r

)6
]

+ ϵLJ for r ≤ 1.12σ

0 for r > 1.12σ

where ϵLJ is the depth of the potential well, σ is the mean of the sizes of the two beads

and r is the distance between them. Two additional monomer-monomer interactions

exist. The springs between bonded monomers are modeled using a pair-wise harmonic

bond potential,
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Ub = K(r − r0)
2

, where K = 15480 is the harmonic spring constant, r is the distance between the two

connected beads and r0 = 1 is the equilibrium bond length. Electrostatic interactions

between monomer beads are modeled using Debye-Hückel potential (UDH),

UDH =
1

ϵr

q1q2
r

exp(−κr) (3.1)

where ϵr = 80 is the dielectric constant of the medium, q1 and q2 are the charges on

the two monomer beads and κ−1 = 3.25 is the Debye length corresponding to a 0.1M

monovalent salt.

In Langevin dynamics, the above potentials are used to solve the equation of

motion for each monomer bead.

m
d2r

dt2
= −ζ

dr

dt
−∇(ULJ + Ub + UDH) + Fr + Fext (3.2)

where r is the position of the monomer bead, t is the time, ∇ is the three dimensional

gradient operator and Fext = qE is the force due to external electric field. The drag

force with drag coefficient ζ = 1 and random force Fr acting on the monomer bead

due to implicit solvent are related by the fluctuation-dissipation theorem. The above

equation is integrated using the velocity-Verlet algorithm implemented in LAMMPS

[52] using a time-step of 0.005.

Before setting up the simulation runs, 40 different equilibrium conformations are

generated for a given functionality. These equilibrated initial conformations consist

of the star polymer with one terminal bead just inside the nanopore and the rest of

the beads in the donor reservoir. We comment on this choice of initial conformations

in Chapter 3.4.1. For a given functionality f , 2000 independent simulation runs are

performed. Each run is started with an initial conformation selected from 40 different
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equilibrium conformations generated. In each simulation run, random initial velocities

are assigned to all the monomer beads. The equation of motion is then integrated

in time until all the beads are on either side of the nanopore. A translocation run is

considered to be successful if the entire star polymer translocates across the nanopore

into the receiver compartment. Translocation time is define only for successful runs,

and is calculated as the time taken by the terminal bead of the last arm to exit the

nanopore. The time taken by all the successful runs is averaged to calculate the mean

translocation time ⟨τ⟩.

3.3 Results and discussion

A typical simulation run proceeds as follows. As mentioned above, the translo-

cation is nucleated at the beginning of the simulation run by placing one terminal

monomer bead belonging to the end of an arm is placed just inside the nanopore

entrance. As translocation progresses, more and more beads of the leading arm enter

the nanopore. This continues until the branch point is at the nanopore entrance.

Depending on the functionality of the star polymer, there can be a delay before the

branch point enters the nanopore due to presence of energy barrier associated with

simultaneously forcing multiple arms into the nanopore. Once this barrier is over-

come, the rest of the arms are dragged along with the branch point into the nanopore.

The translocation continues until the rest of the arms exit the nanopore. This closely

follows the drag mechanism model proposed in Ref. [76], albeit in presence of a drift.

In presence of strong driving forces such as the force due to electric field present in

the simulations, the arms of the polymer do not get enough time to retract to the

branch point to undergo relaxation. Instead, they are dragged along with the branch

point and are compressed inside the nanopore. The free end of each arm enters the

nanopore only after the rest of the arm is already inside the nanopore.
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Figure 3.2. Mean translocation time ⟨τ⟩ of star polymers of equal mass as a func-
tion of their functionality f for a nanopore of radius rp = 3.2 and length M = 16.
Note: The polymer with f = 120 is used to simulate very large functionality and is
architecturally different than other star polymers.

3.3.1 Effect of polymer functionality

In the following, the nanopore dimensions are kept fixed (M = 16 and rp = 3.2)

to study the translocation of star polymers with different functionalities f . Figure 3.2

shows the mean translocation time ⟨τ⟩ as a function of f . Error bars denote the width

of the translocation time distribution. For lower functionalities, the mean transloca-

tion time decreases as the functionality of the star polymer increases. This continues

until the functionality reaches a critical value, e.g., f = 6 for the given nanopore

dimensions. Above this functionality, the mean translocation time increases with the

functionality. For f = 120, however, the mean translocation time is the lowest. As

discussed earlier, the star polymer corresponding to f = 120 is not strictly similar to

other star polymers. Figure 3.2 also shows that the width of the translocation time

distribution increases beyond the critical functionality. Figure 3.3 shows the corre-

sponding translocation time distributions. It can be confirmed that for star polymers

with functionalities higher than the critical functionality, the translocation time dis-

tribution is wider and is characterized by a longer tail. The distribution is narrow

and more symmetric for lower functionality star polymers.
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These observations can be understood in terms of two competing forces. With

increasing functionality, the charge density of the star polymer inside the nanopore

increases. As mentioned in the previous section, the translocation is nucleated with

one terminal bead of the star polymer inside the nanopore at the beginning of each

simulation. Typical translocation event takes place in two parts. In the first part,

one arm of the star polymer enters the nanopore and translocates across it. This

continues until the branch point of the star polymer is at the nanopore entrance. In

the next part, all the remaining arms enter the nanopore together. Thus, during the

first part, the charge density is same across different functionalities. In the second

part, however, the charge density is higher for polymers with higher number of arms.

The length of each arm of the polymer also decreases with increasing functionality.

Consequently, the average driving force due to electric field acting on the polymer

increases with increasing functionality. On the other hand, increase in charge density

leads to swelling of the polymer and hence to an increase in the resistance of the

polymer arms to enter the nanopore (confinement). A balance between these two

competing forces results into a minimum in the mean translocation time as observed

in Figure 3.2. However, for f = 120, the driving force is maximum, while the con-

finement effect is negligible as the nanopore size is larger than the effective size of the

particle. Hence, lowest translocation time is observed for f = 120.

3.3.2 Effect of nanopore radius

Nanopore radius rp affects the confinement forces without changing the driving

force, and hence changes the results shown in Figure 3.2 significantly. The variation

in mean translocation time of star polymers with different functionalities translo-

cating across nanopores of different radii is shown in Figure 3.4. All the features

observed for rp = 3.2 (Figure 3.2) are also observed for smaller nanopore radii. The

mean translocation time shows a non-monotonic dependence on the functionality of
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Figure 3.3. Translocation time distribution for polymers with different functionali-
ties f for a nanopore of radius rp = 3.2 and length M = 16.

the star polymer. For the lowest functionality star polymer (f = 2), narrowing the

nanopore does not affect the mean translocation time significantly. For polymers with

all other functionalities, the mean translocation time increases with decrease in the

nanopore radius. The critical functionality, corresponding to the shortest transloca-

tion time, also decreases with decreasing the nanopore radius. Furthermore, a cutoff

functionality exists, beyond which any attempted translocation is unsuccessful.

The confinement is negligible for linear polymers (f = 2). Hence, nanopore radius

does not seem to affect the translocation time for f = 2, within the range of nanopore

radii studied. For higher functionality polymers, the confinement becomes stronger for

smaller nanopore radii, resulting into an increase in the mean translocation time with

decreasing nanopore radius. The critical functionality corresponding to the slowest

translocation time is a consequence of the balance between the driving force and the

opposing force, both governed by the charged density. The critical functionality is

found to be affected by the nanopore radius. Additionally, the existence of a cutoff

functionality for a given nanopore radius can be explained in terms of the increased

strength of confinement for polymers with higher functionalities. These results will

be discussed in details in Chapter 3.4.2.
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Figure 3.4. Mean translocation time ⟨τ⟩ of star polymers as a function of their
functionality f for different nanopore radii rp. The nanopore length M = 16.

3.3.3 Effect of nanopore length

Variation in the nanopore length shows interesting trends in translocation kinetics.

The nanopore radius is kept fixed at rp = 3.2, while its length is varied between 2

to 32 units. For systematic comparison, we choose to keep the electric field inside

the nanopore to be constant, instead of keeping the electric potential drop across

the nanopore to be a constant. The reason behind this choice is that we begin our

simulations by nucleating the translocation process with one bead of the polymer

just inside the nanopore. The latter option will significantly reduce the driving force

during the nanopore filling stage and would also decrease the number of simulation

runs that result into a successful translocation.

Figure 3.5 shows the variation in mean translocation time with the nanopore

length M . Polymers of different functionalities are denoted using different symbols

as indicated in the legend. For a given functionality, the translocation time decreases

with increase in the nanopore length for shorter pores. For longer pores, however,

the translocation time is independent of the nanopore length. Additionally, we also

observe that the sensitivity of translocation kinetics towards functionality of the poly-

mer reduces with increasing nanopore length. Histograms for the translocation time

distribution corresponding to three nanopore lengths for different polymer function-
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Figure 3.5. Mean translocation time ⟨τ⟩ of star polymers as a function of the
nanopore length M . The nanopore radius rp = 3.2. Different symbols indicate differ-
ent functionalities. Note that the electric field inside the nanopore is kept constant.
Hence, longer pores have a stronger driving force.
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Figure 3.6. Translocation time histograms for star polymers of different functional-
ities f for different nanopore lengths M . Longer nanopores have a stronger driving
force.
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alities are shown in Figure 3.6. Histograms for different functionalities have distinct

peaks for all nanopore lengths. Additionally, increasing the nanopore length also

results into a narrower distribution.

During the nanopore filling stage, each monomer entering the nanopore results

into loss of entropy. Longer nanopores can accommodate relatively more monomers

inside them, and hence result into a higher entropic loss for the polymer during this

stage. Additionally, the resulting larger number of charged monomers inside longer

pores result into higher confinement energy and hence into a higher resistance for

multiple arms to enter the nanopore. These two effects compete with the increased

driving force for longer pores. The observed trends in Figure 3.5 can be understood

in terms of these effects. For shorter pores, the energy barrier in nanopore filling

stage due to confinement is relatively short. Hence, with slight increase in nanopore

length, the increase in the total force due to electric field results into faster mean

translocation time. For longer pores, the energy loss due to confinement compensates

the gain in the electric field, resulting into a length independent mean translocation

time.

Thus, a clear non-monotonic trend exists between the functionality of star poly-

mers and the kinetics of their translocation through uncharged nanopores. Addition-

ally, both the nanopore radius and the nanopore length affect translocation kinetics

significantly.

3.4 Insights into the mechanism of transport of star polymers

We now discuss the mechanism of transport of star polymers through nanopores

based on the above results. The translocation of a polymer through a nanopore is

commonly divided into two steps - polymer capture that involves an end of the poly-

mer finding the nanopore, followed by threading of the polymer across the nanopore.

Firstly, we qualify our choice of simulation setup by addressing the issue of multi-
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ple arm capture, where ends of two or more arms find the nanopore simultaneously.

The observed non-monotonicity is then explained qualitatively in terms of an energy

barrier during the threading of the branch point into the nanopore.

3.4.1 One leading arm vs. two leading arms

Diffusion of a star polymer in a melt is significantly slower than its linear coun-

terpart. As discussed in Chapter 3.1, two distinct mechanisms have been proposed

in the literature to predict this reduction in diffusion. One mechanism proposes that

f − 2 arms of the star polymer have to retract to the branch point for the center

of mass of the polymer to undergo a diffusion step [73]. The timescale for such a

retraction is predicted from the entropic penalty based on the probability of having a

random walk of length Lf that forms a loop without enclosing any obstacles [74]. An

alternate mechanism is where the branch point of the star polymer takes a diffusion

step while the trailing f − 1 arms are dragged along [76]. In this context, we perform

simulations to identify the dominant mechanism in transport of a star polymer across

a nanopore under the action of an electric field.

As described earlier, we start all our simulations with an end of one of the arms

of the star polymer just inside the nanopore. We justify this choice of the initial

conformation, in contrast to ends of two or more arms inside the nanopore in the

following paragraph.

A significant drop in the applied electric potential takes place across the nanopore,

while the potential only weakly changes far from the nanopore. The star polymer has

to diffuse to a certain distance near the nanopore, termed as the critical capture ra-

dius, before it experiences a drift towards the nanopore due to the electric field. It

is entropically unfavorable to have ends of two arms of the star polymer to simul-

taneously enter the nanopore. Nonetheless, we also simulate this unlikely situation

to show that even if this two-arm capture did happen, most of the translocation at-
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f psuccess
2 0.0742
3 0.0492
4 0.0714
5 0.0554

Table 3.1. Probability of successful translocation, psuccess, for a star polymer with
two leading arms, for various functionalities f of the star polymer.

tempts will fail, resulting into retraction of one or both arms of the star polymer out

of the nanopore. For a nanopore with dimensions rp = 3.2 and M = 16, our simu-

lations show that less than 10% of events initiated with two leading arms result into

successful translocation (see Table 3.1). Such a low probability of success additionally

supports our choice of initial conformation. Thus, the diffusion mechanism based on

arm dragging [76] is dominant in our system.

3.4.2 Contributions to the mean translocation time

For ease of discussion, consider that the translocation of the star polymer through

a nanopore is divided into the following stages defined based on the position of the

branch point.

1. Branch point absorption: The branch point approaches and enters the nanopore

from the donor reservoir.

2. Trailing arms filling: The branch point is translocated across the nanopore as

the trailing f − 1 arms fill the nanopore completely.

3. Trailing arms threading: The trailing f − 1 arms thread through the nanopore

until all trailing arm ends enter the nanopore.

4. Nanopore depletion: Ends of the f − 1 arms translocate across the nanopore

and exit the nanopore.
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Figure 3.7. Detailed time taken for each stage of the translocation, for different
nanopore radii corresponding to Figure 3.4. Average time for (a) Branch point ab-
sorption τ1 (b) Trailing arms filling τ2, (c) Trailing arms threading τ3 and (d) Nanopore
depletion τ4 is plotted for star polymers of functionality f and nanopore radii rp.

We compute the average time taken for the above stages based on successful

simulation runs and denote these by ⟨τ1⟩, ⟨τ2⟩, ⟨τ3⟩ and ⟨τ4⟩ respectively. Figure 3.7

shows the average time taken for each of these stages.

A rich phenomenology clearly exists in the translocation process. To understand

the contributions from each of these stages to the total translocation time, we discuss

different competing effects below.

3.4.2.1 Path length and Driving force

In our system, the length of each arm of the star polymer Lf decreases as its

functionality increases. Thus, for example, a linear polymer has the longest contour

length from end to end (= 2Lf = 120), compared to the contour length from end of

the leading arm to the end of a trailing arm for a three arm star polymer (= 80).

Assuming single-file translocation, the total path that the polymer needs to travel

while undergoing translocation, thus, decreases with increasing functionality. This

effect alone would cause the mean translocation time to decrease with increasing

functionality of the star polymer.
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Except for the first stage of translocation, the driving force due to electric field

increases with increasing functionality of the star polymer. This is an effect of the

increased linear monomer density inside the nanopore which by itself would cause the

mean translocation time to decrease with increasing functionality of the star polymer.

3.4.2.2 Confinement

For a given nanopore radius, once the branch point is captured, the trailing arms of

the star polymer have to enter the nanopore. The entropy of the star polymer reduces

as more of the nanopore is filled by the trailing arms. Moreover, the strong electro-

static repulsion between monomers of the trailing arms causes an energy penalty for

having multiple arms filling the nanopore. This effect alone would increase the mean

translocation time with increasing functionality of the star polymer.

When the branch point completes threading, the situation is different because

beyond this time, the number of monomers belonging to the trailing arms that enter

the nanopore from the donor reservoir is the same as those that come out of the

nanopore on the receiver reservoir. We expect this effect alone to lead to a behavior

similar to the path length effect.

3.4.3 Phenomenology of star polymer translocation

The observed trends in Figure 3.7 can be explained in terms of the above effects.

Firstly, the time taken for the nanopore depletion stage ⟨τ4⟩ is not sensitive to the

functionality of the star polymer or the nanopore radius. During this stage, both

confinement and the driving electric force act synergistically to drive the polymer out

of the nanopore.

The translocation velocity during the trailing arms threading stage is nearly con-

stant for different functionality star polymers as seen from a plot of the average time

taken for this stage as a function of the arm-length Lf in Figure 3.8. Thus, the path

length effect causes ⟨τ3⟩ to decrease with f . Moreover, the velocity slightly increases
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as the nanopore radius increases since the arms are slightly less stretched in a wider

nanopore. This reduction in stretching is evident from the fact that the time taken

for trailing arms threading through a rp = 3.2 radius nanopore, ⟨τ3⟩ ∼ 0 for the star

polymer with functionality f = 6 (the corresponding arm length is 20), even when

the nanopore length M = 16.

The average time taken for the branch point threading stage ⟨τ2⟩, during which

the nanopore is gradually filled by all the trailing arms, increases with the number

of trailing arms and hence the star functionality. For a star polymer of a given

functionality, ⟨τ2⟩ decreases with increasing nanopore radius. The time taken for this

stage is governed by the balance between the entropic and electrostatic penalty of

putting monomers of the trailing arm into the confined nanopore, and the increase

in driving force due to increased charges while doing so. For the narrow nanopores,

the entropic and electrostatic penalty dominates and causes the average time of this

stage to increase with f . However, for the widest nanopore (rp = 3.2), the entropic

and energetic penalty is insufficient to cause such an increase.

In our simulations, the star polymer experiences the presence of the membrane

wall right from the beginning of each run. For lower functionality star polymers,

the path length effect dominates, causing the average time for the first stage ⟨τ1⟩

to decrease with increasing f . However, as the number of trailing arms increases,

the average time increases due the presence of the wall, delaying the translocation

process.

3.5 Summary

We have studied the translocation of charged star polymers of varying function-

alities through an uncharged nanopore, driven by electric field. The key observation

made in this thesis is the strong dependence of the mean translocation time on the

functionality of the star polymer. Moreover, this dependence is non-monotonic, with
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Figure 3.8. Average time for the trailing arms filling stage < τ3 > for star polymers
of different functionalities, plotted versus the star polymer arm length Lf = 120/f .

the presence of a minimum for a particular functionality. This minimum can be

shifted by changing the dimensions of the nanopore.

Gel electrophoresis is used as an analytical method for detecting and isolating star

polymers based on their architecture. However, such techniques have limited sensi-

tivities and are indirect in the sense that one can only distinguish between polymers

based on their sizes. Our study shows that the translocation time histograms (which

can be measured experimentally) of architecturally different polymers translocating

through nanopores are clearly distinguishable with distinct peaks for certain nanopore

dimensions. This suggests that nanopores can be used as an alternative analytical

tool for detection and separation of charged polymers based on their architecture.

Although our study is based on charged polymers, the results are general as long as

the driving force increases with the functionality of the polymer. For instance, neutral

semi-flexible polymers can be distinguished by dragging them through nanopores

using fluid flow. Such a simulation study would require incorporating hydrodynamics

in the simulation model. The dimensions of the nanopore can be fine-tuned to further

improve the distinguishability. Additionally, the pore-polymer interactions can be

used to further optimize such a device. These parametric studies are required to be

75



studied in details in the future. Nonetheless, the results of this chapter are promising

as a proof of concept.
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CHAPTER 4

ROLE OF POLYMER CHAIN FLUCTUATIONS

4.1 Polymer translocation using motor protein

An interesting approach has been recently proposed to control the kinetics of elec-

trophoretic translocation of DNA through commonly used biological nanopores [3,4].

This approach is based on the idea of using phi29 DNA polymerase as a motor pro-

tein. phi29 is a DNA polymerase that replicates a template single stranded DNA by

synthesizing a complementary strand. The phi29 polymerase has an active polymer-

ization site where the complementary strand is synthesized. It also has an exonuclease

site for hydrolyzing erroneous nucleotides from the complementary strand for accu-

rate replication. The average rate of replication is on the order of 40 nucleotides per

second, well within the desired range for DNA sequencing applications. This rate is

found to decrease when tension is applied on the the template strand [88]. In this re-

cently proposed approach, the phi29 polymerase is complexed with a single stranded

DNA. A primer strand and a blocking oligomer are attached to the DNA such that

the activity of phi29 polymerase is suppressed in the bulk due to the presence of

the blocking oligomer. External electric field drives this entire complex towards the

nanopore, with the template DNA threaded into the nanopore, followed by gradual

unzipping of the blocking oligomer. The phi29 polymerase gets activated due to this

strategic unzipping of the blocking oligomer and starts exerting a motor force on the

template DNA. An externally applied electric field and the motor force due to the

phi29 polymerase act in opposite directions, resulting into controlled translocation ki-

netics. Although the resulting reduction in translocation speed is in the desired range,
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the question about readability of the corresponding ionic current traces needs to be

addressed. With the aid of Langevin dynamics simulations, we study the dynamics

of different segments of the DNA inside the nanopore, in response to a hypothesized

two-step mechanism by which the motor forces act. The motivation behind this work

is to validate the effectiveness of this new approach in reliably detecting nucleotide

sequences from the ionic current traces. The two-step mechanism that we hypothe-

size is qualitatively similar to the power-stroke model proposed in the literature for

protein translocation [89,90]. The structure of phi29 polymerase also suggests a two-

step mechanism where a complementary nucleotide has to diffuse to the active site

and then bind to the complimentary DNA strand, followed by relative displacement

of the DNA [91].

4.2 Model and simulation methods

Reduced units are derived for all quantities using the scales for three fundamental

quantities: mass=130g/mol, length=3Å and energy=kBT , where kB is the Boltz-

mann constant and T = 300K is the temperature. All values reported in the rest of

this chapter are in reduced units, unless explicitly stated.

The simulation setup (Figure 4.1) consists of a thick membrane that divides the

simulated region into two compartments. The membrane is embedded with a MspA

nanopore with the nanopore axis aligned in the z-direction. The nanopore is oriented

such that the nanopore entrance (vestibule region) is on the right hand side. In other

words, the left and right compartments are on trans and cis side of the nanopore. A

phi29 polymerase complexed with a ss-DNA is placed near the nanopore entrance on

the right and oriented such that its tunnel corresponding to the ss-DNA is along the

nanopore entrance.
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Figure 4.1. A typical snapshot of the simulation setup. Pore and polymerase beads
are shown as polyhedra for visualization. The phi29 polymerase pulls the DNA chain
in the positive z-direction (to the right), while the opposing force due to the electric
field is along the negative z-direction. The resulting motion of the DNA is towards
the right.
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4.2.1 Coarse-graining

The membrane is represented by two parallel walls made from spherical beads of

size 1.8 arranged in a rectangular array. We use X-ray crystal structures of the MspA

nanopore [92] and the phi29 polymerase [91] from the protein data bank to obtain

corresponding coarse-grained models. In these coarse-grained models, each residue

of the MspA nanopore and the phi29 polymerase is represented by a united-atom

bead with diameter 1 unit, with the center at the C-α position. Each coarse-grained

bead is assigned charge corresponding to physiological conditions. Thus, the beads

corresponding to ARG, HIS and LYS residues are assigned a unit positive charge,

while those corresponding to ASP and GLU residues carry a unit negative charge.

Rest of the beads are neutral. Coordinates obtained after coarse-graining are then

translated and rotated as required to generate the simulation setup.

The origin is chosen at the entrance of the MspA nanopore, with the z-direction

along the nanopore axis. The membrane walls are located at z = −29.5 and z =

−14.8, the MspA nanopore extends from z = −31.17 to z = 0, and the phi29 poly-

merase extends from z = −3.5 to z = 17.92.

The ss-DNA consists of 100 nucleotides and is initially placed such that 64 nu-

cleotides are in the trans compartment, while the rest are either inside the MspA

nanopore, inside the phi29 polymerase or in the cis compartment. Each nucleotide

is represented using a three-bead model, with spherical beads of diameter 0.83 cor-

responding to a base, sugar and a phosphate group. Each phosphate bead in a

nucleotide belonging to the ss-DNA is assigned a unit negative charge while the sugar

and base beads are neutral. We number the beads starting from the cis side, such

that the base, sugar, and the phosphate beads of the first nucleotide are numbered

1, 2 and 3 respectively. Thus, the entire ss-DNA is made using using 300 beads.
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Figure 4.2. Voltage profile inside the nanopore. The approximate locations of the
MspA nanopore and the phi29 polymerase are also shown. The active site of the
phi29 polymerase is marked with a black circle.

4.2.2 Voltage profile

A potential difference of 180mV is applied across the membrane. The negatively

charged ss-DNA experiences a force towards the trans side due to electric field, against

the direction of the pulling force due to motor protein. The resulting voltage pro-

file across the nanopore is obtained by solving the Poisson-Nernst-Planck equation

(Equation 4.1) in absence of the DNA, using the boundary conditions that the electric

potential is equal to 0mV at the left boundary and is equal to −180mV at the right

boundary.

ϵ0∇. [ϵ(r)∇ψ(r, t)] = −
∑

i

zieci(r, t)− ρpore(r)

∂ci(r, t)

∂t
= ∇ · [Di∇ci(r, t) + µici(r, t)∇ψ(r, t)] (4.1)

µi =
zieDi

kBT

Here, ϵ0, kB, and e correspond to permittivity of free space, Boltzmann constant,

and elementary charge, respectively. The dielectric constant ϵ(r) varies depending on
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whether the location r is in the protein or in the rest of the region containing water.

We choose ϵ = 2 for the protein and ϵ = 80 for water. The salt is assumed to be

potassium chloride, with concentration of the monovalent (zi = ±1) potassium and

chloride ions to be 0.3M at the simulation boundaries. The diffusion coefficients Di

for potassium and chloride ions are 0.196Å2/ps and 0.203Å2/ps, respectively [93]. The

above set of coupled equations is solved numerically for the given charge distribution

ρpore inside the MspA nanopore and the phi29 polymerase, to get the resulting salt

concentration profile ci(r, t) and the electric potential profile ψ(r, t) at steady state

(as discussed in Ref. [11]). Figure 4.2 shows the resulting voltage profile, with the

MspA nanopore and phi29 polymerase positions shown as a guide.

4.2.3 Driving forces

The beads corresponding to MspA nanopore and phi29 polymerase are kept fixed

at their positions throughout the simulation. The beads corresponding to the ss-DNA

interact amongst themselves and with the nanopore, polymerase and membrane beads

according to the following pair-wise interactions.

Excluded volume and electrostatic interactions between two beads i and j with

charges qi and qj , separated by a distance r, are modelled using a truncated Lennard-

Jones potential (ULJ) and a Debye-Hückel potential (UDH) respectively. These poten-

tials are given by the following equations.

ULJ =

⎧

⎪

⎨

⎪

⎩

4ϵLJ
[

(

σ
r

)12
−
(

σ
r

)6
]

+ ϵLJ for r ≤ 1.12σ

0 for r > 1.12σ
(4.2)

UDH =
Cqiqj
ϵ

exp(−κr)

r
for r ≤ rc2 (4.3)

Here, ϵLJ = 1 is the depth of the truncated Lennard-Jones potential, while σ is the

average of the sizes of the two beads. The Debye length is κ−1 = 1.873, corresponding

to a monovalent salt concentration of 0.3M; a choice made to mimic the experimental
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conditions used in Ref. [4]. The constant C = 1 in reduced units. The Lennard-Jones

potential is truncated at the distance where the potential is minimum. This preserves

only the repulsive part of the potential. A size is assigned to each bead by choosing

the appropriate value of σ. For example, σ = 1 for a phi29 polymerase bead. The

Debye-Hückel potential is truncated beyond the cutoff distance of 3 for computational

efficiency.

The beads belonging to ss-DNA have an additional harmonic bond potential in-

teraction Ub to represent bond connectivity and an angle potential Ua to restrict the

angle θ between the base, sugar and phosphate beads, given as follows.

Ub = K(r − r0)
2 (4.4)

Ua = Ka(cos(θ)− cos(θ0))
2 (4.5)

The spring constant K = 2580 and the angle energy constant Ka = 125, while

θ0 = 65◦ is the base-sugar-phosphate equilibrium angle. These potentials along with

the chosen parameter values are used to represent the DNA as a semi-flexible chain.

The position r of each bead belonging to the ss-DNA is updated using the equation

of motion given by,

m
d2r

dt2
= −ζ

dr

dt
−∇(ULJ + UDH + Ub + Ua) + Fr + Fext. (4.6)

Here, m = 1 is the mass of the bead, t is the time and ζ = 50.5 is the bead friction

coefficient. ∇ is the three dimensional gradient operator. The random force Fr is

related to the friction coefficient by the fluctuation dissipation theorem [11]. The

external force Fext has two contributions to it: the contribution due to the electric

field and the contribution due to the pulling force of the motor protein. The above
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equation of motion is integrated using the velocity Verlet algorithm implemented in

LAMMPS [52], using a time-step of 0.005.

The electric field acts only along the z-direction and is calculated from the voltage

gradient shown in Figure 4.2. The pulling force of the motor protein acts on the

ss-DNA bead nearest to the location (2.165,-1.565,7.818). In the reminder of this

chapter, we refer to this location as the active site. Figure 4.2 also shows the location

of the active site.

4.2.4 Procedure

The phi29 polymerase is known to synthesize a complimentary DNA strand at a

typical rate of synthesis of 40 nucleotides per second [88]. To mimic the polymerase

activity, we adopt the pull-relax strategy in our simulations. At t = 0, the ss-DNA

bead nearest to the active site is rapidly pulled towards the active site in 5 simulation

steps, which corresponds to 0.054ps. This bead is then held at the active site for

trelax simulation steps. The nearly instantaneous displacement created during the

pulling stage travels along the ss-DNA chain during this relaxation stage. In this

work, we study the dynamics of beads at different locations along the ss-DNA chain

for trelax = 106 steps, as discussed in Chapter 4.3. Positions of all the beads are stored

after every 5 steps for computational efficiency.

4.3 Results

The starting configuration is such that the 23rd bead (corresponding to sugar of

the 8th nucleotide) along the ss-DNA chain happens to be present nearest to the

active site. We denote the position of a ss-DNA bead from the chain end on the right

side by s, while the bead pulled at the active site is denoted by s0. As explained

earlier, after pulling this bead at the active site (s0 = 23), we let the chain relax for

trelax steps before pulling the next sugar bead towards the active site, i.e. s0 = 26.
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Figure 4.3. Trajectories of marked sugar beads s in z-direction. Different colors
represent data for different marked beads, as indicated in the legend. For this set of
trajectories, 26th bead is pulled towards the active site (s0 = 26). This bead reaches
the maximum displacement quickly, as seen from the trajectory in black color. The
neighboring beads catch up, but with a lag.

The choice of specifically pulling a sugar bead is arbitrary and is a consequence of the

chosen starting configuration. We continue these pull-relax stages for all the sugar

beads along the backbone of the ss-DNA.

Figure 4.3 shows the displacement in z-direction of marked ss-DNA beads s for

s0 = 26, averaged across 79 independent simulation runs, for trelax ≡ 106 steps. The

displacement calculations are limited up to 20000 steps for computational efficiency.

The values of tpull and trelax used in the simulations correspond to a motor protein

that acts faster than the typical rate of synthesis of the phi29 polymerase (40nt/s)

by a factor of 2× 106. However, as seen in Figure 4.3, the ss-DNA chain is relaxed at

a much shorter time, well within the chosen value of trelax. The choice of trelax is thus

justified, since we are interested in the dynamics of the ss-DNA chain as it relaxes.

As seen from Figure 4.3, the bead pulled towards the active site (s0 = 26) quickly

undergoes displacement in z-direction and then remains at the active site for rest of

the relaxation steps. The next bead (s = 29) along the ss-DNA backbone follows its

displacement with an associated delay, as shown by the red curve. This continues

for all consecutive beads with an increasing delay. At the same time, the maximum
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Figure 4.4. Trajectories of marked sugar beads s in x-direction. Different colors
represent data for different marked beads, as indicated in the legend. For this set of
trajectories, 26th bead is pulled towards the active site (s0 = 26). The pulled bead
reaches the maximum displacement quickly, as seen from the trajectory in black color.
The displacement of the neighboring beads is only slightly related to that of bead 26
and the correlation is absent beyond a few consecutive beads.

displacement that a bead undergoes also decreases for consecutive beads along the

ss-DNA backbone.

Figure 4.4 shows corresponding trajectories in x-direction (for s0 = 26). Similar

to the displacement in z-direction, bead 26 of the ss-DNA undergoes maximum dis-

placement instantaneously and then fluctuates around the same mean position. Note

that unlike the displacement in z-direction that always takes place in the positive

z-direction, the x-directional displacement of the ss-DNA bead at the active site is

governed by the geometry of the channel near the active site of the phi29 polymerase.

Thus, in Figure 4.4, bead 26 has an average negative displacement due to the location

of the active site. In contrast to the displacement in z-direction, the x-directional dis-

placement of the next sugar bead of the ss-DNA (s = 29) is only slightly related to

that of bead 26. All the consecutive beads along the ss-DNA chain undergo random

fluctuations around an average. Hence, the net drift in the x-direction is nearly zero

for the rest of the beads downstream.
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Figure 4.5. Relaxation time tr of a bead s as a function of its position from the
active site ∆s = s−s0. The relaxation time is calculated from the trajectories shown
in Figure 4.3 as described in the text. Different symbols indicate different beads s0
at the active site, as indicated in the legend. Inset figure shows the definitions of tr,
∆tr and Zmax for a sample trajectory.
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Figure 4.6. Characteristic displacement Zmax of a bead as a function of its relative
position ∆s. Different symbols indicate different beads present at the active site, as
indicated in the legend.
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Figure 4.7. Mean square displacement in x-direction for beads near the interrogation
point. Different colors indicate different beads s0 at the active site, as indicated in
the legend. The mean square displacement in x-direction begins to saturate at longer
times.

In order to quantify these observations, we analyze the trajectories in terms of the

maximum displacement of bead s of the ss-DNA in the z-direction and a characteristic

time associated with its displacement. We define the maximum displacement Zmax of

bead s as the average displacement that the bead undergoes in the last 500 steps of

its trajectory, between steps 19501 and 20000 (inset of Figure 4.5). The characteristic

relaxation time for a bead tr is calculated as the time at which the bead undergoes

characteristic displacement, which is defined as (1−1/e)×Zmax. Additionally, we also

assign a width ∆tr to the displacement vs. time data, defined as half of the difference

between the time taken for ±10% of the characteristic displacements. Inset of Figure

4.5 shows the definitions of these quantities for a sample trajectory. Figure 4.5 shows

the variation of the characteristic relaxation time of subsequent beads s for different

beads s0 at the active site. The error bars indicate the corresponding values of ∆tr.

For a given bead s, the characteristic relaxation time tr is observed to increase as

its relative position from the active site, denoted by ∆s = s − s0, increases. The

disturbance introduced at the active site travels along the backbone of the ss-DNA

as a wave. The amplitude of this wave decreases with distance from the active site,

as seen from Figure 4.6.
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Figure 4.8. Mean square displacement in z-direction for beads near the interrogation
point. Different colors indicate different beads s0 at the active site, as indicated in
the legend.

In translocation experiments, the narrowest region of the nanopore is termed as

the interrogation point. For MspA nanopore, the interrogation point is identified

at z = −27.488 in the current simulations. The square of the displacement of a

DNA bead located nearest to the interrogation point during the pulling stage is

monitored for each simulation run. Figure 4.7 shows the x-directional mean square

displacement of beads located at the interrogation point for different values of s0,

averaged over all simulation runs. Figure 4.8 shows a similar plot for displacement

in the z-direction. Due to computational constraints, we do not compute the mean

square displacements beyond 20000 steps. However, the mean square displacement

in both x- and z-directions appears to be saturating at longer times. The saturation

in x-direction can be understood as a result of the confinement in x-direction due to

the presence of the nanopore. No significant confinement is present in the z-direction

due to the nanopore. However, the chain connectivity of the DNA along with the

fixed position of bead s0 at the active site (z = 7.818) can result into a saturation in

the mean square displacement.
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Figure 4.9. Fitting the Rouse relaxation time given by Equation 4.10 to the simu-
lation results, for trelax = 106. Symbols indicate the simulation data, while solid lines
show the model result. Different colors show results for different beads present at the
active site, as indicated in the legend.

4.4 Discussion

In reduced units, the Rouse time for a polymer of N segments, with each segment

having a length of l reduced units, is given by the equation

τRouse =
ζ(Nl)2

12π2
. (4.7)

The bead friction coefficient ζ = 50.5 and the bond length l = 0.833 are the same

as the corresponding values used in the simulations. In simulations, we model the

DNA chain using a three bead model for each nucleotide, with alternating sugar and

phosphate beads along the backbone and a pendant base bead for each nucleotide.

To map this to a linear Rouse chain, we define the parameter b as effective number of

beads of equivalent friction that corresponds to a single unit in a linear chain of the

same contour length as the DNA backbone. Using the effective number of beads, we

define

∆s̃ =
∆s

b
. (4.8)
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Using this definition, we obtain an expression for the Rouse time as

τRouse =
ζl2

12π2
[∆s̃]2 . (4.9)

We fit the simulation data with the quadratic equation of the form

τ = a∆s2 = ab2[∆s̃]2 (4.10)

using the a as the fitting parameter. Comparing τ with τRouse gives an expression for

the effective number of beads b in terms of the fitting parameter a, as

b =

√

ζl2

12π2a
. (4.11)

We perform the fitting using the least squares method, only including the data points

for beads (s < 80) that have amplitude Zmax > 0.4. Figure 4.9 shows the comparison

of the simulation data and the equation, with the resulting values of effective num-

ber of beads shown in the inset. We observe that the effective number of beads is

approximately equal to 2.3. This comparison suggests that the dynamics of the DNA

chain inside the nanopore is not far from the Rouse dynamics.

4.5 Summary

Even for the simulated speed of the motor protein, which is much faster than

experimentally observed speed of 40 nucleotides per second for the phi29 polymerase,

the conformational fluctuations of DNA present inside the nanopore are not sup-

pressed. Fluctuations of the DNA chain near the interrogation point (the region with

the highest resistance towards small ion transport) primarily contribute to the noise

in the blockade level in the ionic current trace. As discussed in Chapter 1, a low level

of noise is desired to facilitate the detection of nucleotide sequence in a DNA. The

findings of this work suggest that at the operating speeds of the phi29 polymerase,
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the tension acting along the DNA chain due to the motor protein and the electric field

acting in opposite directions is not enough to suppress the conformational fluctuations

of the DNA.

92



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we have explored important aspects of polymer translocation through

a nanopore. We have performed a detailed investigation of the effect of charge in-

teractions between the nanopore and the polyelectrolyte. We have used Langevin

dynamics simulations to study the effect of patterns of charges along the nanopore

and the polyelectrolyte chain on kinetics of translocation. In the case of a uniformly

charged polyelectrolyte chain translocating through a patterned nanopore, we have

found that even when the total charge inside the nanopore remains the same, the

distribution of the charge in patterns of alternating charged and uncharged sections

leads to a non-monotonic dependence on the number of such sections, with a max-

imum corresponding to the largest mean translocation time. We have used a free

energy landscape along the translocation coordinate that captures the underlying

physics of the translocation process and using the free energy landscape we are able

to map the translocation process to a 1-dimensional drift-diffusion equation based

on the Fokker-Planck formalism. Our model is able to capture the non-monotonic

dependence of translocation kinetics on charge patterns along the nanopore, with

a single phenomenological constant that is independent of the patterns and the di-

mensions of the nanopore and the polyelectrolyte. The free energy landscape has

helped us identify a free energy well located towards the end of translocation, when

the polyelectrolyte chain is emptying the nanopore. The slowest translocation is a

direct result of the steepest free energy well for the specific charge pattern along the
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nanopore. We have also studied the case of a patterned polyelectrolyte chain translo-

cating through a patterned nanopore. A pattern matching behavior is evident from

our simulation results; the mean translocation time is sensitive to both the patterns

and is the longest for a specific set of charge patterns along the nanopore and the

polyelectrolyte chain. We have developed the underlying free energy landscape that

shows features that can delay the translocation process not just during the nanopore

emptying stage (as observed in the case of a uniformly charged polyelectrolyte), but

also during the nanopore filling and the threading stage. Our simulations show that

even the mean time for the threading stage is slowed down significantly due to the

delay. This is an promising result in the context of polyelectrolyte characterization

using nanopores, showing that the desired control over kinetics of translocation can

be achieved by manipulating the tunable pore-polymer interactions..

We have studied the effect of polyelectrolyte architecture on the kinetics of its

translocation through uncharged nanopores. Specifically, we have used Langevin dy-

namics simulations to study the kinetics of translocation of uniformly charged star

polymers of varying number of arms. We have found that the number of arms of the

star polymer, the star functionality, affect the translocation kinetics significantly and

that the mean translocation time is a non-monotonic function of the functionality,

with the fastest translocation observed for a critical functionality. We have performed

a detailed parametric study to show that star polymers beyond a cutoff functionality

do not translocate through narrow nanopores. The critical functionality and the cut-

off functionality are shown to be sensitive to the nanopore dimensions. Our results

are very exciting and demonstrate a promising approach towards using nanopores for

characterizing charged polymers of various architectures using nanopores. Our sim-

ulation results have also helped in gaining insights into transport of star polymers.

We have shown that star polymers predominantly translocate by dragging arms to-
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wards the branch point and that the widely debated arm retraction mechanism is not

observed.

Furthermore, we have studied the role of polyelectrolyte chain fluctuations inside

the nanopore using Langevin dynamics simulations. We have simulated a construct

consisting of opposing forces from a pulling motor (phi29 polymerase) and the electric

field, which has been used in recent experiments to control the rate of translocation of

polyelectrolytes (DNA) through an α-Hemolysin nanopore. We have used the power-

stroke model to simulate the pulling motor protein and have used the displacement of

the polyelectrolyte chain inside the nanopore to compute the relaxation time spectrum

for chain segments of varying length. We have modeled the relaxation spectrum using

predictions of the Rouse model for polymer dynamics. We have also measured the

fluctuations of the polyelectrolyte chain at the interrogation point of the nanopore

and have shown that these fluctuations, which are the primary source of noise in

the experimentally measured ionic current signal, cannot be suppressed using the

proposed construct.

Additionally, we have characterized the timescales involved in the translocation

process using Langevin dynamics simulations and have identified the regime where

the quasi-equilibrium assumption made in modeling translocation is valid. We have

performed detailed simulations, incorporating hydrodynamics and long-range elec-

trostatics, to measure the degree of ionization of a polyelectrolyte as it translocates

through a nanopore.

5.2 Future work

Based on the understanding developed in this thesis, we would like to propose the

following research tasks for future research directions.
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5.2.1 Theory

The ability to describe the quasi-equilibrium process of translocation of a uni-

formly charged polymer translocating through a pore with charge decorations using

the Fokker-Planck description has been one of the important findings of this work.

In this thesis, a single phenomenological parameter k0 is used as a fitting parame-

ter to the model. Direct experimental measurement of this parameter or the related

monomer friction coefficient is difficult. However, one can estimate the friction coef-

ficient of a monomer under confinement from theoretical arguments. Solutions based

on the Stokes-Einstein result for the mobility of a charged sphere in a solution have

been proposed in the literature [94,95], with further improvements to incorporate con-

finement effects (see Ref. [96] for a detailed discussion). Attempts have been made

to extend this to the case of a polymer under confinement, for example, in Ref. [97]

. This can be further extended to the case of a polyelectrolyte chain under confine-

ment to estimate the monomer friction coefficient from first principles, to improve

the existing Fokker-Planck model.

5.2.2 Simulations

The effective charge of a translocating DNA is lower than its chemical valency

due to counter-ion condensation that is further suppressed in presence of confine-

ment. Estimating the effective charge is difficult from experiments, but can be easily

obtained from simulations. In this thesis, we have made a quick estimate of the degree

of counter-ion condensation for the case of an uncharged nanopore. Obtaining such

an estimate for the more realistic situations of (a) a uniformly charged solid-state

nanopore and (b) a charge decorated protein nanopore is required to complement

the rich experimental data available in the literature on translocation kinetics of

polyelectrolytes through these nanopores. An accurate estimation of the effective

charge for these situations can be obtained using the simulation technique used in
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this thesis. However, the effect of dielectric mismatch between the membrane and

the bulk must be incorporated into the simulation. The method of image charges

can be implemented using the iterative scheme proposed in Ref. [98] to incorporate

dielectric mismatch. Such a simulation setup can also be used to characterize the

electro-osmotic flow inside the nanopore due to charges along the nanopore surface

and to estimate the ionic current traces during translocation. Estimation of these

quantities is of immediate interest since it is crucial in improving our current state of

understanding the translocation phenomenon.
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APPENDIX A

LANGEVIN DYNAMICS SIMULATIONS

Simulation details

The system is made up of three components: an uncharged membrane, a cylindri-

cal pore inside the membrane, and a charged polymer chain. Details of each of these

components are described below, with all quantities in reduced units, unless specified

otherwise.

The membrane is M unit thick, and has a cylindrical pore of radius rp. The

membrane walls are modelled using spherical beads of diameter d1 = 1 arranged into

a two dimensional grid with grid-spacing of d1. The pore wall is made up of smaller

beads of diameter d2, with the ratio d2/d1 = 0.25. These beads are placed along the

circumference of a cylinder, with each bead approximately at a distance of d2/2 from

each other. This overlapping of pore wall beads is done to make the pore cross-section

more circular. A part of membrane walls surrounding both ends of the pore is made

up of beads identical to the pore wall beads. N beads of diameter d1 are connected

by harmonic bonds to form a uniform polymer. The equilibrium bond length is taken

to be equal to d1. A unit negative charge is placed on each polymer bead.

Pair-wise interactions

Excluded volume interactions are modelled using a truncated Lennard-Jones po-

tential between two beads, given by the equation,

ULJ =

⎧

⎪

⎨

⎪

⎩

4ϵLJ
[

(

σ
r

)12
−

(

σ
r

)6
]

+ ϵLJ for r ≤ 1.12σ

0 for r > 1.12σ.
(A.1)
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Here, r is the distance between two beads. ϵLJ = 1 (≈ 0.1 Kcal/mol) is the depth

of the potential well, with T = 300 K. The potential is truncated at its minimum,

corresponding to a distance of 1.12σ. These interactions exist between all the beads,

with σ = 1 for interactions between polymer-polymer and polymer-membrane beads,

and σ = 0.625 for pore-polymer beads. Since the positions of pore and membrane

beads are fixed in the simulation, pair-wise interactions are not computed for these

beads.

Electrostatic interactions between a pair of beads are modelled using the truncated

Debye-Hückel potential, with an inverse of the Debye length κ corresponding to a

monovalent salt concentration of 0.1M,

UDH =
Cqiqj
ϵ

exp(−κr)

r
for r ≤ rc2 (A.2)

with qi and qj corresponding to the charges on beads i and j, separated by a distance

r. Although the effective dielectric constant of an electrolyte solution confined within

a nanopore is unknown, we have taken ϵ = 80. rc2 is the cutoff distance at which

the electrostatic interactions are truncated. A value of rc2 = 3 is used in all the

simulations.

Pair-wise electrostatic interactions are computed between polymer-polymer beads

and pore-polymer beads. For polymer-polymer electrostatic interactions, q1 = q2 =

−1e (e = 1.60217646× 10−19 Coulomb is the elementary charge). The pore-polymer

electrostatic interactions are computed using q1 = −1e and q2 = αpe for pore beads

belonging to a charged section. As described in reference [52], the energy conversion

constant C = 1 in the present units.

The bonds between polymer beads are modelled using a harmonic potential. The

equilibrium bond length between two connected polymer beads is r0 = 1. The value

of spring constant K = 15480 (≈ 10 Kcal/(mol Å2) ) is large enough to prevent

unrealistic bond extensions.
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Ub = K(r − r0)
2 (A.3)

In Langevin dynamics simulation, the above potentials are used to compute forces on

each of the polymer beads. The equation of motion for each bead is given by

m
d2r

dt2
= −ζ

dr

dt
−∇(ULJ + UDH + Ub) + Fr + Fext (A.4)

where m is mass of the bead, ζ is the friction coefficient, and Fr ∼
√

kBT ζ/dt is the

random force due to solvent at the given temperature T , as documented extensively

in the literature [52]. We choose the values m = 1 and ζ = 1 in all our simulations.

The force due to applied electric field E acting on each bead is given by Fext = q1E.
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APPENDIX B

MOLECULAR DYNAMICS SIMULATIONS

Simulation details

The system is made of three components, an uncharged membrane embedded with

a cylindrical pore, a charged polymer chain and small ions that consist of counter-

ions and salt ions. Details of each of these components are described below, with all

quantities in reduced units unless specified otherwise.

The polymer chain and the small ions are represented using spherical beads. Each

bead has an excluded volume that is modeled by truncated Lennard-Jones potential

given by Equation A.1, with σ = 1 and ϵLJ = 1. The N polymer beads representing

the polymer chain backbone are connected linearly using harmonic bonds that are

represented by Equation A.3, with the equilibrium bond length r0 = 1 and the spring

constant K = 5000. The polymer beads hold a unit negative charge, with equal

number of small ions bearing a unit positive charge. One half of the remainder

number of small ions (corresponding to a specified salt concentration) bear a unit

positive charge and the other half bear a unit negative charge (monovalent salt ions).

Charge interactions are modeled using the Coulomb potential given as follows.

Ucharge =
1

4πϵϵ0

qiqj
r

(B.1)

with qi and qj corresponding to the charges on beads i and j, separated by a distance r.

For implementing this long-range potential in our simulations (consisting of periodic

boundaries), the particle-particle-particle-mesh method is used (see Ref. [55, 99]).

Essentially, the method comprises of splitting the total potential into a short-range
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particle-particle interaction potential and a long-range interaction potential solved on

a mesh using fast Fourier transformation, providing a faster convergence in calculating

the sum of the Coulomb potential for all particles and their images accurately. The

input parameters for this method are the desired accuracy for the calculation, the

cutoff distance to split the potential, and number of neighboring grid points on the

mesh used for interpolation scheme used for mapping particles onto the mesh. The

desired accuracy is chosen to be 10−4, while the cutoff distance is 5 and 7 points are

used in the interpolation scheme.

The membrane divides the simulation box into two compartments that are con-

nected via a cylindrical nanopore of length M and radius rp. The two vertical surfaces

of the membrane and the cylindrical surface of the nanopore have an excluded vol-

ume modeled by the truncated Lennard-Jones potential with same parameters as

for the polymer and the small ions. For computational efficiency, these beads are

implemented as ghost beads that are not present until a polymer or small ion bead

approaches the surface.

Each bead undergoes molecular dynamics represented by the following equation

of motion.

m
d2r

dt2
= −∇(ULJ + Ucharge + Ub) + Fext (B.2)

where m is mass of the bead, and the force due to applied electric field E acting on

ith bead inside the nanopore is given by Fext = qiE.

The equation of motion is integrated using the velocity-Verlet algorithm with a

time-step of 0.005. Additionally, after every 0.1 time-steps, the bead velocities are

updated according to the multi-particle collision dynamics equation discussed next.

Multi-particle collision dynamics

Hydrodynamics is implemented using the particle based method: multi-particle

collision dynamics [54,100–102]. The input parameters to this model are the particle
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density, rotation angle (θ) and time-step (h). The simulation box is divided into

cubic cells with unit length of side. The average particle density in each cell is

10, with particle positions and velocities assigned randomly (corresponding to unit

temperature) and these particles evolve as they undergo two steps: streaming and

collision. In the streaming step, the particle positions ri are updated as per their

instantaneous velocities vi(t) for a time-step h = 0.1.

ri(t+ h) = ri(t) + h× vi(t) (B.3)

A no-slip boundary condition is implemented using the bounce back rule for particles

at the surface of the membrane or the nanopore.

vi(tc) = −vi(tc) at boundary (B.4)

where tc is the time instant at which collision with surface occurs. In the collision

step, particle velocities are rotated with the rotation rule,

vnewi (t+ h) = vi(t+ h) + (R(θ)− I)(vi(t + h)− vcm(t+ h) (B.5)

where vcm(t + h) is the instantaneous center-of-mass velocity of the cell that the

particle belongs to, R(θ) is the rotation matrix corresponding to the rotation angle

θ along a randomly chosen axis [103], and vnewi (t + h) is the new velocity assigned

to the particle. The solute beads (polymer and small ion beads) interact with the

hydrodynamic particles through this rotation step. Thus, the solvent bead velocities

are rotated after time h along with the hydrodynamic particles. The center-of-mass

velocity of jth cell is computed as,

vcm(t) =
1

Nj + 10Ns

⎡

⎣

Nj
∑

i=1

vi(t) +
Ns
∑

i=1

10Vi(t)

⎤

⎦ (B.6)
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Here, Nj is the number of hydrodynamic particles belonging to the jth cell, and

Ns is the number of solute beads belonging to that cell. Vi(t) is the velocity of ith

solute bead. To improve the method further, the random shift technique proposed

in Ref. [102] is implemented: the origin used to define the cells is randomly shifted

within a unit distance at every collision step.
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