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ABSTRACT 

CHARACTERIZING THE INHIBITION OF KATANIN USING TUBULIN CARBOXY-TERMINAL TAIL 

CONSTRUCTS 

SEPTEMBER 2016 

COREY E. REED 

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Jennifer L. Ross 

 

 Understanding how the cellular cytoskeleton is maintained and regulated is important 

to elucidate the functions of many structures such as the mitotic spindle, cilia and flagella. 

Katanin p60, microtubule-severing enzymes from the ATPase associated with cellular activities 

(AAA+) family, has previously been shown in our lab to be inhibited by free tubulin as well as α- 

and β-tubulin carboxy-terminal tail (CTT) constructs. Here we investigate the inhibition ability of 

several different tubulin CTT sequences. We quantify the effect of the addition of these 

constructs on the severing and binding activity of katanin. We find that some constructs inhibit 

katanin better than others and two constructs that appear to enhance katanin activity. Our 

findings add nuance to our previous findings that consensus α-tubulin tails are less inhibitory of 

katanin than consensus β-tubulin [3]. Surprisingly, we find that a polyglutamate sequence 

activates katanin while it has previously been shown to inhibit spastin, a different microtubule-
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severing enzyme associated with the neuromuscular disease Hereditary Spastic Paraplegia [23]. 

These results highlight that different CTT sequences can control the activity of severing 

enzymes and ultimately affect the cytoskeletal network organization in a cell type and location-

dependent manner. 
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CHAPTER 1 

INTRODUCTION 

One of the most important cellular systems in biology is the cytoskeleton. This system 

provides the cell with structure, acts as a pathway for protein transport within the cell and is 

responsible for key processes such as cell division. A major component of the cellular 

cytoskeleton is the tube-like assembly of proteins called the microtubule. Microtubules are 

formed from 55kD α- and β-tubulin monomers which dimerize and are highly conserved 

 

Figure 1: 

Graphic showing the structure and dimensions of a microtubule and tubulin subunits [17]. 
α- and β-tubulin monomers dimerize and assemble into long protofilaments. Thirteen 
protofilaments assemble side-to-side into a hollow tube known as a microtubule. The 
carboxy-terminal tails (grey tails hanging off of the dimers) face the outside of the 
microtubule and interact with myriad of different microtubule associated proteins. 
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throughout eukaryotes [1]. Dimers assemble end-to-end into protofilaments, which nucleate a 

canonical 13 protofilament structure assembled into a hollow tube, which is a microtubule 

(Figure 1). 

When a microtubule is formed, the carboxy-terminal tail (CTT) of each tubulin monomer 

is facing out, allowing for microtubule-associated proteins (MAPs) to interact with the CTT. The 

carboxy-terminal tail of tubulin cannot be visualized through crystallographic methods because 

it is an intrinsically disordered region which is highly negatively charged. The sequence of α- 

and β-tubulin tails is highly variable and important for determining the role of the microtubule 

as a whole. The possibilities of “messages” to be created through this “microtubule code” of 

carboxy-terminal tails can be altered and amplified through post-translational modifications 

such as polyglutamylation and detyrosination, to name a few. 

Microtubules are a part of the cellular cytoskeleton that give structure to the cell and 

form structures such as flagella and cilia. During cell division microtubules assemble into the 

mitotic spindle and, with the help of various microtubule associated proteins, work to separate 

the chromosomes [6, 11, 19]. Microtubules are dynamic building blocks that are constantly 

undergoing rounds of depolymerization (catastrophe) and subsequent polymerization (rescue) 

[3]. Small molecule drugs, such as paclitaxel (Taxol), stabilize microtubules reducing the 

frequency of catastrophes resulting in a static structure. 

Microtubule dynamics are naturally tuned through microtubule-associated proteins and 

enzymes. Many MAPs stabilize microtubules, such as the tau protein found in the axons of 

nerve cells. Enzymes are needed to destroy the microtubule. One family of microtubule-
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destroying enzymes are the microtubule-severing enzymes. Microtubule-severing enzymes 

consist of an enzymatic domain from the ATPases associated with various cellular activities 

(AAA+) family. There are three known types of microtubule-severing enzymes: fidgetin, spastin 

and katanin. These severing enzymes play a key role in maintaining complex microtubule arrays 

such as those found in the neurons, cilia and spindles of dividing cells [19]. Severing enzymes 

function by disrupting the noncovalent bonds between tubulin dimers using ATP hydrolysis [6]. 

Loss of function of any one of these enzymes leads to microtubule disarray in these important 

cellular structures and can lead to diseases such as hereditary spastic paraplegia [19, 23]. 

Katanin was the first discovered in Xenopus mitotic egg extract and was determined 

during this same study to be regulated along with the start of cell division through introduction 

of cyclin [22]. Surprisingly, katanin has not been well studied due to the difficulties in purifying 

and working with this protein. It is important that a clearer understanding of how katanin is 

regulated be achieved as it has many important roles including releasing microtubules from 

centrosomes, powering poleward flux at the mitotic spindle and accelerating the microtubule 

turnover rate [3, 10, 11, 19]. 

Katanin is actually made of two distinct subunits: p60 and p80, which are 60 and 80kD in 

size, respectively. Katanin p60 is the enzymatic region responsible for severing. Katanin p80 has 

WD propeller repeats that help to target and localize katanin p60 in the cell. In this thesis, we 

will only use p60 and refer to it simply as katanin.  
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Based on prior studies with spastin, we assume that the katanin p60 subunit 

oligomerizes around the C-terminal tail of a tubulin monomer, threading it through the 

hexameric ring where the ATPase may act [15] (Figure 2). Previous work with spastin has shown 

that two loops located within the active pore of many AAA enzymes are essential for 

interaction with the substrate. It is known that the first poor loop engages the target protein 

and translocates it into the pore while the second poor loop, when mutated, disrupts substrate 

binding [24]. It has previously been shown in our lab that removing the CTT of tubulin through 

treatment with subtilisin prevents severing of the microtubule [3].  

 

 

Figure 2: 

Left: Spastin structure as determined by crystallography and small angle x-ray scattering 
(SAXS) [15]. There is a pore in the center through which tubulin’s carboxy-terminal tail is 
threaded. Right: A schematic of how katanin could interact with the surface of the 
microtubule. 



5 
 

Katanin can destroy microtubules, yet we do not see whole-sale destruction in cells. It is 

implied that its activity must be regulated and shut down. We have shown previously that 

katanin severing and binding is inhibited in the presence of free tubulin. Further, we showed 

that the inhibition was controlled by only the CTT of tubulin. Using a novel CTT construct 

covalently bound to bovine serum albumin (BSA), we could test individual sequences for 

activity. We saw that the sequence of the CTT was able to regulate katanin activity [3] (Figure 

 

Figure 3: 

Microtubule severing by katanin is inhibited in the presence of free tubulin and BSA-tubulin 
C-terminal tail constructs [3].  Microtubules only are dark blue, microtubules with 50nM 
katanin are pink, microtubules with 50nM katanin and 50nM tubulin are light blue, 
microtubules with 50nM katanin and 50nM β-CTT are orange, microtubules with 50nM 
katanin and 50nM α-CTT are green and microtubules with 50nM katanin and 50nM 
detyrosinated α-CTT are purple. Colors in the left graph correspond to the tests described in 
the legend in the right graph. Notably, katanin alone severs much faster than in the 
presence of free tubulin or any of the CTT constructs tested.  
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3). This is important and interesting because it sets up a model of katanin regulation wherein 

there is a negative feedback loop to shut down severing after enough dimers have been 

released. 

In this thesis, I have sought to better understand how the amino acid sequence of 

tubulin C-terminal tails, as well as the modifications added to them post translationally, affect 

katanin severing activity and binding rates. It has previously been shown that tubulin C-terminal 

tail modifications such as polyglutamylation can have a graded control on binding and severing 

activity of the severing enzyme spastin [23]. I expect that different modifications of the C-

terminal tails of tubulin will result in differing rates of inhibition of katanin severing activity as 

well as changes in binding rate of katanin to the microtubule depending on the modification 

used. 

Understanding how tubulin modifications affect binding and severing by katanin will 

allow for a more in depth look at how important structures within the cell are maintained and 

manipulated (e.g. the mitotic spindle and neuronal axons), as well as how inhibition is 

controlled within the cell. A clearer understanding of how this cellular mechanism is controlled 

will give us insight into how neurodegenerative diseases arise and potentially lead to new 

avenues for treatment. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Bacterial Katanin Purification 

Optimized human p60 construct with a maltose binding protein and GFP (GeneWiz, Cambridge, 

MA) was transformed into BL21 competent Escherichia coli (New England BioLabs, Ipswich, 

MA). Colonies were allowed to grow and then added to 5mL of LB media with 1mM ampicillin 

as a starter culture the next day. Starter cultures were allowed to incubate at 37°C while 

shaking overnight. The following morning starter cultures were added to larger flasks of 400mL 

LB media containing 1mM ampicillin and allowed to shake in the 37°C incubator until an OD of 

0.8 was reached. They were then induced with 1mM isopropyl β-D-1 thiogalactopyranoside and 

allowed to grow at 16°C while shaking for 14-16 hours. Following induction cells were pelleted 

and lysed in resuspension buffer (20mM HEPES-HCl, pH 7.7, 250mM NaCl, 0.5mM β-

mercaptoethanol, 10% glycerol and 0.25mM ATP) using sonication. Lysate was incubated with 

amylose resin for 2 hours and the lysate-resin mixture was added to a column. Excess lysate 

was allowed to flow through the column completely and the lysate/resin bed was washed with 

20mL resuspension buffer. Purified katanin was eluted from the column with 10mM maltose in 

resuspension buffer and the approximate concentration was determined using a Bradford 

assay. 
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2.2 Taxol-Stabilized Microtubule Polymerization 

Taxol-stabilized microtubules were made by combining labeled HL 647 tubulin (Cytoskeleton, 

Denver, CO) or labeled rhodamine tubulin (Cytoskeleton, Denver, CO) with unlabeled tubulin 

purified from porcine brain in a 1:10 labeled/unlabeled ratio in PEM-100 (100mM K-PIPES, pH 

6.8, 2mM 𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂4 and 2mM EGTA) to a concentration of 5𝑚𝑚𝑀𝑀 𝑚𝑚𝑚𝑚⁄ = 45 µ𝑀𝑀. Tubulin was 

centrifuged at 360,000xg to remove aggregated tubulin. The supernatant with good tubulin was 

removed, GTP was added to 1mM, and placed at 37°C for 20 minutes to polymerize. 

Polymerized microtubules were stabilized with 50µM Taxol and incubated at 37°C for 20 

minutes to equilibrate. The microtubule solution was then centrifuged at 14,000xg at 25°C and 

the pellet resuspended in PEM-100 with 50µM Taxol to clean up the microtubules. 

 

2.3 Coverslip Silanization 

Coverslip racks and glass containers were cleaned thoroughly before silanization. Coverslips 

were immersed in 100% acetone for 1 hour followed by an immersion in 100% ethanol for 10 

minutes. Coverslips were then rinsed 3 times in 𝑑𝑑𝑑𝑑𝐻𝐻2𝑂𝑂 for 5 minutes each time. Coverslips 

were then immersed in 0.1M KOH for 15 minutes which was prepared just before use. This was 

followed by another 3 washed in 𝑑𝑑𝑑𝑑𝐻𝐻2𝑂𝑂 for 5 minutes. The coverslips were then allowed to air 

dry overnight while covered by tinfoil. The following day, once the coverslips were completely 

dry, they were immersed in 2% dimethyldichlorosilane for 5 minutes. This was followed by 
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immersion in 100% ethanol for 5 minutes 2 times. The coverslips were then rinsed 3 times in 

𝑑𝑑𝑑𝑑𝐻𝐻2𝑂𝑂 for 5 minutes each time and allowed to air dry while covered by tinfoil. 

2.4 Severing Assay 

A 10µL chamber was made using a silanized cover slip, a slide and double-sided tape such that 

buffers could be exchanged while imaging on the inverted chamber while on the microscope 

(Figure 4). First, 10µL of 2% rat α-tubulin antibody in PEM-100 was flowed into the chamber 

and incubated at room temperature for 5 minutes. Next, 10µL of 5% F-127 was flowed into the 

chamber and incubated at room temperature for 5 minutes. A 1:100 concentration of 

microtubules in PEM-100 with 50µM Taxol was prepared while waiting. Next, 10µL of the 1:100 

microtubule mixture was added to the chamber and incubated at room temperature for 5 

 

Figure 4: 

Graphic showing chamber construction and severing assay [2]. Silanized cover slips are laid 
horizontally along the glass slide so that there is a small overhang on either side. Double 
stick tape is spaced so that the chamber created between the cover slip and glass slide is 
approximately 10µL. Antibody is added to coat the cover slip and hold the microtubules in 
place during severing assays. Chambers are placed cover slip side down on the microscope 
objective when imaging. 
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minutes. While waiting Katanin Activity Buffer (KAB) was prepared (20mM HEPES, 2mM 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶2, 

10% Glycerol, 0.05% F-127, 50mM DTT, 5𝑚𝑚𝑀𝑀 𝑚𝑚𝑚𝑚⁄  BSA, 50µM Taxol, 2mM ATP, 15𝑚𝑚𝑀𝑀 𝑚𝑚𝑚𝑚⁄  

glucose, 0.15𝑚𝑚𝑀𝑀 𝑚𝑚𝑚𝑚⁄  catalase, 0.05𝑚𝑚𝑀𝑀 𝑚𝑚𝑚𝑚⁄  glucose oxidase). 10µL of KAB was added to the 

chamber and immediately brought to image on the microscope. After imaging the microtubules 

in epi-fluorescence, GFP-katanin in KAB was added to the chamber with or without BSA-CTTs 

for testing and imaged using epi-fluorescence and total internal reflection fluorescence (TIRF) 

microscopy. 

 

2.5 TIRF and Epi-Fluorescence Imaging 

Videos were taken in two channels. Using a home-built total internal reflection fluorescence 

 

Figure 5: 

Example of a multicolor TIRF setup [16]. M, mirror; CM, combination mirror; SM, steering 
mirror located at front focal plane conjugate; AM, aligning mirror; O, objective; S, sample; C, 
condenser; TL, transmitted light lamp; DM, dichroic mirror; FL, focus lens; BFL, back focus 
lens; FM, flip mirror; AOM, acousto-optical modulator; FS, fast shutter; BE, beam expander; 
DW, dual-wavelength splitting system; EM-CCD, electron multiplier CCD camera. Laser is 
aligned by passing transmitted light through the objective and out the laser port. 
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(TIRF) system (Figure 5) [16]. The microscope used was a Nikon Eclipse Ti running Nikon 

Elements with an Andor iXon3 camera. Microtubules were imaged using epi-fluorescence in 

either green or red illumination depending on if the microtubules were rhodamine or HL 647, 

respectively. Epi-fluorescence exposure time was 300ms and a time-lapse was recorded at 5 

second intervals. Katanin was imaged in TIRF using a 488nm laser with 30ms exposure times 

and 5 second intervals. The video was allowed to run for approximately 30 seconds and the KAB 

containing reagents to be tested were flowed in and the video was allowed to run for the 

remainder of 10 minutes. 

 

2.6 Video Analysis 

Videos were analyzed using ImageJ. The two channels each video 9red epi-fluorescence and 

green TIRF) were split into different stacks. Each stack was run through a drift correction plugin 

(StackReg) to correct any drift throughout the video. A line was drawn through an individual 

microtubule and the average intensity over the entire length of the microtubule was measured 

through every frame in the stack using a plugin (MeasureStack). The line was then moved off of 

the microtubule to an area far enough away to measure the nearby background noise without 

overlapping any other microtubules. The data was exported as a text file to Microsoft Excel for 

analysis. 
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2.7 Spreadsheet Analysis 

A new Microsoft Excel document was created for each video analyzed. In each document a 

separate sheet was created for each microtubule measured in that video. Each sheet contained 

both the epi-fluorescence and TIRF fluorescence intensity data for each microtubule. For epi-

fluorescence (microtubule) data, signal was divided by background noise and subtracted by 1 to 

correct for background intensity. The background intensity was time dependent, so we made 

this correction for each time point for the measured average background intensity. The entirety 

of the data was normalized by averaging the points before introduction of reagents and dividing 

every data point throughout the video by this average. This made the initial intensity equal to 1 

no matter if the microtubule was slightly brighter or dimmer initially. The microtubule intensity 

decay plot starts at 1 and decreases to zero if all polymer was lost. For TIRF (katanin) data, 

signal was divided by noise and 1 was subtracted, but the data was not normalized. This 

allowed us to observe the maximum level of katanin binding. Each microtubule measured was 

plotted in a decay graph to check for outliers. All data from the same conditions was averaged 

together in a separate document and a final decay graph of the overall trend was created. 

 

2.8 Kaleidagraph Analysis 

Kaleidagraph was used to fit decay data from Microsoft Excel to an exponential decay of the 

form: 
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𝐼𝐼𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐼𝐼0 ∗ exp (−𝑡𝑡 𝜏𝜏� )                  Eq. 1 

Where 𝐼𝐼𝑀𝑀𝑀𝑀(𝑡𝑡) is the average intensity along the microtubule as a function of time, 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the 

final intensity in the region of the microtubule, 𝐼𝐼0 is the amplitude of the intensity decay and τ is 

the characteristic decay time. Comparing the characteristic decay time (tau) for each test allows 

us to compare activities from different experiments. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1. Katanin Severing and Binding Activity Show Significant Prep-to-prep Variance 

One of the more significant hurdles during testing of the different inhibitors was the 

lifetime of katanin following purification. A day-long purification was performed immediately 

followed by testing of katanin’s severing under differing conditions. Due to variances in the 

 

Figure 6: 

Katanin severing activity and binding varies significantly between preps. Light blue 
corresponds to controls run on 10-1-2015, orange corresponds to controls run on 11-24-
2015, grey corresponds to controls run on 12-17-2015, yellow corresponds to 100nM 
katanin controls run on 3-24-2016 and purple corresponds to 200nM katanin controls run 
on 3-24-2016. The left graph shows microtubule decay over time. The right graph shows 
maximum katanin binding over the entire microtubule over time. Both graphs were an 
average of all microtubules in all control videos during the date of experiment. 
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quality of the preparation and factors such as room temperature and the length of time the 

purification process took, katanin would demonstrate different severing activities (Figure 6). 

 Both severing and binding data were measured using ImageJ to quantify the average 

intensity over the entire microtubule through all frames of each video (please see Materials and 

Methods). The intensity data on the microtubule (signal) was divided by the intensity of the 

background near the microtubule (background) for each frame. The signal to noise ratio was 

calculated and normalized for individual microtubules to account for location-specific intensity 

changes within the chamber. The analysis is the same as previously published [3]. In addition to 

quantifying the rate of severing, we also quantified the amount of GFP-katanin that bound to 

the microtubule during severing, as previously done [3]. 

Due to the variability in activity, we performed the following tests each time. Before any 

inhibition experiments were run control tests were performed to determine the appropriate 

concentration of katanin to use for testing. The rate of katanin severing was best between 1 – 5 

minutes to completely destroy all the filaments in the frame. After a good working 

concentration was determined (typically 50 – 200nM, similar to previous preparations from 

[3]), we would perform tests that could be compared to that day’s control. We made sure to 

test the control was still functioning at high activity throughout the day. We also altered the 

order in which the tests were performed in order to stave off any ill effects due to loss of 

activity over the course of the day. From the decay data we were able to determine which 

constructs inhibited katanin the best. 
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3.2 The Carboxy-Terminal Tails of Tubulin are Highly Variable 

 We sought to test the effect of CTT sequence on the inhibition of katanin binding and 

severing. Although tubulin sequences are very similar between species [9], the CTT is a highly 

variable region. Further, the CTT is known to control the binding of microtubule-associated 

 

Figure 7: 

The construct maps for each BSA-tubulin CTT construct with color coded amino acids. Red 
letters indicate negatively charged amino acids. Green letters indicate polar amino acids. 
Blue letters indicate amino acids with aromatic rings. Purple letters indicate amino acids 
with a positive charge. Yellow letters indicate amino acids with a positively charged 
aromatic ring. β and α are consensus β- and α-tubulin CTT sequences. αΔY is a detyrosinated 
α-tubulin CTT. These three constructs were previously tested in our lab [3]. The remaining 
eight constructs were given to us by Dan Sackett for testing. 
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proteins and alter the activity of severing enzymes [3]. We have chosen to examine several 

specific sequences of α- and β-CTTs that are found in specific cell types in the body. Tubulin 

expressed from the gene TUBA1A (αδ2) are prominent in neurological cells along with those 

expressed from TUBB2A (β2A) and TUBB3 (β3). Tubulin from the gene TUBB4B (β4B) are 

expressed primarily in glandular cells. Tubulin from the gene TUBB1 (β1) are found in platelets 

and megakaryocytes. Tubulin from the gene TUBB6 (β6) are found ubiquitously. To achieve a 

better understanding of the differences between these tails, we took a closer look at the 

chemical makeup of each construct (Figure 7).  

 Previous studies from our lab have shown that CTT constructs of β- and α-tubulin inhibit 

katanin differently [3]. The consensus β-tubulin tail was the best inhibitor. This sequence 

contains a bulky nonpolar aromatic group in the middle and a region of 5 negative charges in a 

row. Comparing this to the consensus α-tubulin, the second best inhibitor of katanin, we see 

that the α-tubulin has the bulky aromatic ring at the end of the CTT and no large region of 

negative charge along its length. Lastly, the detyrosinated α-tubulin CTT was the worst inhibitor 

of katanin in this study and had the bulky aromatic group removed from the end. Based off of 

these results, we hypothesize that a lengthy region of negative charge as well as a bulky 

aromatic group in the middle portion of the CTT could be important towards CTT binding to 

katanin resulting in inhibition. 

 The new CTT constructs we are testing are similar in some ways to the consensus 

tubulins and detyrosinated tubulin previously tested. Based on the new CTT sequences and our 

model for what is good to inhibit katanin, we can make predictions based on the sequences we 

are testing: 
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• The CTT αδ2 is similar to αΔY in length and contains no large negative region or 

aromatic rings. With this knowledge we predict αδ2 to be a poor inhibitor of katanin.  

• The CTT β A+Y is large like the consensus β-tail previously tested and contains a large 

region of negative charge and 2 aromatic rings. The aromatic ring at the end of the CTT 

similar to the consensus α-tail previously tested leads us to predict that β A+Y should be 

a strong inhibitor of katanin.  

• The CTT β2A has a large negative region with a bulky aromatic ring in the middle and as 

such we predict it will be a good inhibitor of katanin.  

• The CTT β3 does have a large negative region and a bulky aromatic ring in the center, 

but it also has a positive charge and an aromatic ring at the end. Because of this 

aromatic ring at the end as well as the positive charge we predict that β3 will be a poor 

inhibitor of katanin.  

• The CTT β4B has a few smaller regions of negative charge as well as an aromatic ring in 

the middle and we predict it will be a moderate inhibitor of katanin.  

• The CTT β6 is similar to the consensus β tail previously tested with a large negative 

region and aromatic ring in the middle and should be a good inhibitor of katanin.  

• The CTT β1 has a large negative region but has a positively charged aromatic ring at the 

end and as such should be a poor katanin inhibitor.  

• We tested a polypeptide consisting of solely glutamates, E10, for katanin inhibition. 

Previous studies showing polyglutamylation inhibits spastin [19] leads us to predict that 

this tail should inhibit katanin. However, the construct does not have any resemblance 
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to an actual tubulin tail. This construct is effectively testing the inhibitory effects of a 

polyglutamylated side chain hanging off of an actual tubulin CTT. 

3.3 Sequences of the C-terminal Tail of Tubulin Affect Inhibition of Katanin Severing and 

Binding 

 

Figure 8: 

Plots demonstrating one day of experiments testing four of the eight BSA-tubulin CTT 
constructs. The concentration of free tubulin and all BSA-tubulin CTT constructs is 50nM, 
the lowest concentration where severing inhibition by free tubulin was observed in 
previously published data [3]. Free tubulin can be treated as a control for inhibition levels. 
The left graph shows the differing rates of severing observed with 100nM of katanin in each 
test. From this we see a distinct profile for each inhibitor. It is interesting to note that β3 
appears to not inhibit katanin at all while the other constructs inhibit on a comparable level 
to free tubulin. The right graph shows binding profiles of katanin under different severing 
conditions by plotting average katanin intensity bound along the microtubule as a function 
of time. Light blue corresponds to the control, orange corresponds to free tubulin tests, grey 
corresponds to β2A tests, yellow corresponds to αδ2 tests, and purple corresponds to β A+ 
Y tests and green corresponds to β3 tests. 
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 It was previously shown in our lab that free tubulin in solution with katanin inhibited 

 

Figure 9: 

Bar graphs of the average decay times (τ) for all BSA-tubulin CTT constructs as well as the 
control katanin concentration and free tubulin inhibition controls. All controls were run with 
100nM of katanin unless otherwise indicated. All free tubulin and construct concentrations 
were 50nM. Preparation differences can be observed by comparing the control data 
between plots. We are interested in the trends due to the presence of BSA-CTT sequences. 
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severing at levels as low as 50nM [3]. This was demonstrated with both tubulin purified from 

porcine brain which consists of a mix of all CTT modifications and with CTT constructs 

connected to a BSA protein. From that study, it was clear that the CTT sequence affects the 

ability of katanin to bind and sever. We took a more in depth look at singular modifications of 

multiple beta- and one alpha-tubulin CTT in order to achieve a better understanding of how 

katanin activity is regulated (Figure 8). 

Because of the variance in katanin activity, we analyzed the decay plots with a line of 

best fit given in equation 1 (Methods). Using the best-fit line, we can compare between preps 

for the same inhibitors (Figure 9). 

 For each preparation, we compare the decay times for each inhibitor to the same day 

control (Figure 8). We see that most of the inhibitor tests show the same trend in terms of 

decay time. αδ2, β A+Y, β2A, free tubulin, β1, β4B and E10 all show similar relations to the 

 

Figure 10: 

 Bar-graphs showing the maximum level of katanin binding for each inhibitor on each 
day tested. Binding was measured by using the signal along the microtubule over the noise 
background noise near the microtubule (see materials and methods).  
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control decay time. Interestingly β6 and β3 show significantly different decay times between 

the two preparations. These inhibitors warrant further testing in the future to determine if 

these results were an artifact of human error. 

The characteristic decay times inform on the severing rate, but we have a second 

measurement of katanin activity we quantify, the GFP katanin binding. Using TIRF microscopy 

to image in the green channel, we can visualize and quantify the binding of GFP-katanin to 

microtubules during the severing process. As previously shown, the GFP-katanin binding is 

proportional to severing activity [3]. We measured the GFP katanin maximal binding using 

ImageJ (Figure 10).  

Figure 10 shows that each inhibitor tested affected binding in some way, but differently 

for different preparations. For example, β2A increased binding of katanin to the microtubule on 

11/24/2015 but inhibited binding on 10/1/2015. 

 

3.4 Carboxy-Terminal Tail Sequence Alters Katanin Severing Ability 

 Combining the construct maps in Figure 7 with the decay data from Figure 9, we can 

analyze what sequence features make a good inhibitor or causes activation and test our 

hypothesized results: 

• The CTT αδ2 is intriguing as α-tubulin tails are reported to be less inhibitory towards 

katanin than β-tubulin tails [3]. However, we found that αδ2, the only α-tubulin tail 

tested, inhibited katanin more than any other. One possibility is that the CTT of the α-
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tubulin is not what prevents katanin inhibition. Therefore, removing the bulk of the 

protein allowed the tail to interact with katanin in a way that it normally cannot, causing 

severe inhibition. 

• The CTT β A+Y was previously predicted to be a good inhibitor of katanin because it 

contains a large region of negative charge and has an aromatic ring near the end of the 

CTT. This ended up being the case as it increased characteristic decay time of severing. 

• The CTT β2A was predicted to be a good inhibitor of katanin because of the large 

negative region and aromatic ring in the middle of the CTT. This prediction is correct as 

β2A demonstrated good katanin severing inhibition ability. 

• The CTT β3 presents an interesting case as it does contain a large negative region in the 

middle of the CTT but also has a large aromatic ring at the end as well as a positively 

charged amino acid. Results were mixed with this tail as it seemed to promote katanin 

severing on 10-1-2015 but severely inhibited katanin severing on 11-24-2015. This tail 

needs to be retested. 

• The CTT β4B has several smaller regions of negative charge and a bulky aromatic ring in 

the center of the CTT. Our prediction that β4B would be a moderate inhibitor of katanin 

was incorrect as this tail seemed to promote katanin severing during both preparations. 

• The CTT β6, a construct with a large negative region and a bulky aromatic ring in the 

center, was predicted to be a good inhibitor of katanin. This construct presented 

another case of mixed results as it inhibited katanin well on 12-17-2015 but seemed to 

promote katanin severing on 3-24-2016. This tail needs to be retested. 
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• The CTT β1 has a large negative region along with a bulky aromatic group in the middle 

but contains a bulky, positively charged aromatic group at the end. Because of this 

bulky, positively charged aromatic group β1 was predicted to be a poor inhibitor of 

katanin. However, β1 was the best β-tail inhibitor of katanin severing. 

• The E10 construct (a “tail” consisting of 10 glutamates) actually promoted katanin 

severing. Previous work on spastin, a member of the AAA+ severing enzyme family, has 

shown that polyglutamylation causes inhibition up to a certain point [23]. We find that 

the polyglutamylated construct actually causes activation of katanin severing resulting in 

a decrease in average severing time. Previous work with polyglutamylation was done 

using full length tubulin whereas we were working with a  truncated tail version. 

From our previous results, we expect that tubulin inhibits katanin through sequestration 

from the microtubule [3]. This means that CTT constructs that inhibit should result in a 

lower GFP-max along the microtubule and those that promote katanin severing should 

result in a higher GFP-max. What we find when looking at Figures 9 and 10 togetherr is that 

this is not necessarily the case: 

• The CTT αδ2 was a very good inhibitor of katanin which means that it should have a 

lower GFP-max when compared to the control. However we see that the GFP-max is 

actually higher than the control for both preparations. 

• This is also true for the CTT β A+Y. 

• The CTT β2A is a good katanin inhibitor which should indicate a lower GFP-max, but 

this is only true for one of the preparations and not the other. 
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• The CTT β3, which showed promotion of katanin severing one day and inhibition on 

the other, is an interesting case. On 10-1-2015 β3 promoted katanin severing but 

had a GFP-max that was much lower than the control. The same tail on 11-24-2015 

severely inhibited katanin severing but had a GFP-max that was higher than the 

control. 

• The CTT β6 was the second tail that showed katanin severing promotion one day 

and katanin severing inhibition the next, but this tail had a lower GFP-max when 

compared to the control for both preparation days. 

• The CTT β4B promoted katanin severing on both preparation days but had a GFP-

max on both days that was slightly lower than the control. 

• The CTT β1 inhibited katanin severing and behaved as predicted in regards to 

katanin binding to the microtubule, displaying reduced GFP-max compared to the 

control for both preparations. 

• The E10 polypeptide promoted katanin severing on both days and had a resulting 

increase in GFP-max over the control, as expected. 
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CHAPTER 4 

CONCLUSION 

 We have performed a preliminary quantitative investigation on the inhibitory effects of 

BSA-tubulin CTT constructs on katanin p60 severing and binding to microtubules. We have 

found that the chemical makeup of these tubulin CTT constructs affects the level of katanin 

severing and binding inhibition (Figures 9 and 10). Surprisingly, we found that free tubulin, 

which was previously shown in our lab to inhibit katanin severing and binding activity [3], 

appeared to result in an increased katanin activity in some of our assays (Figure 9). One 

possible explanation is that we used more katanin than in previous experiments, and an 

important factor is the katanin to inhibitor ratio. Future experiments will need to be performed 

to determine the relative concentration of katanin to CTT that will cause inhibition. 

 Another interesting result was that we found katanin appeared to be uninhibited by 

E10, a construct consisting of solely glutamates (Figure 9). This result was unexpected because 

polyglutamylation was previously shown to inhibit spastin, a different microtubule-severing 

enzyme [23]. This would be  a second report displaying the functional differences between 

spastin and katanin with regard to the CTT sequences [2]. It implies that the recognition of 

tubulin is not the same between these two severing enzymes. They target and are inhibited by 

different tubulin sequences. This is important since they are expressed and active in different 

parts of cells and have different effects on the microtubule cytoskeleton, as shown time and 
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again [7, 19]. It is possible that removing the bulk of the tubulin protein affects how the CTT 

portion interacted with katanin, therefore altering the severing and binding inhibitory ability. 

 Understanding how cellular organization is controlled has far reaching implications for 

disease treatment and prevention. Katanin has been shown to act in a variety of cell types 

performing a number of important roles [19]. It could have a role in neuronal diseases, kidney 

disease, and cancer. 

 In terms of the research presented here, more tests of the CTTs should be conducted in 

order to get a better understanding of how they affect katanin severing and binding. The β3 

and β6 tails, which had inconclusive results, need to be retested to get an idea of how they 

affect katanin. Further, all tail constructs should be tested during the same prep so that they 

can be compared to one another. This was just recently made possible by the finding that 

katanin could be stored at -20°C and -80°C in 50% for extended periods of time (1-2 weeks). 

This is long enough to be able to test all 8 tails using the same prep as well as any new 

constructs that we receive. 
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APPENDIX A 

SUPPLEMENTARY FIGURES 

 

Figure 11: 

Plots demonstrating data from experiments run on 11-24-2015. Four of the eight BSA-
tubulin CTT constructs were tested and are listed along with the number of microtubules 
measured for each (N-Count) in the red box. All BSA tails tested were at 50nM 
concentration while katanin was present at 100nM. The zero control was a test performed 
to show that we were not photobleaching fluorophores during imaging. The left graph 
shows the differing rates of severing for each CTT tested by measuring average intensity 
along each individual microtubule as a function of time and combining all data for similar 
tests. The right graph shows binding profiles of katanin under different severing conditions 
by plotting average katanin intensity bound along the microtubule as a function of time. 
Light blue corresponds to the control of katanin alone, orange corresponds to the zero 
control photobleaching test, grey corresponds to the β2A CTT test, yellow corresponds to 
the αδ2 CTT test, purple corresponds to the β A+Y CTT test, and green corresponds to the β3 
CTT test. 
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Figure 12: 

Plots demonstrating data from experiments run on 12-17-2015. Four of the eight BSA-
tubulin CTT constructs were tested and are listed along with the number of microtubules 
measured for each (N-Count) in the red box. All BSA tails tested were at 50nM 
concentration while katanin was present at 100nM. The zero control was a test performed 
to show that we were not photobleaching fluorophores during imaging. The left graph 
shows the differing rates of severing for each CTT tested by measuring average intensity 
along each individual microtubule as a function of time and combining all data for similar 
tests. The right graph shows binding profiles of katanin under different severing conditions 
by plotting average katanin intensity bound along the microtubule as a function of time. 
Orange corresponds to control katanin alone, light blue corresponds to the zero control 
photobleaching check, grey corresponds to the free tubulin test, yellow corresponds to the 
β4B CTT test, purple corresponds to the β6 CTT test, green corresponds to the β1 CTT test, 
and black corresponds to the E10 polyglutamate CTT test. 
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Figure 13: 

Plots demonstrating data from experiments run on 3-24-2016. Four of the eight BSA-tubulin 
CTT constructs were tested and are listed along with the number of microtubules measured 
for each (N-Count) in the red box. All BSA tails tested were at 50nM concentration while 
katanin was present at 200nM during all inhibition tests. The zero control was a test 
performed to show that we were not photobleaching fluorophores during imaging. Two 
different concentrations of katanin are shown to display the difference in severing activity 
at different katanin concentrations. The left graph shows the differing rates of severing for 
each CTT tested by measuring average intensity along each individual microtubule as a 
function of time and combining all data for similar tests. The right graph shows binding 
profiles of katanin under different severing conditions by plotting average katanin intensity 
bound along the microtubule as a function of time. Light blue corresponds to the 100nM 
katanin control, orange corresponds to the 200nM katanin control, grey corresponds to the 
photobleaching check (zero control), yellow corresponds to the free tubulin test, purple 
corresponds to the E10 polyglutamate CTT test, green corresponds to the β1 CTT test, black 
corresponds to the β6 CTT test, and red corresponds to the β4B CTT test. 
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APPENDIX B 

PROTOCOLS 

 

B1: SDS-PAGE Protocol: 

Gel Casting: 

Resolving Gel (8%) 

4.7 mL dd𝐻𝐻2𝑂𝑂 
2.7 mL 30% acrylamide 
2.5 mL resolving buffer 

100 µL 10% SDS 
100 µL APS * 
8 µL TEMED * 

 

Stacking Gel (3.75%) 

3.1 mL dd𝐻𝐻2𝑂𝑂 
625 µL 30% acrylamide 
1.25 mL stacking buffer 

50 µL 10% SDS 
100 µL APS * 
4 µL TEMED *

1. clean 2 sets of glass chambers for casting gel w/ 70% ETOH, dry completely 

2. set up staging & test w/ dd𝐻𝐻2𝑂𝑂 for any leaks, fill completely (can leak from side tops), 

cleans inside from any leftover ETOH, dump in sink and dry as best as possible with filter 

paper 

3. gather gel materials 

a. 30% acrylamide, 10% APS & TEMED in 4° 

b. resolving buffer, 10% SDS & isopropanol @ bench 

4. mix ingredients for resolving gel in a 15 mL tube adding APS & TEMED last (they act as 

catalysts & cause the gel to solidify faster) 

5. using Pasteur pipette put resolving gel into chambers up to bottom of staging, check if 

leaking (if it is, need to redo chamber) 

6. top off chamber w/ isopropanol (levels out gel & removes bubbles) 
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7. let gel set for 30 – 45 minutes until completely solidified (check using leftovers in tube) 

8. clean 2 combs w/ ETOH, dry completely 

9. once resolving gel is solid, drain out isopropanol, rinse w/ dd𝐻𝐻2𝑂𝑂 & dry w/ filter paper 

10. mix stacking gel in 15 mL tube, again adding APS & TEMED last 

11. add stacking gel to chamber until it overflows slightly 

12. insert combs, let solidify for 30 – 45 minutes until solid, check with leftovers 

13. pull out chambers (glass plates), wrap each individually in a paper towel and place in a 

Tupperware container w/ an additional paper towel on top, soak completely in dd𝐻𝐻2𝑂𝑂 

(this is only if storing overnight, if not, skip this step) 
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B2: Tubulin Purification from Pig Brains 

Stock Solutions:   

PM Buffer (200mL)   PMG Buffer (200mL) 

200mM PIPES  100mL     76mL 
200mM EGTA  2mL     2mL 
100mM MgSO4 2mL     2mL 
13.7M Glycerol -------     116mL 
 

            Super PMG (200mL)   

1M PIPES   16mL 
1M MgSO4   2mL 
200mM EGTA   2mL 
13.7M Glycerol  175.2mL 

 

1. Clean pig brains (3) and put in pre-tared 1L beaker 

 Remove meniscus, etc. (use kimwipe to help clean) 

2. Weigh cleaned brains: _______g 

3. Put brains in blender 

 Add 0.5mL PM buffer per 1g of brain.  Volume of PM: ______mL 

4. Pulse blender to homogenize brains (~5 seconds/pulse to prevent mixture from heating up) 

5. Pour homogenized brains into ultra centrifuge tubes 

6. Balance tubes 

7. centrifuge at 100,000 xg for 45 minutes at 2oC with 50.2 Ti rotor 

8. Pour supernatant into 500mL graduated cylinder (use pasteur pipette to get all sup) 

 Volume of sup: ________mL 

9. Add same volume of PMG to the sup (1:1 PMG:sup ratio) 
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 *If sup volume is greater than 100mL, add ½ volume of sup as super PMG 

10. Add GTP to final concentration of 1mM 

 ______mL of 100mM GTP stock 

11. Cover graduated cylinder with parafilm and mix by inverting 

12. Put sup into new ultra centrifuge tubes and balance 

13. Polymerize MTs for 45 minutes at 37oC in water bath 

14. Set ultra centrifuge to 37oC, place T865 rotor in 37oC incubator to warm up 

15. Centrifuge at 100,000 xg in T865 rotor for 45 minutes at 37oC 

These are the 1X Pellets (can drop freeze and store at -80oC or continue) 

 

2X Pellets 

1. Add PM to pellets using 1/5 volume of original homogenate (1X pellets, step 3) 

 Volume of PM Buffer added: ______mL 

2. Using a thin, pointed spatula, scrape pellet off side of cfuge tube and into PM buffer 

 Lightly shake tube to make sure pellet is loose 

 Quickly dump PM buffer + pellet into 15mL dounce in ice slurry 

 Repeat for each pellet 

3. Homogenize pellets in ice cold dounce until no large chunks seen (will be cloudy) 

 Homogenize on ice every 2-3 minutes, for a total of 30 minutes (avoid excessive 

            bubbling) 

4. Put homogenized tubulin into ultra (T865) centrifuge tubes 

5. Centrifuge 100,000 xg for 30 minutes at 2oC 
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6. Pour sup into graduated cylinder and approximate volume 

 Volume of supernatant: ________mL 

7. Add PMG buffer 1:1 with supernatant 

 Add ______mL PMG 

8. Add GTP to final concentration of 1mM 

 Add ______ L 100mM GTP stock 

9. Parafilm cylinder and mix by inverting 

10. Put supernatant into new ultra T865 centrifuge tubes and incubate 45 minutes at 37oC in 

      water bath 

11. Centrifuge at 37oC for 45 minutes at 100,000 xg 

12. Remove most of sup, leaving a small amount to cover pellets 

13. Drop freeze pellets in liquid nitrogen and store at -80oC 

 

High Salt Purification 

1. Quickly thaw 2X pellets in 37oC water bath 

2. Remove excess supernatant that froze with pellet 

3. Take 2X pellets (2) and homogenize with dounce in 5mL PM buffer for 30 minutes on ice 

    (Homogenize on ice every 2-3 minutes, for a total of 30 minutes, avoid excessive bubbling) 

4. Spin at 100,000 xg at 4oC (T865 rotor) for 30 minutes 

5. Save sup and add: 0.5 M PIPES 
   10% DMSO 
   1 mM GTP 
   2 mM EGTA 
   1 mM MgSO4 



36 
 

6. Incubate at 37oC for 10 minutes 

7. Spin 20 minutes at 20,000 xg at 37oC (T865 rotor) 

8. Using dounce, homogenize pellet in 4mL PEM-100 on ice for 30 minutes 

9. Spin 30 minutes at 100,000 xg at 4oC (T865 rotor) 

10. Save supernatant as high salt purified tubulin 

11. Bring tubulin to 5 mg/mL using PEM-100 

12. Aliquot and drop freeze in liquid nitrogen, store in -80oC 
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B3: Severing Assay  

* Chambers are assembled on glass slides that have been washed with 70% ethanol. Use 

doublestick tape to make a chamber with a silanized coverslip.  

  

1. Flow in 2% anti-tubulin antibody (0.4 µL YL1/2 tubulin antibody + 9.6 µL PEM-100.  

Incubate 5 minutes.  

2. Flow in 5% F-127. Incubate for 5 minutes.  

3. Flow in 1:100 MTs. Incubate 5-7 minutes.  

4. Flow in KAB-rxn #1 buffer.  

5. Image 3 minutes.  

6. Flow in Katanin in KAB-rxn buffer #2 (1:10 katanin:rxn buffer).         

     

KAB-rxn Buffer 1:  

2 µL        0.5% F-127  
1 µL      DTT (1 M stock)  
1 µL    BSA (100 mg/mL stock)  
0.5 µL    Taxol (2 mM stock)  
0.8 µL     ATP (50 mM stock)   
1 µL       glucose (300 mg/mL stock)  
1 µL   deoxy  
12.7 µL  KAB  
20 µL TOTAL         
     

KAB-rxn Buffer 2:  
2 µL        0.5% F-127  
1 µL      DTT (1 M stock)  
1 µL    BSA (100 mg/mL stock)  
0.5 µL    Taxol (2 mM stock)  
0.8 µL     ATP (50 mM stock)   
1 µL       glucose (300 mg/mL stock)  
1 µL   deoxy  
2 µL   Katanin (10x stock)  
10.7 µL  KAB  
20 µL TOTAL
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B4: Making Microtubules 

1. Start centrifuge 

a. hit vacuum, make sure temp. set @ 4°C 

2. Retrieve unlabeled and labeled tubulin from -80°C freezer, thaw aliquot in hands 

a. Cy5 tubulin doesn’t need to be resuspended 

b. Rhodamine tubulin needs to be resuspended in 4µL of PEM100 

3. Incubate aliquots on ice for 10min, while waiting: 

4. Make desired concentration of unlabeled tubulin 

a. stock comes in aliquots of 9 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

 but the desired concentration is 5 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

 

b. �9 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚
� (10µ𝑚𝑚) = �5 𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚
� (10 + 𝑥𝑥) → 90 = 50 + 5𝑥𝑥 → 40 = 5𝑥𝑥 → 𝑥𝑥 = 8µ𝑚𝑚 

c. 8µL is the amount of PEM100 to be added to the unlabeled tubulin stock to 

make the concentration 5 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

 

5. Retrieve 2 glass centrifuge tubes (in drawer left of Mike’s desk) 

6. Combine unlabeled and labeled tubulin in 1 glass centrifuge tube 

a. (8µ𝑚𝑚 𝑃𝑃𝑃𝑃𝑀𝑀100 + 10µ𝑚𝑚 𝑢𝑢𝑢𝑢𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝐶𝐶𝑢𝑢𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠) + 10µ𝑚𝑚 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝐶𝐶𝑢𝑢𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 =

28µ𝑚𝑚 𝑡𝑡𝑠𝑠𝑡𝑡𝑢𝑢𝐶𝐶 𝑣𝑣𝑠𝑠𝐶𝐶𝑢𝑢𝑚𝑚𝑢𝑢 

7. Fill second glass centrifuge tube with equal volume of 𝑑𝑑𝑑𝑑𝐻𝐻2𝑂𝑂, 28µL 

8. Centrifuge tubes in the Sorvall Discovery M120 (near central desk where I sit) for 10 min 

@ 90,000 rpm to remove dead tubulin 

a. retrieve small rotor from 4°C fridge 

b. put centrifuge tubes in w/ labels facing out to help locate pellet when done 



39 
 

c. settings: rotor #2, turn on vacuum (takes around 3 minutes to achieve full 

vacuum, 3 arrows) 

9. Retrieve 10mM GTP from -20°C freezer (back left corner of room when walking in) 

10. When centrifugation complete, remove the supernatant (careful to avoid the pellet) and 

relocate to 1.5mL Eppendorf tube. 

a. add 2.8µL of 10mM GTP to make a final concentration of 1mM GTP 

11. Incubate Eppendorf tube in incubator (located near -20°C fridge in back left) for 20 min 

w/o shaking @ 37°C 

12. Retrieve 2mM Taxol from -20°C fridge 

13. Add 0.8µL of 2mM Taxol to tube so final concentration is 50µM of Taxol 

a. (2000µ𝑀𝑀 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶)(30.8µ𝑚𝑚 𝑣𝑣𝑠𝑠𝐶𝐶𝑢𝑢𝑚𝑚𝑢𝑢 𝑖𝑖𝑢𝑢 𝑃𝑃𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑑𝑑𝑠𝑠𝐸𝐸𝐸𝐸 𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢) =

(50µ𝑀𝑀 𝑑𝑑𝑢𝑢𝑠𝑠𝑖𝑖𝐸𝐸𝑢𝑢𝑑𝑑 𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶 𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠𝑢𝑢𝑢𝑢𝑡𝑡𝐸𝐸𝑢𝑢𝑡𝑡𝑖𝑖𝑠𝑠𝑢𝑢)(30.8µ𝑚𝑚 𝑣𝑣𝑠𝑠𝐶𝐶𝑢𝑢𝑚𝑚𝑢𝑢 𝑖𝑖𝑢𝑢 𝑃𝑃𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑑𝑑𝑠𝑠𝐸𝐸𝐸𝐸 𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢 +

𝑋𝑋µ𝑚𝑚 𝑣𝑣𝑠𝑠𝐶𝐶𝑢𝑢𝑚𝑚𝑢𝑢 𝑠𝑠𝐸𝐸 𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶 𝑡𝑡𝑠𝑠 𝑢𝑢𝑑𝑑𝑑𝑑) → 61000 = 1540 + 50𝑋𝑋 → 40 = 50𝑋𝑋 → 𝑋𝑋 =

0.8 

14. Incubate another 20 min w/o shaking @ 37°C 

15. Centrifuge Eppendorf tube using Eppendorf centrifuge (5415R on bench in lab) for 10 

min @ 25°C & 14,000 x gravity 

16. Remove & discard supernatant, resuspend pellet in a solution of 50µM taxol and 

PEM100 so that the final volume is 28µL 

a. (2000µ𝑀𝑀 [𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶]𝑠𝑠𝐸𝐸𝑖𝑖𝑀𝑀𝑖𝑖𝑢𝑢𝑢𝑢𝐶𝐶)(𝑋𝑋µ𝑚𝑚 𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶 𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑑𝑑) =

(50µ𝑀𝑀 [𝑡𝑡𝑢𝑢𝑥𝑥𝑠𝑠𝐶𝐶]𝑑𝑑𝑢𝑢𝑠𝑠𝑖𝑖𝐸𝐸𝑢𝑢𝑑𝑑)(28µ𝑚𝑚 𝑣𝑣𝑠𝑠𝐶𝐶𝑢𝑢𝑚𝑚𝑢𝑢 𝑑𝑑𝑢𝑢𝑠𝑠𝑖𝑖𝐸𝐸𝑢𝑢𝑑𝑑) → 2000𝑋𝑋 = 1400 → 𝑋𝑋 = 0.7 

b. 0.7µL of taxol & 27.3µL of PEM100 added 
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17. Incubate @ 37°C w/o shaking for full day 
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B5: Silanization of Coverslips:  

 

*It is important to clean the racks and glass containers thoroughly before silanization.  

*Do not let anything that is not dry come in contact with the silane.  

*Rinse container 3X with water then 3X with ddH2O for each step.  

  

Clean Coverslips:  

1. Immerse the coverslips in 100% acetone for 1 hour.  

2. Immerse the coverslips in 100% ethanol for 10 minutes.  

3. Rinse 3X in ddH2O for 5 minutes each.  

4. Immerse the coverslips in 0.1M KOH for 15 minutes (prepare just before use).  

5. Rinse 3X in ddH2O for 5 minutes each.  

6. Air Dry Coverslips.  

  

Silanization of Coverslips:  

1. Once cleaned coverslips have dried completely, immerse in 2% DDS (dimethyldichlorosilane) 

for 5 minutes.  

2. Use a funnel to pour the silane solution back into the bottle to reuse.   

3. Immerse the coverslips in 100% ethanol for 5 minutes.  

4. Immerse the coverslips in another 100% ethanol for 5 minutes.  

5. Rinse 3X in ddH2O for 5 minutes each.  

Air Dry. 
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B6: Bacterial Katanin Purification 

Resuspension Buffer:    
 20mM Hepes pH 7.7 
 250mM NaCl 
 10% Glycerol 
0.5 mM MgATP pH 7 
1mM PMSF 
Protease Inhibitors: 
  2 mg/mL Aprotinin 
  2 mg/mL Pepstatin 
  2 mg/mL Leupeptin 
 
 

Katanin Activity Buffer: 
20 mM Hepes pH 7.7 
2 mM 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶2 
10% Glycerol 
 
 
 
 
 
 
 

 Day 1:  

Transform p60 into BL21 cells. Plate on Amp plates. 

 

Day 2:  

Pick 3 colonies and start 3 overnight start cultures with Ampicillin and   Chloramphenicol. Make 

up 3x 500 mL of LB.  1 L LB:    10 g NaCl   10 g  tryptone   5 g yeast extract  

  

Day 3:  

(A) Add Ampicillin and Chloramphenicol to flasks of LB. Antibiotics are made up for a 1:1000 

dilution into cultures. (B) Add starter cultures to flasks of LB. Should be 1:100 dilution so for 1 L 

add 10 mL of starter culture. (C) Grow cultures in shaking incubator at 37 C until it reaches an 

O.D. of 0.8. This usually   takes about 6 hours. (D) Add 1 mM IPTG (1 M stock) to the culture. 

Bring the culture to Tom Maresca’s Lab and grow in the shaker at 16 C for 15-18 hours. Lab 

code: 7995  
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Day 4:  

Pellet bacteria at 5,000 rpm for 15 min. DO NOT FREEZE.  2. Make up 50ml of resuspension 

buffer.   *Remember to add Protease inhibitors as well. 1. Resuspend pellets in 15 ml of 

Resuspension Buffer.  2. Lyse cells using the sonicator every 20 seconds for 20 seconds for a 

total of 3 minutes. 3. Transfer sonicated lysate to red capped centrifuge tube. 4. Centrifuge in 

T865 at 13,000 rpm for 30 minutes. 5. Incubate lysate with ~1 ml bed volume of amylose resin 

for ~1.5-2 hours at 4C.  

   

  *Wash resin before in column/resuspension buffer 3x. 2x with water, 1x     with resuspension 

buffer at 3,000 RPM for 5 minutes each. 1. Pour lysate into column and wash with ~20 mL of 

resuspension buffer. 2. Elute with 10 mM Maltose in resuspension buffer (50 µL of 1 M maltose 

to 5mL of completed resuspension buffer). Perform bradford to get concentration.  
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