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ABSTRACT 

CHEMICAL STABILITY OF CURCUMIN: STRUCTURE AND ACTIVITY RELATIONSHIP 

(SAR) STUDY 

MAY 6th 2016 

ZHEYUAN DU, B.S., EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Guodong Zhang 

Over the past decades, numerous studies have shown that curcumin has potent biological 

activities. As a potential chemopreventing agent, curcumin was demonstrated to exert anti-cancer 

effects in both in vitro and in vivo studies. However, low bioavailability of curcumin limited 

human clinical trials and its application to be formulated as therapeutics. In this thesis, we will 

summarize the anti-cancer effects of curcumin in animal studies and clinical trials. In addition, 

an SAR study will be introduced to elucidate the mechanism of curcumin degradation at 

physiological pH. We synthesized various curcumin analogues and compared their stability in 

phosphate buffer using HPLC and colorimetry assay. The results not only demonstrated that the -

OH group and the methoxy group play a critical role in stability of curcumin in physiological 

environment, but also support the proposed mechanism of phenolic radical formation by which 

curcumin degrades to its major product bicyclopentadione. 

Key words: curcumin, anti-cancer, tumor growth, metastasis, SAR study, physiological pH, 

phosphate buffer, curcumin analogues, synthesis, bicyclopentadione 
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CHAPTER 1 

LITERATURE REVIEW: ANTI-CANCER EFFECTS OF CURCUMIN 

1.1 Introduction 

Turmeric, Curcuma longa L. rhizomes has been widely used as a spice and to treat abdominal 

pain, sprain and swelling in both Chinese and Indian medicine [1]. Over the past decades, a 

number of studies have shown that curcumin, a principal component of turmeric, has potent 

biological activities such as anti-inflammatory, anti-oxidant and anti-cancer effects [2, 3, 4]. 

Here in the section below, we will summarize the animal and human studies to evaluate the anti-

cancer effects of curcumin.  

1.2 Animal studies of curcumin on primary tumor growth 

1.2.1 Curcumin inhibits ascites tumor growth 

One study in Swiss albino mice showed that after implantation of Ehrlich ascites tumor through 

subcutaneous injection of DLA cells, i.p. injection of liposomally encapsulated curcumin at a 

dosage of 50 mg/kg body weight after implantation of Ehrlich ascites tumor (induced by 

subcutaneous injection of DLA cells), increased the life span of mice by 53.72% and reduced 

tumor volumes significantly compared to the control group [5].  

1.2.2 Curcumin inhibits tumor growth of gastrointestinal cancer 

Curcumin was found to inhibit tumor growth induced by colorectal cancer cells (Colo205 cells 

and LoVo cells) significantly when in female athymic nu/nu mice after i.v. injection thrice a 

week at a dosage of 40 mg/kg body weight [6]. Another group evaluated anti-tumor effect of 

curcumin on gastric cancer [7]. As a result, curcumin, orally administrated to female athymic 
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nu/nu mice daily at a dosage of 0-200 mg/kg body weight, was shown to inhibit tumor growth in 

a dose-dependent manner accompanied with increased life span of mice compared with the 

control group. This study also indicated a mechanism of inhibiting telomerase activity and 

inducing apoptosis in cancer cell lines by which curcumin exerted its anti-tumor effect.  

1.2.3 Curcumin inhibits tumor growth of brain cancer 

One study showed that curcumin could inhibit tumor growth of malignant gliomas by 4-fold on 

day 16 after adult nude mice was i.t. injected with curcumin at a dosage of 100 mg/kg body 

weight compared to untreated controls [8]. Treatment of curcumin was found to inhibit the 

Akt/mammalian target of rapamycin (mTOR)/ p70 ribosomal protein S6 kinase (p70S6K) 

pathway and activating the extracellular signal-regulated kinases 1/2 (ERK1/2) pathway, the two 

pathways regulating autophagy. Tumor growth of gliomas in xenograft models was also found to 

be inhibited by i.p. injection of curcumin at a dosage of 120 mg/kg body weight per day in 

athymic mice (Crl:CD-1 nuBR) leading to significant increase of life span of animals by 12% 

compared to the control group [9].  

1.2.4 Curcumin inhibits tumor growth of head and neck cancer 

Curcumin was shown to inhibit tumor growth induced by head and neck squamous cell 

carcinoma (HNSCC) [10]. In this study, liposomally encapsulated curcumin was i.v. injected to 

female athymic nu/nu mice four times a week for 3.5 weeks at a dosage of 50mg/kg body 

weight. The result indicated that treatment of curcumin led to the suppression of tumor growth 

and a reduction of tumor weight by 56.27 mg and 84.43 mg accompanied with the reduction of 

nuclear expression of NF-κB compared with the groups treated with empty liposomes and 

untreated controls, respectively.  
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1.2.5 Curcumin inhibits tumor growth of skin cancer 

A study in female B6D2F1 mice demonstrated that curcumin, i.p. injected daily at a dosage of 25 

mg/kg body weight combined with treatment of a prophylactic immune preparation of soluble 

proteins resulted in a slight delay of tumor growth induced by melanoma cells [11]. Additionally, 

the combination treatment increased survival time by more than 82.8% compared with the group 

with immune preparation (48.6%) and the group treated with curcumin only (45.7%).  Another 

animal study showed that in female C57BI/6 mice, orally administrated curcumin at a dosage of 

1% for 17 days led to a significant reduction of tumor weight compared to the untreated group 

(0.8 g versus 1.5 g) [12].   

1.2.6 Curcumin inhibits tumor growth of ovarian cancer 

Tumor growth induced by orthotopic implantation of ovarian cancer cells in female athymic 

nu/nu mice was found to be inhibited by treatment of curcumin only or combination with 

docetaxel, a commonly used chemotherapy drug [13]. Specifically, for SKOV3ip1 and HeyA8 

cell lines respectively, treatment with curcumin which was given by gavage at a dosage of 500 

mg/kg body weight led to a 49% and a 55% reduction of tumor growth, while combination 

treatment resulted in a 96% and a 77% reduction of tumor growth. Additionally, curcumin was 

shown to exhibit its anti-tumor effect on ovarian cancer through inhibiting Nuclear Factor-κB 

(NF-κB) activation.  

1.2.7 Curcumin inhibits tumor growth of pancreatic cancer 

One in vivo study indicated that in female athymic nu/nu mice, treatment of liposomal curcumin 

at a dosage of 40 mg/kg body weight (i.v. injection, three times a week for 20 days) resulted in 

significant inhibition of tumor growth induced by human pancreatic carcinoma cells which was 
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subcutaneously injected to mice through suppressing NF-κB binding and down-regulating COX-

2 and interleukin-8 [14]. Another group evaluated anti-tumor effect of curcumin on pancreas 

cancer in male athymic nu/nu mice [15]. As a result, curcumin given by gavage at a dosage of 1 

g/kg body weight per day after one week of tumor implantation significantly enhanced the anti-

tumor effect of gemcitabine (i.p. injection, 25 mg/kg twice a week) on pancreatic tumors induced 

by orthotopic injection through inhibiting NF-κB activation, down-regulating cell proliferation 

maker Ki-67 and down-regulating microvessel density marker CD31. Specifically, combined 

treatment of curcumin and gemcitabine resulted in reducing tumor volumes significantly on day 

31 of initial treatment compared with controls treated with curcumin only or gemcitabine only.  

1.2.8 Curcumin inhibits tumor growth of prostate cancer 

Curcumin was also shown to exert anti-tumor effect on prostate cancer in previous studies. In 

male severe combined immunodeficient (SCID) mice, treatment of curcumin by oral gavage at a 

dosage of 5 mg/kg body weight three times per week led to significant reduction of mean tumor 

volumes induced by prostate cancer cells by 4 weeks after tumor inoculation compared to the 

control group treated with a placebo (168.67 ± 40.7 mm3 versus 99.57 ± 27.2 mm3) [16]. 

Another study showed that in male athymic nu/nu mice bearing with tumors induced by a human 

prostate cell line PC3, tumor growth of PC3 xenografts was inhibited by 50% at 4 weeks after 

curcumin was given by oral gavage at a dosage of 5 mg/d five times per week by the mechanism 

of down-regulating MDM2, a cellular ligase of tumor suppressor p53 [17]. In addition, treatment 

of curcumin was also found to enhance the anti-tumor effect of gemcitabine and radiation in this 

study. Another in vivo study conducted by Dorai te al. [18] indicated that oral administration of 

curcumin at a dosage of 2% (w/w) in synthetic diets for six weeks resulted in significant decrease 
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in cell proliferation and increase in the extent of apoptosis accompanied with a significant 

reduction of microvessel density.  

1.2.9 Curcumin inhibits tumor growth of lung cancer 

Lev-Ari et al. [19] conducted an animal study to evaluate the anti-tumor effect of curcumin on 

human non-small cell lung cancer (NSCLC) which has been the leading cause of cancer related 

mortality. Specifically, curcumin at a dosage of 0.6% in AIN-076 diets was fed to athymic CD-1 

nude mice. The effects of curcumin on subcutaneous human NSCLC tumors or orthotopic human 

NSCLC xenografts were evaluated in ectopic lung tumor mouse models and orthotopic lung 

tumor mouse models, respectively. Curcumin inhibited subcutaneous tumor growth as seen by a 

reduction of intra-lung tumor weight by 36% and a significant increase of survival rate through 

suppressing COX-2 expression. Tumor growth of orthotopic xenografts was also significantly 

reduced accompanied with increase of survival rate.  

1.3 Animal Studies of Curcumin on Chemoprevention 

1.3.1 Curcumin prevents gastrointestinal cancer 

Curcumin was shown to exhibit anti-tumor activities as a chemopreventive agent in numerous 

animal studies. Huang et al. [20] investigated inhibitory effects of curcumin on carcinogen-

induced tumorigenesis in forestomach, duodenum and colon of mice. The results indicated that 

treatment of commercial grade curcumin at a dosage of 0.5-2.0% in AIN 76A diet in A/J female 

mice reduced the numbers of benzo(a)pyrene (B[α]P)-induced forestomach tumor by 51-53% 

and 47-67% in A/J female mice when administrated during the initiation period and the post-

initiation period, respectively. The same dosage of curcumin in AIN 76A diet also resulted in 

reduction of the numbers of N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG)-induced duodenal 
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tumors in male C57BL16 mice by 47-77% when administrated during the post-initiation period. 

In addition, 0.5-4.0% curcumin in AIN 76A diet led to a reduction of the numbers of 

azoxymethane (AOM)-induced colon tumors by 51-62% when administrated during both the 

initiation and the post-initiation periods. In another study, male F344 rats were fed with 0.2% 

and 0.6% curcumin in AIN 76A diet both during the initiation and the post-initiation periods to 

evaluate the effects on tumorigenesis in colon [21]. When treated at a dosage of 0.2%, curcumin 

was shown to inhibit the incidence and multiplicity of noninvasive adenocarcinomas by 59% and 

71% respectively and the incidence of invasive adenocarcinomas by 54% compared to the mice 

fed with control diets. Treatment of curcumin at a dosage of 0.6% resulted in a reduction of 

incidence and multiplicity of noninvasive adenocarcinomas by 78% and 85% respectively and 

the incidence of invasive adenocarcinomas by 45% compared to the control groups. These results 

further suggest that curcumin may exhibit its anti-tumor effects on colon cancer in mice in a 

dose-dependent manner. Curcumin was also shown to inhibit 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP)-induced tumorigenesis and apoptosis in male Apcmin mice 

[22]. Specifically, treatment of curcumin at a dosage of 2000 ppm in diet led to a reduction of the 

number of tumors in proximal small intestines of mice compared to the mice treated with PhIP 

alone (2.2 tumors per mouse versus 4.6 tumors per mouse). Shpitz et al. [23] also demonstrated 

that not only treatment of curcumin alone, but also combination with celecoxib led to inhibition 

of tumor growth of colorectal cancer in male rats by significantly inhibited the number of 

aberrant crypt foci (ACF). In another animal study, male F344 rats were fed with 500 ppm 

curcumin in diet both during initiation and post-initiation periods to evaluate the effects on 

tumorigenesis of N-nitrosomethylbenzylamine (NMBA)-induced esophageal cancer [24]. 

Curcumin was shown to inhibit the incidence and multiplicity of esophageal neoplasms by 59% 
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and 55% respectively compared to the mice fed with control diets during the initiation stage and 

by 50% and 43% respectively during the post-initiation stage, indicating that curcumin exhibited 

its chemopreventive effects on NMBA-induced esophageal cancer. Treatment of curcumin at a 

dosage of 0.05% (w/w) in diet in male Wistar rats was found associated with a reduction of the 

number of adenocarcinomas of N-methyl-N’-nitro-N-nitrosoguanisine (MNNG)-induced 

stomach cancer by 66% compared to the group fed with the basal diet [25]. Byun et al. [26] 

conducted an animal study to evaluate the inhibitory effect of curcumin on AOM-induced 

colorectal cancer enhanced by high-protein diets (HPD). Specifically, female Balb/c mice were 

treated with control diets, HPD or HPD containing 0.02% curcumin. As a result, the 

administration of curcumin led to a significant reduction of tumor multiplicity by 40% compared 

with the group fed with HPD. Additionally, the expression of COX-2, the levels of nitric oxide 

and tumor necrosis factor-alpha and the rate of colonocyte proliferation were shown to be 

significantly inhibited by curcumin, further indicating that curcumin ameliorates the enhancing 

effect of HPD on colorectal cancer. 

1.3.2 Curcumin prevents breast cancer 

In female Sprague-Dawley rats, curcumin, i.p. injected at a 100 mg/kg and 200 mg/kg doses, was 

shown to inhibit 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis 

with a significant reduction of the number of mammary tumors and mammary adenocarcinomas 

[27]. Another study evaluating the effects of curcumin on preventing mammary tumors showed 

that in Wistar-MS rats fed with diets containing 1% curcumin, the incidence of diethylstilbestrol 

(DES)-induced mammary tumors reduced by 28% compared to mice fed with basal diets [28].  
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1.3.3 Curcumin prevents oral cancer 

Curcumin was shown to inhibit the incident of 4-nitroquinoline-1-oxide-induced tongue 

carcinoma by 91% and oral pre-neoplasia during both initiation and post-initiation stages when 

orally administrated in dies at a dosage of 0.5 g/kg to male F344 rats [29]. Another study 

indicated that curcumin at a dosage of 10 mmol/kg in diets or in combination with catechin 

resulted in a reduction of the number of visible oral papillomas and papilloma volume by 39.6% 

and 61.3%, respectively in Syrian golden hamsters. Additionally, the incidence of oral squamous 

cell carcinoma (SCC) and the number of oral SCC lesions was found significantly inhibited by 

the administration of curcumin [30].  

1.3.4 Curcumin prevents liver cancer 

In C3H/HeN mice orally treated with diets containing 0.2% curcumin and i.p. injected with N-

nitrosodiethylamine (DENA) four days before treatment of curcumin, the multiplicity and 

hepatocarcinomas were reduced by 81% and 62% after 42 weeks, respectively, compared to the 

untreated group [31]. The same research group also demonstrated that the treatment of curcumin 

also resulted in inhibition of hepatic hyperplastic nodules, body weight loss and Curcumin also 

prevented the induction of hepatic hyperplastic nodules, body weight loss and hypoproteinemia 

accompanied with increased increased levels of hepatic diagnostic markers in Wistar rats. 

Curcumin which was i.p. injected to BALB/c mice at a concentration of 200 µM was shown to 

inhibit liver tumor multiplicity induced by N-bis(2-hydroxypropyl)nitrosamine (DHPN) by 30% 

[32].  

In spite of the potential of curcumin as a chemopreventive agent, other studies have shown that 

in some animal models, curcumin had no or few chemopreventive effects on certain types of 
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cancer. Pereira et al. [33] demonstrated that in male Fischer 344 rats, curcumin at 1% and 2% 

(w/w) doses in diets did not significantly alter the incident and multiplicity of AOM-induced 

tumors in the colon and DMBA-induced tumors in the mammary gland. The study by Hecht et 

al. [34] also showed that treatment of curcumin by gavage at the dosage of 2000 ppm in A/J mice 

had no effect on B[α]P-induced lung tumor multiplicity. Another study in female Sencar mice 

indicated that 2% curcumin in diets had no effect on the incidence of DMBA-induced tumors, 

whereas reduced the incidence of leukemias by 53% [35].  

1.4 Animal studies of curcumin on metastasis 

1.4.1 Curcumin inhibits metastasis of breast cancer 

Metastasis plays a critical in spreading of cancer. Therefore, it is of great interest to study the 

activities of curcumin to inhibit metastatic tumors for potentially being treated as a chemo-

therapeutic agent. In male SCID mice, treatment of curcumin by oral gavage at a dosage of 5 

mg/kg body weight three times per week was shown to significantly inhibit the number of 

metastatic pulmonary nodules induced by prostate cancer cells through suppressing the 

expression of matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3 activity [15]. Another 

study showed that in female athymic nu/nu mice fed with 2% (w/w) curcumin in diets after the 

primary tumor was surgically removed, the incidence of lung metastasis induced by the human 

breast cancer xenograft model was significantly reduced through suppressing the expression of 

NF-κB, COX-2 and MMP-9 indicating the potential of curcumin for chemo-therapeutic 

application for preventing breast cancer metastasis [36]. The study conducted by Bachmeier et 

al. [37] focused on anti-metastatic effects of curcumin on breast cancer also indicated that 1% 

(w/w) curcumin fed to immunodeficient mice resulted in a significant reduction of the incident of 

lung metastasis by 51% compared to the untreated group through suppressing the expression of 
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NF-κB and down-regulating of AP-1, further suggesting the potential of curcumin as a 

chemopreventive agent to prevent metastasis induced by human breast cancer. In another study, 

dendrosomal curcumin was i.p. injected to BALB/c mice at a dosage of 80 mg/kg body weight to 

study the inhibitory effect of curcumin on metastasis induced by breast tumor [38]. As a result, 

treatment of curcumin was shown to be associated with a higher survival rate and a reduction of 

metastatic signs by 86% compared to the control group in addition to more common metastatic 

tumors in the lung, the liver and the sternum tissues in the treated groups. Recently, a novel study 

was conducted to enhance the anti-metastatic effect of curcumin by formulating curcumin with 

phosphatidylcholine (Meriva) to increase the bioavailability of curcumin [39]. Meriva was 

shown to inhibit lung metastasis induced by murine mammary gland adenocarcinoma in female 

athymic nude mice whereas treatment of curcumin alone showed no effect, indicating that this 

novel conjugated curcumin analog enhance the anti-metastatic activity compared to curcumin. 

1.4.2 Curcumin inhibits metastasis of liver cancer 

Orally administrated curcumin at a dosage of 100-200 mg/kg body weight for 20 days after the 

implantation of tumors resulted in significant inhibition of the number of intrahepatic metastasis 

induced by hepatocellular carcinoma in a dose-dependent manner despite that the growth of 

tumors was not significantly inhibited by curcumin [40].  

1.4.3 Curcumin inhibits metastasis of lung cancer 

A study conducted by Chen et al. [41] indicated that p.o. administrated curcumin at a dosage of 1 

g/kg body weight for five weeks led to a significant reduction of the number of pulmonary 

colonized tumor nodules induced by human lung adenocarcinoma cells compared to the control 

group in SCID mice (3.89 ± 2.28 versus 21.80 ± 13.84 per mouse) through activation of the 
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tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). Curcumin was also shown to inhibit 

metastasis induced by orthotopic implantation of Lewis lung carcinoma (LLC-MLN) cell lines in 

pathogen-free C57BL/6CrSlc mice [42]. Specifically, oral administration of curcumin at 100 or 

200 mg/kg doses after implantation of LLC-MLN cells resulted in significant inhibition of the 

mediastinal lymph node metastasis in a dose-dependent manner in spite of no growth of the 

tumors at the implantation site. Additionally, administration of curcumin combined with 

treatment of cis-diamine-dichloroplatinum (CDDP), an anti-cancer drug i.v. injected at a dosage 

of 7 mg/kg, significantly inhibited the mediastinal lymph node metastasis and tumor growth at 

the implantation site accompanied with significant prolonged survival time of mice, indicating 

the enhanced therapeutic effect of curcumin combined with CDDP in terms of inhibiting 

metastasis. 

1.4.4 Curcumin inhibits metastasis of prostate cancer 

An animal study of inhibitory effects of curcumin on prostate cancer in Athymic nude mice 

showed that oral injection of curcumin at a dosage of 30 mg/kg body weight alone or 

combination with TNF-related apoptosis-inducing ligand (TRAIL) which induces apoptosis of 

prostate cancer cell lines was associated with anti-metastatic effects in vivo including inducing 

the expression of cell cycle inhibitors p21 and p27 and suppressing the expression of cyclin D1 

[43]. Lung metastasis induced by prostate cancer was also found to be inhibited by 1% curcumin 

in LASCR diets which was fed to CD-1 Foxn1nu male mice [44]. Specifically, treatment of 

curcumin led to significant inhibition the formation of lung metastases induced by prostate 

cancer xenografts accompanied with higher number of animals with few metastases by the 

mechanism of suppressing the expression of proinflammatory cytokines CXCL1 and -2.  
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1.4.5 Curcumin inhibits metastasis of colorectal cancer 

Curcumin, i.v. injected to chicken embryos at the concentration of 12 µM in DMSO, was shown 

to significantly inhibit distant metastasis induced by Rko cells and HCT116 cells through 

suppressing the expression of miR-21 which is overexpressed in tumors to promote metastasis, 

indicating that curcumin exerted its effects on inhibiting metastasis of colorectal cancer cell lines 

in vivo [45]. Another study also indicated the anti-metastatic effect of curcumin on colorectal 

cancer in which SCID mice were treated with curcumin by gastric intubation at a dosage of 1 

g/kg body weight daily for 30 days [46]. As a result, number of liver metastatic nodules were 

significantly reduced compared to the control group by the mechanism of suppressing SP-1 

regulated genes and focal adhesion kinase (FAK) phosphorylation and up-regulating E-cadherin 

expression.  

1.4.6 Curcumin inhibits metastasis of skin cancer 

Menon et al. [47, 48] investigated the inhibitory effects of polyphenolic compounds on lung 

metastasis induced by B16F10 melanoma cells. The result indicated that oral administration of 

curcumin at a dosage of 200 nmol/kg body weight in female C57BL/6 mice significantly reduced 

the number of lung tumor nodules by 80% and increased the life span of mice by 143%, 

demonstrating the anti-metastatic effects of curcumin on melanoma carcinogen by the 

mechanism of inhibiting the invasion of B16F10 melanoma cells and inhibiting 

metalloproteinases 
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1.5 Clinical studies of curcumin on cancer 

1.5.1 Clinical studies of curcumin on colorectal cancer 

Curcumin was shown to exert anti-tumor effects in numerous studies indicating that curcumin 

has the potential to be treated in human as a chemopreventive agent. Many previous and ongoing 

clinical studies have been conducted to evaluate the anti-tumor activity of curcumin in humans. 

A clinical study conducted by Sharma et al. [49] recruited patients with colorectal cancer and 

treated them with curcumin at 36-180 mg doses per day in soft gelatin capsules for 120 days. 

Among the 15 patients, one patient who exhibited reduced venous blood CEA levels underwent 

stable disease in the colon but progressive disease in the liver after treated with 36 mg/day 

curcumin. Five patients exhibited stable disease on CT scan for three months. Furthermore, the 

stabilization of these five patients was found associated with 59% lower pretreatment 

lymphocytic glutathione-S-transferase (GST) levels. In another clinical study, among 15 patients 

with colorectal cancer treated with curcumin at 450-3600 mg doses per day, two patients 

exhibited stable disease for two months, one of who was stable for four months whereas the 

other exhibited progressive disease after two months [50]. In addition, LPS-induced PGE2 was 

found to be lowered by 62% and 57% on day 1 and day 2, respectively, after treatment at the 

highest dose, indicating that the therapeutic efficacy of curcumin may be related to inducing 

serum PGE2 levels. A pilot clinical trial conducted by Garcea et al. [51] showed that in 12 

patients with hepatic metastasis from colorectal cancer, neither curcumin nor its metabolites was 

found in the peripheral circulation, whereas trace amount of curcumin metabolites were found in 

liver tissues after oral administration of curcumin at 450-3600 mg doses per day for 7 days. 

Difference of oxidative DNA changes was also not significant compared to pretreatment 

samples. These results suggest that doses of curcumin which can lead to the anti-metastatic 
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activity may not be applicable in humans currently. Carroll et al. [52] conducted a phase II 

clinical trial to evaluate the effect of curcumin on colorectal neoplasia. In this study, 44 smokers 

with eight or more aberrant crypt foci (ACF) were recruited and treated with curcumin at a 

dosage of 2 g or 4 g per day for 30 days. As a result, for the treatment at 4 g/day, the number of 

ACF was reduced by 40% whereas no significant reduction was observed for the treatment at 2 

g/day. Additionally, five -fold increase in plasma curcumin/conjugate levels was observed at the 

post-treatment stage suggesting that the resulting reduction of ACF in patients was associated 

with mediation by curcumin conjugates.  

1.5.2 Clinical studies of curcumin on pancreatic cancer 

Dhillon et al. [53] conducted a clinical trial to study the effect of curcumin on advanced 

pancreatic cancer in patients. In this trial, 25 patients with pancreatic cancer were recruited and 

treated with curcumin at a dosage of 8 g/day for two months. Among these patients, two of them 

exhibited therapeutic efficacy of curcumin. One patient experienced stable disease for more than 

18 months. Tumor regression (73%) was observed in another patient with significant increase of 

serum cytokine levels by 4 to 35 folds. Additionally, down-regulation of the expression of NF-

κB, COX-2 and phosphorylated signal transducer was found associated with the treatment of 

curcumin in patients. Another clinical study recruiting 21 patients with pancreatic cancer showed 

that curcumin orally treated at a dosage of 8 g/day in combination with gemcitabine resulted in a 

median survival time at 161 days and a 1-year survival rate at 19% with no adverse effect 

triggered by intolerability of curcumin, suggesting that gemcitabine-based chemotherapy of 

pancreatic cancer can be further investigated [54].  
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1.5.3 Clinical studies of curcumin on prostate cancer 

A recent pilot phase II study showed that after 30 patients with progressing chemotherapy-naive 

metastatic castration-resistant prostate cancer (CRPC) were administrated with curcumin at a 

dosage of 6000 mg/day in combination with docetaxel, 59% of the patients were shown prostate-

specific antigen (PSA) response and 88% of the responders kept shown PSA response for three 

cycles of treatment with no adverse effect triggered by curcumin found [55]. These results 

indicated that randomized clinical trials can be conducted to further evaluate curcumin as a 

treatment of prostate cancer. 

1.5.4 Clinical studies of curcumin on breast cancer 

A phase I clinical trial was conducted by Bayet-Robert et al. [56]. In this study, 14 patients with 

metastatic and advanced breast cancer were recruited. Curcumin was orally administrated at a 

dosage of 500 mg/day for 7 days and kept administrated at escalated doses until toxicity should 

occur combined with i.v. injected docetaxel. The results not only indicated a dosage at 8000 

mg/day as the maximal dose for toxicity, but also showed some improvements in most patients 

including decrease of carcinoembryonic antigen and regression of non-measurable lesions 

without any progressive disease. Additionally, five patients were shown partial responses and 

three patients experienced stable disease for six weeks after the last cycle of treatment. These 

results indicated potential of curcumin to be studied as a treatment of metastatic and advanced 

breast cancer in phase II trials in the future. 

1.5.5 Ongoing clinical studies of curcumin on cancer 

Although curcumin was shown promising anti-cancer effects in preclinical studies, limited 

human clinical trials were conducted due to poor bioavailability of curcumin. Many ongoing 
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clinical trials are making progress on overcoming the knowledge gap and investigating the 

application of curcumin as a potential chemoreventive agent (www.ClinicalTrials.gov). A study 

conducted by Baylor Research Institute is ongoing to evaluate the safety and the anti-cancer 

effect of curcumin combined with FDA-approved chemotherapy drug 5-fluorouracil (5FU, 

Adracil) on colorectal cancer.  Another study sponsored by Emory University is being conducted 

to investigate the mechanism of curcumin preventing breast cancer through inhibiting NF-kB 

DNA binding in patients treated by radiotherapy. University of Leicester is conducting a clinical 

study the chemotherapeutic effects of combination of curcumin and FOLFOX on inhibiting 

inoperable colorectal metastasis. A study of safety and feasibility of curcumin in preventing 

Cervical Intraepithelial neoplasias (CIN3) is ongoing in Baylor Research Institute. Centre Jean 

Perrin has sponsored an ongoing clinical study to investigate the effect of curcumin in 

combination with Taxotere on treatment of prostate cancer metastatic castration resistant 

compare to treatment of Taxotere alone.  

  

 

 

 

 

 

 

 

http://www.clinicaltrials.gov/
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CHAPTER 2 

CHEMICAL STABILITY OF CURCUMIN: STRUCTURE AND ACTIVITY 

RELATIONSHIP (SAR) STUDY 

2.1 Introduction 

In spite of potent biological activities of curcumin, the application of curcumin is limited for its 

poor bioavailability. Wahlstrom et al. [57] found that in Sprague-Dawley rats, when curcumin 

was orally administrated at a dosage of 1 g/kg, 75% curcumin was excreted from the feces and 

only trace amount of curcumin was detected in the urine. Another study showed that when 

curcumin was i.p. and i.v. injected to cannulated rats, most ingested curcumin was excreted in 

the bile and curcumin was found to be metabolized to glucuronides of tetrahydrocurcumin 

(THC) and hexahydrocurcumin (HHC) [58]. In a study of Ravindranath et al. [59], curcumin was 

orally administrated to rats at a dosage of 400 mg/kg. As a result, 40% curcumin was excreted 

from the feces. In addition, 90% of curcumin was found in the stomach and the small intestine at 

thirty minutes after administration whereas only 1% was found by 24 hours. One study of 

Yoshiki et al. [60] indicated that curcumin not only was metabolized in animals, but also 

degrades rapidly at physiological pH. Furthermore, Griesser et al. [61] demonstrated that 

bicyclopentadione is the major degradation product of curcumin at physiological pH. 

Additionally, they proposed a mechanism by which curcumin is transformed to 

bicyclopentadione through the formation of phenolic radical and cyclic autoxidation (Figure 1). 

Here in this session, we conducted a research to study the impact of the chemical structure of 

curcumin on its stability at physiological by synthesizing various curcumin analogues and 

comparing their stability with curcumin. By doing this research, we will generate a better 
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understanding of the mechanism of curcumin degradation in physiological environment and thus 

facilitates the development of curcumin-based therapeutics in the future.  

 

Figure 1. Proposed mechanism of curcumin degradation at physiological pH 

2.2 Materials and Methods 

2.2.1 Materials 

Commercial curcumin, tributyl borate, boron tribromide, propargyl bromide, 4-

hydroxybenzalhyde, 3-methyl-4-hydroxybenzalhyde and 3-nitro-4-hydroxybenzalhyde were 

purchased from Arcos Organics (Waltham, MA, USA). Boric anhydride, acetylacetone, vanillin, 

3,4-dimethoxybenzaldehyde, n-butylamine were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Magnesium sulfate, sodium phosphate dibasic, potassium phosphate monobasic, 

potassium carbonate were purchased from Thermal Fisher Scientific (Fair Lawn, MA, USA). 3-

bromo-4-hydroxybenzalhyde was purchased from Alfa Aesar, Ward Hill, MA). 3-cloro-4-
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hydroxybenzalhyde was purchased from Chem-impex Int’l Inc (Wood Dale, IL, USA). 3-floruo-

4-hydroxybenzalhyde was purchased from Oakwood Chemical (N. Estill, SC, USA).  

Ethyl acetate, dichloromethane, hexane, HPLC-grade methanol, acetic acid, hydrochloric acid 

was purchased from Thermal Fisher Scientific. Anhydrous ethyl acetate anhydrous 

dichloromethane was purchased from Arcos Organics. Tetrahydrofuran was purchased from 

Sigma-Aldrich. Silica gel for column chromatography was purchased from Natland International 

Corporation (Morrisville, NC, USA). Silica gel plates for TLC were purchased from EMD 

Millipore Corporation (Billerica, MA, USA). The rotation evaporator was purchased from 

Heidolph Brinkmann (Elk Grove Village, IL, USA). Analysis of high resolution ESI-MS was 

conducted by the Mass Spectrometry Center at UMass Amherst. 'H NMR data were collected on 

Advance 400 MHz spectrometer from the High-Field NMR Facility at UMass Amherst. 

2.2.2 Synthesis of Curcumin 

Boric anhydride (0.35 g, 5 mmol) was added to 50 mL anhydrous ethyl acetate, followed by 

addition of acetylacetone (1.03 mL, 10 mmol). The mixture was stirred at 50℃ for 30 min. 

Vanillin (3.04 g, 20 mmol) and tributyl borate (10.8 mL, 40 mmol) were added and the mixture 

was stirred at 50℃ for another 30 min. Then n-butylamine (0.4 mL, 5 mmol) was dissolved in 15 

mL anhydrous ethyl acetate and added dropwise. The reaction mixture was stirred under nitrogen 

at 80℃ for 4 hours and at room temperature overnight. After 30 mL hydrochloric acid was 

added, the mixture was stirred for 30 min to quench the reaction.  The reaction product was 

extracted with ethyl acetate and the organic layers were combined. The organic layer was 

washed with water and dehydrated with anhydrous magnesium sulfate. After filtration, the 

organic layer was dried by the rotation evaporator. The crude product was purified after 



20 
 

recrystallization from methanol. The final product was confirmed by HPLC, high resolution ESI-

MS and 'H NMR spectrometry. 

2.2.3 Synthesis of Di-O-methyl-curcumin 

Boric anhydride (0.35 g, 5 mmol) was added to 50 mL anhydrous ethyl acetate, followed by 

addition of acetylacetone (1.03 mL, 10 mmol). The mixture was stirred at 50℃ for 30 min. 3,4-

dimethoxybenzaldehyde (3.32 g, 20 mmol) and tributyl borate (10.8 mL, 40 mmol) were added 

and the mixture was stirred at 50℃ for another 30 min. Then n-butylamine (0.4 mL, 5 mmol) 

was dissolved in 15 mL anhydrous ethyl acetate and added dropwise. The reaction mixture was 

stirred under nitrogen at 80℃ for 4 hours and at room temperature overnight. After 30 mL 

hydrochloric acid was added, the mixture was stirred for 30min to quench the reaction.  The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 

organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 

filtration, the organic layer was dried by the rotation evaporator. The crude product was purified 

after recrystallization from methanol. The final product was confirmed by HPLC, high resolution 

ESI-MS and 'H NMR spectrometry. 

2.2.4 Synthesis of Di-O-demethyl-curcumin 

Curcumin (200mg, 0,54mmol) was added to 30 mL anhydrous dichloromethane and the solution 

was stirred at 0 ℃ for 10 min. Boron tribromide (20 mmol) dissolved in 20 mL anhydrous 

dichloromethane was then added to the solution dropwise. The reaction mixture was stirred at 

room temperature overnight. Water was added to the mixture to quench the reaction. The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 

organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 
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filtration, the organic layer was dried with the rotation evaporator. The crude product was 

purified by column chromatography using 5% methanol in dichloromethane as the mobile phase 

and silica gel as the stationary phase. The fractions were analyzed by TLC using 

dichloromethane-methanol-acetate acid (50:5:2) as the eluent mixture. The fractions were then 

combined and dried by the rotation evaporator. The final product was confirmed by HPLC, high 

resolution ESI-MS and 'H NMR spectrometry. 

2.2.5 Preparation of Curcumin Degradation Products 

A solution of curcumin (4.6mg) in tetrahydrofuran (5mL) was added to 1L 0.1 M phosphate 

buffer (2.59 g/L KH₂PO₄, 11.5 g/L Na₂HPO₄, pH=7.4) to make a 25 µM curcumin solution. The 

solution was stirred at room temperature for 5 days. The solution was then extracted with equal 

volume of ethyl acetate. The organic layer was dehydrated with anhydrous magnesium sulfate. 

After filtration, the organic layer was dried by the rotation evaporator. The dried curcumin 

degradation products were collected and stored at -20℃. 

2.2.6 Isolation of Bicyclopentadione from Curcumin Degradation Products 

The curcumin degradation product was dissolved with methanol and analyzed by Agilent 1100 

HPLC (Agilent, Santa Clara, CA, USA) using NUCLEOSIL 100-5C18 column (4.6 x 250 mm, 5 

µm). The solution was eluted with a multistep gradient of solvent A (water with 0.1% acetic 

acid) and solvent B (methanol with 0.1% acetic acid) at a flow rate of 1.0 mL/min. The gradient 

was 20% solvent B increasing to 65% in 15 min, increasing to 90% in 3 min, kept at 90% for 2 

min, decreasing to 20% in 2 min and kept at 20% for 3 min. Absorbance at 420 nm was detected 

to observe the residual curcumin and absorbance at 254 nm was detected to observe the 

formation of curcumin degradation products in phosphate buffer. Subsequently, the degradation 
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products in methanol was subjected to Shimadzu-2020 preparative HPLC system (Shimadzu, 

Marlborough, MA, USA) with the same condition as on Agilent HPLC system. 

Bicyclopentadione, the major degradation product was isolated by the automatic fraction 

collector. The fractions were then combined and extracted with ethyl acetate. The organic layer 

was dehydrated with anhydrous magnesium sulfate. After filtration, the organic layer was dried 

by the rotation evaporator. The final isolation product was confirmed by HPLC and 'H NMR 

spectrometry.  

2.2.7 Synthesis of Monoalkyne-curcumin  

Vanillin (1 g, 6.57 mmol) and potassium carbonate (4.54 g, 33 mmol) were mixed in 50 mL 

methanol, followed by addition of 80 wt% propargyl bromide solution in toluene (4.91 g, 33 

mmol). The reaction mixture was stirred under nitrogen at room temperature overnight. The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 

organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 

filtration, the organic layer was dried by the rotation evaporator. The synthetic alkyne-vanillin 

was collected and confirmed by HPLC and 'H NMR spectrometry.  

Boric anhydride (0.69 g, 10 mmol) was added to 50 mL anhydrous ethyl acetate, followed by 

addition of acetylacetone (4.12 mL, 40 mmol). The mixture was stirred at 50℃ for 30 min. 

Subsequently, vanillin (1.52 g, 10 mmol) and tributyl borate (5.38 mL, 20 mmol) were added and 

the mixture was stirred at 50℃ for another 30 min. Then n-butylamine (0.73 mL, 10 mmol) was 

dissolved in 15 mL anhydrous ethyl acetate and added dropwise. The reaction mixture was 

stirred under nitrogen at 80℃ for 4 hours and at room temperature overnight. After 30 mL 

hydrochloric acid was added, the mixture was stirred for 30 min to quench the reaction. The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 
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organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 

filtration, the organic layer was dried by the rotation evaporator. The crude product was purified 

by column chromatography using 50% ethyl acetate in hexane as the mobile phase and silica gel 

as the stationary phase to afford furoylacetone. The fractions were analyzed by TLC using ethyl 

acetate-hexane (50:50) as the eluent mixture. The fractions were then combined and dried by the 

rotation evaporator. The purified furoylacetone was then confirmed by HPLC, and 'H NMR 

spectrometry.  

Boric anhydride (0.60 g, 0.85 mmol) was added to 30 mL anhydrous ethyl acetate, followed by 

addition of furoylacetone (0.40 g, 1.71 mmol). The mixture was stirred at 50℃ for 30 min. 

Alkyne-vanillin (0.32 g, 1.71 mmol) and tributyl borate (460 µL, 1.71 mmol) were added and the 

mixture was stirred at 50℃ for another 30 min. Then n-butylamine (169 µL) was dissolved in 10 

mL anhydrous ethyl acetate and added dropwise. The reaction mixture was stirred under nitrogen 

at 80℃ for 4 hours and at room temperature overnight. After 30 mL hydrochloric acid was 

added, the mixture was stirred for 30 min to quench the reaction.  The reaction product was 

extracted with ethyl acetate and the organic layers were combined. The organic layer was 

washed with water and dehydrated with anhydrous magnesium sulfate. After filtration, the 

organic layer was dried by the rotation evaporator. The crude product was purified by column 

chromatography with an ethyl acetate-hexane gradient from 40:60 to 50:50 to afford 

monoalkyne-curcumin using silica gel as the stationary phase. The fractions were analyzed by 

TLC using ethyl acetate-hexane (50:50) as the mobile phase. The fractions were then combined 

and dried by the rotation evaporator. The purified monoalkyne-curcumin was then confirmed by 

HPLC, high resolution ESI-MS and 'H NMR spectrometry. 
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2.2.8 Synthesis of Dialkyne-curcumin 

Vanillin (1 g, 6.57 mmol) and potassium carbonate (4.54 g, 33 mmol) were mixed in 50 mL 

methanol, followed by addition of 80 wt% propargyl bromide solution in toluene (4.91 g, 33 

mmol). The reaction mixture was stirred under nitrogen at room temperature overnight. The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 

organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 

filtration, the organic layer was dried by the rotation evaporator. The synthetic alkyne-vanillin 

was collected and confirmed by HPLC and 'H NMR spectrometry.  

Boric anhydride (0.35 g, 5 mmol) was added to 50 mL anhydrous ethyl acetate, followed by 

addition of acetylacetone (1.03 mL, 10 mmol). The mixture was stirred at 50℃ for 30 min. 

Alkyne-vanillin (3.8 g, 20 mmol) and tributyl borate (10.8 mL, 40 mmol) were added and the 

mixture was stirred at 50℃ for another 30 min. Then n-butylamine (0.4 mL, 5 mmol) was 

dissolved in 15 mL anhydrous ethyl acetate and added dropwise. The reaction mixture was 

stirred under nitrogen at 80℃ for 4 hours and at room temperature overnight. After 30 mL 

hydrochloric acid was added, the mixture was stirred for 30 min to quench the reaction.  The 

reaction product was extracted with ethyl acetate and the organic layers were combined. The 

organic layer was washed with water and dehydrated with anhydrous magnesium sulfate. After 

filtration, the organic layer was dried by the rotation evaporator. The crude product was purified 

after recrystallization from methanol. The final product was confirmed by HPLC, high resolution 

ESI-MS and 'H NMR spectrometry. 

2.2.9 Synthesis of 7,7’-R-curcumin 

Curcumin analogues 7,7’-R-curcumin (R= H, CH₃, NO₂, Br, Cl, F) were synthesized with the 

same protocol as curcumin. Briefly, boric anhydride (0.35 g, 5 mmol) was added to 50 mL 
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anhydrous ethyl acetate, followed by addition of acetylacetone (1.03 mL, 10 mmol). The mixture 

was stirred at 50℃ for 30 min. 3-R-4-hydroxybenzaldehyde (20 mmol, R= H, CH₃, NO₂, Br, Cl, 

F) and tributyl borate (10.8 mL, 40 mmol) were added and the mixture was stirred at 50℃ for 

another 30 min. Then n-butylamine (0.4 mL, 5 mmol) was dissolved in 15 mL anhydrous ethyl 

acetate and added dropwise. The reaction mixture was stirred under nitrogen at 80℃ for 4 hours 

and at room temperature overnight. After 30 mL hydrochloric acid was added, the mixture was 

stirred for 30 min to quench the reaction.  The reaction product was extracted with ethyl acetate 

and the organic layers were combined. The organic layer was washed with water and dehydrated 

with anhydrous magnesium sulfate. After filtration, the organic layer was dried by the rotation 

evaporator. The crude products of 7,7’-R-curcumin (R= H, NO₂, Br, Cl, F) were purified after 

recrystallization from methanol. The 7,7’-dimethyl-curcumin was purified by column 

chromatography using 35% ethyl acetate in hexane as the mobile phase and silica gel as the 

stationary phase. The fractions were analyzed by TLC using ethyl acetate-hexane (35:65) as the 

eluent mixture. The fractions were then combined and dried by the rotation evaporator. The final 

products were then confirmed by HPLC, and 'H NMR spectrometry.  

2.2.10 Stability Assay for Curcumin Analogues 

Solutions of curcumin or curcumin analogues at 25 µM were freshly prepared in 0.1 M 

phosphate buffer (2.59 g/L KH₂PO₄, 11.5 g/L Na₂HPO₄, pH=7.4). The curcumin concentration 

in the buffer was instantly analyzed at different time points by Agilent 1100 HPLC (Agilent, 

Santa Clara, CA, USA) using Kromasil 100-5-C18 column (4.6 x 250 mm, 5 µm). The solution 

was eluted with the mobile phase of 80% methanol with 0.1% acetic acid and 20% water with 

0.1% acetic acid at the flow rate of 1.0 mL/min. The detection wavelength was 420 nm.  
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2.2.11 Colorimetric Assay for Curcumin Analogues 

Solutions of curcumin or curcumin analogues at 25 µM were freshly prepared in 0.1 M 

phosphate buffer (2.59 g/L KH₂PO₄, 11.5 g/L Na₂HPO₄, pH=7.4) and added to a 96-well plate. 

The absorbance of the solutions at 420 nm was detected at different time points by a plate reader 

(Molecular Devices, Sunnyvale, CA, USA). 

2.3 Results and Discussion 

2.3.1 Chemical Synthesis 

2.3.1.1 Curcumin 

Synthetic curcumin (Figure 2) was obtained as orange powder. Purity of curcumin was checked 

by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 column (4.6 

x 250 mm, 5 µm) (Figure 3). The compound was eluted with the mobile phase of 80% methanol 

with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 mL/min. 

Synthetic curcumin was detected at 420 nm and residual starting material was detected at 254 

nm. High resolution ESI-MS showed [M-H+] at 367.1167. HRMS calcd. for 367.1187. The 1H 

NMR showed the signals of the tri-substituted benzene rings at δ 6.92, 7.05, 7.11 ppm. The 

signals of the methylene group and the methoxy groups were shown at δ 5.85 and 3.95, 

respectively.  
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Figure 2. Structure of curcumin 

 

 

Figure 3. HPLC analysis of curcumin 

Table 1. 1H NMR chemical shifts and J-coupling constants for curcumin (400 MHz, chloroform-

d) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.85 s ― 

2 ― ― ― 

3 6.46 d 15.6 
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4 7.57 d 15.6 

5 ― ― ― 

6 7.05 d 1.2 

7 ― ― ― 

8 ― ― ― 

9 6.92 d 8.4 

10 7.11 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 2.0 

7-OMe 3.95 s ― 

 

2.3.1.2 Di-O-methyl-curcumin 

Di-O-methyl-curcumin (Figure 4) was obtained as orange powder. Purity of the final product 

was detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-

C18 column (4.6 x 250 mm, 5 µm) (Figure 5). The compound was eluted with the mobile phase 

of 80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 

1.0 mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 395.1478. HRMS calcd. for 

395.1500. The 1H NMR signals of the tri-substituted benzene rings and the methylene group 

were similar to curcumin. The signals of the methoxy groups at δ 3.93 were shown as a doublet. 
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Figure 4. Structure of di-O-methyl-curcumin 

 

 

Figure 5. HPLC analysis of di-O-methyl-curcumin 

 

Table 2. 1H NMR chemical shifts and J-coupling constants for di-O-methyl-curcumin (400 MHz, 

chloroform-d) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.83 s ― 

2 ― ― ― 
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3 6.48 d 16.0 

4 7.59 d 16.0 

5 ― ― ― 

6 7.08 d 1.2 

7 ― ― ― 

8 ― ― ― 

9 6.88 d 8.0 

10 7.14 dd J10-H, 9-H = 8.0 / J10-H, 6-H = 1.6 

7-OMe, 8-OMe 3.93 d 4.8 

 

2.3.1.3 Di-O-demethyl-curcumin 

Di-O-demethyl-curcumin (Figure 6) was obtained as red plates. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 7). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 339.0871. HRMS calcd. for 

339.0874. The 1H NMR signals of the tri-substituted benzene rings and the methylene group 

were similar to curcumin. 
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Figure 6. Structure of di-O-demethyl-curcumin 

 

 

Figure 7. HPLC analysis of di-O-demethyl-curcumin 

 

Table 3. 1H NMR chemical shifts and J-coupling constants for di-O-demethyl-curcumin (400 

MHz, acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.99 s ― 

2 ― ― ― 
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3 6.60 d 15.6 

4 7.53 d 16.0 

5 ― ― ― 

6 7.20 d 2.0 

7 ― ― ― 

8 ― ― ― 

9 6.88 d 8.0 

10 7.08 dd J10-H, 9-H = 8.0 / J10-H, 6-H = 2.0 

 

2.3.1.4 Monoalkyne-curcumin 

Monoalkyne-curcumin (Figure 8) was obtained as orange plates. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 9). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 405.1342. HRMS calcd. for 

405.1344. The 1H NMR signals of the tri-substituted benzene rings and the methoxy groups were 

similar to curcumin. The signals of the alkyne group and the methylene group close to the alkyne 

group were shown at δ 2.53 and 4.80 ppm, respectively.  
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Figure 8. Structure of monoalkyne-curcumin 

 

 

Figure 9. HPLC analysis of monoalkyne-curcumin 

 

Table 4. 1H NMR chemical shifts and J-coupling constants for monoalkyne-curcumin (400 MHz, 

chloroform-d) (continued across next two pages) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.81 s ― 

2 ― ― ― 

3 6.46 d 16.0 
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4 7.57 d 15.6 

5 ― ― ― 

6 7.04 d 2.0 

7 ― ― ― 

8 ― ― ― 

9 6.92 d 8.4 

10 7.10 dd J10-H, 9-H = 8.0 / J10-H, 6-H = 2.0 

11 4.80 d 2.4 

12 ― ― ― 

13 2.53 t 2.4 

7-OMe 3.92 s ― 

2’ ― ― ― 

3’ 6.48 d 16.0 

4’ 7.57 d 15.6 

5’ ― ― ― 

6’ 7.08 d 2.0 

7’ ― ― ― 

8’ ― ― ― 

9’ 7.02  7.6 

10’ 7.12 dd J10’-H, 9’-H = 8.4 / J10’-H, 6-H = 2.0 
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7’-OMe 3.94 s ― 

 

2.3.1.5 Dialkane-curcumin 

Dialkyne-curcumin (Figure 10) was obtained as orange powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 11). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 443.1494. HRMS calcd. for 

443.1500. The 1H NMR signals of the tri-substituted benzene rings and the methoxy groups were 

similar to curcumin. The signals of the alkyne group and the methylene group close to the alkyne 

group were shown the same as monoalkyne-curcumin. 

 

 

Figure 10. Structure of dialkyne-curcumin 
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Figure 11. HPLC analysis of dialkyne-curcumin 

 

Table 5. 1H NMR chemical shifts and J-coupling constants for dialkyne-curcumin (400 MHz, 

chloroform-d) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.83 s ― 

2 ― ― ― 

3 6.50 d 16.0 

4 7.59 d 16.0 

5 ― ― ― 

6 7.10 d 1.6 

7 ― ― ― 

8 ― ― ― 



37 
 

9 7.04 d 8.0 

10 7.14 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 1.6 

11 4.81 d 2.4 

12 ― ― ― 

13 2.53 t 2.4 

7-OMe 3.93 s ― 

 

2.3.1.6 Bisdesmethoxycurcumin 

Bisdesmethoxycurcumin (Figure 12) was obtained as red powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 13). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M+H+] at 309.1140 and [M+Na+] at 

331.0949. HRMS calcd. for [M+H+] 309.1121 and [M+Na+] 331.0941. The 1H NMR signals of 

the methylene group and the methoxy groups were similar to curcumin. The signals of the bi-

substituted benzene rings were shown at δ 6.91 and 7.58 ppm. 
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Figure 12. Structure of bisdesmethoxycurcumin 

 

Figure 13. HPLC analysis of bisdesmethoxycurcumin 

 

Table 6. 1H NMR chemical shifts and J-coupling constants for bisdesmethoxycurcumin (400 

MHz, chloroform-d) (continued onto next page) 
No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 6.00 s ― 

2 ― ― ― 

3 6.67 d 16.0 
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4 7.61 d 16.0 

5 ― ― ― 

6, 10 6.91 d 8.4 

7, 9 7.58 d 8.8 

8 ― ― ― 

8-OH 8.90 s ― 

 

2.3.1.7 7,7’-nitro-curcumin 

7,7’-nitro-curcumin (Figure 14) was obtained as yellow powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 15). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 397.0685. HRMS calcd. for 

397.0666. The 1H NMR signals of the tri-substituted benzene rings and the methylene group 

were similar to curcumin.  

 

Figure 14. Structure of 7,7’-nitro-curcumin 
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Figure 15. HPLC analysis of 7,7’-nitro-curcumin 

 

Table 7. 1H NMR chemical shifts and J-coupling constants for 7,7’-nitro-curcumin (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 6.17 s ― 

2 ― ― ― 

3 6.93 d 16.0 

4 7.71 d 16.0 

5 ― ― ― 

6 8.44 d 2.0 

7 ― ― ― 

8 ― ― ― 
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9 7.28 d 8.8 

10 8.07 dd J10-H, 9-H = 8.8 / J10-H, 6-H = 2.0 

 

2.3.8 7,7’-methyl-curcumin 

7,7’-methyl-curcumin (Figure 16) was obtained as orange plates. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 17). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M+H+] at 337.1429 and [M+Na+] at 

359.1243. HRMS calcd. for [M+H+] 337.1434 and [M+Na+] 359.1254. The 1H NMR signals of 

the tri-substituted benzene rings, the methylene group and the methoxy groups were similar to 

curcumin. The signal of the methyl groups was shown at δ 2.25 ppm. 

 

Figure 16. Structure of 7,7’-methyl-curcumin 
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Figure 17. HPLC analysis of 7,7’-methyl-curcumin 

 

Table 8. 1H NMR chemical shifts and J-coupling constants for 7,7’-methyl-curcumin (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 5.99 s ― 

2 ― ― ― 

3 6.65 d 15.6 

4 7.57 d 16.0 

5 ― ― ― 

6 7.50 d 2.0 

7 ― ― ― 

8 ― ― ― 

9 6.89 d 8.0 
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10 7.38 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 2.0 

11 2.25 s ― 

 

2.3.1.9 7,7’-bromo-curcumin 

7,7’-bromo-curcumin (Figure 18) was obtained as yellow powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 19). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 462.9180, 464.9162 and 

466.9147. HRMS calcd. for 462.9286, 464.9167 and 466.9150. The 1H NMR signals of the tri-

substituted benzene rings and the methylene group were similar to curcumin.  

 

Figure 18. Structure of 7,7’-bromo-curcumin 
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Figure 19. HPLC analysis of 7,7’-bromo-curcumin 

 

Table 9. 1H NMR chemical shifts and J-coupling constants for 7,7’-bromo-curcumin (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 6.05 s ― 

2 ― ― ― 

3 6.76 d 16.0 

4 7.57 d 16.4 

5 ― ― ― 

6 7.92 d 2.0 

7 ― ― ― 

8 ― ― ― 

9 7.07 d 8.4 
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10 7.57 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 2.0 

 

2.3.1.10 7,7’-chloro-curcumin 

7,7’-cloro-curcumin (Figure 20) was obtained as yellow powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 21). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 375.0191 and 377.0168. HRMS 

calcd. for 375.0196 and 377.0171. The 1H NMR signals of the tri-substituted benzene rings and 

the methylene group were similar to curcumin.  

 

Figure 20. Structure of 7,7’-chloro-curcumin 
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Figure 21. HPLC analysis of 7,7’-chloro-curcumin 

 

Table 10. 1H NMR chemical shifts and J-coupling constants for 7,7’-chloro-curcumin (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 6.05 s ― 

2 ― ― ― 

3 6.77 d 15.6 

4 7.58 d 15.6 

5 ― ― ― 

6 7.76 d 2.0 

7 ― ― ― 

8 ― ― ― 

9 7.08 d 8.4 
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10 7.53 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 2.0 

 

2.3.1.11 7,7’-flouro-curcumin 

7,7’-floruo-curcumin (Figure 22) was obtained as yellow powder. Purity of the final product was 

detected by Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA) using Kromasil 100-5-C18 

column (4.6 x 250 mm, 5 µm) (Figure 23). The compound was eluted with the mobile phase of 

80% methanol with 0.1% acetic acid and 20% water with 0.1% acetic acid at the flow rate of 1.0 

mL/min. The synthetic compound was detected at 420 nm and residual starting material was 

detected at 254 nm. High resolution ESI-MS showed [M-H+] at 343.0789. HRMS calcd. for 

343.0787. The 1H NMR signals of the methylene group were similar to curcumin. The signals of 

the tri-substituted benzene rings were shown as s triplet at δ 7.05 ppm and doubling doublets at 

7.52 ppm. 

 

Figure 22. Structure of 7,7’-fluoro-curcumin 
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Figure 23. HPLC analysis of 7,7’- fluoro -curcumin 

 

Table 11. 1H NMR chemical shifts and J-coupling constants for 7,7’-fluoro-curcumin (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 6.03 s ― 

2 ― ― ― 

3 6.74 d 15.6 

4 7.58 d 16.0 

5 ― ― ― 

6 7.52 dd 12.4 / 2.0 

7 ― ― ― 

8 ― ― ― 

9 7.05 t 8.4 
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10 7.38 dd J10-H, 9-H = 8.4 / J10-H, 6-H = 2.0 

 

2.3.2 Isolation of Bicyclopentadione from Curcumin Degradation Products 

Bicyclopentadione was obtained from curcumin degradation products. Purity of the final product 

was analyzed with HPLC as described in 3.2.6. With confirmation of 1H NMR data (Table 12), 

we demonstrated that as reported in previous studies, bicyclopentadione is the major product of 

curcumin degradation in phosphate buffer at pH=7.  

 

  
Figure 24. HPLC analysis of curcumin degradation products and bicyclepentadione 
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Figure 25. Structure of bicyclopentadione 

 

Table 12. 1H NMR chemical shifts and J-coupling constants for bicyclopentadione (400 MHz, 

acetone-d6) (continued onto next page) 

No. δ ˡH (ppm) Multiplicity Coupling constant (Hz) 

1 3.63 d 6.0 

2 5.90 s ― 

4 5.41 d 8.0 

5 3.26 d 6.0 

6 ― ― ― 

7 4.89 d 1.0 

8 ― ― ― 

1’ ― ― ― 

2’ 6.92 d 2.4 

3’ ― ― ― 

4’ ― ― ― 

5’ 6.88 d 8.4 

6’ 6.70 d 2.4 

3’-OMe 3.88 s ― 

1’’ ― ― ― 

2’’ 6.84 d 1.2 

3’’ ― ― ― 
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4’’ ― ― ― 

5’’ 6.68 d 8.4 

6’’ 6.73 dd 2.0 / 8.0 

3’’-OMe 3.76 s ― 

 

2.3.3 Stability of Curcumin Analogues Analyzed with HPLC 

The HPLC analysis showed that in 120 minutes, di-O-methyl-curcumin is much more stable than 

curcumin in phosphate buffer (Figure 26). This result indicates that the -OH group plays a 

critical role in curcumin stability at physiological pH. It further supports the proposed 

mechanism of curcumin’s autoxidation by forming phenolic radicals because we synthesized di-

O-methyl-curcumin to block the -OH group by replacing it with the methoxy group. 

Additionally, the HPLC analysis also shows that curcumin analogues with different R groups 

also exhibited different stability in phosphate buffer which means the methoxy group also 

contributes to curcumin stability at physiological pH (Figure 27). Specifically, the stability of 

curcumin analogues was in the order of -NO2 > -H > -OCH3. The -OCH3 is an ortho- and para- 

directing activator, which means they can decrease the bond dissociation energy (BDE) to form 

phenolic radicals. On the contrary, the -NO2 group is an ortho- and para- directing activator 

which increased the BDE to form phenolic radicals. This result also supports the proposed 

mechanism of curcumin autoxidation. 
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Figure 26. Stability of curcumin and di-O-methyl-curcumin analyzed with HPLC 
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Figure 27. Stability of 7,7’-R-curcumin analyzed with HPLC 
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2.3.4 Stability of Curcumin Analogues Analyzed with Colorimetry Assay  

The colorimetry assay showed that the order stability of curcumin analogues was: -NO2 > -Br, -

Cl > -OCH3, -CH3 (Figure 28). Among these groups, -NO2, -Br and -Cl are ortho- and para- 

directing deactivators whereas -OCH3 and -CH3 are ortho- and para- directing activators. This 

result was consistent with that of HPLC analysis, further supporting the mechanism of phenolic 

radical formation by which curcumin degrades at physiological pH and forms bicyclopentadione. 
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Figure 28. Stability of 7,7’-R-curcumin analyzed with colorimetry assay 

2.4 Conclusion 

Here in this research, we conducted a SAR study to demonstrate the role of the curcumin 

structure in its stability in physiological environment. By analyzing stability of different 

curcumin analogues, we demonstrated that not only the -OH group but also the methoxy group 
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significantly contribute to curcumin stability. These results also support the proposed mechanism 

that curcumin degrades at physiological pH by forming phenolic radicals. With this 

understanding, we can conduct biological studies in vitro and in vivo to study the differences of 

these curcumin analogues. It is also of great interest to develop an approach to stabilize curcumin 

so that we can develop applicable curcumin-based therapeutics to exert its anti-cancer effects.  
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APPENDICES 

APPENDIX A 

1H NMR SPECTRUM OF SYNTHESIZED CURCUMIN ANALOGUES 

Curcumin 

 

 

Di-O-methyl-curcumin 
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Di-O-demethyl-curcumin 

 

 

Alkyne-vanillin 
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Furoylacetone 

 

 

Monoalkyne-curcumin 
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Dialkyne-curcumin 

 

 

Bisdesmethoxycurcumin 
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7,7’-methyl-curcumin 

 

 

7,7’-nitro-curcumin 
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7,7’-bromo-curcumin 

 

 

7,7’-chloro-curcumin 

 



61 
 

 

7,7’-fluoro-curcumin 

 

 

Bicyclopentadione 
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APPENDIX B 

HIGH-RESOLUTION MS OF SYNTHESIZED CURCUMIN ANALOGUES 

Curcumin 

 

Di-O-methyl-curcumin 
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Di-O-demethyl-curcumin 

 

 

Monoalkyne-curcumin 
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Dialkyne-curcumin 

 

 

Bisdesmethoxycurcumin 
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7,7’-methyl-curcumin 
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7,7’-nitro-curcumin 
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7,7’-bromo-curcumin  
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7,7’-chloro-curcumin 
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7,7’-fluoro-curcumin 
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