
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Masters Theses Dissertations and Theses 

November 2016 

Protecting Controllers against Denial-of-Service Attacks in Protecting Controllers against Denial-of-Service Attacks in 

Software-Defined Networks Software-Defined Networks 

Jingrui Li 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 

Recommended Citation Recommended Citation 
Li, Jingrui, "Protecting Controllers against Denial-of-Service Attacks in Software-Defined Networks" 
(2016). Masters Theses. 428. 
https://doi.org/10.7275/9057146 https://scholarworks.umass.edu/masters_theses_2/428 

This Campus-Only Access for Five (5) Years is brought to you for free and open access by the Dissertations and 
Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/9057146
https://scholarworks.umass.edu/masters_theses_2/428?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


PROTECTING CONTROLLERS AGAINST
DENIAL-OF-SERVICE ATTACKS IN
SOFTWARE-DEFINED NETWORKS

A Thesis Presented

by

JINGRUI LI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2016

Electrical and Computer Engineering



PROTECTING CONTROLLERS AGAINST
DENIAL-OF-SERVICE ATTACKS IN
SOFTWARE-DEFINED NETWORKS

A Thesis Presented

by

JINGRUI LI

Approved as to style and content by:

Tilman Wolf, Chair

Weibo Gong, Member

David Irwin, Member

C.V. Hollot, Department Head
Electrical and Computer Engineering



ABSTRACT

PROTECTING CONTROLLERS AGAINST
DENIAL-OF-SERVICE ATTACKS IN
SOFTWARE-DEFINED NETWORKS

SEPTEMBER 2016

JINGRUI LI

B.S., NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

Connection setup in software-defined networks (SDN) requires considerable amounts

of processing, communication, and memory resources. Attackers can target SDN con-

trollers defense mechanism based on a proof-of-work protocol. This thesis proposes

a new protocol to protect controllers against such attacks, shows implementation of

the system and analyze the its performance. The key characteristics of this protocol,

namely its one-way operation, its requirement for freshness in proofs of work, its ad-

justable difficulty, its ability to work withmultiple network providers, and its use of

existing TCP/IP header fields, ensure that this approach can be used in practice.
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CHAPTER 1

INTRODUCTION

1.1 Background

Software-defined networking (SDN) is an attracting architecture that decouples

the network control and forwarding functions, and the underlying infrastructure, en-

abling the network control to be prpgrammable. Therefore, the SDN is centrally

managable, dynamic and adaptable. [1, 2]

Application layer

Control layer

Infrastructure layer

Business Applications

Ryu

Floodlight

Beacon

NOX

POX

NodeFlow

...

Physical Switches Virtual Switches ...

Northbound API

Southbound API

Figure 1.1. Architecture of software-defined network.
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The high-level architecture of SDN presented by Open Networking Foundation

(ONF), an organization dedicated to the development and standarization of SDN, is

shown in Figure 1.1 [3].

• Infrastructure layer: Also named as data plane, it consists forwarding elements,

such as phisical and virtual switches. These switches are accessible via an open

interface to switch and forwarded packets.

• Control layer: Also named as control plane, it consists software-based con-

trollers. The SDN controller is a logical centralized entity summarizing the

network state for applications and translating application requirements to low-

level rules.

• Application layer: It mainly consists of end-user applications.

1.2 Motivation

SDN switches match incoming traffic against a set of flow rules that have been

installed by the controller. For new connections that have no matching rules, the

switch forwards the flow information to the SDN controller. The controller then

makes a routing decision and informs all switches along the path so that they can

install a matching rule in their flow tables.

The ability to control the routing of individual flows in SDN is convenient for

traffic management in data centers [4], for implementing virtualized network functions

[5], and for offering customized network services [6]. A critical aspect of SDN is

the operation and performance of the controller, which is a (logically or physically)

centralized component and needs to handle routing decisions for all traffic through

the network [7]. To ensure that these controllers have a suitable level of performance

and reliability, a variety of distributed designs have been proposed [8, 9].
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Despite the robust designs for SDN controllers, these systems represent attractive

targets for malicious attackers. The basic operation of SDN exhibits an imbalance

between the small amount of work that is necessary (sending of a packet with a

new 5-tuple) to trigger the large amount to trigger large amount of work that is

then performed by the SDN controller (route computation and setup of flow rules in

switches). An attacker can exploit this imbalance by simply sending crafted flows,

triggering a route computation with each packet and effectively overloading the SDN

controller and filling flow tables in switches.

To level this imbalance, we introduce the Controller Protection Protocol (CPP),

which requires systems wanting to connect through an SDN network to commit re-

sources before an SDN controller commits resources for route computation and setup.

In our case, the connecting system needs to include a proof-of-work (POW) [10] with

the initial packet of a connection. The SDN controller can verify the correctness of

the POW easily and thus discard attack traffic with invalid POWs with low overhead.

Using this approach, an attacker needs to dedicate a large amount of computational

resources in order to send large amounts of attack traffic that triggers route computa-

tion on the SDN controller, thus making an attack potentially prohibitively expensive.

1.3 Contribution

This thesis addresses the how to defense flood attack towards control plane of

SDN. First, we review related researches about security issues in SDN and come up

with the idea of using proof-of-work to solve flood attack targeting controllers in

SDN. Then, we study different algorithms and design some experiment to find out

the proper one used in SDN. Finally, we propose the entire system to implement the

initial idea.

The main contributions are as follows:

3



• Propose a one-way transmission of POW to provide necessary efficiency for

operation in SDN.

• Design the entire system applying the POW to protect controllers in SDN

against flood attack.

• Devise the experiments and applications to implement CPP.

1.4 Organization of the Dissertation

The remainder of the thesis is organized as follows: Chapter 2 discusses related

work. The problem of using proof-of-work in network protocols is explained in more

detail in Chapter 3. The design of Controller Protection Protocol, including the design

of the proof-of-work and the communication protocol, is described in Chapter 4.

The evaluation results showing effectiveness of CPP is in Chapter 5, and Chapter 6

summarize the entire approach.
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CHAPTER 2

RELATED WORK

2.1 Attacks against Controllers in SDN

Since the SDN seperate the control plane from the data plane, the data plane have

to ask the control plane for flow rules if the coming packets don’t match the current

flow table. Therefore, it usually takes more time to handle the initial packet than

the next ones. The attacker can easily detect SDN by measuring the difference of

response time for new-flow and exist-flow [11]. After successfully detecting SDN, the

attacker can make the flooding attack towards the controller, causing denial-of-service

in SDN.

2.2 DDoS Defense in SDN

SDN controller attack is conceptually similar to SYN flood attack on servers [12].

When a client need to establish a new connection to the server, TCP three-way

handshake is applied. The steps are as follows:

1. The client sends a SYN message to request a new connection.

2. The server replies a SYN-ACK message to the client to acknowlege the client

that the request is received.

3. The client sends a ACK message back to server for the SYN-ACK message. The

connection than is established.

To make a denial-of-service attack, the attacker can send traffic to server requesting

TCP connectio without responding the ACK message in step 3. Or, the attacker can

5



spoof the IP address, letting the server send SYN-ACK to the falsified IP address so

that the server cannot get the responce. Therefore, the server has to keep a lot of

half-open-connections causing depletion of resourses and denial of legitimate requests.

There is an effective solution to protecting servers through SYN cookies [13].

When the server receives the TCP SYN packet, the server sends a TCP SYN-ACK

packet back to the client with a structed sequence number since the initial sequence

number is chosen by the sender. The sequece number, i.e., the SYN cookie is structed

according to the maximum segment size that the server uses to store the SYN queue

entry and the information of the SYN packet, i.e., the IP address and port number

of the client, and the timestamp. When the server get the ACK packet from the

client, the server can retrieve the information from the acknowlege number which is

related to the SYN-ACK sequence number, and than setup the conneciotn. By using

SYN cookies, the servers need not keep the half-open-connetions so the flood attack

cannot exhaut the resources of the server. This approach is suitable for web requests

since the exchange can be elegantly combined with the Transmission Control Protocol

(TCP) connection setup.

Avant-Guard is proposed to solve data-to-control plane saturation attack [14].

One part of this design, called connection migration, is using the similar approach as

SYN cookies. In our work, however, we cannot use such an approach since multiple

networks are along the path from sender to receiver and multiple partial round-trips

would be necessary for connection setup using two-way communication.

Heuristics to detect attacks based on traffic volume have been proposed to protect

from SYN attacks [15] and other network attacks [16,17]. Recently, a similar, volume-

based protection approach was proposed for software-defined networks [18]. This

work is difficult to implement in practice since it requires that all requesting hosts be

categorized based on trust and connection volume thresholds be established a priori.

6



2.3 Proof of Work

Proof-of-work is a mechanism that established trust explicitly by requiring the

requesting entity to perform work, i.e., commit computational resources, to show its

sincerity [10]. Proof-of-work has been used before to protect network protocols [19],

but may require multiple exchanges between the communicating entities (e.g., to

exchange the challenge and to set difficulty set). Our work focuses on a one-way

POW protocol that does not require time-consuming parameter exchanges. Proof-of-

work has been argued to not work in the context of unsolicited email (spam) reduction

since it poses an undue burden on some legitimate senders [20]. As a response, the

use of reputation has been proposed to make POW work [21]. More recently, in the

context of digital currencies, such as bitcoin [22], POW has become a more widely

used approach [23].
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CHAPTER 3

PROBLEM STATEMENT

The problem that our work aims to solve is as follows: Given that an SDN network

by design needs to invest considerable resources to set up a network path, how can be

ensured that the entity initiating the connections is required to commit a comparable

(or higher) amount of resources before the connection is established? Before describ-

ing our solution in Chapter 4, we review the operation of SDN, describe attacks on

SDN controllers, and formally state the security model underlying our work. Exam-

ples discussed in this section are based on the simple topology shown in Figure 3.1.

3.1 Connection Setup in SDN and Attack

A new connection is established in a software-defined network whenever a packet

arrives at the network edge with a five-tuple (i.e., source and destination address,

source and destination port, and transport layer protocol identifier) that does not

end-system

SDN switch 1

SDN controller

SDN switch 2

software-defined network

Figure 3.1. Simple topology of example software-defined network.
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end-system SDN switch 1 SDN controller SDN switch 2

path 
computation

new flow table 
entry added

new flow table 
entry added

...

...

Figure 3.2. Space-time diagram of network interactions during connection setup in
a software-defined network (topology from Figure 3.1, single SDN network provider,
uni-directional communication).

match any rule that has been previously installed in that switch. The steps that are

then performed are as follows (see space-time diagram in Figure 3.2):

1. The switch that receives the new packet forwards the five-tuple information to

the SDN controller (“new connection notification” in Figure 3.2).

2. The SDN controller computes a suitable path for this new traffic through the

SDN. This computation is performed by an SDN application that is accessed

through the north-bound interface of the controller. For simplicity of discussion,

we consider the SDN controller and SDN application a single unit (since they

are implemented on the same physical device). Depending on the algorithm

used, the size of the SDN, and the constraints imposed by policies and other

existing connections, the path computation may require a considerable amount

of processing on the controller.

3. Once the path for the new connection has been determined, the switches along

that path are informed (“forwarding rule” in Figure 3.2). Then, a new rule

9



matching the connection’s five-tuple (or a more general rule for forwarding traf-

fic aggregates) is installed in the switch table directing that traffic to the ap-

propriate output port (“new flow table entry added” in Figure 3.2).

4. Once the path through the SDN has been configured, the original packet is

forwarded by the switch that initially received it. All later packets of the con-

nection are forwarded directly by the SDN switch without involvement of the

SDN controller (until the flow table entry for that connection expires and is

removed).

It is apparent from the above listing that the amount of resources committed

by the SDN for any new connection involves (1) communication bandwidth between

switches and the controller, (2) processing on the controller, and (3) memory in the

switch tables. This resource commitment is triggered by merely sending a packet that

has new five-tuple values (i.e., a 64-byte packet with an IP and TCP header and no

payload).

A malicious attacker can easily launch a denial-of-service (DoS) attack on an

SDN by sending a large number of packets with different, new five-tuple values.

This type of attack is illustrated in Figure 3.3. Each packet is handled as a new

connection and requires the connection setup steps discussed above. Sending attack

packets requires very little commitment on the attacker side. However, each packet

triggers a considerable resource commitment on the SDN side, thus leading to resource

exhaustion. Depending on the configuration of the SDN, this resource exhaustion may

occur either on the control links between switches and the controller, on the processor

of the SDN controller, or on the state tables in the switches. The effect of the attack

is that legitimate connection requests cannot be processed (and their traffic cannot

be forwarded).

10



end-system SDN switch 1 SDN controller SDN switch 2

path 
computation

new flow table 
entry added

new flow table 
entry added

path 
computation

new flow table 
entry added

new flow table 
entry added

path 
computation

new flow table 
entry added

new flow table 
entry added

...

...

...

Figure 3.3. Space-time diagram of denial-of-service attack on software-defined
network controller (topology from Figure 3.1, single SDN network provider, uni-
directional communication, packet forward through SDN omitted for readability).

3.2 Security Model

Before arguing the design to protect SDN controller, we formalize the discussion

by defining a security model.

3.2.1 Security Requirements

SR1 An attacker cannot set up a connection through the SDN network without

committing computational resources.

SR2 An attacker is not able to use resources committed for a previous or different

successfully established connection for a new, different connection.

SR3 An attacker cannot stockpile proofs of work at a slow pace to be used in a

sudden attack.

11



3.2.2 Attacker Capabilities

We assume the attackers have the following capabilities and limitations:

AC1 An attacker can send any type of traffic, including any connection setup requests

with real or fake proofs of work.

AC2 An attacker cannot solve a proof of work except by performing the work.

AC3 An attacker cannot predict future values of a true random number generator.

3.3 Performance Requirement

In addition to secure operation, it is also important that CPP achieves efficient

operation. We aim to achieve the following performance requirements:

PR1 A correct connection needs to be established in a single pass.

PR2 An incorrect proof of work needs to be identified with little computational

resources.

PR3 A correct proof of work needs to require resources that are comparable to (or

higher than) those committed by an SDN controller for settings up a connection

through the SDN network.

We discuss in Section 5.2.1 how our proposed CPP meets these performance re-

quirements.

12



CHAPTER 4

CONTROLLER PROTECTION PROTOCOL DESIGN

4.1 Main Idea

The main idea for the Controller Protection Protocol is to use a proof of work

during connection setup. This proof of work requires the end-system requesting the

connection to commit considerable resources before resources are committed on the

side of the SDN controller. When an attacker sends large numbers of connection

requests (without committing the resources to include valid proofs of work in each

packet), then these packets can be identified and discarded with very little overhead.

The connection setup process based on the Controller Protection Protocol is shown

in Figure 4.1. This space time diagram is based on the topology in Figure 3.1 and

shows the changes compared to the standard SDN connection setup process shown

in Figure 3.2. In CPP, the end-system first computes a proof of work (details on the

parameters for this computation are described in Section 4.4). The result from this

computation, i.e., the proof of work, is included in the first packet sent by the new

connection (e.g., the TCP SYN packet). When the first SDN switch encounters the

packet from this new connection, it forwards the connection information, including

the proof of work, to the SDN controller. The controller then checks the validity

of the proof of work before performing path computation or any other action. In

case the proof-of-work validation fails, the controller discards the packet and the

connection is not set up (i.e., no path computation takes plane and no forwarding

rule is installed in the SDN switches). In case the proof-of-work validation succeeds,

the path computation and forwarding rule installation is performed as in conventional
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end-system SDN switch 1 SDN controller SDN switch 2

path 
computation

new flow table 
entry added

new flow table 
entry added

...

...

proof of work
computation

POW verification

Figure 4.1. Space-time diagram of network interactions during connection setup
in a software-defined network using Controller Protection Protocol (topology from
Figure 3.1, single SDN network provider, uni-directional communication).
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end-system SDN switch 1 SDN controller SDN switch 2

POW verification
fails

POW verification
fails

POW verification
fails

Figure 4.2. Space-time diagram of denial-of-service attack on software-defined net-
work controller using Controller Protection Protocol (topology from Figure 3.1, single
SDN network provider, uni-directional communication).

SDN. Once the connection has been established, later packets of that connection do

not contain a proof of work, but are forwarded by the SDN switches as in conventional

SDN.

If an end-system wants to launch a denial-of-service attack on the SDN controller

(as shown previously in Figure 3.3), then there are two possible approaches:

• Attack with valid proofs of work: If the attacker includes valid proofs of work,

then the SDN controller performs the connection setup as described above.

However, the design of the proof of work in CPP is such that generating a

valid proof of work requires considerable resources on the end-system initiating

the connection request. Therefore, an attacker would need a lot of (costly)

computational power to launch a successful attack on the SDN controller.

• Attack with invalid proofs of work: If the attacker does not include valid proofs

of work, which is a much cheaper approach, then the SDN controller can de-

tect this lack of a valid proof of work during the verification step. Since the
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proof-of-work validation fails, no path computation or flow setup resources are

committed by the router then. The denial-of-service attack thus fails and only

consumes bandwidth resources to forward this initial attack traffic (which can

be throttled with conventional DoS protection mechanisms if necessary). This

scenario is shown in Figure 4.2.

A variant of this protocol is to check the proof of work on the first SDN switch

(i.e., before sending a connection notification to the SDN controller). This variant

would reduce intra-SDN communication and thus exhibit even more resilience to

attacks. However, most practical SDN switches do not have much compute func-

tionality beyond simply matching of packet headers to flow table entries. Thus, the

implementation of this variant is not practical in current SDN. However, if future

SDN employ switches with more processing capabilities (or dedicated functions to

implement CPP), then the proof-of-work verification can be performed by the SDN

switch that encounters the first packet from a new connection.

4.2 System Architecture

One of the key requirements for any connection setup protocol is that it operates

in a one-way fashion. An implication of this requirement is that the proof of work

needs to be calculated by the end-system initiating the connection before it is known

which path the packet takes through the Internet and which network providers are

encountered. This lack of knowledge of the path implies that the proof of work cannot

be customized to any specific network operator’s requirements. Since it also cannot

be expected that a network provider wants to trust any other provider to check the

proof of work on its behalf, we need to design a proof of work that is acceptable to

all network providers.

One approach to using a single proof of work for all providers is to define a set

of global parameters for the proof of work necessary for any given new connection.
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... CPP-enabled 

end-system

...

network provider

epoch time Random number generator

Parameters (rt , ct)

Controller Protection Protocol Authority

CPP-enabled 

SDN controller
... ...

network provider

CPP-enabled 

SDN controller

SDN switch SDN switch

CPP-enabled 

end-system

CPP-enabled 

SDN controller
... ...

network provider

Figure 4.3. System architecture of Controller Protection Protocol with central Con-
troller Protection Protocol Authority that distributes current CPP parameters to
SDN controllers for verification of proofs of work in connection requests.

However, if these parameters are fixed (or change in a predictable fashion), then an

attacker can stockpile proofs of work, which violates security requirement SR3.

Therefore, we introduce a Controller Protection Protocol Authority (CPPA),

which creates and distributes global CPP parameters. These parameters are based

on a true random number generator and change over time to ensure that the fresh-

ness requirement is met. The CPPA provides the currently active parameter set for

pull queries by SDN controllers. Alternatively, the currently active parameter set

can be pushed to all SDN controllers through multicast or other content distribution

mechanisms. In practice, the Controller Protection Protocol Authority can operate

as a logically centralized, but physically distributed system to improve performance,

reliability, and resilience to denial-of-service attacks.

The use of a global, logically centralized Controller Protection Protocol Authority

may seem like an expensive requirement. However, the CPPA simplifies the problem

of needing to establish trust between network providers by acting as trusted interme-
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diary. There are several other, widely deployed network protocol that require central

coordination (e.g., Domain Name System (DNS) [24]).

The resulting system architecture for the Controller Protection Protocol is shown

in Figure 4.3. The figure shows the the Controller Protection Protocol Author-

ity creates parameters as described below in Section 4.3.1. These parameters are

distributed—either through push or through pull mechanisms—to all CPP-enabled

components, i.e., end-systems and SDN controllers. (SDN switches do not need to be

modified for CPP.) The operation of the Controller Protection Protocol is described

in the following section.

4.3 Controller Protection Protocol Operation

This section discusses CPP in detail.

4.3.1 Parameter Distribution

The parameters that are necessary for correct operation of CPP are:

• Random base r: This parameter is a random number generated by the CPPA.

This random base is used in the proof-of-work calculation and ensures that

proofs of work are only considered valid while this base is active.

• Proof complexity c: This parameter is a number indicating the difficulty of

the proof of work (see Section 4.4). Since the computational capabilities of

processors continues to grow due to improvements in semiconductor technology

(as projected by Moore’s law [25]), this parameter enables CPP to adapt over

time. (The computational power of SDN controllers also grows with Moore’s

law, but other resources, such as flow table entries in SDN switches, may not

grow as quickly. Therefore, it is convenient to decouple these resources from

each other through this explicit parameter.)
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The parameter set (r, c) needs to change over time to ensure freshness of proofs

and to adapt complexity. We therefore divide time into epochs during which a given

parameter set is valid. We define ∆t as the epoch duration and epoch n is active

during the time interval [(n − 1) · ∆t, n · ∆t). Any given time t falls into epoch

bt/(∆t)c + 1. For simplicity of notation, we denote rt as parameter r that is valid

during the epoch in which time t falls. Similarly, we define ct. Furthermore, we define

rt−1 and ct−1 as the parameters that were valid in the previous epoch.

The Controller Protection Protocol Authority then distributes (rt, ct) during the

current epoch. To aid with transient behavior, as we explain below, it is also necessary

to distribute the previous set of parameters (rt−1, ct−1). The epoch duration needs to

be chosen long enough to ensure that the parameters from the current (and previous)

epoch can be distributed throughout the Internet. However, the epoch should not be

too long to avoid stockpiling of proofs of work. We envision that ∆t values in the

order to tens of seconds to minutes are good values for a practical implementation.

4.3.2 Proof of Work Generation

The proof of work that is included in the connection request must be such that it

cannot be reused for a different connection request (security requirement SR 2). A

straightforward way of ensuring that this requirement is met is to make the proof of

work “self-certifying.” That is, the flow information itself (i.e., the connection 5-tuple

f) is used as a parameter for the proof of work computation. Thus, a proof of work

that is valid for the parameters of one connection does not match the parameters of

another connection since the connection 5-tuple is different.

In addition, the proof of work is based on the CPPA parameters. Thus, the proof

of work for connection f at time t, powf
t , is computed by a function p with the

following parameters:

powf
t = p(f, rt, ct). (4.1)
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The details of the function p are provided in Section 4.4.

4.3.3 Proof of Work Verification

The proof of work verification step is a straightforward complement to the proof

of work generation step. A function v is used to compute a binary output valid

indicating if the proof of work is valid. For a matching proof of work, the result is

v(f, rt, ct, pow
f
t ) = true. (4.2)

However, if the flow information does not match (e.g., reuse of proof of work powf ′

t

from flow f ′), then, with high probability,

v(f, rt, ct, pow
f ′

t ) = false. (4.3)

Similarly, the verification step fails with high probability for different CPPA param-

eters (r′, c′).

Since information cannot propagate instantaneously in networks, there are situa-

tions where epoch parameters have propagated to one part of the network, but not

to another. If a connection is initiated from the part of the network with old param-

eters and reaches the part of the network with new parameters (or vice versa), the

verification set fails. To avoid problems during this transient period, the SDN con-

troller performs a second verification step (if the first one fails) with the parameters

from the previous epoch: v(f, rt−1, ct−1, pow
f
t−1). Thus the window during which a

proof of work can be used becomes 2 · ∆t in practice. (There is also a complemen-

tary situation where the connection is initiated from the part of the network that

has the new parameters. However, if this connection then travels towards the part

of the network with the old parameters, it can be assumed that the new parameter

values travel equally fast through flooding or multicast and thus arrive before this

connection setup request needs to be handled.)
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Note that the failure of the verification is based on a probabilistic argument since

there is always a chance that an attacker may guess the correct pow value. However,

as we see below, the chances for a randomly successful attack are exceedingly small

and do not pose practical problems.

4.3.4 Multiple Network Providers

A typical end-to-end Internet connection request needs to traverse multiple sub-

networks belonging to different network providers. The design of CPP can accom-

modate such multiple network providers easily. The proof of work sent in the first

packet of a connection is independent of a specific provider and the verification step

in Equation 4.2 succeeds for any provider.

Since each provider can verify the proof of work independently, there is no need

for providers to trust each other to verify traffic on ones behalf. As long as each

provider trusts that the Controller Protection Protocol Authority to provide a valid

parameter set, no further trust relationships are necessary.

4.4 Proof-of-Work Design

A key question for our design is what proof of work function to use. Dwork

and Naor proposed three POW functions based on mathematical hard problems [10].

The first function is finding the square root of an arbitrary x modulo a prime p,

which cost at least log(p) steps to solve and only a simple multiplication to verify.

However, to guarantee the existence of the solution, the parameter p and x cannot

be chosen randomly, which requires two-way communication to be implemented. The

other two functions are based on breaking cryptographic signatures, which may also

encounter the same issue as the first function and need two-way communication to

be implemented. Abadi proposed a memory-bound POW [26]. The computation

time of the function is based on memory latencies, which have much smaller variance
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than CPU speed. Coelho proposed a protocol based on the Merkle tree [27], which

consumes constant effort on solution and verification. However, the verification of

this protocol needs multiple cryptographic hash computations, which may be too

demanding for an SDN controller.

In CPP, we use an approach similar to previous proofs of work (e.g., such as in

bitcoin mining [22]) that can be verified with a single cryptographic hash computation.

We require that find an input to an cryptographic hash computation that generates

an output starting with a predetermined number of zeros. Since cryptographic hash

functions are one-way functions, the entity generating the proof of work has to try

by “brute force” to find a suitable input. This search process is on average time

consuming and thus requires dedication of computational resources (i.e., “work”).

The verification, in contrast, is very simple since the verifier only needs to do a single

computations to see if an input (i.e., “proof”) yields an output starting with the

required number of zeros.

Since we need to customize the proof of work challenge for different connections,

epochs, and difficulty levels, we integrate these parameters into the proof of work p

(from Equation 4.1) as follows:

p(f, rt, ct) = w such that hash(f ‖ rt ‖ w) starts with ct zeros, (4.4)

where ‘‖’ denotes a concatenation operation. The work that is performed is to find a

suitable w that meets these requirements.

The verification step from Equation 4.2 is then performed as follows:

v(f, rt, ct, pow
f
t ) = if hash(f ‖ rt ‖ powf

t ) starts with ct zeros. (4.5)

In Section 5.2.1, we show that performing the work is significantly more compu-

tationally complex than verifying a proof and that this proportion can be adapted by
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changing parameter ct. Note that solving one given proof of work occur very quickly

depending on the choice of w in Equation 4.4. However, over multiple proofs (i.e.,

multiple connection requests), the cost averages out due to the central limit theo-

rem. Also, the probability of simply guessing a correct proof of work is 2−ct and thus

exceedingly small.

4.5 Protocol Details

The proof of work represents additional information that needs to be carried in

the first packet of a connection. While it is always possible to add new option fields or

design new headers, we have designed an elegant implementation of CPP that does not

require any header changes when using Internet Protocol (IP) [28] and Transmission

Control Protocol (TCP) [29] headers.

The characteristics of the proof of work discussed above is that it is inherently

pseudo-random (non-pseudo-randomness in the proof of work could be exploited to

guess a solution more quickly). Therefore, it is possible to utilize existing header

fields that use randomized values to carry the proof of work. Specific header fields

are:

• IP identification field: This identifier field is 16 bits long and its value is chosen

by the sender. The value needs to be unique for a given connection. Since

the connection setup packet is the first packet of the connection, any value is

acceptable. Thus, this field can carry proof of work information.

• TCP sequence number: This field is 32 bits long and identifies the logical posi-

tion of the data carried in the payload in the context of the connection stream.

The sender chooses a random sequence number at connection setup time and

any value is acceptable. Thus, this field can also carry proof of work informa-

tion.
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application layer header

IP header

TCP header

connection 5-tuple used to construct f

fields used for proof of work pow
f
 (16 bits in IP header + 32 bits in TCP header = 48 bits total)

key

Figure 4.4. Layout of header fields in IP header and TCP header used 5-tuple flow
information and proof of work storage.

Figure 4.4 shows an illustration of a TCP/IP header. The fields that are used to

determine f are shown, as well as the fields that can carry the proof of work powf .

In a deployment of CPP, the operating system of the end-system can be modified

to use these fields accordingly. For traffic that does not use TCP as transport layer

protocol, IP options [28] can be used to carry 32 bits for CPP beyond the 16 bits in

the IP identification field discussed above.
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CHAPTER 5

EVALUATION

To demonstrate the effectiveness of the Controller Protection Protocol, we discuss

how CPP meets the security requirements. Then, we show performance results from

an implementation of the proof of work component that demonstrates the computa-

tional cost relation between sender and SDN controller for different levels of difficulty.

5.1 Security Evaluation

To argue that CPP meets the security requirements stated in Section 3.2, we

revisit each security requirement:

SR1 In CPP, an attacker cannot establish a connection through an SDN since the

controller checks for valid proofs of work in all connection requests. An attacker

cannot circumvent this requirement by reusing proofs (attacker capability AC2)

since proofs of work are parameterized to the flow information and current epoch

parameters (Equations 4.1 and 4.4). The probability of a successful guess by

the attacker is 2−ct and thus so small that random proofs of work cannot be

used as an attack vector.

SR2 The parametrization of the proof of work based on flow information and current

epoch parameters requires commitment of new resources (i.e., a new proof of

work computation) for each new connection.

SR3 An attacker cannot use stockpiled proofs of work that are older than two epochs

(see Section 4.3.3). The attacker cannot predict future epoch parameters (at-
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tacker capability AC3) to pre-calculate proofs. Thus, the largest stockpile is

limited by the number of proofs that an attacker can generate and send during

this short time.

Based on these arguments, the Controller Protection Protocol meets the security

requirements to protect SDN controllers for denial-of-service attacks. One critical

aspect in this context is the relationship between the computation time committed

by the end-system and the computation time committed by the SDN controller, which

we discuss next.

5.2 Proof of Work Implementation

5.2.1 Proof of Work Evaluation

We have experimentally evaluated the proof of work component of CPP for a

number of different types of cryptographic hash functions and parameters. The ex-

perimental setup uses a 1.8 GHz Intel core i5 processor with 4GB of 1600MHz DDR3

memory. The code is written in C++ on the Xcode platform. The cryptographic hash

functions used for this evaluation are SHA-1 (from the Crypto++ library), SHA-2

(SHA-256 and SHA-512 variant, Olivier Gay’s implementation) and SHA-3 (Stephan

Brumme’s implementation).

Figure 5.1 shows the experimental processing times for generation of a proof of

work (i.e., Equation 4.4) and verification of a proof of work (i.e., Equation 4.5). As

expected, the generation time is a distribution of values based on what value of w

is chosen in Equation 4.4. Also, the generation time is significantly larger than the

verification time. Thus, the proof of work does cause the necessary commitment of

resources on the side of the end-system as stated in security requirement SR1. Also

incorrect proofs of work can be detected quickly as stated in performance requirement

PR2.
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Figure 5.1. Distribution of generation and verification times for proofs of work in
CPP (complexity ct=10 zeroes).
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Figure 5.2. Average generation and verification times for proofs of work in CPP
for different complexity parameters (complexity ct=[8, 9, 10, 11, 12, 13, 14, 16, 20, 24]
zeroes from bottom to top).
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Table 5.1. Average of generation time and verification time of proofs of work for
different cryptographic functions and complexity parameters.

hash complexity ct
function Time (ms) 8 10 12 16 20 24

SHA-1
generation 2.48 9.78 37.73 575.6 9.4k 124.9k
verification 0.0185 0.0170 0.0169 0.0161 0.0173 0.0196

SHA-256
generation 2.04 8.54 31.71 511.0 7.88k 147.7k
verification 0.0149 0.0147 0.0147 0.0143 0.0148 0.0188

SHA-512
generation 3.23 12.99 53.84 828.3 13.3k 213.4k
verification 0.0203 0.0201 0.0196 0.0197 0.0198 0.0247

SHA3-256
generation 2.95 11.45 47.59 669.49 12.2k 160.2k
verification 0.0542 0.0614 0.0638 0.0544 0.0542 0.0467

Table 5.2. Average ratio of generation time and verification time of proofs of work
for different cryptographic functions and complexity parameters.

hash complexity ct
function 8 10 12 16 20 24
SHA-1 134 575 2.23k 35.7k 544.8k 6.37M
SHA-256 136 581 2.16k 35.7k 543.5k 7.86M
SHA-512 159 646 2.75k 42.0k 670.6k 8.64M
SHA3-256 54 186 746 12.3k 226.0k 3.43M

To explore this ratio of computation time committed during proof of work gen-

eration and proof of work verification, Figure 5.2 shows these times for a number

of different complexity value. The genaration and verification time of proof of work

with some complexity parameter values is shown in Table 5.1, and the ratio between

generation time and verification time is summarized in Table 5.2. These results show

that, depending on the choice of complexity parameter, the resource commitment on

the end-system can be a few hundred times the cost of verifying the proof of work or

many million times. Thus, performance requirement PR3 is met. Thus, CPP can be

adapted to the necessary ratio of resource commitment. Since the complexity param-

eter ct is distributed by the Controller Protection Protocol Authority, such adaptation

can be implemented with ease.
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5.2.2 Proof-of-work Implementation on End-System

Table 5.1 and table 5.2 shows the average time of verification and generation

time of different cryptographic functions. The results show that SHA3 has the lowest

ratio but the verification time is more than twice as the others. Using SHA3 to

implement CPPA will cost more on controller but the same as other cryptographic

hash functions at the attacker side. Thus, we will not use SHA3 to implement the

protocol on host. Comparing the other three, SHA-256 has the lowest verification

time but has a raletively high ratio. Therefore, we use SHA-256 to implement the

protocol on end-system.

To implement proof of work on end-system, we need to change information of each

SYN packet. According to the discription in Section 4.5, we could choose IP identifier

number or TCP sequence number. We use TCP sequence number to contain proofs

of work.

The first idea is shown in Figure 5.3. The application needs to capture the outgoing

packets, recognise the SYN packets and change the TCP sequence number to a valid

proof of work. Then, it remenbers the difference between the original sequence number

and proof of work and pairs it with the flow information. When receiving packets,

the application needs to look it up from the table according to the flow information

and then change back the relative acknowledge number according to the records.

Implementtation of this application is difficult since the system is not allowed to

change the TCP sequence number outside the kernel. So we need to change the

IP/TCP stack in kernel to implement the protocol.

The experiment is taken on Ubuntu 16.04 with kernel version of 4.4.1. By hacking

the kernel, we don’t need to record the original TCP sequence number since we

directly change the initail sequence number (ISP).

According to RFC6528, the initial sequence number is generated with the ex-

presstion: ISN = M + F(localip, localport, remoteip, remoteport, secretkey), where
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Figure 5.3. Initial idea of implementation for CPPA protocol on host

M is the 4 microsecond timer, and F() is a pseudorandom function (PRF) of the

connection-id. In kernel 4.4.1, the F() is MD5 algorithm. The sequece number is

generated in file net/core/secure seq.c. We ignore the random base rt in Equation 4.4

because we don’t implement the CPPA in this experiment. The steps of generating

a valid proof of work is shown in Figure 5.4.

1. Generate initial number i according to RFC6528.

2. Calculate SHA-256 of source IP and port, destination IP and port, and i from

step 1.

3. Check if the digest of SHA-256 meets the complexity parameter ct.

4. If the digest meets the requirement, use i as the initial sequence number. If not,

increase i by 1 and repeat step 2 - 4.
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Figure 5.4. Generating proof of work in Ubuntu

We use wireshark to capture the packets and check if the system changes the initial

sequence number of every SYN packet. In Figure 5.5, we can see the information of

highlighted packet. We use hexadecimal number to be the input of SHA-256 and set

the complexity parameter c = 16, which means the requirement is 16 bits of zeros. In

Figure 5.5, the source IP is (c0a8ba8e)16, the souce port is (d1b6)16, the destination

IP and port are (68101a23)16 and (50)16 and the sequence number is (7ef34cda)16.

Figure 5.6 shows the result of SHA-256. The output of SHA-256 is beginning with

16 bits of zeros in binary form (4 zeros in hexadecimal number).

We only check the functionality of this kernel such as browsing webpages, watching

online videos and making VoIP call. To measure the delay time of this implementation

can be a further work of this experiment.
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Figure 5.5. Wireshark in Ubuntu

Figure 5.6. Verify the proof-of-work generated in Ubuntu
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5.3 SDN Prototype Evaluation

5.3.1 Processing time of controller

We have extended a POX SDN controller to implement CPP and check incoming

connection requests for valid POWs. We created an OpenFlow network environment,

including two virtual switches and two hosts using Mininet in Virtual box with one

core of 1.8 GHz Intel core i5 processor. The network traffic with both valid and

invalid proofs of work is generated by the Python API provided in Mininet.

Table 5.3. Measurement results of processing times on SDN controller. Proof of work
uses SHA-256 with a complexity of ct=12 bits of zeros. The regular SDN controller
cannot distinguish between connection requests with valid or invalid POWs. Results
are averages with standard deviation over 1000 connection request measurements.

Regular SDN Controller CPP-enabled SDN Controller
Connection
request with
no POW or
with invalid
POW

reception (µs) 150.97 ± 64.75 Reception (µs) 137.09 ± 56.37
no POW check (µs) 0.41 ± 0.55 POW check (µs) 41.53 ± 16.67
path computation (µs) 459.94 ± 255.94 connection drop (µs) 1.62 ± 1.18
Total (µs) 611.32 ± 284.76 Total (µs) 180.24 ± 67.144

Connection
request with
valid POW

reception (µs) 141.45 ± 47.39 reception (µs) 156.51 ± 46.406
no POW check (µs) 0.36 ± 0.74 POW check (µs) 52.90 ± 15.41
path computation (µs) 489.34 ± 172.92 path computation (µs) 488.99 ± 155.26
Total (µs) 631.15 ± 205.53 Total (µs) 698.40 ± 197.59

Table 5.3 shows the measurement results from evaluating connection setup times

on a regular SDN controller and on a CPP-enabled SDN controller. The results show

the processing time for packets with and without proofs of work. The regular SDN

controller does not perform a POW check and thus performs costly path computation

for all connection requests, totaling a connection processing time of over 600µs. The

CPP-enabled SDN controller requires around 50µs more processing time for valid

connection due to the POW check. However, invalid connection requests, i.e., those

without valid POW, that may have been sent by a DoS attacker, can be processed

in less than 200µs. In particular, the time after detecting that the POW is not valid

is less than 2µs compared to around 500 µs in a conventional controller. Thus, the

CPP-enable controller is able to protect its computational resource from DoS attacks.

In addition, but not shown here, no resources are used to communicate with switches
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or to install flow rules in switch tables after a connection is dropped due to an invalid

POW.

These results show that Controller Protection Protocol achieves the desired prop-

erties and reduces the workload significantly on SDN controllers when DoS attack

connection requests without valid proofs of work are sent.

5.3.2 Performance of controller under attacks in SDN

In this experiment, we created an OpenFlow network environment, including one

opneflow virtual switch and three hosts using GENI resourses. The topology is shown

in Figure 5.7. Host 1 launches attacks towards host 3 and host 2 is a normal user

communicating with host 3. The SYN packets attack is generated using hping3 tool.

The network traffic with valid proofs of work is generated using Python API.

Figure 5.7. Topology of experiment on GENI

Figure 5.8 to Figure 5.14 shows the traffic flows on links from host side in the

network. The packets in outgoing traffic are the SYN packets sent from the host,

which represents the new connection request the host wants to setup. The packets in

34



incomming traffic contains SYN-ACK packets. Because the SYN packets are gener-

ated manually with no actual service request, the SYN-ACK packets also carry FIN

flag to terminate the following packets of this connection. Therefore, the incomming

traffic in these figures only contains SYN-ACK packets, which means the number of

packets comming into the host is the number of connections set up successfully.

Figure 5.8 to Figure 5.11 shows the traffic under the attack with different rate

in network using regular controller. The number of incomming packets in host 2

decreases at the point host 1 lauches the attack. In Figure 5.9, the incomming traffic

at host 2 is under 10 packet/s and in Figure 5.10, the incomming traffic is under

5 packet/s, which means over 90% of connections cannot be established under 3000

packet/s attack.

Figure 5.12 and Figure 5.13 shows the traffic under the attacks with 1000 packet/s

and 10000 packet/s towards CPP-enabled SDN controller. The incomming traffic in

host 2 is not affected when attack launches. When host 1 launches attack with 100,000

packet/s, shown in Figure 5.14, over 10 connections per second can be set up under

attack.

These results show that Controller Protection Protocol could increase the perfor-

mance of controllers under attacks, which make the attackers consume more resourses

to launch a successful DDoS attack.

Figure 5.8. Attacks to regular SDN controller (attack with 1000 packets/second)
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Figure 5.9. Attacks to regular SDN controller (attack with 2000 packets/second)

Figure 5.10. Attacks to regular SDN controller (attack with 3000 packets/second)

Figure 5.11. Attacks to regular SDN controller (attack with 10000 packets/second)

Figure 5.12. Attack to CPP-enabled SDN controller (attack with 1000 pack-
ets/second)
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Figure 5.13. Attack to CPP-enabled SDN controller(attacks with 10000 pack-
ets/second)

Figure 5.14. Flood attack to CPP-enabled SDN controller

37



CHAPTER 6

SUMMARY AND FUTURE WORK

Our work addresses the problem of how to protect controllers in software-defined

networks from denial-of-service attacks. Since the controller needs to commit a con-

siderable amount of computation, communication, and memory resources in the SDN

for each new connection, an attacker can easily cause such denial-of-service by flood-

ing the controller with new connection requests. Our Controller Protection Protocol

requires that new connection requests contain a proof of work that demonstrates that

the end-system requesting the new connection has already committed considerable

computational resources. As a result, an attacker would need to commit prohibitive

amounts of computational power for a successful attack.

Based on the security model presented in the thesis and the experimental results,

we are able to argue that CPP meets the requirements to protect SDN controllers

effectively.

Our Controller Protection Protocol also fulfills practical deployment aspects, such

as operating in a one-way mode, not requiring trust among network providers, and

being able to adapt the proof of work dynamically to different levels of complexity.

In addition, CPP can be implemented in the existing TCP/IP protocol stack without

requiring any new headers or header options.

The Controller Protection Protocol Authority, which is a source of a random num-

ber (i.e., parameter rt) that changes over time may be valuable to other protocols that

require “freshness.” One example is to use this information to avoid replay attacks.
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Thus, the presented work may be useful beyond its immediate application to protect

SDN controllers from denial of service attacks.
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Berlin Heidelberg, 2013, pp. 135–156.

[24] P. Mockapetris, “Domain names - implementation and specification,” Network
Working Group, RFC 1035, Nov. 1987.

[25] G. E. Moore, “Cramming more components onto integrated circuits,” Electron-
ics, vol. 38, no. 8, pp. 114–117, Apr. 1965.

[26] M. Abadi, M. Burrows, M. S. Manasse, and T. Wobber, “Moderately hard,
memory-bound functions,” ACM Transactions on Internet Technology, vol. 5,
no. 2, pp. 299–327, May 2005.

[27] F. Coelho, “An (almost) constant-effort solution-verification proof-of-work proto-
col based on Merkle trees,” in Proc. of the Cryptology in Africa 1st International
Conference on Progress in Cryptology (AFRICACRYPT), Casablanca, Morocco,
2008, pp. 80–93.

[28] J. Postel, “Internet Protocol,” Information Sciences Institute, RFC 791, Sep.
1981.

[29] J. Postel, “Transmission Control Protocol,” Information Sciences Institute, RFC
793, Sep. 1981.

42

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

	Protecting Controllers against Denial-of-Service Attacks in Software-Defined Networks
	Recommended Citation

	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Motivation
	Contribution
	Organization of the Dissertation

	Related work
	Attacks against Controllers in SDN
	DDoS Defense in SDN
	Proof of Work

	Problem statement
	Connection Setup in SDN and Attack
	Security Model
	Security Requirements
	Attacker Capabilities

	Performance Requirement

	Controller Protection Protocol Design
	Main Idea
	System Architecture
	Controller Protection Protocol Operation
	Parameter Distribution
	Proof of Work Generation
	Proof of Work Verification
	Multiple Network Providers

	Proof-of-Work Design
	Protocol Details

	Evaluation
	Security Evaluation
	Proof of Work Implementation
	Proof of Work Evaluation
	Proof-of-work Implementation on End-System

	SDN Prototype Evaluation
	Processing time of controller
	Performance of controller under attacks in SDN


	Summary and Future Work
	Bibliography

