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ABSTRACT 
 

PROACTIVE ASSESSMENT OF CLIMATE CHANGE AND 
CONTAMINANT SPILL IMPACTS ON SOURCE WATER QUALITY 

 
SEPTEMBER 2016 

 
LILLIAN C. JEZNACH 

B.S., WORCESTER POLYTECHNIC INSTITUTE 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor John E. Tobiason 

Managing the water quality of surface drinking water sources has become an increasingly 

difficult task for water suppliers due to increased watershed urbanization and climate change. 

Changes in source water quality may affect public perceptions, treatment effectiveness, and 

ultimately costs to treat water to drinking standards. Although there are increased threats to 

current and future drinking water quality, current approaches to managing these threats are 

typically reactionary. Prior detailed modeling efforts of hypothetical events that may impair raw 

water quality allow for an understanding of constituent fate and transport, including potential 

maximum concentrations and travel times to the drinking water intake for constituents which 

may be of concern. The primary goal of this dissertation was to present proactive frameworks 

that utilize a hydrodynamic and water quality model to aid in developing scientifically-based 

management plans prior to an accidental or natural event occurring. The Wachusett Reservoir, a 

major drinking water supply for metropolitan Boston, Massachusetts, was used as a case study to 

illustrate proactive modeling efforts to quantify water quality impacts after both short and long-
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term potential events. This work used a process-based modeling approach to simulate reservoir 

hydrodynamic and water quality responses to changes in various model inputs (streamflow, 

constituents, meteorology) and also evaluated current and future management decisions which 

may mitigate water quality impacts. The approach is demonstrated through a series of proactive 

modeling studies conducted to evaluate water quality at the drinking water intake in response to 

contaminant incidences, long-term increasing air temperatures, and extreme precipitation events. 

For the Wachusett Reservoir, proactive contaminant modeling highlighted the importance of a 

rapid response by managers to contain a contaminant spill and therefore minimizing the mass of 

contaminant that is able to enter the water column following an event. In scenarios that simulated 

long term increasing air temperature increases, model results suggested increases in epilimnion 

and hypolimnion water temperatures, decreased ice cover, and increased stratification duration 

by 2112. Extreme precipitation event simulations during the spring and summer resulted in 

organic matter concentrations that exceeded recorded maximums at the drinking water intake 

while nutrients for this particular reservoir remained low. The modeling results provide valuable 

insights into water quality responses to changes in water body inputs and can help inform short 

and long-term management strategies, prior to water quality degrading events.  
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INTRODUCTION 
 

Managing the water quality of drinking water reservoirs has become an increasingly difficult 

task for many water suppliers in the face of increasing urbanization and climate change threats. 

In spite of increased threats to water quality impairment, current approaches to risk management 

and planning for drinking water supplies are typically reactionary, and not a process-based, 

system specific approach that is needed to monitor and maintain high quality drinking water 

(Baum et al., 2016).  Risks to drinking water degradation include short-term low probability but 

high-risk events (e.g. contaminant spills, extreme weather events) and longer-term events (e.g. 

increasing air temperatures due to climate change). Changes in source water quality may affect 

public perceptions, treatment effectiveness, and ultimately costs to treat water to drinking 

standards. Managing the impacts of these water quality events is difficult, largely because 

predicting constituent fate and transport in reservoirs is complicated, often with multiple 

degradation pathways and interactions with other water quality variables in addition to reservoir 

hydrodynamics. Also, while these events are often high risk, the probability of them occurring in 

normal day to day operation can be small, highlighting the importance of proactive model 

applications to better understand and plan for events prior to an occurrence that may disrupt high 

quality water service. 

Increasing urbanization and chemical storage/transport in water supply watersheds as well as the 

increase in highly publicized contamination incidents, such as the recent West Virginia chemical 

spill into the Elk River, are indications that water managers need to proactively plan for 

emergency contaminant scenarios (Bahadur and Samuels, 2014; Whelton et al., 2014). 

Hydrodynamic and water quality models have been used to understand the fate and transport of 
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contaminants in drinking water sources and to evaluate management responses after an event has 

occurred (Chung and Gu, 2009; Chung and Gu, 1998; Gu and Chung, 2003; Martin et al., 2004).  

However, there are few published studies documenting proactive contaminant modeling efforts 

to guide emergency response planning prior to an event occurring. This may be due to the 

sensitive nature of particular contaminants of concern to a waterbody as well as the potential 

emergency response plans. A proactive modeling framework to simulate potential contaminant 

spills into a particular surface water supply, evaluate the impacts on water quality and the 

effectiveness of operational responses can provide significant scientific insight into emergency 

plan development. 

Models can also be used to gain more insight into the ranges of water quality responses a water 

supply system is likely to experience on a local scale as a result of climate changes such as 

increasing air temperatures and more frequent occurrences of low probability events (Fang and 

Stefan, 1998; Fang and Stefan, 1999; Fang and Stefan, 2009; George et al., 2007; Komatsu et al., 

2007; Lee et al., 2012; Sahoo and Schladow, 2008; Sahoo et al., 2011; Samal et al., 2012). 

Climate change impacts on water quality will vary by source, and utility managers and operators 

will need to understand how these changes may affect the fluctuations in water quantity and 

quality that will impact treatment and delivery. For example, natural inputs of water quality 

constituents from tributary sources play a large role in governing the daily water quality of a 

surface water reservoir, but these historical fluctuations in inputs may be altered by short and 

long-term changes in climate. Increasing air temperatures may lengthen the duration a reservoir 

is stratified and may decrease the number of days in which a reservoir is ice covered, which has 

water quality implications (Jankowski et al., 2006; Livingstone, 2003; Livingstone, 1993; 

Magnuson et al., 2000; Peeters et al., 2002). Climate projections can often be confusing to water 
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managers due to the nature of imprecise models and local variability. However, models can be 

used to evaluate the sensitivity of reservoir water quality to probable ranges in climate changes 

as well as scientifically and quantitatively inform decisions that may mitigate potential impacts. 

This dissertation work is motivated by the need for more proactive, as opposed to reactive, 

hydrodynamic and water quality modeling studies to guide water managers in making 

scientifically based management decisions to best protect the quality of drinking water supplied 

from surface water sources. The Wachusett Reservoir, a major drinking water supply to 

metropolitan Boston Massachusetts, is used as a case study example application of a proactive 

modeling framework and water quality modeling assessment. A series of proactive modeling 

studies were conducted to ultimately evaluate water quality at the drinking water intake in 

response to contaminant incidences, long-term increasing air temperatures, and extreme 

precipitation events. The modeling results provide valuable insights into water quality responses 

to changes in water body inputs and can help inform short and long-term management strategies, 

prior to water quality degrading events. 

I.1 Drinking water contaminants 

A major category of drinking water contaminants of concern to drinking water managers, 

particularly those in more urban watersheds, are contaminants that originate from anthropogenic 

sources. An example of a recent anthropogenic point source contaminant input to a drinking 

water supply was the West Virginia chemical spill into the Elk River in January 2014 from an 

industrial source located 1.61 km (1 mile) upstream from the Kanawha Valley Water Treatment 

Plant, the drinking water supply to Charleston, WV (Bahadur and Samuels, 2014; Whelton et al., 

2014). An estimated 37,854 L (10,000 gal) of 4-methycyclohexane methanol (MCHM) and 

propylene glycol phenyl ether (PPH), organic solvents used in coal processing, spilled into the 
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river, which shortly overwhelmed treatment capacity of the drinking water treatment plant and 

led to a water ban for an estimated 300,000 West Virginia residents (Bahadur and Samuels, 

2014). The long-term health effects of this spill on the residents (15% of the state’s population) 

is largely unknown, since little to no toxicological data and physiochemical properties are 

available for many of the solvent’s ingredients (Whelton et al., 2014). Other anthropogenic 

contaminants to surface water include excessive nutrient inputs from wastewater or agricultural 

runoff, pesticides, pharmaceuticals, industrial compounds, and deicing agents (Chaudhury et al., 

1998; Forman and Alexander, 1998; Sansalone and Buchberger, 1997; Sharpley et al., 1994; 

Wauchope, 1978). 

Constituents of natural origin which may be of concern to drinking water managers include 

sediments, organic matter, and nutrients which may become abnormally high during heavy 

precipitation events (Caverly et al., 2013; Correll et al., 1999; Dhillon and Inamdar, 2013; 

Dhillon and Inamdar, 2013; Inamdar et al., 2006; Jung et al., 2014; Yoon and Raymond, 2012). 

During precipitation storm events, constituent loads to a surface water body generally increase 

due to tributary flow increases. However, concentrations of various constituents may increase or 

decrease depending on the physical characteristics of the watershed and the dominant processes 

governing their concentrations in the tributaries. Comparisons among different storms and 

watersheds have shown that season, precipitation amount, and antecedent moisture conditions 

effect solute concentrations and loads (Dhillon and Inamdar, 2014; Inamdar et al., 2006). 

The Wachusett Reservoir, in central Massachusetts, is an oligo-mesotrophic surface water body 

that supplies metropolitan Boston (approximately 2.5 million people) with drinking water. The 

watershed is primarily forest (67%), followed by urban/developed land (17%), open 

water/wetland (10%), and agricultural land (8%) (Hagemann and Park, 2014). Nutrient and 
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organic matter loads to the reservoir from the watershed tributaries are low and have decreased 

in the last decade due to implementation of storm water best management practices (BMPs) 

(Hagemann and Park, 2014). Organic matter and nutrient loads have been observed to increase 

during precipitation events (Hagemann and Park, 2014). However, anthropogenic contaminants, 

such as those carried by tanker truck or freight train, are also of concern due to the proximity of 

several major roadways and a railway to the reservoir, as seen in Figure I.1. As seen in the 

figure, there are two roadway bridge crossings and one railway bridge crossing over the 

reservoir. These locations are the highest concern for accidental contamination from an 

overturned vehicle or railcar. 

 

Figure I.1 Major roads and a railway surrounding Wachusett reservoir 

I.2 Current and future climate trends and implications for water quality 

Historical records of global mean surface air temperatures indicate a rise of 0.7ºC since the start 

of the 20th century (World Meteorological Organization (WMO), 2014).  The average surface 
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temperature in the U.S. has increased by 1.3 – 1.9 ºF (0.73 – 1.1 ºC) since 1895 with the majority 

of this increase occurring after 1970 (Melillo et al., 2014). By the end of the century, air 

temperatures in the U.S. are projected to increase by roughly 3 – 5 ºF in lower emission scenarios 

and possibly 5 – 10 ºF in higher emission scenarios (Melillo et al., 2014). Projections for the 

northeast region of the U.S. anticipate air temperature increases of about 3 – 6 ºF for reduced 

emission scenarios and about 4.5 – 10 ºF for increased emission scenarios by the 2080s (Horton 

et al., 2014). Changes in historic precipitation over the U.S. have been observed but these vary 

significantly with region. In general, there has been a national trend towards a greater amount of 

very heavy precipitation events (the heaviest 1% of all events) throughout the U.S. from 1958 – 

2012 with the largest observed change occurring in the northeast region, which has experienced a 

71% increase in the last 50 years (Horton et al., 2014). Recent examples of extreme heavy 

precipitation events in the northeastern U.S. include Hurricane Irene (summer 2011) and 

Hurricane Sandy (fall 2012). 

Increasing air temperature affects physical, chemical, and biological processes in surface water 

bodies that impact water quality. Of all the meteorological drivers, air temperature has the most 

significant effect on water temperature variability (Henderson-Sellers, 1988). Long term changes 

in water temperature as a response to increasing air temperatures have been observed in lakes 

and reservoirs throughout the globe. Historical records of surface water bodies indicate that 

gradual changes in air temperatures due to climate change have increased thermal stratification 

intensity and the length of stratification (Arhonditsis et al., 2004; Coats et al., 2006; Jankowski et 

al., 2006; Livingstone, 2003; Livingstone, 1993; Peeters et al., 2002; Verburg and Hecky, 2009).  

Ice cover duration and thickness in temperate regions has also been observed to decline over the 

last century (Magnuson et al., 2000). Physical changes related to water temperature changes 
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promotes hypoxic and anoxic conditions, particularly in the hypolimnion, and has been observed 

to extend these conditions in water bodies that already experience them (Jankowski et al., 2006; 

Porter et al., 1996). Changes in water temperatures also impact nutrient cycling within the water 

column, contributing to anoxic conditions in the hypolimnion and resulting in the release of 

nutrients (N and P). The impacts of long term air temperature increases on biological processes 

that effect water quality is complex because the dynamics depend on nutrient availability, density 

dependence, predation, and species specific dynamics which vary across ecosystems (Adrian et 

al., 2009) 

There are few published studies analyzing water quality impacts from extreme precipitation 

events, despite the knowledge that large precipitation events are a major driver for the export of 

terrigenous organic carbon and organic-bound nutrients to receiving water bodies. Impacts of 

events depend on different precipitation volumes and intensities as well as watershed 

characteristics. In studies of forested watersheds during hurricane Irene in August of 2011, DOC 

and POC fluxes to a receiving water body were observed to contribute up to 40% and 50% of the 

annual masses of the respective constituents (Dhillon and Inamdar, 2013; Yoon and Raymond, 

2012). Ratios of DOC to POC after extreme precipitation events in forested watersheds have 

been observed to be less than 1 while agricultural watersheds have been observed to be greater 

than 1. Nutrient concentrations and exports during extreme precipitation events are even less 

well understood. However, nutrient exports from catchments have been shown to be primarily 

associated with episodes of high discharge and sediment loads, similar to organic matter (Correll 

et al., 1999; Inamdar et al., 2006; Meyer and Likens, 1979). 
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I.3 Modeling approaches 

Hydrodynamic and water quality models are commonly used to simulate water quality of a 

receiving water body in response to changes in watershed inputs and/or climate change.  The 

two-dimensional (2-D), laterally averaged, model CE-QUAL-W2 is an example of a commonly 

used model that has been applied to over 200 water bodies around the world (Cole and Wells, 

2015). Other examples of models that can be used in hydrodynamic and water quality modeling 

studies include one-dimensional (e.g., LCM, DYRESM, MINLAKE, CE-THERM-R1), two-

dimensional (e.g., GVLHT), and three-dimensional (e.g., GLLVHT, EFDC, GEMSS) models. 

In most cases, hydrodynamic and water quality models for drinking water sources are developed 

in response to accidental or natural events that resulted in impaired water quality. Modeling 

studies are typically carried out post-event to guide operational response, data collection, or 

remediation efforts (Clark et al., 1989; Grayman and Males, 2002; Gullick et al., 2003). For 

example, modeling studies were undertaken to develop operational strategies post-spills of 

conservative contaminant methyl isothiocyanate (MITC) in the Shasta Reservoir in California 

and the herbicide atrazine from agricultural runoff into the Saylorville Reservoir in Iowa (Chung 

and Gu, 2009; Chung and Gu, 1998; Gu and Chung, 2003). Many utilities around the world are 

now incorporating early warning systems into their source water protection efforts, which often 

include 1-D models that can be run with real-time data during a contamination event (Gullick et 

al., 2003). However, reservoir managers, particularly of non-riverine systems with vertical and/or 

lateral gradients, could also benefit from more comprehensive (2-D or 3-D) pre-event proactive 

hydrodynamic and water quality modeling to provide more accurate realizations of contaminant 

fate and transport for emergency plan development. 
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Hydrodynamic and water quality models can be used to proactively model future climate change 

impacts to water quality in surface water reservoirs and develop long term management 

strategies. A common modeling approach to simulating future climate change impacts on water 

quantity and quality is to employ the use of downscaled general circulation models (GCMs) to 

drive a watershed model, a systems model, and a hydrodynamic and water quality model. GCMs 

are a popular tool for generating climate scenarios to use in impact assessments evaluating long 

term changes in air temperature on water temperature and quality (Fang and Stefan, 1998; Fang 

and Stefan, 1999; Fang and Stefan, 2009; Komatsu et al., 2007; Sahoo et al., 2013; Sahoo et al., 

2015; Samal et al., 2012). However, GCMs are also criticized for their inherent biases and their 

inability to capture the full range of future climate uncertainty (Brown and Wilby, 2012; Brown 

et al., 2012). Additionally, since the small temporal and spatial scales of extreme events cannot 

currently by accurately represented by a GCM, they are considered inappropriate for use in 

assessments simulating future impacts of short term extreme weather scenarios (Baker and Peter, 

2008; Willems et al., 2012). In fact, to the author’s knowledge, there are no published studies 

linking future extreme precipitation events with modeled watershed constituent loads and 

receiving water body quality using either GCMs or another future meteorological realization. 

There are, however, many studies citing qualitative observations and predictions of water quality 

impacts in raw drinking water sources due to extreme precipitation events. Reported impacts 

include increased organic matter and nutrient loads, algal blooms, microbial contamination, and 

well as color and turbidity issues, as summarized in Stanford et al (2014).  

The primary contribution of this dissertation is to present proactive frameworks utilizing 

hydrodynamic and water quality models to aid in developing management plans prior to an 

accidental or natural event occurring. Each chapter highlights a different need for proactive 
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management for the example drinking water supply reservoir, models a short or long-term 

potential event of concern, and quantifies key outcomes of the event which may affect current 

and future management decisions. The following 3 chapters present a forward thinking scientific 

and quantitative approach to managing drinking water quality in the face of increased watershed 

urbanization and an uncertain future climate. 
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CHAPTER 1 

A FRAMEWORK FOR MODELING CONTAMINANT IMPACTS ON 
RESERVOIR WATER QUALITY 

 

Authors 

Jeznach, L.C., Jones, C., Matthews, T., Tobiason, J.E., and Ahlfeld, D.A., 2016. A framework 
for modeling reservoir contaminant impacts on water quality, Journal of Hydrology, Vol 537, pp. 
322-333 

1.1.  Abstract 

This study presents a framework for using hydrodynamic and water quality models to understand 

the fate and transport of potential contaminants in a reservoir and to develop appropriate 

emergency response and remedial actions. In the event of an emergency situation, prior detailed 

modeling efforts and scenario evaluations allow for an understanding of contaminant plume 

behavior, including maximum concentrations that could occur at the drinking water intake and 

contaminant travel time to the intake. A case study assessment of the Wachusett Reservoir, a 

major drinking water supply for metropolitan Boston, MA, provides an example of an 

application of the framework and how hydrodynamic and water quality models can be used to 

quantitatively and scientifically guide management in response to varieties of contaminant 

scenarios. The model CE-QUAL-W2 was used to investigate the water quality impacts of several 

hypothetical contaminant scenarios, including hypothetical fecal coliform input from a sewage 

overflow as well as an accidental railway spill of ammonium nitrate. Scenarios investigated the 

impacts of decay rates, season, and inter-reservoir transfers on contaminant arrival times and 

concentrations at the drinking water intake. The modeling study highlights the importance of a 

rapid operational response by managers to contain a contaminant spill in order to minimize the 

mass of contaminant that enters the water column, based on modeled reservoir hydrodynamics. 
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The development and use of hydrodynamic and water quality models for surface drinking water 

sources subject to the potential for contaminant entry can provide valuable guidance for making 

decisions about emergency response and remediation actions. 

1.2.  Introduction 

Protecting surface drinking water sources from point and non-point sources of contamination is 

an important element to maintaining high drinking water quality and minimizing treatment costs. 

However, if contaminants enter a drinking water source, it is important to have an understanding 

of their fate and transport in the surface water body and how they may impact drinking water 

quality. Hydrodynamic modeling studies are typically carried out after a contamination incident 

to guide operational response, data collection, or remedial action, while few contaminant 

modeling studies have been published that help to understand contaminant transport in 

anticipation of incidents (Clark et al., 1989; Grayman and Males, 2002; Gullick et al., 2003). 

Hydrodynamic and water quality models are useful tools for determining contaminant plume 

behavior and impacts to water quality at a drinking water intake, making simulations especially 

useful for accessing multiple scenarios and proactively developing response plans for rapid and 

appropriate action in the event of an actual contaminant event in a drinking water reservoir 

(DiGiano and Grayman, 2014; Henderson-Sellers, 1991). 

Water quality models can be used to simulate hydrodynamics, heat transfer, and water quality 

processes in water bodies in order to predict the fate and transport of water quality constituents 

or contaminants. Models simulate concentrations of nutrients, pathogens, microbes, and other 

constituents in the water body based on analytical or numerical solutions to equations describing 

physical, chemical, and biological processes of importance. Simulating conservative constituents 

is important for confirming that a model adequately describes the hydrodynamics of a system. 
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Reactive water quality constituents are affected by both fluid transport processes and reactions, 

which may result in degradation and lower concentrations at a location of interest such as a 

drinking water intake. Contaminants which may be of concern to reservoir operators include 

natural substances (natural organic matter (NOM)) and inorganic species, pathogens and other 

microorganisms, as well as the accidental release of anthropogenic substances (e.g. pesticides, 

pharmaceuticals, industrial compounds).  

A contaminant may enter a water body from point and nonpoint sources. Point sources of 

contaminants are inputs occurring at a single location and may include inflows such as those 

from a tributary, discharges from a wastewater treatment plant, or an accidental contaminant 

spill. For example, in the year 2011, Hurricane Irene in the Northeastern US, a 200-yr event, 

caused discharge and dissolved organic matter concentrations in the Esopus Creek to increase 

330 and 4-fold, respectively (Yoon and Raymond, 2012). The Esopus Creek drains 16,500 ha of 

the Catskill Mountains and eventually discharges into the Ashokan Reservoir, a primary drinking 

water source for New York City. The inflows from this tributary are closely monitored, since 

high stream flows from large events are associated with large point sources of nutrients, 

sediment, and pollutant transport to the reservoir. A recent anthropogenic point source 

contaminant input to a drinking water supply was the West Virginia chemical spill into the Elk 

River in January 2014 from an industrial source located 1.61 km (1 mile) upstream from the 

Kanawha Valley Water Treatment Plant, the drinking water supply to the Charleston, WV 

(Bahadur and Samuels, 2014). An estimated 37,854 L (10,000 gal) of 4-methycyclohexane 

methanol (MCHM) and propylene glycol phenyl ether (PPH), organic solvents used in coal 

processing, spilled into the river, which shortly overwhelmed treatment capacity of the drinking 
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water treatment plant and led to a water ban for an estimated 300,000 West Virginia residents 

(Bahadur and Samuels, 2014).  

Nonpoint sources of contaminants can include distributed runoff from a watershed, subsurface 

flow, atmospheric inputs, or roosting waterfowl. Diffuse pollution in agricultural watersheds 

from cropland and livestock are often significant sources of nutrients and pesticides to a surface 

water body resulting in impaired water quality (Sharpley et al., 1994; Wauchope, 1978). Field 

studies of roosting gulls on the Quabbin Reservoir, a drinking water supply reservoir for 

metropolitan Boston, MA, investigated this non-point source of fecal coliform to understand how 

gull roost location impacts coliform concentration at the drinking water intake (Garvey et al., 

1998). Water from the Quabbin Reservoir has a filtration waiver from the Surface Water 

Treatment Rule (SWTR). Therefore, managers are required to conduct studies to understand the 

fate and transport of contaminants, like fecal coliform, and develop source water management 

plans to deal with nighttime roosting of gulls on the reservoir to maintain water quality. The field 

study, in conjunction with hydrodynamic and water quality modeling efforts, later described, 

helped reservoir management understand the importance and impact of their gull harassment 

program. 

Hydrodynamic and water quality models are commonly used for simulating the response of a 

water body to changes in nutrient loads or contaminant inputs from both point and non-point 

sources. Selection of an appropriate water quality model depends of the geometry of the water 

body and the transport process of interest. In temperate climates the fate and transport of 

contaminants in drinking water reservoirs are influenced by seasonal thermal stratification. 

Impacts of thermal stratification on the transport of an inflow containing a contaminant of 

concern is of particular interest to reservoir operators because studies indicate that thermally 
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stratified water bodies significantly decrease vertical mixing, causing contaminants to spread 

laterally, potentially leading to higher contaminant concentrations at a drinking water intake 

compared to well mixed conditions (Chung and Gu, 1998; Gu et al., 1996; Jeznach et al., 2014; 

Marti et al., 2011).  

Hydrodynamic and water quality modeling can be used to evaluate various contaminant 

scenarios and impacts of management response decisions specific to a particular water body. 

Contaminant types and sources of potential contaminants in a reservoir will depend on 

hydrologic and watershed characteristics. Although a drinking water treatment plant can have a 

robust treatment system to deal with variations in water quality characteristics, source water 

protection is an important barrier to water quality impairment from contaminants. 

2-D models have been used in many applications to simulate constituent fate and transport and to 

evaluate management responses. Garvey et al. (1998) used CE-QUAL-W2 in conjunction with 

field studies, previously described, to simulate the fate and transport of fecal coliforms from gull 

roosting in the Quabbin Reservoir, an oligotrophic drinking water source in Massachusetts. The 

model results suggested that the gull roost location, wind speed, and wind direction impact the 

magnitude and variability of the outlet coliform concentration. Chung and Gu (1998) used the 

two-dimensional generalized longitudinal-vertical hydrodynamics and transport model (GLVHT) 

to simulate the transport and mixing of a spill of conservative contaminant methyl isothiocyanate 

(MITC) in Shasta Reservoir in California. GLVHT was developed from the laterally averaged 

reservoir model (LARM), which was later used to develop CE-QUAL-W2. The CE-QUAL-W2 

model was modified to include a toxics sub model to better simulate the fate and transport 

processes of toxic contaminants, including sorption, desorption, photolysis, hydrolysis, 

oxidation, biotransformation, volatilization, diffusive exchanges between the sediments and 
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water column, and sediment transport and deposition in the reservoir (Gu and Chung, 2003). The 

same modified model was used to simulate the herbicide atrazine in the Saylorville Reservoir in 

Iowa from agricultural runoff (Chung and Gu, 2009). The results from the study were useful in 

developing reservoir operation strategies to minimize contaminant concentration in the intake 

water (Chung and Gu, 2009).  

Hydrodynamic and water quality models used in conjunction with a Spill Management 

Information System (SMIS) can help to effectively manage the risks of a potential spill into a 

water body (Martin et al., 2004). The GIS based system incorporates CE-QUAL W2 V3.1 as its 

surface water contaminant transport model and Computer-Aided Management of Emergency 

Operations (CAMEO) to model atmospheric dispersion. The SMIS application was designed to 

evaluate the short-term impacts of a chemical spill and to facilitate the development of a 

comprehensive response plan. This application was tested on the Cheatham Reach, a part of the 

Cumberland River, where the model simulated a 50,000 L spill of benzene that occurred over 1 

hour. The combination of model results from CE-QUAL and CAMEO, and information from 

GIS layers, provides real-time planning and analysis capabilities for first-responders, facility 

operators, and emergency response organizations (Martin et al., 2004). 

Knowledge of potential contaminant types and sources in combination with knowledge of the 

hydrodynamics and transport specific to surface water reservoirs can lead to more informed 

management decisions in the event of an actual contamination scenario. The use of models to 

simulate scenarios and evaluate management responses can be a critical exercise for developing 

appropriate and timely responses to emergency situations, guiding measurements of a 

contaminant plume as it travels, and reducing short and long term impacts to drinking water 

supplies. This paper presents a framework for using models to understand the hydrodynamics 
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and transport of potential contaminants in a surface drinking water source and an example case 

study applying the framework to assess contaminant impacts on the Wachusett Reservoir, in 

central Massachusetts. 

1.3.  Framework 

Figure 1.1 lays out a framework for assessing contaminant impacts on reservoir water quality 

and developing management response plans. Although the framework is presented in a linear 

order, the framework should be reevaluated frequently as new information becomes available or 

hypothetical contaminant scenarios no longer are relevant, for example. Also, it may be 

beneficial in some cases to conduct a simplified first screen of impacts using a generic 

conservative constituent tracer to evaluate the outcomes to a certain scenario, and then complete 

a more extensive assessment later or if more detailed information on specific contaminants 

would benefit the study. Prior to a contaminant incident, this proactive modeling framework can 

guide the placement of in-reservoir early warning monitoring systems and improve emergency 

response plans. Immediately following an incident, proactive modeling can guide responders in 

tracking a plume as it moves downstream and provide scientifically based estimations of 

contaminant travel time and concentrations at an intake location. 
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Figure 1.1 Framework for assessing contaminant impacts on reservoir water quality 

1.3.1. Step 1: Determine reservoir characteristics 

Preliminary studies detailing the reservoir physical characteristics, hydrology, and reservoir 

operations allow for an understanding of the hydrodynamics and transport of contaminants, and 

are therefore a logical first step in assessing contaminant impacts on reservoir water quality. 

Bathymetry of a reservoir is a key factor dictating whether a 1-D, 2-D, or 3-D model is an 

appropriate selection for simulating hydrodynamics and water quality. An overview of the 

reservoir’s watershed and hydrology should be undertaken to determine major natural inflows 

and outflows. Other controlled inflows (treated wastewater, inter-reservoir transvers), outflows 

(releases, drinking water withdrawals) should also be accounted for. Reservoir operations, 

including rules of transfers from other reservoirs, releases downstream, withdrawals for drinking 

water treatment, and water surface elevation bounds, can greatly influence the overall water 

balance and transport of contaminants and should be included in data collection. Density currents 

can be created by inflows such as tributaries or inter-reservoir transfers can add complexity to 

hydrodynamic and transport behavior and arise from temperature or solute differences between 

water depths (Ahlfeld et al., 2003). A portfolio of possible operational water quality management 
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decisions is also important later in the analysis for assessing the impact of operational responses 

which may affect contaminant behavior at a drinking water intake.  

In-situ measurements of velocities, temperature, and water quality constituents across depths, as 

well as longitudinally and laterally across the reservoir should be completed to aid in 

determining appropriate model types. Measurements are also necessary for calibration and 

validation during model development.  

1.3.2. Step 2: Model development 

The assessment of reservoir characteristics described above is important for selection of an 

appropriate model for capturing the hydrodynamics and transport of a reservoir. One 

dimensional (1-D) models are appropriate for completely mixed reservoirs, with negligible 

lateral or vertical gradients. 1-D models are unable to simulate lateral and vertical gradients in 

velocities, temperature, and constituents, and therefore do not accurately represent physical 

processes occurring in many reservoirs. Stratifying water bodies are best simulated using two-

dimensional (2-D) or three-dimensional (3-D) models. 2-D models can simulate hydrodynamics 

and transport in a reservoir during periods of stratification and are therefore more appropriate for 

waterbodies where longitudinal and vertical variability dominate lateral variability. 3-D models 

can simulate longitudinal, lateral, and vertical gradients, but are more computationally 

demanding than 1-D or 2-D models. However, a pre-contamination assessment using a 2-D or 3-

D model helps to gain insight into the flow fields and allows for a more detailed understanding 

of the spread of the contaminant plume. 

After data for boundary conditions are collected for inflows, outflows, inter-reservoir transfers, 

releases downstream, and drinking water withdrawals, a simple water balance analysis should be 
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completed to compare calculated reservoir volumes and water surface elevations to 

measurements. This step ensures an adequate representation of historical inflows, outflows, and 

reservoir operations and can also allow one to make simplifying assumptions regarding the 

importance of smaller inflows and outflows to the water balance, such as those from 

groundwater or small tributaries. After this, additional boundary conditions, such as inflow 

temperatures and nutrient concentrations, and initial conditions can be incorporated if necessary. 

Once the model is calibrated and validated to measured in-situ water quality profiles and outflow 

measurements, contaminant scenarios should be developed. 

1.3.3. Step 3: Scenario planning 

A comprehensive list of locations where point and non-point sources of contaminants can enter 

the reservoir should be determined with the help of reservoir and watershed management 

expertise. These locations may include point sources of contamination such as roadways, 

railways, wastewater treatment plants, and tributaries. Non-point sources of contaminant entry 

may include roosting waterfowl, watershed runoff, or groundwater. Contaminants of concern 

may include anthropogenic contaminants such as industrial chemicals, fuel, fertilizer, or oil. 

Large mass loads of nutrients or fecal coliforms may be natural contaminants of concern. 

Locations and associated contaminant types should be ranked in a logical order of importance 

and relevance including factors such as location vulnerability, type and mass of contaminant, and 

probability of spill event occurrence. 

Scenarios should be developed from ranked contaminants and locations that are anticipated to 

cause the greatest threat to drinking water quality. Contaminant scenarios should be developed 

with the following contaminant characteristics in mind: 
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• Volume 

• Concentration 

• Duration 

• Density 

• Miscibility 

• Environmental fate 

• Volatility 

• Toxicity 

• Reactivity 

Additionally, the time of year in which a contaminant enters the water may be an important 

factor to consider, depending on the water body of interest and its geographic location. Seasonal 

thermal stratification and complete mixed conditions can impact contaminant travel time and 

concentration (Ahlfeld et al., 2003; Chung and Gu, 1998; Jeznach et al., 2014). Scenarios that 

simulate the fate and transport of contaminants during all seasons and mixed/non-mixed 

conditions provide a more complete understanding of reservoir characteristics on contaminant 

fate, transport, and impact on water quality. Wind speed and direction can also be a factor to 

consider including in scenarios, since wind may be of significance to lower density spills 

travelling along the top of the water column. 

A baseline scenario of no management or operational response to contain, dilute, or slow down 

the contaminant should be simulated. In addition to this, a portfolio of management or 

operational decisions, as determined in Step 1, should be discussed and included in scenario 

simulations that may decrease contaminant travel time to a drinking water intake or reduce peak 

concentrations. These may include altering inter-reservoir transfer volumes or releases 

downstream, using booms to contain the spill to an area, aerating the reservoir, or using a 

different drinking water intake location or elevation, as examples. 
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It should be noted that conservative contaminant studies of a generic constituent (such as a 

tracer) are beneficial for gaining an initial understanding of hydrodynamics and transport in a 

reservoir prior to investigating scenarios of specific contaminant types which may decay or 

degrade in the natural environment. For example, density differences between an incoming 

contaminant and the ambient water can impact advection and dispersion of a contaminant plume. 

Conservative constituent scenarios can be investigated initially and used as a screening tool to 

help identify the most vulnerable locations or contaminants of concern. 

1.3.4. Step 4: Scenario evaluation 

Scenarios should be evaluated based on several characteristics, with the two key characteristics 

being contaminant arrival time and peak concentration at the drinking water intake. Contaminant 

arrival time can be defined as the number of days after a contaminant incident occurs where the 

contaminant concentration at the drinking water intake is a certain percent (e.g. 10%) of the 

complete mixed concentration in the reservoir. Contaminant arrival time is not limited to this 

definition however, and it should be defined in a manner appropriate to a specific contaminant, 

factoring in particular concentrations of concern if necessary. Scenarios may also be evaluated 

by the variability in contaminant concentration at the drinking water intake. Contaminant 

variability is directly related to the completely mixed or stratified nature of the reservoir during 

the year, where little variability in concentration at the intake is reflective of a well mixed 

reservoir and greater variability in concentration may be indicative of thermally stratified 

conditions (Jeznach et al., 2014). Peak concentrations, arrival times, and variability in 

concentration at a drinking water intake also depend on season, density, decay rate, and wind 

speed (Jeznach et al., 2014). 
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The use of a hydrodynamic and water quality model to simulate various scenarios allows for the 

evaluation of the impacts of management and operational decisions on contaminant arrival time, 

peak concentration, and variability. Impacts of operational decisions may lead to little change in 

contaminant behavior at a drinking water intake, or they may suggest improved or perhaps 

worsened conditions by management responses. Model simulations are very useful for evaluating 

various contaminant scenarios and a variety of management responses, with no risk to degrading 

actual drinking water quality, and provide a quantitative basis for decision-making in response to 

a contaminant event.  

1.3.5. Step 5: Risk management 

A major objective of a contaminant fate and transport study should be to develop a living 

guideline document that reservoir management can use to respond to a contaminant input to a 

drinking water reservoir. Modeling studies are useful because they can help in planning 

appropriate and timely responses to minimize short and long-term impacts on water quality. A 

model can also simulate emergency responses to minimize exposure risk to humans and reduce 

natural resource damage.  Knowledge of contaminant plume behavior and travel time under 

various scenarios can guide in-situ measurements after contaminant entry and direct remedial 

actions. The contaminant response guidelines should include, but are not limited to, the 

following suggestions. 

• A list of contaminant entry locations for the reservoir and associated contaminant types, 

with most vulnerable locations determined by conservative contaminant modeling 

studies, proximity to the drinking water intake, contaminant type, probability of 

occurrence, etc. 



24 
 

• Estimates of ranges in potential contaminant mass inputs based on potential contaminant 

properties and estimated volumes 

• Ranges of contaminant travel times to the intake, depending various hydrodynamic, 

seasonal conditions, and contaminant properties 

• Contaminant concentrations at the drinking water intake that correspond to ranges of 

potential contaminant masses and properties, specific contaminant entry locations, and 

hydrodynamic and seasonal conditions 

• An evaluation of all management operational decisions that could be carried out and the 

impacts, if any, on contaminant travel time and maximum concentrations at the drinking 

water intake 

In the event of a contaminant incident, the proactive modeling study and documentation is 

available to guide the emergency response. In addition to this, ideally emergency hydrodynamic 

and water quality modeling capabilities could be employed immediately following the incident to 

refine possible contaminant outcomes described in the guidance document based on known 

information about the actual contaminant and current reservoir conditions. Results from 

emergency model runs could be communicated to reservoir managers and water utilities (if 

modeling is done externally) in the forms of relevant tables and graphs with estimations of travel 

times and concentrations. However, the focus of the framework described in the manuscript is 

proactive hydrodynamic and water quality modeling prior to an event occurring. Training, 

communications, and reporting to decision-makers and the public in response to a contaminant 

incident are a part of the overall emergency response framework internal to a water utility. 
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1.4. Case study: Wachusett Reservoir 

The Wachusett Reservoir, located in central Massachusetts, is a dimictic waterbody 

characterized by stratification, density currents from incoming tributaries, and varying spatial 

patterns in temperature and constituents. The reservoir supplies drinking water to up to 51 

communities in the greater Boston and central Massachusetts area. The Quabbin Reservoir, 

completed in the 1930’s, is located 65 miles west of Boston and is the most upstream reservoir in 

the system with a capacity of 1.6 billion m3 (412 billion gallons). Periodically throughout the 

year water is transferred from the Quabbin about 30 miles east through the Quabbin Aqueduct to 

the Wachusett Reservoir, completed in 1908 with a volume of approximately 0.25 billion m3 (65 

billion gallons). Water from Wachusett Reservoir is withdrawn at the Cosgrove Intake and 

treated at the John J. Carroll Water Treatment Plant, from which it flows east to Boston. 

Treatment includes disinfection (ozone and UV primary; chloramines in distribution system), 

fluoride addition, and pH and water chemistry adjustment to prevent corrosion in the distribution 

system. The Wachusett Reservoir source water has a waiver from the filtration requirements of 

the US EPA Surface Water Treatment Rule (SWTR). The MWRA manages the treatment and 

distribution of the water while the Massachusetts Department of Conservation and Recreation 

(DCR) has the responsibility of managing the watersheds. Understanding the fate and transport 

of potential contaminants, both from external and internal loadings to the reservoir, is an 

important part of the management of water quality and source water protection. 

1.4.1. Reservoir characteristics 

The Wachusett Reservoir is the second largest water body in Massachusetts with a maximum 

depth of 36.6 m, a length of 13.5 km, and a surface area of 16.8 km2. Inflows to the reservoir 

include precipitation, runoff, flow from nine tributaries, and water transferred from the Quabbin 
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reservoir. The combined Quabbin and Wachusett reservoir system has a safe yield of 

approximately 13.1 m3/s (300 MGD). The largest tributaries, Stillwater and Quinapoxet, enter 

the reservoir from the northwestern end and contribute approximately 30 to 40% of the total 

annual inflow (Figure 1.2). Water from the Quabbin Reservoir is typically transferred to 

Wachusett from June through November into the mouth of the Quinapoxet River to help 

maintain water surface elevation (WSE) while meeting water demands and contributes from 30 

to 60% of the annual inflow, depending on the year. Secondary transfer objectives include 

introducing water with lower organic content and generating hydropower. The major withdrawal 

from Wachusett is the Cosgrove drinking water intake, located at the eastern end of the reservoir, 

which supplies drinking water to metropolitan Boston and nearby towns. Water also leaves the 

reservoir through evaporation, minor withdrawals to a nearby town, and to supply the Nashua 

River through both a controlled sleeve valve release and a spillway. 
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Figure 1.2 Wachusett Reservoir major features and locations of inflows/outflows 

1.4.2. Potential contaminants 

Water quality constituents may enter the Wachusett Reservoir via tributary inflows, direct runoff, 

groundwater inputs, shoreline litter, precipitation, animals, and accidental contaminant spills 

from roadways or railways. Microorganisms such as pathogenic bacteria, total and fecal 

coliform, Giardia, Cryptosporidium, and viruses are some examples of water quality constituents 

of concern. Fecal coliform are the primary indicator organism used to assess the presence of 

potential pathogenic bacteria and virus contamination associated with fecal matter in water 

supplies. The source of this type of contamination in Wachusett Reservoir could be from wildlife 
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or a sewage overflow from a nearby pump station used to pump wastewater to a sanitary sewer 

and treatment system outside of the watershed. The concentrations of total and fecal coliform in 

raw wastewater are 107 – 109 CFU/100 mL and 106 – 108 CFU/100 mL, respectively (Metcalf and 

Eddy, 2003). The SWTR for unfiltered water supplies, such as Wachusett Reservoir, allow for no 

more than 10% of source water samples prior to disinfection (i.e. the Cosgrove Intake) over any 

six-month period to have more than 20 CFU/100 mL. Coliform loss in the reservoir can be 

caused by death in the natural environment as affected by general water quality, temperature and 

light, and by settling.  

A contaminant may also enter the Wachusett reservoir via an accidental spill from a highway 

bridge or railroad line near the reservoir. A previous study discussed the fate and transport of a 

hypothetical spilled conservative contaminant into the Wachusett Reservoir, representing a 

worst-case concentration scenario and assuming no spill response intervention from reservoir 

operations staff (Jeznach et al., 2014). However, a contaminant may decay due to chemical 

degradation, volatilization, or microbial uptake, which may impact the arrival time and 

maximum concentration of the contaminant detected at the Cosgrove Intake. Mechanisms of 

degradation of a contaminant spill may include volatilization, microbial uptake, chemical 

reaction, and photochemical reactions.  

1.4.3. Model development 

The 2-D hydrodynamic and water quality model, CE-QUAL-W2 is an appropriate model for the 

Wachusett Reservoir because the length to width ratio is approximately 11 and because 

longitudinal and vertical gradients in the reservoir dominate lateral gradients (Ahlfeld et al., 

2003). A 2-D model was also chosen for its relative simplicity and short model run time, 

compared to a 3-D model. CE-QUAL-W2 is a two-dimensional, longitudinal and vertical, 
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hydrodynamic and water quality model developed at the U.S Army Corps of Engineers 

Waterways Experiment Station (USACE WES). The model has been used to simulate a 

combination of rivers, lakes, reservoirs, and estuaries (Cole and Wells, 2008). CE-QUAL-W2 

directly couples hydrodynamics and water quality algorithms. To model water hydrodynamics 

and mass transport, CE-QUAL-W2 solves six laterally and layer averaged equations for water 

surface elevation (WSE), pressure, horizontal velocity, vertical velocity, constituent 

concentrations, and temperature/density using the finite difference method. The governing 

equations for the model, detailed by Cole and Wells (2008), are for horizontal-momentum, 

constituent transport, free WSE, hydrostatic pressure, continuity, and density. The original model 

was developed in 1975 by Edinger and Buchak and was known as LARM (Laterally Averaged 

Reservoir Model) (Cole and Wells, 2008).  

The CE-QUAL-W2 modeling grid for the Wachusett Reservoir, pictured in Figure 1.3 (a) and 

(b), was modified from the original grid developed by Camp, Dresser, and McKee (CDM, 1995). 

The grid for this study consisted of 5 branches, and 64 laterally averaged segments each with up 

to 47 layers varying in thickness from 0.5 m to 1.5 m. The time step in the simulations was 

automatically determined to guarantee numerical stability, with a maximum time step of 1 hour. 

The ULTIMATE numerical solution scheme was used for all simulations. The Cosgrove 

drinking water intake is represented by segment 46 in the model grid and is modeled as a 

selective line sink at an elevation of 104.3 within layer 33.  
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Figure 1.3 Wachusett Reservoir modeling grid plan view and side view 

1.4.4. Input data and calibration 

Modeled inflows to the Wachusett Reservoir included the Stillwater and Quinapoxet Rivers, 

seven minor tributaries, the Quabbin transfer, direct runoff, and precipitation. The Stillwater and 
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Quinapoxet Rivers are gaged for flow by the USGS and account for the drainage of 

approximately 73% of the watershed area. Flow from minor tributaries was estimated based on 

the daily watershed yield of the Stillwater River, as described in Tobiason et al (2002). The 

inflows to the Wachusett Reservoir from the Quabbin Reservoir were measured daily by the 

MWRA at the aqueduct outlet. Direct runoff was calculated based on the ratio of Stillwater daily 

discharge to Stillwater watershed area multiplied by the entire direct runoff area. Hourly 

precipitation data from the Worcester Regional Airport, approximately 10 miles southwest of the 

reservoir, were obtained from the National Oceanic and Atmospheric Administration (NOAA). 

Hourly meteorological data such as air temperature, dew point temperature, wind speed, wind 

direction, and cloud cover were also acquired from NOAA.  

MWRA daily measured outflows from the reservoir included withdrawals from the Cosgrove 

Intake, discharge to the Wachusett Aqueduct, as well as releases and spillway discharges to the 

Nashua River at the Wachusett Dam. Direct withdrawals by the local town of Clinton were 

recorded daily by the MWRA. Evaporation loss was not directly measured but was calculated 

based on the algorithm used within CE-QUAL-W2 and work by Edinger et al. (1974). Inflow 

and outflow data for the calendar year were used to develop an annual water balance external to 

CE-QUAL-W2 to verify that daily calculated WSEs based on inflow and outflow volumes were 

within 0.15 m (0.5 ft.) of measured WSEs by the MWRA as discussed in Jeznach et al (2014).  

Model input files were created using data for meteorology, bathymetry, water quality, initial flow 

and constituent conditions, outlet descriptions, and the adjusted inflow and outflow data. MWRA 

and DCR temperature and specific conductivity measurements from the Cosgrove Intake and the 

North Basin were compared with modeled values at segments 42 and 46, the approximate 

locations of the profile measurements collected at the North Basin and the Cosgrove Intake, 
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respectively. The average absolute mean errors (AME) between modeled and measured 

temperature and specific conductivity at the drinking water intake were 3.2 ºC and 19.6 µS/cm, 

respectively. The average root mean square errors (RMSE) between modeled and measured 

temperature and specific conductivity profiles at the intake were 3.9 ºC and 22.2 µS/cm, 

respectively. 

Figure 1.4 compares the temperature profile measurements (indicated by circles) in the North 

Basin with the model results (a solid line) in segment 42 on three different days in the year 2004. 

Temperature profiles were nearly uniform with depth during the early spring with a temperature 

of about 8 ºC; by late May the water surface temperature was beginning to increase due to 

increasing air temperatures. The timing and the extent of the thermocline development was 

accurately simulated during the summer months, with warmer temperatures on the top of the 

water column and cooler on the bottom. Average AME and RMSE between modeled and 

measured temperature profiles were 2.5 ˚C and 3.1 ˚C, respectively. When present, the depth and 

extent of the thermocline and the turnover were accurately simulated. Profiles during the summer 

and the fall have the highest RMSEs, most likely due to the difficulty of capturing the effect of 

the Quabbin transfer inflows because the water temperature is an estimation based on water 

temperature measured in the Quabbin Reservoir, 30 miles west, prior to travelling through the 

aqueduct to Wachusett. 
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Figure 1.4 Temperature profiles in North Basin (Segment 42) for 5/26/04, 7/7/04, and 11/10/04 

Specific conductivity measured in the North Basin of the reservoir and was used to calibrate the 

transport of non-reactive constituents in lieu of tracer studies since for this reservoir it is the only 

parameter that is significantly variable throughout the seasons and is measured daily or weekly in 

the inputs and outputs as well as in-situ.  Specific conductivity data for the tributaries was 

collected weekly by the DCR and precipitation specific conductivity was collected from two 

nearby National Atmospheric Deposition Program (NADP) stations. Specific conductivity 

measurements were converted to total dissolved solids (TDS in mg/L) for model simulations 

based on a site specific relationship (0.6 times specific conductivity in µS/cm), since CE-QUAL-

W2 does not model specific conductivity as a constituent (Tobiason et al., 2002).  

Figure 1.5 compares specific conductivity profile measurements (circles) in the North Basin with 

model results (solid line) for segment 42 for three different days in 2004. Average AME and 

RMSE between modeled and measured specific conductivity profiles was 13 µS/cm and 15 

µS/cm, respectively, and the model accurately simulated the specific conductivity in the 
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epilimnion and hypolimnion throughout most of the year. The signature of the cooler and lower 

conductivity Quabbin transfer water was also evident in the profiles and is an important 

verification of the transport of conservative constituents by the model. Water from the Quabbin 

has lower specific conductivity (approximately 50 µS/cm) compared to Wachusett water 

(typically around 110 µS/cm) and is usually cooler than the Wachusett surface water, depending 

on the time of the year. The interflow is approximately 10 m thick and predominantly occurs 5 to 

15 m below the surface of Wachusett (DCR, 2011). The Quabbin interflow is detected in 

Wachusett specific conductivity profiles by a region of lower specific conductivity located at 

approximately the same depth as the Wachusett thermocline. When the water reaches the 

Cosgrove Intake, the combination of Quabbin and Wachusett water is withdrawn and sent to the 

Carroll Water Treatment Plant to be disinfected and distributed. Further calibration and 

validation data from the year 2004 and other developed model years (2003, 2005-2009) is 

documented in Matthews (2007), Stauber (2009), Devonis (2011), and Clark (2013). 

 

Figure 1.5 Specific conductivity profiles in North Basin (Segment 42) 
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1.4.5. Hypothetical contaminant spill scenarios 

Modeled conservative contaminant spills into the reservoir, previously reported, provided 

valuable information to reservoir operators on the effects of contaminant density, season, the 

Quabbin transfer water, and wind on arrival time and concentration of a contaminant at the 

Cosgrove Intake (Jeznach et al., 2014). Model simulations highlighted the need for a fast 

management response to contain a contaminant spill if possible, as results indicated contaminant 

arrival at the drinking water in significantly less time than the mean hydraulic residence time of 

approximately 200 days. Simulating the movement of non-reactive or conservative constituents 

in the reservoir was important to understanding the impacts of a worst-case scenario, yielding the 

highest contaminant concentrations at the drinking water intake. However, in addition to being 

transported with water, many water quality constituents react, including decay, or degradation, 

yielding concentrations that differ from conservative constituents. Therefore, an understanding 

and assessment of the physical, biological and chemical processes in the Wachusett Reservoir 

that affect concentrations of potential contaminants can lead to improved management, response, 

and operational practices for maintaining water quality. Two constituents of interest to reservoir 

management are a large fecal coliform input from a sewage overflow into a tributary as well as 

an ammonium nitrate accidental spill from a railway (Matthews, 2007; Stauber, 2009).  

For the sewage overflow simulations, an input of 180,000 gallons of raw wastewater with a fecal 

coliform concentration of 108 CFU/100 mL (a typical concentration in raw wastewater) occurred 

over 12 hours on Julian Day 170 (6/18/04), when the reservoir was not yet fully stratified. 

Previous research has shown that unstratified conditions in the spring and fall result in earlier 

conservative contaminant arrival times at the Cosgrove Intake compared to conservative 

contaminant spills occurring in the summer (Jeznach et al., 2014).  Temperature dependent 



36 
 

general decay, settling, and light induced decay, all pseudo first order decay mechanisms, were 

used to simulate the loss of coliform during transport through the reservoir. For these 

simulations, the Arrhenius temperature rate multiplier (θ) was 1.04, the first order decay rate at 

20˚C for the fecal coliforms (k20) was 0.75 day-1, the settling rate (ω) was 0.29 m/day, and the 

proportionality constant relating irradiance-induced decay rate coefficient to irradiance (α) was 

0.014 cm2/cal. Values were chosen based on rates used in a study by Tobiason et al (1998) of the 

Quabbin Reservoir. A simulation was also completed with no decay in order to understand the 

transport of the coliforms throughout the reservoir. 

A hypothetical spill of ammonium nitrate, commonly used in fertilizer, was simulated to occur 

on Julian day 230 (8/17/04) and included a mass input of 200,000 lbs of ammonium nitrate from 

segment 9 in CE-QUAL (Stauber, 2009). The stratified conditions in the summer months can 

result in contaminant concentrations up to 2 times greater than in the spring and fall for 

conservative contaminants (Jeznach et al., 2014). The spilled ammonium nitrate was assumed to 

be partially removed and contained within three hours, but over this time period, a tenth of the 

load was assumed to dissolve into the water. Ammonium and nitrate were modeled separately, 

due to their different first order uptake rates by plankton. Ammonium and nitrate were modeled 

as generic constituents in CE-QUAL-W2 with first order decay (uptake) rates of 0.13 day-1 and 

0.023 day-1, respectively. 

 The effects of different seasonal conditions as well as the impacts of Quabbin transfer operation 

on contaminant concentration at the Cosgrove Intake were investigated. A possible operational 

response to a contaminant spill in the Wachusett Reservoir could be to transfer, or increase the 

rate of transfer of water from the Quabbin Reservoir, since water from this reservoir plays a large 

role in the hydrodynamics and water quality in the Wachusett. Results from previous studies 
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indicated that there is minimal impact in altering the Quabbin transfer during the spring and fall 

when the reservoir is essentially completely mixed, however, turning the transfer off in the 

summer when it is normally operating may reduce the variability of the contaminant 

concentration at the intake (Jeznach et al, 2014). Results also suggest that altering the transfer 

flow has a minimal impact on arrival time of a contaminant at the intake after a summer spill. A 

scenario investigated in this study included the Quabbin transfer operating normally in the 

summer (approximately 300 MGD), turned off for 30 days, and with increased flow of 400 MGD 

(17.51 m3/s) for 30 days in response to the hypothetical ammonium nitrate contaminant spill. 

1.4.6. Spill assessment 

The calibrated and verified CE-QUAL-W2 model was used to simulate the fate and transport of 

hypothetical spills of fecal coliform and ammonium nitrate into the Wachusett Reservoir. The 

concentrations of these decaying constituents at the Cosgrove Intake were compared to those of a 

conservative water quality constituent. 

1.4.6.1.  Fecal coliform contamination  

In the reservoir, fecal coliforms undergo general temperature dependent first order decay, light 

induced decay, and settling. Figure 1.6 shows simulated fecal coliform concentrations at the 

Cosgrove Intake as a result of a 180,000 gallon sewage spill with a 108 CFU/100 mL 

concentration of fecal coliforms on Julian Day 170 (6/18/04) (well mixed conditions) at segment 

20. The figure illustrates the predicted concentrations if decay occurred from exposure to light, 

settling, or general temperature dependent decay. The results for no decay are not shown due to 

the difference in magnitude of concentration, which reached as high as 360 CFU/100 mL. The 

variable peaks and troughs in concentration at the intake were observed in the modeled coliform 

with no decay (not shown on figure) as well as for concentration with only light induced decay. 
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The peaks and troughs are consistent with results described in Jeznach et al. (2014) and are 

associated with contaminants becoming isolated in a vertical layer during the summer when the 

reservoir is stratified, leading to less vertical mixing and the withdrawal of alternating layers of 

high and low concentration at the intake. Peak concentrations for individual loss mechanisms of 

light, settling, and general decay were 2.65, 0.29, 0.007 CFU/100 mL, respectively. General, 

temperature dependent, first order decay was the predominant decay mechanism resulting in a 

99.99% decrease in fecal coliform concentration at the intake when compared to no decay. Loss 

due to only light or only settling induced decay resulted in 99% and 99.9% reductions, 

respectively, in concentrations at the Cosgrove Intake compared to no decay. 

 

Figure 1.6 Fecal Coliforms at the Cosgrove as a result of wastewater spill at segment 20, JDay 
170 (6/18/04) 

Based on model simulations incorporating all decay mechanisms, decay coefficient values from 

literature, and for a sewage spill at segment 20, fecal coliform concentrations would not exceed 

the SWTR criteria of 20 CFU/100 mL at the Cosgrove Intake. Additional simulations with the 

same decay coefficients suggest that an inflow load of 7.0x109 CFU/100 mL, 70 times larger 
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than the simulated baseline concentration, discharged into the Wachusett for 12 hours would be 

necessary in order for the Cosgrove concentration to approach the SWTR criteria. 

1.4.6.2.  Ammonium nitrate contamination 

 Ammonium nitrate input from a spill would be subject to loss (decay) due to uptake by 

phytoplankton if sufficient phosphorous were present in the reservoir. Ammonium and nitrate 

were modeled individually with separate decay rates, representing different uptake rates by 

phytoplankton. The effects of decay on the decrease in constituent concentration were compared 

to the case of no ammonium nitrate decay. Ammonium and nitrate concentrations at the 

Cosgrove Intake for the decay scenarios were significantly lower than for the no decay condition. 

For a 20,000 lb dissolved spill of ammonium nitrate on Julian Day 230 (8/17/04) during stratified 

conditions, peak concentrations at the Cosgrove Intake were 0.075 mg/L nitrate and 0.002 mg/L 

ammonium when decay was included, while for no decay, peak concentrations were 0.125 mg/L 

nitrate (note that the Maximum Contaminant Level for nitrate is 10 mg/L) and 0.025 mg/L 

ammonium.  

Figure 1.7 shows the relative concentrations of ammonium and nitrate at the Cosgrove Intake 

(simulated concentrations with decay divided by concentrations for a conservative contaminant) 

for a spill occurring on Julian Day 230 (8/17/04) from segment 9.  
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Figure 1.7 Comparing decay rates for spill of ammonium nitrate at segment 9 JDay 230 
(8/17/04) 

The figure illustrates a trend of exponential decay in the reservoir for ammonium and nitrate and 

the modeled first order rates of decay reflect the first order reaction uptake rates of 0.13 day-1 and 

0.023 day-1 for ammonium and nitrate, respectively. Using a first order exponential decay 

expression (Equation 1.1) and the conditions simulated in this study, results for conservative 

constituent concentrations could be used to determine concentrations of reactive constituents at 

the Cosgrove Intake for the conditions, without performing a simulation using the generic 

reactive term in the model, 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝐶𝐶𝐶𝐶ℎ 𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= exp(−𝑘𝑘 ∗ 𝑡𝑡)  Equation 1.1 

Where k is the first order decay rate (day-1) and t is the number of days after the spill. 

The exponential expression could also be used to determine the decay rate required to decrease 

the maximum relative concentration at the Cosgrove Intake by 99%. For example, if the peak 

concentration of ammonium nitrate was approximately 0.125 mg/L and arrived in 23 days, a 



41 
 

decay rate of 0.20 day-1 would be needed to decrease the peak concentration by 99% or to a 

concentration of 0.001 mg/L. 

1.4.6.3.  Seasonal impacts 

Seasonal and stratification impacts that were evident for conservative contaminant simulations, 

as discussed by Jeznach et al. (2014), were also evident for decaying contaminant simulations 

from this study. In the spring and the fall, the reservoir was essentially completely mixed and 

uniform, as indicated by temperature and specific conductivity profiles. This condition generally 

leads to earlier arrival times and lower concentrations of contaminants at the Cosgrove drinking 

water intake, consistent with results from Jeznach et al. (2014).  

The effects of the date during the year of a wastewater overflow on fecal coliform were 

evaluated. Figure 1.8 illustrates the fecal coliform concentrations (including general temperature, 

light, and settling decay) at the Cosgrove Intake for spills originating from Gates Brook and 

occurring on four different days during the spring and the fall of 2004.  

 

Figure 1.8 Effects of variations of date of wastewater spill into segment 20 at Cosgrove Intake 
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On Julian Day 125 (5/4/04) the reservoir was becoming stratified and the Quabbin transfer was 

not yet initiated. On Julian Days 160 and 170 (6/8/04 and 6/18/04), the reservoir was stratified 

and the Quabbin transfer was operating to maintain the WSE. The spill simulation on Julian Day 

315 (11/10/04) was when the reservoir was completely mixed and there was no Quabbin transfer 

water entering the reservoir. Based on the results in Fig. 8, coliforms from a spill occurring in 

June were essentially non detectable at the Cosgrove Intake. However, fecal coliforms dispersed 

throughout the reservoir faster when the reservoir was completely mixed in early spring and fall, 

producing detectable fecal coliform concentrations at the intake, especially for the November 

spill. The cooler water temperatures and low sunlight in the late fall inhibits decay, resulting in 

greater fecal coliform concentrations at the intake (about 2 CFU/100 mL) compared to spills that 

occurred in the summer. An early spring spill may also be diluted by spring runoff and elevated 

tributary discharges. 

1.4.6.4.  Quabbin transfer impacts 

In the event of a conservative contaminant spill into the reservoir, Quabbin transfer may not have 

a significant impact on the arrival time of a contaminant but it may help to decrease peak 

contaminant concentrations at the drinking water intake (Jeznach et al., 2014). The current study 

indicates that the impact of the Quabbin transfer on decaying contaminants is consistent with 

these results. Figure 1.9 shows ammonium and nitrate concentrations at the Cosgrove Intake for 

a summer spill on Julian Day 230 (8/17/04) for three different Quabbin transfer operation 

scenarios for 30 days after the spill occurred.  
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Figure 1.9 Ammonium nitrate concentration at the Cosgrove after increasing and turning off the 
Quabbin transfer (spill occurring on JDay 230) 

Decreasing the Quabbin transfer to zero decreased the peak arrival concentration by 90%. 

Increasing the Quabbin transfer from the normal flow of about 300 MGD to 400 MGD in the 

summer had a negligible effect on the contaminant arrival time but increased peak concentrations 

by about 0.01 mg/L at the intake. Specific conductivity and tracer profiles have shown that the 

Quabbin transfer signature was evident in the water column, just lower in magnitude, when the 

transfer operation was disrupted and turned off for 30 days. Results suggest that even if the 

Quabbin transfer was altered for a month in response to a contaminant spill, there would be little 

impact on arrival time because the volume of water introduced via the Quabbin relative to the 

volume of water already circulating in the reservoir is small. Therefore, based on studies to date, 

the best response in regards to the Quabbin transfer in the event of a contaminant spill (decaying 

or conservative) is to turn off the transfer to potentially decrease peak concentrations at the 

Cosgrove Intake. 
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1.4.6.5. Management response/risk management 

For an 180,000 gallon wastewater overflow into the reservoir with a 108 CFU/100 mL 

concentration of fecal coliforms, rapid loss by temperature, light, and settling prevented coliform 

concentrations at the drinking water intake from exceeding the SWTR of 20 fecal coliforms per 

100 mL. Results from a modeled 200,000 lb spill of ammonium nitrate into the reservoir 

indicated that concentrations at the intake were reduced by up to 60% when loss due to plankton 

uptake was included in the simulations. Peak concentrations at the Cosgrove Intake were 0.075 

mg/L nitrate and 0.002 mg/L ammonium. 

An accidental release of a decaying contaminant into the reservoir would be of concern to 

management based on the modeled short arrival times at the intake (between 2 – 15 days for all 

seasons) and the varying rates of loss for different contaminants. Simulations suggest that 

contaminant spills into the Thomas Basin occurring in the spring and fall, when the reservoir is 

completely mixed, result in arrival of contaminants at the drinking water intake earlier than spills 

occurring in the summer months. However, concentrations of contaminants at the intake are 

greater and more variable during the summer months. A possible operational response to a 

contaminant spill could be to turn the Quabbin transfer on or off, depending on its state at the 

time of a spill. Simulations suggest that turning the Quabbin transfer water off in the event of a 

summer spill can reduce the variability in contaminant concentrations at the intake. 

Information from this study, in conjunction with results presented in Jeznach et al (2014), has 

been used to develop guidelines for reservoir management to follow in the event a contaminant 

scenario arises. A confidential reservoir management document outlines a process in which to 

systematically and scientifically evaluate the severity of a situation and respond to a scenario 

based on contaminant mass, volume, density, miscibility, environmental fate (if known), and 
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season of occurrence. In the event of a contaminant incident, there is capability to run emergency 

hydrodynamic and water quality modeling simulations to refine guidance document estimations 

of contaminant travel time and concentrations, based on known approximate contaminant 

characteristics and current conditions, which can then be communicated to the water utility 

theoretically within several hours.  

1.5.  Conclusions 

In this article, a framework is presented for using hydrodynamic and water quality models to 

assess contaminant impacts on reservoir water quality. The framework follows a set of steps 

based on personal experience modeling contaminant impacts on reservoir drinking water quality 

and working with reservoir management to develop appropriate risk management responses and 

guidelines.  

A case study assessment of the Wachusett Reservoir in central Massachusetts provides an 

example of an application of the framework and how it can be used to quantitatively and 

scientifically guide management in response to varieties of contaminant scenarios. In this study, 

after model development and calibration, two potential contaminant scenarios are investigated. A 

hypothetical fecal coliform input from a sewage overflow and an accidental ammonium nitrate 

spill from a tanker truck were analyzed, including the impacts of decay rates, season, and inter-

reservoir transfers on contaminant concentrations at the drinking water intake. The modeling 

study highlights the importance of a rapid operational response by managers to contain a 

contaminant spill in order to minimize the mass of contaminant that enters the water column, 

based modeled reservoir hydrodynamics. 
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The framework and case study presented in the article present a useful approach to assessing 

contaminant impacts and management responses on surface drinking water sources prior to an 

event occurrence. While protecting source water quality is the most important safeguard against 

drinking water degradation, in the event of an emergency situation, prior detailed modeling 

efforts and scenario evaluations allow for an understanding of contaminant plume fate and 

transport, including potential maximum concentrations that could occur at the drinking water 

intake and contaminant travel time to the intake. It is recommended that hydrodynamic and water 

quality models be developed for all surface water bodies where the potential for contaminant 

entry exists in an effort to guide management response and remediation. 
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CHAPTER 2 

FUTURE CLIMATE EFFECTS ON THERMAL STRATIFICATION IN 
THE WACHUSETT RESERVOIR 

 

Authors 

Jeznach, L.C., Tobiason, J.E., 2015. Future Climate Effects on Thermal Stratification in the 
Wachusett Reservoir, JOURNAL - American Water Works Association , Vol 107, No. 4, pp. 
E197-E209.  

2.1.  Abstract 

A two-dimensional hydrodynamic and water quality model, CE-QUAL-W2, was used to 

simulate the effects of increasing future air temperatures on water temperature, stratification 

timing and duration, as well as changes in winter ice cover in the Wachusett Reservoir, a major 

drinking water supply for metropolitan Boston. Historic model years 2003-2012 provided a 

framework for future synthetic climate scenarios to evaluate the sensitivity of the reservoir 

thermal processes over 100 years. Average epilimnion and hypolimnion temperatures increased 

by about 12% and 7%, respectively, after 100 years of increasing air temperatures. Stratification 

duration increased by 1-2 weeks, beginning earlier and ending later than the historical 

stratification period. Additionally, the average number of days with ice cover decreased 18-57% 

by the end of all scenarios. Results from this study provide insight into the sensitivity of 

Wachusett Reservoir water temperatures and the potential impacts of increasing air temperatures 

due to climate change. 

2.2.  Introduction 

The impact of climate change on water resources is a topic of concern and interest to water 

managers around the world, as many water bodies are already exhibiting responses to an 
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estimated rise in global surface temperatures of approximately 0.7ºC since the start of the 20th 

century (World Meteorological Organization (WMO), 2014). Climate change concerns broadly 

include increasing short term extreme events, and long term changes in rainfall patterns, drought, 

and surface and air temperatures. The implications of these meteorological changes on surface 

water bodies includes changes in the thermodynamic balance across the air and water interface, 

the timing and volume of stream water inflows, and the amount of wind energy inputs the system 

experiences. Meteorology is the driving force for lake internal heating, cooling, mixing, and 

circulation, which are processes that then have an effect on many other ambient water quality 

parameters.  

A body of water exchanges heat mainly at the air-water interface by short wave radiation, long 

wave radiation, conduction, and evaporation (Edinger et al., 1968). The physical processes 

governing water temperature include vertical mixing, attenuation of penetrating radiation, and 

stratification. The temperature response of a waterbody is not immediate, and the speed of the 

response is slower with increasing depth into the water column. The top of the water column 

(epilimnion) exhibits a faster response, corresponding with short term meteorological changes 

over a 24 hour period, and this is usually not apparent further down in the water column. Water 

temperatures of the epilimnion and metalimnion reflect seasonal changes in air temperature. The 

lower portion of the water column (hypolimnion) is shielded from much of the seasonal 

meteorological variability and shows a slower response to increasing air temperatures, with the 

strongest response exhibited during turnover in temperate lakes (Livingstone, 1993). 

The sensitivity of a water body to climate changes can be modeled with a physically based 

process model that simulates the seasonal responses to meteorological forcing (Komatsu et al., 

2007; Lee et al., 2012; Lee et al., 2012; Sahoo and Schladow, 2008; Sahoo et al., 2011; Sahoo et 
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al., 2013; Samal et al., 2012). This type of model has become an important tool for exploring a 

water body’s response to single or multiple climate stressors, which may change independently 

or dependently at different rates. Of all the meteorological drivers, air temperature has the most 

significant effect on water temperature variability (Henderson-Sellers, 1988). An understanding 

of the sensitivity of thermal aspects of a water body to changes in air temperature is the key to 

understanding how climate change may impact water quality, since water temperature affects 

processes such as seasonal dissolved oxygen distribution, nutrient cycling, rates of reactions, and 

algal dynamics.  

Many modeling studies have used future climate projections from General Circulation Models 

(GCM) based on International Panel on Climate Change (IPCC) emission scenarios (typically 

A1B, A2, and B1) to provide the meteorological forcing for future model scenarios (Fang and 

Stefan, 1998; Fang and Stefan, 1999; Fang and Stefan, 2009; George et al., 2007; Komatsu et al., 

2007; Lee et al., 2012; Sahoo and Schladow, 2008; Sahoo et al., 2011; Samal et al., 2012). 

Future impact studies will move toward using the IPCC representative concentration pathways to 

represent a broad range of future greenhouse gas concentrations and climate outcomes to provide 

forcing to GCMs. Downscaled GCM projections can be used as meteorological inputs to a 

watershed model to generate future streamflows which are then used as inputs, in conjunction 

with the meteorological data, to a hydrodynamic process-based model to simulate a water body 

of interest. One dimensional (1-D) and two dimensional (2-D) hydrodynamic models are 

commonly used. For example, Samal et al. (2012) used GCM values of mean daily air 

temperature, wind, and solar radiation projections for 2081 – 2100 to produce change factors that 

were applied to a 39 year record for a watershed model and 1-D lake model of Cannonsville 

Reservoir in New York. A 2-D reservoir water quality model was developed by Komatsu et al 
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(2007) using inputs from the A2 GCM scenario and a runoff model to evaluate the sensitivity of 

the Shimajigawa reservoir to long term effects of climate change on water quality and the aquatic 

ecosystem. Simulations suggested that increasing air temperatures due to climate change will 

increase epilimnion and hypolimnion water temperatures, and lead to earlier thermal 

stratification periods, deeper thermoclines, and later turnovers (Fang and Stefan, 1999; Hondzo 

and Stefan, 1993; Komatsu et al., 2007; Samal et al., 2012). Greater differences between 

epilimnion and hypolimnion water temperatures results in more stable stratification and the 

gradual decrease of deep mixing events in monomictic and facultatively dimictic lakes, so much 

so that in some cases water bodies are unable to overcome density differences and no longer 

become completely mixed during cooler months (Peeters et al., 2002; Sahoo and Schladow, 

2008; Sahoo et al., 2011). Warmer water temperatures also delay ice formation, decrease the 

number of days with ice cover, and reduce maximum ice thickness in the winter months (Fang 

and Stefan, 1998; Fang and Stefan, 2009). 

Climate change impacts on water temperatures consequentially have an effect on many other 

water quality processes within a water body, many of which have been modeled and observed in 

previous studies. Warmer water can lead to an increase in the depth of the anoxic layer in the 

hypolimnion during the open water season but may increase the minimum under-ice dissolved 

oxygen (DO) values by up to 8 mg/L in lakes over the contiguous US (Fang and Stefan, 2009; 

Komatsu et al., 2007). Changes in the timing and duration of stratification will likely impact 

nutrient cycling and anaerobic conditions in the hypolimnion. Increased transport of nutrients, 

particularly soluble reactive phosphorous and ammonium nitrogen, from the sediments to the 

epilimnion during turnover, could lead to greater biological activity (algae) (Komatsu et al., 

2007; Sahoo et al., 2013). Higher water temperatures along with changes in the timing, delivery, 
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and amount of nutrients in the water column may lead to increased frequency and earlier 

occurrence of algal blooms in the future (Komatsu et al., 2007; Peeters et al., 2002). Harmful 

blooms of toxin producing cyanobacteria are a major concern for many drinking water resources 

in the future, since these microorganisms can take advantage of earlier onset, later turnover, and 

more intense vertical stratification as well as changes in anthropogenic nutrient loading, internal 

cycling, and increased atmospheric CO2 supplies (Paerl and Paul, 2012). Climate change impacts 

on the thermal stratification and water quality of water bodies are important to evaluate on a case 

by case basis, since all water bodies will respond differently due to different hydrology, 

geography, and operational rules. 

2.2.1. MWRA/DCR system  

The Quabbin and Wachusett Reservoir System is the drinking water source for 51 communities 

in the Boston metropolitan area and Central Massachusetts (approximately one-third of the 

Massachusetts population). The Massachusetts Water Resources Authority (MWRA) is 

responsible for the delivery and distribution of the water to the communities while the 

Massachusetts Department of Conservation and Recreation (DCR), Division of Water Supply 

and Protection, manages the watersheds surrounding the reservoirs. The Wachusett Reservoir 

was filled in 1908 and has a volume of approximately 202,678 acre-ft (0.25 billion m3 or 65 

billion gallons). By the 1930’s Boston’s increasing demand for water spurred the development of 

the Quabbin Reservoir, 30 miles west of Wachusett and 65 miles west of Boston. The reservoir 

was completed in the 1930’s and has a capacity of approximately 1,297,141 acre-ft (1.6 billion 

m3 or 412 billion gallons), resulting in a combined reservoir system safe yield of approximately 

13.1 m3/s (300 MGD). Periodically throughout the year, water is transferred from the Quabbin 

Reservoir about 30 miles east through the Quabbin Aqueduct to the Wachusett Reservoir, where 
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it is then withdrawn at the Cosgrove drinking water intake, treated at the John J. Carroll Water 

Treatment Plant, and sent to Boston. Water withdrawn at the intake is treated by disinfection, 

fluoride addition, and pH and water chemistry adjustment to prevent corrosion in the distribution 

system. 

The Wachusett Reservoir, the focus of this study, is the second largest water body in 

Massachusetts with a maximum depth of 36.6 m, a length of 13.5 km, and a surface area of 16.8 

km2 (Table 2.1). Approximately 30 to 60% of the annual inflow to Wachusett is from the 

Quabbin Reservoir, allowing for the water surface elevation (WSE) to be highly managed and 

typically maintained throughout the year between the elevations of 118.9 m (390 ft) and 119.3 m 

(391.5 ft). When the reservoir is iced over in the winter months the lower bound is 118.3 m (388 

ft). Secondary objectives for transferring water from Quabbin to Wachusett include introducing 

water with lower natural organic matter content and generating hydropower.  

Table 2.1 Wachusett Reservoir characteristics 

Characteristic Value 
Length 8.4 (13.5 km) 

Max width 1 mi (1.6 km) 
Surface area 6.3 sq mi (16.3 km2) 
Max depth 120 ft (37 m) 

Volume 65 x 109 gal (0.25 km3) 
Mean water age ~ 200 days 
Watershed area 108 mi2 (280 km2) 

Other inflows to the Wachusett Reservoir include precipitation, runoff, and flow from nine 

tributaries, as indicated on Figure 2.1. The largest tributaries, the Stillwater and Quinapoxet, 

enter the reservoir from the northwest and contribute approximately 30 to 40% of the total 

annual inflow. The Cosgrove Intake, located at the eastern end of the reservoir, is the major 
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withdrawal from Wachusett but water also leaves through evaporation, direct withdrawals to the 

nearby town of Clinton, as well as releases and spills to the Nashua River. 

 

Figure 2.1 Wachusett Reservoir major inflows and outflows 

The impacts of climate change on the Quabbin and Wachusett system have been investigated 

previously, but from the perspective of water quantity (e.g. safe yield) and not water quality 

(Kirshen and Fennessey, 1995; Pica, 2012; Yates and Miller, 2010). A study done by Kirshen 

and Fennessey (1995) showed serious decreases in reservoir safe yield during some future GCM 

climate scenarios but increases in safe-yield during other scenarios, when increases in 
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temperature were offset by increases in precipitation and streamflow. The contradictory results 

of the GCM’s indicated the uncertainty of predicting climate change impacts on the system. Pica 

(2012) used an ensemble of 112 GCM projections to evaluate climate change impacts on 

performance metrics such as reliability and safe yield. In general, the study showed an increase 

in safe yield with the future scenarios as air temperature and precipitation are generally predicted 

to increase for the region (Pica, 2012). However, the variability in the GCM projections 

sometimes produced opposite results, indicating decreased safe yield in the future. A study by 

Yates and Miller (2010) indicated that the Wachusett and Quabbin system was able to maintain 

safe yield and moderate increases in safe yield in most future climate scenarios, due to the large 

over-year storage of the water in the system. Climate change impacts on water quality 

parameters in the reservoir have not been previously investigated, and given the sometimes 

contradictory results of previous studies, investigating and planning for multiple future sets of 

conditions is warranted. 

For this study, the sensitivity of reservoir water temperature, thermal stratification behavior, and 

ice cover were analyzed by simulating a range of possible future air temperature scenarios 100 

years into the future. Comparisons of the future scenarios to a baseline scenario (no change from 

historic air temperatures for the years 2003-2012) were used to evaluate trends in reservoir 

thermal processes, such as stratification onset, duration and turnover during the open water 

season, and the onset, growth, and melting of ice during the winter months. An understanding of 

the sensitivity of reservoir thermal processes is an important first step to determining other water 

quality characteristics impacted by water temperature and future changes in reservoir process 

drivers. 
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2.3.  Model development 

2.3.1. Model description 

For this study, the two-dimensional longitudinal and vertical, hydrodynamic and water quality 

model, CE-QUAL-W2 (Version 3.7), was used to simulate historical data and future climate 

change scenarios for the Wachusett Reservoir (Cole and Wells, 2008). The model is best used for 

relatively long and narrow water bodies that have longitudinal and vertical water quality 

gradients because lateral variations in velocities, temperatures, and constituents are assumed to 

be negligible. The model has been used to simulate a combination of rivers, lakes, reservoirs, and 

estuaries around the world (Cole and Wells, 2008). The model was a logical choice for this study 

because of its extensive calibration, verification, and application in many previous studies of the 

Wachusett Reservoir (Buttrick, 2005; Camp et al., 1995; Devonis, 2011; Jeznach et al., 2014; 

Joaquin, 2001; Matthews, 2007; Sojkowski, 2011; Stauber, 2009). 

The modeling grid for Wachusett Reservoir, shown in Figure 2.2, was modified from the grid 

developed by Camp, Dresser, and McKee (CDM, 1995). The bathymetry of the reservoir was 

represented by 5 branches, made up of 64 laterally averaged segments with up to 47 layers 

varying in thickness from 0.5 m to 1.5 m. Segment 46 represented the Cosgrove Intake, where 

water was withdrawn using a selective withdrawal algorithm. The intake was modeled as a 

selective line sink at an elevation of 104.3 m, within layer 33 and layer 35 was the bottom layer 

from which selective withdrawal could not occur. The actual intake has multiple intakes, 

however the shallower intake is typically used and was included in the model. 
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Figure 2.2 The plan view and side view of the reservoir modeling grid 

2.3.2. Input data 

 Historical data (2003-2012) available for this study were used to drive all model simulations and 

included measured time series of daily reservoir inflows and associated temperatures and specific 
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conductivity, meteorological data (hourly air temperature, dew point, solar radiation, wind speed, 

and wind direction) and daily outflows from withdrawals, spills, and releases. The Stillwater and 

the Quinapoxet Rivers, the two largest tributaries, are gaged for flow by the United States 

Geological Survey (USGS) and account for the drainage of approximately 73% of the watershed 

area. Flow from the ungaged minor tributaries was estimated based on the daily watershed yield 

of the Stillwater River, as described in Tobiason et al (2002). Inflows from the Quabbin Reservoir 

were measured by the MWRA at the Quabbin Aqueduct. Direct runoff was estimated based on 

the ratio of Stillwater daily discharge to Stillwater watershed area multiplied by the total direct 

runoff area. Hourly meteorological data, including precipitation, for the Worcester Regional 

Airport, approximately 10 miles southwest of the reservoir, were obtained from the National 

Oceanic and Atmospheric Administration (NOAA). Daily outflows from the reservoir were 

recorded by the MWRA. 

2.3.3. Historical simulation 

Model input files for the years 2003-2012 were created using data for meteorology, bathymetry, 

inflow and outflow, water quality, initial flow and constituent conditions, and outlet descriptions. 

Uniform temperature and constituent initial conditions were applied to the reservoir on January 

1, 2003 (Julian day 1 of the model simulation) because the reservoir was assumed to be 

completely mixed on this day of the year. Measured WSE and in-situ profiles for temperature 

and specific conductivity were compared to modeled WSE and profiles from the years 2003-

2012. Modeled WSE was within 0.15 m (0.5 ft) of the MWRA measured WSE. 

Figure 2.3 compares the temperature profile measurements (indicated by circles) in the North 

Basin with the model results (a solid line) in segment 42 on three different days in the year 2008, 

as an example profile comparison. Temperature profiles were nearly uniform in the winter 
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months through the early spring and became stratified into the three layers (epilimnion, 

thermocline, and hypolimnion) around May as the surface water temperature began to increase in 

response to increasing air temperature. Cooler weather in the fall decreases the epilimnion 

temperature, reducing the density difference between the epilimnion and the hypolimnion until 

the water column becomes unstable. In the processes called turnover, cooler water from the 

epilimnion plunges down in the water column mixing with the hypolimnion water and wind 

helps to mix the entire reservoir. The timing and the extent of the thermocline development and 

turnover was accurately simulated and temperatures were, on average, within 1.4˚C of the 

measured data throughout the 10 years. 

 

Figure 2.3 North Basin (segment 42) water temperature profiles for three days in 2008 

Specific conductivity profile measurements were used to calibrate and validate the transport of 

the non-reactive constituents in the model. Since specific conductivity is not simulated by the 

CE-QUAL-W2 model, measurements were converted to total dissolved solids (TDS) 

concentrations, which are included as a model water quality parameter, using a site specific 

relationship for a Wachusett Reservoir tributary (Tobiason et al., 2002). This relationship, as 
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expressed in Equation 2.1, can be used if it is assumed that TDS in water consists mainly of 

inorganic ions that conduct electricity and that there is a constant relative ionic composition in 

the reservoir throughout the simulations. 

 𝑇𝑇𝑇𝑇𝑇𝑇 �𝑚𝑚𝑚𝑚
𝐿𝐿
� = 0.6 × 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆𝐶𝐶𝑆𝑆𝑡𝑡𝐶𝐶 (µ𝑆𝑆

𝐶𝐶𝑚𝑚
)  Equation 2.1 

Figure 2.4 compares specific conductivity profile measurements (circles) in the North Basin with 

model results (solid line) for segment 42 for three different days in 2008 The model accurately 

simulated the specific conductivity in the epilimnion and hypolimnion throughout most of the 

years and model results were on average within 15 µS/cm of the measured values. Water that 

was transferred from the Quabbin Reservoir was typically lower in specific conductivity and 

cooler than the Wachusett Reservoir surface temperature. The transfer exists as an interflow 

density plume approximately 10 m thick and about 5 to 15 m below the water surface of the 

Wachusett Reservoir. The signature of the interflow water was evident in the specific 

conductivity profiles when the Quabbin transfer was operating and can be seen in Figure 2.4. 

 

Figure 2.4 North Basin (segment 42) specific conductivity profiles for three days in 2008 
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2.3.4. Future climate scenarios 

Downscaled annual average temperature and precipitation from 112 GCM projections for three 

different IPCC emission scenarios (A1B, A2, and B1) over the Quabbin and Wachusett 

watersheds are discussed in Pica (2012). The GCMs generally suggest increases in annual 

average temperature and precipitation for this region in the future, although the variability of 

these projections with increasing projected future time also increases. In general, the average 

annual temperature is projected to increase by about 1.5˚C by 2030, 2.5˚C by 2050, and nearly 

3˚C by 2070 (Pica, 2012). The average annual precipitation is expected to increase 5% by 2030, 

7% by 2050, and almost 8.5% by 2070 (Pica, 2012). The increase in temperature and 

precipitation would affect the amount and timing of streamflow in the region. Increased 

precipitation would likely result in increased streamflows, but higher temperatures may impact 

the timing of these flows and the amount of flow lost to evapotranspiration. GCMs are 

commonly used as a starting point to drive climate assessments of water bodies. Downscaled 

meteorology output from the GCMs are input to a hydrology model to generate streamflows, 

then meteorology and streamflows are used as inputs to a hydrodynamic and water quality 

model. A criticism of GCM models is that they are inherently biased and the variability in the 

results may not truly capture the range future climate uncertainty (Brown and Wilby, 2012; 

Brown et al., 2012). GCM projections are often perceived as forecasts by decision makers and 

stakeholders, making management decisions unclear when results present sometimes 

contradictory information. An alternative approach is based on a sensitivity analysis of a system 

of interest and uses GCMs to inform, rather than drive the analysis. System sensitivity can be 

explored using scenarios referred to as synthetic scenarios where a particular climatic element, 

such as temperature, is changed by realistic amounts, often in line with climate model projections 
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for the area (Anandhi et al., 2011; Carter et al., 1994).  With this approach, climate conditions 

that may stress system thresholds and vulnerabilities can be identified and the synthetic 

conditions can be compared to the range of conditions suggested by GCM projections as a way 

to prioritize management decisions.  

Calibrated and verified CE-QUAL-W2 models for 10 years, based on historical data for 

Wachusett Reservoir, were used as the framework for future synthetic climate scenario 

development. Systematic increases in air temperature were used to evaluate the sensitivity of the 

reservoir thermal processes over a period of 100 years into the future (2013-2112). A 100 year-

long future time series of inputs was created from the 10 years of historic calibrated and 

validated data (2003-2012), as it was assumed that 10 years was long enough to provide a 

representative description of the base, or current, conditions. These historic years were repeated 

10 times in the order in which they occurred to maintain a realistic WSE within the highly 

managed elevation range. Rearranging the order of the 10 historic years, without additionally 

altering the inflows or outflows, produced unrealistically high or low WSEs if two similar years 

(e.g. two higher inflow years) occurred adjacent to one another. To estimate the potential effect 

of changing air temperatures on the sensitivity of the thermal processes in the reservoir, the same 

historical meteorological data was used but with the increased air temperature scenarios. A “base 

scenario” with no change from historic air temperature over 100 years, was used to compare to 

four increasing air temperature scenarios. The increasing air temperature scenarios were 

developed by imposing an increasing linear trend on the historic air temperatures of 1, 2, 3, and 4 

˚C over the 100 year long time series. The range of temperatures is within the range projected by 

GCMs for the region (Pica, 2012). For these simulations, other historical meteorological 

parameters and precipitation remained unchanged from historic values. Increases in precipitation 
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in the region, as projected by many GCM models, would likely reduce the need to transfer water 

from the Quabbin Reservoir for quantity purposes and possibly increase the releases to the 

Nashua River to maintain WSE. However, increasing precipitation could also increase nutrient 

loading from tributaries and direct runoff into the reservoir, possibly requiring more water from 

the Quabbin Reservoir to be transferred to improve water quality, a subject of a future study. 

The timing and the amount of inflow from the tributaries was unaltered for this study. However, 

the tributary temperatures were adjusted in response to the increasing air temperature trends 

imposed on the meteorology data, since tributary temperatures are reflective of short-term 

(weekly) changes in air temperature. A nonlinear regression model developed by Mohseni et al 

(1998) was used to simulate weekly stream temperatures using weekly air temperatures. 

Equation 2.2 was used to estimate stream temperature (Ts), 

 𝑇𝑇𝐶𝐶 = 𝜇𝜇 +
𝛼𝛼 − 𝜇𝜇

1 + 𝑆𝑆𝛾𝛾(𝛽𝛽−𝑇𝑇𝛼𝛼) Equation 2.2 

Where parameters α and µ specify the estimated maximum and minimum weekly stream 

temperatures, respectively, γ is a measure of the slope of the function, and β is the air 

temperature at the point of inflection (Mohseni et al., 1998). The stream temperature model 

simulated historic weekly stream temperatures for the nine tributaries in the Wachusett 

watershed well, with Nash-Sutcliffe (NSC) values and root mean square error (RMSE) values in 

the range of 0.64 – 0.86 and 1.95 - 4.04, respectively. Direct runoff temperature for historic 

simulations was calculated as an average of the tributary temperatures, and was calculated using 

the same method for future simulations.  

It was assumed that the temperature of the Quabbin transfer water remained unchanged from the 

historical temperatures. The Quabbin Reservoir is over 6 times larger than Wachusett and the 
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water temperature response to air temperature increases would likely by lagged compared to 

Wachusett, based on the volumes. Since there was no trend evident in available historical 

Quabbin water temperature data, it was unclear how to speculate to what extent the Quabbin 

water temperatures may change in response to air temperature increases without modeling the 

Quabbin reservoir processes in addition to Wachusett. Since the withdrawal to the Quabbin 

Aqueduct is deep in the water column, it was assumed that temperatures at this location would 

not respond to increases in air temperatures as rapidly as the surface water temperatures. Initial 

Wachusett Reservoir model simulations showed average water temperature increases of less than 

2 °C with a 4 °C air temperature increase. A sensitivity test was also conducted with the 

Wachusett CE-QUAL-W2 model where Quabbin transfer water temperatures were linearly 

increased up to 2 ˚C over 100 years with a 4 degree air temperature increase and the results 

showed no significant difference in Wachusett epilimnion, hypolimnion, or Cosgrove Intake 

water temperature trends compared to historical water temperature simulation throughout the 

decades. This indicates that Wachusett water temperatures are driven more by air temperatures 

than the temperature of the Quabbin water, even though 30 to 60% of the annual inflow to 

Wachusett is from the Quabbin Reservoir. This result is consistent with literature stating that 

meteorological forcing is the main driver of water temperature in single lake systems (Edinger et 

al., 1968; Henderson-Sellers, 1988). However, increasing air temperature impacts on the 

Quabbin water temperatures may warrant further investigation in future studies. Initial 

temperature and specific conductivity the first day (January 1, 2013 and Julian day 1) of the 

future simulations (2013-2112) were uniform, as the reservoir was assumed to be completely 

mixed.  
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2.4.  Results and discussion  

2.4.1. Epilimnion and hypolimnion temperatures 

 Increasing air temperature in the future will have an effect on epilimnion and hypolimnion water 

temperatures in the Wachusett reservoir. For this study, epilimnion and hypolimnion 

temperatures were defined as the average water temperature in the upper and lower 5 m of the 

water column, respectively. Figures 2.5 and 2.6 illustrate the sensitivity of the Wachusett 

Reservoir epilimnion and hypolimnion water temperatures when increasing air temperature 

scenarios are imposed. The figures show the future scenario water temperature difference from 

the base scenario (100 years into the future with no air temperature trend) at three 10 year long 

time slices along the x-axis: the first (2013-2022), middle (2053-2062), and last (2103-2112) 

decades for each of the four increasing air temperature scenarios, indicated by the colors. Each 

box shows the median, 1st quartile, 3rd quartile, and range (minimum and maximum) daily water 

temperature differences from the corresponding day in the base scenario during a given decade. 

A positive difference in water temperature from the base scenario along the y-axis indicates 

future water temperatures that are higher than the base scenario and a negative difference 

indicates future water temperatures that are less than the base scenario.  

In general, median water temperatures, represented by the line through the box plots in Figure 

2.5 and Figure 2.6, for both the epilimnion and hypolimnion increased with increasing air 

temperature. The results illustrate how changes in air temperature affect water temperature at 

different depths in the water column. A greater water temperature increase occurred in the 

epilimnion, as expected since the epilimnion is at the air/water interface and directly exposed to 

the changing meteorological forcing (Livingstone, 2003; Livingstone, 1993). Median daily 

epilimnion water temperature increased in the range of 0.4 to 1.5 ˚C for the 1˚ to 4˚C air 
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temperature change, respectively. Hypolimnion median water temperature increased less, in the 

range of 0.1 to 0.4 ˚C for the same future air temperature range. Average future epilimnion and 

hypolimnion water temperatures increased by as much as 12% and 7%, respectively.  

 
Figure 2.5 Future scenario epilimnion water temperature difference from the base scenario 

 

 
Figure 2.6 Future scenario hypolimnion water temperature difference from the base scenario 
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These average increases in epilimnion and hypolimnion water temperatures are within the range 

of increases simulated by Samal et al (2012) to occur by 2100 in the Cannonsville Reservoir 

(about 14.5 times larger volume than Wachusett with an approximate volume of 293,689 acre-ft 

and residence time of 237 days) when the future meteorology was based on A1B and A2 IPCC 

emission scenarios. The Cannonsville epilimnion and hypolimnion water temperatures were 

simulated to increase on average between 10-12% and 6-14%, respectively, during the thermal 

stratification period. Future changes in water temperatures predicted by Komatsu et al (2007) for 

the Shimajigawa reservoir in Japan, (12 times smaller in volume than Wachusett with an 

approximate volume of 16,700 acre-ft) are larger than those predicted in this study. GCM A2 

scenario predictions over the region of the Shimajigawa reservoir suggest air temperature 

increases of 2.1 ˚C in the summer and 3.5-4.0 ˚C in the winter by the years 2091-2100, could 

result in an increase in the average epilimnion and hypolimnion water temperatures by 3.6 and 

2.8 ˚C, respectively. 

The minimum and the maximum water temperature differences from the base scenario became 

lower and higher respectively when air temperature was increased, indicating that throughout the 

10 year time periods shown in Figures 2.5 and 2.6 there were days when water temperature was 

greater than the base scenario and also less than the base scenario. Negative water temperature 

differences occurred during the winter months, when the higher air temperatures decreased or 

eliminated ice formation and melt, as discussed in the following section. Ice and snow cover 

during the winter shields reservoir water from meteorological conditions and provides insulation, 

which maintains slightly warmer water temperatures during the ice covered months (Doran et al., 

1996; Livingstone, 1993). When there was less or no ice cover in the future simulations, water 

was exposed to the cold winter air temperatures and became cooler than what it had been 
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historically. Decreases in hypolimnion temperatures in future scenarios have also been observed 

in simulations of deep (24 m) Minnesota lakes by Hondzo and Stefan (1993), although winter ice 

cover was not included in those simulations and cooler temperatures were attributed to an earlier 

onset of stratification, which shielded the hypolimnetic water from surface heating. 

Figure 2.7 show the average monthly epilimnion and hypolimnion water temperatures for the last 

10 years of the 100 year long future scenarios with 4˚ C increasing air temperatures. The 

monthly water temperatures were averaged over each decade to identify and illustrate the general 

monthly changes and trends as a response to increasing air temperatures scenarios. Average 

epilimnion water temperatures increased throughout the year by about 2 ˚C, except during the 

months of February and March, where water temperatures were essentially the same as base 

scenario water temperatures. The maximum water epilimnion temperature occurred during July 

and August, when air temperatures were the highest. Average hypolimnion water temperatures 

increased by about 1 ˚C in November, December, and January, and were about 0.5 ˚C higher 

during the summer months. Hypolimnion water temperature in February was, on average, cooler 

than the base scenario by about 0.2 ˚C and average March hypolimnion water temperature was 

approximately the same as it was in the base scenario.  As mentioned previously, the colder 

water temperatures during February and March were the result of decreased ice cover in the 

winter with higher air temperatures, therefore the open water was exposed to cold winter air 

temperatures. Maximum hypolimnion water temperatures occurred in November, at 

approximately the same time as the fall turnover. Average monthly water temperatures for other 

scenarios showed similar trends but changes of lesser magnitude. 
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Figure 2.7 Average monthly epilimnion (a) and hypolimnion (b) water temperatures for the last 
10 years (2103-2112) of the 4 ˚C increasing air temperature scenario 

Changes in epilimnion and hypolimnion water temperatures affected the length of the summer 

stratification period. The difference between epilimnion and hypolimnion water temperatures of 

a water body is an indicator of the strength of the stratification. For this study, the reservoir was 

considered stratified when the temperature difference between the epilimnion and the 

hypolimnion was greater than 1 ˚C, a criteria defined in Hondzo and Stefan (1996) and used in 

subsequent studies (Fang and Stefan, 1999; Fang and Stefan, 2009). Table 2.2 shows the average 

and the range of the number of days that the reservoir was stratified in the base scenario and for 

all the increasing air temperature scenarios. The average length of stratification throughout the 

10 historical years of calibrated and validated data was about 207 days in length with a range of 

approximately 183 – 235 days. With increasing air temperatures, the average number of days that 

the reservoir was stratified increased to 212 days (a 5 day increase) by the middle decade and to 

220 days (a 13 day increase) by the last decade of the scenarios. During the first 10 years of each 
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of the scenarios there was essentially no change in the length of stratification. Simulated climate 

change impacts on the length of stratification in the Cannonsville Reservoir by Samal et al 

(2012) indicated similar increases in the number of stratified days (7 days longer for A1B and 12 

for A2 scenarios) by the year 2100. 

Table 2.2 Changes in stratification duration (in days) with increasing air temperatures 

Scenario 
2013-2022 2053-2062 2103-2112 

Average Range Average Range Average Range 
Base 207 183 - 235 207 182 – 234 207 183 - 235 
1 ˚C 207 183 - 235 207 183 – 235 208 184-237 
2 ˚C 207 183 - 235 208 184 – 236 213 185-241 
3 ˚C 207 183 - 235 210 185 – 238 215 187-244 
4 ˚C 207 183 - 235 212 186 - 245 220 188-254 

 

In addition to the changes in the length of the stratification periods, the timing of stratification 

and turnover was altered by increasing air temperatures. By the last decade of each of the 

increasing temperature scenarios, stratification occurred on average between 0 and 5 days earlier 

and a maximum of 10 days earlier with a 4 ˚C increase. Fall turnover in the reservoir occurred 

between 1 and 8 days later on average than the average turnover date in the base scenario. 

Turnover occurred as much as 18 days later in the scenario with the 4 ˚C air temperature 

increase. Changes in the timing and the duration of stratification in the reservoir could have an 

impact on nutrient cycling and could result in changes in the timing and duration of algal 

blooms. However, Wachusett Reservoir and Quabbin Reservoir are characterized as oligotrophic 

water bodies, and therefore impacts to nutrient cycling and algal blooms would likely be less 

than those observed and modeled in previous studies (Komatsu et al., 2007; Lee et al., 2012; Lee 
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et al., 2012; Peeters et al., 2002; Sahoo and Schladow, 2008; Sahoo et al., 2011; Sahoo et al., 

2013; Samal et al., 2012). 

2.4.2. Ice cover 

In addition to increasing water temperatures, changes in meteorological conditions affect ice 

cover formation, growth, and melting on the reservoir.  CE-QUAL-W2 can simulate the onset, 

growth, and breakup of ice cover. When the surface water temperature becomes lower than the 

freezing point, the negative temperature is converted to an equivalent ice thickness and 

equivalent heat is added to the heat source and sink term for the water. Once there is a net gain of 

heat to the surface and the surface temperature becomes greater than the freezing temperature, 

the ice begins to melt. Ice cover, growth, and breakup depend on locations of temperatures of 

inflows and outflows, evaporative wind variations over the ice surface, as well as turbulence and 

water movement beneath the ice. Ice growth or melt at the ice-water interface in CE-QUAL-W2 

can be described by the following Equation 2.3 (Cole and Wells, 2008). 

 
∆𝜃𝜃𝐶𝐶𝑖𝑖𝐶𝐶 =

1
𝜌𝜌𝐶𝐶𝐿𝐿𝑓𝑓

[𝐾𝐾𝐶𝐶
𝑇𝑇𝑓𝑓 − 𝑇𝑇𝐶𝐶𝐶𝐶

𝜃𝜃𝐶𝐶−1
− ℎ𝑖𝑖𝐶𝐶�𝑇𝑇𝑖𝑖𝐶𝐶 − 𝑇𝑇𝑓𝑓�] Equation 2.3 

Where θiw is ice growth/melt at the ice-water interface (m), ρi is density of ice (kg/m3), Lf is 

latent heat of fusion (J/kg), Ki is thermal conductivity of ice (W/m˚C), Tf is freezing point 

temperature (˚C), θ is the ice thickness (m), Ts is ice surface temperature, (˚C), hwi is the 

coefficient of water-to-ice heat exchange through the meal layer (W/m2˚C), and Tw is water 

temperature below the ice (˚C). For the historical years 2003-2012, CE-QUAL-W2 simulated the 

duration of ice cover in the North Basin of the reservoir within 8 days, on average, of the 

observed duration. 
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Figure 2.8 illustrates how the average number of days with ice cover during each decade changes 

with increasing air temperature scenarios. The number of days with ice cover were averaged over 

each decade in the scenarios to identify and illustrate the general changes and trends as a 

response to the changing meteorological driver. The sensitivity of individual years to changes in 

ice cover varied by year, depending on the particular meteorological and hydrologic conditions 

of that particular year. The average number of days that the reservoir was ice covered throughout 

the base scenario was about 49 days per year. By the last decade of each of the scenarios, the 

average number of days with ice cover in the North Basin each year was approximately 41, 32, 

31, and 22 days for the 1, 2, 3, and 4 ˚C increases in future air temperatures, respectively. 

 

Figure 2.8 Average number of days with winter ice cover in the North Basin for increasing air 
temperature scenarios 

Average annual ice cover thickness also decreased with increasing air temperature scenarios, as 

seen in Figure 2.9. The average annual ice thickness in the North Basin during each decade for 

the base scenario was approximately 0.15 m. By the last decade of each of the scenarios, the 

average ice thickness in a winter decreased to 0.13, 0.12, 0.10, 0.09 m for the 1, 2, 3, and 4 ˚C 

increases in future air temperatures, respectively. The average maximum ice thickness during the 
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base scenario was approximately 0.44 m throughout the future 100 years and decreased by as 

much as 0.14 m by the last decade of the 4 ˚C air temperature scenario. Ice thickness over the 

contiguous United States under climate change scenarios was simulated to decrease by an 

average of 0.21 m in a study done by Fang and Stefan (1998). Results from this study are 

consistent with results of Fang and Stefan (1998; 1999), which indicated delayed ice formation, 

earlier melt, and reduction in ice thickness under scenarios investigating a possible doubling of 

atmospheric CO2. 

 

Figure 2.9 Average ice thickness in the North Basin for increasing air temperature scenarios 

2.4.3. Cosgrove intake temperatures 

The effect of increasing air temperatures on water temperature at the Cosgrove Intake is seen in 

Figure 2.10. The plot shows the first, middle, and last decade within each of the four increasing 

air temperature scenarios, as indicated by the colors, and the Cosgrove Intake water temperature 

difference from the base scenario. With increasing air temperature the median water temperature 

at the Cosgrove Intake was greater than the base scenario. With a 4˚C air temperature increase 

over 100 years, the median water temperature was approximately 1 ˚C higher by the last decade. 
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With increasing air temperatures, there was also increasing variability in water temperature 

differences from the base scenario. If air temperatures increase by 4˚C over the next 100 years, 

simulations suggest that water temperatures could be up to 4˚C warmer (during the summer 

months) and 6˚C cooler (during the winter months) than historical water temperatures in a given 

year. Similar to results discussed previously, cooler water temperatures occurred during the 

winter months and were a result of decreased ice growth, later onset of ice cover, and earlier ice 

melt.  

 

Figure 2.10 Future scenario Cosgrove Intake water temperature differences from the base 
scenario 

2.5.  Conclusions 

Future changes in climate will have varying degrees of impact on the thermal stratification 

processes of water bodies across the globe. The impacts of climate change on the stratification 

processes are important to understand, since water temperature affects many other water quality 

processes, therefore making the topic especially important to drinking water reservoirs, where 
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source water quality is of importance. Changes in thermal stratification as a response to changes 

in meteorological conditions will influence, for example, nutrient cycling, dissolved oxygen 

concentrations throughout the water column, and the timing and duration of algal blooms.  

The purpose of this study was to investigate the sensitivity of water temperature to changes in 

one meteorological parameter, temperature, which is a main driver of many processes occurring 

in the reservoir. This analysis assumed no other changes from historic meteorological data and 

that the historic water balance was maintained. Although the method used in this study limits the 

degree of variability in the future to the variability of 10 historic years, the method still allows 

for an understanding of the trends of changes the reservoir might undergo. Table 2.3 summarizes 

the effects of increasing air temperatures on water temperatures in the Wachusett Reservoir 

during the middle and last decades of the 100 year long future scenarios.  

Table 2.3 Summary of metrics for the middle and last decade of the four scenarios 

10 Year Average 2053-2062 2103-2112 

Epilimnion Temp Increase (˚C) 0.2 – 0.7 0.4 – 1.4 

Hypolimnion Temp Increase (˚C) 0.1 – 0.2 0.1 – 0.4 

Cosgrove Temp  Increase (˚C) 0.1 – 0.5 0.3 -1.1 

Stratification Duration (days) 1 – 6 1 - 13 

Fewer Days of Ice Cover 4 - 11 9 - 28 

Decrease in Max Ice Thickness (m) 0.1 – 0.3 0.2 - 0.6 

In general, the average of epilimnion and hypolimnion water temperature increased with 

increasing air temperatures by about 0.4-1.4˚C and 0.1-0.4 ˚C, respectively by the end of all 

scenarios. These temperatures correspond to average increases in epilimnion and hypolimnion 

water temperatures by up to 12% and 7%, respectively, compared to base scenario temperatures. 

Water temperatures in the epilimnion and hypolimnion in the future scenarios were generally 
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warmer throughout most of the year, and slightly cooler during the winter months, when there 

were changes in ice cover growth, onset and duration. The changes in water temperatures 

resulted in greater differences between epilimnion and hypolimnion temperatures and therefore 

stronger stratification during the summer months. On average, the length of stratification 

increased by about 1-2 weeks, beginning earlier and ending later, towards the end of all 

scenarios. In the base scenario, the reservoir was stratified on average about 57% of the year.  

Under increasing air temperatures, simulations suggest that the reservoir could remain stratified 

up to 8% longer in the future. The average number of days with ice covering the reservoir during 

the winter months decreased by about 8-22% by the middle decade of each scenario and by about 

18-57% by the last decade. When the reservoir was covered with ice, the thickness was less, by 

about 9-40% during the last decade for all scenarios. Additionally, Cosgrove water temperatures 

increased by an average of 0.3-1.1˚C by the last decade of each of the scenarios.  

Results from this study provide greater insight into the sensitivity of the Wachusett Reservoir 

water temperatures to potential projected increases in air temperature due to climate change. The 

use of models to simulate the physical response to climate change is valuable since a model can 

demonstrate that changes in water temperature are not one-for-one with air temperature changes 

and the interaction of ice cover plays an important role in seasonal variability. An understanding 

of how air temperature impacts water temperature for a specific water body is a first logical step 

in any larger climate study, since water temperatures influence many physical, chemical, and 

biological processes within the water body. Future work will evaluate impacts of changing 

multiple model inputs which may be subject to a variety of potential climate change impacts, 

such as additional changes to meteorology and hydrology. The combined effects of changes in 
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inflow volumes, timing, quality, and meteorology is important to understanding and mitigating 

future water quality challenges, especially those related to extreme events. 
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3.1.  Abstract 

Extreme precipitation events are of concern to managers of drinking water sources because these 

occurrences can affect both water supply quantity and quality. However, little is known about 

how these low probability events impact organic matter and nutrient loads to surface water 

sources and how these loads may impact raw water quality. This study describes a method for 

evaluating the sensitivity of a water body of interest from watershed input simulations under 

extreme precipitation events. An example application of the method is illustrated using the 

Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and 

a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations 

during the spring and summer resulted in total organic carbon, UV-254 (a surrogate 

measurement for reactive organic matter), and total algae concentrations at the drinking water 

intake that exceeded recorded maximums.  Nutrient concentrations after storm events were less 

likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-

reservoir transfers of water with lower organic matter content after a large precipitation event has 

been shown in practice and in model simulations to decrease organic matter levels at the drinking 

water intake, therefore decreasing treatment associated oxidant demand, energy for UV 

disinfection, and the potential for formation of disinfection byproducts. 
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3.2. Introduction 

Future climate projections based on global climate models (GCMs) indicate that the average 

annual surface temperatures around the globe will increase while future changes in precipitation 

will vary with geographic region and seasons. The global mean surface temperature has risen 

approximately 0.7ºC since the start of the 20th century and is projected to exceed 1.5ºC by the 

end of the 21st century (IPCC, 2013; World Meteorological Organization (WMO), 2014). 

Warming throughout the century will increase the amount of water stored in the atmosphere, 

possibly leading to a more dynamic hydrologic cycle (IPCC, 2013). Global warming and 

changes in precipitation will not be uniform in time and space and will vary with region as well 

as wet and dry seasons (IPCC, 2013; Stanford et al., 2014).  

There is growing evidence that historically low-probability “extreme” weather events such as 

floods, droughts, and heat waves are occurring more frequently and in different locations than 

they have occurred in the past (IPCC, 2013; NOAA, 2013). Extreme weather events are 

generally defined as those that have less than 1% to 5% probability of annually occurring in a 

specific region and are the result of any substantial change in weather type, severity, frequency, 

duration, or combination of events (Stanford et al., 2014). In the United States, for example, 

analyses of precipitation events during the 20th century demonstrated an increase in precipitation 

and an increase in precipitation intensity, especially during the last three decades of the 20th 

century in the eastern US (Groisman et al., 2004; Groisman et al., 2005). Increased precipitation 

and precipitation intensity in the eastern US have led to increased streamflows in the region, and 

GCM projections indicate a continuation of this trend (Groisman et al., 2004; Groisman et al., 

2005).  
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Climate induced changes to watershed hydrology and water quality, such as changes to tributary 

volumes, timing of inflows, and constituent loads, have an effect on receiving water quality. If 

the receiving water is a drinking water supply reservoir, changes in raw water quality are of 

concern because lower quality raw water increases treatment costs, impairs finished water 

aesthetics, and possibly is a risk to public health. The ability of a waterbody to withstand the 

stress of these altered inflows and loads depends on how stressed the waterbody is in its current 

trophic state under current hydrologic conditions (Murdoch et al., 2000). Additionally, the 

hydrology of reservoirs is often anthropogenically controlled and therefore responses to climate 

change will be influenced by the specific features of the individual system. Gradual changes in 

meteorology and hydrology as well as the increased occurrences of low-probability, short-term 

events are equally important to understand with respect to water quality impacts. Continued 

climate stress may lead to exceeding system thresholds and can result in water quality 

degradation (Murdoch et al., 2000; Whitehead et al., 2009).  Water bodies that are currently 

impaired will require less climate stress to exceed water quality thresholds, while less impaired 

water bodies will be able to tolerate higher stress and change while maintaining high water 

quality.  

Increasing occurrences of low-probability extreme events can result in short-term water quality 

changes (e.g. spikes in nutrient loadings) and long-term water quality impacts (e.g. the 

compounding effect of greater annual nutrient loads) to drinking water sources. Water quality 

degradation as a result of extreme short-term changes in air temperature, precipitation in the 

form of rain or snow (as well as a lack of precipitation, i.e., droughts), tributary flow rates and 

timings, and runoff amounts all affect nutrient, organic matter, and sediment loads, in addition to 

receiving water organic matter composition, algae dynamics, and water age/flushing rates. The 
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frequency and likelihood of event occurrence are also important to consider when evaluating 

impacts of extreme events on water quality, since combinations of several events can result in 

more gradual degradation in water quality over a period of months or years. 

Extreme precipitation events are a major driver for the export of terrigenous organic carbon and 

organic-bound nutrients because erosion and sediment transport during large precipitation events 

are greater than during normal flow conditions. Higher streamflows can lead to greater mobility 

and dilution of constituents as well as greater sediment loads, altering the morphology of rivers 

and sediment transport to surface water bodies (Whitehead et al., 2009). Despite the knowledge 

of the importance of precipitation events controlling carbon and nutrient fluxes to water bodies, 

there have been few published studies that have analyzed fluxes from large or extreme 

precipitation events and most literature is focused on carbon fluxes. 

Organic carbon has an important role in ecosystems since it is involved in the complexation and 

transport of toxic metals and organic contaminants. The costs to remove of organic matter during 

drinking water treatment scale with source water organic matter content. Greater organic matter 

concentrations can increase coagulant and oxidant demands (so higher doses needed) and 

increase the formation of regulated and unregulated disinfection byproducts (DBPs) during the 

disinfection process. It is widely accepted that dissolved organic carbon (DOC) and particulate 

organic carbon (POC) fluxes increase during precipitation events, however it is less clear how 

the ratio of DOC:POC changes with different precipitation volumes and intensities or watershed 

characteristics (Dhillon and Inamdar, 2013; Inamdar et al., 2006; Yoon and Raymond, 2012).  

Studies of forested watersheds that contribute water to drinking water sources indicate that DOC 

and POC fluxes increase dramatically during extreme events. A recent notable example is 
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Hurricane Irene, a precipitation event with a 200 year return period, that impacted the east coast 

of the US in August 2011 (Dhillon and Inamdar, 2013; Yoon and Raymond, 2012). Yoon and 

Raymond (2012) used a series of high resolution measurements to determine the total amount of 

DOC and DON transported in Esopus Creek in New York during Hurricane Irene. The Esopus 

Creek drains 16,500 ha of the Catskill Mountains and eventually discharges into the Ashokan 

Reservoir, a primary drinking water source for New York City. During this event, flows 

increased 330 fold, and concentrations increased 4-fold, resulting in roughly 40% and 31% of the 

average annual DOC and DON mass inputs in only 5 days (Yoon and Raymond, 2012). 

Measurements of DOC and POC from a forested watershed draining the Maryland Piedmont 

during Hurricane Irene were 20% and over 50% of the annual 2011 DOC and POC fluxes, 

respectively (Dhillon and Inamdar, 2013). Measurements from this study indicate a large 

increase in POC fluxes relative to DOC fluxes at a certain event precipitation threshold of 

approximately 75 mm for the study watershed (Dhillon and Inamdar, 2013). Based on this study, 

extreme precipitation events may increase ratios of POC to DOC to greater than one and the 

threshold at which this change occurs will depend on properties of the watershed such as land-

use, vegetation, and geology (Dhillon and Inamdar, 2013). In contrast, the DOC flux from an 

agricultural watershed on the Virginia Coastal Plain during two consecutive tropical storms was 

twice as much as the POC flux due to land use differences (Caverly et al., 2013). Additionally, 

events occurring in lower portions of a large watershed may have a greater and faster impact on 

raw drinking water quality at an intake, since there is less attenuation time for particles and 

organic matter in the system, as observed in a Phoenix, Arizona watershed (Barry et al., 2016). 

Nutrient concentrations and exports during heavy precipitation events are even less well 

understood, since these vary widely with watersheds, seasonal conditions, land cover types, 
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hydrology, geology, and other landscape characteristics. Concentrations of nitrogen species in 

the northeastern United States have been observed to be higher during spring events, which can 

be attributed to snowmelt and the flushing of nitrate (NO3-) accumulated in the soil during the 

dormant winter season (Correll et al., 1999; Inamdar et al., 2006). For a glaciated forested 

watershed in western New York, NO3- concentrations increased from pre-event conditions by 

60% during spring snowmelt events from May 2003 through April 2004 but decreased as much 

as 92% during large precipitation events in the summer and fall (Inamdar et al., 2006). The 

maximum changes from pre-event concentrations for ammonium (NH4+) and DOC 

concentrations for the same watershed over 12 months of precipitation events were 240-3200% 

and 120-370%, respectively (Inamdar et al., 2006). Total phosphorous (TP) concentrations 

observed across four adjacent watersheds of differing land uses on the Atlantic Coastal Plain in 

Maryland were higher during summer storms than in the winter and spring (Correll et al., 1999). 

Nutrient concentrations in the forested watershed were the least impacted by increasing tributary 

discharges due to precipitation events compared to croplands and mixed-land use watersheds 

(Correll et al., 1999).  Phosphorus exports from forested catchments have been shown to be 

primarily associated with episodes of high discharge and sediment loads (Meyer and Likens, 

1979).  

Hydrodynamic and water quality models are commonly used to simulate water quality of a 

receiving water body in response to changes in watershed inputs and/or climate change.  The 2-D 

model CE-QUAL-W2 is an example of a commonly used model that has been applied to over 

200 water bodies around the world and has been used to evaluate climate change impacts on 

water quality for many water bodies across the globe (Cole and Wells, 2015; Fang et al., 2007; 

Lee et al., 2012; Samal et al., 2013). Model simulations across many studies using various 
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models indicate that increasing air temperatures due to climate change will result in increased 

epilimnion and hypolimnion water temperatures, earlier stratification periods, deeper 

thermoclines, later turnovers, and decreased ice cover in colder regions (Fang and Stefan, 1998; 

Fang and Stefan, 1999; Fang and Stefan, 2009; Hondzo and Stefan, 1993; Jeznach and Tobiason, 

2015; Komatsu et al., 2007; Sahoo and Schladow, 2008; Sahoo et al., 2011; Samal et al., 2012). 

Changes in water temperature can affect other in-situ water quality parameters such as dissolved 

oxygen and processes such as nutrient cycling and algal dynamics (Fang and Stefan, 2009; 

Komatsu et al., 2007; Sahoo et al., 2013). Lake and reservoir models coupled with watershed 

models have simulated changes in nutrient and organic matter watershed loads (Debele et al., 

2008; Narasimhan et al., 2010). Model simulations of future long-term increases in precipitation 

over a watershed indicate increased nutrient loads to a receiving water body (Chang et al., 2001). 

This study and the Hagemann et al (2016) companion study, quantify the potential impacts of 

extreme precipitation events on tributary and receiving water quality, particularly those water 

bodies used as drinking water sources. A major objective of these studies was to develop a 

method to evaluate extreme precipitation event impacts on water quality in a watershed (as 

described in Hagemann et al (2016) and in a drinking water reservoir (as described in this study). 

The method was applied in both studies to the Wachusett Reservoir, a major drinking water 

supply reservoir to metropolitan Boston, as an example to ultimately quantify source drinking 

water quality sensitivity to potential extreme precipitation event nutrient loads from the 

surrounding watershed. To the authors’ knowledge, this is the first published study that links 

hypothetical extreme short-term precipitation event watershed nutrient loads with simulated 

receiving water body quality and proactively models the impacts of such an event. The method 

and example application presented are beneficial to water managers since this type of study can 
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aid in proactive management efforts to maintain or improve water quality in the face of climate 

change and can improve management responses to extreme events to mitigate potential increases 

in treatment costs. 

3.3. Study area 

The Wachusett Reservoir is the second largest water body in Massachusetts, USA, with  

maximum depth of 36.6 m, length of 13.5 km,  surface area of 16.8 km2, and an approximate 

volume of  0.25 billion m3.  The reservoir system includes the Quabbin Reservoir (approximately 

1.6 billion m3) located in western Massachusetts. Water transferred from Quabbin travels 48 km 

(30 miles) east through the Quabbin Aqueduct to the western end of the Wachusett Reservoir. 

Raw drinking water is withdrawn at the Cosgrove Intake, treated, and sent east to Boston via the 

Metrowest Water Supply Tunnel (Figure 3.1). Wachusett Reservoir is classified as oligo-

mesotrophic, and water withdrawn at the intake is not filtered; treatment includes disinfection 

(ozone, ultraviolet light, and chloramines), fluoride addition, and pH and water chemistry 

adjustment to prevent corrosion in the distribution system. Together, the reservoirs have a safe 

yield of approximately 13.1 m3/s, supplying 51 communities (approximately one-third of the 

Massachusetts population) in the Boston metropolitan and central Massachusetts area with 

drinking water. The Massachusetts Water Resources Authority (MWRA) assumes responsibility 

for the delivery and distribution of water to the communities while the Massachusetts 

Department of Conservation and Recreation (DCR) manages the surrounding watersheds. 
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Figure 3.1 MWRA drinking water system 

The Wachusett watershed (excluding the reservoir) area is approximately 286 km2 (70,678 

acres). Land use in the watershed is primarily forested (67.3%), followed by residential (10.8%), 

wetland (7.7%), agriculture (5.7%), open water (2.7%), commercial/industrial (2.3%), and other 

(3.4%) (MA DCR, 2013). The overall amount of impervious land in the Wachusett watershed is 

estimated to be 5.5% (MA DCR, 2013). Approximately 30 to 60% of the annual inflow to 

Wachusett is from the Quabbin Reservoir with the primary transfer objective of maintaining 

water surface elevation and secondary objectives of generating hydropower and introducing 

water with less natural organic matter content than Wachusett Reservoir water. Other major 

inflows to the Wachusett Reservoir include direct precipitation, direct runoff, and inflow from 

nine tributaries. The largest tributaries, the Stillwater and the Quinapoxet rivers, enter the 
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reservoir from the northwest and contribute approximately 30 to 40% of the total annual inflow. 

The Cosgrove drinking water intake, located at the eastern most end of the reservoir, is the major 

withdrawal from Wachusett Reservoir but water also leaves through evaporation, minor 

withdrawals to nearby towns, as well as releases and spills to the Nashua River. 

3.3.1. Data  

Modeled inflows to the Wachusett Reservoir include the Stillwater and Quinapoxet Rivers, seven 

minor tributaries, the Quabbin Transfer, direct runoff, and precipitation. The Stillwater and 

Quinapoxet Rivers are gaged for flow by the USGS and account for the drainage of 

approximately 73% of the watershed area. Flow from minor tributaries was estimated based on 

the daily watershed yield of the Stillwater River, as described in Tobiason et al (2002). The 

inflows to the Wachusett Reservoir from the Quabbin Reservoir were measured daily by the 

MWRA at the aqueduct outlet. Direct runoff was calculated based on the ratio of Stillwater daily 

discharge to Stillwater watershed area multiplied by the entire direct runoff area. Hourly 

precipitation data from the Worcester Regional Airport, approximately 10 miles southwest of the 

reservoir, were obtained from the National Oceanic and Atmospheric Administration (NOAA). 

Hourly meteorological data such as air temperature, dew point temperature, wind speed, wind 

direction, and cloud cover were also acquired from NOAA. MWRA daily measured outflows 

from the reservoir included withdrawals from the Cosgrove drinking water intake, discharge to 

the Wachusett Aqueduct, as well as releases and spillway discharges to the Nashua River at the 

Wachusett Dam.  

Water quality data used for the model boundary conditions include constituent concentrations for 

the nine tributaries, precipitation, direct runoff, and Quabbin transfer inflows. Measured 

constituents in addition to water temperature included in the simulations were specific 
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conductivity, total organic carbon (TOC), total phosphorus (TP), nitrate (NO3-N), ammonia 

(NH4-N), and UV-254 (a surrogate measurement for DOC). Since POC and DOC were not 

directly measured in tributaries, it was assumed based on previous watershed work that 5% of 

TOC was POC and the remaining 95% was DOC, of which 20% was assumed to be labile 

dissolved organic matter (LDOM) and 80% was assumed to be refractory dissolved organic 

matter (RDOM) (Bryan, 2004; Buttrick, 2005; Hodgkins, 1999; Jordan and Likens, 1975; 

Roberts, 2003). Algal inputs from tributaries (LPOM) were assumed to be negligible therefore 

all POM in tributary inflows was considered from detritus and therefore refractory (RPOM). 

Tributary orthophosphate (PO4-3) data did not exist for the study period but a prior study 

comparison of outlet PO4-3and TP for the Quabbin Reservoir indicated that, on average, 

approximately 50% of TP was PO4-3 (Garvey, 2000).  

Water quality constituents in precipitation were measured at two National Atmospheric 

Deposition Program (NADP) stations in Massachusetts; one is located on the Prescott Peninsula 

of the Quabbin Reservoir and one in Lexington, Massachusetts (discontinued in September 

2010). Constituents measured at these locations include specific conductivity, NO3-N, and NH4-

N. PO4-3 and TOC precipitation concentrations are not included in this data and concentrations 

for this study were based on the work by Roberts (2003) and Garvey (2000) for the Quabbin 

Reservoir.  

Water quality constituent concentrations for the Quabbin transfer were based on measurements 

by the MWRA at the Chicopee Valley Aqueduct (CVA) withdrawal from Quabbin. The CVA 

withdrawal provides water to the western Massachusetts towns of Chicopee, South Hadley, and 

Wilbraham. For this study it was assumed that water quality at these two withdrawal locations 

were comparable, based on previous work on Quabbin Reservoir water quality Garvey (2000). 
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3.4. Methods 

There are several approaches that can be utilized when modeling future climate change impacts 

on water quantity and quality, however a new approach was developed for this study due to the 

limitations of simulating future extreme precipitation events. The typical approach to simulating 

climate change impacts that generally employs the use of downscaled GCMs to drive watershed, 

systems, and hydrodynamic and water quality models was deemed inappropriate for this 

particular study for several reasons: 1) the poor sub-daily meteorological temporal resolution of 

downscaled projections, 2) the great uncertainty associated with regional precipitation 

projections, especially short term precipitation events (Baker and Peter, 2008; Willems et al., 

2012). There are also limitations to methods commonly used to estimate or simulate watershed 

nutrient loads during average watershed conditions when they are applied to large precipitation 

events such as 1) the current inability to accurately model the relevant processes governing 

constituent concentrations during large events, 2) the lack of or limited temporal and spatial 

sampling of a variety of constituents during extreme rain events in most watersheds, 3) the 

inability to generalize measurements and observations from different studies across different 

watersheds, 4) and the inability in some cases to generalize measurements across one watershed. 

Therefore, this study uses a new approach to understand how extreme precipitation events may 

impact surface drinking water quality. In this method, the sensitivity of water quality in the 

receiving water body was explored based on reasonable choices of precipitation amounts for the 

region of interest and statistically generated ranges in probable concentrations, reflecting the 

uncertainty of predicting concentrations at high tributary flows. Surface water quality was 

assessed using a process-based hydrodynamic and water quality model. The method is discussed 

in the following sections in the context of a case study.  
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3.4.1. Event Watershed Loads  

An overview of the method used to generate watershed flows and constituent concentrations 

resulting from extreme precipitation events is described in this section, but a more detailed 

description of the methods can be found in the Hagemann et al (2016) Part 1 companion paper. 

This study employed a framework for generating watershed inputs (i.e. tributary flows and 

constituent concentrations) to ultimately evaluate water quality in a receiving drinking water 

source. The methodology for generating event watershed loads was a combination of imposed 

storm-rainfall depth hydrology scenarios and a probabilistic model for water quality constituent 

concentrations. This approach accounts for the uncertainties associated with generating 

constituent concentrations in tributaries during extreme precipitation events, since little is 

understood about the processes that effect concentrations during heavy rain events. 

The approach was driven by the choice of a precipitation rate appropriate for the region and the 

particular extreme event investigation. For this case study, three precipitation depths of 101 mm 

(4 inches), 152 mm (6 inches) , and 203 mm (8 inches) over a 24 hour period were chosen, 

representing historical return intervals in the region of 5, 50, and 100 years, respectively. The 

rain was assumed to uniformly occur over the watershed and all excess precipitation was 

assumed to be converted to runoff within 7 days of the imposed rainfall scenario.  

Inflows to the reservoir for a chosen historical base year were modified to account for the 

imposed event precipitation depths. For this study, the year 2011 was used as the base year on 

which to impose the event scenarios since the shape of the hydrographs reflected a typical year 

with moderate snowmelt in the early spring and occasional rainstorms throughout the year. 

During this year there was a mid-April rainstorm (65 mm, 2.6 in,) and a late August hurricane 

event (Hurricane Irene), which is the largest recent “extreme” precipitation event in the 
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watershed. In central Massachusetts, Hurricane Irene produced approximately 112 mm (4.4 

inches) of rain over 2 days, with a maximum precipitation rate of about 12.7 mm/h (0.5 in/hour) 

(NCDC Climate Data Online, Worcester Ma Regional Airport). Extreme event scenarios for this 

study were imposed on the year 2011 over the historic spring precipitation event on April 16th 

and over the August 28th hurricane, during which the reservoir was unstratified and stratified, 

respectively.  

For all tributary inputs, the observed hydrograph was separated into baseflow and direct runoff. 

The extreme event scenario hydrograph was calculated by volumetrically scaling up the direct 

runoff portion of the observed hydrograph by the estimated excess precipitation. Baseflow and 

precipitation losses were assumed constant for an event magnitude, while direct runoff and 

rainfall excess were not (Hagemann et al 2016).  Resulting streamflows for the two largest 

tributaries, Stillwater and Quinapoxet, are shown in Figure 3.2, with the original historic 

streamflow in black and the 101, 152, and 203 mm precipitation scenarios in green, orange, and 

red, respectively. 

 
Figure 3.2 Original and simulated Stillwater and Quinapoxet River flows for 101, 152, and 203 

mm (black, green, orange, red, respectively) spring and summer precipitation events  
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Constituent concentrations in the tributaries were generated probabilistically based on historic 

flow and concentration data from the case study watershed tributaries (Hagemann et al, 2016). A 

multivariate probability model was developed for all constituents in all tributaries, conditional on 

time and hydrological conditions. Predictions of concentrations at higher flows in these models 

have increased uncertainty due to the general lack of data for higher flow events. To account for 

this uncertainty, 100 quasi-Monte Carlo samples were drawn from a two-dimensional space, 

simplified from a multi-dimensional space using principle component analysis. These 100 

samples for each precipitation event depth for each season (spring April event or summer August 

event) were used as boundary conditions to the process-based reservoir model. 

3.4.2. Reservoir Modeling 

The hydrodynamic and water quality processes of the Wachusett Reservoir were simulated using 

the two-dimensional process-based model CE-QUAL-W2 that directly couples hydrodynamic 

and water quality process algorithms. The CE-QUAL-W2 model of the Wachusett Reservoir was 

originally developed and calibrated by Camp, Dresser, and McKee (CDM) and FTN Associates 

using data from the years 1987, 1990, and 1992 (Camp et al., 1995). The Wachusett Reservoir is 

an appropriate application of the model since the relatively long and narrow bathymetry 

produces velocity, temperature and water quality gradients predominantly in two directions 

(longitudinal and vertical). The CE-QUAL-W2 model (various versions) has been used in many 

studies by researchers at the University of Massachusetts, Amherst since the early 1990’s, with 

work focusing on both the Quabbin and Wachusett Reservoirs and a range of water quality 

related topics (Ahlfeld et al., 2003; Buttrick, 2005; Devonis, 2011; Jeznach et al., 2014; Jeznach 

and Tobiason, 2015; Matthews, 2007; Sojkowski, 2011; Stauber, 2009). Version 4.0 was used 

for this study. 
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The Wachusett Reservoir model grid (Figure 3.3) is based on the original model grid developed 

by CDM (1995). The reservoir is divided into five branches and 64 laterally averaged segments, 

each with up to 47 layers. The top layers through layer 31 are 0.5 m thick, layers 32 and 33 are 

0.75 m thick, and the bottom layers 37 through 47 are 1.5 m thick. Inflows from tributaries are 

matched up with the layers whose density most closely corresponds to inflow density. The major 

outflow from the reservoir, the Cosgrove drinking water intake, is represented by segment 46 and 

segment 45 represents the remnants of a coffer dam installed during the construction of the 

intake. Water is withdrawn at this location in the model using the selective withdrawal algorithm, 

which calculates the layers from which water is taken based on total outflow, structure, 

elevation, and computed upstream gradients (Cole and Wells, 2015). Other outflows include 

releases to the Nashua River via a sleeve valve and a spillway (both located at model segment 

44). During simulated precipitation events, additional water was released downstream to the 

Nashua River with consideration for maximum release limits a week prior to and for several days 

after the event until the water surface elevation returned to historical levels. 
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Figure 3.3 Wachusett Reservoir model grid 

The hydrodynamic model algorithms simulate water surface elevations, velocities, and 

temperatures. The water quality constituents included in this application included total dissolved 

solids, dissolved organic matter (labile and refractory), particulate organic matter (labile and 

refractory), algae, phosphorus, ammonium, nitrate/nitrite, and dissolved oxygen. UV-254 

(absorbance at a wavelength of 254 nm and a measure of the amount (and reactivity when 

normalized by DOC) of dissolved natural organic matter in source water) was modeled as a 
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generic constituent with 1st order temperature dependent biochemical decay and an additional 

photodegradation decay rate that varies with depth in the water column, as described by Equation 

Equation 3.1,  

 𝐶𝐶(𝑈𝑈𝑈𝑈254)
𝐶𝐶𝑡𝑡

 = −𝐾𝐾1𝜃𝜃(𝑇𝑇−20)𝑈𝑈𝑈𝑈254 − 𝛼𝛼𝐼𝐼0(1 − 𝛽𝛽)𝑆𝑆−𝜆𝜆𝜆𝜆𝑈𝑈𝑈𝑈254  
Equation 3.1 

where K1 is the first order decay rate (sec-1), θ is the temperature rate multiplier, T is the water 

temperature, α is the user defined photolysis coefficient, I0 is the radiation at the water surface 

(W/m2), β is the fraction of short wave solar radiation absorbed at the surface, λ is light 

extinction coefficient (m-1), and z is the depth in the water column (m). The 1st order UV-254 

decay rate (K1) was set equal to the calibrated refractory organic matter decay rate (UV-254 is a 

surrogate for refractory organic matter) and a value for α, the new photolysis coefficient relating 

light induced decay to irradiance, was determined through calibration. 

The CE-QUAL-W2 model was developed based on the years 2003-2012 using historical data for 

meteorology, bathymetry, inflow and outflow, water quality, initial flow and constituent 

conditions, and outlet descriptions. The ten years used to develop the model are a selection of the 

yearly hydraulic variability of the reservoir, representing a combination of wet and dry years. 

Water quality measurements taken at the intake and from in-situ profiles were used to calibrate 

and validate the model. Water quality profile measurements by the DCR include temperature, 

specific conductivity, pH, dissolved oxygen, and chlorophyll collected from the deepest portion 

of the reservoir (North Basin) approximately every other week throughout the year, except 

during ice cover. Additional profiles are measured less frequently at additional locations in the 

reservoir depending on weather conditions or specific needs. The phytoplankton ecology is 

monitored by the DCR in the reservoir at monthly intervals (or when necessary) and weekly at 
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the intake. Additional water quality data are collected at the intake by the MWRA at variable 

temporal frequencies; temperature and specific conductivity are monitored continuously at 15 

minute intervals while NH4+, NO3-, PO4-3, TOC, and UV-254 are monitored weekly.  

Model simulations of temperature and specific conductivity are compared to measurements to 

verify adequate simulation of the reservoir’s heat budget and the movement of non-reactive 

water quality constituents. The model was previously calibrated and validated for temperature 

and specific conductivity in a prior study (Jeznach and Tobiason, 2015). Additional water quality 

constituents were calibrated and validated to measurements taken at the Cosgrove drinking water 

intake and the root mean square error (RMSE) and absolute mean error (AME) of the final 

calibrated parameters are shown in Table 3.1. Algae were modeled as total algae with units of 

mg-C/L, where 1 mg/L is roughly equivalent to 1600 algal standard units (ASU) per mL, 

depending on the variety of algae in the particular sample. The calibrated model simulates the 

seasonal cycling and patterns of the ten hydraulically different years well, indicating that the 

chosen calibration parameters for the water quality variables are logical choices to generally 

capture the physical, chemical, and biological processes as a response to varying reservoir inputs 

and outputs.  

Table 3.1 Measured and modeled water quality at the drinking water intake 

Water quality 
parameter 

Measured Average 
(2003-2012) 

Measured Range 
(2003-2012) 

RMSE AME 

Sp. Conductivity (µs/cm) 107 68 – 137 45 5 
UV-254 (cm-1) 0.060 0.035 – 0.108 0.030 0.001 
Algae (mg-C/L) 0.19 0.00 – 1.93 0.72 0.03 

TOC (mg/L) 2.4 1.8 – 3.4 0.7 0.1 
PO4 (mg/L) 0.006 0.003 – 0.020 0.014 0.001 
NH4 (mg/L) 0.015 0.005 – 0.098 0.025 0.002 
NO3 (mg/L) 0.098 0.011 – 0.200 0.086 0.006 
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3.5. Results and Discussion 

The focus of the results presented in this study is that of the water quality impacts within the 

reservoir, particularly at the location of the drinking water intake. Extreme event flows as well as 

nutrient and organic matter load inputs from the watershed to the reservoir for these particular 

event scenarios are discussed in Hagemann et al (2016). Given the characterization of Wachusett 

Reservoir as oligo-mesotrophic, measured nutrient (nitrogen and phosphorous) concentrations as 

well as algae growth are low (Table 3.1). Drinking water treatment does not include coagulation 

and particle separation to remove natural organic matter (NOM), a measure of DPB precursors. 

UV-254 is frequently monitored at the drinking water intake because it is effective for estimating 

ozone doses and it can serve as a trigger to initiate Quabbin Reservoir transfer inflows to 

Wachusett Reservoir to reduce organic matter content. Therefore, in-reservoir extreme event 

scenario water quality in this study was evaluated with a focus on organic matter, since treatment 

costs and performance for this particular system are sensitive to fluctuations in organic matter. 

Results are discussed in the context of the maximum spring and summer water constituent 

concentrations at the drinking water intake during the base year 2011 (Table 3.2), with each 

concentration representing a single measurement for a particular month. Rainfall events 

preceding constituent measurements had recurrence intervals of less than 2 years, with the 

exception of the maximum total algae measured on April 19, which occurred 2 days after a rain 

event on April 17 with a return interval of approximately 2 years. The spring in this particular 

watershed is characterized by snowmelt, spring precipitation in the form of rain, and high flows. 

The reservoir hydrodynamics during this time of year are similar to that of a complete mixed 

reactor, with unstratified conditions, low demand, and usually no (or very little) inter-reservoir 

transfer inflows from the Quabbin Reservoir. Although the theoretical mean hydraulic residence 
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time (MHRT) of Wachusett Reservoir based on volume and throughput flow is approximately 

200 days, previous modeling studies estimate that the travel time of constituents in the spring 

from the eastern end of the reservoir (where tributaries are located) can range from 2-7 days on 

average (Jeznach et al., 2014). In comparison, model simulations suggest that the summer travel 

times range from 5-15 days, on average, due to the thermally stratified nature of the reservoir 

during this time of year (Jeznach et al., 2014). The summer is also characterized by higher water 

demands offset by increased inflows from the Quabbin Reservoir primarily to maintain yield but 

also to dilute natural organic matter levels in Wachusett and generate hydropower. Nutrients are 

typically lower in the reservoir during the summer due to increased biological activity. 

Table 3.2 Measured maximum concentrations from the calendar year 2011 

Constituent Spring Maximum Summer Maximum Year Maximum 
UV-254 (cm-1) 0.073 (May 31) 0.077 (June 13) 0.093 (October 3) 

Total Algae (mg-C/L) 0.4 (April 19) 0.5 (June 23) 0.5 (June 23) 
TOC (mg/L) 2.3 (April 4) 2.7 (August 1) 2.89 (December 5) 
PO4 (mg/L) 0.010 (May 2) 0.006 (July 11) 0.010 (May 2) 
NH4 (mg/L) 0.013 (March 7) 0.024 (July 11) 0.024 (July 11) 
NO3 (mg/L) 0.115 (May 2) 0.103 (June 6) 0.115 (May 2) 

 

3.5.1. Spring precipitation event 

The histograms in Figure 3.4 show the frequency distributions of maximum simulated 

concentrations at the drinking water intake for the three event magnitudes (101, 152, and 203 

mm) resulting from the simulated tributary concentration input samples (100 samples per 

precipitation depth per season) following the spring event (Julian day 106, April 16 2011). In the 

spring scenarios, TOC and UV-254 concentrations exceeded 2011 measured springtime values. 

The maximum springtime TOC measurement was 2.3 mg/L at the intake on May 31 and the 

maximum value measured during the year 2011 was 2.9 mg/L on December 5. For the modeled 

scenarios, the median simulated peak TOC concentrations at the Cosgrove for a 101, 152, and 
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203 mm precipitation scenarios fell below 2.66, 2.76, and 2.83 mg-C/L, respectively.  For a 101 

mm precipitation event occurring over 24 hours, the range of simulated concentrations of TOC at 

the intake were between 2.53 and 2.90 mg-C/L, with the maximum concentration simulated for 

this event approximately reaching the 2011 measured maximum. Simulated TOC concentrations 

at the intake for an 203 mm event had a greater spread compared to the 101 mm event, as seen in 

Figure 3.4, with concentrations ranging from 2.54 to 3.37 mg-C/L. TOC concentrations 

increased within 3 days of the event, but the peak concentration did not occur until June 19, 56 

days after the event occurrence. The maximum UV-254 springtime measurement was 0.073 cm-1 

measured on May 31 2011 and the maximum measurement in 2011 was 0.093 cm-1 on October 3. 

For UV-254, the median simulated peak concentrations at the Cosgrove intake for a 101, 152, 

and 203 mm scenarios were 0.081, 0.091, and 0.099 cm-1, respectively, which occurred 13 days 

after the event on April 29. For a 101 mm event occurring over 24 hours, the range of simulated 

concentrations at the intake was between 0.074 and 0.092 cm-1, with the minimum concentration 

for this event size just above the maximum springtime 2011 measurement of 0.073 cm-1. The 

spread of simulated concentrations for a 203 mm precipitation event in comparison is greater 

(0.083 – 0.128 cm-1) indicating less certainty about UV-254 concentrations for this larger event. 
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Figure 3.4 Maximum concentrations at the drinking water intake following the precipitation 
event scenarios (2011 year maximums noted by dotted lines) 

A time series of TOC and UV-254 concentrations at the intake in the days leading up to the event 

and following the event is shown in Figure 3.5. In this figure, the solid line represents the median 

simulated concentration, the dark grey area is the first and third quartiles of the concentrations, 

and the bounds of the light grey area indicate the full range of simulated concentrations from a 

given precipitation depth. With increasing precipitation depth, the median concentration 

increases and the range of concentrations also increases, due to uncertainties associated with 

predicting concentrations during larger events. Impacts of a large event were simulated to last 

over a year, as indicated by the duration for which a range of concentrations at the intake is 

simulated (grey shaded area). 
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Figure 3.5 Time series of TOC and UV-254 concentrations at the drinking water intake in the 
days leading up to and following the spring precipitation event on April 16 (black, dark gray, and 

light gray regions represent the median, 25/75th percentile, and the range 

The maximum algae measurement in the spring of 2011 was 0.4 mg-C/L (640 ASU/mL of total 

algae), on April 19 and the maximum recorded measurement for the year was 0.5 mg-C/L (800 

ASU/mL) on June 23. Model simulations for spring extreme precipitation event scenarios 

indicated algae concentrations would likely exceed the maximum 2011 measurements. For a 101, 

152, and 203 mm precipitation event, the median simulated algae peak concentrations were 0.86, 

0.81, and 0.84 mg-C/L respectively. For a 203 mm precipitation event, the maximum simulated 

concentration was 1.37 mg-C/L, occurring 33 days after the event on May 19.  

Contrary to the organic matter and algae results, it was less likely that extreme precipitation 

event scenarios resulted in concentrations of nutrients at the intake that equaled or exceeded the 

maximum 2011 measurements (Table 3.2). Nutrient concentrations in watershed tributaries are 

typically low and were simulated to remain low during imposed event scenarios (Hagemann et 
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al, 2016). Nutrient loads from the watershed to the reservoir were simulated to increase with 

increasing precipitation depth due to the increased tributary flow volumes; however, reservoir 

model simulations suggest these increased loads and associated in situ processes that contribute 

to reservoir nutrient concentrations will result in concentrations remaining low. The maximum 

measurement of PO4-3 during the year 2011 was 0.010 on May 2. For 101, 152, and 203 mm 

precipitation events, the simulated maximum PO4-3 intake concentrations were 0.008, 0.008, and 

0.009 mg/L, respectively. The maximum measurement of NH4+ during 2011 was 0.024 on July 

11 whereas the maximum simulated event NH4+ maximum concentrations were 0.022, 0.022, and 

0.021 mg/L, respectively. The maximum measurement of NO3- in the spring and in the year 2011 

was 0.115 mg/L, measured on May 2. For 101, 152, and 203 mm events, the greatest NO3- 

maximum concentrations simulated to occur at the intake were simulated to be 0.14, 0.15, and 

0.16 mg/L, respectively, which were slightly above the maximum measurement but not at levels 

of concern. Peak concentrations of PO4-3, NH4+, and NO3- occurred 3, 42, and 3 days after the 

start of the event. 

3.5.2. Summer precipitation event 

Maximum concentration histograms for constituents resulting from summer precipitation events 

on August 28 (Julian day 240) are shown in Figure 3.4. Similar to the spring event results, TOC 

and UV-254 concentrations at the intake became elevated to levels higher than the 2011 

summertime maximums. The maximum TOC measurement in the summer of 2011 and on record 

was 2.7 mg/L on August 1 and the maximum measurement during the year was 2.89 mg/L on 

December 5. For 101, 152, and 203 mm summer precipitation events, the median of simulated 

TOC maximum concentrations were 2.8, 3.2, and 3.9 mg-C/L, respectively, with the 203 mm 

event concentrations exceeding the record measurement 12 days after the event.. Simulated TOC 
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concentrations at the intake for a 203 mm event had a much greater spread compared to the 101 

mm event, as seen in Figure 3.4, with concentrations ranging from 3.02 to 5.36 mg-C/L. TOC 

concentrations increased within 5 days of the event, but the peak concentration did not occur 

until September 19, 22 days after the event occurrence, as seen in Figure 3.6. The maximum UV-

254 measurement in the summer was 0.077 cm-1 on June 13 and the maximum measurement 

during the year 2011 was 0.093 on October 3. In the 101, 152, and 203 mm events, 50% of the 

maximum UV-254 concentrations at the intake were below 0.103, 0.151 and 0.213 cm-1, 

respectively, with all scenarios exceeding the summertime and year maximum measurement. The 

simulated peak concentration was on Sept 9, 12 days after the event. Similar to a spring event, 

increased UV254 and TOC concentrations after a large summer event were simulated over one 

year after the event occurrence. 

 

Figure 3.6 Time series of TOC and UV-254 concentrations at the drinking water intake in the 
days leading up to and following the summer precipitation event on August 28 (black, dark gray, 

and light gray regions represent the median, 25/75th percentile, and the ran 
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The maximum algae measurement during the summer and year of 2011 was 0.5 mg-C/L (800 

ASU/mL total algae) on June 23. For 101, 152, and 203 mm events, the median simulated 

maximum total algae concentrations at the Cosgrove were 0.4, 0.7, and 0.8 mg-C/L, respectively, 

with the 152 and 203 mm events exceeding the maximum 2011 measurement. The peak algal 

concentrations during the summer event occurred on September 30, 33 days after the start of the 

event.   

None of the event scenarios simulated during the summer resulted in PO4-3 or NH4+ 

concentrations that equaled or exceeded the 2011 maximum measurements on record, as shown 

in Table 3.2. For a 101, 152, and 203 mm event in the summer, the simulated maximum PO4-3 

concentrations at the intake were 0.006, 0.007, and 0.009 mg/L, respectively, occurring 12 days 

after the event. The maximum NH4+ concentrations at the intake during the simulated events 

occurred on October 3, 36 days after the event start. The simulated NH4+ maximum 

concentrations were 0.015, 0.016, and 0.017 mg/L for a 101, 152, and 203 mm precipitation 

event, respectively. The maximum NO3- concentration at the intake during the simulated 

precipitation events occurred on September 6, 9 days after the event start. The median simulated 

NO3-concentration from precipitation events exceeded the 2011 summer and year maximum 

measurements. For 101, 152, and 203 mm events, the maximum simulated NO3- concentrations 

were 0.094, 0.142, 0.140 mg/L, respectively. 

3.5.3. Impacts of management decisions 

The calibrated hydrodynamic and water quality model can be used to evaluate the effectiveness 

of various management decisions that can be made if an extreme precipitation event were to 

occur. Management decisions that may improve water quality after a precipitation event will be 
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case specific; however, the following is an example analysis for the Wachusett Reservoir 

illustrating the concept.  

Elevated levels of organic matter in the reservoir, and particularly at the drinking water intake, 

are of concern to Wachusett Reservoir managers, while nutrients remain low throughout the year 

and are relatively stable. UV-254 is measured weekly and is a useful parameter for predicting 

oxidant demand, chlorine decay and DBP formation. Average UV-254 in Wachusett is about 

0.06 cm-1 and average TOC is 2.4 mg/L. Elevated levels of UV-254 lead to increased chlorine 

and ozone demand resulting in the need for higher doses, which can increase costs and 

disinfection byproduct formation. Additionally, measurements of UV-254 in Wachusett can be 

important for timing the operation of the Quabbin Reservoir transfers to lower organic matter 

levels and optimize treatment results (Sung, 2003). In July 1998 and 2000, the MWRA observed 

dramatic decreases in chlorine demand and decay kinetics 2 weeks after Quabbin transfers were 

initiated (due to elevated organic matter levels), which further resulted in a decrease in chlorine 

dose and DBP formation (Sung, 2003). 

Therefore, operational decisions should consider transferring water from the Quabbin Reservoir 

in an extreme precipitation event in order to lower resulting organic matter levels. However, 

decisions regarding inter-reservoir transfers must also weigh competing objectives, particularly 

the minimization of downstream flooding into the Nashua River, which is a large concern during 

large precipitation events.  For example, the operational strategy employed during Hurricane 

Irene in August 2011 considered both of these objectives. Before this event, the Quabbin transfer 

was flowing (as typical of August conditions) but in anticipation of the forecasted hurricane, 

flow was stopped on August 25 and the water surface elevation was allowed to decrease to 

provide storage for storm inflows. Precipitation began on August 27 and predominantly on the 
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28. After the event, the Quabbin transfer inflow was initiated briefly from September 1 – 6 and 

stopped once again until September 20 when it resumed as normal operation. Water was also 

released downstream to the Nashua River before, during, and after the event to control the water 

surface elevation with care to minimize downstream flooding.  

Water quality measurements were taken after Hurricane Irene at the intake on September 6, as 

shown in Table 3.3. These measurements can be compared to the September 6 model outputs 

from a scenario simulating a 101 mm precipitation event in August, since this is essentially 

recreating Hurricane Irene, but with inflows and concentrations generated with the method 

described previously. In the model scenario, the operation of the Quabbin transfer was unaltered 

from the historic operation during Hurricane Irene. The resulting simulated constituent 

concentrations from this event, in Table 3.3, are generally in line with the measured 

concentrations on September 6. UV-254 predictions are the most similar to the measurements 

while TOC, PO43-, NH4+, and NO3- are slightly underpredicted and total algae is overpredicted. 

However, algae measurements several days after Sept 6 were recorded as 0.14 mg-C/L, which is 

very close to the simulated concentrations predicted by the model scenario. 

Table 3.3 Simulated and measured water quality constituents on September 6th 2011 during 101 
mm extreme event in the summer with two different management options 

Constituent Quabbin flow turned ON Quabbin flow OFF Measured after 
Hurricane Irene Median range Median range 

UV-254 (cm-1) 0.0517 0.050 – 0.053 0.066 0.064 – 0.0694 0.054 
Algae (mg-C/L) 0.13 0.13 – 0.14 0.07 0.07 – 0.08 0.04 

TOC (mg/L) 1.90 1.88 – 1.93 2.08 2.03 – 2.16 2.2 
PO4 (mg/L) 0.0037 0.0036 – 0.0037 0.0050 0.0048 – 0.0055 0.007 
NH4 (mg/L) 0.0060 0.0060 – 0.0061 0.0080 0.0079 – 0.0081 0.008 
NO3 (mg/L) 0.0352 0.0342 – 0.0363 0.1365 0.1343 – 0.1396 0.071 
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Additional scenarios were simulated to evaluate the effect of not intermittently operating the 

Quabbin transfer before, during, and after the storm. In this scenario, inflows from the Quabbin 

were stopped August 25 and resumed September 20. When Quabbin water was not intermittently 

operated, concentrations of all water quality constituents on September 6 increased at the intake, 

with the exception of total algae, as seen in Table 3.3. Increases in concentrations ranged from 

about 100% to almost 400% greater than original simulated concentrations when Quabbin water 

was transferred following the event. These results are consistent with measured observations of 

lowered concentrations at the intake after initiating Quabbin transfer water to lower organic 

matter content in Wachusett.  

3.6. Conclusions 

Extreme precipitation events can have potentially large impacts on source water quality for 

drinking water supplies but relatively little is known about the nature and extent of these impacts 

for various water quality constituents. The work described in this manuscript coupled with a 

watershed input model simulation in Part 1 can be used to quantify the range of potential water 

quality impacts of these low probability events. The method is valuable for understanding more 

about the interactions between watersheds and receiving waterbodies to proactively develop 

scientifically based management decisions during extreme precipitation events, which can in turn 

improve treated water quality and ultimately reduce treatment costs. 

Wachusett Reservoir, in central MA, was used to illustrate the method to predict raw water 

quality for extreme precipitation events occurring in the spring and summer. In the simulated 

spring event, TOC, UV-254, and algae concentrations exceeded the springtime records. In 

comparison, summer event TOC, UV-254, and algae concentrations were greater than those 

resulting from the spring event, exceeding 2011 maximum summertime measurements with the 
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exception of the 101 mm event. Nutrient concentrations after the spring and summer events 

remained relatively low and did not exceed maximum measurements, with the exception of NO3- 

after the 152 and 203 mm events. When the observed water quality impacts of Hurricane Irene 

were compared to simulated concentrations at the intake resulting from a summer event of the 

same magnitude (101 mm or 4 inches), the results generally show similar concentrations at the 

intake, indicating this method is a reasonable way to predict water quality impacts.  

Maintaining low organic matter concentrations is imperative for this drinking water source in 

order to decrease costs and minimize disinfection byproduct formation. The level of reactive 

organic matter (measured by UV-254) at the intake tends to increase every year between April 

and June, which is related to the biological activity within the watershed, resulting in higher 

NOM loadings. Algae growth within the reservoir during this time also has an impact on the 

nature and amount of NOM. A management strategy to lower NOM levels in Wachusett 

Reservoir is to dilute the organics by initiating transfers of water with lower NOM from the 

Quabbin Reservoir. This strategy was employed during Hurricane Irene in August 2011 and 

model simulations comparing intake concentrations to scenarios where water was not transferred 

via the Quabbin aqueduct illustrate the negative impacts of a management decision to not initiate 

a transfer indicated by increased constituent concentrations. Therefore, model simulations verify 

the effectiveness of the decisions made by management during this recent extreme event to 

decrease negative water quality impacts and simulations will likely be valuable information for 

understanding the impacts of future events. 
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CONCLUSION 

The primary goal of this dissertation was to present proactive frameworks utilizing a 

hydrodynamic and water quality model to aid in developing scientifically-based management 

plans prior to an accidental or natural event occurring. The Wachusett Reservoir, in central 

Massachusetts, was used as a case study to illustrate proactive modeling efforts to quantify water 

quality impacts after both short and long-term potential events of concern. This work used a 

process-based modeling approach to simulate reservoir hydrodynamic and water quality 

responses to changes in various model inputs (streamflow, constituents, meteorology) and also 

evaluated current and future management decisions which may improve water quality.  

A contaminant spill modeling framework for drinking water reservoirs was developed to assess 

contaminant impacts and management responses on surface drinking water sources prior to an 

event occurrence (Chapter 1). Prior detailed modeling efforts and scenario evaluations improve 

the understanding of contaminant plume fate and transport, including potential maximum 

concentrations that could occur at the drinking water intake and contaminant travel time to the 

intake after an event. In the example study of the Wachusett Reservoir, modeled contaminant 

scenarios of a hypothetical fecal coliform input from a sewage overflow and an ammonium 

nitrate spill from a tanker truck highlighted the importance of a rapid management response to 

contain a contaminant spill in order to minimize the mass of contaminant that enters the water 

column. Modeling efforts have also guided the placement of additional in-reservoir monitoring 

devices, based on velocity profiles to detect changes in water quality and provide early warning 

to water quality concerns at the drinking water intake. 

Hydrodynamic and water quality models are also valuable tools for proactively evaluating and 

managing water quality impacts of the short and long-term impacts of climate change. The first 
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logical step in any larger climate study investigating water quality impacts of climate change is 

to simulate the impacts of increasing air temperatures on water temperatures, since water 

temperature influences many physical, chemical, and biological processes within a water body. 

Scenarios investigating water temperature sensitivity to increasing air temperatures in the 

Wachusett Reservoir watershed indicate that water temperatures changes are not one-for-one 

with air temperature increases and that seasonal variability in water temperatures is linked to 

winter ice cover (Chapter 2). A more challenging question is the potential effects of the 

combined changes in tributary inflow volumes, timing, and water quality as well as changes in 

meteorology due to climate change, especially those changes related to extreme events. 

Hydrodynamic and water quality modeling in conjunction with statistically generated watershed 

inputs simulating extreme precipitation events is one approach to try to quantify water quality 

impacts in a receiving water body (Chapter 3). Future impacts of these low-probability events to 

raw drinking water quality are highly uncertain, but the method presented in this work is one 

approach to quantifying and characterizing the potential impacts in an effort to proactively 

develop scientifically based management plans.   

The work presented in this dissertation provides several examples of how hydrodynamic and 

water quality models can be effective tools for proactive water quality management. The work 

also reveals a number of future research needs that will become increasingly important to 

drinking water management due to increasing watershed urbanization and climate change 

impacts around the globe. 

In general, there is a great need for better science guiding contaminant response efforts in 

drinking water sources. Recent events, such as the West Virginia chemical spill, have highlighted 

both the lack of information on the chemical properties, fate, and transport as well as deficiencies 
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in risk management planning. Contaminant storage and transport is often in very close proximity 

to freshwater drinking sources, yet there is little information on the fate and transport of these 

contaminants in freshwater systems. For example, crude oil is frequently transported via 

roadways and railways near drinking water sources, yet of the few fate and transport studies of 

crude oil, almost all have been for oil spills in the marine environment. Fundamental fate and 

transport studies of contaminants in freshwaters stored near drinking water supplies would 

improve site-specific emergency and risk management planning for utilities. 

In addition, future studies quantifying water quality impacts of climate change, particularly 

extreme events, would be improved with more frequent and spatially diverse measurements of 

water quality parameters in both watersheds and surface water bodies. Greater frequency of 

measurements across varying areas would better capture the short and long-term variability in 

concentrations and would improve current abilities to model the physical, chemical, and 

biological processes in watersheds and lakes. This is particularly important for low-probability 

extreme events, where data for heavy precipitation events (the top 1%) is limited but constituent 

loads (particularly organic matter) have been observed to have significant impacts on water 

quality. 
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APPENDIX A 

MODEL CALIBRATION AND VALIDATION 
 

 
Figure A.1 Measured and modeled water surface elevation (2003-2012) 

 
Figure A.2 Measured and modeled water temperature at the Cosgrove drinking water intake 

(2003-2012) 
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Figure A.3 Measured and modeled specific conductivity at the Cosgrove drinking water intake 
(2003-2012) 

 

Figure A.4 Measured and modeled total algae at the Cosgrove drinking water intake (2003-
2012) 
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Figure A.5 Measured and modeled TOC at the Cosgrove drinking water intake (2003-2012) 

 

Figure A.6 Measured and modeled DOC at the Cosgrove drinking water intake (2003-2012) 
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Figure A.7 Measured and modeled UV-254 at the Cosgrove drinking water intake (2003-2012) 

 

Figure A.8 Measured and modeled NH3-N at the Cosgrove drinking water intake (2003-2012) 
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Figure A.9 Measured and modeled NO3-N at the Cosgrove drinking water intake (2003-2012) 

 

Figure A.10 Measured and modeled PO43- at the Cosgrove drinking water intake (2003-2012) 
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