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ABSTRACT

AUTOMATIC DEVELOPMENT AND ADAPTATION OF CONCISE
NONLINEAR MODELS FOR SYSTEM IDENTIFICATION

SEPTEMBER 2016

WILLIAM G. LA CAVA

B.S., CORNELL UNIVERSITY

M.Eng., CORNELL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kourosh Danai

Mathematical descriptions of natural and man-made processes are the bedrock of science,

used by humans to understand, estimate, predict and control the natural and built world

around them. The goal of system identification is to enable the inference of mathematical

descriptions of the true behavior and dynamics of processes from their measured observations.

The crux of this task is the identification of the dynamic model form (topology) in addition

to its parameters. Model structures must be concise to offer insight to the user about the

process in question. To that end, this dissertation proposes three methods to improve the

ability of system identification to identify succinct nonlinear model structures.

The first is a model structure adaptation method (MSAM) that modifies first principles

models to increase their predictive ability while maintaining intelligibility. Model structure

identification is achieved by this method despite the presence of parametric error through

a novel means of estimating the gradient of model structure perturbations. I demonstrate

MSAM’s ability to identify underlying nonlinear dynamic models starting from linear models

in the presence of parametric uncertainty. The main contribution of this method is the ability

v



to adapt the structure of existing models of processes such that they more closely match the

process observations.

The second method, known as epigenetic linear genetic programming (ELGP), conducts

symbolic regression without a priori knowledge of the form of the model or its parameters.

ELGP incorporates a layer of genetic regulation into genetic programming (GP) and adapts

it by local search to tune the resultant model structures for accuracy and conciseness. The

introduction of epigenetics is made simple by the use of a stack-based program representation.

This method, tested on hundreds of dynamics problems, demonstrates the ability of epigenetic

local search to improve GP by producing simpler and more accurate models.

The third method relies on a multidimensional GP approach (M4GP) for solving multi-

class classification problems. The proposed method uses stack-based GP to conduct nonlinear

feature transformations to optimize the clustering of data according to their classes. In com-

parison to several state-of-the-art methods, M4GP is able to classify test data better on

several real-world problems. The main contribution of M4GP is its demonstrated ability to

combine the strengths of GP (e.g. nonlinear feature transformations and feature selection)

with the strengths of distance-based classification.

MSAM, ELGP and M4GP improve the identification of succinct nonlinear model struc-

tures for continuous dynamic processes with starting models, continuous dynamic processes

without starting models, and multiclass dynamic processes without starting models, respec-

tively. A considerable portion of this dissertation is devoted to the application of these

methods to these three classes of real-world dynamic modeling problems. MSAM is applied

to the restructuring of controllers to improve the closed-loop system response of nonlinear

plants. ELGP is used to identify the closed-loop dynamics of an industrial scale wind turbine

and to define a reduced-order model of fluid-structure interaction. Lastly, M4GP is used to

identify a dynamic behavioral model of bald eagles from collected data. The methods are

analyzed alongside many other state-of-the-art system identification methods in the context

of model accuracy and conciseness.

vi
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CHAPTER 1

INTRODUCTION

Scientific advancements depend on the ability of human experts to understand and math-

ematically describe the behavior of the dynamic systems they study. To this end, the field

of system identification is mandated with inferring mathematical descriptions of physical

processes using observations from those processes [121]. Since there are essentially infinite

possible mathematical descriptions of the observable world, system identification must focus

on the development of models that are most useful for engineers and scientists. Therefore, the

goals of system identification extend beyond accurately representing the desired process: the

model needs to cater to diverse scientific needs, such as control design or the human under-

standing of scientific discoveries. At its core, system identification is the approach whereby

first principles and natural laws enter the vocabulary of the scientist: Newton’s laws, for

example, were deduced from his 17th century empirical observations [148]. This dissertation

presents methods that automate the construction of intelligible and physically meaningful

dynamic models from observations.

Traditionally, process dynamics are characterized by differential equations that are formu-

lated by experts using first principles and/or empirical observations. These expert-designed

differential equations then form the dynamic models that are used to estimate/predict pro-

cess behavior. However, first-principles models often cannot fully characterize the nonlinear

dynamics of the process, as represented by process observations. As a result, first-principles

models may be abandoned in favor of empirical models such as linear and nonlinear autore-

gressive moving average (ARMAX) models [121, 12], neural networks [147, 53], and oth-

ers [150, 141, 59, 19, 171], that utilize high-capacity structures to accommodate adaptation

according to the measured process observations. Although these empirical models provide an
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effective basis for estimation/prediction, they have two major drawbacks. The first is their

‘black box’ format, stemming from the imposed model structures, which obscures the ac-

quired knowledge of the process. The second is their non-generalizability which makes them

potentially deficient in representing the process under conditions (inputs) not encompassed

by the measured observations.

To remedy the black box nature of these empirical models, models can be defined in

symbolic form by symbolic regression [52, 21, 15] wherein both the structure (topology) and

parameters (constants) are inferred from measured observations without presuming a model

structure. These symbolic models have the potential to be intelligible and thereby allow

users to understand the dynamics of the process for which they are developed. Symbolic re-

gression is typically conducted using genetic programming (GP) [93], which is a bio-inspired

machine learning technique that constructs a population of candidate models from mathemat-

ical building blocks and then selects and varies these models over several generations before

converging on a model that best fits the process observations. Due to an expanded search

space that includes model structures in addition to parameters, symbolic regression can be

computationally intensive in comparison to other empirical methods. In addition, it can be

difficult to leverage expert knowledge (e.g., a starting model) with the symbolic regression

approach [179], although various developmental approaches have been proposed [95].

The contributions of this dissertation relate to improving the identification of model

structures for system identification. Model structure identification is addressed in three sce-

narios. First, I consider the case in which a starting model (e.g., a first principles model)

is available for representing the process (Ch. 2). A method for model structure adaptation

(MSAM) is presented that optimizes nonlinear variable couplings in the neighborhood of

the starting model using a gradient-based approach. Ch. 3 presents a method of inferring

continuous dynamic models from observations without a starting model. In this case, an

extension to traditional GP, known as epigenetic linear genetic programming (ELGP), is

proposed that specifies local search of model structures using a representation and learning

algorithm inspired by epigenetic processes in biology. Finally, Ch. 4 proposes a model struc-

2



ture identification method for multiclass classification known as M4GP, that again makes

no a priori model assumptions. This method optimizes model structures as a set of feature

transformations that project the measured observations into a more easily classified space.

In the second part of this dissertation, the methods presented earlier, i.e. MSAM, ELGP,

and M4GP, are used to solve real-world dynamic modeling problems. Ch. 5 applies MSAM to

the restructuring of controllers to account for plant nonlinearities. Ch. 6 applies ELGP to the

identification of closed-loop wind turbine dynamics. Ch. 7 applies M4GP to the identification

of agent-based models of bald eagle behavior. Finally, in Ch. 8, ELGP is applied to the

identification of a dynamic model of vortex-induced vibration. New methods are presented

for consolidating local models to represent global process physics.

The rest of this chapter is dedicated to formulating the system identification problem

in the context of the proposed methods and summarizing broadly the literature on model

structure identification, with a focus on GP-based methods. Due to the fairly unique contexts

of the three methods presented in Ch. 2 - 4, I have decided to include separate Related Work

sections in those chapters and to summarize the shared background of those methods briefly

here.

1.1 System Identification

The underlying assumption of system identification is that there exists an analytical

model of the system that would generate the measured observations y(tk) at the sample

times tk = t1, . . . , tN under the input, u(t), as

y(tk,u) = ŷ(tk,M
∗(x,u,Θ∗)) + ν; k = 1, . . . , N (1.1)

where ŷ is the model output, ν represents measurement noise in y, x = [x1, . . . , xn]T is

the vector of state variables, and M∗(x,u,Θ∗) denotes the correct model form embodied

by the correct parameter values Θ∗, written M∗ hereafter for brevity. The goal of system

identification is to learn a mapping function M̂(x,u, Θ̂) using a set of training examples

T = {(x(tk),u(tk), y(tk)) , k = 1 . . . N}. As such, dynamic modeling has always been
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challenged by the confluence of two major uncertainties: (i) the form of the model, M , and

(ii) the value of the model parameters, Θ. This intertwined confluence of model form and

parametric inaccuracy is the Achilles’ heel of model development.

Most system identification methods begin by imposing a form for M̂ , and, under the

assumption that M̂ ≈ M∗, optimize the parameters Θ̂ such that the sum of the error, ε,

between the modeled outputs and the measured observations is minimized, i.e.

ε(tk) = y(tk)− ŷ(tk, M̂(x,u, Θ̂)) (1.2)

Θ̂ = arg min
Θ

N∑

k=1

L (ε(tk)) (1.3)

where L is a cost function, e.g. the square function in the case of nonlinear least squares

(NLS) [78]. Many of the aformentioned methods of empirical modeling (e.g. neural networks,

ARMAX, and support vector machines [59]) are based on this machine learning approach,

yet differ in the form of M̂ assumed, the cost function L, and consequently the optimization

strategy for estimating Eq. (1.3). In contrast, the methods proposed in the subsequent

chapters explicitly search for the form of M̂ that best matches process observations. As we

argue in Ch. 2, the mismatch between the true and assumed model structures M̂ 6= M∗,

is a larger source of error than parametric error for many systems, thus motivating the

development of methods that address model structure search.

1.1.1 Genetic Programming in System Identification

GP poses the modeling task more broadly by including the search for the correct model

form M∗ as part of its optimization strategy, including its parameters. GP attempts to solve

the problem

minimize F (M, T ) subject to M ∈ S (1.4)

where S is the space of possible models M , and F denotes a minimized fitness function.

Given that it is impractical to exhaustively search S, the model found to minimize F (M, T )
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may only be locally optimal, but it is assumed that such a model can nevertheless fulfill the

purpose of adequately representing the process, as depicted by the measured observations.

The task of identifying the model’s topology as well as its parameters is known as symbolic

regression. In this field, stochastic optimization (or metahueristic) techniques like GP have

been successful [126]. These techniques are named for their incorporation of some randomness

into the search process, thereby allowing the discontinuous changes needed for exploring

equation forms. A number of other techniques fall under this umbrella as well, including hill

climbing, simulated annealing, particle swarm optimization [126].

GP is a population-based metaheuristic strategy that uses principles of biological evo-

lution to define the ways in which candidate solutions are updated. Although evolutionary

problem-solving strategies were discussed in the sixties [212] and seventies [64], the canon-

ical GP used widely today was developed by John Koza [93] in early nineties (preceded by

Cramer [30]), and many of his research practices continue to be popular. The overall process

of symbolic regression is visualized in Figure 1.1. In GP, model development is achieved using

an evolutionary scheme in which a population of different computer programs are tested for

their fitness according to one or several measures of their quality, and go through a process

of Darwinian selection and variation to form the next iteration (generation) of candidate

solutions. In symbolic regression the programs consist of building blocks (nodes) of equa-

tions, for example {+,−,∗,/,x}, constructed into a graph, most commonly a tree. Candidate

solutions in the population are probabilistically selected for survival each generation based

on their fitness. Variation is introduced to the search process by mutation and recombina-

tion (i.e. crossover) of subprograms in chosen solutions each generation. The search is thus

driven by selection and variation: the selection process allows for exploitation of promising

solutions while variation mostly serves to explore the neighborhood of promising solutions.

This generational process is repeated until an adequate solution is found.

GP and variants of it have been applied successfully for system identification in many

fields, including climate modeling [197], robotics [14], mechanics [177], and biological sys-

tems [181]. It has become a popular method especially for finding nonlinear differential
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Figure 1.1. Genetic Programming as applied to symbolic regression.

equation solutions [52, 21, 70, 177], in addition to finding closed-form, analytical solutions

to them [203, 182]. Furthermore, genetic programming has been used to successfully design

systems and solve problems, and has produced human-competitive results in various fields,

including antenna design [124], photonics [163], circuit design [94], game play [37], finite

algebras [194], and quantum computer programming [192].

Challenges and Extensions

It is important to note that most successful symbolic regression methods extend GP to

incorporate other search methods or otherwise deviate from traditional “Koza-style” GP,

utlizing techniques such as Pareto-front exploitation [190], coevolution [14, 58], diversity

control [128, 178], program size control [69, 158, 187, 15], and concurrent parameter updat-

ing [201, 70, 91, 2]. These extensions of standard GP attempt to address some of the common

issues impeding its performance, which are described in the following paragraphs.

Traditional GP tends to generate overly complex or over-fit solutions, which are effec-

tively “black box” [197]. A related but not identical problem is bloat, which is the tendency

of programs to continue to grow in size with more generations, to the detriment of the search

process [187]. Methods to curb program growth include tree snipping [15], parsimony pres-

sure [160], and Pareto-GP with size as an objective [190, 211]. ELGP addresses the problem
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of model conciseness by regulating program expression such that accuracy and conciseness

are optimized. Unlike the afortmentioned methods, this results in little to no computational

overhead compared to traditional GP, as shown in §3.7.

Another issue common to GP is premature convergence, when a solution population con-

verges and stays at a local optimum [159]. This indicates that the entire population has

become concentrated in one section of genotype and corresponding phenotype space. Pre-

mature convergence is a complex problem because it arises from the intertwined dynamics

of selection, which is designed to down-select phenotypes (behaviors) from the population,

and variation, which is designed to diversify genotypes (programs) in the population. Thus

the mapping of genotypes to phenotypes also plays a central role. As a result, most methods

designed to combat premature convergence operate by maintaining diverse genotypes in the

population or by maintaining diverse phenotypes in the population. Genotypic diversity can

be maintained using deterministic crowding [128], in which individuals compete based on

genotypic similarity, or by using structural diversity as an objective [20]. Diversity in the

phenotypic sense is the goal of many proposed methods, and is achieved through changes

to the selection method or changes to fitness assignment. Examples include lexicase selec-

tion [193, 60, 109], implicit fitness sharing [134], age-layering [66, 178], and hierarchical fair

competition [68], among others. The proposed ELGP method promotes genotypic diversity

by removing selection pressure from silenced portions of programs; a discussion of its effect on

behavioral diversity is also included in §3.7.4. Experiments utilizing age-layering and lexicase

selection are also used throughout this dissertation.

At least some portion of the aformentioned difficulties with traditional GP may be at-

tributed to the search dynamics of tree representations. Trees are hierarchical structures

with strict syntax rules that can easily be violated, e.g. by mismatches of data types or

by mutations that result in a mismatch between the number of child nodes a parent node

requires to return an argument (i.e. its arity) and the number available in the program.

This inflexibility appears at odds with results suggesting that relaxed genotype constraints

improve evolvability [170] and expressiveness [196]. Others have suggested that the biolog-
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ical features that make evolution powerful and scalable (for example, linear genomes and

homologous search operators [195]) are insufficiently emulated by GP [152]. These reasons

and others have motivated the development of many different representations, for example

stacks [156, 173, 191, 43], linear GP [5, 18], directed acyclic graphs [176], tree adjunct gram-

mars [63], and Cartesian GP [138]. In this work, I make use of stack-based representations

for ELGP and M4GP, which makes other salient features of these approaches (epigenetic

regulation and multidimensional outputs, respectively) simple to encode.

Although GP has been applied successfully to some binary classification problems (e.g.

[210]), until recently [73, 140] it has not been competitive with standard multiclass clas-

sification techniques. The exceptions are the recently developed methods M2GP [73] and

M3GP [140] that use GP to select and synthesize features and then perform classification

in the new feature space using a Mahalanobis distance-based discriminant function. Ch. 4

proposes M4GP, which extends M3GP by using a simple stack representation to encode

multidimensional transformations, and implements lexicase selection and age-fitness Pareto

survival to improve performance. Whereas M2GP and M3GP were able to tie the perfor-

mance of some other classification techniques, we show that M4GP surpasses the performance

of out-of-the-box classifiers on several problems from different domains.

1.2 Overview of Proposed Methods and their Applications

This dissertation proposes three methods for addressing model structure identification in

system identification. The first, MSAM, is motivated by the need to reduce the scope of model

search and associated computational expense of GP when a starting model of the system is

available. It uses an initial model and function set to optimize the model structure’s accuracy

with respect to measured data while maintaining the model’s intelligibility by constraining

updates to the original terms in the model. The second two methods, ELGP and M4GP, build

models from scratch, and are tailored to continuous systems (y ∈ R) and multiclass systems

(y ∈ C = {c1 . . . c|C|}), respectively. ELGP proposes a novel representation and learning

scheme to provide local model search to GP programs. M4GP re-defines GP programs as
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sets of equations that form a wrapper around a distance-based classifier. Although the three

methods are quite different, they share as a motivation the focus on model structure search for

three different scenarios. In the following section, I will give a brief synopsis of the mechanics

of the three methods that are detailed in Chapters 2 to 4, and describe the applications

detailed in Chapters 5 to 8.

1.2.1 Model Structure Adaptation

MSAM assumes that a linear-in-parameter starting model of the process has been estab-

lished, i.e. M̃ =
∑Q

i θ̃iΨ̃i(x,u). It then adapts this model by optimizing functional couplings

applied to the model terms as Ψ̂i =⇒ Ψ̃if̂
γi
i , where f̂i is chosen from a set of user-defined

functions and is modulated by an associated exponent γi. As shown in Ch. 2, the exponents

associated with the couplings can be optimized in the presence of parametric uncertainty

(i.e. when Θ̃ 6= Θ∗) by quantifying structural changes to the model according to changes

in parametric sensitivity. The adaptation utilized by MSAM involves both the choice of f̂i

and the associated exponents, and is guaranteed to only return adaptations that improve the

quality of the starting model.

1.2.1.1 Applications

In Ch. 2, MSAM is tested on a set of controlled models that demonstrate its ability to

identify correct model structures starting from less complex models. It is then applied to

two real world dynamic modeling tasks: the estimation of fluid-structure interaction models

and macroeconomic models. In Ch. 5, MSAM is applied to the problem of restructuring

proportional, integral, derivative (PID) controllers to allow them to adapt to nonlinear plant

dynamics.

1.2.2 Epigenetic Linear Genetic Programming

ELGP proposes the addition of a gene regulation layer (i.e. an epigenetic layer) to linear

genomes that can be adapted during the lifetime of individual programs in order to improve

the resulting model’s accuracy and intelligibility. ELGP has two salient features that improve
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its performance: (i) it uses linear, stack-based programs to represent equations, and (ii) it

conducts local search of the space of model structures to both improve the fitness and reduce

the complexity of models. These feature have been shown to outperform traditional GP on

several benchmark regression problems in terms of the conciseness of the developed models,

their fitness, and efficiency of the search [110, 107]. The effectiveness of these features is

evaluated in Ch. 3 in construction of nonlinear dynamic models.

1.2.2.1 Applications

ELGP is applied to different problems in Chapters 3, 6, 7, and 8. As part of its introduc-

tion in Ch. 3, ELGP is tested on hundreds of dynamics problems, including a set of 2nd-order,

nonlinear and chaotic systems, a set of randomly constructed ODE systems, and a real word

nonlinear dynamics problem regarding the flow of water through cascaded tanks. In Ch. 6, it

is used to build models of closed-loop wind turbine dynamics that predict power output and

tower loading conditions for an industrial wind turbine. In Ch. 8, the fluid-structure interac-

tion problem introduced in Ch. 2 is revisited using ELGP and a larger set of experiments. A

new method of parent selection known as ε-lexicase selection [109] is proposed for improving

the generalization performance of ELGP for this problem.

1.2.3 Multidimensional Genetic Programming

M4GP is designed to use GP for model structure identification in feature space, as a

wrapper to a clustering algorithm. It uses GP to perform a multidimensional transformation

of the original attributes and then performs classification using a distance-based discriminant

function in the transformed space. In this case, programs consist of a set of transformations

Φ(x,u) = [φ1(x,u) . . . φd(x,u)], and the goal is to find a set of intelligible transformations

that produce easily classified clusters in the transformed space. Like ELGP, M4GP utilizes

stack-based program encodings and diversity-preserving selection methods to improve its

performance relative to previous methods.
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1.2.3.1 Applications

M4GP is tested in Ch. 4 on twelve multiclass classification problems that vary in numbers

of classes, attributes and data samples. All the problems are real world tests, including a

competition data set that is used to recognize human activities from body sensors. Whereas

the problems in Ch. 4 are static in nature, M4GP is applied to a real-world dynamics problem

in Ch. 7, where it is used to predict the behavior of bald eagles in response to environmental

features.

The final chapter of this dissertation (Ch. 9) summarizes the findings of the previous

chapters with respect to the methods and their applications. It also takes a look forward at

some of the remaining research questions in the hopes of inspiring future work on the subject

of model structure identification.
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PART I: METHODS



CHAPTER 2

GRADIENT-BASED ADAPTATION OF CONTINUOUS DYNAMIC
MODEL STRUCTURES

2.1 Summary

A gradient-based method of symbolic adaptation is introduced for a class of continu-

ous dynamic models1. The proposed Model Structure Adaptation Method (MSAM) starts

with the first-principles model of the system and adapts its structure after adjusting its in-

dividual components in symbolic form. A key contribution of this work is its introduction

of the model’s parameter sensitivity as the measure of symbolic changes to the model. This

measure, which is essential to defining the structural sensitivity of the model, not only accom-

modates algebraic evaluation of candidate models in lieu of more computationally expensive

simulation-based evaluation, but also makes possible the implementation of gradient-based

optimization in symbolic adaptation. The proposed method is applied to models of several

virtual and real world systems that demonstrate its potential utility.

1The work in this chapter was presented at the 2015 ASME Dynamic Systems and Controls Conference [103]
and formed the basis of a journal publication [111].
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2.2 Introduction

As mentioned in Ch. 1, to improve the intelligibility of adapted models, empirical models

in the form of symbolic equations can be formulated by symbolic regression [92, 15, 177, 107].

In symbolic regression, the process variables, inputs, and parameters (constants) are treated

as symbols and integrated as blocks to form candidate model structures. Free of restrictions

on the form (structure) of candidate model, the search is conducted by genetic programming

(GP) for models having best-fit outputs to the measured observations [92]. Even though sym-

bolic regression is computationally expensive, requiring anywhere from thousands to billions

of evaluations, it offers a viable approach to modeling poorly understood systems that cannot

be readily defined by first-principles models. By the same token, the unrestricted structure

of symbolic regression renders it unsuitable for application to better understood systems be-

cause of the inherent difficulty of seeding it with starting models [179]. In the absence of a

presumed model structure, symbolic regression often yields illegible, albeit accurate, models

which do not convey any of the physics of the process.

The Model Structure Adaptation Method (MSAM) proposed in this research contrasts the

unrestricted nature of symbolic regression by considering candidate models closely tied to the

starting model that are improved by localized gradient-based adaptation. As such, MSAM is

designed to remedy the shortcomings of symbolic regression in application to well understood

systems for which first-principles models are available. It achieves this by adjusting the

individual components of the original model so as to preserve the model’s structural integrity,

hence, its intelligibility. A key contribution of MSAM, that enables the implementation of

gradient-based adaptation, is its use of the model’s parameter sensitivity as the measure of

‘model difference magnitude’. This measure is used to scale the structural sensitivities such

that they will remain robust to parametric error during adaptation.

2.3 Problem Formulation

We consider the model to consist of the weighted sum of individual components Ψi, as
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M =

Q∑

i=1

θiΨi = ΘTΨ (2.1)

where Ψ = [Ψ1, . . . ,ΨQ]T and each component Ψi is the product of any combination of state

variables, xi, included in the state vector x = [x1, . . . , xn]T , and/or inputs, ui, in the input

vector u = [u1, . . . , um]T . For instance, consider the true model of the harmonic oscillator

M∗ : ẍ = − c

m
ẋ|ẋ| − k

m
x3 +

1

m
u(t) (2.2)

where x denotes its displacement (that is measured), ẋ is its velocity, ẍ is its acceleration, u(t)

is its input excitation, and m, c, and k denote its mass, damping coefficient, and spring con-

stant, respectively. This true model consists of three components; i.e., Ψ∗ = [Ψ∗1, Ψ∗2, Ψ∗3]T =
[
ẋ|ẋ|, x3, u(t)

]T
with the true parameter values

Θ∗ =

[
θ∗1, θ∗2, θ∗3

]T
=

[
− c∗

m∗ , − k∗

m∗ ,
1
m∗

]T

Given that the measured outputs have the quality and breadth to characterize the dynamics

of the process, the fidelity of the model can be evaluated by how closely the model outputs

match the observations [161, 162, 36].

The most common measure of closeness of the model is the magnitude of the prediction

error between the process observations, y, and model output, ŷ, defined as

ε(tk) = y(tk)− ŷ(tk) = ŷ(tk,Ψ
∗,Θ∗,u)− ŷ(tk, Ψ̂, Θ̃,u) + ν (2.3)

where Ψ̂ denotes the candidate model form and Θ̃ the vector of nominal parameter values.

Recall from Ch. 1 that in traditional system identification, model formulation and param-

eter estimation are performed separately. Once the model form is assumed approximately
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correct; i.e., M̂ ≈M∗, the model parameters, ascertained identifiable [122], are estimated by

minimizing a cost function, V , as

Θ̂ = arg min
Θ

V = arg min
Θ

N∑

k=1

L (ε(tk)) (2.4)

where L is a scalar-valued (typically positive) function, such as the square function in non-

linear least-squares (NLS). However, when the model form is incorrect (i.e., M̂ 6= M∗),

parameter estimation either fails or leads to erroneous values associated with an inordinate

prediction error, indicating the model mismatch and the need for a better model structure.

Therefore, structural accuracy of the model transcends its parametric accuracy, hence the

focus of adaptation in MSAM.

The common choice for estimating the model output(s) is numerical integration (i.e.,

simulation) of state variables. When using different model structures in simulation, the

candidate models’ output is a function of state variables and inputs, so it varies considerably

by even minute changes in the model structure. For instance, because in simulation the

rate of output change will depend on the previous outputs, the time span of the transients

may change, making it difficult to compare simulated outputs of different models. Therefore,

simulation-based estimation of model outputs with different model structures, aside from

its computational demand and error propagation tendency, is undesirable for its ambiguity

about the model quality.

The alternative to numerical integration is algebraic estimation of candidate model out-

puts, as commonly performed in symbolic regression [15, 177]. In algebraic evaluation of

models, states are estimated from the measured output (by differentiation and/or integra-

tion together with various smoothing functions) to yield x̃ = [x̃1, . . . , x̃n]T . The estimated

output of the candidate model can then be the state represented by the model; e.g., ˆ̈x in the

harmonic oscillator of Eq. (2.2). In this configuration, the estimated output finds the form

ŷ(tk) = ΘTΨ(x̃(tk), ũ(tk)) (2.5)
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and the prediction error will have the form

ε(tk) = y(tk)− ŷ(tk) = Θ∗TΨ∗ − Θ̃T Ψ̂ (2.6)

where ũ are the inputs used to produce the measured observations y(tk). In algebraic evalu-

ation, therefore, model validation is a static test in which the state variables are independent

of the model structure and the dependent variable is the modeled variable defined alge-

braically by the candidate model being evaluated. Referring back to the harmonic oscillator

of Eq. (2.2), if the measured variable is the displacement x̃(tk), then it can be used to estimate

the model velocity ˙̃x(tk) by numerical differentiation and, say, piece-wise cubic interpolation

and loess smoothing [27] to cope with noise and differentiation errors. Now if the candidate

model Ψ̂ = [ẋ, x, u(t)]T is the linear form of the harmonic oscillator, and the nominal param-

eters values are considered to be Θ̃ =
[
− c̃
m̃ , − k̃

m̃ ,
1
m̃

]T
, then the model output is estimated

as

ŷ(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)−

k̃

m̃
x̃(tk) +

1

m̃
ũ(tk)

and the prediction error is

ε(tk) = − c∗

m∗
˙̃x(tk)| ˙̃x(tk)|+

c̃

m̃
˙̃x(tk)−

k∗

m∗
x̃(tk)

3 +
k̃

m̃
x̃(tk) + ν

Therefore, the prediction error is not only offset by noise, but also the inaccuracy of the

model form; i.e., Ψ̃ 6= Ψ∗ and the parametric error, ∆̃Θ = Θ∗ − Θ̃.

2.4 The Model Structure Adaptation Method

In MSAM, each component is adapted symbolically with the objective of improving the

fitness of the model. To this end, a two-stage adaptation strategy is implemented. In the

first stage, a comprehensive set of component adjustments is tested after iterative adaptation

to select the ‘best candidate model’. In the second stage, this best candidate model is

adapted further to improve the fitness of the model. The salient features of MSAM are (i) its
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unintrusive adjustment scheme which keeps the original model structure intact and conducive

to interpretation after adaptation, (ii) its use of gradient-based search for improved efficiency

over the stochastic search conducted in symbolic regression, (iii) its capacity to measure the

model change magnitude to accommodate gradient-based search in presence of parametric

error, and (iv) its ability to find the correct model structure despite parametric inaccuracy.

2.4.1 Adaptation Strategy

In MSAM, the candidate models are formed by adjusting each model component as

Ψ̂i =⇒ Ψ̃if̂i(x̃, ũ)γi (2.7)

to yield the candidate model

M̂ =

Q∑

i=1

θ̃iΨ̃if̂i(x̃, ũ)γi = Θ̃T Ψ̂ (2.8)

where Ψ̂ =
[
Ψ̃1f̂1(x̃, ũ)γ1 , . . . , Ψ̃Qf̂Q(x̃, ũ)γQ

]T
, the f̂i are functions of individual state vari-

ables or inputs considered to improve the model form, and the γi are exponents to achieve

two goals: (i) to mitigate the discrete nature of the introduced model change, and (ii) to

provide a mechanism for calibrating the degree of change to individual model components

for higher granularity. For instance, to achieve Ψ̃ = ˙̃x =⇒ Ψ̃f∗(x̃, ũ) = ˙̃x| ˙̃x|, the adjustment

needs to be f̂(x) = | ˙̃x|1.0. Assuming that the true model can be reached by the introduc-

tion of candidate adjustments f̂ to the initial model Ψ̃, the true model will have the form

Ψ∗ =
[
Ψ̃1f

∗
1 (x̃, ũ)γ

∗
1 , . . . , Ψ̃Qf

∗
Q(x̃, ũ)γ

∗
Q

]T
. The adaptation strategy, hence, entails applying

adjustments of the form (2.7) to individual components of the model Ψ̃ and then adapting

the exponents γi to fine-tune the model structure. The goal of MSAM is to first find the form

f̂ =
[
f̂1(x̃, ũ), . . . , f̂Q(x̃, ũ)

]T
, that will match the correct form f∗ =

[
f∗1 (x̃, ũ), . . . , f∗Q(x̃, ũ)

]T

and then adapt the exponents γi, to achieve Γ = [γ1, . . . , γQ]T =⇒ Γ∗ =
[
γ∗1 , . . . , γ

∗
Q

]T
.

The proposed adaptation strategy, as outlined above, is therefore tailored to starting

models with missing couplings. Even though such models may constitute only a subset of
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nonlinear models to be envisioned for a process, they encompass considerable nonlinear ca-

pacity. Indeed the method could be enhanced in reach by the added provision of introducing

new components to the original model. However, that is beyond the premise of the method

which is aimed at refining starting models with adequate components to capture the phe-

nomenological aspects of the process. After all, for a more flexible and expanded model

structure one could resort to symbolic regression independent of any structural constraints

of the starting model. Another requirement of the proposed method is the set of functions

f to be introduced into the starting model. While the method does not pose any limitation

to the number of functions to be considered, its computational effort will be increased with

the larger number of candidate models produced by the expanded set of functions. Given n

functions and Q components, the number of possible candidate models would be Qn. For-

tunately, the adaptation of individual candidate models can be performed independently of

each other, making parallel execution possible.

Given that finding the correct structural change f∗(x̃, ũ) transcends adaptation of the

corresponding exponents, the first stage of adaptation in MSAM comprises a round robin

competition between candidate models of the form (2.8), after a limited number of exponent

adaptations, according to a fitness function of the prediction error (Eq. (2.6)). For gradient-

based adaptation in the round robin stage, the target output y(t) can be defined by its

first-order approximation at the nominal parameter values θ̃i, and exponents γ̂i, as

y(t) ≈ ŷ(t, Ψ̂, Γ̂, Θ̃) +

Q∑

i=1

∆̃θi

(
∂ŷ(t, Ψ̂, Γ̂, Θ̃)

∂θi

)
+

Q∑

i=1

∆̂γi

(
∂ŷ(t, Ψ̂, Γ̂, Θ̃)

∂γi

)
(2.9)

where ∆̃θi = θ∗i − θ̃i and ∆̂γi = γ∗i − γ̂i. The above approximation holds when the structure

of the candidate model provides a close first-order approximation of the target output and

the partial derivatives of ŷ are reasonably close to the corresponding partial derivatives of y.

Ideally, one would want to adapt both the coefficients θi and exponents γi for each candi-

date model form Ψ̂ during the round robin phase with the objective of identifying the correct

model form. However, potential collinearity between θi/γi pairs often hinders their concur-

rent adaptation, forcing one to adapt the one with the larger influence on the prediction
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error. As is discussed in the next section, since the exponents (in the absence of bifurcation)

have the larger influence on the prediction error, they are the preferred target for adaptation.

Therefore, an underlying assumption of MSAM is that a candidate model with the correct

function adjustments f̂ = f∗ will have the best fitness relative to other candidate models after

adaptation despite the parametric error ∆̃Θ.

2.4.2 Precedence of Structural Error to Parametric Error

Albeit anecdotal, the prominence of exponents γi over the coefficients θi in MSAM is

shown via two examples in Fig. 2.1. The two models are those of the harmonic oscillator

(left plots) and the van der Pol oscillator (right plots). The plots show the displacements

of the two models with different structures and parametric error levels, computed as ∆Θ =

∑Q
i=1 |θ∗i − θ̃i|/θ∗i . Even though three parameters are defined for the van der Pol oscillator, to

provide breadth for parameter variation, the parameters of the nominal model (ẍ = −η1x
2ẋ+

η2ẋ − η3x) are defined as η1 = η2 and η3 = 1 to match the standard van der Pol oscillator

form (ẍ = ηẋ(1−x2)−x). The results in Fig. 2.1 indicate that both oscillators’ displacements

are similar in shape with even 100% total parameter error, whereas they differ drastically

in shape when their structures change. The exception is the displacement of the oscillator

on the right from the model (ẍ = −η1x
2ẋ + η2ẋ − η3x|x|) which is very similar to that of

the van der Pol oscillator having erroneous parameter values. At these erroneous parameter

values, there will be little distinction between the correct and incorrect structures, making it

difficult to identify the correct form.

There are three observations to be made of the results in Fig. 2.1. One is that the models’

responses are affected more drastically by the structure than the parameter values. This gives

credence to prioritizing exponent adaptation over parameter estimation. The second obser-

vation is that the shape of the responses are better indicators of structural differences than

their magnitudes. The model response shapes are incorporated in the evaluation of models

by including the correlation coefficient between the models’ responses and their targets in

the fitness function. Consideration of output shapes in model evaluation is shown to improve

the capacity for structure search in the presence of erroneous parameters and as a precur-
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ẍ = −µ1x
2ẋ+ µ2ẋ− µ3x

∆̂Θ = ±100%Θ
∗

∆̂Θ = ±100%Θ
∗

∆̂Θ = ±100%Θ
∗

ẍ = −µ1x
3/2ẋ+ µ2ẋ− µ3x

ẍ = −µ1x
2ẋ+ µ2ẋ

2
− µ3x

ẍ = −µ1x
2ẋ+ µ2xẋ− µ3x

ẍ = −µ1x
2ẋ+ µ2ẋ− µ3x|x|

ẍ = 1/m(−cẋ|ẋ|− kx3 + u)

∆̂Θ = ±100%Θ
∗

∆̂Θ = ±100%Θ
∗

∆̂Θ = ±100%Θ
∗

ẍ = 1/m(−cẋ− kx+ u)
ẍ = 1/m(−cẋ|ẋ|− kx+ u)
ẍ = 1/m(−cẋ− kx3 + u)

Figure 2.1. Displacements of the harmonic oscillator (left) and the van der Pol oscillator
(right) with different parameter values and structures

sor to parameter estimation. The third observation corresponds to the drastic difference of

model responses due to the discrete nature of structural differences in Fig. 2.1. Since such

drastic differences would be detrimental to gradient-based adaptation, they are mediated by

insertion of exponents into the models so as to regulate the size of adaptation.

2.4.3 Scaling of Model Changes

The prominence of structural accuracy to parametric accuracy and the difficulty in con-

current parameter and exponent estimation motivates focusing adaptation on the exponents,

rendering the prediction error with the form

ε(t) = y(t)− ŷ(t, Ψ̂, Θ̃)− εθ ≈
Q∑

i=1

∆̂γi

(
∂ŷ(t, Ψ̂, Θ̃)

∂γi

)
= εγ = Φγ∆̂Γ (2.10)

where εθ denotes the parametric error approximated by its first-order expansion as
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εθ ≈
Q∑

i=1

∆̃θi

(
∂ŷ(t, Ψ̂, Θ̃)

∂θi

)
≈ Φθ∆̃Θ (2.11)

and

Φγ =




∂ŷ(t1, Ψ̂, Θ̃)/∂γ1 . . . ∂ŷ(t1, Ψ̂, Θ̃)/∂γQ
...

. . .
...

∂ŷ(tN , Ψ̂, Θ̃)/∂γ1 . . . ∂ŷ(tN , Ψ̂, Θ̃)/∂γQ




(2.12)

Success of adaptation in MSAM, therefore, relies on the quality of Φγ in Eq. (2.10). Two

factors can degrade the estimation of Φγ : (i) the presence of parametric error, εθ, as a bias

in the prediction error, and (ii) the non-uniformity of the columns of Φγ . As to the first

factor, although the parameter error ∆̃Θ remains constant during adaptation, the parameter

sensitivity matrix Φθ varies as a function of Γ̂. This variation causes the bias due to εθ to

be non-constant during adaptation, hence, a shift in the gradient of the objective function.

The second factor, namely the non-uniformity of the columns of Φγ , stems from the non-

uniformity of structural changes (fi(x,u))γi . Unlike typical parameter perturbations that

are applied to nonzero parameter values, the values of γi initialize at zero to modulate the

introduction of functions. As such, their perturbations can have drastic effects on the outputs

of the candidate models.

One possible approach to improving the condition of Φγ is to scale the columns of Φγ [6]

by the magnitude of model difference caused by the perturbation δγi. We quantify the model

difference magnitude in terms of parameter sensitivity, according to the following definition.

Definition: The difference between two models of the same structure but a different

exponent; i.e., Ψ2 = Ψ̂(Γ + ∆γi) and Ψ1 = Ψ̂(Γ) is quantified by the sum of the `2-norm of

their parameter sensitivity difference over time, as

∆(Ψ2,Ψ1) =
N∑

k=1

∣∣∣∣∣

∣∣∣∣∣
∂ŷ(tk,Ψ2, Θ̃)

∂Θ
− ∂ŷ(tk,Ψ1, Θ̃)

∂Θ

∣∣∣∣∣

∣∣∣∣∣
2

(2.13)
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where ∆(Ψ2,Ψ1) is the model difference magnitude, ∂ŷ/∂Θ =

[
∂ŷ/∂θ1, . . . , ∂ŷ/∂θQ

]
is

the vector of parameter sensitivities at time tk, and `2-norm for the vector v = [v1, . . . , vn]T ∈

Rn is defined as ||v||2 =
√∑n

i v
2
i = (vTv)

1
2 .

For clarification of the above definition, consider the three harmonic oscillator models of

increasing complexity below wherein the acceleration of each model is the estimated output

obtained algebraically according to the measured displacement x̃(tk).

ŷ1(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)−

k̃

m̃
x̃(tk) +

1

m̃
ũ(tk); Ψ1 =

[
˙̃x(t), x̃(t), ũ(t)

]T

ŷ2(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)| ˙̃x(tk)| −

k̃

m̃
x̃(tk) +

1

m̃
ũ(tk); Ψ2 =

[
˙̃x(t)| ˙̃x(t)|, x̃(t), ũ(t)

]T

ỹ3(tk) = ̂̈x(tk) = − c̃

m̃
˙̃x(tk)| ˙̃x(tk)|2 −

k̃

m̃
x̃(tk) +

1

m̃
ũ(tk); Ψ3 =

[
˙̃x(t)| ˙̃x(t)|2, x̃(t), ũ(t)

]T

Admittedly, Ψ3 is more complex (denoted by ⇑) than Ψ2, which is more complex than Ψ1;

i.e., Ψ3 ⇑ Ψ2 ⇑ Ψ1. Then according to the above definition, the model difference magnitude

∆(Ψ3,Ψ1) should be as large or larger than ∆(Ψ2,Ψ1) as quantified by the norm of their

parameter sensitivity differences; i.e.,

∆(Ψ3,Ψ1) ≥ ∆(Ψ2,Ψ1) =⇒∑N
k=1

∣∣∣
∣∣∣∂ŷ(tk,Ψ3,Θ̃)

∂Θ − ∂ŷ(tk,Ψ1,Θ̃)
∂Θ

∣∣∣
∣∣∣
2
≥

∑N
k=1

∣∣∣
∣∣∣∂ŷ(tk,Ψ2,Θ̃)

∂Θ − ∂ŷ(tk,Ψ1,Θ̃)
∂Θ

∣∣∣
∣∣∣
2

The above inequality can be confirmed analytically, as

∣∣∣∣∣

∣∣∣∣∣
∂ŷ(Ψ3, Θ̃)

∂Θ
− ∂ŷ(Ψ1, Θ̃)

∂Θ

∣∣∣∣∣

∣∣∣∣∣
2

=

√[
˙̃x(t)| ˙̃x(t)|2 − ˙̃x(t)

]2 ≥
∣∣∣∣∣

∣∣∣∣∣
∂ŷ(Ψ2, Θ̃)

∂Θ
− ∂ŷ(Ψ1, Θ̃)

∂Θ

∣∣∣∣∣

∣∣∣∣∣
2

=

√[
˙̃x(t)| ˙̃x(t)| − ˙̃x(t)

]2

It should be noted here that the symbolic form of parameter sensitivities, shown here for

conceptual verification of the above definition, is not necessary for computation of the model

difference magnitude, since it can be readily obtained numerically.
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As discussed earlier, the model difference magnitude is defined to measure model changes

affected by perturbations to the exponents γi in Eq. (2.8). To this end, the model difference

magnitude is computed for the perturbed model resulted from an exponential perturbation

δγi and normalized to render the ‘model perturbation magnitude’ δΨi as

δΨi =

∑N
k=1

∣∣∣
∣∣∣∂ŷ(tk,Γ̂+δγi,Θ̃)

∂Θ − ∂ŷ(tk,Γ̂,Θ̃)
∂Θ

∣∣∣
∣∣∣
2∑N

k=1

∣∣∣
∣∣∣∂ŷ(tk,Γ̂,Θ̃)

∂Θ

∣∣∣
∣∣∣
2

(2.14)

The scaling of structural sensitivity by δΨi then takes the form

∂ŷ(t, Γ̂, Θ̃)

∂γi
≈ ŷ(t, Γ̂ + δγi, Θ̃)− ŷ(t, Γ̂, Θ̃)

δΨi
(2.15)

wherein the δΨi are used in place of δγi in the denominator of the finite difference approxi-

mation of the output sensitivity. The availability of the Jacobian Φγ enables estimation of

the exponential errors ∆γi according to nonlinear least-squares, as

∆̂Γ = [∆̂γ1, . . . , ∆̂γQ]T = (ΦT
γΦγ)−1ΦT

γ ε
N (2.16)

and consequent adaptation of the exponents, as

γi(q + 1) = γi(q) + µ(q)∆γi(q) (2.17)

where q is the iteration number and µ(q) is the adaptation step size, determined at each

iteration (see Section 2.5.2).

2.5 Algorithmic Implementation

Given the adjustment strategy in Eq. (2.7), adaptation in MSAM entails finding the ad-

justments f∗ and their exponents γi
∗. To this end, adaptation is performed in two stages,

wherein improvement of the candidate model(s) is attained through adaptation of the ex-

ponents γi. In the first stage, using a round robin format, all possible candidate models
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are adapted for their viability of improving the model’s accuracy with a nominal number of

exponent adaptations. Given n adjustments and Q components, the number of candidate

models would equal Qn. The underlying assumption of the round robin stage is that the

candidate model with the correct adjustments f = f∗ will achieve the best fitness in a fixed

number of iterations. Therefore, there is always the possibility that MSAM may not find the

correct adjustment set because of the limited number of iterations used in the round robin

stage. In the second stage, the winner combination is further adapted via its exponents to

enhance the model’s accuracy.

The adaptation strategy is described in Algorithm 1. Adaptation begins by evaluating the

candidate models, composed of unique sets of adjusted components, in a round robin fashion.

At the end of the round robin stage, the candidate model associated with the best fitness is

chosen for further adaptation in the second stage. For illustration purposes, selection of the

best candidate model of the harmonic oscillator in the first stage, followed by its adaptation in

the second stage, is shown in Fig. 2.2. The plots in the first stage represent the fitness values

of the candidate models during the first 15 iterations of adaptation. The inferior models are

discarded for the second stage where adaptation is continued for the best-fit model.

2.5.1 Fitness Function

The fitness function is used mainly to distinguish between the candidate models. Since

MSAM emphasizes structural adaptation, it requires a fitness criterion that is more sensitive

to structural error than parametric error. A significant indicator of the model structure is

the shape of the model output, as was observed in Fig. 2.1. Therefore, included in the fitness

function is the correlation coefficient between the model’s output and its target so as to

represent the closeness of the output’s shape to its target [91, 11]. Accordingly, the fitness

function in MSAM is defined as

F =
ρ(ŷ, y)

∑N
k=1 |ε(tk)|

(2.18)

where ρ(ŷ, y) denotes the correlation coefficient between the model’s output ŷ and its target

y, computed as ρ(ŷ, y) = Cŷy/σŷσy where Cŷy is the covariance of ŷ and y, and σ denotes
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Figure 2.2. Illustration of candidate model selection by MSAM in the round robin stage,
followed by further adaptation of the selected model in the second stage, as represented by
the inverse of the fitness value for each model

standard deviation. The larger the fitness value the closer the model is to its target, therefore,

this fitness function is used primarily to evaluate the fitness of various candidate models in

the first stage of adaptation by MSAM.

2.5.2 Selection of Adaptation Step Size

The adaptation step size µ in Eq. (2.17) specifies the confidence in the estimate of ∆̂Γ

from Eq. (2.16). Since this estimate is based on the approximation of the prediction error in

Eq. (2.10), its fidelity can be assessed by the accuracy of the prediction error approximation.

As a measure of this accuracy, we use the correlation coefficient between the error and its

first-order approximation (i.e., the two sides of Eq. (2.10)) to characterize the closeness of

approximation of the error shape by the estimated εγ . Accordingly, the adaptation step size

at the iteration q is computed as

µ(q) = ρ
(
εN (q), ε̂γ(q)

)
(2.19)
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where εN = [ε(t1), . . . , ε(tN )]T .

2.6 Application Examples

The performance of MSAM is evaluated in two categories: (1) controlled tests, wherein

the target model is known and the target data is the simulated output of this model used in

lieu of measured observations, and (2) real world tests, wherein the target model is unknown

and the measured observations are obtained experimentally. The first tests are intended to

examine whether the true underlying model forms can be attained by adaptation. The second

tests demonstrate the applicability of the approach to real systems where there are no true

models and the preferred models are those that minimize the prediction error.

2.6.1 Controlled Tests

For the controlled validation of the method, three nonlinear models of increasing nonlin-

earity and order are adapted from simpler starting models. The first model is that of the

nonlinear harmonic oscillator, which has been used thus far to illustrate various aspects of

the method. It has two model components (Q = 2) and two variables (n = 2), generating

a round robin size of Qn = 22 = 4. The second model is that of the van der Pol oscillator,

consisting of three components (Q = 3) and two variables (n = 2). It not only has a larger

round robin size than the harmonic oscillator (32 = 9) but also a nonlinear coupling of ve-

locity and position that needs to be identified. The third model is a third-order state-space

model, where each state equation comprises three nonlinear components. As such, this model

poses a round robin size of 27 with heavily coupled components in each state equation.

The three models sought by MSAM are shown in Table 2.1 along with the starting models,

parameter values, inputs, and perturbation functions. The harmonic oscillator consisted of

three components, two of which needed to be adapted to their counterparts in the target model

as Ψ̃1 = ˙̃x =⇒ Ψ∗1 = ˙̃x| ˙̃x|γ1 and Ψ̃2 = x̃ =⇒ Ψ∗2 = x̃γ2 . For the van der Pol oscillator, the

goal was to adapt its first component to η1x̃
2 ˙̃x, leaving the other two components practically

untouched. To guarantee real-valued outputs for the third-order system, the perturbations
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were applied as sign(fi(x̃, ũ))|fi(x̃, ũ)|γi . For this model, the three state variables were

assumed to be accessible.

Table 2.1. The three models sought by MSAM in the controlled tests

Harmonic Oscillator van der Pol Oscillator 3rd-order Model

Target Model
ẍ =
− c
m
ẋ|ẋ|− k

m
x3+ 1

m
u(t)

ẍ+ η(x2 − 1)ẋ+ x = 0
ẋ1 = θ1x1x3 + θ2x2x3 + θ3x23
ẋ2 = θ4x1x2 + θ5x1x3 + θ6x2x3
ẋ3 = θ7x1x2 + θ8x1x3 + θ9x2x3

Starting Model
ẍ =
− c
m
ẋ− k

m
x+ 1

m
u(t)

ẍ+ η1ẋ− η2ẋ+ η3x = 0

ẋ1 = θ̃1x1 + θ̃2x2 + θ̃3x3
ẋ2 = θ̃4x1 + θ̃5x3 + θ̃6x2
ẋ3 = θ̃7x1 + θ̃8x3 + θ̃9x2

Parameter Values

 m∗

c∗

k∗

 = 375
9800

130000


 η∗1
η∗2
η∗3

 =

 1.5
1.5
1


[
θ∗1 , θ

∗
2 , θ
∗
3

]T
= [ −3, −2, −3 ]T[

θ∗4 , θ
∗
5 , θ
∗
6

]T
= [ −3, 1, −3 ]T[

θ∗7 , θ
∗
8 , θ
∗
9

]T
= [ 3, 3, −1 ]T

Excitation Step input x(0) = [0,−1] x(0) = [5, 0, 1]

Perturbance
Functions

{
| ˙̃x|, |x̃|

} {
|x̃|, | ˙̃x|

} {
x1, x2, x3

}

For algorithmic details, let us consider the adaptation of the harmonic oscillator model,

in which the options to be considered for adaptation of the first and second components were

Ψ̂1 : ˙̃x −→ ˙̃x|x̃|γ1 and ˙̃x −→ ˙̃x| ˙̃x|γ1 and Ψ̂2 : x̃ −→ x̃|x̃|γ2 and x̃ −→ x̃| ˙̃x|γ2 . Each of the four

models formed from the above options were adapted iteratively by adjusting the exponents

γ1 and γ2 in 15 iterations. The best model form selected at the end of this first (round robin)

stage was further adapted, by improving the exponents γ1 and γ2 over 70 more iterations.

Adaptation tests were performed with parametric errors ranging from 0% to 200% of the true

parameter values. A sample of initial and final outputs before and after structural adaptation

is shown in Fig. 2.3. The left plots show the outputs ̂̈x of the starting model at different levels

of parameter error together with the target output. The right plots compare with the target

output the outputs of the adapted models at various parametric error levels. The results

clearly indicate the effectiveness of MSAM in producing models with outputs that are very

close to the target output despite parametric error levels up to 100%.

Even though we use the fitness value as the surrogate, the real goal is the fidelity of the

adapted model. To evaluate the reproducibility and accuracy of the model forms achieved by

28



0 50 100
−30

−25

−20

−15

−10

−5

0

Data Point (k)

O
u

tp
u

t

 

 

0 20 40 60 80 100 120
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Data Point (k)

O
u

tp
u

t

 

 

Final ŷ(Ψ̂,∆Θ = 25%)

Final ŷ(Ψ̂,∆Θ = 50%)

Final ŷ(Ψ̂,∆Θ = 100%)
y∗(Ψ∗,Θ∗)

Initial ŷ(Ψ̂,∆Θ = 25%)

Initial ŷ(Ψ̂,∆Θ = 50%)

Initial ŷ(Ψ̂,∆Θ = 100%)

y∗(Ψ∗,Θ∗)

Figure 2.3. Sample of outputs (i.e., ˆ̈x) before (left) and after adaptation (right) by MSAM
of the nonlinear harmonic oscillator at three levels of parametric error. The starting model
in all cases was ẍ = 1

m̃(−c̃ẋ− k̃x+ u).
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MSAM, ten adaptation trials were performed for each of the models with randomly generated

parameters at various parametric error levels. The results obtained from these trials at

parametric error levels of 0%, 25% and 50% are shown in Table 2.2 for the harmonic and

van der Pol oscillators, and in Table 2.3 for the third order model. These tables show

the error minimization capacity of MSAM, in terms of the prediction error and correlation

coefficient between the estimated and target outputs, and the median final model obtained

for each error level. The results indicate that even though the fitness value is influenced by

parametric error, the correct model form (f̂ = f∗) is achieved in all cases. The main difference

between these models is in exponent values of the final models attained, which deviate from

their correct values in accordance with the corresponding parametric error level. Noteworthy

in the results is the high level of correlation achieved for the final model outputs at all levels

of parameter error (ρ > 0.999). The fact that this level of success is not shared by the

prediction error validates the lower sensitivity of output shape to parametric error and gives

credence to the importance of including the correlation coefficient in the fitness function (see

Eq. (2.18)). Noteworthy are the results for the van der Pol oscillator, which indicate that

the first component of the final model closely approximates its target (η1x
2ẋ), despite the

presence of parametric error. The small exponents associated with the other component

adjustments render them negligible. Also noteworthy are near unity values of the correlation

coefficients in Table 2.2 between the final model outputs and the target, indicating the lower

sensitivity of output shapes to parametric error. Contrary to the correlation coefficient, the

prediction error is sensitive to parametric error, as represented by its larger final values at

higher parametric error levels. As to the third order model, the third state required a higher

number of round robin iterations (40) to robustly select the correct model structure in the

presence of parametric error. With the 15 iterations initially used to adapt this state model,

MSAM consistently chose the wrong adjustment for its third component. Conversely, the 40

iterations in the round robin stage were adequate to produce consistently correct models at

all parametric error levels.
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Table 2.2. Performance of MSAM for the nonlinear harmonic oscillator and van der Pol
oscillator in terms of the components of the fitness function (i.e., prediction error and corre-
lation coefficient between the estimated and target outputs) and the model forms achieved
for different levels of parameter error. The results are from 15 round robin iterations and
70 final choice iterations for the harmonic oscillator and 10 round robin iterations and 75
final choice iterations for the van der Pol oscillator. Ten trials runs were performed at each
error level with the parameter values randomly selected. The ± quantities are the standard
deviations over the trials.

Starting Final

∆Θ
∑
|ε(t)| ρ(¨̃x, ˆ̈x)

∑
|ε(t)| ρ(¨̃x, ˆ̈x) Median Final Model

Harmonic Oscillator

Starting Model: m̃ẍ+ c̃ẋ+ k̃x = u(t) Target Model: m∗ẍ+ c∗ẋ|ẋ|+ k∗x3 = u(t)

0% Θ∗ 3780 0.7690 0.0534 0.9999 m̃ẍ+ c̃ẋ|ẋ|1.00 + k̃x3.00 = u(t)

25% Θ∗ 3685±530 0.769±0.01 0.359±0.25 1.000±0.00 m̃ẍ+ c̃ẋ|ẋ|0.984 + k̃x2.991 = u(t)

50% Θ∗ 3603±1049 0.772±0.02 0.689±0.43 0.999±0.00 m̃ẍ+ c̃ẋ|ẋ|0.966 + k̃x2.973 = u(t)

van der Pol Oscillator
Starting Model: ẍ = −η̃1ẋ+ η̃2ẋ− η̃3x Target Model: ẍ = −η∗1x2ẋ+ η∗2 ẋ− η∗3x

0% Θ∗ 276.12 0.446 5.8256 0.9997 ẍ = −η1|x|2.02ẋ+ η2ẋ− η3x|ẋ|0.03
25% Θ∗ 193.5

±8.393
0.394
±0.053

25.484
±5.524

0.995
±0.003

ẍ = −η̂1|x|1.934ẋ + η̂2ẋ|x|0.0226 −
η̂3x|ẋ|0.0634

50% Θ∗ 205.0
±21.19

0.250
±0.0788

37.784
±13.700

0.9914
±0.00545

ẍ = −η̂1|x|2.355ẋ + η̂2ẋ
1.132 −

η̂3x|ẋ|−0.046
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Table 2.3. Performance of MSAM for the three variable SODE in terms of the components
of the fitness function (i.e., prediction error and correlation coefficient between the estimated
and target outputs) and the model forms achieved for different levels of parameter error. Ten
trials runs were performed at each error level with the parameter values randomly selected.
The results are from 15 round robin iterations and 100 final choice iterations for states 1 and
2, and 40 round robin iterations and 60 final choice iterations for state 3.

∆Θ Starting Final Success Median Final Model
∑ |ε(t)| ρ( ˙̃xi, ˆ̇xi)

∑ |ε(t)| ρ( ˙̃xi, ˆ̇xi) Rate

Starting Model: ẋ1 = θ̃1x1 + θ̃2x2 + θ̃3x3 Target Model: ẋ1 = θ∗1x1x3 + θ∗2x2x3 + θ∗3x
2
3

0% Θ∗ 3043.217 0.763 403.833 0.993 100% ˆ̇x1 = θ̃1x1x
1.16
3 + θ̃2x2x

0.26
3 + θ̃3x

2.01
3

25% Θ∗ 3300.194
±240.851

0.743
±0.046

440.222
±120.129

0.998
±0.002

100% ˆ̇x1 = θ̃1x1x
1.13
3 + θ̃2x2x

0.57
3 + θ̃3x

2.03
3

50% Θ∗ 3656.362
±509.102

0.719
±0.091

747.273
±239.304

0.995
±0.017

80% ˆ̇x1 = θ̃1x1x
1.09
3 + θ̃2x2x

0.35
3 + θ̃3x

2.13
3

Starting Model: ẋ2 = θ̃4x1 + θ̃5x3 + θ̃6x2 Target Model: ẋ2 = θ∗4x1x2 + θ∗5x1x3 + θ∗6x2x3

0% Θ∗ 5890.721 0.127 49.201 1.000 100% ˆ̇x2 = θ̃4x1x
1.10
2 + θ̃5x

0.99
1 x3 + θ̃6x2x

1.10
3

25% Θ∗ 5966.269
±362.675

0.12672
±0.019

121.934
±47.0814

0.998
±0.0007

100% ˆ̇x2 = θ̃4x1x
1.11
2 + θ̃5x1x

0.98
3 + θ̃6x2x

1.01
3

50% Θ∗ 6062.185
±730.500

0.124
±0.038

230.341
±107.928

0.994
±0.015

90% ˆ̇x2 = θ̃4x1x
1.17
2 + θ̃5x1x

0.87
3 + θ̃6x2x

0.92
3

Starting Model: ẋ3 = θ̃7x1 + θ̃8x3 + θ̃9x2 Target Model: ẋ3 = θ∗7x1x2 + θ∗8x1x3 + θ∗9x2x3

0% Θ∗ 4914.037 0.498 88.991 0.999 100% ẋ3 = θ̃7x1x
1.10
2 + θ̃8x

1.10
1 x3 + θ̃9x2x

0.61
3

25% Θ∗ 4795.186
±375.625

0.508
±0.033

118.5305
±29.0678

0.998
±0.001

100% ˆ̇x3 = θ̃7x1x
1.12
2 + θ̃8x

1.07
1 x3 + θ̃9x2x

0.52
3

50% Θ∗ 4683.273
±730.797

0.518
±0.063

166.507
±76.351

0.996
±0.004

100% ˆ̇x3 = θ̃7x1x
1.12
2 + θ̃8x

1.04
1 x3 + θ̃9x2x

0.48
3
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Table 2.4. Success rate of MSAM in finding the correct model form for the nonlinear
harmonic oscillator at different parametric error levels. Results are reported at the end of
the round robin stage from 50 trials of randomly generated parameter values within each
parametric error level.

∆Θ: 0% 25% 50% 75% 100% 125% 150% 175% 200%
Success Rate: 100% 100% 100% 96% 92% 72% 62% 52% 42%

Crucial to the success of MSAM is selection of the correct model form at the end of the

round robin stage. To test this aspect of the performance of MSAM in presence of parametric

error, the initial round robin stage was repeated for 50 sets of randomly generated parameters

at each level of parametric error up to 200%. Success was declared when the correct model

form in terms of adjustments (i.e., f = f∗) was chosen at the end of the round robin stage.

The success rates for different levels of parametric error are shown in Table 2.4. The results

indicate that MSAM is completely successful with parametric error levels of up to 50%, more

than 90% successful with up to 100% parametric error, and more than 50% successful with

up to 175% parametric error. These results underscore the capacity of MSAM in finding the

correct model form despite considerable uncertainty in the parameter values, thus obviating

concurrent search of both the structure and model parameters.

Even though secondary to proper model form selection, an important aspect of MSAM is

adaptation of the exponents of the candidate model during the second stage. The progression

of the selected model outputs towards their target for the van der Pol oscillator during second-

stage adaptation of the model structure by MSAM is shown in Fig. 2.4 for different levels

of parametric error. The plots clearly indicate the convergence of the outputs toward their

target despite different levels of parametric error. The only distinction at higher parametric

errors is the larger distance between the final and target outputs.

Another important feature of MSAM is the use of δΨi from Eq. (2.14) for scaling the

columns of Φγ . A direct ramification of this scaling is the better quality of Φγ , that will

result in better estimates of ∆̂Γ when used in Eq. (2.16). The improved quality of Φγ is

illustrated through its condition number (λmax/λmin), computed with and without scaling
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Figure 2.4. Progression of the outputs towards their van der Pol oscillator output target as
the model structure is continually adapted by MSAM. The starting model was ẍ = −η̃1ẋ +
η̃2ẋ− η̃3x with the parameters randomly selected within the parametric error range.
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Figure 2.5. Condition number of ΦΓ
TΦΓ for various levels of parametric error using the

structural sensitivities in Eq. (2.15) with and without scaling by δΨi. The condition number

is calculated for 30 trials of 9 iterations of MSAM at parametric error levels of ∆̃Θ = 25%,
50%, and 100%. The error bars represent standard deviation.

by δΨi at different levels of randomly generated parametric errors (∆̃Θ), as shown in Fig. 2.5.

The condition numbers in Fig. 2.5 are much smaller for δΨi-scaled Φγ , and given that the

closer the condition number is to unity the more separate (less collinear) are the columns of

the matrix [78], the results in Fig. 2.5 clearly indicate the marked improvement in the quality

of Φγ scaled by δΨi. According to the results in Fig. 2.5, not only are the condition numbers

nearly always lower for the scaled Φγ , but they are also much less sensitive to the parameter

error as evidenced by close to zero standard deviations at different levels of parametric error.

2.6.2 Real World Tests

To test MSAM’s effectiveness in application to real world cases, target outputs from two

sets of experimental data were considered for construction of models. The first set was exper-

imental data obtained for flow-induced vibration of a slender beam. The second set was eco-

nomic data from the Federal Reserve Economic Data (FRED) (http://research.stlouisfed.org/fred2/).
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2.6.2.1 Flow-Induced Vibration

The area of Fluid-Structure Interaction (FSI) offers a pertinent domain for nonlinear

modeling of coupled states. Briefly, when a flexible or flexibly-mounted structure is placed in

fluid flow, it can move due to the flow forces. The structure’s motion changes the flow forces,

which in turn affect the structure’s motion, constituting an FSI problem. FSI is observed in

wind turbines, offshore structures, novel energy extraction ideas and biomedical engineering,

among others (e.g., [7, 13, 153, 154, 155, 174, 218]).

For this case study, the experimental data were associated with a uniform cylinder placed

in a re-circulating water tunnel, with a test section of 1.27 m × 0.5 m × 0.38 m, a turbulence

intensity of less than 1% for up to a flow velocity of U = 0.08 m/s and a velocity uniformity

of less than 2% [185, 184]. The set-up used to hold the cylinder in the test section had two air

bearings to reduce the damping and constrain the oscillations of the cylinder to one degree of

freedom in the crossflow direction. Springs were attached from the supporting plate holding

the cylinder to the fixed housing. The cylinder’s displacement and the corresponding flow

forces were simultaneously measured at a flow velocity of U = 0.076 m/s. The experimental

data were split into training and validation sets of 25 seconds in length.

The limit cycle characteristics of the dynamics associated with the displacement ,x, of

the cylinder and the applied force, q, motivates the use of the van der Pol oscillator model

for representation of q, in lieu of solving the Navier-Stokes equation. Accordingly, the FSI

model is considered to be [40]

(ms + 1/4πCMρD
2)ẍ+ [rs2πSt(U/D)ρD2]ẋ+ hx = 1/4ρU2DCLoq (2.20)

q̈ + ε[2πSt(U/D)](q2 − 1)q̇ + [2πSt(U/D)]2q = (A/D)ẍ (2.21)

where St is the Strouhal number, ms is the mass of the structure, ρ is the fluid density, rs

represents viscous dissipation in the support, γ denotes the stall parameter, U is the free

steam velocity, D is the cylinder’s diameter, CM is the added mass coefficient, CLo is the lift

coefficient, and ε and A are the van der Pol scaling parameters.
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For this study, we focused our analysis on adaptation of the van der Pol oscillator model

approximating the vortex force q (Eq. (2.21)). We proceeded first by adapting the model’s

scaling parameters A and ε using non-linear least squares and then used the resulting model

as the starting model to be adapted by MSAM. For this adaptation case, 20 round robin

iterations were used for selection of the best model, choosing structural perturbations from

the set

{
|q̈|, |q̇|, |q|

}
. The best candidate model was further improved via 20 iterations

in the second stage. The resulting model had the form

(A/D)̂̈x = ¨̃q| ˙̃q|γ1 + ε[2πSt(U/D)](q̃2| ˙̃q|γ2 − |q̃|γ3) ˙̃q + [2πSt(U/D)]2q̃|q̃|γ4 (2.22)

with γ1 = −0.1178, γ2 = −0.0023, γ3 = 0.1036 and γ4 = 3.2329.

The results are summarized in Table 2.5 and the initial and final models from MSAM are

plotted against the validation data set in Fig. 2.6. The results indicate that whereas parameter

estimation of the original model only marginally improves the accuracy of the original model,

the structurally adapted model is about 41.7% improved according to magnitude of the

prediction error. The VIV modeling problem is considered in more depth in Ch. 8.

Table 2.5. Adaptation of the VIV force equation using experimental results for U = 0.076
m/s. The exponents are γ1 = −0.1178, γ2 = −0.0023, γ3 = 0.1036 and γ4 = 3.2329.

Model Training Validation∑
|ε(t)| ρ(¨̃x, ˆ̈x)

∑
|ε(t)| ρ(¨̃x, ˆ̈x)

Original Model: (A/D)̂̈x = ¨̃q+ ε[2πSt(U/D)](q̃2− 1) ˙̃q+ [2πSt(U/D)]2q̃ 246.53 0.751 243.69 0.769

Parameter-tuned Original Model 245.45 0.780 242.31 0.803

Adapted Model:
(A/D)̂̈x = ¨̃q| ˙̃q|γ1 + ε[2πSt(U/D)](q̃2| ˙̃q|γ2 − |q̃|γ3) ˙̃q+ [2πSt(U/D)]2q̃|q̃|γ4

136.54 0.890 141.22 0.897

Parameter-tuned Adapted Model 137.20 0.891 141.33 0.898

2.6.2.2 A Macroeconomic Model

The second practical case study was the dynamic model of investment savings (IS) for

the United States, which was developed based on economic data from the Federal Reserve

Economic Data. The nominal form of the IS model [186] is
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Figure 2.6. Adaptation of the van der Pol form for modeling vortex-induced vibration. The
output of the initial and adapted models is shown against the validation data set. The initial
ŷ is the van der Pol form (Eq. (2.21)) with optimized parameters. The form of the final ŷ is
given in Table 2.5

ẏ(t) = α(e(t)− y(t)) α > 0 (2.23)

where e represents total expenditure and y income (gross domestic product (GDP)).

As in the previous case, the above model was parameter-tuned first before being adapted

as the starting model by MSAM. The models were trained on historical data from 1959 to

1989, and validated against data from 1990 to 2008. The final model had the form

̂̇y(t) = α̂(ẽ(t)γ1 − ỹ(t)|ỹ(t)|γ2) (2.24)

where ẽ represented the historical total expenditure data and ỹ the historical income (i.e.,

GDP). Here, γ1 = 0.7101 and γ2 = −0.4419.

The fitness values of the model before and after adaptation are shown in Table 2.6, which

again indicate that structural adaptation via MSAM leads to better error minimization than

parameter estimation on the nominal IS model (Eq. (2.23)). In addition, the adapted model
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extrapolates better to unseen data, although some over-fitting can be seen in both models.

Parameter tuning of Eq. (2.24) did not yield any improvement in absolute error or correlation,

hence its omission from Table 2.6.

Table 2.6. Adapted IS model by MSAM (γ1 = 0.7101 and γ2 = −0.4419).

Model Training (1959 - 1989) Validation (1990 - 2008)∑
|ε(t)| ρ( ˙̃y, ˆ̇y)

∑
|ε(t)| ρ( ˙̃y, ˆ̇y)

Parameter-tuned Original Model: ̂̇y(t) = α̂(ẽ(t)− ỹ(t)) 4944.38 0.519 6361.00 -0.417

Adapted Model: ̂̇y(t) = α̂(ẽ(t)γ1 − ỹ(t)|ỹ(t)|γ2) 678.40 0.973 2186.98 0.759

2.7 Discussion

The adaptation results presented above demonstrate the effectiveness of MSAM in refining

the model topology in presence of parametric uncertainty. The method is found to be effective

for parametric errors of up to 50% in the case studies conducted. The error minimization

achieved is significant in all cases, even when the best model topology is not chosen due to

large parametric errors. Yet the presented results, while they validate MSAM’s adaptation

strategy, leave several issues to be addressed in future studies. Such issues include the range

of MSAM’s capacity in coping with parametric error, its computational scalability, its ability

to cope with structural collinearity, reachability of potential model forms, consistency of

model adaptation across different target measurements, the choice of input excitations, and

the significance of measurement noise, as briefly discussed below.

• Robustness to parametric error: In the adaptation cases studied so far, MSAM could

identify the correct adjustments and adapt the corresponding candidate model to nearly

the exact model structure with parametric errors of up to 50%. The robustness of

MSAM to parametric uncertainty is contingent upon two factors: (i) that the shape

of the candidate models outputs not be substantially affected by parameter error (as

illustrated in Fig. 2.1) and (ii) the most accurate parameter values be used for the

nominal parameters. To enforce the first factor, the correlation coefficient between
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the model output and its target is included in the fitness function to underscore the

significance of output shapes in the model selection process. The second factor can

be satisfied by performing parameter estimation on the initial model with the hope of

improving the parameter values.

• Scalability: The scalability of MSAM was demonstrated for systems of up to three

adjustments applied to three model components. The main scalability issue is the

number of candidate models considered during the round robin stage. Given that with n

adjustments applied to Q components Qn candidate models need to be examined during

the round robin phase, the selection process can become overwhelming if the models

are examined sequentially. However, candidate models can be evaluated separately and

independently of each other. As such, the round robin phase can be run in parallel,

reducing the computation time to Qn/p, with p processors used. Future research could

focus on techniques for choosing subsets of round robin models of large-scale problems

that cannot be exhaustively searched.

• Collinearity: As a gradient-based method, least-squares estimation depends on the

non-singularity of the underlying Jacobian. This condition is not satisfied, for instance,

seeking the Lotka-Volterra model of inter-species population dynamics, shown as the

right hand side model, using the starting model shown in the left

ẋ = ãx− b̃y − c̃x =⇒ ẋ = ax− bxy − cx2

ẏ = ãy − b̃x− c̃y =⇒ ẏ = ay − bxy − cy2

With this starting model, the first and third columns of the structural sensitivity matrix

Φγ (Eq. (2.12)) will be collinear for both state equations, due to the sole dependence

of the first and third components on x and y, respectively. Given that structural

adaptation of both components will be impossible in such a case, a possible recourse

would be a sequential approach wherein one component is adapted at a time.
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• Reachability: In general, MSAM is additive by nature, designed to adapt the poten-

tially inadequate first principles models of the system by the coupling of functions to

individual model components. As such, this method is suited to starting models that

are less complex than their targets. Furthermore, MSAM is conducted under the as-

sumption that the starting model comprises adequate components for representing the

system dynamics, therefore, it provides a sufficient basis for reaching the true model.

Accordingly, MSAM’s adaptation is restricted to adjustments made to the components

of the starting model. One could, indeed, extend the reach of MSAM by expanding

the components of the starting model to allow for higher granularity of adjustments, as

was demonstrated in the adaptation of the van der Pol oscillator. However, one should

be mindful of the fact that such expansions may lead to violating the original premise

of MSAM as an efficient yet constrained alternative to symbolic regression.

• Choice of Input Excitation: As in all system identification cases, the suitability of the

measured output in representing the system is a requisite of search for the true model.

As such, the adapted model is only as good as the measurements representing the

system. Since in practice one is limited to input excitations that are applicable to the

process, the model should be adapted across all measurement sets available from the

process to enhance its generality. A focus of our future research is the consistency of

adaptation by MSAM when faced with different observations.

• Measurement Noise: Measurement noise impedes adaptation by masking the true out-

put of the process (Eq. (1.1)). It also affects algebraic evaluation of candidate models

by contaminating the numerical estimates of derivatives of measured observations. Al-

though noise can be addressed to some extent by the application of smoothing and

wavelet transforms [133], its presence can be as inhibiting as in other system identifi-

cation methods.
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2.8 Conclusion

A gradient-based method of model structure adaptation is introduced for refinement of

starting models of the process. This method, which is designed to increase the nonlinearity of

the starting model by adjusting its components, uses exponents of the introduced adjustments

to reduce their coarseness as well as to make them conducive to gradient-based search. This

method relies on parameter sensitivity of the model to quantify the magnitude of model

perturbations for scaling the structural sensitivities. This scaling practice is shown to improve

the condition number of the structural sensitivity matrix, thus the search for the correct model

structure in presence of parametric uncertainty. Moreover, since the proposed scaling method

is independent of the excitation input, it can be used with pre-calculated state variables to

preclude simulation-based evaluation of candidate models. Algebraic evaluation of candidate

models has the added benefits of allowing state equations to be adapted independently, as in

the 3rd order SODE; it is computationally cheaper than numerical integration; and is immune

to disruptions of simulation failures. The proposed method is evaluated in controlled tests,

wherein the true model is known, as well as in application to real world problems, wherein the

measure of success is solely the improved fitness of the adapted model. The results indicate

that MSAM finds the correct form of the model in controlled testes despite parametric errors

of up to 50% and that it improves the models’ fitness by a wide margin in its real world

applications.
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Algorithm 1 Model Structure Adaptation Algorithm

1: Q ←− number of model compartments in M̂
2: n ←− number of states (order of the system)
3: R←− Qn
4: M̂ ←− candidate model
5: ξ ←− round robin iteration
6: y ←− target output
7: ŷξ ←− current round robin model output
8: M̂ξ∗ ←− best round robin model
9: M̂cb ←− current best model

10: M̂best ←− final best model
11: I1 ←− number of round robin iterations
12: I2←− number of winner iterations
13: F (ŷcb, y)←− F (ŷ, y)
14: Estimate x̃
15: for ξ ∈ R do . Round robin
16: fξ(x̃, ũ)←− choose set of function perturbations
17: Γ̂ξ = 0
18: M̂ξ ←−

∑Q
i=1 θ̃iM̃ifi(x̃, ũ)γi . Perturb model compartments

19: for j ∈ I1 do . Adapt model ŷξ
20: Calculate Φγ(ŷξ)
21: Update Γ̂ξ

22: Evaluate ŷξ
(

Γ̂ξ
)

23: if F (ŷξ, y) > F (ŷcb, y) then
24: ŷcb ←− ŷξ
25: f∗(x̃, ũ)←− fξ(x̃, ũ) . Save best set of function perturbations
26: end if
27: end for
28: end for
29: ŷξ∗ ←− ŷcb
30: F (ŷcb, y)←− F (ŷ, y)
31: for j ∈ I2 do . Adapt winning model ŷξ∗

32: Calculate Φγ(ŷξ∗)
33: Update Γ̂ξ∗

34: Evaluate ŷξ∗
(

Γ̂ξ∗
)

35: if F (ŷξ∗ , y) > F (ŷcb, y) then
36: M̂cb ←− M̂ξ∗

37: end if
38: end for
39: M̂best ←− M̂cb
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CHAPTER 3

INFERENCE OF COMPACT NONLINEAR DYNAMIC SYSTEMS VIA
EPIGENETIC LOCAL SEARCH IN GENETIC PROGRAMMING

3.1 Summary

We introduce a method to enhance the inference of meaningful dynamic models from

observational data by genetic programming (GP)1. This method incorporates an inheritable

epigenetic layer that specifies active and inactive genes for a more effective local search of

the model structure space. We define several GP implementations using different features of

epigenetics, such as passive structure, phenotypic plasticity, and inheritable gene regulation.

To test these implementations, we use hundreds of dynamics problems, including nonlin-

ear ordinary differential equations (ODEs) from several fields of engineering and randomly

constructed nonlinear ODE models. The results indicate that epigenetic hill climbing con-

sistently produces more compact dynamic equations with better fitness values, and identifies

the exact solution of the system more often, validating the categorical improvement of GP by

epigenetic local search. Furthermore, when solving problems with complex dynamics, epige-

netic hill climbing reduces the computational effort required to infer the correct underlying

dynamics. We then apply the method to the real-world identification of a system of cascaded

tanks. We compare the cascaded tanks identification to black-box approaches and analyze

the trade-off between accuracy and intelligibility. Finally, we analyze population homology

to understand these improvements and show that the epigenetic implementations may pro-

vide protection from premature convergence by maintaining diversity in silenced portions of

programs.

1The work in this chapter was presented at the 2015 GECCO conference [107] and is the basis of a journal
publication currently in press [104].
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3.2 Introduction

In comparison to system identification methods that presume fixed model structures,

symbolic regression can be computationally expensive because of its expanded search space.

Furthermore, when guided solely by an error metric, it can yield unwieldy equations from

which physical meaning is difficult to extract. To address these potential shortcomings, we

present a new method of local search [107] in this chapter that fine-tunes the model structures

produced by genetic programming and thereby improves the fitness of models and reduces

their complexity. These improvements are achieved by modifying programs in the population

at the epigenetic level. Our study of the application of epigenetics to GP is motivated by

two main hypotheses: first, that the benefits of epigenetic regulation observed in biology may

confer analogous improvements on GP systems; and second, that generalized local search

methods can improve the ability of GP to find correct model structures.

In regards to the first hypothesis, even though the expression of biological genes is highly

regulated, the role of epigenetics in regulating gene expression is traditionally ignored in

GP (with some exceptions, e.g. [43]). However, epigenetic processes may provide several

evolutionary benefits. For example, they allow the underlying genotype to encode various ex-

pressions and allow neutral variation through crossover and mutation of non-coding segments.

This neutrality may allow populations to avoid evolutionary bottlenecks or let them respond

to changing evolutionary pressures [77]. In addition, they provide for phenotypic plasticity,

which enables gene expression to change in response to environmental pressure [33]. Further-

more, epigenetics allow adaptations to gene expression to be inherited in offspring without

explicit changes to the genotype. This legitimizes, via epigenetic processes, once discredited

ideas of Lamarck pertaining to the inheritability of lifetime adaptations [77, 65].

Regarding the second hypothesis, local search methods have been developed and inte-

grated into evolutionary algorithms [54, 213, 80, 169, 50], especially in genetic algorithms

(GAs), through prescribed changes to the genotype. In GP, especially within the field of

symbolic regression, the role of structure optimization is typically left to the GP process

while local search is confined to constant optimization via stochastic hill-climbing [15], linear
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[71] or non-linear regression [201]. While this improves symbolic regression performance, the

methods are inherently limited to problem domains that require constant optimization and

cannot be readily applied to other domains (e.g. software synthesis) or aid the search for

program topology. Other more generic local search methods, like tree snipping [15], focus on

improving secondary metrics like size or legibility. Aside from some recent developments [2],

local search is traditionally conducted at the genome level.

The potential evolutionary benefits of epigenetic processes in performing “local search”

have motivated the proposed epigenetics-enabled GP system. We propose to conduct topo-

logical optimization of programs at the level of gene expression via epigenetic local search.

The contributions of this method are twofold: first, it introduces a generic method of topolog-

ical search of the space of individual genotypes via modifications to gene expression. Second,

it improves programs without affecting the genotype and without discarding the acquired

knowledge gained through the process, thereby lowering the risk of premature convergence

observed in previous studies [213]. It does this by conducting local search on the epigenome

rather than the genome and making these adaptations inheritable via evolutionary processes.

The proposed Epigenetic Linear Genetic Programming (ELGP) method is described,

tested, and applied to a real-world nonlinear dynamic modeling problem in the following

sections. We formulate in §3.3 the identification problem and describe in §3.4 the ELGP

method and its application to the inference of dynamic models. We also review the relevant

work in the context of GP and nonlinear dynamics modeling in §3.5. We then present the

experimental analysis of different epigenetic implementations on a series of increasingly com-

plex problems in §3.6. We begin by testing the method on a large set of simulated nonlinear

ODEs from a range of engineering fields, in order to illustrate its breadth of application. To

evaluate the scalability of the method in comparison to traditional GP approaches, we then

perform identification on hundreds of randomly constructed nonlinear systems, varying in

complexity and dimensionality. Finally, we apply ELGP to the real-world identification of

the dynamics of cascaded tanks, and analyze its performance in relation to black-box model-

ing approaches. The results of these experiments are discussed in §3.7. We include as part of

46



this discussion an analysis of population diversity to study how gene expression evolves for

each ELGP implementation.

3.3 Problem Statement

Recall from §1.1 that in the search for the correct model form M∗, GP typically attempts

to solve the problem

minimize f(M) subject to M ∈ S (3.1)

where S is the space of possible models M , and f denotes a minimized fitness function.

Given that it is impractical to exhaustively search S, the model found to minimize f(M)

may only be locally optimal. For practical purposes it is assumed that a sub-optimal model

can nevertheless fulfill the purpose of adequately representing the process, as depicted by the

measured observations.

A common choice for estimating a candidate model output ŷ(M̂) is numerical integration

or simulation of the state variables, i.e. the “output error” method [121]. However, given

the sensitivity of simulation to different model structures [111] and the computational cost of

numerical integration, the alternative approach of algebraically estimating candidate model

outputs is preferred for symbolic regression [15, 177]. In the algebraic approach, un-measured

states, denoted x̃, are estimated from measurements via numerical differentiation together

with smoothing functions. In the case of first-order differential equations with un-measured

state derivatives, the target is estimated numerically as y(tk,u) = ˙̃x, such that the prediction

error of a candidate model has the form

ε(tk) = y(tk)− ŷ(tk, M̂(x,u, Θ̂)) = ˙̃x(tk)− ˆ̇x(tk) (3.2)

The fitness metric f for individuals is often defined using mean absolute error (MAE) or

mean squared error (MSE), although some have argued for using the correlation coefficient

due to its insensitivity to linear scaling [83, 91]. We use a fitness metric [111] designed to

minimize error and maximize correlation so that both the prediction error and the closeness
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Figure 3.1. Block diagram of
ELGP. The typical GP steps are
shown on the left. After fitness
evaluation and before selection, the
population undergoes an iteration
of epigenetic hill climbing, repre-
sented by the block on the right.

of the output and target shapes, i.e. the coefficient of determination (R2), can be compared

in the results. This fitness metric takes advantage of the covariance comparison afforded by

R2 and avoids the need for post-hoc linear scaling of the solutions, which decreases model

conciseness. For target y and output ŷ, f is defined as:

f =
1

N

N∑

k=1

|ε(tk)|/R2(y, ŷ) (3.3)

R2 =
(cov(y, ŷ))2

var(y)var(ŷ)
(3.4)

3.4 Epigenetic Linear Genetic Programming (ELGP)

In symbolic regression, the search for candidate models is conducted by GP, whereby a

population of computer programs that produce models of the process are evolved. Math-

ematical building blocks compose the genotype of each program that is optimized by an

evolutionary algorithm. The operation steps of ELGP2, outlined in Figure 3.1, start with

randomly constructed programs that compose an initial population. The model outputs gen-

erated from these programs are evaluated with respect to the training data. Depending on the

variant of ELGP as defined in §3.4, the population then undergoes some form of epigenetic

adaptation. Afterwards, the population undergoes selection, recombination and mutation, as

in standard GP, to produce an updated population, at which point the process repeats until

an adequate solution is produced.

2source code available from http://www.github.com/lacava
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The ELGP method has two salient features that improve its performance: (i) it uses

linear, stack-based programs to represent equations, and (ii) it conducts local search of the

space of model structures to both improve the fitness and reduce the complexity of models.

These feature have been shown to outperform traditional GP on several benchmark regression

problems in terms of the conciseness of the developed models, their fitness, and efficiency of

the search [110, 107]. The effectiveness of these features is evaluated here in construction of

nonlinear dynamic models.

3.4.1 GP Representation

An innovation of the proposed ELGP method is utilization of stack-based representa-

tion [156, 196] to accommodate the introduction of epigenetics. In this representation, pro-

grams are encoded as post-fix notation, linear genotypes. This stack-based GP system is

advantageous because it guarantees syntactic validity for arbitrary sequences of instructions.

This property allows instructions to be silenced or activated in a genotype without invali-

dating the program’s ability to execute, in contrast to tree-based representations that can

become syntactically invalid due to changes to instructions and literals.

The syntactic robustness of the stack-based approach is achieved mainly by ignoring the

execution of instructions that have an arity larger than the current size of the stack. For

example, if a + operator attempts to execute and there is only one element on the stack,

it does nothing. Furthermore, we base a program’s behavior only on the top element of

the stack after execution which allows programs to contain unused arguments. These two

rules are the key to accommodating diverse program syntax. According to this flexibility,

for instance, the genotypes of the following three programs i1, i2 and i3 will produce the

identical model (x1 + x2):
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i1 =

[
x1 x2 +

]
⇒ M1 : (x1 + x2)

i2 =

[
x1 x2 + − ∗ /

]
⇒ M2 : (x1 + x2) (3.5)

i3 =

[
u + x1 / x1 x2 +

]
⇒ M3 : (x1 + x2)

The executions of −, ∗ and / in i2 are ignored due to insufficient stack size, and in i3, the

last element of the executed stack, (x1 +x2), is taken as the model. A step-by-step execution

of program i3 is given in Figure 3.2 to illustrate the procedure.

i3 =
[
u + x1 / x1 x2 +

]

kcatsnoitucexemargorp

1. (u) : push u [ u ]

2. (+) : ignore (insufficient arguments) [ u ]

3. (x1) : push (x1) [ u x1 ]

4. (/) : pull (x1), (u); push (u/x1) [ (u/x1) ]

5. (x1) : push (x1) [ (u/x1) x1 ]

6. (x2) : push (x2) [ (u/x1) x1 x2 ]

7. (+) : pull (x2), (x1); push (x1 + x2) [ (u/x1) (x1 + x2) ]

→ return last element on stack M3 : (x1 + x2)

Figure 3.2. Stack-based execution of GP program i3 from Eq. (3.5). Arguments are pushed
to the stack and operands (∗, +, etc.) pull arguments from the stack, perform an operation,
and push the result. Operands without sufficient arguments are ignored, and the final element
on the stack at the end of execution is returned as the model.

3.4.2 Epigenetic Learning and Evolution

We introduce epigenetic information into the GP representation by including an on/off

marker on each element in an individual’s genotype. This corresponding sequence of on/off

markers is referred to as an epigenome. When evaluated together, the expressed program, i.e.

model, is produced by executing instructions that are on (active) and ignoring the instructions

that are off (inactive). In this light, one can see that the non-coding genes (known as introns)

ignored in programs i2 and i3 in Eq. (3.5) provide local solutions to explore in the search

space, making it possible to alter the topology and values of the resultant model. For example,

program i3 can admit several models via epigenetic transformations, including
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i3 → i′3 =




1 1 0 0 0 1 1

u + x1 / x1 x2 +


 ⇒ M ′3 : (u+ x2)

i3 → i′′3 =




1 1 1 1 0 0 0

u + x1 / x1 x2 +


 ⇒ M ′′3 : (u/x1) (3.6)

i3 → i′′′3 =




1 0 1 1 0 1 1

u + x1 / x1 x2 +


 ⇒ M ′′′3 : (u/x1 + x2)

Similarly, program i2 in Eq. (3.5) admits the models (x1 + x2), (x1 − x2), (x1 ∗ x2), and

(x1/x2) via epigenetic transformations.

During the ELGP process depicted in Figure 3.1, the epigenetic markers are initialized

randomly (in the initial population) with a probability of being active. We use 50% as

the initial probability for the experimental studies in §3.6, chosen according to a previously

conducted parametric study [110]. The extent to which epigenetic information is learned and

inherited is a research question that we study by exploring different implementations. The

simplest topological search method within ELGP is Ep1M, which mutates the epigenetic layer

of each individual each generation; the hill climber in Figure 3.1 is skipped. Thus for Ep1M,

epigenetic mutations face only evolutionary pressures. In contrast, the epigenetic hill climbing

(EHC) cases EHC1, EHC5 and EHC10 use the epigenetic information explicitly to improve

individuals each generation (the EHC is described in §3.4.2.2). The three methods execute

one, five and ten iterations of EHC each generation, respectively. Two control methods, Base

and Ep0, are used for comparison. In the Base case, individuals are represented as basic

genotypes as in Eq. (3.5). The Ep0 case acts like Base but with half of the genes in the initial

code permanently silenced. As such Ep0 accounts for the effect that passive introns might

have. Neither Base nor Ep0 use the right half of the system in Figure 3.1 (i.e. the program

never enters epigenetic mutation).
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Figure 3.3. Illustration of an epigenetic mutation applied to a GP program. The mutations
result in topological changes to the model (phenotype), shown on the right.

3.4.2.1 Epigenetic Mutation

Whitley et al. [213] introduced Lamarckian updating to GAs by conducting local search

of the bit strings within 1 Hamming distance of the current bit string. In theory it would

be possible to treat the epigenome as a bit string and proceed similarly. However, the cost

of GP fitness evaluations may render this approach intractable. Instead, each generation,

the epigenome is uniformly mutated with a probability of 10% at each gene. The mutation

flips the binary value of the epigenome at the gene, thus activating or silencing that gene.

The operation is uniform with respect to the number of instructions. Epigenetic mutation

is illustrated in Figure 3.3 to show how these epigenetic changes can result in significant

topological changes to the resultant models. For the EHC1, EHC5 and EHC10 implementations,

the epigenetic mutation is followed by hill climbing, described next.

3.4.2.2 Epigenetic Hill Climbing

In order to mimic the acquisition of lifetime learning by epigenetic adaptation, the EHC

implementations evaluate epigenetic changes i→ i′ to determine whether individuals should

be updated. At each iteration of epigenetic mutation, EHC1, EHC5 and EHC10 test the changes

to the model for acceptance. Epigenetic changes to an individual are kept only if the fitness

is improved or not changed, i.e. fi′ ≤ fi (fitness f is being minimized).

In addition, we break fitness ties by preferring less complex equations. Model complexity

can be represented by several approaches. For example, one can count the number of nodes in
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the parse tree, calculate the order of a Chebyshev polynomial fit to the model’s output [211],

or recursively aggregate the complexity of sub-expressions [90]. Here, we account for model

complexity by assigning component function nonlinearities to genotype components [190].

The complexity Ci of program i with active genotype ga =

[
ga1 ... ga`

]
is defined as

Ci =
∑`

q=1 c(gaq), where component function nonlinearities [190] are defined as

c(ga) =





4 : (ga = log) ∨ (ga = exp)

3 : (ga = sin) ∨ (ga = cos)

2 : (ga = /) ∨ (ga =
√

)

1 : otherwise

(3.7)

Lower-complexity programs with equivalent fitness are accepted, giving the condition

pass = (fi′ < fi) ∨ ((fi′ = fi) ∧ (Ci′ < Ci)) (3.8)

If the epigenetically mutated individual i′ does not pass Eq. (3.8), the changes are discarded

and i is kept in the population. Otherwise i is replaced with i′.

3.4.2.3 Epigenetic Inheritance

A key feature of ELGP is the inheritance of epigenetic values throughout the evolutionary

process. During crossover the epigenetic values of the parent genes are kept intact such that

the child receives the epigenetic states of the genes it has inherited. If a new gene is introduced

via genetic mutation, that gene has the same probability of being active as the initial genes

of the population (50%, in the current study).

3.5 Related Work

There has been some work to incorporate epigenetic learning into GP, notably by Tanev

[200]. In that case the focus was to model histone modification through a double cell rep-

resentation as demonstrated in a predator-prey problem. Unlike our approach, Tanev did
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not treat lifetime epigenetic modifications as inheritable, as is supported by recent studies in

biology [205, 82, 34].

There have also been a number of studies on the effects of non-coding segments in GP,

some of which have found that the structural presence of introns protect genotypes from

destructive crossover operations (i.e., operations that produce children less fit than their

parents) [151, 18]. Non-coding segments were found to be useful in evo-devo for evolution

of arbitrary shapes as well [46]. In each of these studies, introns were declared explicitly or

measured during evolution, rather than being actively manipulated by the system itself as in

ELGP. Our preliminary study of epigenetic initialization finds rates of beneficial crossover to

be the highest with the probability set to 50% [110].

In addition, several GP systems use similar stack-based or linear genome representations,

such as PushGP [196], Push-forth [84] and Gene Expression Programming [43], that could

trivially implement the epigenetic layer incorporated in the ELGP method. Similarly, there

are methods that leverage neutrality (i.e., different genotypes with the same fitness) by cre-

ating a genotype - phenotype mapping; e.g., Cartesian GP [138] and Binary GP [5]. Our

goal with ELGP is to incorporate local search of gene expression as a viable, generic GP

extension that does not require large changes to implement. As mentioned earlier, there are

a plethora of studies on local search methods for improving GP by Lamarckian or Baldwinian

means, yet very few have considered these changes to occur at the epigenetic level instead of

the genotype level. A notable exception is Multiple Regression GP [2], in which parameter

values are implied at each node location and updated by linear regression. Still, the tangi-

ble improvements brought about by this and most other local search methods for symbolic

regression are achieved by parametric, rather than topological, search.

Several methods based on GP have been proposed for modeling nonlinear dynamic sys-

tems, including ODE model structures [52, 21, 15, 177] and GP-NARMAX models [167, 168].

GP populations are often evolved with multi-objective methods like SPEA2 [220] and NSGA-

II [32] to pressure model size. Unlike ELGP, these techniques for compact modeling focus

on changes to the core GP algorithm (selection and fitness evaluation). In this regard ELGP
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could be readily applied in those proposed frameworks. The multiobjective framework we

use in our experiments is that proposed in [178], as discussed in §3.6.1.

More broadly, GP is one approach to nonlinear system identification among many others.

A common approach embodied by Hammerstein-Weiner and nonlinear auto-regressive mod-

eling with exogenous inputs (NARX) is to combine a chosen nonlinear transformation (or

transformations) with a linear model. Although the use of a nonlinear estimator can increase

the capacity compared to ARX modeling, in both cases the structure of the nonlinearity must

be specified beforehand, unlike in symbolic regression. These approaches also produce com-

plex models that can obfuscate intuitive explanations of their predictive power. To remedy

this, greedy structure selection methods have been proposed for nonlinear polynomial mod-

els [56], notably for the NARMAX approach with orthogonal least squares (OLS) [24, 12].

GP methods have also been proposed to optimize the structural identification of OLS mod-

els [127]. The goal of ELGP is to improve the ability of GP representations to produce intel-

ligible model structures, which in turn can be applied to auto-regressive representations [105]

and coupled with a desired parameter estimation strategy [71, 201, 91].

3.6 Experimental Methods

In this section we describe the evolutionary framework to which ELGP is applied and

the settings that are used to conduct the experiments, followed by a description of the set of

problems that are used to compare the performance of each GP treatment. §3.6.1 describes

the algorithms used to perform selection and search operations within GP, which build upon

previous symbolic regression research. In §3.6.2, we describe implementation optimizations

related to efficiently performing hill climbing on epigenetically mutated programs. Finally in

§3.6.3 we present the set of problems on which ELGP is evaluated, which include simulated

ODEs from various fields, randomly constructed ODEs that vary in complexity, and lastly a

real-world nonlinear dynamics modeling application to cascaded tanks.
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3.6.1 Evolutionary Algorithm

Several state-of-the-art symbolic regression tools leverage Pareto optimization for selection

and survival [190, 177], and our preliminary tests (not reported here) confirm that the age-

fitness Pareto survival method [178] outperforms traditional GP [93] on several problems. In

an effort to demonstrate ELGP on a high-performance configuration, we use age-fitness Pareto

survival as the evolutionary algorithm in our experiments. In this scheme, each individual

is assigned an age equal to the number of generations since its oldest ancestor was created.

Each generation, a new individual is introduced to the population as a means of random

restart. Selection for breeding is random, and during breeding a number of children equal to

the overall population size is created. At the end of each generation, environmental selection

is conducted according to the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [220] to

reduce the size of the set P consisting of the current population and the newly created

individuals down to the original population size N . Note that the hypervolume method from

NSGA-II [32] could also be used for this task, although previous work suggests that SPEA2

performs better in low dimensions [220].

SPEA2 uses two measures to perform this reduction of P : 1) Pareto strength of an

individual, S(i), which is the number of individuals equal to or dominated by i, divided by

P + 1, and 2) a density estimate D(i) < 1, based on the inverse of the distance to the k-

th nearest neighbor [189] of i in objective space (in this case the objectives are normalized

between zero and one). These metrics are used to define a fitness value F (i) that combines

the total strength of the individuals j ∈ P that dominate i, i.e. j ≺ i, with density estimate

D(i):

F (i) =
∑

j∈P,j≺i
S(j) +D(i) (3.9)

Every nondominated solution is first copied to the new population. If the new population

size is smaller than N , individuals are added in order of lowest F (i). If the population is

larger than N , signifying that there are more than N nondominated solutions, individuals

are removed iteratively based on D(i). For the latter scenario, the use of D(i) for selection

helps preserve spread of solutions along the Pareto front.
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Table 3.1. ELGP system settings as applied to the Textbook ODE problems.

General Settings Value

Population size 1000
Crossover / Mutation 80/20%
Program length limits [3, 50]
ERC range [-10,10]
Termination criterion 2.5E10 point evals or f < 1.0E-6
Trials 100
Function set { +, −, ∗, /, sin,cos}

Run-time settings for the algorithm are shown in Table 3.1. A uniform alternation

crossover operator is used to produce two children from two parents, as in [195]. The muta-

tion operator is applied uniformly to the chosen parent with a probability of 2.5% at each

gene. If a constant gene is picked for mutation and ephemeral random constants (ERCs)

are being used, the constant is perturbed by Gaussian noise with standard deviation equal

to half the magnitude of the constant. Otherwise the instruction is mutated to a randomly

chosen gene.

In order to optimize constant values in the models, one iteration of stochastic hill climbing

is conducted on model parameters each generation. The hill climber perturbs all constant

values in the active genotype by Gaussian noise with a standard deviation equal to 10% of

the value of the constant. These changes are kept if they result in a better fitness for the

individual. This method of constant optimization is chosen due to its lightweight nature

compared to least-squares approaches.

Each trial was allocated a maximum number of point evaluations, i.e., gene executions,

to normalize for the different program sizes among methods. A GP run will exit early if the

fitness condition f < 10−6 is achieved before the designated number of point evaluations has

been reached. We observed this fitness termination condition to be sufficient for reaching

exact solutions for the problems studied here.

3.6.2 Optimizations

The following optimization provisions are applied to ELGP in order to reduce the number

of point evaluations required to evaluate the fitness of an individual that has undergone
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epigenetic mutation. The majority of run-time in most GP systems (including ours) is spent

in fitness evaluation. This motivates reduction of the number of point evaluations required.

3.6.2.0.1 Fitness Escape EHC requires additional fitness evaluations in order to de-

termine whether the prescribed epigenetic changes will be kept. Given that the fitness fi

of program i cannot decrease with the evaluation of more fitness cases k1...n, evaluation of

the epigenetically mutated individual i′ can be halted if at any point fi′(1...kj) > fi(1...kn)

for 1 ≤ j < n. This allows i′ to be discarded before its fitness is fully evaluated because it

is guaranteed to be worse than i. Since fitness is always equal to or larger than MAE (see

Eq. (3.3)), the halt condition can be defined conservatively using the mean absolute error

(MAE) of i′ and the fitness of i as

halt =
1

N

j∑

k=1

|y(tk)− y(tk,Mi′)| > fi (3.10)

3.6.2.0.2 Stack Tracing In GP tree representations, the output of a node in the program

typically depends only on the outputs of its child nodes (and those children’s children and so

forth). We can say conservatively with ELGP representations that no instruction in the stack

is dependent on an instruction to its right. Therefore, when a gene is silenced or activated,

only the outputs of the genes to its right in the genotype are affected, hence only part of the

program needs to be reevaluated. To avoid repeated instruction evaluations during epigenetic

hill climbing, we save the intermediate program outputs of each gene, and after epigenetic

mutation reevaluate only those genes to the right of the left-most location of mutation.

Saving the stack outputs is a trade-off between memory and time resources since it re-

quires more memory to save the intermediate outputs but requires fewer point evaluations to

evaluate epigenetically mutated individuals. The trade-off is favorable in our implementation

because processor resources are much more limited than memory resources. Similar partial

evaluation strategies have been proposed, e.g., in [114].
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3.6.3 Problems

The methods are first compared on a set of coupled, two-state nonlinear ODEs adapted

from [199] and proposed in [180]. Second, they are tested for scalability against a suite of

hundreds of randomly generated ODE problems with varying complexity and dimensional-

ity. Finally, ELGP is compared to black-box optimization methods on a real-world problem

involving the identification of nonlinear dynamics in a pump-fed system of cascaded water

tanks.

3.6.3.1 Textbook ODE problems

The textbook ODE problems represent seven two-state, nonlinear systems from the fields

of biology, electrical engineering, physics, ecology, and fluid dynamics. For brevity, the form

of the models is shown alongside identification results in Table 3.3. In accordance with [180],

each system is simulated for 10 seconds from 4 different initial conditions chosen randomly

within stable basins of attraction, giving a total of 400 data points for training. The settings

for each problem are summarized in Table 3.1. In order to give a measure of the nonlinearity

and/or difficulty of these identification problems, we also use multiple linear regression (LR)

to estimate models for these systems. The LR models are estimated as a weighted sum of

the states (in this case the systems have no external inputs), i.e. ŷ = β̂Tx, where β̂ is the

least-squares solution minimizing
∑N

k=1 (y(tk)− β̂Tx(tk))
2.

3.6.3.2 ODE suite

In order to test the scalability of the methods, random ODE systems were generated of

varying size (nodes) and dimensionality (number of variables). This approach to scalability

testing is used in order to remove problem selection bias and to quantify the methods’ per-

formance with different target complexity [176, 28]. The dynamic systems were generated in

the following fashion. First, differential equations were randomly generated using the same

equation generation technique that initializes populations of equations. Second, the equations

were simulated as first-order differential equations (using Runge-Kutta 4) according to a ran-

dom set of initial conditions chosen from [-5,5]. The output of this simulation was used as the

59



Table 3.2. ODE suite problem settings.

ODE Suite Settings

Number of Nodes 3 to 33
Dimensions 1 to 8
Models per setting 5
Trials per model 10
Total models 640
Total trials 6400
Function set { +, −, ∗, /, sin,cos,exp,log}

training data set. The validation set was subsequently generated by simulating the equations

with initial conditions randomly selected from the range [-10,10]. Equations that produced

invalid outputs were discarded. Finally, the valid equations were simplified symbolically in

MATLAB in order to determine their most succinct representation, and binned by number

of nodes and dimensions. The result of the entire process was 640 unique ODE problems of 3

to 33 nodes and 1 to 8 variables that were subjected to 10 trials of identification, for a total

of 6,400 trials per GP treatment. The ODE suite settings are summarized in Table 3.2.

3.6.3.3 Real-world Problem

In order to study the performance of ELGP on a real-world problem, we performed

identification based on a set of observations collected from two cascaded tanks fed by a

water pump [217]. Using the Bernoulli principle and mass conservation, this system can be

represented by the following nonlinear equations:

ḣ1 =

ḣ2 =

−θ1

√
h1 + θ2u(t) + w1(t)

θ1

√
h1 − θ3

√
h2 + w2(t)

(3.11)

y1 =

y2 =

h1(t) + e1(t)

h2(t) + e2(t)
(3.12)

where θ1 = −a1
√

2g
A1

, and θ2 = − k
A1

, θ3 = a2
√

2g
A2

. States h1 and h2 represent the water levels

in the upper and lower tanks, respectively; a1 and a2 are the outlet areas; A1 and A2 are

the horizontal cross sections of the tanks; g is the gravitational constant; k is the pump
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voltage to flow conversion constant; w1(t) and w2(t) are system noise; and e1(t) and e2(t) are

measurement noise.

The data set comprises 2500 samples, acquired at a sampling period of 5 seconds. We

divided this set 50/50 for training and testing. These data have been proposed for bench-

marking nonlinear system identification approaches [215] and are freely available [216]. For

ELGP, we use EHC5 with the settings of Table 3.1 and an increased function set {+, −, ∗, /,

sin, cos, exp, log,
√

()}.

In order to analyze ELGP’s performance in the context of other nonlinear modeling

approaches, we compare the accuracy of the ELGP’s solution with those of the models de-

veloped for this problem. The models developed are an ARX and two NARX with different

nonlinear transformations: wavelet networks (NARX-W) and feed-forward neural networks

(NARX-NN). We have used the MATLAB System Identification toolbox [123] to generate

these models using default settings. Identification of these models was performed as a first-

order function of the input, i.e. with the regressors y1(tk − 1), y2(tk − 1), and u(tk). For

the wavelet network, the set of nonlinear regressors was computed using a radial wavelet

expansion with an automatically determined number of terms. For the NARX-NN, a feed-

forward network with 10 hidden layers was constructed and trained with back-propagation

learning using the Levenberg-Marquardt algorithm. In order to provide uniformity among

the predicted outputs of these models and that of ELGP’s solution, the ELGP model was

simulated on the test set, such that prediction error (Eq. (3.2)) was defined in terms of ŷ1(tk)

and ŷ2(tk) rather than the state derivatives.

3.7 Results and Discussion

We first present results obtained on the textbook ODE problems by the different methods

in §3.7.1. Comparisons include the number of exact solutions, the fitness of the best solutions,

and complexity of the best models found by each method. Next in §3.7.2 we analyze the ODE

suite results according to fitness as a function of point evaluations in training and testing

over the entire suite. To give a sense of the scalability of the methods, we group the results
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by target complexity and compare the number of solutions found and the computational

effort to reach those solutions. We then compare ELGP to black-box optimization methods

on a real world identification problem, the cascaded tanks, in §3.7.3. We analyze the trade-

offs between ELGP and other methods in application to this problem, and compare the

results with a theoretical model of the system. We end our analysis with a detailed look at

population diversity of the Bacterial Respiration problem, which provides insight into the

mechanics whereby the variants of ELGP (Ep1M, EHC1, EHC5, EHC10), particularly the EHC

methods (EHC1, EHC5, EHC10), achieve improved performance on many of these problems.

Table 3.3. The textbook ODE problems (left). The models generated by Base and ELGP
variant EHC5 are shown on the right.

System Target Base Most Frequent Solution
EHC5 Most Frequent
Solution

Bacterial
Respiration

ẋ = 20− x− x·y
1+0.5·x2

ẋ = −(7.006 · (x+ 0.4722 ·
y − 31.11))/y

ẋ = 20.12− 1.009 · x− 1.979·y
x

ẏ = 10− x·y
1+0.5·x2

ẏ =
9.994−0.5669 ·y ·sin(3.526/x)

ẏ = 10.0− 2.0·x·y
2.001+x2

Bar Magnets θ̇ = 0.5 · sin(θ − φ)− sin(θ)
θ̇ = sin(sin(cos(cos(θ)− φ) +
sin(θ)− 3.65))

θ̇ = 0.5 · sin(θ − φ)− sin(θ)

φ̇ = 0.5 · sin(φ− θ)− sin(φ) φ̇ = −0.5 · sin(θ− φ)− sin(φ) φ̇ = −0.5 · sin(θ− φ)− sin(φ)

Glider v̇ = −0.05 · v2 − sin(θ) v̇ = −0.05 · v2 − sin(θ) v̇ = −0.05 · v2 − sin(θ)

θ̇ = v − cos(θ)/v θ̇ = v − (cos(θ))/v θ̇ = v − (cos(θ))/v

Lotka-
Volterra
interspecies
dynamics

ẋ = 3 · x− 2 · x · y − x2 ẋ = 3.0 · x− 2.0 · x · y − x2 ẋ = 3.0 · x− 2.0 · x · y − x2

ẏ = 2 · y − x · y − y2 ẏ = 2.0 · y − x · y − y2 ẏ = 2.0 · y − x · y − y2

Predator Prey ẋ = x ·
(

4− x− y
1+x

) ẏ = −0.5674 · x · (y + x ·
cos( 0.7896·y

x+cos(0.1632·x) )− 6.119)

ẏ = 0.3516 · x ·(
8.122− x

cos(x/y)
− y
)

ẏ = y ·
(

x
1+x
− 0.075 · y

) ẏ = (y + 0.01059) ·(
x

x+1.004
− 0.07488 · y

) ẏ = y ·
(

x
1.0+x

− 0.075 · y
)

Shear Flow θ̇ = cot(φ) · cos(θ) θ̇ = cot(φ) · cos(θ) θ̇ = cot(φ) · cos(θ)

φ̇ =
(
cos2(φ) + 0.1 · sin2(φ)

)
·

sin(θ)
φ̇ = 0.45 · sin(θ) · (cos(2.0 ·
φ) + 1.222)

φ̇ = 2.076 ·
sin (cos(sin(φ))− 0.4918) ·
sin(θ)

van der Pol
oscillator

ẋ = 10 ·
(
y − 1

3
· (x3 − x)

) ẋ = (y + 10.41) · (2.232 ·
sin(x)− 1.879 · x+ sin(y))

ẋ =
10.0 ·

(
y − 0.333 · (x3 − x)

)
ẏ = − 1

10
· x ẏ = −0.1 · x ẏ = −0.1 · x
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3.7.1 Textbook ODE problems

As a preliminary evaluation of the intelligibility of ELGP solutions, the most frequent

solutions to the textbook ODE problems that were found using Base and the ELGP variant

EHC5 are compared against the target model forms in Table 3.3. Of particular note are the

differences observed between Base and EHC5 for the Bacterial Respiration (states 1 and 2),

Bar Magnets (1), Predator Prey (1 and 2), and van der Pol oscillator (1) identifications. In

each of these cases, EHC5 more often identifies the exact solution, or at least an approximation

of it that is less complex than that inferred by Base. In some cases, e.g. Bacterial Respiration

1 and van der Pol 1, the approximate solutions from EHC5 have most of the terms of the target

correct, and thus form a sensible approximation of the true system. Note the Base solution

to Predator Prey 2, i.e.,

ẏ = (y + 0.01059) ·
(

x

x+ 1.004
− 0.07488 · y

)

could be made more correct through the change (y + 0.01059)→ y. This type of topological

model change is easily reached via epigenetic transformations, and, as shown in the Table 3.3,

EHC5 more frequently identifies the underlying target model for this problem.

A central goal of ELGP is also to performance of GP for system identification through

local topological search. To this end, the number of solutions, median best fitness (training

and test) and average equation size (number of active nodes) for the different methods are

summarized in Tables 3.4 and 3.5. Pairwise statistical comparisons are given for each result.

Note that three of the identification tasks (Glider 2, Shear Flow 1, and van der Pol 1) are

exactly identified 100% of the time by every GP treatment, suggesting that they are easy for

GP to solve. For the 11 other problems, the results show that the training and test fitnesses

and solution counts are improved by EHC. For example, on each of these 11 problems, the

ELGP variant EHC10 finds significantly (p < 0.05) more solutions and produces models with

better training and test fitnesses than Base, Ep0 or Ep1M, as indicated by highlighting, bold

text, and ∗ in the tables. In terms of fitness, EHC5 provides a significant improvement relative

to Base on 8 out of 11 and EHC1 performs better on 5 out of 11 problems, thus suggesting
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that results improve with more iterations of EHC. Among the 11 more difficult problems, all

of the EHC methods perform significantly better than Ep0 or Ep1M, in terms of fitness as well

as exact solutions. Overall the results of Ep0 and Ep1M show a marginal to negative difference

in estimation capacity compared to Base. The guided search provided by EHC therefore is

key to the observed improvements.

The results indicate that every GP method produces better models than LR for these

problems (with the exception of the linear second state of the van der Pol problem), which is

to be expected given the known nonlinear nature of this set of problems. However, LR has the

advantage of quick training times, with median convergence times on the order of 0.01 sec-

ond for these problems, as shown in the last column of Tables 3.4 and 3.5. The GP methods

converge to the minimum fitness model in approximately 1 to 20 seconds, depending on the

difficulty of the problem. It is worth noting that the EHC methods do not increase the com-

putation time compared to Base, and occasionally decrease it, which can be attributed to the

lower proportion of optimization spent conducting GP generations and the higher proportion

spent in EHC. The majority of ELGP computation times are not significantly different from

Base. These convergence times suggest that the proposed identification methods may be

suitable for certain online applications, depending on the time window constraints between

model updates.

In addition to improving predictive ability, a motivation for the ELGP design is the

delivery of concise solutions. This property is evident from the average program sizes in

Tables 3.4 and 3.5. To further evaluate this aspect of the results, in Figure 3.4, the best

solutions of the 100 trials are evaluated in terms of Solution Bloat, defined as the difference

in complexity (Eq. (3.7)) between the GP solution and the target. These results show that

the ELGP variants all produce solutions that are more succinct than those achieved by

Base. Among ELGP variants, Ep0 and Ep1M produce the most succinct models. The EHC

methods also produce more succinct models with less solution bloat than Base; however, we

observe that the hill climbing aspect of EHC leads to slightly larger models than Ep0 or Ep1M.
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Nevertheless, in addition to producing succinct models than Base, the EHC methods find

exact solutions more often for most problems, as shown in Tables 3.4 and 3.5.

3.7.2 ODE suite

To evaluate the ability of ELGP to scale to problems of increasing complexity, we evaluate

the performance of the treatments Base, Ep0, Ep1M, EHC1 and EHC5 on a suite of 640 randomly

generated target systems. The best fitness on training and test sets for the entire ODE suite

is shown in Figures 3.5 - 3.6 as a function of point evaluations. The results indicate the better

fitness minimization properties of the ELGP variants EHC1 and EHC5. The number of solutions

found, and the computational effort to reach those solutions, are plotted in Figures 3.7 and

3.8, respectively. The results are broken into groups based on the number of arguments and

operands (i.e. nodes) in the solution equation, for example 7, 9, 11, and so on. Figure 3.7

demonstrates the ability of the ELGP variants, especially EHC5, to find more solutions than

Base or Ep0, and the difference in performance grows as the number of nodes in the solution

increases, although the overall number of solutions decreases with more complex targets. In

addition, EHC1 and EHC5 tend to find solutions with less computational effort than the other

methods, as demonstrated in Figure 3.8, where we plot the number of point evaluations to

termination for the trials in which exact solutions were found. The results also suggest that

the computational effort improvement afforded by EHC increases with the complexity of the

problem.

3.7.3 Real-world Problem

In this section, EHC5 and several standard modeling approaches are applied to the iden-

tification of a benchmark system of cascaded tanks fed by a pump [216]. Since the true

parameters of the system are not provided in [216], we first estimate the parameters of the

model in Eq. (3.12) by linear regression, which yields

ˆ̇y1 =

ˆ̇y2 =

−0.0122
√
ŷ1 + 0.0188 u(t)

−0.0481
√
ŷ1 + 0.0452

√
ŷ2

(3.13)
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Table 3.4. Comparison of best-of-run results for the ODE benchmark problems. Statistical
significance (p < 0.05) is denoted as follows: �: better than MR; (·): better than Base; bold:
better than Ep0; ∗: better than Ep1M; †: better than EHC1; ‡: better than EHC5. Exact
solution p-values are based on pairwise chi-squared tests with Holm correction. Fitness and
bloat p-values are based on pairwise Wilcoxon rank-sum tests.

Problem
Method

Exact Solutions (%) Median Best Fitness Median Program Size
Median Convergence

Time (s)

MR 0 0.21196 n/a †‡*0.01
Base 0 �0.14519 15.61 38.77
Ep0 0 �0.16068 †‡ 10.33 35.35
Ep1M 0 �0.15657 †‡ 10.42 50.42
EHC1 0 *�0.14160 ‡ 11.91 46.14
EHC5 0 *�0.13907 12.52 29.03

Bacterial
Respiration 1

EHC10
0 †*�0.13245 13.00 52.35

MR 0 0.21273 n/a †‡*0.01
Base 0 �0.00785 15.54 74.09
Ep0 0 �0.00794 †‡ 10.29 31.31
Ep1M 0 �0.00957 †‡ 10.29 71.70
EHC1 0 *�0.00741 ‡ 11.58 94.61
EHC5 0 †*�0.00634 12.19 77.55

Bacterial
Respiration 2

EHC10
0 †*�0.00617 12.19 75.22

MR 0 0.04057 n/a †‡*0.01
Base 2 †*�0.02351 14.84 87.13
Ep0 1 �0.02866 †‡ 10.32 74.07
Ep1M 2 �0.03155 †‡ 10.35 83.61
EHC1 7 *�0.02733 ‡ 11.31 48.95
EHC5 7 †*�0.02242 12.24 *39.49

Bar Magnet 1

EHC10
7 †*�0.02103 12.64 *50.79

MR 0 1.19817 n/a ‡0.01
Base �18 *�0.01254 15.51 68.79
Ep0 �16 �0.01502 †‡ 10.77 61.54
Ep1M �16 �0.01729 †‡ 10.72 81.35
EHC1 *�41 *�0.00005 11.59 68.86
EHC5 *�45 *�0.00000 12.00 93.17

Bar Magnet 2

EHC10
*�38 *�0.00001 12.34 ‡80.07

MR 0 4.52904 n/a 0.01
Base �75 �0.00000 7.22 82.65
Ep0 �77 �0.00000 5.07 91.69
Ep1M �76 �0.00000 4.25 64.20
EHC1 *�99 *�0.00000 * 3.03 53.92
EHC5 *�100 *�0.00000 * 3.26 73.33

Glider 1

EHC10
*�100 *�0.00000 3.53 81.55

MR 0 0.53583 n/a 0.01
Base 100 �0.00000 2.76 19.89
Ep0 100 �0.00000 ‡ 1.71 7.61
Ep1M 100 �0.00000 ‡ 1.62 6.11
EHC1 100 �0.00000 ‡ 1.49 4.99
EHC5 100 �0.00000 2.46 6.37

Glider 2

EHC10
100 �0.00000 ‡ 1.57 4.14

MR 0 0.94071 n/a †‡0.01
Base 7 *�0.04218 16.30 48.83
Ep0 �10 �0.06897 †‡ 11.07 83.16
Ep1M 8 �0.06805 †‡ 11.24 59.40
EHC1 �13 *�0.00050 ‡ 12.71 82.81
EHC5 *�30 †*�0.00003 13.20 73.86

Lotka-Volterra 1

EHC10
†*�43 †‡*�0.00000 13.18 67.98
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Table 3.5. Comparison of best-of-run results for the ODE benchmark problems. Statistical
significance (p < 0.05) is denoted as follows: �: better than MR; (·): better than Base; bold:
better than Ep0; ∗: better than Ep1M; †: better than EHC1; ‡: better than EHC5. Exact
solution p-values are based on pairwise chi-squared tests with Holm correction. Fitness and
bloat p-values are based on pairwise Wilcoxon rank-sum tests.

Problem
Method

Exact Solutions (%) Median Best Fitness Median Program Size
Median Convergence

Time (s)

MR 0 0.19556 n/a 0.01
Base �53 �0.00000 14.51 89.27
Ep0 �73 �0.00000 6.33 59.00
Ep1M �67 �0.00000 7.04 77.29
EHC1 *�90 *�0.00000 * 4.77 84.41
EHC5 *�97 *�0.00000 * 4.31 68.87

Lotka-Volterra 2

EHC10
*�99 *�0.00000 †* 3.19 76.08

MR 0 2.42447 n/a †‡*0.01
Base 0 *�0.17383 16.28 76.36
Ep0 0 �0.19041 †‡ 10.89 66.30
Ep1M 0 �0.19159 †‡ 10.89 84.51
EHC1 0 *�0.18286 ‡ 12.61 62.70
EHC5 0 †*�0.16950 13.37 71.86

Predator Prey 1

EHC10
0 †*�0.16023 13.54 79.33

MR 0 0.31338 n/a †‡*0.01
Base 0 †*�0.20065 16.72 86.67
Ep0 0 �0.23531 †‡ 11.41 90.11
Ep1M 0 �0.23249 †‡ 11.38 †‡29.60
EHC1 0 *�0.20694 ‡ 12.86 84.19
EHC5 1 †*�0.19156 13.69 85.89

Predator Prey 2

EHC10
0 †*�0.19136 13.78 52.34

MR 0 3.33019 n/a 0.01
Base �100 �0.00000 †‡1.42 9.50
Ep0 �100 �0.00000 †‡1.35 4.00
Ep1M �100 �0.00000 †‡1.16 4.43
EHC1 �100 �0.00000 ‡1.83 2.70
EHC5 �100 �0.00000 2.17 2.00

Shear Flow 1

EHC10
�100 �0.00000 †‡1.11 3.43

MR 0 0.56694 n/a †‡*0.01
Base 0 �0.00100 16.68 *32.31
Ep0 1 �0.00111 †‡ 10.94 104.38
Ep1M 0 �0.00099 †‡ 11.00 106.03
EHC1 0 *�0.00092 ‡ 11.96 76.78
EHC5 1 *�0.00093 12.32 83.49

Shear Flow 2

EHC10
0 *�0.00040 12.41 *90.77

MR 0 8.90324 n/a †‡*0.01
Base 0 *�0.23003 18.81 87.86
Ep0 0 �0.24255 †‡ 13.87 82.28
Ep1M 0 �0.27929 †‡ 13.95 78.77
EHC1 1 *�0.20830 14.84 85.48
EHC5 3 †*�0.10080 14.95 69.16

van der Pol 1

EHC10
0 †*�0.10159 15.19 66.99

MR 100 0.00000 n/a 0.01
Base 100 0.00000 †*1.31 4.21
Ep0 100 0.00000 2.02 1.66
Ep1M 100 0.00000 1.51 2.35
EHC1 100 0.00000 1.54 2.28
EHC5 100 0.00000 †*1.34 3.34

van der Pol 2

EHC10
100 0.00000 2.30 4.78
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Figure 3.4. Comparison of solution bloat for the textbook ODE problems.
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the ODE suite.
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Figure 3.7. Percent of solutions found
for the ODE suite. Results are grouped
based on the number of nodes in the target
equation (labelled at the top).
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In comparison, EHC5 applied to the measured data yields

ˆ̇y1 =

ˆ̇y2 =

−θ̂1
√
ŷ1 + θ̂1

√
ŷ2

−θ̂2
√
ŷ1 + θ̂2(u(t) + θ̂3)

(3.14)

where θ̂1 = 0.0905, θ̂2 = 0.0302, and θ̂3 = 0.6845. The model in Eq. (3.14) is an interesting

permutation of the theoretical model (Eq. (3.13)) in that it correctly identifies the square

root nonlinearities of the water levels and is as succinct as the theoretical model. However

Eq. (3.14) incorrectly associates the pump input u(t) and top tank level y1(t) with the

second state derivative, and uses the theoretical form of ˆ̇y2(t) in Eq. (3.13) for the first

state derivative ˆ̇y1 in Eq. (3.14). In comparison to the theoretical model, however, the ELGP

solution produces much better predictions, as illustrated by the time series comparison in

Figure 3.9.

For this system, we compare the test set accuracy of the EHC5 model to some state-of-

the-art black-box models in Table 3.6, in terms of the number of parameters in the resultant

model, and the mean square error (MSE) and R2 (Eq. (3.4)) of simulated outputs on the

test set. The most accurate model predictions are generated by NARX-NN, both in terms

of MSE and R2, followed by ELGP, which ties NARX-NN in prediction correlation for y2(t).

ARX is the next most accurate on average, followed by the theoretical model and NARX-

W. The inaccuracy of NARX-W is surprising given its complexity (64 parameters), and

suggests a mismatch between the assumed nonlinearities of the approach and those present

in the measured system. The NARX-NN model’s excellent predictions come at the expense

of complexity: the model consists of two networks with 10 hidden layers each, totaling 60

learned parameters per model. In this sense the ELGP’s solution is quite reassuring because

it achieves reasonable accuracy in prediction with similar complexity to the theoretical model.

The difficulty in estimating the correct model form for this system (Eq. (3.13)) may

stem from the similarity of the measured outputs y1(t), y2(t), as is shown in Figure 3.9,

as well as the effects of system noise and measurement error (e1(t), e1(t), w1(t), w2(t)).

It is especially clear from Figure 3.9 that the measured y2(t) deviates substantially from its
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Figure 3.9. Comparison of outputs for the cascaded tanks problem, including measurement
data (gray), the theoretical model (Eq. (3.13), red), and the ELGP model (Eq. (3.14), blue).

theoretical behavior, making the theoretical model difficult to infer. More fundamentally, the

identification difficulty could stem from an intrinsic difficulty of ELGP in handling processes

of this form subject to the measured input conditions. To determine whether or not the

intrinsic difficulty of this system affects ELGP’s results, we simulate the theoretical system

given in Eq. (3.13) using the measured input and use the resulting outputs (ŷ1(t), ŷ2(t),

u(t)) to train models using EHC5. In this case, EHC5 renders a nearly perfect model of the

theoretical system:

ˆ̇y1 =

ˆ̇y2 =

−θ̂1

√
(θ̂2ŷ1) + θ̂1u(t)

−θ̂3
√
ŷ1 + θ̂3

√
(ŷ2/θ̂4)

(3.15)

with θ̂1 = 0.0188, θ̂2 = 0.4200, θ̂3 = 0.0452, and θ̂4 = 0.8830. Both states in Eq. (3.15) have

an MSE < 10−6 and R2 = 1. Thus the mismatch between the ELGP model form and the

assumed process physics appears to arise from system noise and measurement error.

3.7.4 Population Diversity

Results on the textbook ODEs and the ODE suite suggest that the EHC methods improve

GP performance significantly. We hypothesize that this improvement is created by preserving
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Table 3.6. Mean square error (MSE) and R2 values on the test sets for the cascading tanks
problem using several modeling approaches.

Method Parameters MSE (test) R2 (test)

y1(t) y2(t) y1(t) y2(t)

Theoretical 3 0.463 5.343 0.907 0.313

ARX 6 0.432 0.350 0.919 0.961

ELGP (EHC5) 3 0.249 0.288 0.953 0.974

NLARX-W 64 2.960 6.165 0.807 0.748

NLARX-NN 60 0.120 0.182 0.977 0.974

sections of the genome from fitness pressure and allowing them to drift genetically, thus

providing an avenue for introduction of diversity and continued progress towards the solution.

The syntactic and semantic similarity of models in the population can be examined in detail

to determine whether this phenomenon of preserved diversity is evident. We define syntactic

similarity as the homology H of a population using a Levenshtein distance comparison of S

randomly sampled pairs of individuals (|ij , im|L) normalized by the length (| · |) of the longer

individual:

H = 1− 1

S

S∑

n=1

|ij , im|L
max(|ij |, |im|)

(3.16)

We sample H each generation for both the active and inactive portions of genomes with

S = 200. In addition, we define the semantic, i.e. behavioral, similarity of the population,

referred to as Similar Behavior, as the fraction of identical output vectors among models in

the population. This allows us to compare what is happening genetically and epigenetically

at the program level (syntax) to the behavior of the resultant models (semantics).

In general we find that silenced genotypes have lower homology (i.e. higher diversity)

than expressed genotypes for every epigenetic treatment, thus demonstrating that genetic

drift is indeed occurring in inactive sections of programs. For instance, we measured H

for the Bacterial Respiration problem (state 2) for each treatment, the results of which

are shown in Figure 3.10. Homology in the expressed genome is more or less equivalent

for all treatments. Despite having similar expressed genetic homologies, we find that the

behavioral similarity increases more quickly with the hill climbing methods (EHC1, EHC5,

EHC10) than with Base, Ep0 or Ep1M, as shown in Figure 3.11. To understand why the
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EHC methods converge the quickest semantically, recall that these methods only preserve

epigenetic mutations that improve semantics, and are therefore more greedy than the other

methods. Since the best methods for this problem converge on Similar Behavior the quickest,

it appears that greedy topological search afforded by the EHC methods is an important

factor in creating the improvements noted in our experiments. From the perspective of

search, Figures 3.10 and 3.11 imply that the EHC systems are exploiting neutral variation

in the genome and improved reachability in the genotype-phenotype mapping provided by

epigenetics since H remains flat while Similar Behavior increases. Neutral variation is a

property known to benefit other GP methods as well [204]. In other words, the epigenetic

systems converge on model behavior more quickly while preserving genetic diversity in the

search space.

It is important to note that the smoothness of the fitness landscape of a problem will play

a role in determining whether greedy methods like EHC are the best option. For example, we

studied several program synthesis problems for which Ep1M provided better performance [107].

This could be due to rugged and/or deceptive fitness landscapes. Given that the EHC

methods work best for the dynamic systems studied in this chapter, it is likely that the

fitness landscapes are less deceptive than those for program synthesis. It is also likely that

similar systems in this domain have similar properties, and therefore they should benefit from

the EHC variants of ELGP as well.

3.8 Conclusions

The results suggest that epigenetic local search is a significant addition to GP. We find

that epigenetic methods, especially EHC methods, outperform a baseline implementation of

GP in terms of fitness minimization, exact solutions, and equation intelligibility on textbook

nonlinear ODE systems and randomly generated dynamic systems. Furthermore we show in

comparison to other nonlinear approaches that ELGP is able to return concise and reasonably

accurate models with similar complexity to theoretical models in a real-world application.

Our study of population diversity suggests that this performance improvement to GP is
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Figure 3.10. Homology among active and in-
active genomes for the Bacterial Respiration 2
problem.
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achieved due to the epigenetic layer’s ability to preserve diversity in the inactive sequences

of genes while converging more quickly in semantic space. Although we have only considered

epigenetic learning by mutation and hill climbing here, the results encourage further research

into the use of epigenetic methods for structure optimization in GP, and motivate a focus

on methods that improve the ability of GP to search equation topologies, in addition to

constants.
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CHAPTER 4

MULTIDIMENSIONAL GENETIC PROGRAMMING FOR
MULTICLASS CLASSIFICATION

4.1 Summary

We present a method for multiclass classification that uses genetic programming to per-

form a multidimensional transformation of the original attributes and then performs clas-

sification using a distance function in the transformed space1. The proposed classification

method has the ability to optimize the extraction and synthesis of non-linear features during

model development. We compare this method to several standard classification techniques

across a broad set of problems and show that this technique achieves the best average test

accuracy ranking while also providing dimensionality reduction and variable selection. We

quantify the scalability of the method on problems of varying dimensionality and sample

size. The results suggest that the added computation time is a reasonable trade-off for the

increased performance on most problems.

1The work in this chapter is the basis of a journal publication currently under review [108].
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4.2 Introduction

Classification models are a fundamental pursuit in machine learning due to their widespread

utility in today’s world, in applications ranging from astrophysics [198] to text classifica-

tion [165] to medical diagnosis [210, 136, 149]. In multiclass classification (classification into

more than two classes), we wish to find a mapping ŷ(x) : Rp → C that associates the vector

of attributes x ∈ Rp with k > 2 class labels from the set C = {c1 . . . ck} using n paired

examples from the training set T = {(xi, yi), i = 1 . . . n}.

Machine learning (ML) systems that conduct multiclass classification have been improved

over the last 20 years [22], and open-source packages are available for performing classification

(e.g., [57]) according to well-known approaches such as multiple regression (MR), support

vector machine (SVM), multilayer perceptron (MLP), nearest neighbor (NN), and ensemble

methods such as random forest (RF) and random subspace (RS), among others. Yet three

major challenges to multiclass classification persist. The first two challenges are i) the se-

lection of and ii) transformation of features into new features (feature synthesis), derived

from the original attributes, to be used for model construction. The task of feature selection

is important for reducing large-dimension data sets and for measurement selection in some

domains. Typically it is left to a pre-processing step to reduce the number of attributes to a

manageable size [55]; in other words feature selection is not an intrinsic property of most ML

approaches. Regarding the second challenge, many ML methods employ projection of the

original features into a new feature space, for example via kernel functions [143]. However

the choice of kernel function is typically not automated, but picked by trial and error or

cross-validation. The kernel function is important because the feature space induced by the

transformation must have certain ML method-dependent properties (e.g. linear separability)

in order to improve the performance of the underlying ML system. These opaque feature

transformations highlight a third challenge of classification: the interpretability of the resul-

tant models. Ideally a classifier provides insight to the user so that the classified phenomena

can be better understood. This is especially relevant in the sciences and for applications like

human genomics that rely on classification as a means of inferring relationships from obser-
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vations. To this end, methods with intelligible representations like decision trees use greedy

simplification procedures, although it is acknowledged that finding a minimal decision tree is

an NP-hard problem [164].

Genetic programming (GP) [93] has been proposed for classification to remedy the three

challenges above [88, 39]. GP is a stochastic optimization method that implicitly conducts

feature selection by pressuring the model ŷ(x) to use a subset of x most relevant to the prob-

lem solution. In addition, GP makes minimal a priori assumptions about the structure of the

attribute space [116], admits a number of representations [125], and can be made to optimize

the structure of the model such that it remains intelligible. Although it has been applied

successfully to a number of binary classification problems [210], until recently [73, 140] it has

not been competitive with standard multiclass classification techniques. The exceptions are

the recently developed methods M2GP [73] and M3GP [140] that use GP to select and syn-

thesize features and then perform classification in the new feature space using a Mahalanobis

distance-based discriminant function. In this chapter, we improve upon these methods by

two innovations: i) the use of a novel program representation that simplifies the construc-

tion of multidimensional representations, and ii) the incorporation of multiobjective parent

selection and survival techniques that lead to more accurate classifiers. The performance

of this classifier, appropriately named M4GP, is compared to that of several other methods,

including M2GP and M3GP, using a set of twelve classification problems, ranging in numbers

of classes, attributes and samples.

4.3 M4GP

Recall the labeled training set T = {(xi, yi), i = 1 . . . n}, consisting of n samples

of attributes xi ∈ Rp associated with the corresponding class label yi from the set C =

{c1 . . . ck}. The n × p matrix of attribute samples X can be partitioned according to its

labels into k subsets {X1 . . . Xk}, such that Xj is the subset of X tagged with class label

cj . One way to classify a new sample x′ ∈ Rp is to measure the distance of x′ to each subset

{X1 . . . Xk}, and then assign the class label corresponding to the minimum distance [79],
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i.e.

ŷ(x′) = cj , if j = arg min
`
D(x′,X`) , ` = 1, . . . , k (4.1)

One such measure is the Mahalanobis distance, DM ,

DM (x′,Xj) =
√

(x′ − µj) Σ−1
j (x′ − µj)T (4.2)

where µj ∈ Rp is the centroid of Xj and Σj ∈ Rp×p is its covariance matrix, rendering DM

the equivalent Euclidean distance of x′ from Xj , scaled by the eigenvalues (variances) and

rotated by the eigenvectors of Σj , to account for the correlation between columns of Xj .

This approach to classification makes several assumptions. First, each Xj must be suffi-

ciently grouped such that samples always fall closest to their true distribution, which cannot

be said of most difficult classification problems. Second, it assumes that the distributions of

points in each Xj can be assumed to follow a multivariate Gaussian distribution. Third, it

assumes that Eq. (4.2) can be calculated from the original data. One can imagine that as

the dimensionality of X increases, the calculation of DM becomes prohibitively expensive.

In order to weaken these assumptions, we wish to find a set of transformations Φ(x) : Rp →

Rd that projects x into a d-dimensional space in which the samples are more easily classified

according to their distribution distances. In this new space, the Mahalanobis distance takes

the form DM (Φ(x),Φ(Xj)), with centroid µΦj ∈ Rd and covariance matrix ΣΦj ∈ Rd×d.

The goal of the GP system will be to find or approximate the optimal synthesized features

Φ∗ = [φ1 . . . φd] that maximize the number of correctly classified training samples, as:

Φ∗(x) = arg max
Φ∈S

f (Φ, T ) (4.3)

f(Φ, T ) =
1

n

n∑

i=1

I (ŷ(Φ(xi)) = yi) (4.4)

where S is the space of possible transformations Φ, f is the classification accuracy (used

here as the GP fitness function), and the indicator function I = 1 if ŷ(Φ(xi)) = yi, and

0 otherwise. A well-formed Φ(x) allows the classifier the flexibility to incorporate (linear
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and/or nonlinear) transformations of the original attributes in order to improve distinctions

between classes compared to using the original attribute set. By using GP to estimate the

features Φ(x), the subset of x used in Φ(x) as well as the dimensionality of Φ, |Φ| = d, are

optimized. Therefore, feature selection in GP can produce d << p for high dimensional data

sets, making Eq. (4.2) tractable, and also admits higher-dimensional classification (d > p) in

cases that x is not easily mapped to y. Note that although DM (Φ(x),Φ(Xj)) assumes that

the distributions of Φ(x) are multivariate Gaussian, this assumption is removed from x.

4.3.1 Genetic Programming

GP solves problems by constructing and updating a population of programs composed of

building blocks that represent solution components. In this case, each program consists of a

set of equations that compose the synthesized features Φ(x) used to estimate ŷ. For example,

an individual program i might encode the features

i→ Φ(x) = [x1, x2, x
2
1, x

2
2, x1x2] (4.5)

where φ1 = x1, φ2 = x2, φ5 = x1x2, and so on. In this case, |Φ| = 5, and i corresponds to a

polynomial expansion of two attributes.

Traditionally in GP, a program is represented by a single syntax tree evaluated based on

the output generated at the root node [93]. For example, φ5 above could be represented by

a tree (∗ (x1) (x2)), where ‘∗’ is the root node and (x1) and (x2) are its leaves. However, a

single output cannot represent a multi-dimensional transformation. To address this, in M2GP

and M3GP, program trees were modified with special nodes in order to allow for multiple

outputs at the root [73, 140]. This introduced unnecessary complexity to the representation.

A contribution of this work is the introduction of a stack-based data flow to simplify the

encoding of Φ, presented in §4.3.1.1.

The GP population is optimized by probabilistically selecting programs based on their

performance and stochastically recombining and mutating these programs to produce a new

set of programs. In this work, we implement recent selection and survival mechanisms and
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compare their performance to more traditional evolutionary algorithms. These techniques

are described in §4.3.1.2.

4.3.1.1 Representation

We implement a stack-based representation [156] of the equations in place of the more

traditional tree-based GP representations. Programs in this representation are encoded as

post-fix notation equations, e.g., i = [ x1 x2 + ] → Φ = [x1 + x2]. This representation is

advantageous because it allows multiple outputs to be supported by default without the need

for specialized instructions. This support is achieved by evaluating programs via executions

on a stack, such that the program in Eq. (4.5) can be constructed as

i = [ x1 x2 x1 x1 ∗ x2 x2 ∗ x1 x2 ∗ ]

The execution of program i is illustrated in Figure 4.1. Rather recursively evaluating the

program as a tree starting at its root node, stack based evaluation proceeds left to right,

pushing and pulling instructions to and from a single stack. Arguments such as x1 are

pushed to the stack, and operators such as ‘∗’ pull arguments from the stack and push the

result. At the end of a program’s execution, the entire stack represents the multi-dimensional

transformation.

4.3.1.2 Initialization, Selection, and Variation

Programs are initialized as sets of equations varying both in individual feature size and

their dimensionality. Each equation in a program is initialized recursively in an analogous

fashion to the grow method (see [159]) but limited by number of nodes rather than depth.

Fitness for the programs is defined in Eq. (4.4).

Three population selection methods are tested: tournament selection [42], lexicase selec-

tion [193, 60], and age-fitness Pareto optimization [178]. The first, tournament selection, is

a standard GP method in which individuals (in this case, two) in the current population are

randomly selected (with replacement) at a time and the one with better fitness is chosen as
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i = [ x1 x2 x1 x1 ∗ x2 x2 ∗ x1 x2 ∗ ]

[ x1 ]

x x[ 1 2 ]

x x 1[ 1 2 x ]

[ x1 x2 x1 x1 ]

[ x1 x2 x1x1 ]

[ x1 x2 x2
1 x2 ]

[ x1 x2 x2
1 x2 x2 ]

[ x1 x2 x2
1 x2

2 ]

[ x1 x2 x2
1 x2

2 x1 ]

[ x1 x2 x2
1 x2

2 x1 x2 ]

1. push (x1):

2. push (x2):

3. push (x1):

4. push (x1):

5. pull (x1), (x1); push (x1 · x1)

6. push (x2):

7. push (x2):

8. pull (x2), (x2); push (x2 · x2)

9. push (x1):

10. push (x2):

11. pull (x 1 , (x2); push (x1 · x2)) [ x1 x2 x2
1 x2

2 x1x2 ]

1 2 3 4 5 6 7 8 9 10 11index:

program execution stack

→ Φ(x) = [x1, x2, x
2
1, x

2
2, x1x2]

Figure 4.1. Example of program representation of a multidimensional transformation. Ar-
guments such as x1 are pushed to the stack, and operators such as ‘∗’ pull arguments from
the stack and push the result.

a parent for the next generation. The second, age-fitness Pareto optimization, is described

in §3.6.1. Lexicase selection in more detail below.

4.3.1.2.1 Lexicase selection Lexicase selection is a new parent selection technique that

rewards individuals in the population for performing well on unique combinations of fitness

cases, i.e. samples. Each parent selection proceeds as follows:

1. The entire population is added to the selection pool.

2. The fitness cases are uniformly shuffled.

3. Individuals in the pool that do not have exactly the best fitness on the first case are

removed.

4. If more than one individual remains in the pool, the first case is removed and step 2 is

repeated with the next case. If only one individual remains, it is the chosen parent. If no

more fitness cases are left, a parent is chosen randomly from the remaining individuals.

As evidenced above, the algorithm is quite simple to implement. In this procedure, test cases

act as filters, and a randomized path through these filters is constructed each time a parent
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is selected. Each parent selection event returns a parent that is elite on at least the first test

case used to select it. In turn, the filtering capacity of a test case is directly proportional

to its difficulty since it culls the individuals from the pool that do not solve it. Therefore

selective pressure shifts to cases that are not widely solved. Because each parent is selected

via a randomized ordering of test cases and these cases perform filtering proportional to their

difficulty, individuals are pressured to perform well on unique combinations of test cases.

This strategy promotes individuals with diverse performance, leading to increased diversity

observed during evolutionary runs [60].

We use the mutation and crossover operators from M3GP [140] in order to simplify the

points of comparison with M4GP. These search operators are biased to explore the dimension-

ality of Φ. The search operators manipulate “sub-trees” of programs, which are equivalent

to segments of interacting nodes in the stack-based representation. The mutation operator,

with equal probability, chooses one of three actions: i) it replaces a sub-tree with a ran-

domly generated sub-tree; ii) it adds a new randomly generated sub-tree to the end of the

program, thereby increasing |Φ| by one; iii) it deletes a sub-tree corresponding to a “root”,

thereby reducing |Φ| by one. The crossover operator similarly chooses between one of two

equally probable actions: i) it performs standard sub-tree crossover of the parents, selecting

non-“root” nodes; ii) it performs standard sub-tree crossover of “root” nodes. In this case,

“roots” are those nodes in the program that produce a value in the final stack, and can be

identified from stack-based programs in linear time.

4.4 Related Work

Whereas GP has been proposed for evolving classification functions ŷ(x) directly [88,

39, 125], M2GP proposed GP as a wrapper that evolved Φ(x) for a clustering method, and

demonstrated in particular that Mahalanobis distance outperformed Euclidean distance in

this framework [73]. M3GP extended M2GP to allow programs to change dimensionality

during the run via specialized search operators that increased or decreased the dimension-

ality of a tree by modifying its root node [140]. M4GP removes the need for explicit root
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nodes by using a stack-based data flow that also preserves multi-dimensionality and allows

dimensionality to change flexibly. An ensemble version of M3GP named eM3GP produced

similar classification accuracies to M3GP with smaller, more legible resultant programs [188].

Together, these methods highlight the unique challenge of feature selection and its merger

into learning systems [119].

A few recently developed ML methods have leveraged GP’s feature-based abilities as a

wrapper for regression [132, 72, 3]. M4GP and its ancestors differ from these regression-

based approaches in that the classification does not require classes to be assigned via an

arbitrarily designated range of real-valued outputs, but instead utilizes a distance metric to

infer the boundaries of the transformed feature space. M4GP also incorporates a novel GP

representation and advanced selection methods to improve its performance.

GP has also been proposed to fill various roles in tailored learning systems for image

classification. It has been used, for example, as a way to learn image embeddings for an

ensemble method [120], as an interactive learning tool for remote sensing [35], and as a

binary classifier in a pulmonary nodule detection system [26]. Liu et al. [120] noted the

potential for GP to perform dimensionality reduction efficiently in large-scale settings, as

we noted earlier. M4GP differs from these approaches in two ways: first, it focuses on the

capacity for low- and high-dimensionality feature extraction to flexibly suit the needs of the

problem, and second, it applies to general multiclass classification problems.

4.5 Experimental Analysis

Ten of the twelve problems used for experimental analysis are from the UCI data repos-

itory [117] and are summarized in Table 4.1. Two others, IM-3 and IM-10, are satellite

data sets from [206]. Three versions of M4GP are tested: M4GP with lexicase selection

(M4GP-lx), age-fitness Pareto survival (M4GP-ps), and tournament selection (M4GP-tn).

On the first 8 problems, we benchmark M4GP against M2GP, M3GP, eM3GP, and several

out-of-the-box classifiers from Weka [57], including RF, RS, MLP, and SVM. Each method

is run for 30 trials, and for each trial the data is randomly partitioned into 70% training and
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Table 4.1. Data sets used for experimental analysis.

Data Set Heart IM-3 IM-10 Movl Seg Vowel Wav Yeast Wir Wiw Opp-S2 Opp-S3

Classes 2 3 10 15 7 11 3 10 10 10 4 4
Attributes 13 6 6 90 19 13 40 8 12 12 242 242
Samples 270 322 6798 360 2310 990 5000 7797 1599 4898 16667 15550

30% testing. For the final four problems, we benchmark M4GP against published results for

red and white wine quality [29] and human activity recognition [172, 23]. The settings for

M4GP are shown in Table 4.2, and whenever possible, match those used for M2GP, M3GP,

and eM3GP. Programs are constrained to be between 3 and 100 nodes, and are initialized

with a corresponding dimensionality between 1 and 33, constrained such that the minimum

sub-program is at least 1 node.

In order to test the scalability of M4GP, we used the Opportunity Activity Recognition

data set (Opp-S2 and Opp-S3 in Table 4.1) from the Activity Recognition Challenge at the

2011 IEEE International Conference on Systems, Man, and Cybernetics [172, 23], which

consists of 242 attributes and approximately 32,000 total samples. We benchmark M4GP’s

ability to predict four classes of locomotion (stand, sit, walk, lie) from two test subjects (S2

and S3) against the entrants to the original challenge. In order to perform the comparison

to published results, the weighted F-measure, F1, is used as the fitness metric in place of

Eq. (4.4). F1 measures classification performance as a function of precision ( TP
TP+FP ) and

recall ( TP
TP+FN ) as:

F1 =
k∑

`

2w`
precision` · recall`
precision` + recall`

(4.6)

TP is the number of true positives, FP is the number of false positives, and FN is the

number of false negatives for class c` that has k` samples out of a total of n, yielding the

proportion weight w` = k`/n. The raw time series data was downsampled as in [23] using a

moving average with a window of 500 milliseconds with 250 millisecond steps. Missing data

is linearly interpolated, and all data was normalized to zero mean and unit variance.
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Table 4.2. M4GP settings. Changes to the settings for Opp-S2 and Opp-S3 are noted in
parentheses.

Setting Value

Population size 500 (1000)
Max Generations 100
Crossover / Mutation 50/50%
Ephemeral random constants [93] range [0,1]
Program size limits by # nodes [3, 100 (500)]
Initial dimensionality range (d) [1,33]
Termination criterion generations or perfect training accuracy
Trials 30 (10)

4.6 Results

The best classifiers generated by M4GP for each trial are compared first to benchmark

methods in §4.6.1 and then to other published results in §4.6.2. Performance is quantified

by classification accuracy (Eq. (4.4)) on test data and the dimensionality of the resultant

classifiers.

4.6.1 Benchmark Comparisons

For the 8 benchmark problems, the median best fitness on the test sets for the first eight

problems are shown in Table 4.3 with statistical comparisons. M4GP, across selection meth-

ods, produces the best classifiers in terms of test accuracy on five of the eight problems, and

RF produces the best classifiers on the remaining three. The best-of-run classifier accuracies

over all trials for all methods on the test sets are plotted in Figure 4.2. Interestingly, the

M4GP results are not typically best on the training data, but are most often the best on the

test sets, signifying that the classifiers produced by M4GP generalize better than the other

tested methods. The results are summarized by rankings over all of the problems on training

and test sets in Figures 4.4 and 4.5. Again these two figures illustrate the improved general-

ization achieved by M4GP, which ranks first across selection methods for test accuracy but

not for training accuracy. The performance of the three M4GP methods on training and test

sets over the duration of the run (generations) is shown in Figure 4.3. It is worth noting that

for the Movl problem, which is one of the three problems for which RF generalizes better,

M4GP finds a perfect solution to the training data within the first few generations, and pre-
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maturely terminates. Past work also notes that this problem is an outlier in terms of GP’s

behavior [73, 140]. On the Heart problem, M4GP-lx overfits to the training data, as evidenced

by the slow decline in test fitness over the generations. Among selection methods, M4GP-ps

ranks the best, followed by M4GP-lx and M4GP-tn. On individual problems, M4GP-tn did

not outperform M4GP-ps or M4GP-lx; therefore, M4GP-tn was left out of further tests.

4.6.2 Comparison to Published Results

The wine results are compared to published results [29] in Table 4.4. The classifiers

generated by M4GP, both using lexicase selection and Pareto survival, are significantly more

accurate than those generated by MR and MLP for this problem. In comparison to SVM

results, there is no significant difference between M4GP-ps and SVM for the red wine problem,

and SVM is significantly more accurate than M4GP-lx and M4GP-ps for the white wine

problem. The white wine problem is the only problem studied for which an SVM approach

achieves a better classification accuracy than M4GP.

The results of the Opportunity Activity Recognition problem are shown in Table 4.5

where the results of M4GP are compared to those from the original challenge in terms of F-

measure (Eq. (7.2)). A number of methods are reported for this problem, including nearest

neighbor (NN) classifiers, SVM, decision tree and ensemble versions thereof. For both subjects

tested, M4GP-lx and M4GP-ps produce better classifiers than the competition, with lexicase

selection performing slightly better than Pareto survival. Because only single best results are

reported in literature, we are unable to provide statistical tests for these results. However,

we report the median F-measure on the test set for 10 trials of M4GP-lx and M4GP-ps along

with confidence bounds, indicating that the median performance of M4GP exceeds the best

reported result from the competition.

4.6.3 Scalability

A motivating factor for using M4GP for classification is its intrinsic feature selection

capacity. The complexity of the M4GP solutions are detailed in Figure 4.6, where the number

of original attributes used in solutions as well as the dimensionality of the transformation (i.e.

86



|Φ|) is shown for all the problems. For reference, we include a principal components analysis

(PCA) reduction that shows the fewest principal components needed to account for 98% of

the variance of each data set. For some of the problems with small numbers of attributes (e.g.

Yeast, IM-10 and Heart) the dimensionality of the M4GP solutions tend to be larger than the

dimensionality of the original attribute set, but for higher-dimensional problems (e.g. Opp-S2

and Opp-S3), large reductions in the dimensionality of the problem are achieved via M4GP

that surpass the reduction given by PCA. It is also important to note that often the M4GP

solutions make use of fewer of the original attributes, which can be beneficial for sensor or

measurement selection in future design of experiments.

As a population-based method, M4GP’s main drawback in comparison to other methods

is computational cost, shown in terms of wall-clock time in Table 4.6. Each trial of the initial

ten problems from Table 4.1 were run on a single core, so the reported time is the time to

evaluate population solutions in series. The times range from about 30 seconds for simple

problems (e.g. Movl) to about two and a half hours for larger sample size problems (e.g.

IM-10). The largest problems, Opp-S2 and Opp-S3, that have close to three times as many

training samples as IM-10, were run on 16 core machines, which significantly reduced the

run-time to around 10 minutes. In this case, the problem is run in parallel using an island

model [8], in which the population is divided among the cores. The resulting computation

times indicate the improvement afforded by parallel processing in GP methods.

4.7 Discussion and Conclusion

Across the range of problems studied, the results indicate that M4GP shows promise

as one of, if not the, best method for developing accurate classifiers that generalize well.

In addition to being accurate, M4GP provides the flexibility to increase dimensionality for

better classification of small dimension problems, and to decrease both the dimension of

solutions and the number of necessary attributes for large dimension problems. For the

Opp-S2 and Opp-S3 problems in particular, the dimensionality of the classifiers produced by
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Figure 4.2. Test set accuracy on the first eight benchmark problems for ten different clas-
sification methods.
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Table 4.3. Comparison of best-of-run median test accuracy for the benchmark problems.
The best result is highlighted. Significant (p < 0.01 according to a pairwise Wilcoxon rank-
sum test with Holm correction) improvements with respect to each method is denoted by
a− j according to the method labels.

Method Heart IM-3 IM-10 Movl Seg Vowel Wav Yeast

aRF d80.2 94.8 bcde
fghij96.9 bcde

fghij89.4
bcde
fgij97.3 bcde

g 89.4 81.5 de57.5

bRS d81.5 92.8 cde
fghij93.9 d

f65.7 d
gj96.0 g82.8 82.2 d56.6

cMLP d80.2 95.9 90.2 bd
fghj82.5 de

gj96.3 g82.5 ab
g 83.3 de58.0

dSVM 55.6 93.8 90.4 14.4 55.8 81.8 abce
fgh 86.3 41.1

eM2GP d80.2 93.8 90.2 bcd
fghij85.9 d

g95.6 cd
g 85.9 abc

g 84.9 d53.8
fM3GP d79.0 95.4 c

ij91.0 d57.1 d95.6 abcde
g 93.8 ab

g 84.3 d56.2
geM3GP d80.9 93.3 j90.3 bd

fh78.6 d94.7 78.6 81.2 d56.2
hM4GP-
lx

abcde
fg 85.2 abcde

fg 97.9 ij90.7 bd
f 73.1 bde

fgj96.6 abcde
fg 95.6 abc

fg 85.3 de
g 58.9

iM4GP-
ps abcde

fghj 90.1
abcde
fg 97.9 89.8 bd

fh80.1 de
gj96.1 abcde

fghj 97.5
abce
fghj87.1 de

fg58.9

jM4GP-
tn

abcde
fg 87.7 abcde

fg 97.9 89.6 bd
fh76.9 d95.1 abcde

fg 96.0 abce
fg 86.0 d56.8

Table 4.4. Comparison of mean test accuracy on the wine problems. M4GP is compared to
published results using multiple regression (MR), mulitlayer perceptron (MLP) and support
vector machines (SVM). The best results are highlighted. Significant (p < 0.01 according to
a pairwise t-test) improvements with respect to each method is denoted (a− e) according to
the method labels (left).

Method Red Wine White Wine

aMR 59.1±0.1 51.7±0.1
bMLP 59.1±0.3 a52.6±0.3
cSVM ab

d 62.4±0.4 ab
de64.6±0.4

dM4GP-lx ab60.8±0.2 a53.3±0.1
eM4GP-ps ab61.2±0.2 ab

d 54.2±0.1
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Table 4.5. Comparison of F-measure on the Opportunity Activity Recognition data set
(locomotion) for subjects 1 and 2 (S1 and S2). M4GP is compared to published results using
one nearest neighbor (1-NN), SVM, SVM + 1-NN, decision trees (C4.5), k-NN, decision tree
(DT) grafting, and Adaboost. The team names are shown in parentheses. The best results
in terms of F-measure are highlighted. For M4GP results, the median best result of ten trials
is shown with the 95% confidence interval.

Method F-measure (no Null class)

S2 S3

1-NN (NStar) 0.88 0.85

SVM (SStar) 0.87 0.83

SVM + 1-NN (CStar) 0.90 0.83

C4.5 (NU) 0.83 0.63

k-NN (MI) 0.87 0.86

DT grafting (MU) 0.86 0.87

Adaboost (UT) 0.74 0.72

M4GP-lx 0.91 ± 0.00 0.89 ± 0.00

M4GP-ps 0.90 ± 0.00 0.88 ± 0.00

Table 4.6. Run time for M4GP solutions.

Median Time (hr:min:s)

Problem Cores M4GP-lx M4GP-ps M4GP-tn

Heart 1 00:02:29 00:02:12 00:02:28

IM-3 1 00:02:30 00:02:49 00:02:14

IM-10 1 02:09:04 02:21:45 02:28:23

Movl 1 00:00:27 00:02:25 00:02:02

Seg 1 00:32:25 00:39:35 00:38:38

Vowel 1 00:04:21 00:20:37 00:15:57

Wav 1 01:36:44 01:30:17 01:35:12

Yeast 1 00:25:25 00:44:09 00:52:31

Red Wine 1 00:20:36 00:11:14 - (-)

White Wine 1 00:56:26 00:44:12 - (-)

Opp S2 16 00:12:30 00:09:16 - (-)

Opp S3 16 00:11:51 00:08:47 - (-)
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Figure 4.6. Dimensionality reductions afforded by M4GP compared to the original number
of attributes and a PCA dimensionality reduction preserving 98% variance. ‘atts’ refers to
the number of attributes used in the M4GP solutions, and ‘dim’ refers to the dimensions in
the solution (i.e. |Φ|).
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M4GP constitute a major reduction from the original attribute space beyond that afforded by

PCA reduction and motivate further applications of this method to large attribute problems.

We find that the computation time of M4GP is quite reasonable on a multi-core machine,

with the largest sample size problems requiring approximately 10 minutes to run on a 16

core machine. Improvements to computation time could be made by further parallelizing the

execution of individual models that can be run in parallel at the data (samples) and program

(nodes) levels. Note that in this work we only parallelize the evaluation of the population of

models. The largest computational cost stems from the inversion of the covariance matrix

to compute the Mahalanobis distance (Eq. (4.2)). It may be possible to minimize this cost

by only maintaining a single model Φ and evolving a population that corresponds to the

dimensions of Φ, thereby minimizing the number of matrix inversions to once per generation.

Our future work could include this direction. Furthermore, this work motivates further

research into pairing other classifiers with GP feature selection and synthesis.

Finally, we demonstrate that M4GP significantly improves upon previous versions of

Mahalanobis distance-based GP embodied by M2GP, M3GP, and eM3GP. These improve-

ments are brought about by replacing the tree-based programming representation with a

stack-based data flow, thereby easing the creation of and search of multi-dimensional classi-

fication models. M4GP performs significantly better than these previous methods across all

benchmark problems according to a Friedman test of rankings for test accuracy. We further

demonstrate that advanced evolutionary selection methods, namely lexicase selection and

age-fitness Pareto survival, perform better than tournament selection in producing accurate

classifiers.
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PART II: APPLICATIONS



CHAPTER 5

RESTRUCTURING CONTROLLERS TO ACCOMMODATE PLANT
NONLINEARITIES

5.1 Summary

The possibility of controller restructuring using MSAM is explored for improved closed-

loop control of nonlinear plants. The starting controller in this restructuring approach can be

the linear controller designed according to the linearized model of the plant. This controller

will be expanded into a set of nonlinear candidate controllers to be adapted iteratively toward

delivering a desired closed-loop response. The best candidate controller that betters the

initial controller’s performance is selected for further adaptation. The salient feature of

the proposed adaptation method is a metric for quantifying structural perturbations to the

controllers, which it uses for scaling the structural Jacobian that is central to its gradient-

based mechanism. Results obtained from two case studies indicate the success of the proposed

restructuring approach in finding nonlinear controllers with improved closed-loop response

and higher robustness to modeling uncertainty.
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5.2 Introduction

When the agility of feedback can account for mild plant nonlinearities, linear controllers

can be designed according to the linearized model of the plant [47]. And in cases when the

plant nonlinearities are too severe for a single linear controller across the range of operating

points, gain scheduling can be employed to incorporate different linear controllers at different

operating points [4]. The leap to nonlinear control is made when accurate models of plant

nonlinearities exist to allow nonlinear controller design [100, 183, 86]. This paper offers

an alternative method of empirical controller development wherein a starting controller is

expanded into a nonlinear controller and adapted to attain improved closed-loop performance.

The most common framework for empirical development of nonlinear controllers has been

neural networks [145, 146, 214, 67]. However, these controllers have a “black box” form

which precludes any analysis requiring intelligible forms and/or structures. In an attempt to

attain transparency, one can use symbolic regression wherein the process variables, inputs,

and parameters (constants) are treated as symbols and integrated as blocks to form candidate

models. Free of restrictions on the form (structure) of candidate controllers, the search would

be conducted by genetic programming (GP) for controllers generating best-fit closed-loop

outputs to the desired response [92]. But symbolic regression is computationally expensive,

requiring anywhere from thousands to billions of evaluations. While so many evaluations

can be accommodated in open-loop by algebraic manipulation of the time series representing

measured observations and their derivatives, they are infeasible in closed-loop wherein the

system response needs to be obtained via simulation for each adopted controller. As such,

the use of evolutionary and/or genetic algorithms in controls has been confined to parameter

optimization [44, 166] or search among a limited number of structural components [25, 10].

The approach proposed in this chapter also restricts the search space to a limited number

of candidate controller structures. However, instead of fixed structures to select from, it per-

forms a local search around the starting controller. It considers candidate controllers derived

from a starting controller that are malleable through their exponents and can be adapted

by gradient-based search toward a suitable form. These candidate controllers are obtained

97



by restructuring the individual components of a starting controller by the Model Structure

Adaptation Method (MSAM) [111], described in Ch. 2, which adds variable coupling to in-

dividual components of the starting controller and tunes their influence by gradient-based

adaptation of their exponents. A key feature of MSAM, that enables the implementation

of gradient-based adaptation, is its quantification of structural changes to the controllers.

It uses this metric to scale the structural sensitivities such that they will remain robust to

parametric error during adaptation. The proposed restructuring strategy is schematized in

Fig. 5.1, which resembles the strategy used in iterative feedback tuning [62, 115, 87], with the

difference that it changes the structure instead of the parameters toward the desired response.

In Fig. 5.1, the yd denotes the desired response to the reference input r, and ỹ represents the

error between the closed-loop response of the system y and its desired response yd.

r y
G

u

ν yd

Model Structure
Adaptation

y ~

Gc
- +-

Figure 5.1. Contoller adaptation by MSAM

5.3 MSAM for Controller Adaptation

Whereas MSAM begins with starting model in system identification applications (see

Ch. 2), here it begins with a starting controller. It uses the components of this starting

controller and creates pair-wise coupling between the individual components, amended by

exponents. It then forms a set of restructured candidate controllers from different combina-

tions of coupled components and adapts the exponents of each controller by gradient-based

search to optimize the influence of individual couplings. It subsequently evaluates the perfor-
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mance of these candidate controllers in closed-loop to find the best controller that surpasses

the starting controller in matching the desired response yd. The salient feature of MSAM is

its use of a metric for symbolic changes to the model, which it uses for scaling the structural

Jacobian. This scaling is shown to improve the condition of the structural Jacobian, for

reliable implementation of gradient-based adaptation in the symbolic domain.

In MSAM, the starting controller is considered to be the weighted sum of individual

components Ψi, as

MΘ =

Q∑

i=1

θiΨi = ΘTΨ (5.1)

where Ψ = [Ψ1, . . . ,ΨQ]T comprises components Ψi that are products of combinations of

state variables xi included in the state vector x = [x1, . . . , xn]T . For instance, with a PID

controller as the starting controller M̃
Θ̃

: u(t) = Kpε(t) + Ki

∫
ε(t)dt + Kddε/dt, Ψ̃ =

[
Ψ̃1, Ψ̃2, Ψ̃3

]T
=
[
ε(t),

∫
ε(t)dt, dε/dt

]T
with the corresponding parameter values Θ̃ =

[
θ̃1, θ̃2, θ̃3

]T
= [Kp, Ki, Kd]

T . The fidelity of the controller can be evaluated by how closely

the closed-loop response of the nonlinear plant matches the desired response yd, as represented

by ỹ
M̂

where M̂ denotes the candidate controller.

The fitness function in MSAM (Eq. 2.18) is defined according to the simulated and desired

output as

F =
ρ(ŷ, yd)

∑N
k=1 |ŷ(tk)− yd(tk)|

(5.2)

where ρ(ŷ, yd) denotes the correlation coefficient between the closed-loop response ŷ and the

desired response yd. The controller form is adapted according to the procedure described in

§2.5.

5.4 Study Platforms

Two closed-loop platforms are considered for studying the feasibility of MSAM. The first

platform, depicted in [4], consists of a linear plant that is actuated by a nonlinear valve, thus

the known plant nonlinearity is compartmentalized. Åström and Wittnemark [4] capitalize

on knowledge of the valve nonlinearity to cascade the linear (proportional plus integral (PI))
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controller with the inverse function of the valve model, so as to negate/compensate for its

nonlinearity. The second platform is an inverted pendulum on a cart which is an inherently

nonlinear and unstable system commonly controlled within small deviations from its vertical

position. Effectiveness of controller restructuring is evaluated in application to these two

platforms and compared to those of traditional solutions offered for their control.

5.4.1 Nonlinear Actuator Valve

The first platform adopted from [4] is shown in Fig. 5.2 where the plant consists of a

nonlinear valve,

v = f(u) = u4 (5.3)

preceding a linear process having the transfer function

G0(s) =
1

(s+ 1)3
(5.4)

The customized controller discussed in [4] is a PI controller with the parameters Kp = 0.1

and Ti = 0.1 cascaded with a nonlinear function that approximates the inverse of the valve

model, as

f−1(c) =





0.433c if 0 ≤ c ≤ 3

0.0538c+ 1.139 if 3 ≤ c ≤ 16
(5.5)

Σ Kp(1 +
1

Tis
)

PI

f̂−1(c)

Inverse

f(u)

Valve

G0(s)

Process

cr e u

-1

v y

1

Figure 5.2. Block diagram of the closed-loop control system for the nonlinear valve with
the customized controller (Courtesy of Åström and Wittnemark [4]).
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As demonstrated in [4], and shown in Fig. 5.3, the above closed-loop system provides

different responses at different reference values, representing the limitation of the inverse

approximation f̂−1 in neutralizing the valve nonlinearity f(u) at different reference values.

One drawback of this solution, therefore, is rooted in the deviation of f(f̂−1(c)) from the

ideal value of 1 at different reference values. Its another drawback is its dependence on

the accuracy of the valve nonlinearity. To evaluate the significance of this dependence, the

closed-loop step responses of the system at different reference values are compared with

the step responses of two other systems representing slightly different valve nonlinearities:

f(u) = u3.5 and f(u) = u4.5 in Fig. 5.4. The results clearly indicate the considerable influence

of misrepresented nonlinearity on the response of the customized solution, particularly at

higher reference values.
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Figure 5.3. Step responses and control efforts of the closed-loop system in Fig. 5.2 at
different reference values

5.4.2 Inverted Pendulum

The second platform is the classical inverted pendulum on a cart as shown in Fig. 5.5.

With the cart mass denoted as M , the mass of the pendulum at the end of the massless

rod represented as m, the position of cart in x-direction denoted as x(t), the angle of the
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Figure 5.4. Step responses and control efforts of the closed-loop customized solution in
Fig. 5.2 affected by the valve nonlinearity

pendulum from vertical represented as θ(t), and the control action being a force u(t) applied

to the cart, the system has the model [137]

ẍ =
u+ml (sin(θ)) θ̇2 −mg cos(θ) sin(θ)

M +m−mcos2(θ)

θ̈ =
u cos(θ)− (M +m)g sin(θ) +ml (cos(θ) sin(θ)) θ̇

mlcos2(θ)− (M +m)l
(5.6)

Figure 5.5. Inverted Pendulum on cart
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The feature of interest in this platform is the dependence of the system nonlinearity on

the angle θ. At small θ values, like those caused by low magnitude impulses to the pendulum,

a linear controller, by state feedback, for example, can maintain the upward position of the

pendulum. But the prevalence of nonlinearity at larger θ values will disturb the performance

of linear control. This point is illustrated for a linear state-feedback controller of the form

u(t) = −K1x−K2ẋ−K3θ−K4θ̇ with the gains [K1,K2,K3,K4] = [−2.00,−3.84, 33.84, 7.22]

configured to yield the closed-loop poles s1,2,3,4 = −1,−2,−4.73,−4.73 according to a lin-

earized model of the pendulum. The closed-loop impulse responses of the system to different

impulse magnitudes using this controller are shown in Fig. 5.6. They clearly indicate the

effect of nonlinearity on the performance of the controller at higher impulse magnitudes.
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Figure 5.6. Closed-loop impulse responses and control efforts of the inverted pendulum
controlled by linear state feedback

5.5 Features of MSAM-restructured controllers

Before we discuss the characteristic performance of the restructured controllers, it is

necessary to note some of the features of MSAM-restructured solutions. The first is the

significance of the model perturbation magnitude in the generated solution. Second is the

case-specificity of the solutions.
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5.5.1 Significance of model perturbation magnitude

An important feature of MSAM is the use of δΨi from Eq. (2.14) for scaling the columns

of Φγ . A direct ramification of this scaling is the better quality of Φγ , that results in

better estimates of ∆̂Γ when used in Eq. (2.16). The improved quality of Φγ is illustrated

by the range of condition numbers (λmax/λmin) of Φγ in Table 5.1, computed with and

without scaling by δΨi at different reference values with the nonlinear valve. Since the

closer the condition number is to unity the more separate (less collinear) are the columns

of the matrix [78], the much smaller condition numbers in Table 5.1 indicate the marked

improvement in the quality of Φγ when scaled by δΨi. Given the much improved solutions

obtained by scaling, the results shown henceforth are obtained with scaled Φγ .

Table 5.1. Range of condition numbers of the structural sensitivity matrix Φγ and the
lowest error found during control restructuring with and without scaling of Φγ by δΨi from
Eq. (2.14)

Reference Condition Number of Φγ Lowest Error
Value unscaled scaled unscaled scaled

1 1.61 - 12.16 2.02 - 2.07 2.61 1.35
2 1.69 - 6.95 1.80 - 2.68 4.37 2.50
3 2.13 - 4.94 1.07 - 4.69 6.10 2.65
4 10.03 - 14.05 1.09 - 2.67 8.18 3.99
5 13.37 - 13.53 1.09 - 4.48 11.38 6.10

5.5.2 Case-specificity of the Restructured Controllers

Another, and not necessarily a desirable, feature of the restructured controllers is their

case-specificity, which is rooted in the search mechanism for the exponents γi in Eq. (2.8).

As in any gradient-based search, the robustness of the solution depends on the convexity

of the error surface presented in the training scenario and its form is at the mercy of the

search mechanism (in this case NLS). As such, the choice of the desired response yd plays

a central role in the formulation of the solution. We have observed, for instance, that the

more distant the target is from the initial closed-loop response, the better chance there is

of finding a radically dissimilar controller. To illustrate the case-specificity of restructured
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controllers, consider the controllers obtained at different reference values for the nonlinear

valve in Table 5.2. Although the form of the restructured controllers are similar for reference

values 1, 2, and 4, and for 3 and 5, they are not uniform across all reference values. To bypass

this case-specificity aspect of controller restructuring, one can simultaneously reconstruct the

controller for several reference values by using a step-wise reference, as is demonstrated for

the nonlinear valve below.

Table 5.2. Restructured controllers obtained at different reference values for the nonlinear
valve

Reference Restructured Controller
Value

1 Kpε
(∣∣∫ εdt

∣∣)0.27
+Kisgn

(∫
εdt
) (∣∣∫ εdt

∣∣)0.80

2 Kpε
(∣∣∫ εdt

∣∣)0.19
+Kisgn

(∫
εdt
) (∣∣∫ εdt

∣∣)0.82

3 Kpsgn(ε) |ε|1.15 +Kisgn
(∫
εdt
) (∣∣∫ εdt

∣∣)0.81

4 Kpε
(∣∣∫ εdt

∣∣)0.15
+Kisgn

(∫
εdt
) (∣∣∫ εdt

∣∣)0.78

5 Kpsgn(ε) |ε|1.08 +Kisgn
(∫
εdt
) (∣∣∫ εdt

∣∣)0.78

5.6 Restructured Controllers

The controllers used for the nonlinear valve and inverted pendulum were restructured

by MSAM according to the configuration in Fig. 5.1. The desired response yd used for the

nonlinear valve was that of the customized solution and the one for the inverted pendulum

was that of the linear controller to the lowest magnitude (δ = 15) impulse applied to the

pendulum. The coupled f̂i in Eq. (2.8) were the absolute values of the other variables to avoid

imaginary numbers due to exponentiation of negative numbers. The restructured controllers

obtained for the above platforms are discussed separately.

5.6.1 Controller for the Nonlinear Valve

As was discussed earlier, in order to obtain a more generalized controller across the

reference value range, restructuring for the nonlinear valve was performed with a staircase

reference profile that included three reference values, as shown in Fig. 5.7. Restructuring
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was performed using the closed-loop response of the customized controller as the desired

response (“desired” in Fig. 5.7), adapting each candidate controller for 15 iterations in the

round robin phase and the best controller for 50 iterations in the final phase. The candidate

models in the round robin phase were generated from the PI controller: Kpε(t) +Ki

∫
ε(t)dt

using [f1, f2] =
[
|ε|, |

∫
εdt|

]
in Eq. (2.8). Controller restructuring resulted in

u(t) = Kpε+Ki

(∫
εdt
)

=⇒

u(t) = Kpε(t)
(∣∣∫ ε(t)dt

∣∣)0.02
+Kisgn

(∫
ε(t)dt

) (∣∣∫ ε(t)dt
∣∣)0.94

(5.7)

The response of this controller is named “restructured” in Fig. 5.7. Next we used the NLS

to adapt the parameters of the controller from the initial values of Kp = 0.1 and Ki = 0.1

to obtain a closer fit to the target. The tuned parameter values were Kp = 0.0941 and

Ki = 0.0543, producing the improved response “tuned restructured” in Fig. 5.7.

0 50 100 150
0

1

2

3

4

5

6

Time (s)

y
(t
)

 

 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

u
(t
)

 

 

Desired

Restructured

Tuned Restructured

Tuned Restructured

Restructured

Figure 5.7. Step response and control effort of the restructured controller before and after
tuning its parameters by NLS shown with the desired response used for control restructuring

As a benchmark, the response of the final restructured controller (“tuned restructured”)

is compared with the customized response in Fig. 5.8. The results clearly indicate a more

consistent rise time of the restructured controller than the customized controller (see Fig. 5.2).
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Figure 5.8. Step response of the restructured controller and its control effort compared with
those of the customized controller (Fig. 5.2) at different reference values

5.6.2 Controller for the Inverted Pendulum

For the inverted pendulum, the candidate controllers were generated from the state feed-

back controller: K1x+K2ẋ+K3θ+K4θ̇ using [f1, f2, f3, f4] in Eq. (2.8) as
[
|x|, |ẋ|, |θ|, |θ̇|

]
.

To invoke the nonlinearity of the pendulum, an impulse magnitude of δ = 18 (see Fig. 5.6)

was applied to the cart with the closed-loop response of the linear controller to an impulse

magnitude of δ = 15 was used as the desired response. Each candidate controller was adapted

for 15 iterations in the round robin phase and the best controller was adapted for 50 iterations

in the final phase. The restructured controller had the form

u(t) = −K1x(t)−K2ẋ(t)−K3θ(t)−K4θ̇(t) =⇒ u(t) = −K1x(t)
∣∣∣θ̇(t)

∣∣∣
0.04
−

K2ẋ(t)
∣∣∣θ̇(t)

∣∣∣
0.02
−K3sgn(θ(t)) |θ(t)|0.92 −K4sgn(θ̇(t))

∣∣∣θ̇(t)
∣∣∣
1.03

(5.8)

The responses and control efforts of the restructured and linear controllers to an impulse

magnitude of δ = 18 are shown in Fig. 5.9 along with the desired response.

As benchmark, the impulse responses of the restructured controller is compared with that

of the linear controller in Fig. 5.10 for different impulse magnitudes. Both the responses and
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Figure 5.9. Impulse response and control effort of the restructured controller and those of
the linear controller shown with the desired response used for control restructuring

control efforts of the restructured controller are significantly more consistent than those of

the linear controller for different impulse magnitudes. This consistency is due in part to the

quicker response of the restructured controller to state perturbations, providing the capacity

to cope with impulses of higher magnitude, as discussed in the next section.

5.7 Analysis

Even though the results are anecdotal, they can be used to analyze several aspects of

the restructured controllers by MSAM. One such aspect is the response of the restructured

controllers to conditions absent in training, such as measurement noise, disturbances, and

reference magnitudes beyond those used for training. A second aspect is the sensitivity of

the restructured controllers to training conditions. A third aspect is the form and behavior

of restructured components of the controller in comparison to their initial counterparts. Yet

a fourth aspect is the receptiveness of the restructured controllers to parameter tuning.
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Figure 5.10. Impulse response and control effort of the restructured controller and those of
the linear controller at impulse magnitudes of 15-20

5.7.1 Unrepresented Conditions

One aspect of controller performance is its response to additive measurement noise. An-

other aspect is its disturbance rejection capacity. A third aspect is its response to reference

magnitudes not included in training.

To evaluate the performance of restructured controllers in presence of noise, band-limited

noise at the signal-to-noise ratio of 18 (at r = 1) to 33 (at r = 5) was added to the output of

the plant with nonlinear valve. Controller responses were tested ten times for different noise

values, as shown in Fig. 5.11. The results indicate that the closed-loop responses with the

restructured and customized controllers are similarly affected by measurement noise with a

smaller variation observed in the control efforts.

The disturbance rejection capacity of the controllers were evaluated with unit step distur-

bances applied both before and after the plant G0(s) in Fig. 5.2. The closed-loop responses

of both the restructured and customized controllers are shown in Fig. 5.12. The results indi-

cate much more agile disturbance rejection by the restructured controller at higher reference

values, replicating the faster step response of these controllers at higher reference values.
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Figure 5.11. Closed-loop step response and control effort range of the restructured and
customized controllers in presence of additive band-limited measurement noise at the ap-
proximate signal-to-noise ratio of 18 at r = 1 to 33 at r = 5

To evaluate the controllers regulation capacity for levels not encountered in training, the

closed-loop step responses of the restructured controller are compared to the step responses

of the nonlinear valve with the restructured and customized controllers were for step sizes

of 6-15, as shown in Fig. 5.13. Similarly, the closed-loop impulse responses of the inverted

pendulum with the restructured and linear controllers were obtained at impulse magnitudes

of 21-33. The linear controller was found to be deficient in maintaining upward position for

the pendulum for impulse magnitudes of 27 and higher. The responses obtained with the

restructured controller for impulse magnitudes of 27-33 are shown in Fig. 5.14. The results

in Fig 5.13 indicate that the restructured controller starts having oscillatory behavior at step

sizes 9 and higher, while the customized solution provides continually more sluggish response

at these higher steps. The results in Fig. 5.14, however, are more complimentary of the

restructured controller, as they show responses that are unattainable by linear control.

Of interest is also the robustness of the restructured controllers to modeling inaccuracies.

To evaluate their robustness, the closed-loop responses for the valve were generated with

the valve nonlinearities of f(u) = u3.5 and f(u) = u4.5, and those of the inverted pendulum
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Figure 5.12. Closed-loop responses and control efforts of the nonlinear valve with parameter-
tuned restructured and customized controllers to unit step disturbances before G0(s) in
Fig. 5.2 (at time 100) and after G0(s) (at time 200)

were obtained for pendulums with 10%, 20%, and 30% smaller mass. The responses for the

nonlinear valve are shown in Fig. 5.4 and those for the inverted pendulum are in Fig. 5.16.

The responses for the restructured controller in Fig. 5.15 are quite similar in contrast to

those of the customized controller for different valve models even though the controller was

restructured for the nominal valve model of f(u) = u4.0, indicating the considerable robust-

ness of the restructured controller to unknown valve nonlinearity. Similarly, the responses of

the restructured controller in Fig. 5.16 are very close for different pendulum masses relative

to those of the linear controller, indicating the lower than the linear controller’s sensitivity

of the restructured controller to the modeled inaccuracy in pendulum mass.

5.7.2 Sensitivity to Training

As was discussed earlier and depicted by the controller forms in Table 5.2, the training

conditions influence the controller forms. This sensitivity to training conditions prompted

expanding the diversity of reference values by using a stair case format for restructuring the

controllers for the nonlinear valve. It, therefore, behooves us to examine the sensitivity of

the controller forms to different stair case scenarios. Similarly, the restructured controller for
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Figure 5.13. Closed-loop responses and control efforts of the nonlinear valve with parameter-
tuned restructured and customized controllers at higher step sizes (6 - 15) than those (1 - 5)
used for restructuring.

the inverted pendulum was sought using different impulse magnitudes. It is also pertinent to

examine the diversity of controller forms obtained at different impulse magnitudes. To this

end, the controller forms obtained for the nonlinear valve and inverted pendulum in different

training cases are shown in Table 5.3. The results indicate two controller forms found across

the ten different stair case combinations (e.g., 1,2,3; 1,3,5; 2,3,4; etc.) for the nonlinear valve

and three controller forms for the inverted pendulum at three different impulse magnitudes.

The difference between the controller forms for the nonlinear valve is in the first component

wherein the ε is coupled with itself, in the first case, and with its integral, in the second case.

The restructured controller forms for the inverted pendulum, however, are quite diverse and

can be compared better through their simulated behavior, as presented below in the following

subsection.

5.7.3 Controller Components

The different forms obtained for the restructured controllers raise two important ques-

tions: (1) how different are the individual components of the controller from each other in

different forms and from their counterparts in the initial controller, and (2) how differently
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Figure 5.14. Closed-loop impulse responses and control efforts of the inverted pendulum
with restructured controller (obtained with the impulse magnitude of 20) at impulse magni-
tudes of 27-33 that are beyond the capacity of the linear controller

do they contribute to the total control effort of each controller. To address these ques-

tions, the numerical values of the individual components (see Table 5.3) at different sample

points were obtained during simulation, as shown in Fig. 5.17 for the nonlinear valve and

in Fig. 5.18 for the inverted pendulum. The results in Fig. 5.17 indicate that the propor-

tional effect “Kpsgn (ε(t)) |ε(t)|(γ1+1)” provides a smaller portion of the overall effort than

“Kpε(t)
∣∣∫ εdt)

∣∣γ1”, and that it has a nonzero value initially because of its entire dependence

on the “ε(t)”, whereas its counterpart is initially null due to its dependence on “
∫
εdt” before

it rises rapidly to its maximum value. The integral components, which have the same form,

only differ slightly because of the differences in the magnitude of “
∫
εdt” in the two simulation

runs.

The results in Fig. 5.18 show a much more nuanced difference of the controller components,

since they not only differ in form but also the coefficient and exponent values. For instance,

consider the similar in form “x effort” of the restructured controller at δ = 18 and δ = 20. As

shown in the first row of Fig. 5.18, their behavior is much more different from those at δ = 18

and δ = 19 that are different in form. We attribute this difference to the confluence of the
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Figure 5.15. Step response and control effort of the restructured controller compared with
those of the customized controller (Fig. 5.2) affected by inaccurate valve nonlinearities

other components. But perhaps the most interesting observation of the results in Fig. 5.18

is the similarity between the total control efforts shown in the last row of this figure, despite

the very different behavior of individual components.

5.7.4 Receptiveness to Parameter Tuning

Another aspect of the restructured controllers is their potential improvement by parame-

ter tuning [62, 49]. To examine their sensitivity to parameter tuning, shown in Table 5.4 are

the mean percent of reduced error achieved by NLS-based parameter tuning for the linear and

restructured controllers. As indicated by the results in Table 5.4, the restructured controller

for the nonlinear valve benefits far more than the initial PI controller from parameter tun-

ing, whereas the benefits of parameter tuning to the restructured controller for the inverted

pendulum are slightly less than those of its starting linear controller.

5.8 Discussion

• Stability: As with any controller design, of concern is the stability of the closed-loop

systems containing the restructured controllers. Fortunately, a fundamental benefit of
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Figure 5.16. Closed-loop impulse responses and control efforts of the inverted pendulum
with the restructured and linear controllers when inaccuracies of 0%, 10%, 20% and 30%
exist in the pendulum mass

the proposed restructuring format, in Fig. 5.1, is its empirical evaluation of the candi-

date controllers in simulation. Since MSAM is designed to produce a controller that is

at least better than the starting controller, it discards any candidate controller that is

inferior in performance to other candidate controllers as well as to the initial controller.

Given that the instability of the system is a natural criterion in this performance evalu-

ation, the solutions delivered by MSAM are guaranteed to be closed-loop stable within

the bounds of the simulation.

• Reachability: In general, MSAM is additive by nature, designed to adapt a potentially

inadequate initial controller by adding coupling to its individual components. Accord-

ingly, this method is suited to restructuring initial controllers that are simple in form,

as they are guaranteed to be less complex than their restructured version. Furthermore,

MSAM operates with the assumption that a potentially superior restructured controller

is reachable by prescribed adjustments to the components of the starting controller. To

this end, the selection of the adjustments f̂i in Eq. (2.8) is of paramount importance.
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Table 5.3. Restructured controllers obtained at different stair cases for the nonlinear valve
and impulse magnitudes for the inverted pendulum

Restructured Controller

Step Sizes Nonlinear Valve

1,2,3 and 2,3,5 Kpsgn (ε(t)) |ε(t)|(γ1+1) +Kisgn(
∫
εdt)

∣∣∫ εdt
∣∣(γ2+1)

all others Kpε(t)
∣∣∫ εdt)

∣∣γ1 +Kisgn(
∫
εdt)

∣∣(
∫
εdt)

∣∣(γ2+1)

Impulse Magnitude Inverted Pendulum

δ = 18 K1x(t)
∣∣∣θ̇(t)

∣∣∣
γ1

+K2ẋ(t)
∣∣∣θ̇(t)

∣∣∣
γ2

+K3sgnθ(t)|θ(t)|γ3+1

+K4sgn(θ̇(t))
∣∣∣θ̇(t)

∣∣∣
γ4+1

δ = 19 K1x(t) |θ(t)|γ1 +K2sgn(ẋ(t)) |ẋ(t)|(γ2+1) +K3sgn(θ(t)) |θ(t)|(γ3+1)

+K4θ̇(t) |ẋ(t)|γ4
δ = 20 K1x(t)

∣∣∣θ̇(t)
∣∣∣
γ1

+K2ẋ(t) |θ(t)|γ2 +K3θ(t) |ẋ(t)|γ3

+K4θ̇(t) |θ(t)|γ4

• Scalability: The scalability of MSAM depends on the number of candidate controllers

considered during the round robin stage. Given that with n adjustments applied to Q

components, Qn candidate models need to be examined during the round robin phase,

the selection process can become overwhelming if the controllers are examined sequen-

tially. Fortunately, the examination of individual candidate controllers is independent

of the others, therefore, this phase can be run in parallel, reducing the computation

time to Qn/p, with p number of processors. For large-scale problems that cannot

Table 5.4. Percent reduction by parameter tuning in the absolute sum of the error between
the closed-loop response and its target for both the linear and restructured controllers to
assess their potential for improved performance by parameter tuning

Mean Percent Reduction in Error
Linear Controller Restructured Controller

Nonlinear Valve 11.86 32.04
Inverted Pendulum 84.50 61.56
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Figure 5.17. Components of the control effort by the linear and restructured controllers of
the two forms in Table 5.3 in response to steps of magnitudes 1-5

be exhaustively searched, one can choose a subset of round robin controllers that are

mechanistically plausible.

• Algorithmic issues: As with any other gradient-based search routine, the search pro-

cess may be sensitive to several parameters. One such parameter is the size of the

perturbation δγi in Eq. (2.14) used for computing the structural sensitivities. Another

parameter is the initial value of µ in Eq. (2.17) that is adjusted at each iteration step.

A third parameter is the perturbation size of the individual parameters used for com-

puting ∂ŷ/∂Θ in Eq. (2.14). Yet a fourth parameter is the fitness function used to

evaluate the candidate models, currently formulated to consider the size of the error as

well as the correlation of the candidate output with its target. The sensitivity of the

search process to these parameter will depend upon the convexity of the error surface,

and needs to be evaluated in the context of each problem.
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Figure 5.18. Components of the control effort by the linear and restructured controllers for
the inverted pendulum in response to impulse magnitudes of 15-22

5.9 Conclusion

A method of gradient-based search is introduced for adapting the structure of controllers.

The proposed method is demonstrated in application to two benchmark problems and its

solutions are analyzed in response to conditions not introduced in training. The case study

results indicate that this method is effective in upgrading the structure of the linear controllers

designed according to linearized models of the plants to nonlinear controllers that can better

cope with the nonlinearities of the plants.
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CHAPTER 6

AUTOMATIC IDENTIFICATION OF CLOSED-LOOP WIND
TURBINE DYNAMICS VIA EVOLUTIONARY MULTIOBJECTIVE

OPTIMIZATION

6.1 Summary

Modern industrial-scale wind turbines are nonlinear systems that operate in turbulent

environments1. As such, it is difficult to characterize their behavior accurately across a wide

range of operating conditions using physically meaningful models. Customarily, the models

derived from wind turbine data are in ‘black box’ format, lacking in both conciseness and

intelligibility. To address these deficiencies, we use a recently developed symbolic regression

method to identify models of a modern horizontal-axis wind turbine in symbolic form. The

method uses evolutionary multiobjective optimization to produce succinct dynamic models

from operational data while making minimal assumptions about the physical properties of

the system. We compare the models produced by this method to models derived by other

methods according to their estimation capacity and evaluate the trade-off between model

intelligibility and accuracy. Several succinct models are found that predict wind turbine

behavior as well as or better than more complex alternatives derived by other methods. We

interpret the new models to show that they often contain intelligible estimates of real process

physics.

1The work in this chapter was presented at the 2015 ASME Dynamic Systems and Controls Conference [106]
and is the basis of a journal publication [105].
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6.2 Introduction

As wind energy grows across the globe and new offshore wind turbine installations en-

counter new operating environments, the models that inform the design and control of these

multimillion-dollar machines become increasingly important. Typical multimegawatt wind

turbines exhibit nonlinear behavior and are subject to wind (and sometimes wave) distur-

bances that are often hard to estimate. These properties make the simulation of their dy-

namics not only challenging but also site-dependent, because of the influence of wind, wave,

and foundation characteristics. Accordingly, the first-principles models of wind turbines,

such as the one embedded in the aero-hydro-elastic simulation tool FAST [81], are prone to

cumulative discrepancies between prediction and reality. These models are also computation-

ally expensive to run because of their fairly comprehensive representation of wind turbine

dynamics. Although the use of engineering models is fundamental to the structural design

and loads analysis process, model-based controllers preferably rely on a customized model of

the real system in the field, rather than a first-principles model that may miss key elements

present in the real system[74].

As an alternative to potentially inaccurate and computationally expensive first-principles

models, empirical models of wind turbines are obtained from experimental data to provide a

customized representation of the wind turbine. These models are usually in the form of auto-

regressive moving-average (ARMAX) models [74, 209, 75, 208], neural networks [101], or fuzzy

logic models [17], among others, to provide the structural flexibility for adapting the model

according to the measured observations. Although these empirical models provide an effective

means of estimation/prediction, they have the major drawback of lacking transparency about

the physics of the process [12]. This lack of transparency obscures the knowledge of the process

that is gained through their development. Ideally, the model should not only be accurate, but

intelligible so that the user acquires the insight attained through the model’s development. A

well-formed model serves two purposes: (i) it improves knowledge of the underlying dynamics

of the system; and (ii) it improves the ability of the wind turbine controller to extract power

and minimize loads on the turbine.
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In order to achieve these goals, we evaluate the applicability of the proposed ELGP

method in identifying wind turbine models based on experimental data collected in nor-

mal closed-loop operation from the three-bladed Controls and Advanced Research Turbine

(CART3), a turbine maintained by the National Renewable Energy Laboratory (NREL). The

paper is organized as follows. First, we present a brief overview of wind turbine mechanics.

We then review previous system identification work. Next, the problem formulation as sought

by multiobjective optimization is presented, followed by a description of the proposed ELGP

method. We then detail the wind turbine identification procedure and analyze results per-

taining to local and global models of the wind turbine. The paper concludes with a discussion

of the intelligibility of the identified models as they inform the physics of the process.

6.3 Wind Turbine Mechanics

Identification of wind turbine models is a difficult undertaking because of the many layers

of nonlinearity governing their behavior. Moreover, modern horizontal-axis wind turbines

(HAWTs) are controlled using variable-speed and variable-blade pitch operation, further

complicating the dynamics. Consider for instance the steady-state aerodynamic rotor torque

(QR) and thrust (TR) generated by the rotor operating in freestream wind speed V , defined

by:

QR =
1

2
ρπR3Cq(λ, β)V 2 (6.1)

TR =
1

2
ρπR2CT (λ, β)V 2 (6.2)

where the tip speed ratio λ = ΩR/V relates the rotor speed Ω to the wind speed V , ρ

is the air density, R is the rotor radius, β is the pitch angle of the blades (assumed pitching

collectively). Cq and CT are the torque and thrust coefficients, respectively, defining the

corresponding generated lift as functions of λ and β. The overall Cq is a function of local
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aerofoil drag and lift coefficients Cd and Cl, local incidence angle with the wind, φ, and local

tip speed ratio λr, defined by the strip theory calculation of Cq, as:

Cq = (8/λ3)

∫ λ

λh

sin2 φ(cosφ− λr sinφ)(sinφ+ λr cosφ)[1− Cd
Cl

cotφ]λ2
rdλr (6.3)

Because it is difficult to obtain the lift and drag coefficients at each position along the

blade due to small inconsistencies in fabrication and local shape deflections, they are often

estimated empirically [129]. The inaccuracy of estimated nonlinear coefficient surfaces Cq

and CT , compounded with the measurement uncertainty and stochasticity of V , impedes

prediction of the aerodynamic torque and thrust response of the system.

Control actions are limited to actuating the collective pitch β, the generator torque TG,

and the yaw angle ψ. Because of the highly nonlinear nature of the wind turbine behavior, a

pitch action of the same magnitude may result in very different aerodynamic forces depending

on the instantaneous wind speed and rotor speed, requiring the employment of gain scheduling

for pitch control [16]. In addition to aerodynamic nonlinearities, the turbine has low-frequency

periodic excitations induced by the rotating blades at once-per-revolution (1P) and thrice-

per-revolution (3P) that are normally within the same frequency range as the fore-aft (FA)

and side-side (SS) natural frequencies of the tower, requiring the added provision of avoiding

dynamic coupling between these excitations and that of the pitch control that affects Ω.

Similarly, the first mode of the wind turbine drivetrain can be excited by the generator torque

commands, so the generator control must account for this fundamental design objective as

well. From the above anecdotes it follows that an accurate model of the wind turbine is

essential for designing a reliable controller. This need for model accuracy motivates data-

based modeling approaches that can account for turbine-specific observations and provide

confident estimates of wind turbine behavior.

6.4 Related Work

Most system identification attempts at modeling wind turbines have focused on producing

linear time-invariant (LTI) models via ARMAX models [74, 75] or modified forms of closed-
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Figure 6.1. The wind turbine mechanics considered for identification.

loop subspace identification (SSID) [209, 208]. Although LTI models seem to be effective

in characterizing simulated wind turbine behavior at specific operating wind speeds [74, 75],

they provide only localized representation. As a remedy, SSID methods have been extended

to account for the time-varying, nonlinear dynamics of the wind turbines to form global

models. For example, Van der Veen [208] showed that Wiener and Hammerstein systems

could be used to identify global wind turbine dynamics by providing the model with the

nonlinear aerodynamic torque and thrust relations (Eqs. (6.1) and (6.2)), as well as the

surface functions for (Cp) and (CT ) that vary with the tip speed ratio λ and pitch angle β.

This approach, however, requires good knowledge of these two surface functions, which rely

on first principles. Another approach to global modeling associates the nonlinearities with

the azimuth angle of the rotor and uses a linear parameter-varying (LPV) model to conduct

closed-loop identification of the wind turbine dynamics [209]. In this case, the dynamics of

the turbine are assumed to vary periodically, so the matrices of the state space model are

defined in terms of the azimuth position of the rotor. This approach provides good predictions

of the hub moments at the rotor and tower top motion.
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The above approaches, albeit in ‘black-box’ form, are attractive because of their incorpora-

tion of expert knowledge in modeling some of the nonlinearities and for their accommodation

of control design. Ideally, however, the system identification approach has the flexibility to

work when the aerodynamic properties of the wind turbine and/or the sources of its nonlinear

behavior are not well-characterized. In addition, the methods above used special operating

conditions in which the input actions (e.g., β, TG) are perturbed in a pseudo-random binary

fashion to minimize the correlation of output and input noise in closed-loop operation. This

approach is problematic because it is not always possible for a control engineer to apply

excitation signals to the operating turbine, nor is it straightforward to persistently excite the

system adequately [74]. For this reason we focus our identification on normal operating data.

There have been some attempts to construct wind turbine models under similarly reduced

sets of assumptions, although most focused solely on power prediction, e.g., from wind mea-

surements [38] or from low resolution supervisory control and data acquisition (SCADA) data

[102, 101]. Kusiak [102] demonstrated that a neural network model and a controller designed

via evolutionary computation could improve simulated power output in below-rated condi-

tions. A drawback of this approach is that the models need to be periodically regenerated to

continue to perform well, suggesting an overfitting scenario. The method we propose differs

from typical data mining in that it precludes structural assumptions for the model and fo-

cuses on the derivation of simple, explicative models that are valuable for their intelligibility

in addition to their estimation capacity.

6.5 Problem Statement

Recall from §1.1 that in the search for the correct model form M∗, GP typically attempts

to solve the problem:

minimize f(M) subject to M ∈ S (6.4)

where S is the space of possible models M , and f denotes a minimized fitness function.

Typically, a single fitness function quantifies the difference between the target output y and a
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candidate output ŷ; however, there is often more than one objective to consider for evaluating

the model, in which case the problem becomes:

minimize fj(M), j = 1, . . . , J (6.5)

subject to M ∈ S

The multiple objective function f = [f1 ... fJ ] would ideally yield a set of nondominated

solutions M̃ = {M̃1 ... M̃n}, comprising the set of solutions that are Pareto-optimal in S,

where model dominance is defined as:

Definition: Model M1 dominates M2; i.e., (M1 ≺M2) if fj(M1) ≤ fj(M2) ∀j and fj(M1) <

fj(M2) for at least one j.

In lieu of an exhaustive search of S, the goal of EMO is to return a set of models M̂ as

close to the Pareto-optimal set M̃ as possible. It may be easier to represent an arbitrary set of

data by a complex model, but it is more difficult to understand and generalize the information

content of such a model. Therefore, the solutions from the search must provide a balanced

trade-off between accuracy and complexity. Population-based optimization methods like GP

are well-suited to address the conflicting objectives of accuracy and conciseness because the

solution set M̂ offers multiple candidate models for approximating M̃. In the following section

we describe a recent symbolic regression method designed to address such a trade-off that is

used to conduct the identification of the wind turbine models in this paper.

6.6 Proposed Method

We use the ELGP algorithm described in Ch. 3 as the identification method for this task.

To put the focus more strongly on intelligibility for this application, complexity is explicitly

used as an objective for identifying models. The follow section describes the objectives used

to guide search.
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6.6.1 Evolutionary Multiobjective Optimization

We use three objectives to drive evolutionary pressure during optimization: variance

accounted for (VAF), model complexity, and the age of the program in the population. The

first two objectives are designed to achieve model accuracy and simplicity. The third objective

is used to prevent premature convergence. The three objectives are described in more detail

below.

• VAF: We assess the accuracy of each candidate program i using the VAF metric, which

characterizes the normalized variance of the prediction error as:

VAF (i) = max

(
0,

1− var(y − ŷ)

var(y)

)
× 100 (6.6)

Equation (6.6) is transformed into a minimized objective function as fV AF (i) = 1 −

V AF (i) /100.

• Model Complexity: There are several ways to represent the complexity of a model.

For example, one can count the number of nodes in the parse tree, or calculate the

order of a Chebyshev polynomial fit to the model’s output [211]. Here, we account for

model complexity by assigning component function nonlinearities to genotype compo-

nents [190]. Given the following active genotype ga =

[
ga1 ... ga`

]
for program i,

the complexity C(i) is defined as:

C(i) =
∑̀

q=1

c(gaq) (6.7)

with the component function nonlinearities defined as:

c(ga) =





4 : (ga = log) ∨ (ga = exp)

3 : (ga = sin) ∨ (ga = cos)

2 : (ga = /)

1 : otherwise

(6.8)
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• Age: Age was originally proposed as a way to layer populations during evolution [66]

and later proposed as an objective in a multiobjective scheme [178]. The age of a

model in the population is the number of generations since its oldest ancestor was

created. To create age stratification, we introduce a new individual with age 0 to the

population each generation. The use of age as an objective protects younger models

from being dominated by older ones that are more fit and/or less complex. Furthermore,

because younger individuals dominate older ones that may be otherwise equivalent, the

introduction of age as an objective pressures the models to improve in fitness and/or

complexity with increasing generations, which helps avoid premature convergence.

We implement age-fitness Pareto optimization (see §3.6.1) as the evolutionary algorithm for

identification. In addition, it is important to guarantee that all solutions that are succinct

and accurate are saved during optimization. With this in mind, an archive is kept updated

each generation that contains all nondominated individuals according to only the metrics of

VAF and model complexity. This archive provides the solutions that are explored later in

this paper.

6.7 System Identification of CART3

The proposed method is evaluated in application to experimental data from the CART3

system. NREL’s CART3 is instrumented with numerous sensors to make the identification of

various system models possible. The nature of experimental data available from this system,

including its instrumentation, data collection procedure, and control system, is described

first. We then describe the settings used for ELGP, including general and problem-specific

settings, followed by the types of models considered for identification. We also utilize other

system identification approaches to benchmark the ELGP results.

6.7.1 CART3 System

The CART3 is a 600 kW wind turbine, down-rated to 550 kW, that acts as a test bed

for field research at the National Wind Technology Center. It is a three-bladed machine that

127



operates with collective pitch and variable speed control. The CART3 has been instrumented

extensively [45] so that data-driven models of the turbine can be established. Among the

variables measured are the generator speed ω, rotor speed Ω, pitch action β, generator torque

command TG, tower top acceleration in the fore-aft (ẍFA) and side-side (ẍSS) directions, tower

moments in the fore-aft (MFA) and side-side (MSS) directions, and measured power P , as

shown in Fig. 6.1. In addition, an estimate of V is obtained from a meteorological tower

located upwind of the turbine. Wind measurements are notoriously uncertain and although

methods exist to obtain a better estimate of V [208], they assume good knowledge of CT and

rotor inertia, which are assumed unknowable in our modeling exercise.

To understand the experimental results obtained from the CART3, the controllers used

by this system [16, 219] are briefly reviewed. The system consists of separate torque and

pitch controllers. At wind speeds below rated-power conditions and above cut-in (Region 2

in Fig. 6.2), the blade pitch β is held constant at an estimated optimum while the generator

torque TG is adjusted proportionately to ω2 to achieve a theoretical maximum power coef-

ficient CP . Conversely, at wind speeds above rated-power conditions (Region 3 in Fig. 6.2),

TG is held constant and the blade pitch β is adjusted by a proportional plus integral (PI)

controller to maintain the reference generator speed at the rated power. As such, both

closed-loops rely on the accuracy of the model representing the generator speed ω in terms

of the corresponding control effort, as the sole input to both systems. In addition to con-

trolled adjustments, β demand is filtered at the tower’s first FA and SS modal frequencies to

avoid excitation and TG is filtered to add damping to the drivetrain’s first torsional natural

frequency. Although the control system is equipped to measure ẍFA and ẍSS for damping

tower acceleration by adjusting β [45, 16], this control strategy was not used during these

experiments.

6.7.2 Identification Procedure

For system identification, we used operating data from 14 different 5 minute operating

periods. The data were collected at 400 Hz and down-sampled to 20 Hz before system

identification. The data corresponded to normal operating conditions associated with wind
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Figure 6.2. Mean wind speeds for the 5 minute data sets that comprise the training and
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speeds ranging from 2.2 to 25.4 m/s, as shown in Fig. 6.2, including several start-up and

shutdown events. We performed local model identification on each data set separately as well

as global identification on the entire combined set (70 minutes of data). During identification,

30% of the data were chosen randomly from the set to be withheld for validation.

Models were obtained for ω, Ω, MFA, MSS , and P using ELGP with the settings shown

in Table 6.1. We considered three types of models: static models (SMs), in the form of

M(u,Θ), first-order discrete-time models (DTMs), in the form of M(ŷ(tk − 1),u(tk),u(tk −

1),Θ), and first-order DTMs for one-step look-ahead predictions (DTM-LAs), in the form

of M(y(tk − 1),u(tk),u(tk − 1),Θ). The main difference between DTM and DTM-LA forms

is their reliance on past predictions versus experimental data. As such, DTMs evaluate the

effectiveness of ELGP in a simulation-based environment, in which the output is generated

entirely according to the past estimated outputs, whereas DTM-LAs evaluate the scenario of

the outputs estimated according to the past values of the measured outputs. The constant

values Θ were initialized as ephemeral random constants [93] picked uniform-randomly from

the range [−10, 10]. They were then optimized across the population each generation using a

stochastic hill climbing algorithm [15]. The hill climber perturbed all constant values in the

active genotype by Gaussian noise with a standard deviation equal to 10% of the value of
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Table 6.1. Symbolic regression settings.

Setting Value

Population size 2400
Crossover/Mutation 80/20%
Program length lim-
its

[10, 100]

Ephemeral random
constant range

[-10,10]

Termination crite-
rion

2e12 (local) / 1e13 (global) gene evaluations

Function set {+,−,∗,/,sin,cos,exp,log}

Output Dependent variables

Ω {V , β, TG, t}
ω {V , β, TG, t}
MFA {V , β, TG, t, λ, ẍFA, ẍSS }
MSS {V , β, TG, t, λ, ẍFA, ẍSS , ψ }
P {V , β, TG, ω }

the constant. These changes were kept if they resulted in a lower fVAF for the individual. To

prevent the search from focusing on constant optimization, and considering the insensitivity

of the fitness metric fVAF to linear transformations of the model output, the variables and

outputs were scaled prior to adaptation, for example by rated torque, rated power, or cut-out

wind speed.

A key advantage of symbolic regression is feature selection: the ability to select the vari-

ables to be considered in the model. We expect this feature to be instrumental in delivering

parsimonious model forms that more clearly relate process inputs to model outputs as com-

pared to the traditional system identification methods that are void of this capacity. In this

regard, the models produced for global identification were compared to several model types

obtained in the form of multiple regression, 20th-order auto-regressive exogenous (ARX) mod-

els, and nonlinear ARX neural networks (NARX-NN). The NARX-NN contained 10 hidden

layers and the weights were trained using back-propagation with the Levenberg-Marquardt

algorithm.

6.8 Results

The performance of the identified local models by ELGP is summarized in Table 6.2. The

results correspond to the final model with the maximum VAF from training. The results
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indicate that the accuracy of the models of Ω, ω, and P is excellent in all cases except for

V̄ = 18.0 m/s, where the response of the system was flat (i.e., var(Ω) < 5e-4), obscuring the

dynamics. The DTM model has a better performance for this case. The other two models,

MFA and MSS , produce generally accurate outputs, but not as accurate as the other three

models. For illustration purposes, the outputs of these two models are compared to their

counterparts in the test data in Figs. 6.3 and 6.4 in both time and frequency domains. The

results indicate that the peak frequencies are captured by the model, including the first tower

FA bending mode at ≈ 0.88 Hz. As to model formulations, the DTM forms are slightly more

accurate than the SM form for Ω, ω, and P but are similar for the other cases. The overall

accuracy of SM and DTM is significantly different only in representing P on training data,

according to a Wilcoxon rank sum test (p = .041).

The performance of global models is summarized in Table 6.3, where their accuracy is

compared with other models commonly reported in the literature. Specifically, the accuracy

of SM and DTM forms is compared to that of models in the form of multiple regression

and 20th order ARX models. The accuracy of the DTM-LA form is compared to that of a

NARX-NN. The results in Table 6.3 indicate excellent accuracy of the models of Ω, ω, and

P obtained by ELGP, and the lower accuracy of the models of MFA and MSS , as was also

observed with the local models in Table 6.2. As with the local models, a comparison of the

outputs of these models to data in both time and frequency domains, shown in Figs. 6.5

and 6.6, indicates accurate representation of low-order dynamics and the peak frequencies.

The results in Table 6.2 also indicate the better accuracy of the SM and DTM models

generated by ELGP than that of the linear regression or the ARX model forms. The accuracy

difference is particularly pronounced in the MFA and MSS models as represented by the 45-

50% higher VAF values and the models of Ω and ω as characterized by the higher VAF values

of approximately 10-28%. As to the performance of the DTM-LA form, which is compared

to that of a NARX-NN, the tower moment predictions, MFA and MSS , are significantly

better than those of SM and DTM by both methods. Although ELGP and NARX-NN show
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Figure 6.4. SM MSS model (blue) with
training and validation data (red) at V̄ =
16.0 m/s

nearly identical prediction capability in all cases, they differ in transparency (intelligibility),

as discussed next.

6.8.1 Model Interpretation

ELGP maintains an archive of solutions that are nondominated with respect to the objec-

tives of fitness and complexity during identification for the purpose of providing less complex

and possibly more general alternatives to the best training solutions. Previous research has

suggested that models with physical insight normally reside along the edges of the Pareto

set, where a small increase in complexity could result in large improvement in estimation ac-

curacy [177]. We observe this phenomenon in our results, as shown in several of the archives

in Figs. 6.7 - 6.10, with “n” being a placeholder for all constants.

6.8.1.1 Local Models

We find that the low complexity models in the archives often identify basic relations in the

closed-loop system. For example, consider the local models created by ELGP as illustrated

in Figs. 6.7– 6.9, which show the models on the Pareto front of the archives. The first figure,

Fig. 6.7, corresponds to the models of ω in SM form in below-rated operating conditions

where the torque control strategy is TG = kω2. Low-complexity solutions include ω = n
TG

,
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Table 6.2. [Performance of local models] Performance of local models generated by ELGP
using SM and DTM model formulations. Results are categorized by the mean wind speed
(V̄ ) of the corresponding 5 minute data set.

Training/Validation VAF (%)

V̄ (m/s) Ω ω MFA MSS P

SM

4.5 m/s 99.3 / 99.2 99.4 / 99.4 97.5 / 97.3 95.1 / 94.5 99.8 / 99.7

7.1 m/s 97.0 / 96.9 98.0 / 97.9 80.4 / 79.1 86.6 / 85.4 99.9 / 99.9

7.9 m/s 99.9 / 99.9 99.8 / 99.8 80.2 / 79.1 85.8 / 85.6 100.0 / 100.0

8.9 m/s 99.9 / 99.9 99.8 / 99.8 90.5 / 90.3 89.9 / 89.3 100.0 / 100.0

9.5 m/s 99.6 / 99.6 99.3 / 99.3 83.8 / 83.7 81.9 / 81.1 99.8 / 99.8

10.6 m/s 99.8 / 99.9 99.7 / 99.7 91.3 / 90.9 87.8 / 87.7 99.8 / 99.8

10.9 m/s 99.7 / 99.7 99.7 / 99.6 92.0 / 92.0 82.7 / 82.7 99.8 / 99.8

12.3 m/s 98.6 / 98.5 98.1 / 98.0 79.0 / 78.9 73.2 / 71.8 99.4 / 99.4

14.2 m/s 99.9 / 99.8 99.8 / 99.8 95.9 / 95.9 73.2 / 73.4 99.8 / 99.8

16.0 m/s 99.1 / 99.1 99.0 / 99.1 94.2 / 94.2 85.0 / 83.5 99.9 / 99.9

16.3 m/s 97.8 / 97.8 97.1 / 97.0 71.8 / 71.0 82.7 / 82.6 99.6 / 99.5

17.0 m/s 99.6 / 99.6 99.5 / 99.5 83.3 / 83.0 83.8 / 83.6 99.9 / 99.9

18.0 m/s 18.2 / 17.0 21.8 / 22.3 52.7 / 51.0 70.2 / 70.8 72.3 / 72.4

18.9 m/s 99.9 / 99.9 99.9 / 99.9 92.3 / 92.7 96.6 / 97.0 100.0 / 100.0

DTM

4.5 m/s 99.4 / 99.4 99.4 / 99.3 97.6 / 97.4 95.3 / 95.3 99.8 / 99.8

7.1 m/s 99.2 / 99.2 99.4 / 99.3 80.8 / 80.9 93.2 / 92.1 99.9 / 99.9

7.9 m/s 100.0 / 100.0 100.0 / 100.0 88.2 / 89.1 92.3 / 92.0 100.0 / 100.0

8.9 m/s 100.0 / 100.0 100.0 / 100.0 97.1 / 96.9 95.9 / 96.0 100.0 / 100.0

9.5 m/s 99.8 / 99.8 99.7 / 99.7 91.3 / 90.2 85.6 / 85.1 99.9 / 99.9

10.6 m/s 99.9 / 99.8 99.8 / 99.7 92.3 / 92.7 90.4 / 89.5 100.0 / 100.0

10.9 m/s 99.8 / 99.8 99.6 / 99.6 91.7 / 90.8 87.0 / 86.8 100.0 / 100.0

12.3 m/s 98.8 / 98.8 98.3 / 98.3 80.8 / 79.7 81.4 / 81.0 99.8 / 99.8

14.2 m/s 99.8 / 99.8 99.9 / 99.9 95.9 / 96.0 76.7 / 76.5 99.9 / 99.9

16.0 m/s 99.1 / 99.0 99.1 / 99.0 94.2 / 93.8 86.5 / 86.6 100.0 / 100.0

16.3 m/s 97.9 / 98.1 97.1 / 97.6 73.4 / 74.3 86.1 / 83.6 99.9 / 99.9

17.0 m/s 99.5 / 99.5 99.5 / 99.5 85.3 / 85.8 86.2 / 86.5 100.0 / 99.8

18.0 m/s 90.0 / 63.8 81.5 / 56.1 61.1 / 60.1 78.5 / 77.4 76.4 / 78.1

18.9 m/s 100.0 / 99.9 99.9 / 99.9 91.9 / 91.1 97.3 / 96.8 100.0 / 100.0

Table 6.3. Comparison of global models generated by ELGP (SM, DTM, DTM-LA), two lin-
ear system identification methods (multiple regression, ARX), and a neural network (NARX-
NN). The one-step prediction models (DTM-LA and NARX-NN) are grouped on the right.
The best method for each case is in bold.

Training/Validation VAF (%)

SM DTM Multiple Regression 20th-order ARX DTM-LA NARX-NN

Ω 98.4 / 96.9 98.7 / 98.7 91.9 / 91.9 71.0 / 71.0 100.0 / 99.9 99.9 / 99.8

ω 97.8 / 98.4 98.6 / 98.6 92.0 / 91.9 69.0 / 69.0 100.0 / 99.9 99.9 / 99.8

MFA 76.0 / 76.1 74.2 / 74.4 31.5 / 32.2 25.6 / 25.6 98.7 / 94.9 98.6 / 94.9

MSS 69.5 / 69.6 72.7 / 72.2 19.6 / 20.4 0.0 / 0.0 97.6 / 89.9 97.3 / 90.6

P 99.9 / 99.9 99.9 / 99.9 99.7 / 99.7 99.6 / 99.6 - / - - / -
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DTM-LA MFA model (blue) and com-
bined training and validation data (red).

which is the analytical solution to the power law P = ωTG when P is constant, and ω =

(n−TG)TG = nTG−T 2
G, which in the absence of square root or exponent operators, bears some

resemblance to the Taylor series approximation for square root: as
√

1 + x ≈ 1 + 1
2x − 1

8x
2,

characterizing the relationship ω = n
√
TG. The basic closed-loop relationship between ω and

β is also identified in DTM form in above-rated operation, as shown in Figure 6.8; in this

case, a low-complexity model on the edge of the Pareto set is ωk = n(ωk−1 + (β − βk−1)),

which describes the proportional control effort of β with respect to ω and generalizes better

than more complex models. The archives of local power models also contain process physics,

as shown in Figure 6.9. The relation P = ωTG occupies the elbow of the curve, with slight

variations of this increasing model accuracy at the cost of complexity. An interesting solution

scales the power law by a nonlinear function of the wind disturbance: P = ωTG/ sin(eV/n).

We are able to draw two main insights from the local model archives. First, the feature

selection property of GP results in local models that describe the local closed-loop system

without inactive control input variables. This is evident in the comparison of the below-rated

models of ω (Figure 6.7) that depend mostly on TG and the above-rated models (Figure 6.8)

that depend mostly on β. Second, the appearance of the control strategies in the low-
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complexity models of the archive indicates that the closed-loop dynamics exhibited by the

wind turbine are in some cases heavily defined by the controller behavior.
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els of ω at V̄ = 18.0 m/s.

6.8.1.2 Global Models

Performing the model search globally has the advantage of testing candidate models across

control regimes that vary in their relation to the turbine behavior; this may help distinguish

the behavior of the wind turbine from the changing relations governing the inputs. Indeed,

we find that the global DTM and DTM-LA models are generally more dependent on several

inputs, including their previous outputs and V , which indicates that the behavior of the plant

is more uniquely identified. For example, Figure 6.10 shows the Pareto archive of Ω from

global identification. The final model shown is a nonlinear function of Vk−1, βk−1, TGk−1
, and

Ωk−1. It contains the same term sin(eV/n) found in the local power models, suggesting that

this may be a concise way for models to represent the nonlinear response of outputs to V .

The global identification of P converges within eight generations on the power law, P =

ωTG, which remains the most accurate global model found of any complexity. Interestingly,
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the success of the linear predictions of P in Table 6.3 can be understood using the archive

of global P solutions that contains only two nondominated solutions: P = nTG and P =

nTGωn. Hence, the ELGP archive contains a linear model of power based on TG that has

approximately the same VAF value as the linear models (99.2%). Note that the ELGP models

are more parsimonious than those generated by the linear methods due to feature selection.

The results in Table 6.3 show that the ELGP method is able to produce one-step look-

ahead models that are as accurate as those produced by a black-box neural network model.

Compared to the NARX-NN models that are undecipherable, those generated by ELGP are

quite succinct:

Ω̃k = Ω̃k−1 − sin(
n1

t
) sin

(
n2Ṽk−1T̃Gk−1

Ω̃k−1(βk−1 + n3)

)
(6.9)

M̃FAk = M̃FAk−1
+ n1 sin(T̃G)(˜̈xFA − ˜̈xFAk−1

)/Ṽ (6.10)

M̃SSk = M̃SSk−1
+ n1 sin(n2ψ)(˜̈xFA − ˜̈xFAk−1

) (6.11)

Note that (̃·) denotes the scaled variables. In each case the model consists of the sum-

mation of the previous output and a compact nonlinear function. For the tower moment

cases, the nonlinear component contains the change in fore-aft acceleration of the tower top

(˜̈xFA − ˜̈xFAk−1
= ∆˜̈xFA ), which is an intuitive result. Interestingly, the model for MSS

decomposes ∆˜̈xFA into its side-side component using the yaw angle, i.e., sin(n3ψ), rather

than using the measurement of ẍSS . This may indicate that ẍFA is more reliably measured

than ẍSS .

6.9 Discussion

The local and global models obtained by ELGP using EMO demonstrate the potential for

the succinct resultant models to enhance the understanding of the characteristics observed

from a process. We have shown that the models are transparent enough to link process

estimation to understandable model components (Eqns. (6.9–6.11)) and accurate enough to
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V̄ = 7.1 m/s.
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Figure 6.10. DTM Pareto archive of
global models of Ω.

shed light on the characteristics of the closed-loop behavior of the system. Furthermore,

by studying the archive we are able to see how specific increases in complexity affect the

model’s estimation capacity. In general, the models do not suffer from overfitting (with some

exceptions, e.g., Figure 6.8 and the DTM-LA tower moment models). This may be due to

the way in which the validation set is chosen or be a property of the model forms that are

discovered.

The produced models hold a utility beyond the drawing of insight into the process that

is modeled. There is clearly a need for high-fidelity local models of wind turbines for control

design [9]. The models can be used directly in a model predictive control system, or linear

models of the wind turbine at different wind speeds can be derived if the control design

process requires them. These models could be generated from the global nonlinear models by

several approaches. One approach is to linearize the model forms analytically; another is to

build auto-regressive models from the output of the nonlinear model in quasi-linear operating

regimes. Deriving the linear models directly from the predicted output of the model may

provide more flexibility in choosing the structure of the linear model. Even the static models

may be utilized as a target for the transformation to a set of local linear dynamic models.
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A direct comparison to previous CART3 identification results is difficult given the dif-

ference in operating conditions and assumptions, although the results here compare well to

those previously published [207] that use perturbance injection. It is likely that the results

could be further improved if persistent excitation signals were used or the model formulations

were higher than first order. However, we have shown that accurate models can be obtained

even with the limited experimental setup we employ. We have chosen to use these restrictions

to make the results relevant to data collected from wind turbines during regular operation,

which is far more common, and requires less expertise to obtain. The limited assumptions

regarding the aerodynamic properties of the turbine broadens the applicability of the work

to poorly characterized turbines as well. In terms of computation time, this approach is more

efficient than standard GP but incurs a higher cost than linear methods. Typical runs over

the global data for DTM model training require several hours to converge. Fitness estimation

methods [175] can assist in scaling as the dimensionality of the data set increases.

6.10 Conclusion

In this work we use a novel symbolic regression system in an evolutionary multiobjective

optimization framework to identify compact models of a wind turbine from operating data

with minor assumptions. The models are not only accurate, but succinct and intuitive, and

have been shown to embody process knowledge in several instances. This method of system

identification may be a promising middle ground between conducting computationally expen-

sive physics simulations and using black-box models since the models evaluate quickly while

still capturing the intelligible system behavior. In the future we plan to fully characterize how

the sets of assumptions about the aerodynamic properties of the turbine and the operating

conditions change the fidelity of the identified models.

As wind turbines continue to grow in size and flexibility and begin to move offshore onto

floating platforms, we expect data-based modeling of wind turbine behavior to become an

even more integral part of the design and research processes. The use of intelligible modeling

methods can help catalyze expert knowledge of turbine behavior in response to combined
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wind and wave loading. Even small gains in power capture of utility-scale wind farms can

result in large financial gains, and therefore it is crucial to improve the power capture as well

as the lifetime and maintenance of these machines. For this reason, we expect that data-

based approaches such as this one are key to continuing the success of wind energy technology

worldwide.
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CHAPTER 7

AGENT-BASED DYNAMIC MODELING OF BALD EAGLES NEAR
WIND FARMS

7.1 Summary

This chapter considers the identification of dynamic behavior models of bald eagles that

combine multiclass classification and regression. Several machine learning approaches are

considered in addition to M4GP and ELGP, as defined in Chs. 3 and 4, respectively. The

data set consists of time series measurements of bald eagle locations in Maine, in addition

to features based on proximity to geographic features that may affect their observed decision

making. We find accurate models to predict bald eagle behavior based on previous time-steps

using M4GP as well as decision tree classification. The task of accurately predicting flight

length and direction remains unattainable with respect to the current methodology.
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7.2 Introduction

Bald eagles (haliaeetus leucocephalus) are the national bird of the United States, and are

considered a culturally and nationally important species. Maine is home to a large bald eagle

population (see Figure 7.1), and is also a critical renewable energy state in the Northeast due

to its strong wind resource. Because bald eagle behavior is not well understood, regulation

governing the sitings of new wind farms fails to address the impact on this species in an

informed way. To improve this understanding, researchers in the Ecological Conservation

department at UMass are collecting data from bald eagles in Maine by instrumenting them

with GPS sensors that provide location information every 15 minutes in real time. The

goal of project is to model the behavior of these birds, especially in response to man-made

and natural geographic features, so that regulatory decisions can be better informed. These

models must be interpretable so as to inform researchers and policy makers in the field.

To simulate the temporal (i.e. causal) behavior of bald eagles, dynamic models are re-

quired. Dynamic models make predictions sequentially based on information from previous

states; this previous information may come from previous model predictions in fully virtual

environments, or may come from previous measured states, as I assume in this paper. I

use dynamic modeling formulations of several machine learning (ML) methods in this work,

including Näıve Bayes, LASSO, decision trees (DT) and genetic programming (GP), detailed

in §7.4. Models are created both to classify bald eagle behavior and predict their movement,

as shown in §7.6 and discussed in §7.7. The results suggest DT- and GP- based models are

able to learn accurate behavior classifiers that are human-readable. For the task of predicting

bird movement, however, the methods tested fail to produce dynamic models that correlate

well with test data. Among the dynamic modeling methods, LASSO and the GP methods

produce similar results, whereas the DT method makes uncorrelated predictions on the test

set.
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7.3 Related Work

Dynamic models are actively studied for system identification in engineering applica-

tions [121, 12] and are the basis of most model-predictive control systems [4]. Auto-regressive

forms of some ML algorithms have been proposed [12], including dynamic bayesian net-

works [142] and autoregressive decision trees [135] which are used here. Murphy [144] showed

that dynamic bayesian networks generalize hidden Markov models and Kalman filter models

by relaxing some assumptions of those methods. It should be noted that the dynamic formu-

lation of Lasso matches the auto-regressive exogenous input (ARX) model form [121] except

for the `1 regularization penalty.

The application of these modeling techniques to bald eagle behavior is novel, although

agent-based models of birds have been proposed. For example Abden [1] modelled the move-

ment of Afrotropical forest birds using a stochastic movement simulator customized to match

field observations. Machine learning, specifically DTs, have been used in other areas of avian

ecology: for example Massey [131] used DTs to classify the nesting habitat of Norther Har-

riers.

7.4 Data Set

The current data set consists of 37340 samples (N1) collected from 17 birds, with 25

features measured at each time step, including latitude, longitude, and altitude, distance

to various landscape features such as water, and distance to nest and other eagles. For

the purposes of modeling, the feature vector x ∈ RD is reduced to the following 10 relevant

attributes: step length; turn angle; direction to nest; distance to nearest eagle; home distance;

distance to edge of territory; distance to nearest body of water; direction to nearest body of

water; altitude; and land cover classification. In addition, experts in the field have labeled

the behavior of these birds into 4 categories: perch (the bird sitting in a tree), flight (typical

for foraging), nest (the bird sitting in its home tree), and cruise (a territorial flying behavior

at high altitude). The goal of the project is to build a model that predicts not only which

behavior the eagle will exhibit, but, in the case of mobile behaviors (flight and cruise), where
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Figure 7.1. Bald eagle nest locations
recorded in Maine.

Figure 7.2. GPS locations of a single bald
eagle in the data set.

the bird will fly in terms of flight distance (step length) and direction (turn angle). 2420

samples (N2) include mobile behaviors. A key assumption of this system is that the eagle

makes decisions based on k previous states (i.e. memory).

7.5 Proposed Solution

The problem can be formulated as a two-stage modeling challenge: the first stage is to

appropriately predict the eagle behaviors yc ∈ C = {perch, flight, nest, cruise} via a

kth-order dynamic function

f
(
xi−1, . . . ,xi−k, y

c
i−1, . . . , y

c
i−k
)

: RD1 → C

trained on the labeled set Dc = {(xi, yci )}Ni=1, where yci−1 is the class of the previous timestep.

The second stage is to find two real-valued, kth-order dynamic functions representing step

length, ys, and turn angle, ya, of the form

f
(
xj−1, . . . ,xj−k, y

s
j−1, . . . , y

s
j−k, y

a
j−1, . . . , y

a
j−k
)

: RD2 → R
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that predict the planar movements of the eagles when flying or cruising, i.e. from the training

sets Ds = {(xj , ysj )|ycj = cruise ∨ flight}N2
j=1 and Da = {(xj , yaj )|ycj = cruise ∨ flight}N2

j=1.

In these experiments, first-order dynamic systems are considered, i.e. k = 1. For sim-

plicity, I denote the generic feature vector constructed from a single previous timestep’s

measurements and output as x̃, such that x̃i = [xi−1 yi−1]. In the case of classification, x̃

has D1 dimensions; for regression of step length and turn angle, x̃ has D2 dimensions.

In order to normalize for the largely different scaling of the measurement data, the raw

data was pre-processed using standard scaling techniques: real-valued features were nor-

malized to 0 mean, unit variance, and categorical data (land cover) and class labels were

normalized to integers.

7.5.1 Analysis of feature space

As a first step in exploratory analysis, the natural structure of the feature space is studied

using k-means clustering. The number of clusters and their locations are compared to the

class labels in order to determine 1) whether the class labels assigned by the researchers

have well-formed boundaries in the feature space and 2) whether the number of behavior

classifications match the natural clusters. k-means is a coordinate descent method that relies

on updating the cluster assignments of the data cases and centroids of the clusters in two

distinct steps. To begin, k centroids µ are initialized, and then the following two steps are

repeated:

1. update zi, the cluster assignment of sample x̃i, as zi = argmink ||µk − x̃i||22

2. update the cluster centroids based on the new assignments as µk =
∑N
i=1 [zi=k]x̃i∑N
i=1 [zi=k]

Steps 1. and 2. are repeated until convergence. I selected k-means for its compact rep-

resentation of clusters and its low computational complexity (O(TNDK) for T iterations)

compared to other methods. It has the guarantee of non-increasing iterative updates to its

objective function, defined as
K∑

k=1

1

|Ck|
∑

x∈Ck

||x− µk||22 (7.1)
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where Ck defines a cluster k. I use k-means++ initialization, which initializes centroids to

the data points furthest apart. To find the natural number of clusters in the data, k is varied

from 2 to 9 and the average silhouette score of the resulting clusters is calculated, such that

the optimal number of clusters can be chosen via the elbow method.

7.5.2 Classification of bald eagle behavior

7.5.2.0.1 Decision Tree Classification DT classification makes predictions using a

conjunction of rules into a binary tree structure. Beginning with all the training dat at the

root, internal nodes of the tree split data according to greedily computed threshold values

on single features, and a given leaf predicts the dominant class of the subset of D that

reaches that leaf when routed through the tree. DTs are chosen for their legibility, as well as

their ability to make non-linear predictions and also balance bias and variance by tuning the

maximum tree depth. DTs also implicitly conduct feature selection by choosing features for

splits based on subsets of D. However, as a weakness, it only makes axis-aligned distinctions

in the data, which can be slow for non-axis aligned case splits. The hyperparameters of max

depth ([2:5]), split type ([best, random]) and split criteria ([gini,entropy]) are tested.

7.5.2.0.2 Näıve Bayes NB is an approximation of the Bayes optimal classifier that as-

sumes all data dimensions are independent and follow a chosen distribution, in this case

Gaussian. The first order dynamic NB classifier assigns labels according to the maximum

probability of a class label given the previous state, P (Y = c|X = x), according to (a

non-normalized) Bayes rule, as

fNB(x̃) = argmax
c∈C

(yi = c|x̃) = argmax
c∈C

πcφc(x̃d)

where πc = P (yi = c) and φc is the probability of observing xi−1 and yi−1 succeeded by

behavior c. By assuming independence of features, φc can be modelled as the product of

independent distributions φcd, as φc(x̃) =
∏D1
d=1 φcd(x̃d). NB relies on the user to specify the

distribution to use for φcd, which is the Gaussian distribution here. The learned parameters

are the mean and variance of each attribute.
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7.5.2.0.3 Multidimensional Genetic Programming Multidimensional genetic pro-

gramming [188, 140] searches for feature transformations and succinct model forms using a

variant of genetic programming (GP) [93]. The goal is to to find a set of transformations

Φ(x̃) : RD → Rp that project x̃ into a p-dimensional space in which the samples are more eas-

ily classified according to their distribution distances. The GP system optimizes the following

problem:

Φ∗(x̃) = arg max
Φ∈S

F1 (Φ,D) ; F1 =

|C|∑

`

2
precision` · recall`
precision` + recall`

(7.2)

where S is the space of possible transformations, Φ. The F1 measure (used here as the GP

fitness function) defines classifier accuracy in terms of precision precision ( TP
TP+FP ) and recall

( TP
TP+FN ), where TP are true positive classifications, FP are false positives, and FN are false

negatives. Φ is a set of syntax trees consiting of mathematical building blocks and features,

optimized via genetic programming operations (selection and variation). To classify a sample,

D is partitioned according to its class labels into matrices {X̃1 . . . , X̃|C|} and the minimum

distance of Φ(x̃) to each transformed subset determines the class assignment, i.e.

ŷ(Φ(x̃)) = cj , if j = arg
|C|

min
`=1

d
(

Φ(x̃),Φ(X̃`)
)

(7.3)

The Mahalanobis distance is used for d. The implementation considered for this project1

incorporates advanced parent selection techniques and is known as M4GP [108]. The main

hyperparameters for M4GP are the population size ([100, 500]) and the maximum size of the

programs representing Φ, in terms of numbers of nodes ([20, 50]).

7.5.3 Prediction of bald eagle movement

7.5.3.0.4 Decision Tree Regression DT regression is very similar to DT for classifi-

cation (§7.5.2.0.1), except that the leaves predict the mean of y among the subset of cases

routed to that leaf. Node thresholds are chosen by greedily minimizing the variance of the

1code available for M4GP and ELGP are available from http://github.com/lacava/ellen
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outputs of the subsets created by splitting D at the threshold value. The hyperparameters

of max depth ([2:11]) and split type ([best, random]) are tested.

7.5.3.0.5 Lasso Lasso is a linear regression method that adds an `1 regularization penalty

to the loss function, as:

w∗ = argmin
w

N∑

i=1

(yi − ŷi)2 + α||w||1

Here, ŷ = wT x̃ is the prediction of f(x̃) on D. The strength of Lasso is that the `1 regulariza-

tion implicitly conducts feature selection by pressuring coefficients to be zero. It is also fast:

the hyperparameter of Lasso is α, but actually the full regularization path (i.e. the value

of α that produces the best result) can be computed efficiently using least-angle regression

(LARS), in which features are incrementally added to the model based on their angle with

respect to the current residual. I used LassoLarsCV to automatically tune α.

7.5.3.0.6 ELGP Epigenetic linear genetic programming is a method proposed for system

identification [107, 105] that optimizes a population of programs that represent models of

the system using fitness-proportionate selection and bio-inspired search operators. Unlike

traditional GP approaches, ELGP uses a unique stack-based representation with epigenetic

markers (on/off conditions) on each node in the programs that are optimized each generation

via stochastic hill climbing. Like M4GP (§7.5.2.0.3), the main hyperparameters are the

population size ([100, 500, 100]) and the maximum program size ([10, 20]).

7.6 Experiments and Results

5 clusters were found to maximize the average silhouette score using k-means, compared

to 4 classes assigned to behavior by the researchers. I find that one of the k-means clusters

does have very few data samples (not shown here), suggesting that 4 clusters cover most of

the data cases. The 5 cluster centers are plotted along the first two principal component

axes (the directions of maximum variance in the data set) in Figure 7.3. The data is colored

according to its class label. Although the k-means cluster centers are well separated along

the axes of highest variance, and 4 cluster centers appear to cover most of the data, it is clear
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that the principal variance directions in the data do not correspond to the class labels of the

data, which are heavily mixed along the axes.

The data was divided 50/50 into training and test sets. The hyperparameters of the

models from the scikitlearn implementations were optimized using 5-fold cross validation

over the sets of hyperparameters defined in §7.5. The GP methods (M4GP and ELGP) were

optimized using 5-sample random resampling and test. The best hyperparameters for each

method were then used to train the final models on the entire training set. These models

then were used to predict the labels and outputs for the test set. Classification accuracy is

compared in terms of the F1 measure (Eq. (7.2)); regression accuracy is compared in terms

of the coefficient of determination, R2.

Figures 7.5 - 7.7 show the accuracy of the studied methods. Figure 7.5 shows that DT

(F1 = 0.882) and M4GP (F1 = 0.873) generate similarly accurate predictions of bald eagle

behavior, and NB produces a less accurate model (F1 = 0.6988). The cross-validated DT

model has a depth of 3, rendering a legible model shown in Figure 7.4. In comparison,

M4GP produces a model with 6 feature transformations of less than 3 nodes using 3 features.

Figures 7.6 and 7.7 show the relatively low accuracy of the regression models for predicting

bald eagle movement (R2 < 0.2, 0.002). The DT methods do not generalize for either case;

Lasso and ELGP produce similar models for step length, and ELGP produces a slightly more

accurate model for turn angle.

7.7 Discussion and Conclusions

The classification results indicate that DT and M4GP can produce accurate dynamic

classifiers of bald eagle behavior data. The DT model in Figure 7.4 is being shared with

Environmental Conservation researchers to assist in understanding eagle behavior; it shows

in particular a change in behavior as the eagles move far from their nesting location, and no

sensitivity to geographic features. The dynamic models of bald eagle movement do not have

significant predictive power. Further work should address whether higher-order models can
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improve the accuracy, or whether the measurement time step (15 minutes) is small enough

to capture causality.
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CHAPTER 8

TOWARDS GLOBAL MODELING OF VORTEX-INDUCED
VIBRATIONS ON CYLINDRICAL STRUCTURES

8.1 Summary

In this chapter, an approach to consolidating local models generated by ELGP is proposed.

As a case study, I consider the identification of vortex-induced vibration (VIV) on a cylindrical

structure, subject to varying flow velocities. This process exhibits qualitatively different

behavior for different flow velocities due to the frequency-dependent interactions between the

fluid and the cylinder. To produce generalized models using ELGP, local models are used to

seed the initial population of a globally-trained model. In addition, I implement a novel parent

selection scheme for regression, known as ε-lexicase selection, that differs from traditional

GP search divers in that it propagates models that are accurate on unique combinations

of training cases. Simulations of the resultant model are compared to measurement data,

showing accurate reproduction of the phase changes between cylinder displacement and the

fluid force as flow velocity changes. We discuss modeling challenges with respect to this

system and provide a road map of future research.
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8.2 Introduction

Generalization approaches are needed to adequately model systems for which local be-

haviors are dominated by differing aspects of the process, leading to poor generalization of

locally trained models. One way to improve the generalization performance of GP on difficult

problems is to seed the initial population with solutions from simpler problems [112, 179].

Still, when performing global identification on the cascaded training sets, there is a high

likelihood that local solutions that perform well on specific regimes of operation will be lost,

due to inaccuracies in other conditions. This loss is due to the way in which GP reduces

a program’s performance into a single value that is used to select parents for the next gen-

eration. Typically the fitness F of an individual is quantified as its aggregate performance

over the training set T = {(yt,xt)}Nt=1, using e.g. the mean absolute error (MAE), which is

quantified for individual program i ∈ P as:

F (i, T ) =
1

N

∑

t∈T
|yt − ŷt(i,xt)| (8.1)

where x ∈ RD represents the variables or features, the target output is y and ŷ(i,x) is

the program’s output. As a result of the aggregation of the absolute error vector e(i) =

|y − ŷ(i,x)| in Eq. (8.1), the relationship of ŷ to y is represented crudely when choosing

models to propagate. As others have pointed out [97], aggregate fitnesses strongly reduce the

information conveyed to GP about i relative to the description of i′s behavior available in

e(i), thereby under-utilizing information that could help guide the search. In addition, many

forms of aggregation assume all tests are equally informative (although there are exceptions,

including implicit fitness sharing which is discussed below). Therefore individuals that are

elite (i.e. have the lowest error in the population) for portions of e (i.e., locally) are not

selected if they perform poorly in other regions and therefore have a higher F . By providing

equivalent selection pressure with respect to test cases, GP misses the opportunity to identify

and/or preserve programs that perform especially well in certain regions of the problem, most

importantly those portions of the problem that are more difficult for the process to solve.

We expect GP to solve problems through the induction, propagation and recombination of
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building blocks (i.e. subprograms) that provide partial solutions to our desired task. Hence

we wish to select those programs that imply a partial solution by performing uniquely well

on subsets of the problem.

Several methods have been proposed to reward individuals with uniquely good test per-

formance, such as implicit fitness sharing (IFS) [134], historically assessed hardness [89], and

co-solvability [96], all of which assign greater weight to fitness cases that are judged to be more

difficult in view of the population performance. Perhaps the most effective parent selection

method recently proposed is lexicase selection [60, 193]. In particular, “global pool, uni-

form random sequence, elitist lexicase selection” [193], which we refer to simply as lexicase

selection, has outperformed other similarly-motivated methods in recent studies [61, 118].

Despite these gains, it fails to produce such benefits when applied to continuous symbolic

regression problems, due to its method of selecting individuals based on test case elitism.

We demonstrated recently [109] that by re-defining the test case pass condition in lexicase

selection using an adaptive ε threshold, the benefits of lexicase selection can be achieved in

continuous domains. I show in this chapter that by combining ε-lexicase selection with local

model seeding, a general, reduced-order model of VIV can be constructed that accurately

represents the changing response of a cylindrical structure to varying fluid forces.

§8.3 describes the VIV problem that forms the experimental basis of our study of gener-

alization methods. In §8.4, I describe ε-lexicase selection and the seeding process. Related

work is summarized in §8.5. The experimental analysis in §8.6 describes how the algorithm

is implemented for VIV, and the results of this analysis are presented in §8.7, including local

and global models. The modeling results are discussed in §8.8, including recommendations

for future study.

8.3 Vortex Induced Vibration

VIV is a fluid-structure interaction (FSI) phenomenon that occurs in structures subject

to fluid disturbances, such as bridges, chimney stacks, and tethered offshore structures such

as the mooring lines that secure floating wind turbines [7, 13, 153, 154, 155, 174]. A review
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of experimental research in this area is presented in [218]. Although the dynamics of VIV

can be captured by solving the Navier-Stokes equations, the computational intensity of that

approach, as well as the complexity of the underlying models, motivates the development of

accurate, reduced-order models.

In §2.6.2.1, data from a single flow velocity was used to update a first principles model of

the system proposed by Faccinetti [41] using MSAM. Although such adaptations can improve

model fidelity locally, in general the interaction between the flow force, q, and the transverse

cylinder motion x varies considerably as the crossflow velocity of the fluid U changes, mak-

ing global modeling difficult. During synchronization, known as lock-in, the frequency of

vortex shedding, oscillation of the structure normal to the flow, and the structure’s natural

frequency in the fluid, fn, coincide, resulting in lightly-damped, high-amplitude oscillations

of the structure normal to the flow direction.

The experiment studied here was carried out by the UMass Fluid Structure Interaction

Laboratory. Data was collected for a 14.6 mm diameter cylinder of 30 cm length, placed in

a re-circulating water tunnel, with a test section of 1.27 m × 0.5 m × 0.38 m, a turbulence

intensity of less than 1% for up to a flow velocity of U = 0.3 m/s and a velocity uniformity of

less than 2% [185, 184]. The set-up used to hold the cylinder in the test section had two air

bearings to reduce the damping and constrain the oscillations of the cylinder to one degree of

freedom in the crossflow direction. Springs were attached from the supporting plate holding

the cylinder to the fixed housing.

The data are presented as a function of the reduced flow velocity, U∗ = U
fnD

, where D is

the cylinder diameter. The cylinder’s displacement and the corresponding flow forces were

simultaneously measured at 19 constant reduced flow velocities ranging from U∗ = 4.4 to

U∗ = 10.9 at 500 Hz for 50 seconds at each velocity. The varying interaction between q and x

is notable in the phase ∠(q, x) at fn, shown in Figure 8.1 for different flow velocities. At flow

velocities below lock-in, the cylinder oscillates in phase with the flow forces; during lock-in,

which begins at U∗ ≈ 6, the angle between q and x shifts from 0◦ to perpendicular to the
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Figure 8.1. Phase between flow force and cylinder displacement for different true reduced
velocities U∗.

flow forces, and as the flow velocity continues to increase, x and q become completely out of

phase.

As discussed in Ch. 2, Faccinetti [40] proposed to model the limit cycle characteristics of

this process as a mass spring damper excited by a van der Pol oscillator, i.e.,

(ms + 1/4πCMρD
2)ẍ+ [rs2πSt(U/D)ρD2]ẋ+ hx = 1/4ρU2DCLoq (8.2)

q̈ + ε[2πSt(U/D)](q2 − 1)q̇ + [2πSt(U/D)]2q = (A/D)ẍ (8.3)

where St is the Strouhal number, ms is the mass of the structure, ρ is the fluid density, rs

represents viscous dissipation in the support, γ denotes the stall parameter, CM is the added

mass coefficient, CLo is the lift coefficient, and ε and A are the van der Pol scaling parameters.

When compared to the experimental data, Eq. 8.3 fails to accurately model the process, as

shown by the mismatch between the left and ride hand sides for different values of U∗ in

Figure 8.2.

We wish to identify a 2nd-order model of the cylinder displacement and the fluid force

that produces accurate estimates across flow velocities. Given that the test specimen is a

rigid cylinder constrained to behave as a mass spring damper, we model the cylinder state
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Figure 8.2. Comparison of the left and right-hand sides of Eq. 8.3 for different true reduced
velocities U∗.

as a mass spring damper as in Eq. 8.2, and limit identification to the parameters associated

with each state, as

ẍ = θ1ẋ+ θ2x+ θ3q (8.4)

The parameters θ1, θ2, and θ3 are estimated in simulation using non-linear least squares [78].

The model structure search is thus constrained to identification of a fluid force model as in

Eq. (8.3). Using ELGP, we attempt to identify the fluid force dynamics as

q̈ = f(q̇, q, ẍ, ẋ, x)

For the purposes of identification, q̈, q̇, ẍ and ẋ are estimated numerically, as described in

Ch. 3. This allows model forms to be evaluated numerically.
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8.4 ε-lexicase selection

Lexicase selection is a parent selection technique based on lexicographic ordering of test

(i.e. fitness) cases. Each parent selection event proceeds as follows:

1. The entire population is added to the selection pool.

2. The fitness cases are shuffled.

3. Individuals in the pool with a fitness worse than the best fitness on this case among

the pool are removed.

4. If more than one individual remains in the pool, the first case is removed and 3 is

repeated with the next case. If only one individual remains, it is the chosen parent. If no

more fitness cases are left, a parent is chosen randomly from the remaining individuals.

As evidenced above, the algorithm is quite simple to implement. In this procedure, test

cases act as filters, and a randomized path through these filters is constructed each time

a parent is selected. Each parent selection event returns a parent that is elite on at least

the first test case used to select it. In turn, the filtering capacity of a test case is directly

proportional to its difficulty since it culls the individuals from the pool that do not do the

best on it. Therefore selective pressure continually shifts to individuals that are elite on

cases that are not widely solved in the population. Because each parent is selected via a

randomized ordering of test cases and these cases perform filtering proportional to their

difficulty, individuals are pressured to perform well on unique combinations of test cases,

which promotes individuals with diverse performance, leading to increased diversity observed

during evolutionary runs [60].

Lexicase selection was originally applied to multimodal [193] and “uncompromising” [60]

problems. An uncompromising problem is one in which only exact solutions to every test

case produce a satisfactory program. For those types of problems, using each case as a way to

select only elite individuals is well-motivated, since each test case must be solved exactly. In

regression, exact solutions to test cases can only be expected for synthetic problems, whereas

real-world problems are subject to noise and measurement error. With respect to the lexicase
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selection process, continuously-valued errors are problematic, due to the fact that individuals

in the population are not likely to share elitism on any particular case unless they are identical

equations. On regression problems, the standard lexicase procedure typically uses only one

case for each parent selection, resulting in poor performance.

We hypothesize that lexicase selection performs poorly on continuous errors because the

case passing criteria is too stringent in continuous error spaces. For individual i to pass case

t, lexicase requires that et(i) = e∗t , where e∗t is the best error on that test case in the pool. To

remedy this shortcoming, we introduced ε-lexicase selection [109], which modulates the pass

condition on test cases via a parameter ε, such that only individuals outside of a predefined ε

are filtered in step 3 of lexicase selection. We found that it is best to automatically adapt the

ε threshold to take into account the values of et(i) across P , denoted et ∈ R|P |, so that it can

modulate its selectivity based on the difficulty of case t. A common estimate of difficulty in

performance on a fitness case is variance [175]; in this regard ε could be defined according to

the standard deviation of et, i.e. σ(et). Given the high sensitivity of σ to outliers, however,

we opt for a more robust estimation of variability by using the median absolute deviation

(MAD) [157] of et, defined as

MAD(et) = λ(et) = medianj
(
|etj −mediank(etk)|

)
(8.5)

We use Eq. (8.5) in the definition of two ε values, εe and εy, that control that pass condition

pt(i) as

εe : pt(i) = I (et(i) < e∗t + λ(et)) (8.6)

εy : pt(i) = I (et(i) < λ(et)) (8.7)

Here I is the indicator function that returns 1 if true and 0 if false. As shown in Eq. (8.6),

εe defines pt(i) relative to e∗t , and therefore is always passed by at least one individual in P .

Conversely, εy (Eq. (8.7)) defines pt(i) relative to the target value yt, meaning that ŷt(i) must
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be within ±εy of yt to pass case t. In this way εy provides no selection pressure if there is

not an individual in the population within adequate range of the true value for that case.

An important consideration in parent selection is the time complexity of the selection

procedure. Lexicase selection has a theoretical worst-case time complexity of O(|P |2N),

compared to a time complexity of O(|P |N) for tournament selection. Although clearly unde-

sirable, this worst-case complexity is only reached if every individual passes every test case

during selection; in practice [60], lexicase selection normally uses a small number of cases for

each selection and therefore incurs only a small amount of overhead. The wall clock times

for our variants of lexicase compared to other methods were quantified in [109] and showed

negligible differences.

8.5 Related Work

Although to an extent the ideas of multiobjective optimization apply to multiple test

cases, they are qualitatively different: objectives are the defined goals of a task, whereas test

cases are tools for estimating progress towards those objectives. Objectives and test cases

therefore commonly exist at different scales: symbolic regression often involves one or two

objectives (e.g. accuracy and model conciseness) and hundreds or thousands of test cases.

One example of using test cases explicitly as objectives occurs in Langdon’s work on data

structures [113] in which small numbers of test cases (in this case 6) are used as multiple

objectives in a Pareto selection scheme. Other multi-objective approaches such as NSGA-

II [32], SPEA2 [220] and ParetoGP [190] are used commonly with a small set of objectives

in symbolic regression. The “curse of dimensionality” prevents the use of objectives at the

scale of typical test case sizes, since most individuals become nondominated1, leading to

selection based mostly on expensive diversity measures rather than performance. Scaling

issues in many-objective optimization are reviewed in [76]. In lexicase selection, parents are

guaranteed to be nondominated with respect to the fitness cases. Pareto strength in SPEA2

1Program i1 dominates i2 if fj(i1) ≤ fj(i2) ∀j and fj(i1) < fj(i2) for at least one j (f is minimized).
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promotes individuals based on how many individuals they dominate, and similarly lexicase

selection increases the probability of selection for individuals who solve more cases and harder

cases (i.e. cases that are not solved by other individuals) and decreases for individuals who

solve fewer or easier cases.

A number of GP methods attempt to affect selection by weighting test cases based on

population performance. In non-binary Implicit Fitness Sharing (IFS) [98], the fitness pro-

portion of a case is scaled by the performance of other individuals on that case. Similarly,

historically assessed hardness scales error on each test case by the success rate of the popula-

tion [89]. Discovery of objectives by clustering (DOC) [97] clusters test cases by population

performance, and thereby reduces test cases into a set of objectives for search. Both IFS and

DOC were outperformed by lexicase selection on program synthesis and boolean problems

in previous studies [61, 118]. Other methods attempt to sample a subset of T to reduce

computation time or improve performance, such as dynamic subset selection [48], interleaved

sampling [51], and co-evolved fitness predictors [175]. Unlike these methods, lexicase selec-

tion begins each selection with the full set of training cases, and allows selection to adapt to

program performance on them.

The conversion of a model’s real-valued fitness into discrete values based on an ε threshold

has been explored in other research; for example, Novelty Search GP [130] uses a reduced

error vector to define behavioral representation of individuals in the population. This pa-

per proposes it for the first time as a solution to applying lexicase selection effectively to

regression.

As a behavioral-based search driver, lexicase selection belongs to a class of GP systems

that attempt to incorporate a program’s behavior explicitly into the search process, and as

such shares a general motivation with recently proposed methods such as Semantic GP [139]

and Behavioral GP [99], despite differing strongly in approach. Although lexicase is designed

with behavioral diversity in mind, recent studies suggest that structural diversity can also

significantly affect GP performance [20].
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Table 8.1. Global modeling settings.

Setting Value

Population size 1000
Crossover / mutation 80/20%
Program length limits [3, 20]
ERC range [-1,1]
Generation limit 1000
Trials 30
Terminal Set {x, ERC, +, −, ∗, /, sin, cos, exp, log}
Elitism keep best

8.6 Experimental Analysis

Since the dynamics were not observed to exceed 5 Hz, the data was filtered to 10 Hz for

identification. Each set was split 50/50 into training and test sets. Identification was first

performed on each data set collected at specific flow velocities. 10 trials of age-fitness Pareto

optimization (AFP, see §3.6.1) were used to train the models. During identification, solutions

are archived based on Pareto-dominance in complexity and fitness (as in Ch. 6). The solution

archives are then consolidated into a seed population, and global identification is performed

on the cascaded training sets.

Global identification of the fluid force dynamics is performed on the cascaded data sets,

preserving the training and test partitions. To assess the effect of seeding the initial popula-

tion and using ε-lexicase selection, 30 trials of six treatments were tested, with ‘+S’ indicating

a seeded initial population: AFP, AFP+S, Lex εy, Lex εy+S, Lex εe, and Lex εe+S. The ELGP

settings are shown in Table 8.1.

8.7 Results

The local model identification is presented first, in terms of the best fit models as well

as the archives that produce the seeded solutions for global identification. Then the global

models are presented. We compare the six treatments according to the fitness of the models

they produce. Finally, the best fit model is evaluated and simulated along with the parame-

terized mass spring damper model. The modeling results are compared to measurement data

for each flow velocity.
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Table 8.2. Best fit local models..

U∗ Equation Complexity
Train

R2
Test

R2

4.4 q̈ = 18.8x− 2.08 q + 18.8 ẍ 28 1.00 0.92

4.7 q̈ = x− 7 q − ẋ (x ẋ− 0.186) 15 0.90 0.91

5.1 q̈ = x− 1.14 q + 0.138 ẋ 9 0.82 0.88

5.5 q̈ = 3.28x− q + 2.93 ẍ+ 0.155 ẋ 15 0.92 0.87

5.8 q̈ = 0.177 ẋ− 0.0351 ẍ− 0.955 q 13 0.85 0.81

6.2 q̈ = 0.0446 ẍ− 0.995 q + 0.172 ẋ 11 0.80 0.85

6.5 q̈ = 0.18 ẋ− 1.11 q − 0.18 log(ẍ) (x+ 0.493) 22 0.87 0.85

6.9 q̈ = 0.156 ẍ− q + 0.156 ẋ 7 0.85 0.82

7.3 q̈ = 0.169 ẍ− q + 0.169 ẋ− 0.169 log(ẍ ẋ) 24 0.87 0.83

7.6 q̈ = 0.693x− q + ẍ+ 0.146 ẋ 11 0.95 0.89

8.0 q̈ = 0.35 ẍ− q + 0.183 ẋ 9 0.92 0.92

8.4 q̈ = 0.53 ẍ− 1.16 q + 0.159 eẋ − 0.25 20 0.88 0.86

8.7 q̈ = 0.606 ẍ− 1.19 q + 0.206 ẋ 11 0.90 0.88

9.1 q̈ = ẍ (0.0755 q + ẍ+ 0.612)− q − 0.278 13 0.95 0.95

9.5 q̈ =
1.17 (x−0.21)
log(ẋ)−0.0893

− 1.17 q − 0.237 68 0.94 0.86

9.8 q̈ = x− 1.35 q + 3.71 ẍ+ 1.35 sin(1.34x) 24 0.92 0.91

10.2 q̈ = 0.871 ẍ− 1.1 q 7 0.89 0.93

10.5 q̈ = −2.07 q − 0.346x− 2.07 (x+ ẍ) (ẍ− 8.96) 15 0.99 0.91

10.9 q̈ = 2.08U2 (x+ ẍ+ 0.0164 ẋ)− 2.08 q − 0.00754 34 0.97 0.96

8.7.1 Local Models

The best local models for each data set are listed in Table 8.2. The correlations on the

test set range from 0.81 to 0.96 depending on the data set. Figure 8.3 shows the archives

resulting from local identification. The models marked by red squares represent the Pareto

front of the archived results of the trials. These models are inserted into the initial population

of the global identification runs.

8.7.2 Global Models

The best-of-run model R2 values on the test data are shown in Figure 8.4 and demonstrate

the improved model quality that results from 1) using ε-lexicase selection and 2) seeding the

initial populations with locally fit models. The ε-lexicase selection treatments all produce

models with better median R2 values than AFP and AFP+S; in addition, the seeding for

Lex εy and Lex εe generates a significant improvement in the median model quality. The

head start in model quality produced by seeding is also evident in the progress of best fit

models during the algorithms’ executions, as shown in Figure 8.5. The seeded runs start with
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Figure 8.3. ELGP runs on local data sets generate the models marked with x. These are
consolidated into a single archive based on Pareto dominance to seed the initial population
of ELGP trained on the global data set.
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≈ 20% lower MAE values. In addition, the lexicase treatments converge much quicker on

fitter solutions than the AFP treatments.

A consolidated Pareto archive of all of the modeling results is shown in Figure 8.6. In

this case, complexity is plotted on the y-axis, and fitness is plotted on the x-axis, to allow

the model forms to be shown. The fluid force model that achieves the best test fitness has

the following form:

q̈ = sin (θ4ẍ+ θ5x− q + θ6ẋ)− q (8.8)

with θ4 = 18.009, θ5 = 17.827, and θ6 0.341. Under algebraic evaluation this model has an

average correlation of R2 = 0.94 with q̈ on the test data. The parameters of the cylinder

displacement (Eq. (8.4)) are estimated via nonlinear least squares as θ1 = -11.9411, θ2 = -

0.1955, and θ3 = 2.0527. The cylinder displacement shows good agreement with measurement

data as expected, with an average correlation of R2 = 0.96.

To evaluate Eq. (8.8) in its prediction of q, we simulate its behavior using initial conditions

(q(0), q̇(0)) chosen from the test sets at different U∗. The results for six seconds of simulation

at each flow velocity are compared to measurements in Figure 8.7. The results indicate good

agreement with the measurements. However, we note that for simulation lengths longer than

10 seconds, the predictions begin to diverge from measured values, indicating that the model

may only be locally stable.

Eqns. (8.4) and (8.8) are simulated in a decoupled fashion, meaning that the states are

integrated only with respect to their own derivatives. Under these conditions, accurate phase

portraits of the VIV dynamics can be generated at each flow velocity, as shown in Figure 8.8.

8.8 Discussion and Conclusion

The results demonstrate that ε-lexicase selection with seeding provides a viable approach

to generalization for modeling dynamic systems with GP. In comparison to the AFP algorithm

used for ELGP, ε-lexicase selection is shown to converge more quickly and produce higher
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q̈ = 0.169 ẋ− 2 q − 2x (U − 1.79)

q̈ = 1.11x− 1.11 q + 0.178 ẋ+ 1.11 ẍ (U − 0.81)
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Figure 8.7. Model of q compared to measurement data for different flow velocities.

fidelity models. We are able to create a reduced-order model of the VIV phenomenon that

captures the cylinder displacement and fluid force as they vary with U∗. The final model is

of the form

ẍ = θ1ẋ+ θ2x+ θ3q

q̈ = sin (θ4ẍ+ θ5x− q + θ6ẋ)− q

Challenges to fully capturing the VIV dynamics remain. In particular, a fully coupled sim-

ulation that remains stable for more than 10 seconds has yet to be accomplished. Although

we have shown that the models produce accurate results given appropriate measured inputs,

the fully coupled simulation will allow researchers to begin to explore more aspects of VIV

beyond the behavior modeled here. In addition, it is of great interest to apply this modeling

tool to different experimental setups such that the generalizability of the identified model

with respect to system parameters can be analyzed.
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Figure 8.8. Simulated and measured phase portaits of q and x for different flow velocities.
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CHAPTER 9

CONCLUSION

This dissertation presents three methods that are designed to improve the capacity of

system identification methods to identify succinct and accurate model structures. Model

structures that are intelligible are more adept at informing experts of their embedded knowl-

edge. The challenge of succinct nonlinear modeling pervades disciplines across the spectrum

of science and engineering; here, it has been addressed for three scenarios. The first scenario

applies to continuous dynamic processes for which experts have designed intelligible models

or controllers that fail to fully explain or control the nonlinearities of the process exhibited

in measured observations. MSAM is designed to optimize the introduction of nonlinear cou-

plings to these models that improve their performance while maintaining their intelligibility.

The second scenario applies to continuous dynamic processes for which no accurate start-

ing models are available. ELGP is designed to produce concise model structures achieved

by improving the capacity and search for such models in GP. The third scenario applies to

multiclass dynamic processes, like the behavior of bald eagles, for which no starting model

is available. M4GP is designed to produce models for this task by using GP as a feature

engine that can perform feature selection as well as feature synthesis, resulting in succinct

models represented as transformations of the original feature space. These methods are

demonstrated through application to the identification of nonlinear dynamics for control de-

sign, wind turbine modeling, bald eagle behavioral modeling, and fluid-structure interaction

modeling.

Together, MSAM, ELGP, and M4GP address several of the challenges to succinct non-

linear model structure identification. The rest of this chapter is devoted to identifying the

challenges they do not address, and to providing some insights into future research directions.
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Whereas the discussion sections in the respective chapters identify some of the method-specific

extensions, the goal of this discussion is to identify more broadly the challenges to model

structure identification for dynamic processes. The first research question discussed in §9.1 is

the trade-off between algebraic and simulation-based evaluation of candidate models, which

deserves a more thorough treatment. The second research question stems from the insight

that MSAM, ELGP and M4GP are hybrid methods. §9.2 discusses what role deterministic

and stochastic machine learning methods could play in the future of system identification.

9.1 Model Evaluation

As mentioned in Chs. 2 and 3, the common choice for estimating the model output(s) is nu-

merical integration (i.e., simulation) of state variables, i.e. the “output error” method [121].

However, given the sensitivity of simulation to different model structures and the compu-

tational cost of numerical integration, the alternative approach of algebraically estimating

candidate model outputs is preferred for symbolic regression [15, 177]. In the algebraic

approach, un-measured states, denoted x̃, are estimated from measurements via numerical

differentiation together with smoothing functions. This yields an algebraic estimate for the

prediction error, given in Eq. 3.2.

The algebraic prediction error will differ from the error yielded by simulated-based eval-

uation. To illustrate why, consider the classical Runge-Kutta method (RK4) to solving an

ordinary differential equation:

ẏ = f(t, y) , y(t0) = y0

then for step size h,

yn+1 = yn +
h

6
(k1 + 2(k2 + k3) + k4) , tn+1 = tn + h

where
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k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3)

now consider a model ˆ̇y = f̂(t, y) with algebraic error ε = ẏ − ˆ̇y, such that ˆ̇y = ẏ − ε =

f(t, y)− ε(t). Then the error propagates through simulation as

ŷn = yn − εn

k̂1 = f̂(tn, yn − εn)

k̂2 = f̂(tn +
h

2
, yn − εn +

h

2
f̂(tn, yn − εn))

k̂3 = f̂(tn +
h

2
, yn − εn + f̂(tn +

h

2
, yn − εn +

h

2
f̂(tn, yn − εn)))

k̂4 = f̂(tn + h, yn − εn+

hf̂(tn +
h

2
, yn − εn + f̂(tn +

h

2
, yn − εn +

h

2
f̂(tn, yn − εn))))

Thus the error at a particular time step is amplified in the estimation of subsequent time

steps. The algebraic evaluation can be considered optimistic in the sense that it assumes

the state variables x to be free of error propagated from previous time steps. The argument

for this approach is that the algebraic error more accurately reflects the differences between

competing model structures since it is not masked by error propagation through simulation.

It also requires only one evaluation of each model on the target data, rather than 4, in the

case of RK4. However, problems can arise when simulating candidate models that have

been chosen via algebraic evaluation, because their robustness to error propagation has not

been quantified. An example of this is noted in Ch. 8, where identified models drifted from

measurement after many time steps.
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Future work should address the difference between algebraic and simulated-based error

more analytically to justify the use of one approach, the other, or both. An interesting topic

could be to investigate algebraic estimates of simulation-based error propagation to improve

algebraic estimates of simulation error without having to resort to expensive simulations

during identification. Identification could also proceed through stages in which certain mod-

els in the population are chosen for simulation to enhance confidence in their capacity for

generalization.

9.2 Hybrid Methods

The three methods presented in this dissertation represent hybrid approaches to model

structure identification. MSAM intertwines exhaustive search with parameter estimation;

ELGP interwines stochastic hill climbing with GP; M4GP intertwines GP with distance-

based classification. These methods are part of a growing body of research that combines

stochastic model structure identification algorithms with deterministic algorithms to achieve

a balance between structural and parametric search [201, 132, 72, 99, 2, 3]. The abundance of

disparate hybrid algorithms suggests that a generalized theory for interfacing the strengths

of GP methods (e.g. feature creation and selection, model structure optimization) with the

strengths of fast machine learning algorithms (e.g. ordinary least squares, decision trees,

näıve Bayes, etc.) has yet to be realized. Recent methods like Behavioral GP [99] treat

the subprogram outputs of GP individuals as features for data mining, and the data mining

in turn determines which sub-components are important to share. At the other end of the

spectrum, several methods treat individual model outputs as features in a single ensemble

model [85, 132, 72, 31, 3]. In other words, the balance and scale of GP in relation to other

methods has not been decided. Future work could explore the trade-offs and the scales at

which hybrid GP algorithms are most effective.
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