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 Marine protected areas (MPAs) are increasing in popularity as a tool to manage 

fish stocks through conservation of entire habitats and fish assemblages. Quantifying the 

habitat use, site fidelity, and movement patterns of marine species is vital to this method 

of marine spatial planning. The success of these protected areas requires that sufficient 

habitat is guarded against fishing pressure. For large animals, which often have 

correspondingly large home range areas, protecting an entire home range can be 

logistically challenging. For MPAs to successfully protect large top predator species, it is 

important to understand what areas of a home range are especially important, such as 

breeding and feeding grounds. New technologies, such as acoustic telemetry, have made 

it possible to track marine animal movements at finer spatial and temporal scales than 

previously possible, better illuminating these spatial use patterns. This study focused on 

the movement patterns of great barracuda (n=35), an ecologically important top predator, 

around Buck Island Reef National Monument, a no-take MPA in St. Croix, U.S.V.I. 

managed by the National Park Service. As developing standardized methods for acoustic 
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telemetry is still a work in progress, the first half of this study focuses on determining 

appropriate tools for generating home range size estimates for great barracuda and 

analyzing ecological parameters driving these results. The second half of this study 

focused on the use of network analysis to look at spatial divisions within individual home 

ranges and to compare individual to population level spatial patterns, as well as to 

generate a relative estimate of population density within the park. Barracuda within the 

park demonstrated high site fidelity to individual territories, but at the population level 

they consistently used all habitats within the array. Core use areas within home ranges 

were evenly distributed throughout all habitats monitored by the acoustic array, although 

movement corridors were detected along high rugosity reef structures. Greater population 

densities within the park indicate that density dependent behaviors may be influencing 

habitat use within the park, and suggest that barracuda are contributing high levels of top 

down pressure through predation within the park boundaries.  
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CHAPTER 1 

 

MARINE SPATIAL PLANNING FOR SUBTROPICAL COASTAL 

ECOSYSTEMS: MOVEMENT ECOLOGY AND HABITAT CONNECTIVITY 

USING ACOUSTIC TRACKING OF A PREDATORY FISH 

 

 

 

 Marine protected areas are increasingly being used as a tool to protect essential 

fish habitats in order to increase fish diversity and abundance, and have support as a 

means to achieve ecosystem-based fisheries management (Pikitch et al. 2004, Douvere 

2008). This shift from single stock management is grounded in the concept of ecosystem 

based management, in which maintaining sustainable populations of target species is 

inextricably linked to conserving the habitats and species assemblages within which they 

exist (Pauly et al. 2002, Airame et al. 2003, Pikitch et al. 2004). Spatial closures or 

restrictions are seen as one way to approach this complex management strategy. The 

amount of area under marine protection has burgeoned in recent years, driven in part by 

the 2006 Convention for Biological Diversity which led to a global commitment to 

protect >10% of the ocean by 2020 (Spalding et al. 2013). It is intuitive that decreasing 

fishing pressure within a determined area would lead to increased fish biomass. In 

closures that are appropriate in scope, location, and enforcement, science often agrees 

(Allison et al. 1998, Murawski et al. 2000, Roberts et al. 2001, Pauly 2002, Halpern 

2003, Lester et al. 2009). Disagreements lie in how to accurately define what constitutes 
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an appropriate parameter across ecologically heterogeneous, socioeconomically complex, 

and often politically un-inclined coastal territories (Murawski et al. 2005, Heupel et al. 

2006, Claudet et al. 2010, Suuronen et al. 2010, Farmer et al. 2011, De Santo 2013, Edgar 

et al. 2014). Ecological information is far from the only consideration required to 

implement and enforce spatial closures. Conservation needs must be carefully balanced 

with human interests, which are often complicated by socio-economic disparities and a 

history of tension over control of resources (De Santo 2013). Despite this, data on marine 

species provides the backbone for generating sustainable policy, and therefore fine-tuning 

the ability to accurately quantify spatial ecology and movement patterns of mobile 

animals is necessary to simultaneously achieve conservation goals. 

 Defining appropriate closures from an ecological perspective requires an 

understanding of the interplay between life histories, spatial ecology, and trophic 

interactions of diverse species assemblages (Gerber et al. 2003). There can be great 

variation among marine species in spatial use of habitats and migratory-residency 

patterns (Palumbi 2004). Variation in home range size and site fidelity leads to many 

combinations of temporal differentiation in habitat use for needs such as feeding, 

spawning, or nursery grounds (Burke 1995, Mumby et al. 2004, Meyer et al. 2007, Luo et 

al. 2009, Kimirei et al. 2011). High trophic-level predator populations have been shown 

to often be heavily impacted by fishing pressure, and consequently rebound with properly 

implemented MPAs (Pauly 1998, Micheli et al. 2004). However, predator species may be 

less likely to be fully associated with specific benthic habitats, which are an easily 

surveyed variable often used to define and protect critical fish habitats (Block et al. 2005, 

Letessier et al. 2015). MPA efficacy for mobile predators therefore depends heavily on 
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understanding complex activity spaces and determining home range areas, site fidelity, 

residency times within different habitats and management areas, including temporal 

variation. Understanding ecological motives (for example feeding or spawning) and 

environmental cues (for example time of day, lunar cycles, or season) driving these 

behaviors allows managers to determine appropriate spatial and temporal protection 

strategies.  

 Due to data gaps regarding home range and residency patterns of many marine 

species, particularly large predators, protected areas are often based on broad 

assumptions regarding the spatial ecology of marine animals. Thus, the actual 

conservation benefits of many marine protected areas remain unquantified (Heupel et al. 

2006, Farmer et al. 2011). Acoustic telemetry, a technology for tracking movements of 

marine animals, has increased opportunities to quantify the spatial ecology of marine 

animals, including their home range size, residency patterns, and habitat use at a finer 

scale than previously possible (Heupel et al. 2006, Cooke 2008, Hussey et al. 2015). One 

way acoustic telemetry works is by mooring fixed receiver stations throughout a study 

area. These arrays can either take the form of positioning systems – which use 

overlapping coverage to triangulate location data for a detection – or in the form of broad 

scale arrays, in which there is no overlapping coverage and each receiver station 

functions as an independent node of detection. Tags that emit ultrasonic pings with a 

unique digital code are attached to or implanted within target species. Pings within the 

detection range of the receiver are recorded and logged. Receivers are periodically 

downloaded and movement patterns of tagged animals can be reconstructed via analysis 

of these logged detection histories. Acoustic telemetry has provided great opportunities 
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for increased understanding of the spatial ecology of marine species, however, analytic 

techniques have not kept pace with the recent proliferation of acoustic tracking studies 

(Heupel et al. 2006, Ledee et al. 2015). 

 To make best use of the opportunities acoustic telemetry provides, there has been 

increasing effort in recent years by researchers to develop standardized methods that are 

appropriate to the node – based study design of many broad scale acoustic arrays (Hedger 

et al. 2008, Jacoby et al. 2012a, Finn et al. 2014, Ledee et al. 2015). Tools used for many 

other forms of telemetry have been applied to acoustic telemetry studies, but there is 

increasing concern that depending on receiver array configuration, input data may be too 

coarse to produce reliable results (Hedger et al. 2008). Additionally, due to gaps in 

receiver coverage of a study site, individual tags within a single study may produce 

datasets of highly variable consistency of detection frequencies. For all of these reasons, 

choices regarding both study design and data analysis can have large impacts on the way 

results are interpreted. Ironing out these issues is vital in order for this technology to 

provide the insights needed to improve the capacity to implement ecologically-based 

spatial management strategies. 

 This study brings these two areas of research together by using acoustic telemetry 

to examine movement patterns of great barracuda (Sphyraena barracuda) in a MPA in 

the U.S. Virgin Islands. Buck Island Reef National Monument is a no-take MPA 

managed by the National Park Service located on the Northeastern coast of St. Croix, 

U.S.V.I. This park was created by Presidential Proclamation 3443 in 1961 as a mixed-use 

area, and was increased from the original 3.56 km2 to its current size of 77 km2 and 

converted to a no-take zone in 2001. Parts of the original park were designated as no-
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take, making it one of the first no-take reserves in the Caribbean (Costa et al. 2012). This 

area encompasses a variety of shallow water habitat types ranging from highly rugose 

coral reefs to sand and seagrass flats. The park includes a steep shelf drop off and roughly 

two thirds of its area is dominated by deep water coral and pelagic habitat (Costa et al. 

2012). All receivers used in this study were anchored in shallow water habitats. To the 

east and south, BIRNM borders St. Croix East End Marine Park, a multiuse MPA 

managed by the territorial government. To date, no studies assessing movement patterns 

of fish have been published within these park systems. This study is part of a larger 

collaboration conducting tracking studies on many species, with the goal of eventually 

combining individual species movement ecology with analysis of species interactions 

within a spatial framework. 

 Great barracuda are a large piscivorous fish, considered an apex predator to high 

mesopredator depending on age class, body size, and presence of other top predator 

species (Ceccarelli and Ayling 2010, Mumby et al. 2012). They are found worldwide in 

nearshore tropical and subtropical waters (De Sylva 1963). Males mature at 1-2 of age 

and females at 2-4 years (Kadison et al. 2010). Patterns of juvenile recruitment indicate 

offshore spawning during the summer months, but aggregation sites have yet to be 

documented (Kadison et al. 2010). Great barracuda are considered common in these 

habitats and populations are assumed to be in good standing, but little research has been 

conducted. Juveniles have been found to occupy calm inshore estuaries and lagoons, 

while adults are found farther offshore across all benthic habitat types (De Sylva 1963, 

Blaber 1982, Kadison et al. 2010). Great barracuda can also be found in deep pelagic 

water and there is evidence of broad population connectivity with little genetic 
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differentiation among global populations (Daly-Engel et al. 2012). Observations of 

nearshore habitat use indicate selective use of mangroves during the rainy season, but 

non-selective or random use during the rest of the year, demonstrating seasonal patterns 

but less habitat affiliation than lower trophic level predators (Faunce and Serafy 

2008).The only other movement tracking study to date shows high variation in site 

fidelity and residency patterns at a study site in Eleuthera, The Bahamas (O’Toole et al. 

2011).  

High trophic level predators form a key ecological group for maintaining the 

balance in trophic relationships within fish assemblages (Meyer et al. 2007, DeMartini et 

al. 2008, Boaden and Kingsford 2015). Large predators are often more mobile, with 

movement patterns defined by highly migratory behavior, making defining spatial extent 

of MPAs prohibitively large and difficult to define (Block et al. 2005, Letessier et al. 

2015). As abundant, large predators with limited habitat preference, barracuda 

populations could have a large top down influence on fish community structure across 

broad swaths of warm coastal oceans. Impacts of spatial closures on barracuda 

populations remains unstudied, but given predator resurgence in MPAs, predation 

pressure could be increased within protected areas (Pauly et al. 1998, Micheli et al. 

2004). It is important, therefore, to gain an understanding of home range areas and site 

fidelity, habitat use patterns, and population densities of this species. 

 The objectives for my thesis research were to generate home range size estimates, 

determine the degree of site fidelity of individual fish to these core use areas, understand 

individual and population level patterns of habitat use, and generate a relative population 

density estimate for BIRNM. Quantifying these parameters will fill in much needed data 
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gaps regarding the spatial ecology of great barracuda. Additionally, understanding 

residency patterns and home ranges of target species allows managers to assess the 

viability of existing spatial closures or base future spatial management strategies on 

strong ecological groundings. In order to meet these ecological objectives, it was first 

necessary to determine the appropriate analytical methods.  

 Chapter 2 addressed methodological questions. I assessed to what degree analytic 

method choice influenced the size of home range estimates for the study population. 

Additionally, I looked at whether strength in detection histories influenced these same 

results, as well as the ability to determine ecological drivers of home range size, in this 

case body size. Once appropriate methodological parameters were set, I used this analysis 

to generate estimates of the size and location of home range territories. In Chapter 3, I 

used the methods and detection history strength parameters determined as appropriate in 

Chapter 2 to expand on the home range assessments, looking more closely at site fidelity, 

habitat use, and key activity spaces for individuals and across the study population. I 

followed up on this by generating comparative population densities between BIRNM and 

a second study site in Culebra, Puerto Rico. I also validated our home range analysis 

through generating a generalized linear model that analyzes benthic habitat type, season, 

and fish individuality as drivers of observed spatial patterns.  

 Through looking at these two foci, I hope to look at how movement patterns of 

this species and management are overlapping to drive barracuda population dynamics, 

which will give insight into the top down pressures being exerted within the park, as well 

as provide tools for future managers to assess populations using acoustic telemetry data. 

Generating accurate data on the spatial ecology of marine species forms the groundwork 
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for generating ecologically relevant and successful conservation policies (Palumbi 2004). 

However, ecological relevance is just one step in a complex decision making framework 

that leads to the creation of policy (Airamé et al. 2003, Pikitch et al. 2004). Through this 

study I worked to fine tune analytic methods to increase confidence in the ecological 

results, and took the initial steps to quantify the movement patterns of this ecologically 

important top predator. More work is needed on other trophic levels and species 

interactions (much of which is currently being undertaken by project collaborators) but 

this study forms the first step in examining these spatial variables within this historical 

protected area. 
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CHAPTER 2 

 

INFLUENCE OF ANALYTICAL TOOLS AND DETECTION HISTORY ON 

QUANTIFYING SPATIAL ECOLOGY OF A NEARSHORE PREDATORY FISH 

 

 

 

2.1 Abstract 

 As marine protected areas expand globally, filling data gaps regarding the spatial 

ecology of marine species has become increasingly important. Tracking technologies 

such as acoustic telemetry aim to provide this vital information through providing data 

that make possible individual based models that can illuminate complex movement 

patterns. Before this potential can be realized, analytic methods must be standardized and 

the effects of study design on results rigorously analyzed to validate the accuracy of 

ecological interpretations. This study assessed the role of analytic method choice on 

ecological conclusions derived from an acoustic telemetry array in the US Virgin Islands. 

Results of core use area estimates of great barracuda (n=35) in Buck Island Reef National 

Monument, U.S.V.I. generated by three analytical methods were compared.  In addition, 

the impact of variation in detection history on the ability to interpret results was modeled. 

Analysis using kernel density estimators (KUD), dynamic Brownian bridge movement 

models (DBBMM), and network analysis indicated that these fish show high site fidelity 

but also undergo wide ranging exploratory movements. Comparisons among techniques 

showed similar results for KUD and DBBMM, which both under estimated area in 

comparison to network analysis. Generalized linear models analyzing each method 
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showed that detection history greatly impacts home range area estimates and confounded 

the ability to analyze ecological relationships. Utilization distributions identify high use 

areas, while network analysis placed higher emphasis on movement corridors and links 

between core and peripheral use areas. As marine protected areas increase in relevance 

and expand to include the conservation of mobile species, it is important that methods to 

evaluate their effectiveness do not smooth over complex spatial-temporal patterns. The 

inclusion of network methods in routine spatial assessments may help illuminate patterns 

previously unconsidered using conventional home range analysis. 

 

2.1.1 Key words: Acoustic telemetry, home range, marine protected areas, great 

barracuda, analytical tools 

 

2.2 Introduction 

In recent decades, fisheries management has shifted from purely stock 

management towards adopting ecosystem based principles (Pikitch et al. 2004), with 

increasing emphasis on spatial frameworks such as the creation of marine protected areas 

(MPAs; Pauly et al. 2002, Airame et al. 2003, Douvere 2008). The 2006 Convention for 

Biological Diversity led to a global commitment to protect >10% of the ocean by 2020 

(Spalding et al. 2013), leading to a surge in MPA establishment, but to be successful this 

shift necessitates understanding of species spatial ecology within managed areas. The 

spatial ecology of an animal is influenced by traits such as life-stage and ontogeny that 

interact with benthic habitat, population dynamics, species interactions, and physical 

environmental variables that can vary temporally (Polis et al. 1997). While this boon in 
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MPA establishment is broadly seen as a conservation success (Allison et al. 1998, Lester 

et al. 2009, Cressy 2011), the actual net benefits that MPAs have on the ecosystems and 

human populations within and surrounding them is variable (Claudet et al. 2010, De 

Santo 2013, Edgar et al. 2014).  

Cumulative research on MPA efficacy has shown that when implemented 

correctly, reducing fishing pressure typically leads to increased fish abundance (Allison 

et al. 1998, Murawski et al. 2000, Roberts et al. 2001, Pauly 2002, Halpern 2003, Lester 

et al. 2009). What defines correct implementation is harder to establish. Quantitative 

assessments are needed to determine whether decreasing fishing pressure in designated 

zones will automatically result in healthier ecosystems (Heupel et al. 2006, Farmer et al. 

2011). Trophic dynamics, fish assemblage structure, and the history and type of harvest 

in a region may all impact how an ecosystem recovers after fishing pressure is reduced or 

eliminated (Murawski et al. 2005, McClanahan et al. 2007, Lester et al. 2009, Claudet et 

al. 2010). In addition, geographic and socioeconomic factors also play a huge role in the 

success of MPAs (Murawski et al. 2005, Suuronen et al. 2010, Edgar et al. 2014). In 

some cases, if an MPA does not cover adequate or accurate essential habitats for target 

species, closing of non-relevant areas will lead to greater concentration of fishing effort 

in adjacent habitats (Murawski et al. 2005, Suuronen et al. 2010). If target habitats are 

misidentified – or if spatial closures are based on political feasibility rather than 

ecological research - managers run the risk of merely shifting or even intensifying fishing 

pressure while simultaneously “meeting” conservation goals by increasing the percent of 

space under protection (Suuronen et al. 2010).  
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Recent studies show a global trend of MPAs failing to adequately protect 

biodiversity, despite their potential (Edgar et al. 2014, Klein et al. 2015). Failure is 

defined as the lack in overlap between species range and MPA boundaries, or the lack of 

difference between fish populations in MPAs and adjacent fished habitat due to improper 

enforcement or planning (Edgar et al. 2014, Klein et al. 2015). A necessary assumption in 

planning effective MPAs is that established range data for species is accurate and 

comprehensive. Large-scale assessments of MPA efficacy rely on data on species home 

ranges modeled as static core use areas (Pressey et al. 2007), however, movement studies 

reveal that many marine species demonstrate dynamic and shifting habitat preferences 

that vary temporally on scales ranging from life-span ontogenetic shifts (Mumby et al. 

2004, Kimirei et al. 2011) to diel foraging migrations (Burke 1995, Meyer et al. 2007, 

Luo et al. 2009).  Traditional assessment of MPA efficacy states that for MPAs to 

successfully protect marine species, coverage must protect enough area that the 

probability that the focal species will be outside protection for enough time to be 

harvested is minimized (Edgar et al. 2014). More recently, MPAs have been targeting the 

conservation of mobile species whose home ranges cannot be fully protected, in which 

case the goal has shifted towards the protection of essential habitat for ecological 

functions such as spawning or feeding (Runge et al. 2014, Pérez-Jorge et al. 2015). Thus, 

MPA failure is possible because species cross over MPA boundaries due to inadequate 

reserve extent, or a lack of data regarding use of adjacent habitats during limited 

movements away from core home range, such as to hunt or spawn (Bolger et al. 2008, 

Buler and Moore 2011, Runge et al. 2014).   
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Gathering the information needed to successfully implement ecosystem-based 

spatial management requires building a nuanced understanding not just of the target area 

or habitat type, but also of the interrelationships between species, adjacent habitats and 

regional networks of ecosystems and metapopulations (Crowder and Norse 2008). This 

can be a very complex task and may not initially be realistic in a management decision 

making timeline (Tallis et al. 2010). Metrics that summarize spatial use, such as home 

range utilization distributions or area estimates, can be used to approximate cumulative 

activity space of an individual or population (Kie et al. 2010). These metrics can be very 

useful as a planning tool, but must be applied carefully so that broad summaries are not 

excluding nuances in habitat use vital to a target species’ life history (Powell 2000, Kie et 

al. 2010). Highly mobile species in particular may prove challenging to summarize with 

simple metrics, as spatial closures may aim to target areas of specific ecological 

relevance, rather than cover entire home ranges (Buler and Moore 2011, Runge et al. 

2014). Additionally, even for species whose movement patterns are well represented by 

traditional home range estimators, many marine species that MPAs seek to conserve 

currently lack comprehensive home range estimates.  

Obtaining accurate data on the movements and spatial use of marine species is 

made challenging by the inaccessibility to consistent unbiased sampling designs at the 

correct ecological scale. Tracking of movements using telemetry is valuable in 

quantifying habitat use within and between habitat types for adult fish, allowing for long 

term data sets on residency and migration patterns (Heupel et al. 2006, Hussey et al. 

2015). Acoustic telemetry is a relatively new method, and it is rapidly increasing in 

popularity (Cooke 2008, Hussey et al. 2015), however methods for analyzing the often 
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vast quantities of data are still catching up with the technology’s prolific use and 

application (Heupel et al. 2006, Ledee et al. 2015). Methods used to estimate activity 

space rely on data that remains as coarse as the spatial scale of the array design, or 

alternately, draws from coarse scale data to make broad interpolations (Hedger et al. 

2008, Ledee et al. 2015). Kernel utilization density (KUD) remains one of the most 

widely used and popular methods to predict core activity space using telemetry data (Kie 

et al. 2010, Jacoby et al. 2012). While these metrics can provide valuable data, there is 

concern that these interpolation methods may be less accurate for broad scale acoustic 

telemetry (Hedger et al 2008). These arrays generate data that is spatially limited to the 

range of the acoustic receiver. Datasets take the form of repeated detections at few 

locations. In contrast, the telemetry methods KUDs have traditionally been used for, such 

as GPS collars, produce a large number of unique positions that can then be interpolated 

from with greater accuracy (Hedger et al. 2008, Ledee et al. 2015). 

Recently, there has been a greater emphasis on developing ways in which to more 

deeply utilize acoustic telemetry datasets by exploring the use of analyses that 

incorporate temporal sequences of detections to quantifying movements, rather than 

viewing raw detections as unique data points (Jacoby et al. 2012). For instance, Dynamic 

Brownian bridge movement models (DBBMM) are an alternate utilization density 

method to KUD that takes movements between receivers as the input, interpolates 

intermediate points between these two detections, and then bases density estimates off of 

the interpolated points (Horne et al. 2007). This method addresses gaps in receiver 

coverage and temporal relationships between detections, primary concerns regarding use 

of KUD in acoustic telemetry analysis. Network analysis takes a completely different 
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approach from both utilization density estimators and quantifies the relationships between 

nodes (points) and edges (connections between points) (Jacoby et al. 2012, Jacoby, Croft, 

& Sims 2012, Finn et al. 2014). It has been used for analyzing neural networks, social 

networks, and increasingly, spatial networks. The format is well suited to the 

interconnected array of individual receivers that often constitutes a broad scale acoustic 

array, but its potential is only recently being explored. 

 As activity space estimates often have direct repercussions for management 

decisions, it is important for conservation that these estimates are accurately representing 

ecological drivers. Currently there are a diversity of methods used to estimate the same 

parameters, thus it is important to understand whether and under what conditions there 

are variations in the estimates produced by disparate analytical methods. I sought to 

investigate how data quality and methodological choice influenced estimates of core 

activity space of great barracuda tagged with transmitters within an extensive acoustic 

telemetry receiver array deployed in a marine protected area in the U.S. Virgin Islands. 

Specifically, I compared utilization density methods described above, kernel utilization 

density estimation and dynamic Brownian bridge movement models to one another and to 

metrics identifying core activity spaces using network analysis. Comparisons were made 

by identifying receivers within the core use area of individual animals (Ledee et al. 

2015). The size of individual activity spaces were compared among methods and 

modelled in relation to detection history and body size (Kramer and Chapman 1999). 
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2.2.1 Objectives 

 My objectives for this study were to generate activity space estimates for great 

barracuda within BIRNM using telemetry data generated from a passive, broad scale 

acoustic array. In order to better understand ecological results drawn from activity space 

estimates, these objectives took two major paths; comparing estimation methods and 

determining the role of method choice and variation in detection frequency on resulting 

area estimates, as well as generating cumulative activity space estimates for a year of 

tracking data. Specifically, I aimed to compare home range results from two utilization 

density methods; KUD, a traditional home range estimator, and Dynamic Brownian 

Bridge Movement Models, which take into account movement between location sites, as 

well as compare these results to central activity spaces indicated by network analysis. 

Following the methods comparison I aimed to assess the impact of strength of detection 

history on home range size estimates, as well as the ability to detect ecological drivers of 

home range, in this case body size through generalized linear models. Lastly, once the 

impacts of method choice and detection history were taken into account, I sought to 

generate home range estimates for individual fish within the study population. 

   

2.3 Methods 

2.3.1 Study site and array design 

 Buck Island Reef National Monument (BIRNM) is a MPA managed by the U.S. 

National Park Service. BIRNM is located on the northeastern shelf of St. Croix (Fig. 2.1). 

In 2001, management shifted from multiuse to no-take and the original park boundaries 

were greatly expanded to over 19,000 acres. To date, no studies have been done 
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quantifying fish species home ranges, habitat use, and connectivity among habitat 

structures within and adjacent to the park. 

 

Figure 2.1: Location of Buck Island Reef National Monument, adjacent protected areas, 

and receiver array placement within the park. 

 
 

 BIRNM is composed of a shelf habitat containing various shallow water habitats 

and deeper waters overlying a drop off towards an oceanic trench. An extensive linear 

reef protects the southeastern coastline. Inside these reef structures lie calm lagoons. High 

rugosity linear and patch reefs are interspersed with colonized hard bottom and spur and 

groove reef to the north and west. Sandy flats and seagrass occur to the south and west. 

Habitat types are highly interwoven in a patchy mosaic pattern (Costa et al. 2012). 

 This study uses passive detection of tagged barracuda using fixed, autonomous 

acoustic receivers (VR2W 69 kHz VEMCO Inc, Nova Scotia, Canada) deployed as part 

of a collaborative research effort. A total of 52 acoustic receivers were anchored semi-
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permanently throughout the shallow water habitats of the park. Anchors included cement 

blocks in hard-bottom habitats and 3 foot, 6 inch diameter blade sand screws where sand 

was deep enough to accommodate. Sites were chosen based on proximity to other 

receivers, with the intention of avoiding overlapping ranges and providing equal coverage 

among the various benthic habitats (Fig. 2.2). Range of detection of an acoustic signal by 

a fixed receiver can be influenced by bottom structure, depth, and a myriad of other 

environmental factors such as suspended particulate matter, background noise, currents, 

turbidity, wave height, and weather and can vary from several meters to upwards of 100 

meters, depending on placement and conditions (Kessel et al. 2013). Range testing 

calculating maximum detection range and probability of detection at a scale of distances 

was conducted by NPS and USGS employees in the BIRNM array. Preliminary analysis 

indicated that the average range where 50% of detections are detected is approximately 

125 meters (Thomas Selby USGS, personal communication).  

 

Figure 2.2: Location of receiver stations within the shallow water section of BIRNM. 

Benthic habitat shapefiles were generated by NOAA Biogeography Branch. 
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2.3.2 Barracuda capture and tagging 

 Great barracuda were captured by trolling with medium action 10-50 lb 

recreational fishing gear and artificial lures rigged with brightly colored plastic 1” 

diameter tubing and 2 9/0 circle hooks (O’Toole et al. 2011). Fishing effort data was 

collected by timing trolling and recording gear type and number of hooks. All capture 

sites were marked with a GPS waypoint. Upon capture, the fish were evaluated visually, 

looking for hook damage, other recent injuries, normal swimming, and ability to maintain 

equilibrium in order to determine if health was adequate to support a tag.   

 Depending on size class, barracuda (n = 35) were tagged with either a V16 (16 by 

54mm, 8.1 grams) or V13 (13 by 36mm, 6 grams) standard VEMCO acoustic 

transmitters programmed to ping randomly between 60-180 seconds for the duration of 

the battery life, ranging from 1299 days for V13 to 3650 days for V16.  Fish selected for 

tagging were placed into a 204.4 L Rubbermaid tote measuring 108 by 54.3 by 45.7 cm 

of seawater. The anesthetic MS222 diluted to a 10g/L concentration stock solution was 

slowly added to tote to induce stage 4 anesthesia (O’Toole et al. 2011, FAU IACUC 

Guidelines 2014). Fish were determined to be sufficiently dosed for surgeries at the onset 

of slowing of gill movement and loss of full equilibrium. Anesthetized fish were held in a 

supine position with gills submerged while an incision was cut with a #10 blade carbon 

steel sterile disposable scalpel just off the central mid-line between the pelvic and anal 

fins. Acoustic tags disinfected with 70% isopropyl alcohol were then surgically implanted 

into the body cavity. Incisions were closed with Ethicon polydioxanone monofilament 

sterile absorbable FS-1 24mm reverse cutting needle sutures (Model PDS*II), using 2-3 

simple interrupted sutures. Halfway through the surgery, fresh seawater was added to the 
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cooler to dilute the anesthetic and begin the recovery process. Total length and fork 

length was measured. Time and length of procedure was recorded for all aspects of the 

capture and surgery. Fish were allowed to recover and monitored in ambient seawater 

until normal swimming patterns are observed before being released back into the study 

area from which they were captured (Friedlander and Monaco 2007, O’Toole 2011). 

Small fish were recovered in a floating mesh pen (4’x 6’, 2.5 cm mesh size) to isolate 

them from predators, while fish too large for the pen (and less at risk for predation) were 

lowered over the side of the boat and held facing into the current until strong enough to 

swim normally. No more than four fish from a given capture site were tagged on a single 

tagging trip to ensure adequate distribution of tagged animals throughout the array and 

across habitat types and to avoid tag collisions. All capture and tagging methods were 

approved under IACUC #2013-0031 (University of Massachusetts Amherst). 

 

2.3.3 Data management, filtering, and analyses 

 Acoustic data was filtered in R version 3.2.2 (R Core Team 2015) and VUE 

(VEMCO Inc, Halifax, NS) software to remove false detections caused by tag collisions 

and interference from background noise. Biologically unlikely movement patterns that 

would indicate the death of a tagged fish or another event that would invalidate data from 

that transmitter were also removed. Any fish that recorded more than three consecutive 

weeks of transmissions at a single receiver was presumed to have died or shed its tag in 

the vicinity of that receiver.  

For all analyses the same dataset was used, spanning from July 2014-July 2015 

providing a full year of data after last fish in this study was tagged. I calculated the time 
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between each detection, and removed any detections that occurred less than 55 seconds 

apart. The nominal delay in transmission was set to an average frequency of 120 seconds, 

randomly ranging from 60-180 seconds. I allowed detections that strayed five seconds or 

less in order to not falsely remove detections that could be real and due to clock drift or 

tag irregularities. Short ping rates due to echoes or simultaneous detections were 

considered to not be representative of actual great barracuda location data. All analysis 

was conducted in R version 3.2.2 (R Core Team 2015). 

 

2.3.3.1 Kernel density estimation (KUD) 

KUD estimates were conducted for all 32 fish present in the dataset spanning 

from July 2014-July 2015. Grid size was set to approximately 50 by 50 meters, and the 

smoothing parameter was set at 125 meters, which corresponds to the average 50% 

contour for receiver detection range in this array. I standardized the area over which the 

utilization distribution was calculated to include the entire array. In order to allow the 

KUD to run on acoustic telemetry data, which included many points at the same location, 

each data point was randomly assigned a location within the 50% cut off in detection 

range for that receiver (125m). 

 

2.3.3.2 Dynamic Brownian bridge movement models (DBBMM) 

A DBBMM framework differs from KUD, which uses single point location data, 

by employing movements between two locations as the data input. I created movement 

matrices in which each line of data indicates a movement between two receivers and used 

this as the model input. All models were run using the move package (Kranstauber & 
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Smolla 2015). DBBMM interpolates intermediate points between detections and 

generates a density surface based on these. I set the interpolation time to be 120 seconds, 

to replicate the average ping rate, and set the location error to be 125 meters, based on the 

average receiver detection range.  

 

2.3.3.3 Home range estimation  

For both utilization density methods, I calculated contour lines representing where 

on the density surface fifty percent and ninety-five percent of density probabilities 

occurred. I then calculated the area falling within each of these contour lines in order to 

generate core and general use area estimates, which I later used to compare these two 

utilization density methods, as well as to compare utilization density methods to network 

analysis. 

 

2.3.3.4 Network analysis 

Network analysis uses different metrics to assess the association between nodes – 

points in a network – and edges – the connections between those nodes. Recently, this 

method has begun to be used to analyze broad scale acoustic telemetry arrays (Jacoby et 

al. 2012, Finn et al. 2014, Ledee et al. 2015). I created networks of receivers for each 

fish, with each node representing an individual receiver and each edge a movement of the 

fish from one receiver to another. I used the igraph package (Csardi & Nepusz 2006) to 

assign centrality to metrics for each node in each individual fish array (Ledee et al. 2015). 

I assessed centrality based on degree. This metric represents the number of edges 

connected to a single node, including self-loops, when an animal was detected 
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consecutive times at the same receiver. Centrality degree should, therefore, be broadly 

comparable to utilization density methods estimating frequency of use. I used degree 

ranks to create spatially referenced plots in order to visualize activity spaces for 

individual fish.  

 

2.3.3.5 Core and General use receiver identification 

In addition to using utilization density to define home range areas, I also used the 

fifty percent contours to define core use receivers (CUR) in order to compare utilization 

density estimation methods with network analysis (Ledee et al. 2015). The 50% area was 

used to look at core areas, since for many of the fish the 95% areas lay outside the array, 

leading to greater confidence in the 50% estimates for model comparison. For network 

analysis, degree metrics were used to assign core use receivers for each fish. Receivers 

were rank ordered by degree value and all receivers that fell below the 50% were 

identified. Numbers of core use receivers (CUR) were compared to numbers of receivers 

that fell within the utilization density generated 50% contour lines in order to compare 

overlap between approaches.  

 

2.3.3.6 Model comparisons 

 Normality tests indicated non-normally distributed data. Additionally, detection 

data indicates movements from one receiver to another, which automatically violates the 

assumption of independence of data. Therefore, randomization tests were used to test for 

significant differences between results of the various methods. Area estimates at both 
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fifty and ninety-five percent contour areas were tested against each other. CUR identified 

by KUD and DBBMM were tested against CUR identified by NA.  

 

2.3.3.7 Impact of variation in detection history on activity space estimates 

 Several generalized linear models were created to assess drivers of home range 

size and centrality ranking generated by the comparison methods. The models examined 

how estimates generated by each method were being influenced by fish size as indicated 

by fork length, as well as strength of datasets, as indicated by mean number of detections 

per week. Fish size has been shown to be a driver of home range size (Kramer and 

Chapman 1998). Strength of detection histories was highly variable for the individual 

great barracuda. I included mean weekly detections as a parameter in the model to 

examine to what degree the data limitations as opposed to barracuda ecology were 

influencing patterns. The generalized linear models tested these two covariates and their 

interaction for each of the three methods. For the first two models (DBBMM core area 

and KUD core area estimates) I used the gamma distribution with a log link, and for the 

last (NA CUR estimates) I used the Poisson distribution with a log link. For all models 

the predictor variables include fish fork length, average number of detections per week, 

and the interaction between length and detections. Conditional plots generated using the 

R package VisReg were used to more closely examine the relationship between body size 

and detection history within the interaction term (Breheny and Burchett 2015). 
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2.4 Results 

2.4.1 Activity space estimation 

 While barracuda had detections on many or all receivers, both utilization 

distribution methods show steep distribution surfaces dominated by relatively small 

activity spaces (Table 2.1). Fifty percent home range estimates were very small for both 

utilization distribution models, between 0.1 to 0.2 km2 for each method.  Ninety-five 

percent home range areas were much larger for both estimates and were more variable 

across the two methods compared to fifty percent estimates. KUD showed a mean of 1.39 

km2 and DBBMM showed more than twice that, with a mean of 3.69 km2. Results from 

the CUR analysis for both utilization density methods as well as centrality degree 

network analysis show comparable numbers for KUD and DBBMM, but noticeably 

larger numbers of core receivers as defined by network analysis (Table 2.1). For these 

estimates, CUR generated by KUD and DBBMM again appear to be fairly similar, albeit 

slightly greater for DBBMM. However, estimates are much larger for CUR estimates 

generated using network analysis.  

 

Table 2.1: Summary statistics for estimation of home range and activity space.  Home 

range area estimates include core (50) and general (95) area estimates for both kernel 

utilization density (KUD) and dynamic Brownian bridge movement models (DBBMM). 

Core use estimates include the number of core use receivers generated by KUD, 

DBBMM, and network analysis (NA). All estimates used to generate these summary 

statistics can be found in Appendix J.  

 

 Home range area estimates (km
2
) Core use estimates (# receivers) 

 KUD_50 DBBMM_50 KUD_95 DBBMM_95 CUR_KUD CUR_DBBMM CUR_NA 

Mean 0.208 0.202 1.389 3.690 2.313 3.0313 6.813 

Median 0.130 0.145 0.941 1.368 1.5 2 7 
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2.4.2 Methods comparison  

Visual comparison of plots from KUD, DBBMM, and network analysis indicated 

that there is agreement across methods in predicting location and size of home range 

territories. All methods show broad use of the array, with general use areas encompassing 

large swaths of receivers across all habitat types and core use areas that are found across 

all habitat types and overlap spatially with the territories of neighboring barracuda (Fig 

2.3). 
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Figure 2.3:  Comparison between three different methods of estimation of activity space 

(KDE, DBBMM, and NA, respectively) for five example barracuda; A-E. A: Tag 24551, 

812 detections; B: Tag 24555, 7,645 detections; C: Tag 24554, 13,282 detections; D: Tag 

26799, 51,276 detections; E: Tag 26800, 106,074 detections. 
 

  

2.4.2.1 Randomization permutation tests 

 Results from the randomization permutation tests validated the trends shown by 

the summary statistics of utilization density and CUR comparisons (Table 2.2). There is 
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no significant difference between estimates at the utilization density fifty percent 

estimates, but a significant difference is observed at ninety-five percent.  Plotting 

observed/ expected detection ratios against area estimates for both utilization distribution 

methods showed a pattern of decreasing area estimates with increasing detection histories 

(Figure 2.4). The difference between estimates by the two utilization distribution 

methods, as well as the overall variability in estimated area also decrease with increasing 

detection histories (Figure 2.4). When examined more closely by plotting KUD and 

DBBMM results against each other, and then looking at the residuals residuals for the 

two utilization distribution methods against mean detections per week, it is apparent that 

as detection histories increase, residuals decrease (Figure 2.5). Therefore, as detection 

histories increase, the differences in area estimates between KUD and DBBMM decrease. 

 

Table 2.2: Significance tests between KUD and DBBMM at the 50th percentile (core 

home range), 95th percentile (general home range), as well as between the number of 

CUR generated by each method. CUR tests conducted between KUD and DBBMM, 

KUD and NA, and DBBMM and NA. Significance was determined using permutation 

tests without replacement. Significant values are highlighted in bold. 

 

TEST p(value) 

KUD_50:DBBMM_50 0.904 

KUD_95:DBBMM_95 0.0091 

KUD_CUR:DBBMM_CUR 0.999 

KUD_CUR: NA_CUR <0.001 

DBBMM_CUR:NA_CUR <0.001 
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Figure 2.4: Core use area estimates for DBBMM and KUD plotted against 

observed/expected detections ratio. 
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Figure 2.5: Scatterplot of KUD and DBBMM area estimates for 50th (A) and 95th (B) 

percentiles. Residuals of linear regressions run on each scatterplot, plotted against mean 

weekly detections for 50th (C) and 95th (D) percentile area estimates. 
 

 

2.4.2.2 Generalized linear models 

 There were variations among the three models regarding which variables were 

significant but agreement as to whether relationships between model parameters and core 

use area estimates (the dependent variable) were positive or negative (Table 2.2). The 

model with KUD as the dependent variable showed no significant predictor variables, 

however, DBBMM did, despite there being no significant difference shown between 

these two methods in the randomization tests.  CUR also had a significant relationship 

between detection history strength and home range size. This model however, also 

showed the interaction between detection history and body size as significant, warranting 
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closer examination of this relationship. All models, including KUD (although the 

relationship was not significant in that case), showed negative relationships for the 

detection history variable. As detection histories increased, the home range size 

decreased. Fork length showed a negative relationship across all models, however none 

found this variable alone significant.  

 

Table 2.3: Outputs from three generalized linear models examining influence of mean 

weekly detection rates (Dets/Week), body size (Fork length) and the interaction between 

these two terms on core use area estimates generated by kernel utilization densities 

(KUD), dynamic Brownian bridge movement models (DBBMM) and network analysis 

centrality-degree ranking of core use receivers (CUR). KUD and DBBMM generate area 

estimates at the 50th percentile contour of density plots, and CUR generates number of 

receivers in the top 50th percentile for centrality-degree rankings. For KDE and DBBMM, 

a gamma distribution with a log link was used, whereas a Poisson distribution with a log 

link was used for the CUR model. 

 

 KUD DBBMM CUR 

 estimate, standard error, significance levels: *0.05, **0.005, ***0.0005 

Intercept -0.74(+/-1.342) -0.30(+/-1.19) 2.44(+/- 0.61)*** 

Dets/week -0.0024(+/-0.002) -0.0028(+/-0.0013)*  -0.002(+/-0.0007)*   

Fork length -0.0078(+/-0.016)  -0.012(+/-0.014)   -0.0069(+/-0.0071) 

Dets/week: FL 0.000025(+/-0.00002) 0.000027(+/-0.00002) 0.000019(+/-0.000008)* 

 

When plotted separately in conditional plots with fixed detection history values, 

the input of body size on the interaction of fork length and detections per week was 

positive across all models, and significant for the CUR model (Table 2.3). Detection 

history strength initially clouds the relationship, but when strong detection histories are 

observed a strong positive relationship between fork length and home range size exists 

(Figure 2.6). This relationship is shown by the randomization testing to be significant just 

for CUR, but the trend of a positive relationship between body size and home range for 
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high detection history individuals is shown across all models, but is hidden by the 

numbers of low detection history great barracuda that do not display this relationship. 

 

Figure 2.6: Conditional plots showing the relationship between barracuda fork length and 

home range area as a function of fork length, with detections segregated by detection 

history for each of the three generalized linear models. A) KUD_50 as dependent 

variable; B) DBBMM_50 as dependent variable; and C) CUR as dependent variable. 

Fork length is plotted on the x axis, and the contribution of fork length into the 

interaction is plotted in log scale on the y axis. The relationship is plotted separately for 3 

fixed values of mean weekly detections (DetsWeek), a low value shown in red, a 

moderate value shown in green, and a high value shown in blue. 
 

 

2.5 Discussion 

Utilization distribution methods indicated that barracuda are predominantly 

utilizing small, overlapping territories at the detection scale of the acoustic array. 

Individual fish have unique core areas of use and they frequently return to these areas 

after not being continuously detected. Of the 33 observed fish, 27 were detected on a 

large number of receivers, but had a majority of detections occurring on a much smaller 

subset. Barracuda appear to display high site fidelity to small core use areas, but 

periodically demonstrate broad movements throughout surrounding areas, making 
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barracuda an ideal species for testing analytical techniques since they display periods of 

residence and higher mobility.  

 

2.5.1 Activity space estimation and method comparison 

The two utilization distribution methods predicted very similar values using 50% 

area estimates, but showed significantly different results at the 95% level, with DBBMM 

predicting values with an average twice as high as the KUD. Comparison of utilization 

density plots and area estimates showed that a handful of fish have ninety-five percent 

DBBMM predictions many times the KUD estimates. These extreme values are primarily 

driving the overall difference. Individual fish that show the highest discrepancies are 

those with comparatively weak detection histories. While functioning very similarly 

when detection histories were high, DBBMM estimate larger areas compared to KUD 

when detection histories are low. Differences between data input and model algorithms, 

which for DBBMM use movements between receivers to interpolate intermediary points 

(Horne et al. 2007) means that estimates for individual fish with fewer detections would 

base distribution surfaces on a higher ratio of interpolated intermediary points compared 

to true detections, leading to a loss of true movements informing the model and the 

expectation individuals have strayed farther. Thus, low detection history primarily drives 

differences between utilization distribution methods. 

 The number of CUR predicted by both utilization distributions were similar, but 

network analysis using the centrality degree metric predicted significantly more CUR, 

thus utilization distribution methods estimate central activity spaces significantly smaller 

than network analysis. Since location input data from broad scale acoustic telemetry for 
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utilization distributions – especially KUD – is limited, these methods are magnifying the 

effect of high value receivers, concentrating density estimates. Utilization distribution 

methods, while useful for showing high use areas, are limited in identifying less 

frequently used areas, at least for a fish displaying periodic movements, like great 

barracuda. Less commonly used spaces may still be vital to an animal’s ecology; many 

species demonstrate periodic use of vital spawning, nursery, and feeding grounds that 

might be outside their typical resident territory (Burke 1995, Nemeth et al. 2006, Starr et 

al. 2007, Meyer et al. 2007, Luo et al. 2009). Network analysis ranked receiver use 

metrics in relation to other receivers rather than interpolating across intermediate areas, 

and thus appears to be quantifying receivers as more highly valuable to an animal’s 

activity space than utilization densities. These findings indicate that the method of choice 

can significantly impact estimates of core area use for great barracuda in the study 

population. 

 

2.5.2 Variability in detection history on ecological interpretations 

 Generalized linear models were employed to look at the effects of strength of 

detection history and fish size on core activity space estimates, as well as to look at the 

impact of the interaction between these two predictor variables. The results were varied 

across the three models, but trends indicating a negative correlation between strength of 

detection history and home range size were consistent across all models and significant in 

two of the three models. When detection histories were more consistent, predicted home 

range size was smaller.  Greater detection histories identify fish whose resident activity 

space is captured within the array and therefore the bulk of detections are fully contained 
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within small, frequently used territories. The lowest mean weekly detections are 

indicative of the acoustic array containing only exploratory movements. Thus, area 

estimates become based on widely spread movements indicating a large core use area, 

when the reality is the core resident territory lies outside the array.  

Body size (fork length) was not a significant predictor across any of the models, 

despite previous research indicating size as a driver of home range size for reef associated 

species (Kramer and Chapman 1998). The interaction between fork length and detection 

history was only significant when modeling network analysis defined core use receivers, 

and estimate values indicated that this interaction is not driving home range size 

positively or negatively.  However, when the regression relationships are evaluated at 

different mean weekly detections, there is a positive relationship between fork length and 

home range size for fish with strong detection histories across all models. While a 

relationship exists for fish with stronger detection histories, this trend is masked in the 

full dataset. Thus, detection histories in the study not only influenced predictions of home 

range size, but also the interpretation of the role of body size. The results indicate that it 

is important to examine how variation in the strength of detection histories within a given 

dataset might be contributing to the potential to make erroneous conclusions regarding 

ecology. 

 

2.5.3 Management implications 

 Estimates of movement patterns are implemented widely to inform planning 

decisions regarding spatial management of marine and aquatic ecosystems (Kie et al. 

2010). The methods comparison results indicate that method choice can influence the size 
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of predicted core activity areas as well as affect the ability of researchers to detect 

ecologically valuable but infrequently used activity spaces such as spawning grounds or 

feeding areas (Burke 1995, Nemeth et al. 2006, Starr et al. 2007, Meyer et al. 2007, Luo 

et al. 2009), and identify important ecological relationships. Great barracuda in this study 

appear to be territorial and show strong site fidelity rather than having highly dispersed 

movements, indicating that individuals whose core use area during the one year study 

period is completely encompassed within the acoustic array and thus the marine reserve. 

Utilization density methods strongly highlight these core use areas but smooth out 

complexities, thus leading to the risk of failing to identify movement corridors or 

peripheral areas of use. Network analysis also ranks these core areas as highly central, but 

also displays wide ranging forays outside core areas, identifying significantly greater 

numbers of receivers as having high centrality than shown by utilization distribution 

methods.   

For the conservation of mobile predators, the effectiveness of MPAs may lie in 

their ability to protect specific ecologically valuable habitats, rather than attempting to 

cover large and unpredictable home ranges (Hooker et al. 2011, Runge et al. 2014). The 

great barracuda in this study appear to occupy a middle ground between residency and 

mobility, given their high site fidelity paired with larger ranging movements, proving to 

be an informative species on which to compare how these methods summarize activity 

space. Variability between methods will likely be highly dependent on the movement 

patterns and life history of the study species. The discrepancies between the complexities 

of movement patterns shown by utilization distributions versus network analysis 

demonstrate the potential of network analysis in identifying movement corridors and 
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peripheral use areas (Ledee et al. 2015). More analysis is needed to understand the 

ecological function of these movement patterns, but as MPAs become more widely 

applied as a conservation tool for mobile as well as resident species, it is increasingly 

important to develop tools to identify ecologically vital areas rather than only closing off 

areas with the highest density of use (Hooker et al. 2011). 

Detection histories have the potential to greatly influence the interpretation of 

results. It is intuitive that poor detection histories may lead to spurious results and many 

studies have corrected for this by rejecting fish whose datasets are not robust enough for 

analysis (Ledee et al. 2015). There is currently no a priori method for determining what 

constitutes a sufficient detection history, something that will vary by species, array design 

and specific research question. The relationship shown in the data between detection 

histories and home range size demonstrate the importance in determining a specific cut 

off point based on individual data prior to analysis. Without taking detection histories 

into account, it would appear that some of the fish use much larger areas than others, and 

inconsistently. The only other acoustic telemetry study focusing on great barracuda 

indicates just this pattern; the presence of both resident and transient populations 

(O’Toole et al. 2011). For this dataset, it seems that the fish whose home ranges appear 

much larger and infrequent are in fact animals whose core home range lies outside the 

array. So while these animals are indeed resident and transient to the array, this 

interpretation indicates that the patterns demonstrated are consistent across the population 

and not indicative of behaviorally unique sub-groups. There was an additional impact of 

variable detection histories on identifying ecological patterns, in this case the relationship 
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between fish size and home range size. Failure to account for detection histories risks 

misidentifying patterns as of ecological origin.  

I anticipate varied results if the same approaches are applied to other study 

species, geographic areas, and array configurations, as much of the noise in telemetry 

data is highly dependent on these study specific factors.  However, the presence of these 

patterns within this study demonstrate the importance of careful analysis regarding the 

impact of methodological choice and  detection history as a critical part of the process of 

analysis of acoustic telemetry data. 

 

2.6 Conclusion 

 While useful in identifying core use areas, utilization distribution methods are less 

well suited to identifying movement corridors and peripheral use areas from acoustic 

telemetry datasets. Network analysis shows potential in filling this missing link. Sporadic 

use or rapid movements through larger areas may generate fewer detections than resident 

behavior, but repeated use provides ecological information about a mobile species 

movements that can inform management. Analyses that smooth out less frequent 

detections ignore a vital asset of acoustic telemetry data: the ability to use temporal 

patterns in the data to tease apart drivers for observed movements. As MPAs are created 

with the conservation of mobile species in mind, it is important to identify movement 

corridors among ecologically valuable territories. Regardless of method choice, 

variability in detection histories heavily influenced home range area results, and 

confounded the ability to determine the influence of the ecological parameter of fork 

length in this study. As tools to analyze acoustic telemetry continue to be fine-tuned, it is 



 

 39 

important to move towards standard approaches for linking fish movements, developing 

array designs and integration of findings into spatial management frameworks.  
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CHAPTER 3 

 

NETWORK ANALYSIS INDICATES SPATIAL DIFFERENTIATION AND SITE 

FIDELITY IN INDIVIDUAL TERRITORIES AMONG A BARRACUDA 

POPULATION AROUND BUCK ISLAND REEF NATIONAL MONUMENT, ST. 

CROIX, U.S.V.I. 

 

 

 

3.1 Abstract 

 Top predators play a crucial role in fish communities, shaping population 

structure through predation pressure. Examining associations of movement patterns with 

benthic habitat and environmental drivers can reveal ways in which top down pressure 

intersects with habitat complexity and productivity to influence community structure 

within and among marine ecosystems. This study assesses the extent to which benthic 

habitat is a driver of great barracuda (n = 17) home range territory choice within an 

acoustic array located in Buck Island Reef National Monument, U.S.V.I. and compares 

population densities within this marine reserve to a similar un-fished acoustic array in 

Culebra, Puerto Rico. Network analysis was used to generate centrality rankings and 

receiver communities for individual fish and patterns were assessed for individuals and 

across the study population. A zero-inflated Poisson generalized linear model was created 

to assess the role of benthic habitat type, seasonal patterns, and fish individuality in 

driving the observed daily detection frequencies. High variation exists among individuals 
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regarding habitat characteristics and location of home range territories. Benthic habitat 

appears to have little influence on home range location, although movement corridors 

were detected more frequently along high rugosity reef habitat. Increased catch per unit 

effort values in comparison to Culebra suggest that the marine park may be increasing 

great barracuda population density. The high site fidelity, widespread use of all habitat 

types, and relatively dense populations indicate that barracuda are likely playing an 

important ecological role within the park through predation. 

 

3.1.1 Key words: Great barracuda, network analysis, habitat use, population density, 

spatial communities 

 

3.2 Introduction 

 Understanding how predator patterns in habitat use are influenced by 

environmental and biological parameters can help elucidate links among population, 

community and ecological structure and dynamics. Large marine predators are currently 

at low densities compared to the past as a result of overfishing (Myers and Worm 2003, 

Heithaus et al. 2008). Catch data and ecosystem modeling have shown that historical 

fisheries focused on higher trophic level species, shifting over time towards lower trophic 

levels (Pauly 1998) and consequently altering ecosystem functioning including a loss of 

migratory biomass (Nuttall et al. 2010). Large bodied predators are often less clearly tied 

to benthic habitat than smaller species (Block et al. 2005, Letessier et al. 2015), instead 

occupying home ranges large enough to encompass multiple habitat types or management 

areas (McNab 1963, Kramer and Chapman 1998, Meyer et al. 2007a). Many studies 
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verify movements of large predators across habitat boundaries (Humston et al. 2005, 

Meyer et al. 2007a, Meyer et al. 2007b, Clark et al. 2009, Murchie et al. 2013). When the 

scale of closures is appropriate to ecological needs, top predator populations impacted by 

fishing pressure have been shown to rebound with the implementation of MPAs (Micheli 

et al. 2004).  

Fishing pressure that disproportionately targets one species or trophic level can 

lead to the alteration of food webs and trophic relationships of fish communities (Hixon 

and Carr 1997). For example, variation in population density has been shown to impact a 

wide variety and life history traits, population dynamics, and behaviors in many different 

fish species (Sanchez Lizaso et al. 2000, Meyers 2001) including life history parameters 

such as life span, growth, mortality, rate of maturation, and timing of reproductive 

developments or events (Stearns and Crandall 1984). Thus, changes in fishing pressure, 

both through increased harvest in unprotected areas as well as the establishment of 

marine protected areas (MPAs) after a history of harvesting, can lead to changes in 

population density and body size of certain species which then influence population 

ecology or management strategies (Beverton and Holt 1957, Hastings and Botsford 

1999). Due to the wide variety of impacts that shifts in density can have on inter and 

intra-species interactions and population dynamics, it is very important to incorporate 

density parameters into analyses of spatial ecology. 

Great barracuda have been shown through genetic studies to have some traits that 

closely resemble reef-associated species, but others that indicate large pelagic migrations, 

potentially occupying a middle ground between reef-associated and pelagic behavior 

(Daly-Engel et al. 2012). Efficacy of MPAs for mobile predators is highly dependent on 
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understanding home range and residency patterns (Letessier et al. 2015).  Increased 

understanding of home range size and site fidelity can improve assessments of MPA 

efficacy and lead to improvements in future planning based on more accurate 

quantifications of spatial use (Meyer et al. 2007a, Afonso et al. 2009, Letessier et al. 

2015). The only study to date on movement ecology for adult great barracuda shows high 

variability in habitat choice, residency, and site fidelity, thus highlighting the need for 

further research examining adult habitat use (O’Toole et al. 2011). Due to their size and 

predation rates these populations could exert strong predation pressure on lower trophic 

level species (Meyer et al. 2007a). Top down influences based on predator density have 

been shown to impact fish community structure (DeMartini et al. 2008, Boaden and 

Kingsford 2015), although it is acknowledged that other ecological variables such as 

habitat complexity (Beukers and Jones 1998) can vary this impact.  

 Use of spatial management strategies will lead to heterogeneous density of target 

species across protect and unprotected areas, again based on residence and dispersal 

(spillover, etc) and catchability of fishing gears. High trophic level species (Hixon and 

Carr 1997, Meyer et al. 2007a) and high predator density (DeMartini et al. 2008, Boaden 

and Kingsford 2015) have been demonstrated to exert impact fish community structure, 

mediated through other ecological variables such as habitat complexity (Beukers and 

Jones 1998). Thus, understanding predator patterns in habitat use and density, as 

influenced by environmental, biological and anthropogenic parameters can help elucidate 

links among population, community and ecological structure and dynamics that inform 

management. 
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 Tracking of movements using acoustic telemetry is valuable in for quantifying 

habitat use within and between among habitat types for adult fish, allowing for long term 

data sets on residency and migration patterns (Heupel et al. 2006, Hussey et al. 2015). 

Assessing movement patterns can show spatial and temporal variation in spatial use, and 

can reveal patterns of connectivity among habitat types and management areas.  

Understanding how populations associate with benthic habitat patterns and prey 

assemblages can improve management efforts by strengthening managers’ ability to 

make ecological inferences based on easily surveyed variables. Additionally, increased 

understanding of home range size and site fidelity can improve assessments of MPA 

efficacy and lead to improvements in future planning based on more accurate 

quantifications of spatial use (Meyer et al. 2007a, Afonso et al. 2009, Letessier et al. 

2015). 

 For this study, I examined movement patterns and relative population densities of 

great barracuda (Sphyraena barracuda) through acoustic tracking and catch per unit 

effort (CPUE) surveys. Great barracuda have been shown through genetic studies to have 

traits that resemble reef-associated species and large pelagic migrations suggesting a 

middle ground between reef-associated and pelagic behavior (Daly-Engel et al. 2012). 

Adults utilize all nearshore habitats, but the specifics of habitat use remain relatively 

unknown (De Sylva 1963, Blaber 1982, Kadison et al. 2010), with one study indicating 

seasonal variation in use patterns of certain habitats, but also large spans of time in which 

habitat use appeared random (Faunce and Serafy 2008). Great barracuda are known to 

utilize a variety of nearshore habitat types throughout their life histories, moving from 

inshore estuaries to reefs and open water as they mature, and are believed to spawn in 
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offshore aggregations throughout the summer months (De Sylva 1963, Blaber 1982, 

Kadison et al. 2010). The only study to date on movement ecology for adult great 

barracuda shows high variability in habitat choice, residency, and site fidelity, thus 

highlighting the need for further research examining adult habitat use (O’Toole et al. 

2011). Adult great barracuda exist at a high trophic position in coastal ecosystems and, as 

large predators that eat indiscriminately, may exert a significant influence on fish 

community structure (Blaber 1982, Kadison et al. 2010). Barracuda were considered 

abundant throughout most of the subtropical and tropical world (De Sylva 1963), but 

while still considered common, the current status of this species in comparison to 

historical numbers is not known. Ease of capture via angling and high rates of bycatch in 

recreational fisheries as well as some direct targeting make this species potentially 

vulnerable to fishing pressure (Springer and McErlean, 1961; de Sylva, 1963; Villareal et 

al., 2007, O’Toole et al. 2010). Understanding whether this large predator is 

demonstrating residency concentrated within a marine reserve, as well as assessing 

whether population densities are elevated in comparison to similar unprotected habitats, 

could reveal ways in which the exclusion of fishing pressure could be impacting top 

predator population recovery as well as prey fish community structure through top-down 

pressure. 

 

3.2.1 Objectives 

 In order to accomplish my broad goal quantifying the movement patterns of great 

barracuda within BIRNM in order to better understand great barracuda ecology and make 

management recommendations to the National Park Service, I used the same dataset from 

http://icesjms.oxfordjournals.org/content/67/8/1667.full#ref-24
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Chapter 2, but only focused on the 17 best detection histories. My specific objectives 

were to use network analysis to define spatial patterns from broad scale acoustic 

telemetry datasets by using two community algorithms to define receiver communities 

for individual fish. Once results for individual great barracuda were complete, I aimed to 

summarize and map community results as well as CUR rankings from Chapter 2 for all 

the study population to assess differences in individual versus population level patterns. 

In addition to analyzing spatial patterns through network analysis, I wanted to examine 

underlying drivers of these patterns by generating relative catch per unit effort (CPUE) 

levels within this marine park and a similar receiver array in Culebra, Puerto Rico in 

order to determine relative population density levels within the park as well as by 

building a predictive generalized linear model was built to try to assess drivers of daily 

detection frequencies. Finally, I aimed to analyze all of these combined results in order to 

determine define individual and population level site fidelity and habitat use. 

  

3.3 Methods 

3.3.1 Study site and array design 

 Buck Island Reef National Monument (BIRNM) is a MPA managed by the U.S. 

National Park Service. BIRNM is located on the northeastern shelf of St. Croix (Fig. 3.1). 

In 2001, management shifted from multiuse to no-take and the original park boundaries 

were greatly expanded to over 19,000 acres. To date, no studies have been done 

quantifying fish species home ranges, habitat use, and connectivity among habitat 

structures within and adjacent to the park. 
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Figure 3.1: Location of Buck Island Reef National Monument, adjacent protected areas, 

and receiver array placement within the park. 

 
 

 BIRNM is composed of a shelf habitat containing various shallow water habitats 

and deeper waters overlying a drop off towards an oceanic trench. An extensive linear 

reef protects the southeastern coastline. Inside these reef structures lie calm lagoons. High 

rugosity linear and patch reefs are interspersed with colonized hard bottom and spur and 

groove reef to the north and west. Sandy flats and seagrass occur to the south and west. 

Habitat types are highly interwoven in a patchy mosaic pattern (Costa et al. 2012). 

 This study uses passive detection of tagged barracuda using fixed, autonomous 

acoustic receivers (VR2W 69 kHz VEMCO Inc, Nova Scotia, Canada) deployed as part 

of a collaborative research effort. A total of 52 acoustic receivers were anchored semi-

permanently throughout the shallow water habitats of the park. Anchors included cement 

blocks in hard-bottom habitats and 3 foot, 6 inch diameter blade sand screws where sand 
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was deep enough to accommodate. Sites were chosen based on proximity to other 

receivers, with the intention of avoiding overlapping ranges and providing equal coverage 

among the various benthic habitats (Fig. 2.2). Range of detection of an acoustic signal by 

a fixed receiver can be influenced by bottom structure, depth, and a myriad of other 

environmental factors such as suspended particulate matter, background noise, currents, 

turbidity, wave height, and weather and can vary from several meters to upwards of 100 

meters, depending on placement and conditions (Kessel et al. 2013). Range testing 

calculating maximum detection range and probability of detection at a scale of distances 

was conducted by NPS and USGS employees in the BIRNM array. Preliminary analysis 

indicated that the average range where 50% of detections are detected is approximately 

125 meters (Thomas Selby, USGS, personal communication).  

 

Figure 3.2: Location of receiver stations within the shallow water section of BIRNM. 

Benthic habitat shapefiles were generated by NOAA Biogeography Branch. 
 

 

 

Culebra is approximately 27 km east of Puerto Rico and is comprised of mostly 

mountainous terrain. There is significant terrestrial conservation land on Culebra and the 
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surrounding islands in the form of a wildlife refuge run by the Fish and Wildlife Service, 

including protection of coastal terrestrial habitats. The Luis Peña Channel No-Take 

Natural Reserve (LPCNR), an MPA established in 1999, is located on the southwest 

coast of the island. The benthic habitat surrounding Culebra represents a wide range of 

habitat types. The area to the northeast of the island is dominated by reef, rubble, and 

colonized hard-bottom, and is exposed to greater wave action and currents. The south 

west side of the island is more protected from currents and wave action and is dominated 

by seagrass beds. There are two large bays located on the east and southeast sides of the 

island, dominated by seagrass, sandy flats, and mangroves.  

 

3.3.2 Barracuda capture and tagging 

 Great barracuda were captured by trolling with medium action 10-50 lb 

recreational fishing gear and artificial lures rigged with brightly colored plastic 1” 

diameter tubing and 2 9/0 circle hooks (O’Toole et al. 2011). Fishing effort data was 

collected by timing trolling and recording gear type and number of hooks. All capture 

sites were marked with a GPS waypoint. Upon capture, the fish were evaluated visually, 

looking for hook damage, other recent injuries, normal swimming, and ability to maintain 

equilibrium in order to determine if health was adequate to support a tag.   

 Depending on size class, barracuda (n = 35) were tagged with either a V16 (16 by 

54mm, 8.1 grams) or V13 (13 by 36mm, 6 grams) standard VEMCO acoustic 

transmitters programmed to ping randomly between 60-180 seconds for the duration of 

the battery life, ranging from 1299 days for V13 to 3650 days for V16.  Fish selected for 

tagging were placed into a 204.4 L Rubbermaid tote measuring 108 by 54.3 by 45.7 cm 
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of seawater. The anesthetic MS222 diluted to a 10g/L concentration stock solution was 

slowly added to tote to induce stage 4 anesthesia (O’Toole et al. 2011, FAU IACUC 

Guidelines 2014). Fish were determined to be sufficiently dosed for surgeries at the onset 

of slowing of gill movement and loss of full equilibrium. Anesthetized fish were held in a 

supine position with gills submerged while an incision was cut with a #10 blade carbon 

steel sterile disposable scalpel just off the central mid-line between the pelvic and anal 

fins. Acoustic tags disinfected with 70% isopropyl alcohol were then surgically implanted 

into the body cavity. Incisions were closed with Ethicon polydioxanone monofilament 

sterile absorbable FS-1 24mm reverse cutting needle sutures (Model PDS*II), using 2-3 

simple interrupted sutures. Halfway through the surgery, fresh seawater was added to the 

cooler to dilute the anesthetic and begin the recovery process. Total length and fork 

length was measured. Time and length of procedure was recorded for all aspects of the 

capture and surgery. Fish were allowed to recover and monitored in ambient seawater 

until normal swimming patterns are observed before being released back into the study 

area from which they were captured (Friedlander and Monaco 2007, O’Toole 2011). 

Small fish were recovered in a floating mesh pen (4’x 6’, 2.5 cm mesh size) to isolate 

them from predators, while fish too large for the pen (and less at risk for predation) were 

lowered over the side of the boat and held facing into the current until strong enough to 

swim normally. No more than four fish from a given capture site were tagged on a single 

tagging trip to ensure adequate distribution of tagged animals throughout the array and 

across habitat types and to avoid tag collisions. All capture and tagging methods were 

approved under IACUC #2013-0031 (University of Massachusetts Amherst). 
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3.3.3 Data management, filtering, and analyses 

 Acoustic data was filtered in R version 3.2.2 (R Core Team 2015) and VUE 

(VEMCO Inc, Halifax, NS) software to remove false detections caused by tag collisions 

and interference from background noise. Biologically unlikely movement patterns that 

would indicate the death of a tagged fish or another event that would invalidate data from 

that transmitter were also removed. Any fish that recorded more than three consecutive 

weeks of transmissions at a single receiver was presumed to have died or shed its tag in 

the vicinity of that receiver.  

For all analyses the same dataset was used, spanning from July 2014-July 2015 

providing a full year of data after last fish in this study was tagged. I calculated the time 

between each detection, and removed any detections that occurred less than 55 seconds 

apart. The nominal delay in transmission was set to an average frequency of 120 seconds, 

randomly ranging from 60-180 seconds. I allowed detections that strayed five seconds or 

less in order to not falsely remove detections that could be real and due to clock drift or 

tag irregularities. Short ping rates due to echoes or simultaneous detections were 

considered to not be representative of actual great barracuda location data. All analysis 

was conducted in R version 3.2.2 (R Core Team 2015). 

 Detections were grouped into frequency of detections per receiver, per day. Based 

on results from Chapter 2 that indicate low detection frequencies can lead to spurious 

interpretation of results, I rejected any dataset showing less than 5% of possible 

detections. This filtering left a total of 17 great barracuda for use in this model.  
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3.3.3.1 Spatial community plots 

 Results from Chapter 2 indicate rough partitioning of barracuda activity space 

into highly used core areas and general use areas with infrequent but repetitive use 

patterns. Building off previous work using network analysis to identify community 

relationships between network nodes (Finn et al. 2014), I have used similar methods to 

look at spatial communities for individual fish, rather than identifying community 

relationships among populations. Finn et al. (2014) define communities as groups of 

nodes that have a stronger relationship to one another than to the rest of the nodes in the 

network, and there are several algorithms used to determine how to divide network 

relationships into community groups, many of which were tested for usefulness in 

analysis of acoustic telemetry array network models by Finn et al (2014).  Using the 

igraph package (Csardi & Nepusz 2006), I generated networks for individual fish with 

receivers as nodes and movements between them as edges weighted by the number of 

movements connecting each receiver pair. These networks were used in Chapter 2 to 

generate centrality rankings for receivers, indicating high and low use areas within the 

array. Using these matrices I applied two of the algorithms tested by Finn et al. (2014); 

Fast-Greedy and Walk-Trap. Fast-Greedy works by hierarchically dividing receivers into 

groups based on similarity in detection patterns (Clauset et al., 2004; Newman and 

Girvan, 2004), while Walk-Trap uses random walk models and identifies groups of 

receivers where movements get trapped in a loop based on probabilities weighted by the 

strength of interconnections (Pons and Latapy, 2006). Each node (receiver) within the 

community was assessed for the number of in-degree links (links to nodes within the 

community module) and out-degree links (links to nodes outside the module). Wilcoxin 
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rank sum tests were employed to test for significance among different groups by 

indicating whether the community has significantly more links within, indicating a 

positive community (Finn et al. 2014). Conversely, a group of receivers that demonstrate 

significantly greater connections to receivers outside their community is an anti-

community (Finn et al. 2014). 

 Communities were plotted both as non-spatially referenced and spatially 

referenced plots, with edges weighted by number of movements between nodes, and 

nodes weighted by numbers of connecting edges. Spatially referenced plots demonstrate 

along what lines spatially proximate receivers are being divided amongst communities 

and make direct comparisons to spatial variables such as benthic habitat type more 

intuitive. They also give a visual representation of movement patterns, as edges laid out 

in this context begin to approximate spatial paths within the array, indicating general use 

patterns. For example, a great barracuda that shows very high residency to a small core 

area may show a pattern resembling spokes on a wheel, while a highly mobile roaming 

predator could show large repeated loops or a tangled web of lines (Finn et al. 2014). 

Cumulative maps were made that summarize centrality values, number of times a 

receiver was included in a core use area, and summing station values for significant 

communities, positive significant communities, and significant anti-communities for all 

analyzed fish. For community membership maps, any receiver present in a positive 

significant community was assigned a value of 1, an anti-community member received a 

value of -1, and no significant membership a value of zero. Tag-station matrices for both 

algorithms were populated with these values, and summed by station. Station values 

could indicate a commonly used positive area (high positive value), highly used anti-
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community (negative value), or an area with neutral use generated either by lack of use, 

or variability in use areas between individuals, leading to a smoothing out of spatial 

patterns on a population level.  

   

3.3.3.2 Predictive habitat models 

 NOAA Biogeography has conducted extensive mapping of the benthic habitat in 

and surrounding Buck Island Reef National Monument (NOAA Biogeography Team 

2001). Shapefiles generated by NOAA of fine scale benthic habitat were imported into 

ESRI ArcGIS (ESRI ArcGIS 10.2, 2013) and converted to raster files for use in R. These 

raster files were used to generate kernel density estimates of each habitat type around 

each receiver, categorizing the array by proximity to and density of habitats within 

detection range, which was estimated to be 50% detection at 125 meters, based on range 

testing conducted by USGS researchers (Thomas Selby, USGS, personal 

communication). All habitat density values were normalized. These density results were 

merged with detection data for all fish at each receiver. To select which habitat variables 

to incorporate in the model, each habitat type (sand, seagrass, macroalgae, mangrove and 

linear reef) was tested against daily detections at each bandwidth (100 m, 200 m, 300 m, 

400 m, 500 m, 750 m, 1000 m, 1250 m, and 1500 m) distance from the receivers. These 

were tested using a negative binomial model, which looked at each possible detection 

(average of 720 per day) as a trial, and whether or not a detection was heard as a positive 

or negative response. AIC was run for each habitat type to identify which bandwidth was 

the best predictor of detections. This process identified seagrass 750 m, sand 1000 m, 

macroalgae 1500 m, mangrove 1500 m, and linear reef 300 m as the most appropriate 
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predictors to include. These variables were then tested for collinearity and sand and 

mangrove variables were dropped. After this, all variables showed variable inflation 

factors lower than three, and were considered appropriate for use in the final model. The 

final variables included seagrass 750 m, linear reef 300 m, and macroalgae 1500 m, 

season (hurricane, spring, and winter) and tag as fixed categorical predictors, and 

interactions between season and tag, tag and seagrass, and season and seagrass. Hurricane 

season was defined as July-October, winter was November –February, and spring was 

March-June. The final model was a zero-inflated Poisson generalized linear model with 

frequency of detections per day per station as the response variable.  

 

3.3.3.3 Catch per unit effort 

 To estimate relative population density compared to Culebra, Puerto Rico, I 

calculated a standardized CPUE rate based on randomized trolling surveys (Kimura 1981, 

Alcala 1988, Kaunda-Arara and Rose 2004). I hypothesized that the marine park would 

have greater densities of barracuda than unprotected waters, and this might impact home 

range size and habitat use (Kramer and Chapman 1999, Abesamis and Russ 2005). 

Trolling surveys were conducted using the same gear as for capture, but with lures 

modified by removing the hooks. Straight line transects with start points and direction of 

travel randomized using random number generators in ArcGIS were conducted, running 

for 15 minutes or until an obstacle was encountered. Transects were timed, number of 

strikes were counted, and waypoints were taken to quantify rate and location of capture. I 

used a depth stratified random sampling design, beginning transects within three depth 

strata: 1-7 m, 7-14 m, and 14-21 m. These sites were compared using permutation 
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randomization tests to determine whether there was a statistically significant difference in 

strike rates, and therefore population densities, between the two sites. 

 

3.4 Results 

3.4.1 Spatial communities 

 The Fast-Greedy algorithm separated the array into 5.82 mean communities per 

fish when results for individual fish were summarized across the study population. Once 

significance testing was conducted, the average number of significant communities per 

fish was 1.65. Arrays for all great barracuda included multiple significant communities, 

along with receivers that although included in activity space, were not used with enough 

frequency and regularity to be included in significant communities. The majority of 

significant communities were positive, with more connections to receivers within the 

community than outside of it. Although in the minority, there were several significant 

anti-communities as well, one each for tags 26796, 26793, and 24556. Community 

detection results, plotted as spatially referenced receivers colored by community 

membership, show all receiver communities for each fish as spatially proximate to one 

another (Fig 3.3). Significant communities had on average greater numbers of receivers 

with higher ratios of in versus out connections than non-significant communities. Positive 

communities and anti-communities occurred with similar frequency (mean of 2.65 

positive versus 2.71 anti), but significant communities were much more frequently 

positive than anti (25 versus 3) (Table 3.1). 

 Walk trap algorithms showed mean number of communities of 5.58, and 

significant communities of 1.41. On average, significant communities contained greater 
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numbers of receivers than non-significant communities. Overall, this algorithm generated 

anti-communities more frequently than positive communities (mean of 3.17 per fish 

versus 1.76), but with the exception of two communities for fish 26793, all other 

significant communities (22 total) were positive. Walk-trap showed less variation than 

Fast-Greedy in its community assignments. This algorithm either broke receiver use per 

fish into smaller numbers (compared to Fast-Greedy) of positive communities or 

alternately, divided the array into larger numbers of anti-communities (Table 3.2).  

 Both algorithms defined on average between one and two significant 

communities, which is consistent with the heavy core use areas and infrequent 

exploratory movements that home range network analysis identified in Chapter 2. 

However, significant communities defined by both algorithms included more receivers on 

average than indicated by CUR defined by network analysis. The Fast-Greedy algorithm 

also frequently indicated two significant communities, indicating a third non-specific 

pattern of movement. Walk-trap also on average predicted greater than one significant 

(and therefore greater than two overall) receiver communities, as opposed to CUR and 

GUR groups assigned by centrality metrics from chapter one, which assume two basic 

use areas: core and general (Table 3.3). Spatial community plots for individual fish show 

spatially proximate groups of receivers that correspond both with intensity of use, shown 

by weight of edges connecting receiver nodes, as well as with broad benthic habitat zones 

(Fig.3.3).  
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Table 3.1: Fast-Greedy summary statistics, showing number of communities, mean number of receivers per community, mean 

in connections per community, mean out connections per community. Significant communities are summarized for these same 

values, and in addition for mean p-value, and the number of positive, anti, and neutral communities per fish, and the percent of 

the time that each community was positive. 
 

 
Communities Significant communities  

#  Receivers  In-links  Out-links  Pos  Anti  NA # Receivers  In-links  Out-links P-value  % Pos 

26802 6 4.67 21 5 4 1 1 2 9.5 51 6.5 0.001 100 

26801 7 5.14 30.86 24.57 3 3 1 2 8 63 15 0.018 100 

26800 5 8.4 43.2 23.2 3 2 0 2 13.5 78 27 0.0044 100 

26799 8 5.5 32.25 17 3 5 0 2 15.5 106 20.5 >0.001 100 

26798 4 7.5 35.5 8.5 2 1 1 1 23 118 13 >0.001 100 

26797 5 5.8 31.2 14.4 2 2 1 2 11 67 15 0.0012 100 

26796 11 4.36 19.091 20.91 4 6 0 2 10 42 27 0.011 50 

26793 5 10.4 80.4 68.4 2 3 0 2 15.5 118 70.5 0.014 50 

24785 5 6 28.8 14.4 1 3 1 1 22 118 20 >0.001 100 

24784 5 5.4 27.2 16 2 3 0 2 11 60 16.5 0.0019 100 

24780 6 4.17 17.67 7 4 2 0 2 10 47 11.5 0.003 100 

24779 4 3.5 16 7.5 3 1 0 1 9 48 12 0.0012 100 

24776 2 4.5 14 4 1 0 1 1 7 24 4 0.0037 100 

24556 10 3.6 13.8 18.4 3 7 0 3 7 28.67 20.67 0.014 66 

24554 8 3.88 17.5 20.5 2 6 0 1 11 60 18 >0.001 100 

24550 5 4.2 14.4 8.4 4 1 0 1 8 28 10 0.022 100 

173 3 2.67 8.67 3.33 2 0 1 1 4 16 3 0.02 100 

Mean 5.82 5.28 26.56 16.56 2.65 2.71 0.41 1.65 11.47 63.1 18.25 0.01 92.12 
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Table 3.2: Walk trap summary statistics, showing number of communities, mean number of receivers per community, mean in 

connections per community, mean out connections per community. Significant communities are summarized for these same 

values, and in addition for mean p-value, and the number of positive, anti, and neutral communities per fish, and the percent of 

the time that each community was positive. 
 

 

Communities Significant communities   

# Receivers In-links Out-links  Pos Anti NA # Receivers In-links  Out-links P-value  
% 

Pos 

26802 1 28 156 0 1 0 0 1 28 156 0 >0.001 100 

26801 11 3.27 20.91 14.36 3 6 2 2 10.5 95 49.5 0.0015 100 

26800 5 8.4 58 8.4 5 0 0 2 15 127 10 0.005 100 

26799 7 6.29 43.14 13.14 3 2 2 3 12.33 94 24 >0.001 100 

26798 1 30 176 0 1 0 0 1 30 176 0 >0.001 100 

26797 15 1.88 7.38 6.88 1 10 5 1 9 68 28 0.0063 100 

26796 6 8.17 65.67 7.67 6 0 0 3 13.67 122.67 10.67 0.012 100 

26793 27 1.89 8.59 18.89 1 26 0 2 5 30 69 0.015 0 

24785 1 30 216 0 1 0 0 1 30 216 0 >0.001 100 

24784 14 1.93 8.29 7.14 1 10 3 1 26 78 26 0.0014 100 

24780 1 25 148 0 1 0 0 1 25 148 0 >0.001 100 

24779 1 14 94 0 1 0 0 1 14 94 0 >0.001 100 

24776 1 9 36 0 1 0 0 1 9 36 0 >0.001 100 

24556 1 36 322 0 1 0 0 1 36 322 0 >0.001 100 

24554 1 31 304 0 1 0 0 1 31 304 0 >0.001 100 

24550 1 21 114 0 1 0 0 1 21 114 0 >0.001 100 

173 1 8 36 0 1 8 36 0 8 1 0 0 100 

Mean 5.6 15.52 106.7 4.5 1.41 19.03 130.4 12.8 19.03 1.76 3.18 0.71 94.12 

 



 

 60 

Table 3.3: Network analysis summary statistics, including number of CUR using centrality rankings, comparison CUR for 

KUD and DBBMM, Walktrap and Fast-Greedy significant communities and mean receivers per significant community. 

Number of days detected (DaysOut), mean detections per week (DetsWeek) and fork length (FL) were also included for 

comparison and reference.  
 

Tag CUR 

Core area 

(KUD) 

Core area 

(DBBMM) 

WT 

significant  

WT 

receivers 

FG 

significant 

FG 

receivers Days Out Dets per week Fork length 

26802 8 0.10 0.074 1 28 1 4 332 679.44 103 

26801 9 0.52 0.39 2 10.5 1 8 364 1111.038 107 

26800 10 0.16 0.12 2 15 1 11 364 2039.88 97 

26799 10 0.21 0.16 3 12.33 3 7 364 986.077 71 

26798 14 0.082 0.053 1 30 1 7 361 976.18 89 

26797 9 0.17 0.11 1 9 1 9 270 2007.57 96 

26796 15 0.17 0.35 3 13.67 2 10 364 368.81 63 

26793 12 0.5 0.41 2 5 2 11 364 1411.52 101.5 

24785 9 0.079 0.051 1 30 1 22 364 3352.96 79.5 

24784 7 0.084 0.056 1 26 2 15.5 364 4311.13 90.5 

24780 6 0.074 0.048 1 25 2 10 363 765.43 90.5 

24779 5 0.089 0.061 1 14 2 11 348 625.7 92 

24776 3 0.071 0.046 1 9 1 23 364 2937.54 84.5 

24556 8 0.37 0.27 1 36 2 15.5 364 846.87 85 

24554 8 0.22 0.21 1 31 2 13.5 364 255.42 61 

24550 5 0.12 0.081 1 21 2 8 364 469.87 97 

173 3 0.072 0.048 1 8 2 9.5 117 812 84.5 

mean 8.29 0.18 0.15 1.41 19.03 1.65 11.47 340.88 1409.26 87.76 

 

 



 

 61 

 

Figure 3.3: Community membership plots for 5 example fish (A-E), showing both spatial 

(1) and non-spatial results (2) generated using the Fast-Greedy algorithm. A: Tag 26799, 

51,276 detections; B: Tag 26800, 106,074 detections; C: Tag 26801, 57,774 detections, 

D: Tag 26793, 73,399 detections; E: Tag 26796, 19,178 detections.  
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Location of individual home range core areas was highly variable across the study site, as 

shown in Chapter 2, so individual fish’s spatial plots cover unique use areas. Cumulative 

maps show higher centrality values and CUR inclusion across linear reef and seagrass 

(Fig.3.4). Significant community and positive community counts both show fairly 

uniform values across stations, with slightly higher numbers shown around rugose areas 

and southern seagrass and colonized pavement flats (Fig.3.5, 3.6).  

 

Figure 3.4: Sums for all fish in the study population for presence of receiver stations in a 

core use area (CUR) determined by centrality rankings through network analysis. 
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Figure 3.5: Spatial community sums for all fish in the study population for presence in a 

significant anti-community (A) or positive community (B), generated by the Fast-Greedy 

algorithm. 

 

 



 

 64 

 

 

Figure 3.6: Spatial community sums for all fish in the study population for presence in a 

significant anti-community (A) or positive community (B), generated by the Walktrap 

algorithm. 
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Anti-community sums highlight two areas within BIRNM with repeated designation as 

anti-communities, both highly rugose (Fig.3.5, 3.6). However, numbers even for these 

sites are low, with no more than two fish indicating these areas as an anti-community. 

Positive communities on the other hand, showed values as high as 11 fish out of 17 

(Tables 1-3). 

 

3.4.2 Catch per unit effort 

 CPUE randomization tests showed a statistically significant difference between 

BIRNM and Culebra, for both randomized surveys and tagging effort records. The 

permutation test for the randomized surveys resulted with a p-value of 0.005, while the 

test of tagging effort had a p-value of <0.001. These low p-values indicate that it is 

extremely unlikely that the large differences in CPUE shown by the surveys at both site 

could have occurred due to chance. Since I used CPUE as a relative indication for 

population density, these results suggest large a difference in the abundance of great 

barracuda between the sites, with greater densities occurring in BIRNM.  

 

3.4.3 Habitat models 

 The model results showed all variables and most interactions as highly significant, 

with the exception being for several specific tag interactions. Therefore, habitat type, 

season, tag ID, as well as interactions between tag ID and season, tag ID and seagrass, 

and seagrass and season were all shown to be important drivers of daily detection 

frequency. Since no single parameter appears more significant than others, no one habitat 

type or season stood out as being more important to detection frequency. Residual plots 
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indicated that there was variation in drivers of daily detection rates that was not explained 

by the model. When residuals for habitat density were separated by season and tag, it was 

clearly visible that the model could predict the detection patterns of some tags more 

accurately than others (Fig.3.7). Predicted and observed values plotted by tag and station 

again show that for most tags and stations, the model was over-predicting detections 

(Fig.3.8).  
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Figure 3.7: Residual values for generalized linear Poisson model, divided by season and 

tag for Easting location. 
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Figure 3.8: A) Predicted (red) versus observed (black) daily detection frequencies 

divided by tag as estimated by the generalized linear Poisson model. B) Daily detection 

frequencies divided by station. 

 

3.5 Discussion 

 Network analysis centrality rankings and spatial community assignments showed 

high variation in location of home ranges among individual great barracuda, but high use 
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areas demonstrated relatively evenly dispersion across the array for the study population. 

Greater than two significant communities indicated some temporal variation in movement 

patterns. Variation among individuals was high, but across the study population there was 

no strong spatial pattern in centrality rankings or presence in a significant community 

across the array. This indicates a degree of individual-level niche partitioning among 

individuals, potentially to avoid competition for resources (Ostfeld 1990). Even at the 

population-level there was little indication of great barracuda preference for a specific 

type of benthic habitat. Daily detection frequencies were equally influenced by all habitat 

types and seasons, and individual tags were a significant driver of detection patterns in 

the generalized linear Poisson model. The array was evenly used at the population-level 

including individual partitioning, despite the presence of multiple spatial communities 

indicating temporal variation in spatial use. Highly elevated relative densities within 

BIRNM may be influencing spatial use patterns of individual partitioning and lack of 

habitat preference (Vincent et al. 1994, Kramer and Chapman 1999, Absamis and Russ 

2005).   

 

3.5.1 Centrality metric and spatial community plots 

 Centrality metrics designating core and general use areas highlight areas of 

frequent and infrequent use within the barracuda’s activity space. Core areas indicated by 

network analysis were defined by using a 50% and 95% cut off, similar to contour lines 

for the utilization density analysis (Chapter 2). Network analysis (Chapter 2) predicted 

larger areas of frequently used space compared to utilization distribution methods, and 

was able to highlight frequently travelled pathways between parts of the array. 
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Algorithms subdivided the array and assigned community membership into multiple 

significant groups, with a “leftover” group. Even when looking at only statistically 

significant communities, the array was divided into more than two groups on average, 

indicating a complexity of spatial use patterns greater than described by a framework 

using utilization densities and core and general use areas.  

 Significant communities of great barracuda most frequently were positive. This 

means that receivers had more connections to receivers within the community module 

than to receivers outside (Finn et al. 2014). Positive communities can be thought of as 

destinations within a total activity space (Finn et al. 2014). They could be a resident 

territory, or a feeding or spawning ground where a fish might travel to and remain for a 

duration of time long enough to generate frequent connections between receivers within 

that space (Burke 1995, Mumby et al. 2004, Meyer et al. 2007, Luo et al. 2009, Kimirei 

et al. 2011, Finn et al. 2014). The presence of, on average 1.5 significant resident 

communities, the bulk of which were positive, indicates that within an individual great 

barracuda’s activity space there are multiple resident use areas. Highly mobile animals, or 

ones that showed high differentiation in habitat would have movement patterns that 

generated a greater number of communities (Finn et al. 2014). More than one significant 

community indicated some temporal differentiation in the movement patterns may exist, 

consistent with demonstrated seasonal patterns in previous studied (Faunce and Serafy 

2008).  

 There were several significant anti-communities present, although greatly 

outnumbered by positive communities. These anti communities represent groups of 

receivers that have more connections to receivers outside their community than within it. 
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These communities can be thought of as transit hubs, or places that a fish frequently 

passes through to get to another destination, and are indicative of movement corridors. If 

a species were highly mobile, their networks would be dominated by anti-communities. 

While walk-trap in particular generated many non-significant anti-communities, the 

infrequency (but presence) of significant anti-communities indicates that these 

individuals are demonstrating site fidelity within their set activity space, and that larger 

exploratory movements are not consistent enough to register as significant within the 

algorithms. The presence of these communities at all, even though not statistically 

significant, indicates that while not frequent enough to generate a significant number of 

links between receivers, mobile as well as resident movement patterns were commonly 

displayed within the study population. These patterns of residence and potential for high 

mobility are consistent with genetic studies indicating characteristics of great barracuda 

common to both reef-associated as well as pelagic species (Daly-Engel et al. 2012). 

Network analyses were generated for individual fish and also summarized across 

the study population to identify areas of the array that were more frequently included as 

core use territories or significant communities. Superimposing these results onto benthic 

habitat maps demonstrated little pattern for resident use areas (positive communities). 

Two highly rugose reefs were indicated as significant movement corridors (anti-

communities), one of which was found in the northern part of the array, an area shown to 

have poor detection ranges (Thomas Selby, USGS, personal communication). Therefore, 

this area may naturally generate sporadic detection histories that could make this area 

appear to be a movement corridor due to frequent missed detections. The other anti-

community, on the south side of the island within a shallow lagoon, has been shown to 
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have adequate detection range, providing greater confidence that the area is a movement 

corridor. The even spread of the positive community membership counts show that as a 

whole population, BIRNM great barracuda appear to be widely using all habitat types, 

with individual variation based on location of resident use areas. This type of individual 

differentiation of space is reflective of intraspecific spatial niche differentiation driven by 

food availability and population density (Hixon 1980, Ostfeld 1990). Barracuda may be 

dividing up spatially to limit competition for resources and prey (Quevedo et al. 2009). 

 

3.5.2 Catch per unit effort 

It is important to mention that this study was conducted in a no-take MPA and 

results might vary in non-protected areas. The CPUE is indicative of a higher population 

density of great barracuda in BIRNM than the coastal waters surrounding Culebra. 

Density can have wide ranging impacts on ecology and community interactions, through 

altering the balance in trophic relationships and food webs as well as through influencing 

a number of different life history parameters (Stearns and Crandall 1984, Vincent et al. 

1994, Kramer and Chapman 1999, Absamis and Russ 2005). This initial comparison 

between sites demonstrates that densities of barracuda within the MPA would be higher 

than in openly fished waters. While there is not at this point direct evidence showing that 

this is due to a difference in fishing pressure, these results are consistent with many other 

studies that have demonstrated higher abundance of a top predator in no-take MPAs 

(Micheli et al. 2004). Increasing densities leading to population level shifts in preferential 

habitat use to all available space has been demonstrated in a number of ecological 

systems (Vincent et al. 1994). Therefore, the elevated densities observed at BIRNM in 
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comparison to Culebra are consistent with homogenous habitat use patterns at the 

population-level documented through network analysis. 

 

3.5.3 Habitat models 

 The habitat model did not address all the possible environmental and physical 

variables that could influence detection frequency. The lack of parsimonious explanatory 

variables in the model is consistent with the apparent disregard for benthic habitat shown 

in the community significance plots. Habitat type and season were significant at 

influencing detection frequency, including many significant interactions. Widespread 

significance of nearly all the variables, save for a couple non-significant variables driven 

by individual tag variability, could indicate that I am missing the true drivers of 

movement. Certainly adding in additional variables looking at temporal variation of 

environmental variables could be beneficial. However, the lack of specific highlighted 

drivers in the model indicates that individuals in the study population are not more likely 

to use one habitat over another and that barracuda movements are not highly associated 

with benthic habitat or season, and that individual behaviors or territories are just as 

likely to influence habitat choice.  

 

3.6 Conclusion   

Great barracuda within the study population were shown to occupy unique, 

overlapping territories throughout the array, with individuals showing high site fidelity to 

small resident use areas but also using wide swaths of the array in less frequent but 

repeated movements at apparently random directions. Population level use of the array 
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shows no preference for specific benthic habitat types in regards to resident area choice, 

but spatial community identifications indicate some temporal differentiation in spatial 

patterns, consistent with previous research indicating seasonal variability in spatial 

patterns but with habitat use dominated by non-selective behaviors (Faunce and Serafy 

2008). While resident use areas were evenly distributed, movement corridors were 

clustered along high rugosity reef habitats. This could either be due to more consistent 

roaming along preferential reef habitats (Heithaus et al. 2002), or could alternately be 

indicative of necessary paths of travel around very shallow reef systems. In order to 

extrapolate from these spatial patterns towards greater understanding of ecological and 

management implications of these results, it is necessary to relate these findings to more 

general themes of habitat connectivity, trophic dynamics, and species interactions 

(Gerber et al. 2003). 

Highly resident behaviors and high density demonstrated in this study, combined 

with known trophic position and predation strategies of great barracuda (De Sylva 1963, 

Ceccarelli and Ayling 2010, Mumby et al. 2012) mean that great barracuda within the 

study population are likely generating high and temporally consistent top down pressure 

on the rest of the fish community (Sih 2005). Residency patterns through all habitat 

types, combined with broad but infrequent use of the rest of the array shows that these 

impacts of top down pressure are likely being applied across all habitat types and also 

suggests that this species might be an important vector of predation-driven connectivity 

across habitat boundaries (Polis et al. 1997, Quevedo et al. 2009). Whereas some large 

predators must be highly mobile to access productive foraging sites (Jorgensen et al. 

2009), site fidelity and high rates of residency have been shown to indicate sufficient 
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resource availability within a core use space (Wittmer et al. 2006, Knip et al. 2012). The 

habitat generalist behavior demonstrated by the study population appears fairly unique 

within subtropical coastal fish communities to great barracuda (Faunce and Serafy 2008). 

Given the importance of apex predators in structuring communities (Friedlander and 

DeMartini 2002, Heithaus et al. 2008) this indicates that barracuda are ecologically 

influential in driving community dynamics within the study site.  

  The even use of the array for resident core territories regardless of benthic habitat 

is a pattern sometimes indicated in animal populations existing at high densities, even 

among species that at low population densities show habitat preferences (Ostfeld 1990, 

Vincent et al. 1994). This pattern, combined with elevated population densities in 

comparison to Culebra could be indicative of the MPA leading to increased density of 

this top predator within the park boundaries. High rates of residency combined with 

elevated density results suggest that the park may be at a scale beneficial to great 

barracuda population resurgence. MPAs have often been shown to increase top predator 

biomass, especially for fish easily impacted by fishing pressure (Pauly 1998, Micheli et 

al. 2004), which great barracuda are likely to be given their high rates of bycatch in a 

variety of recreational and commercial fisheries (Springer and McErlean, 1961; de Sylva, 

1963; Villareal et al., 2007, O’Toole et al. 2010, Brownscombe et al. 2014). High rates of 

residency are more amendable to successful protection through spatial closures (Kramer 

and Chapman 1999). It has been suggested that high rates of density-dependent 

modification of home range size or habitat use would compound the effect of spatial 

closures from fishing pressure on population resurgence (Kramer and Chapman 1999). 

The scale of BIRNM appears effective for increasing great barracuda biomass. However, 

http://icesjms.oxfordjournals.org/content/67/8/1667.full#ref-24
http://icesjms.oxfordjournals.org/content/67/8/1667.full#ref-24
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success in increasing fish biomass as a whole depends on the spatial ecology of other 

species in the fish community, and the intersection between trophic dynamics and spatial 

patterns (Gerber et al. 2003).  
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CHAPTER 4 

 

ECOLOGICAL AND MANAGEMENT IMPLICATIONS FOR BARRACUDA 

HABITAT USE AND SITE FIDELITY PATTERNS AROUND BUCK ISLAND 

REEF NATIONAL MONUMENT 

 

 

 

Developing accurate assessments of the spatial ecology of marine species is a 

vital step in developing ecologically sustainable management policies (Gerber et al. 2003, 

Palumbi 2004, Murawski et al. 2005, Douvere 2008, Edgar et al. 2014). While ecological 

considerations are only one step in the complex process of marine spatial planning, which 

must balance societal needs and political viability with ecological justifications for 

conservation (De Santo 2013), the groundwork for successful policy remains sound 

science (Gerber et al. 2003, Palumbi 2004, Murawski et al. 2005, Edgar et al. 2014).  

Many MPAs to date are based around large assumptions regarding spatial use of target 

species since historically it has been difficult to generate accurate estimations of home 

range, residency and habitat use (Heupel et al. 2006, Cooke 2008, Hussey et al. 2015). 

Range estimates have often been assumed to be static, and density of use across activity 

space consistent (Pressey et al. 2007). However, the proliferation of acoustic telemetry 

studies, which have made tracking movements in marine systems viable on a finer scale 

than previously possible, have indicated that there is often high variability in temporal 

patterns and density of use across many species home range areas (Burke 1995, Mumby 
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et al. 2004, Meyer et al. 2007, Luo et al. 2009, Kimirei et al. 2011). These finer scale 

understandings of habitat use, and the degree to which these variables intersect with 

trophic dynamics, species interactions and drive connectivity across habitat boundaries 

depicts a vastly more complex view of habitat use across species assemblages than is 

usually able to be considered in spatial management planning (Leslie and McLeod 2007).  

Increasingly, scientists and managers are realizing that in order to tailor spatial closures 

towards the conservation of larger animals, which often have correspondingly larger 

home range areas, it is vital to form a better understanding of this temporal and spatial 

variation in use in order to target protection towards specific areas used for feeding, 

spawning, or nursery grounds and other undefined movements, if full ranges cannot be 

protected (Runge et al. 2014, Pérez-Jorge et al. 2015). 

 Through this study, I sought to address these issues for the spatial management of 

top predators by analyzing the movement patterns and habitat use of great barracuda 

within the Buck Island Reef National Monument (BIRNM) no-take protected area 

managed by the National Park Service in St. Croix, U.S.V.I. As standardized analytic 

methods for acoustic telemetry are still being perfected, I first focused on assessing the 

impact of analytic method choice and variability in detection histories on home range 

estimates. The results from this work are summarized in Chapter 2. For Chapter 3, I then 

used the results from this research to inform further work looking at home range, site 

fidelity, spatial differentiation in use patterns, and habitat use of animals with detection 

histories deemed sufficient for analysis by previous work in Chapter 2. In addition, I 

compared population densities within BIRNM to a similar fished array in Culebra, Puerto 

Rico to generate as estimate of relative population densities inside the reserve. In 
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combination, this work aims to quantify activity space estimates of great barracuda 

within BIRNM and to understand the implications that observed rates of residency, size 

of core use areas, and habitat use patterns for this study population have on ecosystem 

ecology and spatial management within the study site. 

 Results from the methodological comparison show that both KUDs, a traditional 

utilization density based home range estimator (Kie et al. 2010, Jacoby et al. 2012), as 

well as DBBMM, a more complex utilization density method that incorporates 

movements between points (Horne et al. 2007) tend to underestimate core activity spaces 

and smooth out peripheral use areas in comparison to network analysis based methods. 

KUDs and DBBMM may be helpful in indicating high use area, but accuracy may vary 

based on the scale and density of receiver arrays, detection history, life history and the 

movement patterns of the study species. For barracuda in this study site, which displayed 

high site fidelity to unique core use areas but also sporadically roamed through large 

areas of the array, both utilization distribution methods oversimplified and excluded 

areas. For the conservation of larger and potentially more mobile species, it is important 

to be able to identify movement corridors and ecologically relevant peripheral use areas 

(Runge et al. 2014, Pérez-Jorge et al. 2015), which for this study were more readily 

identifiable using network analysis.  For all methods, variability in detection history was 

a major driver of home range size estimation and also confounded the ability to detect a 

relationship between body size and home range size, which became apparent when data 

was analyzed only for fish with good detection histories. This highlights the need for 

close examination of the impacts of detection variability when using acoustic telemetry to 

try to identify ecological drivers of spatial patterns.  
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 Once appropriate methods and detection histories were determined for this 

dataset, additional analysis conducted in chapter three demonstrated that individuals have 

unique home ranges to which they show strong site fidelity, but on a population level 

there appeared to be consistent use of the full array. Network analysis dividing the array 

into spatial communities indicates that individual barracuda have several distinct areas 

within their activity space with significantly different use patterns. Significant receiver 

communities were predominantly associated with positive communities, which indicate a 

core use area. Positive communities were evenly distributed across the array. There were 

several significant anti communities as well, indicating movement corridors, which were 

consistently distributed around high structure reef habitats. Network analysis methods 

consistently showed even distribution of core resident territories. This indicates 

partitioning of space into individual territories, potentially to avoid competition for 

resources (Hixon 1980, Ostfeld 1990, Quevedo et al. 2009). 

Even spread of core use areas across the array, independent of benthic habitat type 

was reinforced both by habitat models as well as CPUE-based relative population density 

results. The generalized linear model showed no benthic habitat or seasonal predictors 

showing a greater impact on detection frequencies, with all variables being highly 

significant. Tag individuality was also highly significant, which was consistent with the 

unique territories indicated by the home range analyses in chapter two. Previous work 

with other species has shown preferential habitat use for low population density species 

switching to even spatial distributions at higher densities (Vincent et al. 1994), and the 

high relative populations shown by the CPUE comparison are consistent with this 

prediction. This displayed disregard for benthic habitat is unusual for fish species in these 
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habitats, most of which are shown to demonstrate specific habitat preferences (Faunce 

and Serafy 2008).  

  This study is the first to document the level of site fidelity and small core use 

areas for great barracuda. The relative high population densities combined with high 

degree of site fidelity and even spread of habitat use suggests that these barracuda are 

likely a highly influential driver of top down pressure within this park through heavy 

predation rates (Friedlander and DeMartini 2002, Sih 2005, Heithaus et al. 2008). Robust 

populations of top predators are often shown within marine protected areas, with higher 

trophic levels showing rapid rebounds from fishing pressure (Pauly 1998, Micheli et al. 

2004). There are concerns among some that rebounding predator populations could lead 

to size-based competition and top heavy predation pressure on fish communities whose 

overall productivity has declined to the point of being unable to sustain pre-harvest levels 

of high tropic level species (Mumby et al. 2007, McClanahan et al. 2007). However, high 

top predator biomass is often seen as a sign of a healthy, recovering system due to the 

observed dominance of apex predators in reefs in uninhabited areas (Stevenson et al. 

2007).  

 Precision in methodological choice and analysis are inextricably intertwined with 

the ability to interpret the ecological influence of these high density, highly resident top 

predators within BIRNM. Our methodological results in Chapter 2 indicated the influence 

both method choice and detection history can have on the ability to accurately interpret 

ecological results, which form the scientific framework driving effective ecosystem based 

management (Gerber et al. 2003, Palumbi 2004, Murawski et al. 2005, Douvere 2008, 

Edgar et al. 2014). Great barracuda functioned as an ideal species on which to examine 
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the impacts of various methods of home range estimation on different movement patterns 

since the study population demonstrated two unique movement behaviors: residence to 

core areas combined with wide-ranging exploratory movements. Based on these results it 

appears that utilization density methods appear more useful in acoustic telemetry studies 

utilizing finer scale array systems, or for highly resident species, whereas network 

analysis was more successful in identifying mobile movement patterns. The ability to 

interpret the acoustic telemetry datasets that make much of this fine scale tracking work 

possible is inextricably tied to continuing to improve on creating appropriate and 

standardized methods of analysis in order for these datasets to be able to answer the 

ecological and management questions they seek to answer. The correct interpretation of 

these results is necessary to determine efficacy of existing marine parks and to plan future 

closures based on ecological realities, which is tantamount to the ability of these MPAs to 

live up to their much-lauded conservation potential.   

Given the demonstrated high residency rates (which make it more likely that the 

scale of the MPA will be sufficient), even use showing great barracuda presence in all 

habitats, as well as demonstrated elevated densities, BIRNM appears to be successful at 

increasing barracuda biomass. Given that BIRNM is not designed solely as a great 

barracuda reserve, the broad management implications of this thesis are tied to the 

ecological role that this species plays in overall ecosystem dynamics and how this could 

be taken into consideration for ecosystem-based management. Overall success of this 

MPA at creating a robust fish community across all trophic levels necessities additional 

research linking together the spatial and trophic ecology of this species – great barracuda 

– together with additional research analyzing the movements, population levels, and 
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species interactions across the full fish community. Future work that this thesis paves the 

way for includes further examining the role of density dependence on habitat use patterns 

and home range by developing a comparison study with Culebra, Puerto Rico and 

comparing great barracuda spatial ecology to those of other trophic level species within 

BIRNM. Many collaborators on this study are currently involved in tracking and 

analyzing movement data of many other fish, turtle, and invertebrate species within 

BIRNM. This study forms the groundwork for analysis of future datasets within this 

array, and ideally will lead to future comparative studies.  
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APPENDIX B 
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