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ABSTRACT 

INVESTIGATE THE INTERACTIONS BETWEEN SILVER 

NANOPARTICLES AND SPINACH LEAF BY SURFACE ENHANCED 

RAMAN SPECTROSCOPIC MAPPING 

 

 SEPTEMBER 2016 

 

ZHIYUN ZHANG, B.S., SHANGHAI NORMAL UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Lili He 

 

 

 

Owing to their increasing application and potential toxicity, engineered 

nanoparticles (ENPs) have been considered as a potential agricultural contaminant that may 

pose unknown risk to human beings. However, many techniques require invasive and 

complicated sample preparation procedures to detect and characterize engineered 

nanomaterials in complex matrices. In the first part of this thesis, we present a non-

destructive and label-free approach based on surface enhanced Raman spectroscopic 

(SERS) mapping technique to qualitatively detect and characterize gold nanoparticles 

(AuNPs), on and in spinach leaves in situ. We were able to detect the clearly enhanced 

signals from AuNPs at 15 to 125 nm on and in spinach leaves. Peak characterizations 

revealed the aggregation status of Au NPs and their interactions with plant biomolecules, 

such as chlorophylls and carotenoids. This developed approach will open a new analytical 

platform for various researches on studying ENPs' adhesion and accumulation.  

The second part focuses on investigating the interaction between AgNPs and plant 

leaves using surface enhanced Raman spectroscopy. AgNPs of different surface coating 
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(citrate, CIT and polyvinylpyrrolidone, PVP) and size (40 and 100 nm), were deposited 

onto spinach leaves. SERS signals produced from all kinds of AgNPs exhibited a unique 

C-S stretching peak at 650-680 cm-1. In vitro study indicates this peak may originate from 

the interaction between AgNPs and cysteine-like compounds based on the peak pattern 

recognition. The interaction between AgNPs and the cysteine-like compounds happened 

as soon as 0.5 h after AgNPs exposure. The in situ replacement of the CIT with the 

cysteine-like compounds on the AgNP surfaces was faster compared to that of the PVP. 

Based on the mapping of the highest C-S peak, we observed the CIT-AgNPs penetrated 

faster in spinach leaves than the PVP-AgNPs, although the penetration profile for both of 

them is similar after 48 h (P ˂ 0.05). The 40 nm CIT-AgNPs was able to penetrate deeper 

(to the depth of 183 ± 38 µm) than the 100 nm CIT-AgNPs (to the depth of 90 ± 51 µm) 

after 48 h. The results obtained here demonstrate the size of AgNPs is the main factor that 

affects the penetration depth, and the surface coating mainly affects the initial speed of 

interaction and penetration. This study helps us to better understand the distribution and 

biotransformation of AgNPs in plants.  

In the third part, the removal efficiency of postharvest washing on AgNPs that had 

accumulated on fresh produce was evaluated. Ten µL commercially available 40 nm citrate 

coated AgNPs (0.4 mg L-1) were dropped to a (1×1 cm2) spot on spinach leaves, followed 

by washing with deionized water (DI water), Tsunami® 100 (80 mg L-1) or Clorox® bleach 

(200 mg L-1). Then, AgNPs removal efficiency of the three treatments was evaluated by 

surface enhanced Raman spectroscopy (SERS), scanning electron microscopy (SEM)-

energy dispersive spectrometer (EDS), and inductively coupled plasma mass spectrometry 

(ICP-MS). ICP-MS results showed that deionized water removed statistically insignificant 
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amounts of total Ag, whereas Tsunami® 100 and Clorox® bleach yielded 21% and 10% 

decreases in total Ag, respectively (P < 0.05). The increased removal efficiency resulted 

from Ag NPs dissolution and Ag+ release upon contact with the oxidizing agents in 

Tsunami® 100 (peroxyacetic acid, hydrogen peroxide) and Clorox® bleach (sodium 

hypochlorite). According to the SERS results, the deionized water and Tsunami® 100 

treatments removed nonsignificant amounts of AgNPs.  Clorox® bleach decreased Ag NPs 

by more than 90% (P < 0.05), however, SEM-EDS images revealed the formation of large 

silver chloride (AgCl) crystals (162 ± 51 nm) on the leaf, which explained low total Ag 

removal from ICP-MS. This study indicates current factory washing methods for fresh 

produce may not be effective in reducing AgNPs (by water and Tsunami® 100) and total 

Ag (by all three means). This highlights the necessity to develop an efficient washing 

method for NP removal from food surfaces in the future. 
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CHAPTER 1 

 

INTRODUCTION 

Silver nanoparticles (AgNPs) has been known for its unique antimicrobial and 

insecticidal properties over 100 years.1 For example, numerous studies on the toxicity of 

AgNPs to different bacterial species, including E. coli, Bacillus subtilis, Nitrosomonas 

europaea, Pseudomonas fluorescens, and Pseudomonas aeruginosa have been performed 

in detail.2 In recent years, there has been increased interest in the use of inorganic 

pesticides, such as those containing AgNPs. The manufacturers of these products anticipate 

that these new pesticides will have greater efficacy in the field, which will subsequently 

decrease pesticide releases through environmental or “spray” drift and storm water runoff.3 

Currently in the US, approximately 110 AgNPs-containing products had been registered as 

pesticides by the EPA and several patent applications for AgNPs-based fungicides had 

been filed.4,5 The global production of AgNPs was estimated at 500 tons per year and 

significant increases are anticipated in the future.6 However, the widely use of AgNPs-

based pesticides may increase the likelihood of human exposure, for example, 

unintentional consumption of AgNPs contaminated crop plants, which may pose risks to 

human beings. So far, the toxicity of AgNPs to human cells, such as oxidative stress, 

genotoxicity, and apoptosis have been demonstrated by several studies. For example, after 

24 h treatment, 5-10 nm AgNPs with concentration from 0.05 mg L-1 to 20 mg L-1 could 

result in oxidative stress, DNA damage, cell cycle arrest and apoptosis in human jurkat 

cells.7 Therefore, detecting AgNPs and understanding their bio-fates in plants is a 

prerequisite. 
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Up to date, there are a lot of techniques have been used to study AgNPs in edible 

plants. For qualitative analysis, electron microscopy techniques, including scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) coupled energy 

dispersive X-ray spectroscopy (EDS), are the most common techniques that be used to 

image the size and morphology of AgNPs in plants. However, in addition to complex 

sample preparation procedures, the major limitation of TEM/SEM-EDS is that both of them 

have to be operated under vacuum conditions. In other words, biological samples must be 

fully dehydrated and cryo-fixed/embedded before being introduced to the sample chamber, 

which usually results in sample alteration and dehydration artifacts.8 For quantitative 

analysis, several elemental quantification techniques, especially inductively coupled 

plasmamass spectrometry (ICP-MS) or inductively coupled plasma optical emission 

spectrometry (ICP-OES), are the normal techniques to measure total Ag concentration, but 

limited information regarding Ag speciation can be reflected.9 Currently, more advanced 

techniques, such as Micro X-ray fluorescence (μXRF) and X-ray absorption spectroscopy 

(XAS) have also been used to study AgNPs in plants. However, access to these advanced 

techniques is limited. More importantly, complicated sample preparation procedures make 

them impossible to study AgNPs in plants in situ and real time. As a result, a technique 

that can be used to in situ and real time detect and characterize AgNPs in plants is urgently 

needed. 

Surface enhanced Raman spectroscopy (SERS) is an advanced technique that 

involves both Raman spectroscopy and nanoscale noble metal substrates. This new 

analytical platform possesses the advantages of Raman spectroscopy, such as small sample 

size, minimal sample preparation, rapid spectrum collection, and characteristic fingerprint 



 

3 

for specific analytes.9 More importantly, two inherent drawbacks of Raman spectroscopy, 

weak intensity and fluorescence interference are resolved.10 This is because the excitation 

of localized surface plasmon resonance (LSPR) on nanoscale-roughed surface can generate 

a large electromagnetic field which increases the Raman cross section from the molecules 

adsorbed to noble metal nanostructures.11 In addition, through selecting less energetic 

excitation or detecting analytes that are close to the SERS-active metal surface with a 

quenching effect, low background autofluorescence can be achieved.10 Due to these 

advantages, SERS has been applied in many areas, including chemistry,12,13 molecular 

biology,14–16 medicine,17,18 food analysis19–21 and environmental contaminants 

detection.22,23 

Herein, we focused on two significant knowledge gaps in the study of AgNPs 

contaminants in plants, (1) in situ and real time detect AgNPs in plants; (2) characterize 

the interactions between AgNPs and plants.   

To fill these two critical knowledge gaps, the following objectives were pursued: 

Objective 1: Establish SERS mapping method to detect and characterize gold 

nanoparticles (AuNPs) on and in spinach leaf. The objective of this experiment is to 

evaluate the feasibility of SERS mapping to detect AuNPs and investigate the interactions 

between AuNPs and spinach leaf. 

Objective 2: In situ and real time investigate the interaction between AgNPs and 

spinach leaf using SERS mapping. The objective of this experiment is to investigate the 

interactions between AgNPs and plant leaves using surface enhanced Raman spectroscopy. 
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Objective 3: Evaluate the postharvest washing on AgNPs removal from spinach 

leaves. The objective of this experiment is to determine whether postharvest washing can 

effectively remove AgNPs that had accumulated on fresh produce. 

The innovation of this study relies on taking advantage of the unique property of SERS to 

detect AgNPs and characterize the signals from the biomolecules adsorbed on those AgNPs. 

Through analyzing the SERS spectrum of interactions between AgNPs and biomolecules, the 

physical and molecular mechanisms that allow AgNPs to attach onto and internalize into spinach 

leaf can be understood. With the mapping technique, quantification of AgNPs and non-invasively 

study of their distribution on and in plant leaf can also be achieved. To the best of our knowledge, 

this is the first study to use SERS mapping to detect AgNPs contaminants and characterize the 

AgNPs-biomolecules interactions in edible plant leaves.  
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CHAPTER 2 
 

LITERATURE REVIEW 

2.1 Introduction to Silver Nanoparticles 

Nanoparticles, by definition, are structures that possess one or more external 

dimensions in the range of 1-100 nm and are increasingly used in a wide spectrum of 

technical applications and consumer products due to their unique properties. Among all the 

nanoparticles in consumer products, silver nanoparticle (AgNPs) applications currently 

have the highest degree of commercialization,24 which covers from pigments, 

photographics, wound treatment, conductive/antistatic composites, catalysts, to biocides.1 

The global production of AgNPs was estimated at 500 tons per year and significant 

increases are anticipated in the future.6 Although the term “nanotechnology” was first used 

by Norio Taniguchi in 1974 and emergence of nanotechnology as a field occurred in the 

1980s, the synthesis of citrated-stabilized AgNPs has already been reported by M. C. Lea 

as early as in 1889.25 In this method, the average diameter of the synthesized AgNPs is 

between 7 and 9 nm.26 Due to its unique antimicrobial properties, the primary commercial 

use of AgNPs was mainly for medical application. In 1897, AgNPs has been manufactured 

commercially under the name “Collargol”.27 The mean size of AgNPs in Collargol is 

around 10 nm and its diameter was determined to be in the nanorange in 1907. In the early 

part of the 20th century, the commercial sale of medicinal AgNPs, known under different 

names, such as Collargol, Argyrol, and Protargol became widespread. All these AgNPs 

contained products were sold as over-the-counter medications and applied for various 

diseases treatment, such as syphilis and other bacterial infections.28 
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Apart from these medical applications, a lot of biocidal products that contained 

AgNPs were developed and registered in the United States. Algaedyn is the first biocidal 

silver product registered in the United States under the Federal Insecticide, Fungicide, and 

Rodenticide Act (FIFRA) in 1954, and is still used today as an algicide in residential 

swimming pools.1 Since the establishment of US-EPA in 1970, the frequency of EPA-

registered silver products has been steadily increasing. EPA-registered AgNPs containing-

products can be divided into three categories; (a) AgNPs biocidal additives, (b) Ag-

impregnated water filters, and (c) Ag algicides and disinfectants.1 In recent years, there has 

been increased interest in the use of inorganic pesticides, such as those containing AgNPs. 

For example, Kim et al. tested the effectiveness of AgNPs against powdery mildew on 

Sphaerotheca pannosa var. rosae in the field.29 They found that a decline in mildew 

infestation of 95% a week after the application of 15 g AgNPs ha-1. Compared with the 

application rates of conventional fungicides against powdery mildew (range from 105 g to 

6 kg ha-1), AgNPs could be applied in lower amounts, achieving the same effect. Similar 

result was also reported by Alavi and Dehpour,30 who showed a higher efficiency of a 

commercial Ag NM product (Nanocid L2000) compared to a conventional fungicide. Both 

the researchers and manufacturers anticipate that these new pesticides will have greater 

efficacy in the field, which will subsequently decrease pesticide releases through 

environmental or “spray” drift and storm water runoff.3 

2.2 Terrestrial Trophic Transfer of Engineered Nanoparticles 

With the increasingly use of AgNPs in agricultural areas, there is an urgent need to 

understand the trophic transfer of AgNPs within terrestrial food webs when assessing 

AgNPs fate, disposition and effects. However, limited studies have been conducted and 
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only three reports regarding the terrestrial trophic transfer and biomagnification of ENMs 

have been published. Judy et al. reported the trophic transfer of AuNPs from tobacco 

[Nicotiana xanthi] to tobacco hornworm [Manduca sexta]. Their working demonstrated 

that bioaccumulation factors (BAFs) of 6.2, 11.6, and 9.6 for tobacco hornworm consuming 

5, 10 and 15 nm AuNPs contaminated leaves of tobacco [Nicotiana xanthi].31 In another 

study conducted by the same group, comparatively smaller BAF (0.16) for caterpillars 

consuming AuNPs contaminated tomato [Lycopersicon esculentum L.] leaves was 

observed.32 It should be noted here, although no symptoms of AuNPs toxicity in the 

hornworms were observed, their findings indicate the potential trophic exposure and 

biomagnification. Therefore, considerable work in this critical area is urgently needed to 

ensure food safety.  

2.3 Toxicity of Silver Nanoparticles to Mammalian Cells 

As shown in Table 1 and Table 2, there are a lot of in vitro and in vivo studies 

demonstrated the potential toxicity of AgNPs to cells derived from a variety of organs. The 

toxicity of AgNPs likely results from two mechanisms, reactive oxygen species (ROS) 

generation and oxidative stress.33 When ROS exceed the capacity of the anti-oxidant 

defense mechanism, oxidant stress normally occurs. Both ROS and oxidative stress would 

elicit some physiologic and cellular events, such as stress, inflammation, DNA damage and 

apoptosis.34,35 The concentrations of AgNPs used in these studies were range from 1 to 200 

µg mL-1, and 5-50 µg mL-1 is the most common tested range.24 It should be noted that 

AgNPs are toxicity to human cells even at non-cytotoxic doses. For example, Kawata et al. 

showed that non-cytotoxic doses (<0.5 µg/mL) of AgNPs induced the expression of genes 

related with cell cycle progression and apoptosis in human hepatoma cells (HepG2).36 



 

8 

Greulich et al. also showed that non-cytotoxic doses of AgNPs could result in toxicity in 

human mesenchymal stem cells.37 

2.4 Current Analytical Techniques for Study of AgNPs in Edible Plants and Their 

Challenges 

  A wide range of techniques are current available for nanoparticles detection and 

characterization in plants. A brief summary of mainly used techniques are described below.  

2.4.1 Microscopy and Microscopy-related Techniques 

Microscopy-based techniques include confocal microscopy as well as electron and 

scanning probe microscopy. Among them, the most popular tools for the visualization of 

ENPs are transmission electron microscopy (TEM) and scanning electron microscopy 

(SEM).8 Resolutions down to the sub-nanometer range can be achieved though using these 

techniques. In TEM, electrons are transmitted through samples to obtain an image, 

indicating the samples have to be very thin; In SEM, scattered electrons are detected at the 

sample interface for imaging. Currently, some analytical tools are coupled to electron 

microscopes for additional elemental composition analysis, which are known as analytical 

electron microscopy. Energy dispersive X-ray spectroscopy (EDS) is normally combined 

with SEM and TEM for a clear determination of the composition of elements. However, 

for these conventional electron microscopes, all of them have to be performed under 

vacuum conditions, indicating all tested samples must experience complex sample 

preparation (dehydration, cryo-fixation or embedding), which may lead to sample 

alteration and dehydration artifacts.38 
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2.4.2 Chromatography and Related Techniques 

Techniques associated to chromatography can be used to separate nanoparticles in 

samples. Size exclusion chromatography (SEC), capillary electrophoresis (CE) and 

hydrodynamic chromatography (HDC) are the most common techniques in this field. 

These techniques are normally considered as rapid, sensitive (detector dependent) and non-

destructive. By attaching traditional analytical tools (such as ICP-MS/OES) as detectors to 

size separation techniques, quantification of different nanoparticles in food, water, biota 

and soil can be achieved. However, although a range of solvents are compatible for some 

chromatographic tools, most samples usually cannot be run in their original media, which 

may cause sample alteration and sample solvent interaction. 

2.4.3 Mass Spectrometry 

Mass spectrometers normally consist of an ion source, a mass analyzer and a 

detector system. In the case of inductively coupled plasma mass spectrometry (ICP-MS), 

inductively coupled plasma (ICP) sources are mainly used for metal analysis. Currently, a 

combination of field-flow-fractionation (FFF) and ICP-MS gains more attention.8 This is 

because FFF-ICP-MS allows the quantitative and elemental analysis of particles with 

different size fractions. Even though the development of FFF-ICP-MS is promising for 

nanoparticle analysis, it still owes some unevaded limitations. For example, ICP based 

methods require digestion of total Ag into Ag ions, therefore the information from ICP 

cannot reflect as it is from real NPs in situ. In addition, when there are chloride ions (Cl-) 

present, AgCl particles will form. Electron microscopes cannot differentiate between 

AgNPs and AgCl NPs. Even coupled with energy dispersion spectroscopy (EDS) which 

can help identify the elemental composition, its mineral phase cannot be validated. 
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2.4.4 Spectroscopic and Related Techniques 

A variety of spectroscopic methods have been available for nanoparticle analysis 

and characterization, including dynamic light-scattering (DLS), UV–Vis spectroscopy 

(UV-Vis), Fourier transformation infrared spectroscopy (FTIR), Nuclear magnetic 

resonance (NMR), X-ray spectroscopy and so on. In recent years, synchrotron X-ray 

fluorescence microscopy was used for in situ mapping and speciation of CeO2 and ZnO 

NPs in soil cultivated soybean,39 and mapping AuNPs in tobacco hornworm caterpillars. 

However, disadvantages of this technique, include the additional absorption of 

characteristic X-rays by the sample itself on their path to the detector system, especially 

for low energy X-rays or where samples are particularly dense or large (exceeding a few 

hundred micrometres), absorption effects can be severe and difficult to correct. In addition, 

access to synchrotron facilities is limited. 

2.5 Surface Enhanced Raman spectroscopy 

2.5.1 Introduction to Surface Enhanced Raman Spectroscopy 

Raman spectroscopy is one branch of vibrational spectroscopy that can be used to 

study a very wide range of sample. The phenomenon of Raman scattering was first reported 

by Raman and Krishna in 1928.40 When monochromatic light encounters a sample, photons 

are scattered from the sample. Among these scattered photons, most of them are scattered 

elastically, indicating the energy state of the scattered photons return back to the same state 

as the incident photon, which is referred as Rayleigh scattering. Rayleigh scattering can be 

considered as a short lived distortion of electron cloud caused by the oscillating electric 

field of the light. However, the electron cloud of the molecule is also influenced by 

molecular vibrations, and it is possible for the optical and vibrational oscillations to 
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interact, leading to Raman scattering. Contrary to Rayleigh scattering, Raman scattering is 

a comparatively weak process since only one in 106 to 108 photons have a frequency 

different from the incident photons. There are two types of Raman scattering: Stokes and 

anti-Stokes, which depends on the initial molecular state. Molecules originally in the 

ground vibrational state result in Stokes Raman scattering while molecules originally in 

vibrational excited state result in anti-Stokes Raman scattering. The shift in energy reflects 

the information about the photon modes in the system.41   

However, the application of Raman spectroscopy was largely impeded by both 

fundamental and technical issues, especially weak intensity and fluorescence interference. 

Until 1974, the discovery of surface enhanced Raman effect overcomes these problems. 

Jeanmaire and Van Duyne demonstrated that greatly enhanced Raman scattering signal can 

be achieved when the scatterer is on or near a roughened noble metallic (gold, silver, or 

copper) substrate. Therefore, surface enhanced Raman spectroscopy can be considered as 

a combined technique that involves both Raman spectroscopy and nanotechnology.  

Although the mechanism of SERS enhancement remains an active research topic, 

there are two mechanisms of SERS enhancement have been proposed, chemical 

enhancement and electromagnetic enhancement. As for chemical mechanism, a charge-

transfer state between the metal and molecules is created. This mechanism is both site-

specific and analyte-dependent, meaning the targeted molecule should be directly adsorbed 

to the roughed surface to experience the chemical enhancement. Currently, it is generally 

considered that the chemical mechanism contributes an average enhancement factor of 100. 

Electromagnetic enhancement is the other generally known mechanism involved in SERS 

enhancement, which is closely depends on many factors, such as material, size, and shape 
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of noble metallic substrate. When light with specific wavelength is incident upon the noble 

metallic substrates, the conduction electrons on noble metallic substrates surface undergo 

a collective oscillation, generally known as surface plasmon resonance (SPR). The 

excitation of localized surface plasmon resonance (LSPR) on nanoscale-roughed surfaces 

can generate a large electromagnetic field, which increases the Raman cross section of 

adsorbed molecules that are in or near to noble metallic substrates. The average enhance 

factor of electromagnetic fields normally can reach up to 105. 

2.5.2 Current Application of SERS in Agricultural Science 

Currently, SERS has gradually been used in agricultural science for various 

purpose. For example, Zeiri reported that colloidal gold and silver could be formed by the 

spontaneous reduction of metal salts in a variety of plant tissue, including alfalfa seed, 

green tea leaves, carrots and red cabbage.42 The formation of gold and silver colloids inside 

plant tissues can further enable SERS measurements (enhanced Raman signals and 

fluorescence quenching), which yields specific vibrational signatures for the plant 

components in the proximity of the colloids. Palanco et al. used silver nanoaggregates and 

silver island films to in vivo detect the chemical constituents, such as cellulose, proteins, 

and flavonols, of onion layer. Their study shows the capacity of SERS to monitor the 

location of AgNPs inside the onion layers as well as to identify the complex heterogeneous 

chemical structure of the onion. In addition, through the pH-sensitive reporter molecule-

para mercapto benzoic acid (Pmba) , the pH values inside onion can be measured.43 Shen 

et al., for the first time, use SERS mapping to non-destructively image a living plant 

biocompatible with the help of carbon encapsulated Au-Ag nanoparticles.44 
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Apart from the above applications, there is an increasing trend to use SERS to in 

situ detect pesticide and monitor the pesticide penetration in plants. Hou et al. showed the 

capacity of SERS to in situ detect and discriminate different kinds of pesticides in plants.45 

Yang et al. used SERS mapping to real time and in situ monitor the pesticide penetration 

in edible leaves.46 
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CHAPTER 3 

MAPPING GOLD NANOPARTICLES ON AND IN EDIBLE LEAVES 

IN SITU USING SURFACE ENHANCED RAMAN SPECTROSCOPY 

3.1 Introduction 

In recent years, engineered nanoparticles, such as silver and copper, are 

increasingly used in agriculture due to their antimicrobial properties. For example, silver 

nanoparticles (Ag NPs) have been widely used to protect crops against plant pathogens and 

pests.5 As of  2010, there had been more than 110 officially registered Ag NPs containing 

pesticides used for agricultural, environmental, medical, and home purposes in the US.4 

Copper based pesticides, including copper nanoparticles (Cu NPs) have also been used 

widely as fungicides in vineyards and farms.1 However, the use of these NPs in agriculture 

may pose some potential risks. A number of studies show that certain engineered 

nanoparticles (ENPs) are more toxic to microbes, plants, animal and/or human cells 

compared to their ionic or bulk counterparts.47 The increasing prevalence of ENPs within 

agriculture and food products and their potential toxicity has urged researchers to study 

how those ENPs could possibly contaminate the environment and bioaccumulate along the 

food chain, and to evaluate their chemical and biological effect on human health and the 

environment. However, research on ENPs as emerging contaminants is still a new field.48,49 

Some studies suggested that NPs can accumulate in plants after foliar exposure50–52 and 

may be able to translocate from soil to plant tissues.53–55 The interactions between NPs and 

plants depend on size and surface charge of NPs,56,57 and are also plant species-specific.58,59 
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These bioaccumulated NPs can enter into food chains; and can then be transferred to 

consumers, causing unknown risks to sensitive receptors.49 

Various techniques have been used for detection and characterization of ENPs in 

planta, such as inductively coupled plasma based methods,50–52,58 X-ray absorption 

spectroscopy,57,59–61 and electron microscopy.50–52 However, the majority of these 

techniques require complex digestion and extraction procedures for analyzing NPs from 

complex samples.8 Synchrotron X-ray fluorescence microscopy has been used for in situ 

mapping and speciation of CeO2 in kidney beans39 and cucumber roots.62 However, there 

are certain disadvantages of this technique, including the additional absorption of 

characteristic X-rays by the sample itself on their path to the detector system, especially 

for low energy X-rays or where samples are particularly dense or large (exceeding a few 

hundred micrometers), the absorption effects can be severely influenced.63 In addition, 

access to synchrotron facilities is limited. Thus, the development of a rapid and reliable 

method for the detection and characterization of ENPs in complex matrices is needed. 

Surface enhanced Raman spectroscopy (SERS) is a combined technique that 

involves both Raman spectroscopy and nanotechnology. Noble metals, such as NP Au, Ag, 

and Cu, can significantly enhance the Raman signals of the molecules that are in close 

vicinity of metal surfaces. This is because the excitation of localized surface plasmon 

resonance on noble metal NPs can generate a large electromagnetic field that increases the 

Raman cross section from molecules that are in close proximity (~10 nm) of a noble metal 

nanostructure.11 Due to its improved sensitivity, SERS has been applied for the detection 

of various chemical and biological targets in many areas, such as medical diagnosis,64 

food21,65 and environmental safety.23 In addition, SERS mapping has been applied as an 
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imaging tool for intracellular studies. For example, Rodríguez-Lorenzo et al. utilized 

SERS-encoded gold nanostars for intracellular mapping.66 Ando et al. reported a dynamic 

SERS imaging method based on Au NPs being applied to study dynamic biological 

functions in living cells, such as membrane protein diffusion, nuclear entry, and 

rearrangement of cellular cytoskeleton.67 Shen et al. also found that SERS can be used as 

a rapid and non-invasive imaging technique to monitor the distribution of 4-mercapto 

benzoic acid tagged carbon-encapsulated Au-Ag NPs inside the leaf.44 To date, however, 

most of the analytical targets for SERS are chemical and biological compounds.   

Herein, we aimed at NPs rather than the chemical and biological targets. The 

objective is to evaluate the SERS technique for in situ, non-destructive and label-free 

detection of Au NPs on and in spinach leaves after foliar exposure and characterization of 

the interaction between Au NPs and spinach. The innovation of this study lies in the use of 

intrinsic enhanced SERS signals from the biomolecules to detect the presence of noble 

metallic nano-contaminants and determine their final fate in plants. Coupled with mapping 

technique, this SERS method can spatially image the heterogeneous distribution of NPs on 

and in spinach leaves in situ and non-destructively. Au NPs were chosen as the model NPs 

to evaluate and demonstrate method feasibility, because they can easily be synthesized with 

a uniform size and shape, have low environmental background level, and are chemically 

inert and stable in size or shape under various environmental and biological conditions.58 

Spinach was selected as the model plant because of its large consumption worldwide and 

large shoot surface area, which is ideal for foliar study.  
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3.2 Materials and Methods 

3.2.1 Materials 

Gold(III) chloride trihydrate and hydroquinone were purchased from Sigma-

Aldrich (St. Louis, MO). Sodium citrate dehydrate was purchased from Fisher Scientific 

(Pittsburgh, PA). Organic spinach leaves were purchased from a local grocery store in 

Amherst, MA and transferred to the Chenoweth Lab at University of Massachusetts 

Amherst. All spinach leaves were stored at 4 °C and used within 1 day. All leaves were 

washed with deionized water (Barnstead MicroPure system, Fisher Scientific Co., 

Pennsylvania) with a pH of 6. 

3.2.2 Fabrication and Characterization of Au NPs 

15 nm Au NPs were synthesized by the Turkevich method and 35 to 125 nm Au 

NPs were synthesized by the hydroquinone reduction and seed-mediated growth method.68   

Transmission electron microscopy (TEM, JEOL JEM-2000FX) was used to 

characterize the synthesized Au NPs. In order to completely disperse the Au NPs, we used 

probe sonicated (Branson 2800) for our Au NPs with 15 minutes before dropping on the 

copper grids. The sizes of synthesized Au NPs (n=100) were measured using the ImageJ 

Software (NIH, Bethesda, MD) based on acquired TEM images.  We also measured the 

particle size distributions of the Au NPs samples using a dynamic light scattering 

instrument (Mastersizer 2000, Malvern Instruments).  The surface charge of Au NPs was 

determined by using a particle electrophoresis instrument (Zetasizer Nano ZS series, 

Malvern Instruments) (Table S1). UV-vis absorption spectra of the Au NPs samples were 

recorded on a SpectraMax spectrophotometer (Molecular Devices, LLC., CA) in the range 
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350-750 nm with 10 nm resolution. Plastic cuvettes with a 1-cm optical length were used 

(Table S1). 

3.2.3 Preparation for in situ Study of Au NPs Adsorbed on Spinach Leaf Surfaces 

 To study the Au NPs adsorbed on spinach leaf surfaces, 3 mL Au NPs of different 

concentrations (50 and 5 mg L-1) and sizes (15, 35, 80, and 125 nm) were prepared in petri-

dishes. The concentrations of the Au NPs (50 and 5 mg L-1) used in this study are based on 

the concentrations of Ag NPs currently used in the commercial pesticide products in the 

US market. Then, fresh spinach leaves were immersed into these solutions and incubated 

for 30 minutes on the Fisher ScientificTM Nutating Mixers (Fisher Scientific Co., PA) at 

the low speed of 24 rpm to ensure the leaves fully exposure to Au NPs. After that, the 

leaves were gently rinsed with deionized water for 3 minutes and air-dried in the hood 

under room temperature. Spinach leaves without Au NPs were used as a control. Bright 

field light scattering images, Raman images, and representative Raman spectra were then 

collected.  

3.2.4 Preparation for in situ study of Au NPs Penetrated into Spinach Leaves 

 To study the penetration of Au NPs into spinach leaves, 10 𝜇L Au NPs (50, 200 

mg L-1) were dropwise deposited on the leaf surfaces in predetermined areas. The spinach 

leaves that were treated with Au NPs were air-dried in the hood at room temperature. 

Raman images, and representative Raman spectra were collected immediately.  

3.2.5 Raman Instrumentation and Data Aanalysis 

A DXR Raman microscope (Thermo Fisher Scientific, Madison, WI) with a 780 

nm laser and 10×, 20× confocal microscope objectives were used in this study. Each 

spectrum was scanned from 3400 to 400 cm-1 with 5 mW laser power and 2s exposure 
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time. Raman maps were integrated based on the characteristic peaks in the Raman spectra 

using the atlµs function in the OMINCS software (Thermo Fisher Scientific). For the 

surface study, Raman mapping was applied with a 50 μm slit aperture to maximize the 

signals. To compare Raman and optical images, the step size is 10 µm step size and each 

image contains 100 spots. To map Au NPs of different sizes (15-125 nm), the step size is 

40 µm and each image contains 360 spots. In this way, we can quickly scan the 

representative area within 30 min. For the penetration study, Raman mapping was applied 

with a 50 μm pinhole aperture to control the confocal depths. The step size in X direction 

is 10 µm and in Z direction is 10 µm, and each image contains 150 spots. The 

instrumentation parameters (laser power and exposure time) were optimized to achieve 

sensitive and rapid detection without damaging the leaf tissues. 

3.2.6 Transmission Electron Microscopy Characterization of Au NPs in Spinach 

 Au NPs distribution in spinach leaves was observed by TEM (JEOL, JEM-

2200FX). Spinach leaves were prepared by fixation, dehydration, infiltration and 

polymerized at 60 °C for 24 hours.69 The ultrathin sections (90 nm) were cut and placed on 

the grid. Finally, TEM (200 kV) was used to observe the specimens. 

3.3 Results and Discussion 

3.3.1 In situ Detection and Characterization of Au NPs on Spinach Leaves  

Figure 3.1a and 3.1c show bright field light scattering images of spinach leaves 

without and with Au NPs (35 nm, 50 mg L-1). As shown in Figure 3.1c, Au NPs were 

heterogeneously distributed on the spinach leaves’ surfaces. This uneven distribution of 

Au NPs is likely due to the complex structures of the spinach leaves’ surface. The bright 

color of Au NPs is a result of their surface plasmon (SPR).70 Figures 3.1b and 3.1d are the 
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corresponding Raman images which were constructed based on the highest peak at ~1525 

cm-1. The peak assignments for the normal Raman spectra of carotenoids and plant leaves 

have been previously reported.71,72 Three major peaks (1525, 1156 and 1005 cm-1) have 

been identified as carotenoids, which are presented in the plant leaves. Among these three 

peaks, the 1525 cm-1 is the largest. We also extracted all the pigments (chlorophylls and 

carotenoids) and measured their SERS signals. Our results (Figure 3.2) agreed with the 

references. Therefore, the 1525 cm-1 peak is most likely from carotenoids. As in other 

imaging techniques, it is critically important to identify and subtract background signals to 

minimize matrix interference. Here we set 200 counts (at 1525 cm-1) as the baseline for 

background subtraction for the best results with 2% false positive and 5% false negative 

(Figure 3.3). As shown in Figure 3.1d, when Au NPs were on the leaves, spots with higher 

intensity were clearly shown in different colors other than blue, which indicates the 

presences of Au NPs on leaf surfaces. These Au NPs are mainly Au NPs aggregates, as 

individual Au NPs have very weak enhancement.73 The spectra varied from spot to spot 

with different patterns and intensities, indicating that the Au NPs distribution and local 

environment of Au NPs were quite heterogeneous. In addition, the non-flat surface would 

also result in the orientation difference between the laser and Au NPs, which would 

contribute to the spectral variance. The assignment of SERS peaks is very difficult 

compared with normal Raman, as molecules can interact with NPs in many different ways. 

Generally speaking, only the molecules adsorbed (interacted) on the Au NPs were most 

enhanced. This is because the enhancement is highly distance dependent. Other molecules 

may be surrounding the Au NPs; however, if the distance is larger than ~10 nm, there is no 

enhancement at all.74  The selected SERS spectra (Figures 3.1f and 3.1g) show enhanced 
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peaks that are similar to the normal Raman spectra (Figure 3.1e), which indicates the 

interactions between the Au NPs and leaf chlorophylls and carotenoids. To verify this, we 

extracted chlorophylls and carotenoids from spinach leaves and mixed them with Au NPs. 

The resulting SERS spectra (Figure 3.2) show similar characteristic peaks to the in situ 

spectra (Figures 3.1f and 3.1g), demonstrating the interaction between Au NPs and plant 

pigments in situ. In the literature review, we found two possible mechanisms for the 

interaction between Au NPs and chlorophylls. One study indicates the negatively charged 

Au NPs are bound to the magnesium metal center of chlorophylls, which is coordinatively 

unsaturated.75 Another study demonstrates the formation of Au NPs and chlorophylls 

complex is due to the ligand-exchange reaction between Au NPs and nitrogens of 

chlorophylls via nonbonding electrons.76 The binding constant for Au NPs and chlorophyll 

is very high, ~ 105 M-1 and the amount of chlorophylls in spinach leaves is about 1-2%.77 

Therefore, chlorophylls are highly likely to interact with Au NPs and thus be reflected in 

the SERS spectra. Other peaks have been observed too, which indicates the complexity of 

the biomolecules co-adsorbed or close to the Au NPs. For example, some carotenoids peaks 

were observed in the in situ spectra as well. In addition, a peak at 2130 cm-1 was observed 

after the application of Au NPs on spinach leaves. Since no peak at 2130 cm-1 was observed 

on spinach leaves without Au NPs, we assume this peak may come from Au NPs, which 

may prove that the spectra we obtained are involved with Au NPs. The origin of this peak 

is unknown. In addition, some spots with high intensity (e.g. Figure 3.1h) were also 

observed. The SERS spectrum of hot spot was significantly different than the others, with 

broader shifts at around 1000-1700 cm-1. This may be due to significant aggregation of 

NPs that produced stronger and multiple localized SPR which enhanced and broadened the 
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carbon peaks and thus reduced the characteristic information. We observed a similar 

phenomenon when measuring Au NPs aggregates on a gold coated glass slide (Figure 3.4). 

Although those super-hot spots can be used to determine both the presence and aggregation 

state of Au NPs, the characteristic information of the NPs-leaf interactions may not be 

reflected. 

Given the limitation of all the micro-imaging techniques, we could only look at a 

small area under the Raman microscope. Therefore, it is important to select an area that is 

statistically representative of the entire target. Though we can scan at a very fine step over 

the entire leaves to collect all the information, it is too time-consuming, impractical, and 

not statistically meaningful. Comparing the Raman image with the optical image, we found 

most parts of these two images matched fairly well. Most of the Au NPs shown in the 

optical image also produced signals in similar positions in the Raman image, though some 

spots were missed because the set step size (10 µm) is larger than the laser spot (3 µm). 

The intensity of the Au NPs in these two images did not correlate. The intensity of Au NPs 

in the optical image is mainly based on the amount, while the intensity of SERS signals 

also depends on some different factors, such as amount, aggregation, and interactions. In 

addition, since the surfaces of spinach leaves are not flat, in a scanning area, some parts of 

the area may be in focus and some may be out of focus. Thus, if the part of the scanning 

areas is out of focus, even with a large amount of Au NPs, the SERS signals may also be 

weak. In addition, some undetected NPs not shown in the optical image were detected by 

using SERS, probably due to the penetration ability and increased sensitivity of the laser. 

Compared with our previous study that used a Raman reporter (ferbam) as the indicator to 

detect and quantify Ag NPs in liquid and semi-liquid matrix,9 no indicator was used in this 
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study. This is because the purpose of this study is not only to detect the Au NPs, but also 

to investigate whether we are able to characterize the interactions between the Au NPs and 

plant biomolecules based on the SERS signals. If an indicator was used, the sensitivity and 

quantitative ability of detection may be improved; however, we lose the information about 

plant-NPs interactions.  

 

 

Figure 3. 1 Bright light scattering images, Raman images, and Raman spectra of spinach 

leaf with and without 35 nm Au NPs. (a) and (b), bright light scattering image and Raman 

image of spinach leaf without Au NPs. (c) and (d), bright light scattering image and Raman 

image of spinach leaf with Au NPs. (e)-(h), Raman spectra of selected spots on Raman 

images. The step size of the mapping is 10 µm and one image contains 100 scanning spots. 
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Figure 3. 2 SERS spectra of pigments (chlorophylls and carotenoids) extracted from 

spinach leaves mixed with Au NPs of different sizes (15-125 nm).  The detailed extraction 

was adapted by a published protocol as follows. 100 𝜇L extracted solutions (500 mg L-1) 

were mixed with 100 𝜇L Au NPs at 50 mg L-1 for 30 min, then the Au NPs were deposited 

on a gold coated glass slide for Raman measurement. Compared with control (just pigments 

without Au NPs), all the Au NPs show enhanced signals. The SERS spectra obtained was 

found similar to the in situ SERS spectra of Au NPs on and in spinach leaves, indicating 

the Au NPs were interacted with plant pigments on and in spinach leaves.  15 nm Au NPs 

shows the least enhancement, while the 125 nm Au NPs show the most enhancements. The 

similar size dependent SERS enhancement was also reported in other study.2  
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Figure 3. 3 Estimation of false positive (2%) and false negative (5%) of the mapping 

method with the baseline set at 200 counts based on the 1525 cm-1 peak. (a) 2D Raman 

mapping of spinach leaf without Au NPs. Two out of 100 points had higher than 200 

counts, (b) 2D Raman mapping of the spinach leaf with Au NPs. Five out of 100 points 

contain characteristic peaks of Au NPs but had lower than 200 counts, (c) representative 

spectrum of the false positive signal, (d), representative spectrum of the false negative 

signal.  
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Figure 3. 4 SERS spectrum of Au NPs aggregates dried on a gold coated slide. A broad 

peak over 1000-1700 cm-1 was observed, which is similar to the in situ spectra observed 

from Au NPs on and in spinach leaves. The intensity of the signals on a gold slide was 

higher than that on and in spinach leaves because of the better reflectivity of the gold slide. 

3.3.2 Raman mapping of Au NPs of Various Sizes on Spinach Leaves 

To evaluate the mapping method for measuring Au NPs of different sizes (15-125 

nm) on spinach leaves, we randomly picked an area on the leaves with the size of 920 µm 

× 560 µm and used a relative large step size (40 µm), which resulted in 360 spots per image. 

In this way, we were able to quickly scan the representative area within 30 min.  

In Figures 3.5 b1-e1, after being contaminated with Au NPs at 50 mg L-1, it is 

interesting to find that, except 15 nm Au NPs treated group, strong SERS signals were 

obtained from each of the other three groups, which indicates the presence of Au NPs on 
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these spinach leaves. The intensity of SERS signals is strongly determined by the following 

aspects: 1) the aggregation status (hot spots) of Au NPs; 2) the size of Au NPs in the 

aggregation; and 3) the number of NPs in the probed area. In this study, we deposited 

different sizes of Au NPs under the same mass, which means the number of Au NPs with 

smaller size is larger than those with bigger size. As shown in Table S1, 15 nm NPs have 

the lowest SPR, therefore, they have the least enhancement factor even in the aggregation 

status.  Although their number is the largest, it is still very challenging to detect them. 

Furthermore, when we decreased the concentration of Au NPs to 5 mg L-1 (Figure 3.5 b2-

e2), although SERS intensity became weaker, 35, 80 and 125 nm Au NPs were still 

detectable in situ. This data demonstrated that we were able to map various sizes of Au 

NPs on spinach leaves in situ. Although increasing exposure time and/or laser power may 

enhance the sensitivity, it may cause potential damage to the leaves and significantly 

increase the time for image analysis using this mapping technique. 
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Figure 3. 5 Raman images of spinach leaves with Au NPs of different sizes (15-125 nm) 

and concentrations (50 and 5 mg L-1). (a), spinach leaves without Au NPs. (b1)-(e1), 

spinach leaves with 50 mg L-1 Au NPs of different sizes. (b2)-(e2), spinach leaves with 5 

mg L-1 Au NPs of different sizes. Step size is 40 µm and one image contains 360 scanning 

points.  

3.3.3 In situ Detection and Characterization of Au NPs in Spinach Leaves 

There are two non-destructive approaches of using the confocal Raman 

spectroscopy to detect and characterize Au NPs in spinach leaves in situ. The first approach 

is to scan the area maps (XY) at different depth.  Figures 3.6 a-c show the Raman images 

of three different depths (0, 10, and 20 μm). Hot spots with strong signals in 10 μm and 20 

μm depth image were clearly observed, indicating that Au NPs were able to penetrate into 

the spinach leaves. Compared with 0 and 10 µm images, the number of spots with high 

intensity significantly decreased at 20 µm depth, which means there are decreasing 

amounts and less aggregation of Au NPs in deeper areas. Looking into the selected SERS 

spectra at different depths, the 0 and 10 μm spectra (Figures 3.6 d and 3.6 e) do not have 

characteristic peaks but a broad peak between 800-1600 cm-1, which indicates the NP-NP 

interaction (aggregation), while the spectrum of Figure 3.6 f shows clear enhanced peaks 

of carotenoids and chlorophylls, which demonstrates NP-pigment interactions. We also 

characterized other spots in the 20 μm depth images and found most of them showing 

various patterns combining the characteristic peaks of carotenoids and chlorophylls (Figure 

3.7). This indicates strong interactions between Au NPs and plant pigments. 

The second approach is to scan the area map vertically (XZ) to get more direct 

information on the penetration depth of Au NPs.  Based on the previous report, it was 
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estimated that the thickness of a spinach leaf was normally from 300 to 600 µm.7> Thus, 

we scanned from the top to 300 µm in depth to study the penetration depth of 35 nm Au 

NPs. Multiple images were collected randomly on the leaf surfaces, and three 

representative images were shown in Figures 3.6 h-j. Compared to the control (without Au 

NPs), these images show enhanced signals though varied with penetration depth from 80-

150 µm. The variation of the penetration depth may be caused by spatially heterogeneous 

leaf structures and properties, including spinach leaves’ wax coverage, surface wettability, 

stomata geometry and permeability, and so on.80,81 Several studies demonstrated that 

stomatal81 and cuticular pathways51,52 may enable ENPs accumulation in plant leaves 

through foliar exposure. In this study, we observed both pathways for Au NPs penetrating 

into spinach leaves as shown in Figure 3.9. In terms of penetration depth, there is no 

significant difference between these two pathways. But stomata may allow more Au NPs 

to penetrate in some cases, as indicated by intense signals observed in the depth image. 

We also did a validation study by cutting the leaf and scanning the cross-sections. 

As shown in Figure 3.10, the strongest SERS intensity was observed mainly at around 30 

µm depth. With the depth increasing, although the Raman intensity in each layer became 

weaker, up to 240 µm, the intensity of Raman spectrum was still around 400 counts. The 

depth profile obtained from this method is deeper than the previous method. One possibility 

is the under-estimation of the confocal scanning, which resulted from decreased 

penetration ability of laser at further depth and heterogeneous structure of spinach leaves.8> 

However, the result from the cutting method may be over-estimated as the pressure of 

cutting may artificially enhance the Au NPs’ accumulation. Nevertheless, it may not be 

practically meaningful to estimate the absolute penetration depth. These results 
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demonstrate that the Raman mapping technique can be used to measure Au NPs in spinach 

leaves in situ.   

 

 

Figure 3. 6 Raman images and selected SERS spectra of Au NPs in spinach leaves. (a)-(c), 

Raman images in different depth profile (0, 10, and 20 μm). (d)-(f) are SERS spectra at the 

same spot in different depth profile (0, 10, and 20 μm). (g), Raman depth image of spinach 

without Au NPs. (h)-(j) are Raman depth images of spinach with Au NPs. For surface 

mapping (a-c), the step size is 10 µm and each image contains 100 spots. For depth 

mapping (h-k), the step size in X direction is 10 µm and in Z direction is 10 µm, and each 

image contains 150 spots. 
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Figure 3. 7 SERS spectra of different spots in spinach leaves at 20 µm depth in situ. They 

show different patterns combining the characteristic peaks of carotenoids and chlorophylls, 

as well as the sulfur peaks, which demonstrate the strong interactions with plant pigments 

and sulfur containing compounds.   

3.3.4 Raman Mapping of Au NPs of Various Sizes in Spinach Leaves 

We then applied the vertical mapping approach to study the size effect on NP 

penetration. Four sizes (15, 35, 80, and 125 nm) and two concentrations (50 and 200 mg 

L-1) were used. For each size and concentration, at least five mappings were collected 

below the cuticle. The deepest penetration depth images were shown in Figure 3.8. Au NPs 

of all sizes can penetrate into spinach leaves to different depths. In addition, we observed 

a size dependent penetration effect. The 125 nm Au NPs were found remaining mostly 

close to the surface, while the 80 and 35 nm Au NPs penetrated into approximately 100 

and 150 µm in depth, respectively. This is probably due to the diffusion coefficients, which 

are inversely proportional to the radius of the permeant.3,8> Thus, it is reasonable to 

hypothesize that the part of Au NPs that penetrated into deep area might come from the Au 

NPs with smaller size. The reason for the low penetration depth of 15 nm observed in the 
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image is likely due to the weaker signals from 15 nm which made it difficult to track these 

Au NPs in deeper depth, although they may penetrate the deepest. In addition to the size 

effect, we observed the Au NPs at higher concentrations penetrated deeper than lower 

concentrations and the signal intensities were higher than those of low concentrations in 

the Raman images. One study also found a similar effect of concentration on the 

penetration depth.83 However, this may also be influenced by the sensitivity of the SERS 

mapping techniques which captured more signals when the concentration was higher. 

 

 

Figure 3. 8 Raman images of Au NPs with different sizes (15-125 nm) and concentrations 

(50 and 200 mg L-1) in spinach leaves. (a), spinach leaves without Au NPs. (b1)-(e1), 

spinach leaves with 50 mg L-1 Au NPs of different sizes. (b2)-(e2), spinach leaves with 200 

mg L-1 Au NPs of different sizes. The step size in X direction is 10 µm and in Z direction 

is 10 µm, and each image contains 150 spots. 
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Figure 3. 9 Optical images of representative selected areas for studying stomata and cuticle 

penetration, and SERS mapping of penetration depth profiles of 35 nm Au NPs through 

randomly picked stomata and cuticle on spinach leaf surfaces. Both of these two 

penetration pathways show variations in term of penetration depth, and there is no 

statistical difference between them. Stomata may allow more Au NPs to penetrate in some 

cases, as indicated by intense signals observed in the depth profile.  
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Figure 3. 10 Optical (a) and 2D Raman mapping (b) of the cross section of the spinach 

leaves deposited with 35 nm Au NPs. (c-k) SERS spectra collected from different depths.  

3.3.5 Validation of the SERS Mapping Using TEM-EDS  

To validate the SERS mapping results, TEM-EDS was used to observe and confirm 

Au NPs in spinach leaves. Figures 3.11 a and b show TEM images in a vertical section of 

a spinach leaf treated with 35 nm Au NPs (200 mg L-1). It was found that Au NPs penetrated 

into the spinach leaf interior and were distributed both outside and inside of the leaf cell 

walls. Furthermore, a considerable amount of NPs was distributed in and around the 

chloroplasts, structures that contain mainly chlorophylls and carotenoids. This may further 

confirm the strong signals from plant pigments observed in the previous Raman spectra.  

In addition, many Au NPs were shown in aggregated status inside the leaf tissues, which 

also confirms the observation from previous Raman spectra. Other studies also reported 

that certain ENPs can attach to the surface of chloroplasts8> and even enter chloroplasts.85 
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Figure 3. 11 TEM-EDS images of spinach leaves treated with 35 nm Au NPs (200 mg L-

1). Chloroplast (Chl) and Cell wall (CW). 

3.4 Conclusion 

In this current work, we developed an innovative, simple, and rapid approach using 

SERS mapping technique to detect and characterize different sizes of Au NPs on and in 

spinach leaves in situ. The detection was based on the hot spots produced by Au NPs on 

and in spinach leaves which can be clearly captured using Raman mapping without any 

sample preparation steps. The intensity and spectral pattern of hot spots reveal NP 

aggregation status as well as the interactions between Au NPs and plants. The Raman 

intensity of characteristic peaks from chlorophylls and carotenoids were enhanced, which 
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indicates the interactions between Au NPs and these plant bio-components. TEM-EDS also 

verified the interaction between Au NPs and chloroplast. To the best of our knowledge, it 

is the first study that explored and applied SERS mapping for detection and 

characterization of NP contaminants attaching onto and internalizing into fresh produce. 

We foresee this effective and transformative technique to open a new and exciting 

analytical window for rapidly detecting the presence of ENPs (especially Au, Ag, and Cu) 

in complex biological samples (such as plant leaves, biofilm, human and animal skins, 

etc.).  More importantly, the interactions of ENPs with bio-components in situ can be 

investigated, which will greatly facilitate the understanding of ENPs’ adhesive and uptake 

mechanisms, and further promote the understanding the behavior and fate of ENPs. We 

will further explore and apply this method to future studies of other ENPs (e.g., Ag and Cu 

NPs) and their interactions with plant tissues.   

  



 

38 

CHAPTER 4 

EVALUATION OF POSTHARVEST WASHING ON AGNPS 

REMOVAL FROM SPINACH LEAVES 

4.1 Introduction 

Silver nanoparticles (AgNPs) has been known for its unique antimicrobial and 

insecticidal properties over 100 years.1 For example, numerous studies on the toxicity of 

AgNPs to different bacterial species, including E. coli, Bacillus subtilis, Nitrosomonas 

europaea, Pseudomonas fluorescens, and Pseudomonas aeruginosa, have been performed 

in detail.2 Based on these facts, AgNPs has been adopted commercially across a wide 

spectrum of agriculture, food, and biomedical applications.1,> It is estimated that the global 

production of AgNPs can reach 500 tons per year and significant increases are anticipated 

in the future.86 Up to date, it has been reported that around 110 AgNPs-containing products 

had been registered as pesticides by the EPA for the purpose of medical, agricultural, 

environmental, and home purpose.4 In addition, several patent applications for AgNPs-

based fungicides had also been filed in the US.4,5 However, the widely use of AgNPs-based 

pesticides may increase the likelihood of human exposure, for example, unintentional 

consumption of AgNPs contaminated crop plants, which may pose risks to human beings. 

So far, the toxicity of AgNPs to human cells, such as oxidative stress, genotoxicity, and 

apoptosis have been demonstrated by several studies. For example, after 24 h treatment, 5-

10 nm AgNPs with concentration from 0.05 mg L-1 to 20 mg L-1 could result in oxidative 

stress, DNA damage, cell cycle arrest and apoptosis in human jurkat cells.7 Therefore, 

understanding the biotransformation and distribution of AgNPs in plants is a prerequisite. 
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Up to now, the biotransformation and distribution of metal-based NPs inside plants 

after foliar exposure has been reported in several studies. Shi et al. used transmission 

electronic microscopy (TEM)-energy dispersive spectrometry (EDS) to determine the 

presence of CuO NPs in the intercellular space or protoplast of Elsholtzia splendens after 

foliar and root exposure.8> In addition, with the aid of X-ray absorption spectroscopy 

(XAS), they also found the conversion of CuO NPs to Cu-alginate, Cu-oxalate, and Cu-

cysteine in Elsholtzia splendens.87 Similarly, Larue et al. showed that TiO2 NPs was 

internalized in lettuce leaves and could be observed in all types of tissues after foliar 

exposure.52 Besides, through Micro X-ray fluorescenc (μXRF) and XAS, they also 

demonstrated the in planta accumulation of TiO2 in cucumber was crystal phase dependent. 

For example, anatase-TiO2 NPs was found predominantly in the xylem and cortex, while 

rutile-TiO2 NPs was accumulated in phloem of exposed cucumber.52 With regard to the 

exposure of plant leaves to AgNPs, limited studies have been performed. Larue et al. 

demonstrated that AgNPs can be entrapped by the cuticle, further penetrate through 

stomata and finally be distributed in various regions of the leaves. Furthermore, they 

showed that these internalized AgNPs would be oxidized as well as be complexed by thiol-

containing molecules. However, in Larue et al. experiment, they only studied uncoated 

AgNPs, which is not commonly be used in real applications due to the fact that uncoated 

AgNPs is easily to form aggregation. More importantly, considering the limitations of 

instruments (µXRF and µXANES) they used, such as complex sample preparation, it is 

impossible to monitor the in situ and real time biotransformation and distribution of AgNPs 

in plants. 
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The objective of this study is to determine the in situ and real time 

biotransformation and distribution of AgNPs with different sizes (40 and 100 nm) and 

surface coating (citrate and polyvinylprrolidone) in spinach leaf. Due to the fact that, the 

most commonly used stabilizing agents in AgNPs synthesis studies were CIT (27%), 

followed by PVP (18%), CIT- and PVP-AgNPs were selected for this study.8> Spinach 

was chosen because of its large global consumption and high edible tissue surface area, 

making it an ideal model to study the foliar transfer of NP contaminants. 2D surface 

enhanced Raman spectroscopy (SERS) mapping technique was used to characterize the in 

situ interaction between AgNPs and plant biomolecules as well as to on line monitor the 

penetration of AgNPs in spinach leaf. Transmission electron microscopy (TEM) and 

scanning electron microscopy (SEM)-energy dispersive spectrometry (EDS) were used to 

validate the distribution of AgNPs in spinach leaf. This work will help us to understand the 

biotransformation and distribution of AgNPs in crop plants as well as to effectively 

evaluate the risk level associated with AgNPs contaminants in fresh produce in the future.  

4.2 Materials and Methods 

4.2.1 Materials 

Organic spinach leaves were purchased from Whole Foods Market (Amherst, MA) 

and transferred to the Chenoweth Lab at University of Massachusetts Amherst. All spinach 

leaves were stored at 4 °C and used within 1 day. All leaves were washed with deionized 

water (Barnstead MicroPure system, Fisher Scientific Co., PA) with a pH of 5.85. AgNPs 

with different size (40 and 100 nm) and surface coating (citrate and polyvinylpyrrolidone) 

were purchased from Nanocomposix (San Diego, CA). Both L-cysteine (Cys) were 

acquired from Sigma-Aldrich (St. Louis, MO). 

https://en.wikipedia.org/wiki/Polyvinylpyrrolidone
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4.2.2 Preparation for in situ Study of AgNPs Penetration on Spinach 

A 10 μL aliquot of the 20 mg L-1 AgNPs solution with different size (40 and 100 

nm) and surface coating (citrate and polyvinylpyrrolidone) was dropwise added onto 

spinach leaf surface. All AgNPs treated spinach leaves were air-dried at room temperature. 

The penetration behavior of each kind of AgNPs on spinach was monitored during different 

time periods from 0.5 to 48 hours. 

4.2.3 Determination of The SERS Characteristic Signals of Various Pesticides on 

Gold Coated Glass Slide 

 L-cysteine and glutathione (0.01 g) powder were dissolved in 10 mL deionized 

water (DI water) and were further diluted to 100 mg L-1, respectively. DI water was used 

as a negative control. After that, 50 μL aliquot of each kind of AgNPs solution with 20 mg 

L-1 was added into them and mixed by a Fisher ScientificTM Analog vortex mixer (Fisher 

Scientific Co., PA) for 30 s, then 5 μL aliquot of mixture was transferred onto the gold 

coated microscope slide, and then allowed to dry at room temperature for Raman 

measurement. 

4.2.4 Raman Instrumentation and Data Analysis 

A DXR Raman microscope (Thermo Fisher Scientific, Madison, WI) with a 780 

nm laser and a 20× long distance microscope objective was used in this study. Each 

spectrum was scanned from 400 to 3400 cm-1 1 s exposure time.  For determining the 

interaction between each kind of AgNPs and biomolecules (L-cysteine, glutathione) in 

vitro, SERS spectra were collected with a 50 μm slit aperture 5 mW laser power to 

maximize the signals. Eight discrete locations were randomly chosen on each sample for 

analysis. For penetration studies, SERS depth mapping images were acquired with a 50 μm 
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pinhole aperture 1 mW laser power to control the confocal depths using a scanning depth 

of 300 µm. Each area was randomly picked up from spinach leaf and vertical to leaf surface 

with 100 µm × 300 µm area. The step size of the mapping was 10 µm and one image 

contained 150 scanning spots. Raman images were integrated based on the characteristic 

peaks in the pesticide spectra using the atlµs function in the OMINCS software (Thermo 

Fisher Scientific, Madison, WI). 
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4.3 Results and Discussion 

4.3.1 Interactions of Biomolecules and AgNPs in Spinach Leaf.  

 

Figure 4. 1 (a) SERS spectra of 40 nm CIT-AgNPs in different position of spinach leaf; (b) 

SERS spectra of 40 nm CIT-AgNPs in different depth (depth: 0 to 190 µm) of spinach leaf. 
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Figure 4. 2 SERS spectra of the interactions between different biomolecules and (a) 40 nm 

CIT-AgNPs, (b) 100 nm CIT-AgNPs and (c) 40 nm PVP-AgNPs. 

In order to investigate the interactions between AgNPs and bio-components on 

spinach leaf, the spectra of 40 nm CIT-AgNPs in three different positions were collected. 

As shown in Figure 4.1a, the spectrum collected from different location showed different 

pattern. The highest peaks in these three spectra are 685, 659 and 657 cm-1, respectively. 

Although the positions of highest bands are slightly different, all these bands can be 

assigned to C-S stretching. The Raman shift of the highest band may originate from 

different localized conditions, such as desorption, re-orientation, chemical transformation 

of the biomolecules on AgNPs surface. It is seen that the pattern of SERS spectra collected 

from one position at different depth are similar. However, the SERS intensity gradually 

decreased with the depth increasing, which may be due to the reason that less AgNPs are 

present in the deeper area. 

To specify what kind of biomolecule would interact with AgNPs, an in vitro study 

is needed. However, there are hundreds of thousands of bio-components in plants. In order 

to minimize the candidate component, understanding the possible interaction between 

AgNPs and bio-components in advance is necessary. when plants are exposed to 

extraneous AgNPs, excessive reductive oxygen species (ROS), including singlet oxygen 

(1𝑂2), superoxide (𝑂2
·˗), hydrogen peroxide (𝐻2𝑂2), and hydroxyl radical (𝐻𝑂·) will be 

generated. In order to lower the toxicity of these excessive generated ROS to plants, 

specific defensive antioxidants that can convert these highly toxic species to less toxic 

species (H2O and 𝑂2) in plants are needed. Among a variety of antioxidants, cysteine (Cys) 

is a well characterized antioxidant and can prevent the stress induced by AgNPs through 
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thiol-group (-SH). In addition, as the primary precursor molecule in the process of 

glutathione biosynthesis, cysteine can be rapidly converted to glutathione (GSH) with the 

help of γ-glutamylcysteine (γ-ECS) and glutathione synthase (GS). These converted GSH 

can further scavenge ROS and be oxidized to glutathione disulfide (GSSG), which can then 

be recycled by glutathione reductase (GR). Furthermore, due to the presence of thiol-group, 

Cys, along with GSH and phytochelatins (PCs), the downstream products of GSH, can 

detoxify AgNPs by chelating Ag ions. In addition to these biomolecules, the interaction 

between AuNPs and chlorophylls has also been reported in our previous study.8> Thus, 

considering all the above facts and availability of chemical reagents, an in vitro study of 

the interaction between AgNPs and biomolecules, including Cys, GSH, and chlorophylls, 

were performed. The SERS spectra of AgNPs (40 and 100 nm CIT, 40 nm PVP) and these 

biomolecules on a gold-coated slide were showed in Figure 4.2. CIT-AgNPs exhibits 

Raman bands at 1085, 1024, 955, 933, 839, 798 cm-1, which are consistent with previous 

studies.90–92 When Cys was mixed with CIT-AgNPs and PVP-AgNPs, the enhanced Raman 

bands of Cys at 1608, 1293, 1033, 802, 735, 664 cm-1 were clearly observed. These new 

bands are similar to the previous studies and can be assigned to the interaction of Cys and 

AgNPs via the -SH group.93–95 Among them, the highest band at 660 cm-1, which comes 

from C-S stretching and is often used as the characteristic peak to monitor the presence of 

Cys.  
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4.3.2 Size Effect on Biotransformation and Penetration Behavior. 

 

Figure 4. 3 (a), (b), (c) In situ SERS spectra of 40 nm CIT-AgNPs, 100 nm CIT-AgNPs, 

40 nm PVP-AgNPs in spinach leaf following different exposure time; (d), (e), (f) Second 

derivative Raman spectra of the C-S stretching peak of cysteine from 40 nm CIT-AgNPs, 

100 nm CIT-AgNPs, 40 nm PVP-AgNPs in spinach leaf following different exposure time.  
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Figure 4. 4 SERS spectra of the interactions between cysteine and (a) 40 nm CIT-AgNPs, 

(b) 100 nm CIT-AgNPs and (c) 40 nm PVP-AgNPs following different time (0.5 and 48 

h). 
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Figure 4. 5 Principal component analysis (PCA) plot of (a) 40 nm CIT- and 100 nm CIT-

AgNPs in spinach leaf with different time (0.5 and 48 h), (b) 40 nm CIT- and PVP-AgNP 

in spinach leaf with different time (0.5 and 48 h). 
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Figure 4. 6 2D SERS depth mapping images of (a) 40 nm CIT-AgNPs, (b) 100 nm CIT-

AgNPs, (c) 40 nm PVP-AgNPs penetration following different exposure time based on the 

highest C-S stretching peaks; (d), (e) Comparison of penetration depth of AgNPs with 

different sizes (40 and 100 nm) and surface coatings (CIT and PVP) in spinach following 

different exposure time. Results are expressed as mean value standard deviation (n=3). 

Different letters represent a significant difference (P<0.05).  

Figure 4.3a shows the in situ SERS spectra of 40 nm CIT-AgNPs in spinach leaf 

after different exposure time from 0.5 to 48 h. Compared with the spectra of raw spinach 

leaf and 40 nm CIT-AgNPs, characteristic bands of Cys at position 1033, 955, 735, 680-

650 cm-1 can be observed from Figure 4.3a after only 0.5 hour. This result indicates a rapid 
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interaction between 40 nm CIT-AgNPs and Cys in spinach leaf. From the in vitro spectra 

(Figure 4.4), strong C-S band at 658 cm-1 also appeared after 0.5 h and the pattern of spectra 

didn’t change from 0.5 to 48 h, demonstrating the rapid interaction between CIT-AgNPs 

and Cys. Similar result was reported by Gondikas et al., who demonstrated surface ligands 

(CIT/PVP) on AgNPs could be replaced by Cys after 2 h.9> In addition to Cys bands, other 

SERS bands can also be observed in SERS spectra, which may originate from other bio-

components present in spinach leaf, including pectin, lignin, or other polysaccharides.97 

Figure 4.3b shows the in situ SERS spectra of 100 nm CIT-AgNPs in spinach leaf after 

different exposure time from 0.5 to 48 h. Similar to 40 nm CIT-AgNPs, the characteristic 

bands of Cys, especially at 680-650 cm-1, can be observed, indicating the interaction 

between 100 nm CIT-AgNPs and induced Cys in spinach leaf. Both Figure 4.3d and 4.3e 

show that the intensity of C-S band from Cys became stronger with time increasing. This 

is understandable since the amount of applied AgNPs is specific, while the amount of 

induced Cys continuously increased from 0.5 to 48 h. These new induced Cys can be 

further associated with AgNPs and subsequently generate stronger SERS signals. Ma et al. 

showed that the exposure of engineered Crambe abyssinica plants that express the bacterial 

γ-ECS to AgNPs resulted in a greater cysteine production.98 Similar result was also 

reported by Li et al., the overexpression of γ-ECS in Arabidopsis contributes to a significant 

increase in cysteine upon arsenic treatment.99 

 Understanding the biotransformation and determining the distribution of AgNPs in 

edible plants is very critically important since it controls phytotoxicity and toxicity for 

consumers. In this study, principal component analysis (PCA) was used to determine the 

biotransformation of both 40 and 100 nm CIT-AgNPs in spinach leaf. Generally, in the 
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PCA plot, if the data classes are not overlapping, meaning these classes are significantly 

different at the p=0.05 level. From Figure 4.5a, the clusters of both in vitro 40 and 100 nm 

CIT-AgNPs (control) are not overlapping. This is reasonable because the SERS intensity 

of 40 nm CIT-AgNPs is normally stronger than that of 100 nm CIT-AgNPs, which has 

already been reported by other groups.10> However, except the cluster of 40 nm CIT-

AgNPs (48 h), the other three clusters, including 40 nm CIT-AgNPs (0.5 h), 100 nm CIT-

AgNPs (0.5 h), and 100 nm CIT-AgNPs (48 h), overlapped, indicating no matter what size, 

CIT-AgNPs experienced similar biotransformation process in spinach leaf. Although 

clusters of 40 and 100 nm CIT-AgNPs at 48 h did not overlapped, this may be still resulted 

from the large difference in SERS intensity between 40 and 100 nm CIT-AgNPs.  

According to previous study, the penetration of AgNPs into plants is a complex 

process, depending on many factors (e.g. NP size, surface functionality, chemical 

composition).5> Here, we first compared the penetration ability of AgNPs with different 

sizes (40 and 100 nm) in spinach leaf. From Figure 4.6a and 4.6d, the penetration depth of 

40 nm CIT-AgNPs could reach to 183 ± 38 µm after 48 h. Compared with 40 nm CIT-

AgNPs, we found that 100 nm CIT-AgNPs were mostly present closer to the spinach 

surface (90 ± 36 µm) even after 48 h, indicating the penetration ability of AgNPs is 

probably size dependent. According to previous study, both pathways (pores of the cuticle 

and stomata) are more suitable for penetration of NPs with small size, although some other 

groups found that NPs with large size can enter into plant cells by damage of the cell 

membrane or by endocytosis.101 Based on the in situ 40 and 100 nm CIT-AgNPs spectra 

from 0.5 to 48 h we obtained (Figure 4.3a-b), there are no obvious difference. This means 

the pathway of 40 and 100 nm CIT-AgNPs into spinach leaf may be similar.  
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4.3.3 Surface Coating Effect on Biotransformation and Penetration Behavior. 

Figure 4.3c is the in situ SERS spectra of 40 nm PVP-AgNPs in spinach leaf after 

different exposure time from 0.5 to 48 h. Compared with 40 nm CIT-AgNPs, we note that 

no new band at 681 cm-1 can be observed at 0.5 h, indicating no direct interaction between 

Cys and 40 nm PVP-AgNPs. This observation could be explained by the fact that the 

molecular weight of PVP (a long chain polymer with an average molecular weight of 55 

000 Da) is much larger than that of CIT (a small amino acid with molecular weight 121 

Da), which would compromise the contact between Cys and silver atoms at AgNPs surface. 

After 6 h, a strong band at around 683 cm-1 appeared and became stronger with time 

increasing (Figure 4.32f). According band assignment, this is still because of the 

interactions between AgNPs and induced Cys in spinach leaf.  

Figure 4.5b is the PCA plot of 40 nm CIT- and PVP-AgNPs in spinach leaf with 

different time (0.5 and 48 h). As for in vitro 40 nm CIT- and PVP-AgNPs (control), their 

clusters didn’t overlap due to their different surface coatings. After 0.5 h, the clusters of 40 

nm CIT- and PVP-AgNPs still did not overlap. This is because 40 nm CIT-AgNPs already 

interacted with Cys produced in spinach leaf at that time while 40 nm PVP-AgNPs didn’t, 

which has been discussed in previous section. However, after 48 h, the clusters of  these 

two kinds of AgNPs overlapped, indicating the insignificant difference between them. 

According to previous data, we can make a conclusion that no matter what kind of surface 

coating, AgNPs would end up with AgNPs-Cys in spinach leaf after 48 h.  

Figure 4.6c shows the in situ 2D SERS penetration images of 40 nm PVP-AgNPs. 

Similar to both 40 and 100 nm CIT-AgNPs, SERS signals near the surface became stronger 

with time increasing, which means 40 nm PVP-AgNPs gradually interacts with those 
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induced Cys in plants. However, we found almost no SERS signals were shown in 0.5 h 

2D SERS penetration image. This is because all the 2D SERS penetration images were 

constructed based on the highest C-S stretching.  For 40 nm PVP-AgNPs, no enhanced C-

S stretching peak appeared after 0.5 h, thus 2D SERS penetration images cannot truly 

reflect its real penetration in spinach leaf. Figure 4.6e summarized the penetration behavior 

of 40 nm PVP-AgNPs in spinach, in which we determined the penetration depth based on 

the difference of SERS signals between the highest peak in SERS spectra of AgNPs and 

raw spinach leaf. We found 40 nm PVP-AgNPs gradually penetrated into deeper area with 

time increasing and reached at 226 ± 47 µm after 48 h (P ˂ 0.05). Compared with the 

penetration profile of 40 nm CIT-AgNPs, the difference between them is not significant. 

This means surface coating is not a factor that influence the penetration ability of AgNPs 

in spinach leaf.   

4.4 Conclusion 

Herein, this study gives insights on in situ monitoring the biotransformation and 

penetration of different kinds of AgNPs in a spinach leaf after foliar exposure. Results 

show that no matter what kind of sizes (40 and 100 nm) and surface coatings (CIT and 

PVP), all the AgNPs would interact with Cys and end up with Cys-AgNPs, suggesting a 

detoxification process in spinach leaf. In addition, the penetration ability of AgNPs 

depends on NP size rather than surface coating. This type of study shows the promising 

future of using 2D SERS mapping technique to monitor the biotransformation and 

distribution of AgNPs in environmental and biological systems. In our future study, 

additional work will focus on using 2D SERS mapping to monitor the foliar penetration of 

AgNPs and root uptake of AgNPs over long exposure time in crop plants.   
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CHAPTER 5 

EVALUATION OF POSTHARVEST WASHING ON AGNPS 

REMOVAL FROM SPINACH LEAVES  

5.1 Introduction 

The unique antimicrobial and insecticidal properties of silver nanoparticles 

(AgNPs) have been known for over 100 years and have been adopted commercially across 

a wide spectrum of agriculture, food, and biomedical applications.1,5 Since the 

establishment of US-EPA in 1970, the frequency of EPA-registered silver products has 

been steadily increasing. EPA-registered AgNPs containing-products can be divided into 

three categories; (a) AgNPs biocidal additives, (b) Ag-impregnated water filters, and (c) 

Ag algicides and disinfectants.1 In recent years, there has been increased interest in the use 

of inorganic pesticides, such as those containing AgNPs. The manufacturers of these 

products anticipate that these new pesticides will have greater efficacy in the field, which 

will subsequently decrease pesticide releases through environmental or “spray” drift and 

storm water runoff.3 Currently in the US, approximately 110 AgNPs-containing products 

had been registered as pesticides by the EPA and several patent applications for AgNPs-

based fungicides had been filed.4,5 The global production of AgNPs was estimated at 500 

tons per year and significant increases are anticipated in the future.6 Previous studies have 

demonstrated that long term exposure to AgNPs may result in morphologic, physiologic 

and genetic alternations in plant species and further inhibit crop growth and yield.49,10> 

Importantly, the accumulated AgNPs retained on or in edible plants may transfer through 

the food chain and pose an unknown risk to human health.103,104 The toxicity of AgNPs (20 

-100 µg mL-1) to human cells, including skin keratinocytes, lung fibroblast cells, and 
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glioblastoma cells have been demonstrated in several studies.105,106 Thus, it is important to 

assess the risk of AgNPs exposure throughout the food chain. An evaluation of the efficacy 

of different postharvest washing strategies on AgNPs removal that had accumulated on 

fresh produce surfaces will address some of these critical questions related to exposure.    

During the processing of fresh produce, sanitizers are used in postharvest washing 

to disinfect the process water, effectively inactivating or destroying microorganisms, and 

preventing cross-contaminations among different batches of food.6 There are a diverse 

range of sanitizing agents that have been approved for use of fruits and vegetables; slightly 

acidified hypochlorite solutions (pH 6.5~7.0) is the most commonly used because of its 

antimicrobial efficacy and minimal impact on nutritional and flavor quality of the 

produce.108,10> The antimicrobial effects of hypochlorite result from the formation of 

hypochlorous acid, which is highly reactive with organic nitrogen under aerobic 

conditions.110,111 Peroxyacetic acid (CH3CO3H) is another widely used sanitizer that has 

been approved for use on fresh produce by the US Food and Drug Administration (FDA) 

and US Environmental Protection Agency (EPA).107 The advantage of peroxyacetic acid 

over hypochlorite is its stability against influence from organic materials in the washing 

tank.112 Importantly, the contact time between both fresh produce and sanitizers is normally 

less than 5 min and rinsing with potable water is required in the United States.113–117  

 The objective of this study was to evaluate the effectiveness of distilled water and 

two commonly used sanitizers, Clorox® bleach (contains 8.25% sodium hypochlorite), and 

Tsunami® 100 (contains 15.2% peroxyacetic acid and 11.2% hydrogen peroxide) at 

removing surface attached AgNPs from spinach leaves.  Since AgNPs are commonly 

stabilized by sodium citrate, citrate coated AgNPs were selected for this study.8> The size 
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(40 nm) and concentrations (40 mg L-1) of AgNPs used are comparable to those of 

commercial pesticide products, e.g. CollGen2® (Peschel Instruments Inc, ID) and Colloidal 

Silver Organic Elemental Biocide (New England Hydroponics, MA). Spinach was chosen 

because of its large global consumption and high edible tissue surface area, making it an 

ideal model to study the fate of foliar pesticide residues.  Surface enhanced Raman 

spectroscopy (SERS), scanning electron microscopy (SEM)-energy dispersive 

spectrometry (EDS), and inductively coupled plasma mass spectrometry (ICP-MS) were 

used to determine AgNPs removal efficiency. SERS is an effective method for detecting 

AgNPs after addition of a Raman active ligand that binds strongly to the particles, 

subsequently yielding a distinct peak for identification and quantification. The enhanced 

detection mechanism is unique for nano size Ag, effectively discriminating AgNPs from 

other species.9 ICP-MS and SEM-EDS were also used to measure the amount of residual 

total silver and characterize those remaining particles, respectively. This work will help to 

evaluate the risk level associated with AgNPs contamination in fresh produce, as well as 

to develop an effective risk mitigation strategy in the future.  

5.2 Materials and Methods 

5.2.1 Spinach Samples and AgNPs 

Organic spinach leaves were purchased from a local grocery store in Amherst, MA 

and transferred to the Chenoweth Lab at University of Massachusetts Amherst. All spinach 

leaves were stored at 4 °C and used within 1 day. All leaves were washed with deionized 

water (Barnstead MicroPure system, Fisher Scientific Co., PA) with a pH of 5.85. AgNPs 

with an average 40 nm diameter was acquired from NanoComposix (San Diego, CA); The 

mass concentration (Ag) was 20 mg L-1 in citrate solution. 
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5.2.2 Washing Sanitizer and Washing Conditions 

Two commercial produce sanitizer, Clorox® bleach (EPA approved sodium 

hypochlorite, Reg. No. 5813-100, pH maintained to 6.5-7.5 with acid, CA) and Tsunami® 

100 (EPA approved peroxyacetic acid, Reg. No. 1677-164, Ecolab, MN), were used. The 

main active ingredient of Clorox® bleach is 8.25% sodium hypochlorite (7.85% available 

chlorine); Tsunami® 100 contains 15.2% peroxyacetic acid and 11.2% hydrogen peroxide. 

For general produce rinsing operations, 50-200 mg L-1 available chlorine for acidified 

hypochlorite solutions (pH 6.5) or 30-80 mg L-1 peroxyacetic acid for Tsunami 100® are 

commonly used.112,11> Here, it should be noted that, although the recommended Clorox® 

bleach concentration for fresh produce wash is 25 mg L-1, EPA regulatory levels for sodium 

hypochlorite allow up to 200 mg L-1 in direct contact with produce.114 Thus, in order to 

maximize the washing effect, 200 mg L-1 was selected in our study. In addition, the contact 

time between fresh produce and the washing sanitizer is typically less than 5 min. In our 

study, each piece of spinach leaf was contaminated by a drop of 10 µL of 40 nm AgNPs 

with the concentration of 40 mg L-1 and were stored under a fume hood at ambient 

temperature for 45 min. After drying, the contaminated spinach leaves were immersed into 

deionized water, 200 mg L-1 Clorox® bleach and 80 mg L-1 Tsunami® 100 for 5 min, 

respectively. All leaves were rinsed with deionized water for 1 min to remove sanitizer 

residue prior to AgNPs analysis. For each treatment, one piece of spinach was used and 

each treatment was replicated three times. Both raw spinach leaves and AgNPs 

contaminated leaves without treatment were used as controls.  
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5.2.3 Recovery of Surface AgNPs Residue for SERS Measurement 

Figure 5.1 illustrates the sample collection process from fresh spinach leaves and 

the principle for AgNPs detection using Scotch double side tape followed by SERS. A 

Scotch double sided tape (Scotch® Brand, MN) was briefly affixed to the treated spinach 

leaf surface for 10 s and then immediately removed. This procedure was repeated on the 

same position three times to ensure total AgNPs removal from the surface, which was 

verified by optical light microscopy. The double sided tape was then immersed into a 100 

mg L-1 4-Mercaptobenzoic acid (Sigma-Aldrich, Missouri, USA) solution for 5 min; this 

was to ensure complete 4-Mercaptobenzoic acid complexation with AgNPs through Ag-

thiol bond formation.11> Surface enhanced Raman spectra between 3400 and 400 cm-1 were 

taken by using a DXR Raman spectra-microscope (Thermo Scientific, Madison, WI) under 

the following conditions: a 20 × confocal microscope objective (3 mm spot diameter and 

5 cm-1 spectral resolution), 780 nm excitation wavelength, 5 mW laser power and 50 mm 

slit width for 1 s integration time. Both raw spinach leaves and AgNPs contaminated 

spinach leaves without treatment were analyzed as controls; AgNO3 and AgCl were used 

as negative controls. 

5.2.4 Scanning Electron Microscopy (SEM) 

Treated Spinach leaves (4 cm2) were freeze-dried (Genesis Pilot Lyophilizer, SP 

Scientific, NY) overnight and examined by SEM using a FEI Magellan 400 (FEI, OR) with 

an accelerating voltage of 5 kV under low vacuum conditions. No additional fixative was 

applied in order to avoid artificial detachment of the AgNPs from the spinach leaves. Both 

raw spinach leaves and Ag NPs contaminated spinach leaves without treatment were used 

as controls. 
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5.2.5 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

Ten µL of 40 mg L-1 AgNPs treated spinach leaves were dried at ambient 

temperature, transferred to 15 mL centrifuge tubes and mixed with 3 mL of 68% HNO3. 

The samples were subsequently digested at 115 ℃ for 40 min. After cooling, 500 µL of 

H2O2 was added and the samples were incubated at 115 ℃ for 20 min. The digests were 

diluted 14 fold with deionized water, filtered through Whatman #42 filter paper and 

analyzed by ICP-MS analysis for total Ag.  

5.2.6 Statistical Analysis 

Data analysis was performed using OMNIC and TQ Analyst Software (Thermo 

Fisher Scientific). Data preprocessing algorithms, such as binning, smoothing, and second-

derivative transformation, were employed for the spectral data analysis. To determine the 

influence of washing treatment on AgNPs removal from the leaves, a one-way analysis of 

variance (ANOVA) followed by a Tukey multiple comparison test was done with SPSS 

12.0 software (P < 0.05).  

5.3 Results 

5.3.1 Effectiveness of SERS-Based Method to Detect and Identify AgNPs 

Due to its strong binding ability to AgNPs, 4-Mercaptobenzoic acid has been 

considered as a common SERS indicator and has been widely studied.119,12> In a previous 

study, we used the fungicide ferbam as an indicator molecule but for the current work, 

there was incompatibility of the adhesive tape with the organic solvent (acetone) used for 

dissolving the pesticide. 4-Mercaptobenzoic acid can be dissolved in ethanol, which does 

not react with the adhesive tape. As shown in Figure 5.2, only AgNPs have SERS signals 

when mixed with 4-Mercaptobenzoic acid. This SERS effect results from localized surface 
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plasmon resonance (LSPR) and from the chemical enhancement that is produced by the 

bond between Ag NPs and 4-Mercaptobenzoic acid through the sulfur group (as shown in 

Figure 5.2).120 Four distinct Raman peaks of 4-Mercaptobenzoic acid that locate at 1588, 

1178, 1130, and 1076 cm-1 are consistent with previous reports.121–123 Among them, the 

two strong Raman peaks at 1588 and 1076 cm-1 can be attributed to the υ(C˗C) ring 

stretching and υ(C˗C) ring breathing, respectively. The other two relatively weak Raman 

peaks at 1130 and 1178 cm-1 are attributed to δ(C˗H) deformation modes.121,123,124 

 

 

Figure 5. 1 (a) AgNPs collection process from a spinach leaf; (b) Sample mixed with 100 

mg L-1 4-Mercaptobenzoic acid; (c) Detection process with the DXR Raman spectrometer; 

(d) schematic drawing for the detection of AgNPs. 
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Figure 5. 2 SERS spectra of deionized water (negative control), AgNO3, AgCl, Ag NPs 

with 100 mg/L 4-Mercaptobenzoic acid. 

5.3.2 Standard Curve Establishment for AgNPs Quantification 

To accurately quantify the amount of AgNPs on spinach leaves, standard curves 

were constructed using 10 µL 40 nm AgNPs with different absolute concentrations (0.1, 

0.25, 0.5, 1, 5, 10, 20, 40, 60, 100 mg L-1), and deionized water was used as a negative 

control. As shown in Figure 5.3, no 4-Mercaptobenzoic acid Raman signal was detected 

for the negative control. The Raman signal intensity was positively correlated with AgNPs 

concentrations (from 0.1 to 40 mg L-1); this is expected since larger amounts of AgNPs 

mean the greater available surface area that can be associated with 4-Mercaptobenzoic acid, 

which subsequently generates the stronger Raman signal. However, when the 

concentration of applied AgNPs exceeded 40 mg L-1, the net change in Raman intensity 

decreased, indicating that 0.4 mg L-1 is the saturation point. It should be noted that the 
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correlation coefficients (R2) between 0.1 - 1 mg L-1 and 5 - 40 mg L-1 are both greater than 

0.97, demonstrating the feasibility of our “tape collection” method for quantitative analysis 

of AgNPs contaminant residues. Clearly there are additional important factors that need to 

be considered, such as the size, shape, composition and aggregation status of the NPs. Our 

current data (Figure 5.3) and that from previous reports demonstrate that SERS intensity is 

positively correlated with particle size within the 100 nm size range but this gradually 

decreases beyond 100 nm.9,10> In addition, Tiwari et al. reported that among three Ag 

colloid morphologies (nanospheres, triangular nanprisms and nanorods), Ag nanorods 

produced the smallest SERS signal whereas the nanoprism exhibits the strongest 

response.125 Faulds et al. reported that more enhanced Raman signals would be produced 

by aggregated nanoparticles as compared with single or small groups of particles.126 As 

such, the use of electron microscopy to characterize the physical properties of the particles 

of interest is clearly important and offers significant advantages for this type of work.  
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Figure 5. 3 (a) SERS spectra of different concentrations of 40 nm AgNPs with 100 mg L-

1 4-Mercaptobenzoic acid; (b) second derivative Raman spectra of the characteristic peak 

of 4-Mercaptobenzoic acid at 1078 cm-1; (c, d, e) the linear relationship between Raman 

intensity and AgNPs concentration; The error bars represent the standard errors of three 

parallel SERS measurements. 

5.3.3 Quantification of AgNPs on Leaves after Washing Using SERS 

The SERS spectra of AgNPs before and after leaf washing and the corresponding 

amount of AgNPs quantified are shown in Figure 5.4 and Table 5.1, respectively. The 

negligible SERS intensity of raw spinach leaves results from the normal Raman signals of 

4-Mercaptobenzoic acid. The average intensity SERS response of AgNPs reduced by 12% 

and 16% after washing by DI water and Tsunami® 100, respectively. However, these 

decreases were not statistically significantly difference when compared to the control (not 

washed). The insignificant change demonstrates the low efficacy of these two washing 

solutions for AgNPs removal. Conversely, the Clorox® bleach treatment resulted in a 

significant decrease in SERS intensity, equivalent to over a 90% reduction in AgNPs 

amount. However, the decrease of AgNPs may result from two possible outcomes; a 

decrease in the total Ag or a transformation of the Ag NPs to other SERS-inactive Ag 

species. 

 Total Ag Measured 

by ICP-MS 

Total Ag NPs 

 Measured by SERS 

40 nm Ag NPs  

Treated Leaf 

(40 nm, 40×10-5 mg) 

Amount of Silver 

Residue 

(mg, ×10-5) 

SERS Intensity  

(A. U.) 

Corresponding 

Amount of 40 nm 

Ag NPs  

(mg, ×10-5) 

Raw Leaf 1.15 ± 0.01 10.77 ± 5.28 / 

AgNPs Treated Leaf 55.31 ± 3.40b 38928.38 ± 

6248.36b 

29.83-47.90 
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Deionized Water Wash 52.62 ± 5.53b 34293.23 ± 

5430.79b 

24.30-40.01 

80 mg/L Tsunami® 100 

Wash 

43.80 ± 5.26a 32789.66 ± 

1741.46b 

27.47-32.50 

200 mg/L Clorox® 

bleach Wash 

49.82 ± 4.00a 5638.96 ± 

2488.26a 

0.32-0.98 

Table 5. 1 Silver amounts on treated and washed spinach using ICP-MS and SERS 

 

 

Figure 5. 4 (a) SERS spectra of different washing treatments on 40 nm AgNPs (40 ×10-5 

mg) contaminated spinach leaves; (b) second derivative Raman spectra of the characteristic 

peak of 4-Mercaptobenzoic acid at 1078 cm-1. 

5.3.4 Evaluation the Total Ag Removal and Ag species after Washing Using ICP-MS 

and SEM-EDS 

As determined by ICP-MS, the total Ag content does not change after washing with 

water, but decreases 21% and 10% after washing with Tsunami® 100 and Clorox® bleach, 

respectively. These findings demonstrate the low efficacy of removing total Ag by the three 

washing strategies used in the study. SEM images also reveal that the AgNPs can still be 

clearly seen after washing with DI water and Tsunami® 100 and that the particle size is 

largely unchanged (Figure 5.6). Interestingly, after washing with Clorox® bleach, both the 

amount and size of the AgNPs change noticeably. Analysis by EDS confirms that AgNPs 
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are transformed to AgCl particles with an average size of approximately to 162 ± 51 nm 

(Figure 5.7). 

 

 

Figure 5. 5 SEM images of spinach leaf surfaces treated with 4×10-4 mg AgNPs: (a) raw 

spinach leaf; (b) AgNPs treated spinach leaves; (c) deionized water washed; (d) 80 mg L-1 

Tsunami® 100 treated; (e) 200 mg L-1 Clorox® bleach solution treated.  
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Figure 5. 6 The size distribution of residual particles on spinach after postharvest washing. 
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Figure 5. 7 EDS analysis of spinach leaf surfaces treated with 4×10-4 mg AgNPs: (a) raw 

spinach leaf; (b) AgNPs treated spinach leaves; (c) deionized water washed; (d) 80 mg L-

1 Tsunami® 100 treated; (e) 200 mg L-1 Clorox® bleach solution treated. 

5.4 Discussion 

The findings of this study show that standard washing protocols are insufficient for 

removing AgNPs, total Ag, or Ag transformed products from food surfaces. An 

understanding of Ag chemistry in the solutions used will provide clarity to the observed 

results. It is well known that the oxidation of silver is thermodynamically favored at room 

temperature (ΔG298
0 = −11.25 kJ/mol); thus, metallic silver is generally considered to be 

sensitive to oxygen.127–12> The following reaction stoichiometry was proposed in simple 

solutions that contain no other oxidants or reductants, 

𝟐𝐀𝐠(𝐬) +
𝟏

𝟐
𝐎𝟐(𝐚𝐪) + 𝟐𝐇(𝐚𝐪)

+ ⟺ 𝟐𝐀𝐠(𝐚𝐪)
+ + 𝐇𝟐𝐎(𝐥) 
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Previous studies have shown that DI water can be used to remove alumina NPs that 

had been applied to tomato surfaces but not for titanium and silica NPs on that same 

fruit.13> The authors postulated that the large difference (4 or more pH units) between the 

pH of the washing solution and the NPs isoelectric point (IEP) increase the zeta potential 

while decreasing the hydrodynamic size, thereby enhancing particle removal.  Here the 

difference (3.65 units) between pH of our DI water (pH ≈5.85) and the IEP of AgNPs (IEP 

AgNPs ≈ 2.2) may explain the low washing efficiency. In addition, since AgNPs are more 

easily to form a strong binding with those biomolecules with thiol group in plants, which 

may reduce the removal efficiency as well.51 Our results are in agree with Laure et al 

study,51 in which they demonstrated that the classical washing process could only remove 

those bigger Ag agglomerates from the surface of lettuce and did not result a significant 

decrease in the total amount of Ag. 

 

In the Tsunami® 100 solution, the pH is 3.6 and the main active agents are 

peroxyacetic acid and hydrogen peroxide. In addition, metallic silver can be oxidized by 

H2O2 and peroxyacetic acid in a similar way since the acid will break down in to acetic 

acid and hydrogen peroxide. 13> The  hydrogen peroxide will react with metallic silver to 

release Ag+ with simultaneous formation of the hydroxyl radical,132 

𝐀𝐠(𝐬) + 𝐇𝟐𝐎𝟐 ⟶ 𝐀𝐠(𝐚𝐪)
+ + 𝐎𝐇∙ + 𝐎𝐇− 

Then, the hydroxyl radical can further oxidize metallic silver,13> 

𝐀𝐠(𝐬) + 𝐎𝐇∙ ⟶ 𝐀𝐠(𝐚𝐪)
+ + 𝐎𝐇− 

However, it is obvious that Tsunami® 100 solution was still ineffective at removing 

total Ag and AgNPs. This may due to the fact that difference between the pH and IEPAgNPs 
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is still smaller than 4 units, which decreases Ag NPs removal. In addition, insufficient 

contact time and/or concentration for the washing protocol used may also be the reasons.  

For the Clorox® bleach solution (pH ≈ 6.5), the difference between the pH and 

IEPAgNPs is larger than 4 units, which should facilitate AgNPs removal. In addition, the 

main oxidant in Clorox® bleach solution is sodium hypochlorite that will readily transform 

metallic silver to Ag+. In fact, most of AgNPs will be quickly oxidized by sodium 

hypochlorite due to its strong oxidizing ability. Hypochlorous acid would form first and 

then partially release hypochlorite ion (pKa=7.4) upon dissolution in water. Partial 

hypochlorite ions would further dissociate into chloride ion.13>  We propose that relatively 

small amounts of Cl- anions scavenge Ag+ and then form AgCl precipitants;135  

𝐀𝐠+ + 𝐂𝐥− ⟶ 𝐀𝐠𝐂𝐥 

Impellitteri et al. found similar transformation from AgNPs to AgCl when they 

attempted to identify the speciation of AgNPs in antimicrobial fabric after 

hypochlorite/detergent solution exposure.13> Importantly, AgCl may still pose a risk to 

humans; the toxicity of AgNPs, AgCl and Ag ions has been reviewed in recent years136–

138. For example, Choi et al. showed that AgCl colloids are as effective as Ag ions at 

inhibiting the growth of nitrifying bacteria but are less effective than AgNPs.136 However, 

comparisons to AgNPs cannot be generalized since the toxicity is strongly particle size 

dependent.139   

Herein, we evaluated the postharvest washing efficiency of several treatments, 

including deionized water, Tsunami® 100 and Clorox® bleach, on AgNPs removal from 

spinach leaves. Large amounts of AgNPs residues were still present on the leaf surface 

after rinsing with deionized water. The oxidizing agents of Tsunami® 100 (80 mg L-1) and 



 

71 

Clorox® bleach (200 mg L-1) partly oxidized AgNPs and subsequently released Ag+ ions. 

This resulted in reductions in AgNPs presence; 16% for Tsunami® (although not 

statistically significant) but nearly 90% for Clorox® with SERS analysis. However, with 

regard to total Ag presence as measured by ICP-MS, there was no obvious difference 

between the two treatments. This can be explained by the fact that released Ag+ ions reacted 

with free chloride anions in Clorox® bleach and resulted in the formation AgCl particles 

(average size 162 ± 51 nm) on the spinach leaves. Due to the fact that AgCl is still 

potentially toxic to humans, as well as still having the potential to be further oxidized to 

ions or reduced to NP form, a significant safety concern remains. Future research will focus 

on the development of a safe, effective, and practice washing protocol for removing AgNPs 

from fresh produce surfaces. Additional work will address the issue of AgNPs penetration, 

and potential methods to alleviate the NP content under these circumstances.  
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CHAPTER 6 

CONCLUDING REMARKS 

In summary, in the first part, the capacity of SERS to detect AuNPs and to 

characterize the interactions between AuNPs and biomolecules in plants was evaluated. 

Our results showed that SERS could be used to detect AuNPs with size range from 15 to 

125 nm. Through in vivo SERS mapping, the distribution of AuNPs on and in spinach leaf 

could be monitored by the SERS images collected from biomolecules attached to the 

nanoparticles. More importantly, the interactions between AuNPs and biomolecules (e.g. 

chlorophylls, carotenoids) could be determined through analyzing the enhanced Raman 

signatures of biomolecules of the spinach, which facilitates our understanding of how 

AuNPs attach on and penetrate into spinach leaf. TEM-EDS was used to visualize the 

presence of AuNPs in chloroplasts of spinach leaf and validate our SERS results. In the 

second part, due to the increasing commercialization of AgNPs in agricultural applications, 

such as biocides, SERS mapping was used to in situ and real time investigate the 

interactions between spinach leaf and AgNPs with different surface coatings/sizes. Our 

results showed that no matter what kind of sizes (40 and 100 nm) and surface coatings (CIT 

and PVP), all the AgNPs would interact with Cys and end up with Cys-AgNPs, suggesting 

a detoxification process in spinach leaf. We concluded that the surface coating mainly 

affects the initial speed of interaction while the size of AgNPs is the main factor that affects 

the penetration depth. In the third part, the postharvest washing efficiency of DI water and 

two common sanitizers (Clorox® bleach and Tsunami® 100) on AgNPs removal was 

evaluated by a SERS, ICP-MS, and SEM-EDS. Through analyzing the obtained data, we 

found that, both DI water and Tsunami® 100 could not effectively decrease the amount of 
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surface attached AgNPs, indicating the low efficiency of these two methods on AgNPs 

removal. For Clorox® bleach, although the amount of AgNPs significantly decreased, parts 

of these AgNPs were transformed into AgCl. Since the fact that AgCl is still potentially 

toxic to humans, as well as still having the potential to be further oxidized to ions or reduced 

to NP form, a significant safety concern remains. 

Through this study, we have a better understanding of how AgNPs would possibly 

contaminate fresh produce, such as spinach, how they attach onto and internalize into the 

spinach leaf, how they distribute and transform, as well as whether common washing 

sanitizers can remove AgNPs on spinach leaf or not. Understanding these processes will 

help us to evaluate the risk level of the AgNPs contamination in fresh produce and develop 

a better control strategy to prevent contamination, which is important to maintain the safety 

and sustainability of agriculture and food system. In our future study, we will use 2D SERS 

mapping technique to identify, quantify and characterize AgNPs distribution in plant 

tissues and their fate via root-to-shoot exposure. In addition, more effective washing 

method will also be developed in the following study. 
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