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ABSTRACT 

THE PRIMARY AND CONVERGENT RETRIEVAL MODEL OF MEMORY 
 

MAY 2016 
 

WILLIAM J. HOPPER, B.S., UNIVERSITY OF CALIFORNIA SAN DIEGO 
 

M.S., UNIVERSITY OF MASSACHUSETTS 
 

Directed by: David E. Huber 
 
Memory models typically assume that recall is a two-stage process with learning 

affecting both processes to the same degree. This equal learning assumption is 

difficult to reconcile with studies of the 'testing effect', which reveal different 

forgetting rates following learning from test practice versus learning from restudy. 

Here we present a new memory model, termed Primary and Convergent Retrieval 

(PCR) that assumes successful recall leads to a selective enhancement for the second 

stage of recall (Convergent Retrieval). We applied this model to existing testing 

effect data. In two new experiments, we confirmed novel predictions of the PCR 

model for transfer between retrieval cues and for recall latencies. This is the first 

formally specified model of the testing effect and it has broad implications for the 

nature of learning and retrieval. 
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CHAPTER 1 
 

THE PRIMARY AND CONVERGENT RETRIEVAL MODEL OF MEMORY 

1.1 Introduction 

The efforts of psychologists to investigate explicit memory can be roughly 

divided into studies using two types of tasks: recognition tasks, which require a 

participant to judge a stimulus as previously encountered or novel, and recall tasks, 

which require a participant to generate detailed remembrances of a previous 

event’s content or meaning. It is generally agreed upon that there is a process 

dissociation between recognition and recall such that the need to dredge up the 

details of the past must require an additional process compared to when the task is 

to judge something as old or new (Hintzman & Curran, 1994; Mandler, 1980). This 

need to successfully complete a two-stage process to recall information is thought to 

underlie the “tip of the tongue” (TOT) phenomenon, where the complete recall of a 

particular piece of information fails, but certainty about knowing the information is 

achieved (Brown & McNeill, 1966). Computational models of memory have long 

incorporated a two-stage recall process, but all of these models have assumed that 

learning must produce effects in both processes. Here we present a new memory 

model, the Primary and Convergent Retrieval model of memory, which includes the 

assumption of a two-stage recall process, but also posits separate learning in each 

stage of retrieval. This assumption allows us to make sense of findings from 

retrieval practice paradigms, such as studies of the testing effect (see Roediger & 
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Karpicke, 2006a), where different types of practice seem to have differential effects 

on retention of practiced material. 

 Before introducing PCR more formally, we broadly define the concepts of 

primary and convergent retrieval as they relate to recall, and then relate these 

concepts to prior models of recall and recognition. When faced with the need to 

recall information, a necessary first step is to isolate the relevant memories from the 

vast store of information accumulated over a lifetime of experience. In short, there is 

a need to filter out the unwanted memories (or conversely highlight the sought-after 

memories). This process is guided by the retrieval cues at hand, which assuredly 

include temporal context (i.e., the stuff that is currently on your mind), but may also 

include item information, such as when given an explicit retrieval cue (e.g., a word, 

face, or picture). Primary retrieval describes this initial process of isolating relevant 

memories, based on their associations with the retrieval cues. However, this process 

may result in a partial retrieval for the desired memory, and, furthermore, it may 

result in the retrieval of many other competing memories. Thus, before an overt 

recall response can be emitted, it is necessary to 'clean up' the content of the 

memory response, such that the response systematically converges on complete 

retrieval of one, and only one response. Convergent retrieval describes this second 

stage, which recovers the full content of a single memory from the noisy output of 

primary retrieval through a pattern-completion process.  
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1.2 Retrieval and Learning in Prior Models of Memory 

 

 Several previously proposed models of recall possess mechanisms analogous 

to Primary Retrieval (PR) and Convergent Retrieval (CR). The Search of Associative 

Memory (SAM, Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981) model 

describes recall with two discrete stages, both dependent on the strength of the 

associative connections between the current retrieval cues and the memories in a 

long-term store. When a memory search is initiated, the current retrieval cues 

activate many stored traces simultaneously. To successfully output information 

from this long-term store (i.e., recall), a specific item must first be selected from the 

set of active traces (called the sampling process). The strength of the associative 

connections between a set of retrieval cues and a single memory trace, relative to 

other memory traces, determines if an item is likely to be sampled. When an item is 

sampled, the information it holds must be extracted (called the recovery process). 

The probability of successful recovery depends only the absolute value of the 

connection strength, not its value relative to other competing memories. Learning is 

modeled as an increase in the strength of the associative connections between cues 

and memory traces, which can occur whenever both are concurrently active in a 

short-term memory store (e.g., when given an opportunity to restudy a pair of 

words together, or following successful recall of a word in response to a word cue). 

Thus, any learning affects both the sampling stage and recovery stage alike, because 

the strength of the associative connections determines both the relative likelihood 

of sampling an item as well as the probability of recovering its details. The 
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Retrieving Effectively from Memory model (REM, Shiffrin & Steyvers, 1997) 

extended the core ideas of cue-dependent sampling and recovery process for recall, 

but modeled the traces stored in long-term memory using vectors of many 

individual features instead of with a single abstract strength value. 

 Like the REM model, MINERVA 2 (Hintzman, 1984, 1988) represents items in 

the long-term store as integrated collections of features, and assumes that retrieval 

cues (called a “probe” in MINERVA) activate items stored in memory based on 

number of feature values that match between each stored item and the probe. 

Comparing the probe to the contents of memory returns a composite response from 

all items called the echo, which has two components: intensity, representing the 

overall level of activation in the entire memory system, and content, representing 

the amount of each unique feature's signal in the echo (Hintzman, 1988). Echo 

content is critical for a recall response, but when many items with different features 

are all activated by the probe, the resulting echo content may not be a good match to 

any one item in memory. The state of ambiguity can be resolved by iteratively 

redeploying the echo content as a new probe and measuring the new echo, until the 

echo content is “sharpened” to most closely resemble a single item. In MINERVA, 

learning increases the probability of correctly encoding a feature into the long-term 

store, which applies independently to each feature for each item trace. Because both 

the echo’s intensity and content is determined by the degree of correspondence 

between probe and item features, learning affects both the process of determining 

that there is a relevant memory trace, as well as recovering what that trace's content 

is. 
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 Norman and O'Reilly (2003) have developed a dual-process model of 

recognition memory behavior, based on the Complementary Learning Systems 

framework (McClelland, McNaughton, & O’Reilly, 1995; O’Reilly & Rudy, 2001). This 

framework posits two specialized and anatomically distinct learning mechanisms: a 

hippocampal network which rapidly encodes the details of individual events and 

items, emphasizing their distinctiveness, and a slower learning cortical network 

(representing the structures of the medial temporal lobe) designed for encoding the 

similarities of items across episodes. The implementation by Norman and O'Reilly 

(2003) uses the amount of activation signal from the cortical network as an index of  

“familiarity” to a recognition probe, assuming frequently encountered stimuli (such 

as those presented in a memory experiment) will have strong representations in 

this signal. But due to the cortical network’s emphasis on encoding similarities, it 

lacks to the ability to represent details of a single item or event and thus cannot 

support recall; this responsibility falls upon the hippocampal network. In the 

hippocampal network, the recognition probe serves as a retrieval cue that partially 

activates the stored representations (the activation is only partial because changes 

in temporal context between the encoding episode and the retrieval attempt over 

the course of the retention interval mean that retrieval cues are not an exact match 

to the stored representation). Though only partially activated, an item still may be 

able to be retrieved thanks to positive associative links exist between the units that 

define individual items in the network. With sufficiently strong associations 

between the units defining an individual item, a partially activated item may be able 
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to “bootstrap” its way into complete activation via a pattern completion process 

between these units, therefore boosting its contribution to the content signal.  

 Learning from any situation makes the magnitude of memory system 

response larger and the content clearer under the Complementary Learning 

Systems model. Learning results in a sharpened signal from the cortical network, 

meaning a probe item seems more familiar, as well as a new episodic encoding in 

the hippocampal network. Multiple encodings in the hippocampal network means 

there will be more matching units between a probe and a stored item, so there will 

be stronger evidence to select that item for output relative to competitors. However, 

learning does not increase the ability of the hippocampal network to complete 

specific patterns from their partial activation.  

 This brief overview of previous memory models of recall serves to highlight 

their common assumptions. Each of these models assumes that the response from 

the memory system is two-fold, with one response component related to the overall 

magnitude of the match between retrieval cues and stored memory traces, and 

another content component holding detailed but often incomplete information 

about the stored trace. Additionally, each of these models assumes that the process 

of learning both increases the magnitude of the memory response as well as our 

ability to recover the specific content details in a memory trace. This second 

assumption, that any learning produced through experimental manipulations affects 

all aspects of the recall process, is difficult to reconcile with findings from studies 

using retrieval practice paradigms, where the primary focus is on how recalling 

information from memory affects subsequent memory performance. Below, we 
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summarize key findings from studies comparing the effects of study and test 

practice on memory retention, and explain why they are problematic for an 

assumption of uniform learning across retrieval processes. 

1.3 Study and Recall Produce Unequal Learning 

 Laboratory studies comparing the effects of study and test practice proceed 

by first giving participants some new material (e.g. a list of words) to learn by 

studying it. Then either the studied material or the participants are subdivided into 

different groups for further practice, either by restudying the material, or by taking 

a practice test. A variable delay period (the retention interval) follows this second 

practice session, after which all participants are given a final test of their memory. 

These studies consistently show a distinct advantage on the final test for material 

practiced with a test relative to material practiced by restudying, and this advantage 

grows with duration of the retention interval. This phenomenon is commonly 

referred to as the “testing effect” (see Roediger & Karpicke, 2006b for a recent 

review).  

When the practice tests are administered without feedback, a surprising 

paradox is revealed: information studied by re-reading and by taking a practice test 

appear to be forgotten at different rates (Carpenter, Pashler, & Vul, 2006; Kuo & 

Hirshman, 1996; Roediger & Karpicke, 2006b; Toppino & Cohen, 2009; Wheeler, 

Ewers, & Buonanno, 2003). More specifically, when the retention interval between 

the practice phase and the final test is short (i.e. 5 minutes), there is a small overall 

advantage on the final test for restudying over taking a practice test. But, if the 
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retention interval is longer (i.e. 24 hours or one week), this relationship is reversed, 

and a much higher proportion of information practiced with a test can be 

remembered on the final test than information practiced by restudying.  

Thus, it appears that more can be learned through restudying practice, but that this 

information is quickly forgotten. Conversely, it seems less is learned overall by 

taking a practice test, but what is learned becomes extremely robust against 

forgetting. This result is problematic for the extant memory models because they do 

not differentiate between learning from testing versus restudy; thus, whichever type 

of practice produces the better performance for an immediate test should also 

produce the better performance in the long run. In short, this crossover interaction 

suggests that these two types of practice involve different encoding operations, with 

the type of encoding that occurs with test practice resulting in a memory trace that 

is more resistant to forgetting.   

An important caveat to this conclusion arises when separately considering 

items that are correctly recalled during test practice versus those that are not. More 

specifically, the items that are correctly recalled during test practice reveal even 

higher performance on a final immediate test as compared to restudied items. Thus, 

when considering that only some items that might experience learning from test 

practice (i.e. correctly recalled items, with no accuracy feedback on incorrect trials), 

the rank ordering of conditions is the same across all time points: items recalled on 

a practice are remembered better than restudied items, which are remembered 

better than items that were not successfully recalled on the practice test.  
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 This observation was made by Kornel, Bjork and Garcia (2011), and has been 

labeled 'the bifurcation model' of the testing effect. However, this account is 

somewhat unsatisfactory because it does not tell us why successful test practice 

should result in substantially more learning than restudy. Furthermore, this account 

ignores item differences and item selection effects; more specifically, items that 

were successfully recalled during test practice are likely to be items that are more 

easily recalled in general. The issue of item effects was investigated by Jang, Wixted, 

Pecher, Zeelenberg, and Huber (2012) by including a pre-test of all of the items 

before assigning items to either test practice or restudy. When only considering 

items that were retrieved on this pre-test (i.e., the 'easy' items), there was still a 

crossover interaction between type of practice and retention interval. Thus, it 

appears that this crossover interaction reflects a qualitative rather than a 

quantitative difference in the learning that occurs during test practice as compared 

to restudy. To explain this difference, and more generally to explain in detail the 

different stages of recall, we developed a process model in which the kind of 

learning from test practice is qualitatively different than the kind of learning from 

restudy. 

Next we describe the PCR model in two parts. First, we describe the 

theoretical processes that explain how engaging in recall will result in different 

encoding operations as compared to passive study. This theory assumes that the 

ordering of events matters, such that the partial retrieval that occurs with Primary 

Retrieval, followed by full retrieval with Convergent Retrieval, results in new intra-

item associations between the content retrieved in each stage of recall. In contrast, 
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this intra-item learning does not occur with passive study because a full 

appreciation of the item occurs all at once rather than in stages of retrieval. Second, 

following presentation of this theory, we describe a specific mathematical 

instantiation of this theory that captures the essential elements of the theory in an 

abstract manner. 

1.4 An Overview of the Process Theory that Guides PCR 

 

PCR assumes that all memory traces and retrieval cues are composed of a finite 

number of individual features. When features are simultaneously active, 

unidirectional associative connections between the features are formed, according 

to the temporal order in which the features became active. For instance, if feature A 

becomes active at some point in time T, and feature B becomes active at time step 

T+1, an excitatory connection is formed from feature A to feature B. Thus the next 

time feature A is activated, it will activate feature B. However, activating feature B 

will not activate feature A, as the connection between them is unidirectional. This 

feature is consistent with findings showing that the precise temporal ordering of pre 

and post synaptic action potentials determine the strength and direction of the 

modifications to synaptic weights (i.e. Spike Timing Dependent Plasticity (STDP), for 

examples see G. Bi & Poo, 1998; G.-Q. Bi, 2002; Dan & Poo, 2006). Importantly, these 

associative connections are formed both across perceptual groupings (i.e., across 

distinct items) and within groupings (i.e., intra-item).  
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 As mentioned previously, the first stage of retrieving an item from memory is 

Primary Retrieval (PR). When information is to be retrieved from memory, all 

currently active features serve as retrieval cues to activate features in memory 

traces, with the features serving as cues being sourced from the current temporal 

context, or via cueing with an associated item. The pattern of activation in the 

memory system in response to the features in the retrieval cues follows a one-to-

many relationship, where a single active feature may activate many other features 

within stored memory traces. Thus, PR can be said to be cue-dependent, as the 

active features serving as retrieval cue completely determine the magnitude and the 

content of the memory system's response. Figure 2 shows a schematic outline of the 

PR process in a retrieval episode. 

This process of currently active features activating other features in stored 

memory traces is not restricted to occurring during a retrieval episode; it also 

occurs during opportunities to study or restudy items. By definition, studying 

presents the to-be-remembered information along with any associated retrieval 

cues in a specific temporal context, and thus positive associative connections are 

formed between all currently active features (a schematic diagram is shown in 

Figure 3). The main difference in between a restudy and a retrieval episode is that 

during a retrieval episode, not all features of the target memory are activated by the 

retrieval cues. For an accurate, overt recall response to be given, all features of a 

memory trace must be simultaneously active, and thus a pattern-completion 

processes is necessary to “fill in the blanks” of the inactive features.  
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 We use the term Convergent Retrieval (CR) describes this pattern completion 

process, where features activated by the PR process subsequently activate initially 

dormant features “missed” by the PR process, via excitatory associative connections 

between the individual features within a memory trace. If the CR processes 

succeeds, and all features are successfully pattern-completed, learning takes place: 

new excitatory associations are formed between the initially activated features, and 

the subsequently activated features. A schematic diagram of the CR process is 

shown below in Figure 4. The convergent retrieval learning mechanism is the major 

theoretical departure of PCR from previously proposed memory models. Because CR 

learning strengthens the internal associations within the set of features defining a 

single item, that item will become easier to recall in the future, regardless of the 

route by which the initially active features became active. Put another way, 

successful CR depends on getting enough strongly interconnected item features 

activated by the PR process, not on how those features became active. Thus, the CR 

process and CR learning can be said to be cue independent. 

So far, we have described the theoretical assumptions that underlie the PCR 

model. We now turn towards developing a specific model implementation of this 

theory, to examine whether it provides a sufficient explanation of data. Here we 

introduce an abstract implementation of the PCR model, with specific application to 

data from free recall experiments in “testing effect” paradigms, without 

implementing a full neural network model. Nevertheless, the constraints on this 

abstract model implementation are dictated by a more full-fledged process model 

involving features, weight changes, and the timing of events while learning. 
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1.5 A Binomial Instantiation of PCR 

We assume each item encoded into memory consists of a finite number of 

discrete features, set here to 100 for convenience. We assume each item requires a 

specific number of features to be activated by retrieval cues in the PR process in 

order to support pattern completion in CR1. The value of each item's CR “threshold”, 

θ, is binomially distributed with probability t and 100 trials (one trial for each 

feature). Throughout this section, we will use the symbol B( ) in equations to refer 

to a binomial distribution. 

𝜃~𝐵(𝑡, 100) (1) 

At the point of initial study, when all cues and targets are presented together, we 

assume positive associative connections are formed from cue items and context 

features to the target items as part of the PR process. Re-presenting the cue items 

within the same temporal context without the target item will result in reactivation 

of a subset of the target item's 100 features. This amount of feature reactivation 

during the retrieval episode is also binomially distributed, with probability 

parameter e and 100 trials.  

𝑝𝑟~𝐵(𝑒, 100) (2) 

                                                        
1 Using a fixed number of activated features to determine convergent retrieval 
success is a simplifying assumption made for the binomial instantiation of PCR. In 
general, the absolute number of features activated in the PR process is not strictly as 
important as which specific features become activated. There is likely to be an 
asymmetry amongst the intra-item feature associative connections, such that some 
features have more associations and are thus better suited to support CR, and we 
appeal to such an asymmetric throughout. 
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The parameter e may be thought of as an encoding rate parameter, as it represents 

how strongly the retrieval cues are linked to the target item during the encoding 

episode. It is important to note that we will use the abbreviation PR to refer to the 

primary retrieval process (i.e. the process of features from retrieval cues activating 

features in target memories and forming excitatory associations), and the lowercase 

italic pr in a mathematical context to represent the outcome of the PR process, i.e. 

the number of features in the target memory activated by the retrieval cues.  

 Both the number of features activated by retrieval cues and the pattern 

completion threshold for each item can be modulated over the course of time and 

with experimental manipulations. In general, the number of features of a target 

memory that are activated by retrieval cues will decrease over time, as changes in 

the temporal context mean that the target memory will not be strongly matched by 

context cues and as weights on the positive associative connections between cue 

items paired with the target item decrease. We chose to model forgetting from all 

sources through reducing pr by a binomially distributed random quantity F, with 

probability parameter f and pr trials.  

𝐹~𝐵(𝑓, 𝑝𝑟) (3) 

Having the number of binomial trials for F set to pr reflects the assumption that only 

features that would have been activated initially can be lost due to forgetting. After 

forgetting, from any source, pr becomes equal to pr – F. 

 The value of pr is increased whenever the features of the retrieval cues and 

the features of the target memory become co-active, in that order. Thus, additional 

study practice or successful test practice increases pr. We model this additional 
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learning by increasing pr according to a binomially distributed random quantity, L, 

with a probability parameter l, and 100-pr trials  

𝐿~𝐵(𝑙, 100 − 𝑝𝑟) (4) 

Setting the number of binomial trials for L to 100-pr reflects the assumption that 

only features that have not already been associated with the retrieval cues may 

become associated with the retrieval cues upon restudy or successful recall. The 

value of pr after successful test practice and pr after restudy practice is equal to pr + 

L. When an item is not successfully recalled, no PR learning takes place, and the 

value of pr is unchanged as a result of the retrieval attempt. 

 However, successful retrieval of an item does not only increase future pr, it 

also reduces the items pattern completion threshold θ. This threshold reduction 

reflects the assumption that intra-item learning takes place following pattern 

completion in CR. Again, in this implementation the magnitude of the threshold 

reduction for each item is a binomially distributed random quantity R, with 

probability parameter t and θ trials. 

𝑅~𝐵(𝑟, 𝜃) (5) 

Having the number of trials for CR threshold reduction set to θ reflects the 

constraint that an items CR threshold cannot go below zero. Thus, after recall, an 

items threshold θ becomes θ – R. Restudy practice does not produce this extra 

learning because we assume that the order of feature activation matters for forming 

associative connections: Since all the features of a target item become activated 

simultaneously when it is re-presented, no intra-item associations are learned and 

CR is not strengthened.  
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 Recall accuracy performance is determined by the probability of successful 

convergent retrieval, cr. Again, note that we will use the uppercase CR to refer to the 

convergent retrieval process, and the lowercase italic cr in a mathematical context to 

refer to the probability of successful CR. Since p(cr) depends on the difference 

between the number of features activated by the retrieval cues, pr, and the items CR 

threshold θ, then p(cr) = p(pr > θ ). In other words, if an item's pr exceeds θ, the item 

will be recalled. 

 We also assume that the CR process takes time to complete, and that each 

item's time to successful CR depends on the difference between the number of 

features activated and the items threshold. The distance to CR threshold is related to 

the amount of elapsed time between initiating a retrieval attempt and outputting the 

target item (i.e. reaction time) through a negative exponential function.  

𝑅𝑇 = 𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)(𝑒
−𝜆|𝑝𝑟−𝜃|) (6) 

Tmax and Tmin are parameters that set the upper and lower bounds on the possible 

elapsed time to output a recall response. The λ parameter controls the rate of 

decrease in reaction time as the distance from the CR threshold grows; large values 

result in a gradual decrease in reaction time with increasing threshold distances, 

while small values result in a rapid decrease of reaction time with increasing 

threshold distances. The shape of this function means that items with a small 

difference between pr values and θ values will take a much longer time to recall 

than items with large differences between pr values and θ values. This follows from 

the idea that if most features are initially activated by retrieval cues, the CR process 

should proceed much more quickly than if the CR process must pattern complete a 
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relatively large number of features. Figure 5 below shows the predicted RT as 

function of distance to CR threshold across several values of λ with a fixed Tmax and 

Tmin In general, the λ, Tmax and Tmin parameters are constrained to positive values.  

Thus far, all the described mechanics of the binomial implementation of the PCR 

model are equally applicable to cued recall and free recall experimental designs. 

However, applying the model to free recall paradigms requires an additional 

specification of the order in which target items are recalled. Here, the serial order of 

recalled items is controlled by the order in which the memory search progresses. 

We have chosen to determine the order of the memory search by rank ordering 

items by their pr values, from highest to lowest. A retrieval attempt is initiated for 

each item according to this rank ordering, which can be thought of as ordering items 

by the overall strength of the memories. Once an item has been successfully 

retrieved, or the retrieval attempt is abandoned as unsuccessful, no other attempts 

to retrieve it are made, and the item does not compete for retrieval or interfere with 

retrieval processes during later attempts to retrieve other items. Note that 

searching in order of pr values is not the same as searching in order of retrievability. 

An item’s retrievability is determined by the difference between its pr value and its 

CR threshold θ, so items with high values of pr, and thus the first items attempted to 

be recalled, may also have high CR thresholds which make them unable to be 

recalled. A memory search order based on information about an item’s retrievability 

is not logically possible, as the item would necessarily have to be retrieved to know 

about its ability to be retrieved.  
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 Importantly, PCR assumes that items with pr below the CR threshold θ also 

contribute to observed recall latencies. Even if an item is ultimately unable to be 

recalled, some amount of time is still spent attempting to recall the item before 

moving on to initiating a retrieval attempt for another item. We relate the amount of 

time spent attempting (unsuccessfully) to recall a below threshold item to the 

difference between pr and θ in the same fashion as above threshold items. When 

there is a small difference between pr and θ, it takes longer to reject as 

“unrecallable”, while items with large differences are rejected relatively quickly.  

Practically, this predicts that large “gaps” will sometimes appear between recall 

outputs during free recall experiments. Participants may attempt and fail to retrieve 

several items in between two successively output items, rather than giving a 

relatively uniformly spaced series of correct outputs and abruptly terminating 

recall. 

 Another consequence of relating reaction time to the distance to CR 

threshold is that learning which increases this distance should also produce faster 

recalls on later tests. Both restudy and test practice increase this distance, however, 

successful test practice will increase this distance by a larger magnitude because it 

results in both an increase in pr and a reduction in θ. This reduction in recall 

latencies can also have an effect on the observed recall accuracy, depending on the 

design used in a specific experiment. For example, participants in a free recall 

experiment are often only given a relatively short amount of time in which to recall 

items from a studied list, meaning that some potentially recallable items may not be 

output because the time spent recalling earlier takes up the entire allotted response 
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window. If given a sufficiently unlimited period to respond, participants can often 

recall additional item late in the response window, eve minutes past the point in 

which the response window would close in an average free call experiment 

(Roediger & Tulving, 1979). If the earliest items recalled were able to be recalled 

more rapidly, this leaves open a longer portion of the response period to try and 

retrieve items that have not yet been output. Considering that the PR and CR 

process may be lengthy, especially for items near the CR threshold, this means that 

it possible to increase the observed recall accuracy by speeding up the retrieval for 

easily output items and leaving more time free to attempt retrieving the more 

difficult items. 

 The model we have presented has an analytic solution for predicted memory 

accuracy, utilizing joint binomial distributions of pr and θ. However, this form is 

both complex and computationally expensive when considering the need to account 

for the effects of test practice, which make values of pr and θ dependent. Thus, we 

will utilize Monte Carlo simulation methods in applying the model where the 

quantities of interest (e.g. pr, θ, L, F, R) will be determined by random binomial 

sampling. The simulation method has the additional advantage of producing a 

distribution of reaction times when plugging the distance to threshold into Equation 

6.  Now that we have presented a basic outline of the mathematical mechanics of the 

PCR model, the next task is to fit a specific implementation of the model to extant 

data. We chose to model the free recall data from Experiment 1 reported in Roediger 

and Karpike 2006a. In the next section, we show that the PCR model can capture the 
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key cross-over interaction between test practice and retention interval, and explain 

what facets of the model allow it to do so. 

1.6 Application to Data from Roediger & Karpicke 2006a 

Experiment 1 from Roediger and Karpicke 2006a employed a 2 x 3 mixed 

factorial design, which manipulated which practice method (test practice vs. 

restudy) within subjects and retention interval (5 minutes, 2 days, and 1 week) 

were manipulated between-subjects. All participants were initially given two short 

prose passages to study. Following this initial study, participants took a practice free 

recall test on one of the passages, and restudied the other passage. Exposure time 

was equated between the study and practice test conditions, with seven minutes 

allotted for each. On average, participants recalled 70% of the information from the 

passage on the practice test. After either a 5 minute, 2 day or 7 day retention 

interval, participants took a final test in which they were asked to recall as much 

information from each passage as possible. Performance for test practice and 

restudy practice across these three intervals is shown above in Figure 1. 

We fit the PCR model to the reported recall probabilities from each of 

conditions in this experiments, including the average practice test performance. In 

describing the model implementation and parameters, we will use the nomenclature 

and symbols defined in the previous section. The model included 6 free parameters: 

an encoding rate parameter e, a learning rate parameter l, a threshold reduction 

parameter r, two forgetting rate parameters f2 and f7 ( applied to the two day and 

seven day retention interval conditions, respectively), and a parameter governing 
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the minimum time between recall outputs, Tmin. The maximum time between recall 

outputs was fixed at 60 seconds. The distribution of item CR thresholds, θ, was 

determined by binomial random sampling, with the probability parameter t fixed at 

.5, and the number of features for each item fixed at 100. These parameters we used 

to estimate six key quantities of interest for each item in the studied passages (30 

items per passage) via Monte Carlo simulation, with 1,000 simulations per item2:  

 pr, the number of features able to be activated by retrieval cues following the 

initial encoding episode. 

 L, the increase in the number of features activated by retrieval cues following 

PR practice, relative to initial encoding. 

 θ, the number of features that must be activated by retrieval cues to support 

convergent retrieval. 

 R, the reduction in CR threshold (θ) following successful retrieval practiced. 

 F2, the reduction in pr due to forgetting over a two-day retention interval. 

 F7, the reduction in pr due to forgetting over a seven-day retention interval. 

 

The probability of recalling an item on the practice test is the same the 

probability of successful convergent retrieval, thus performance is given by 

calculating p(pr > θ). As previously outlined, PCR assumes that recall strengthens 

the associations between the cue features and target features, as well as the 

                                                        
2 A continuous approximation to the binomial was used for these simulations. In 
general, the state activation of features composing memory traces is not binary, and 
is better described as having a continuous range of activation. See the Mathematical 
Appendix A for details of the implementation. 
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associations between the within-target features, while only cue-target associations 

are strengthened with restudy. Thus, performance on the five minute delayed 

practice test following restudy is given by finding p(pr + L > θ ). Calculating 

performance on the five minute delayed final test requires summing over two 

quantities: the probability of recalling given a prior successful recall, p(pr + L > θ – 

R), and the probability of recalling given a failure to previously recall, p(pr > θ). 

Without any forgetting, the sum of these probabilities would always come out be the 

same as the probability of recall on the initial practice test (as the increase in pr and 

decrease in θ are irrelevant for items already above the threshold, and items below 

the threshold are not strengthened by virtue of the fact that they are below 

threshold and unable to be recalled) if it were not for the speed up of reaction time 

following successful retrieval. This speed up in recall and output of items already 

recalled previously allows there to be enough time left in the test period to retrieve 

items with a pr > θ after initial encoding, but were not able to be output on the 

practice test because of the response deadline. Thus, it is possible to observe a slight 

increase in the number of recalled items on the final test relative to the practice test, 

given forgetting of a sufficiently small magnitude.  

We assumed that forgetting occurred between the practice phase and final 

test phase in the two day and seven day retention interval conditions, but not the 

five minute retention interval. To model this forgetting, the value of pr following the 

practice phase was decreased by Fi, where the subscript i is a categorical index 

referring to a specific retention interval. Thus, delayed final test performance was 

given by calculating p(pr + L – Fi > θ) for items receiving restudy practice, p(pr + L – 
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Fi > θ – R) for items recalled on the practice test, and p(pr – Fi > θ) for items not 

recalled on the practice test. Since the five minute retention interval condition was 

relatively short, we assumed that any decrease in the number of features activated 

due to changes in current temporal context were small enough to ignore. Another 

practical reason to not apply forgetting for this condition would mean that the 

model would be over parameterized, with as many free parameters as observed 

values.  

The likelihood of the data was maximized using the binomial likelihood ratio 

test, which provides a chi-square goodness-of-fit statistic. The low value of this 

statistic demonstrates the model was an extremely good fit to the observed data 

(χ2(1) = .042, p = .83). The best fitting model parameters are shown in Table 1, and 

the model predictions as compared to the observed data are shown in Figure 6. The 

assumption of learning in both the PR and CR stages of retrieval allows the PCR 

model to readily explain the cross over interaction between retention intervals and 

practice method commonly observed in studies contrasting restudy and test 

practice.  

 While showing that the PCR model is a good fit to extant data, to which (to 

the best of our knowledge) no computational models have been applied to, is 

satisfying and supports our theoretical claims, we now turn to our own experiments 

which test direct predictions of the PCR model. As a result of positing that retrieval 

practice strengthens or builds new intra-item feature associations, PCR predicts 

recall practice has hidden benefits on an immediate final test in the testing effect 

paradigm. Experiment 1 tests the prediction of cue generalization produced CR 
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learning: if successful retrieval practice results in learning a pattern completion 

process between the features of a stored memory trace, then this learning should 

generalize across retrieval cues. Specifically, we test the predication that recall 

accuracy on a final test will be elevated as a result of successful retrieval practice, 

even if the retrieval cues used on the final test are not the same as those used during 

practice. Experiment 2 directly tests the prediction that CR learning increases the 

speed of later recall outputs: if the CR process requires active features of a memory 

trace to successively activate other dormant features, and successful retrieval 

practice strengthens or builds new intra-item associations, then subsequent 

iterations of the CR pattern completion process for that item will proceed more 

rapidly. 
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CHAPTER 2 

EXPERIMENT 1 

2.1 Testing the cue-independent learning prediction of PCR 

2.2 Method 

2.2.1 Participants 

64 individuals from the University of Massachusetts were recruited from the 

undergraduate subject pool. Participants were given one unit of credit that could be 

applied either toward class participation requirements or extra credit opportunities 

in undergraduate psychology classes. Participants were randomly assigned to either 

the immediate (n=30) or delayed (n=34) final test conditions. The data from one 

subject who participated in the delayed condition was discarded from analysis and 

model fitting because of extremely low performance on the cued recall task (< 5% 

correct recalls in all conditions), leaving a grand total of 63 participants in the 

experiment. 

2.2.2 Materials 

100 cue-target pairs consisting of English nouns were randomly selected 

from a word pool to serve as test materials. The word pool was constructed using 

the English Lexicon Project database (Balota et al., 2007). All words in the pool were 
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moderate frequency3 English nouns, have between four and 10 characters, and have 

concreteness and imageability ratings of over 500 (Brysbaert & New, 2009). 

2.2.3 Procedure  

Both groups of participants in the experiment were tasked with learning four 

lists of 25 cue-target word pairs. The first list that all participants studied presented 

each cue-target word pair alone in the center of a computer monitor for five 

seconds, and was immediately followed by a 30 second math distractor task. After 

the distractor task, participants immediately took a cued-recall test on all 25 of the 

pairs presented in the first list. The presentation order of the cue words was 

randomized, and for each pair, the first item in the pair (the cue word) was 

presented in the same location on the monitor as during the initial study episode. 

This word served as a cue to recall the second word in the pair, which was replaced 

by a “?” in the visual presentation. Participants had 10 seconds to enter their 

response using the computer’s keyboard, but could advance to the next test item at 

any time by pressing the “Enter” key. 

 Memory performance on this test was scored using an automated procedure, 

based on calculating the Levenshtein edit distance between the target word and the 

string entered by the participant in the response to the cue for that target word. 

Input responses with a Levenshtein edit distance of less than or equal to 1 from the 

                                                        
3 Moderate frequency was defined as having between five and 200 usages per million 

words, as measured by the SUBTLEXUS  database 
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target word were considered to be correct responses4. Memory accuracy on this test 

was used to modulate the presentation duration of cue-target pairs in subsequent 

lists for each subject: if less than 25% of responses were correct, presentation 

duration was increased to six seconds, and if more than 75% of responses were 

correct, presentation duration was reduced to four seconds. This adjustment was 

made with the aim of modulating performance on subsequent practice tests towards 

50%, as performance of this level will allow for an analysis of conditional recall 

probabilities (i.e. the probability of recalling a target word on the final test given 

that it was recalled on the practice test). Following this calibration, 12% of 

participants had their presentation time increased to six seconds, and 35% had their 

presentation time decreased to four seconds. 

The structure of the cue-target word lists was changed following the test on 

the performance modulation list. Subsequent lists still presented 25 cue-target word 

pairs, but within each list, five target words occurred twice in the list and were 

paired with a different cue word each time (making 10 total pairs). The remaining 

15 targets in the list appeared a single time, and cue words were always unique.  Put 

another way, each cue-target pair was unique, but 40% of targets had two cues. Cue-

target pairs from within each list were randomly selected to receive restudy 

practice, test practice, or no practice (a control condition). The 15 non-repeating 

target words were equally subdivided into these three conditions (5 restudied, 5 

tested with cued recall, and 5 not practiced). The 10 repeating target words were 

                                                        
4 A Levenshtein edit distance of 1 meant that substituting, adding, or deleting 1 
character from the input string would transform it into the target string. This weak 
string matching scoring procedure was used to deal with typos in the input. 
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subdivided between the no practice and test practice condition. The two types of 

practice (study and test) were blocked within the practice phase for each list, and 

the order in which the items were restudied/tested was randomized. The order of 

the test and study blocks was counter balanced across subjects. Reponses for the 

cued recall practice test were given using the computer keyboard, with a response 

deadline of 10 seconds. No feedback was given about performance on the practice 

test.  

 At the critical final test, participants took a cued recall test on the restudied, 

tested and unpracticed non-repeating target words, but were only tested on the 

repeating target words using the unpracticed cue word. Thus, the final tests reflects 

memory for four distinct classes of target items: 1) targets cued with word cues that 

were studied as a pair and the pair was not practiced again  (control condition), 2) 

targets cued with word cues that were studied and then restudied as a pair (restudy 

condition), 3) targets cued with word cues that were studied as a pair and then 

given as retrieval cues on a cued recall practice test (same-cue test condition), and 

4) targets cued with word cues that were studied as a pair, and the pair was not 

practiced again but the target word itself had retrieval practice using a different cue 

word during the practice phase (other-cue test condition). For example, if the word 

pair “Orchid – Light” was learned initially and “Orchid - ?” was used a cue to retrieve 

“Light” during the practice test, then the responses to the cue “Orchid - ?” during the 

final test belong to the “same cue tested” target condition. On the other hand, if the 

word pairs “King – Table” and “Foot – Table” were learned initially, and “King - ?” 

was used a cue to retrieve “Table” during the practice test, then the responses to the 
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cue “Foot - ?” during the final test belong to the “other-cue tested” condition. Just as 

during the practice test, the order the cues were given in was randomized and 

responses were given using the computer keyboard with a response deadline of 10 

seconds for each cue. 

The temporal structure of the initial leaning, practice, and final test phases 

differed between the immediate and delayed final test groups. Participants in the 

immediate final test condition completed the three phases in order for each list. 

Participants in the delayed condition completed the study and practice phase for 

each list of pairs before moving into the final test phase. Thus, participants had to 

retrieve items from the second and third lists before taking the final cued recall test 

on items from the first list. This intervening cued recall test causes a shift in 

temporal context (Jang & Huber, 2008), and participant’s performance will be 

negatively impacted as a result of the context of the final test not strongly matching 

the context at encoding. This manipulation mimics the effect of a longer retention 

interval on memory performance, allowing us to assess the interaction between 

practice type and retention interval without requiring participants to attend two 

separate experimental sessions. 

2.3 Behavioral Results 

Recalled items were checked for accuracy first by an automated routine 

performing strict string comparison between responses and list items. Recall 

responses that were scored incorrect by the automated procedure were then double 

checked and scored by hand. Recall performance on the practice tests was 
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comparable across both the immediate and delayed groups (57% of targets 

correctly recalled in the immediate group, 54% percent of targets correctly recalled 

in the delayed group). The percent of targets correctly recalled from all four classes 

of target items in both groups of subjects are shown in Figure 8. Performance on the 

final cued recall test was analyzed using a 2 x 4 Mixed ANOVA. There was a 

significant main effect of retention interval group (F1,61 = 15.07, p < .001), with the 

delayed final test group performing worse than the immediate final test group. 

There was also a significant main effect of practice type (F3,183 = 72.95, p < .001) and 

a significant interaction between practice type and group (F3,183 = 6.87, p < .001).  

In the immediate final test condition, memory accuracy for restudied targets was 

25% higher than targets cued with the same cue that was given on the practice test 

(81% recalled versus 56% recalled), and 36% higher than for targets that were 

never practiced with any cue (45% recalled). Memory accuracy for targets that 

received test practice with the same word cue used on the final test was nearly 

identical to accuracy on the practice test (only a 2% decline in accuracy). The critical 

data point for assessing the predictions of the PCR model is final test performance 

for targets cued using a word that was never itself practiced with the target after the 

initial study phase, but received cued recall test practice using another word cue 

(the other-cue target condition). Accuracy for these other-cue target items was 

nearly identical to accuracy for the same-cue test practice target items (56.6% 

recalled for same-cue recall practice vs 56.2% recalled in other-cue recall practice).  

 In the delayed final test condition, memory accuracy was lower overall than 

in the immediate final test condition, but the same qualitative pattern of results 
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between the four target practice types emerged. Memory accuracy was highest for 

study practiced targets, followed by same-cue tested targets, other-cue tested 

targets, and finally unpracticed targets. However, the performance gap between the 

restudy and same-cue test practice conditions narrowed from 25% to 6%. This was 

driven by a precipitous drop in accuracy for restudied targets (54% recalled, down 

from 81% in the immediate condition), while accuracy for same-cue test practice 

targets remained relatively stable (48% recalled, down from 56% in the immediate 

condition). Memory accuracy for other-cue test practiced targets was reduced by a 

greater amount than same-cue tested targets (falling by 23% relative to the 

immediate final test condition, down to 33% recalled) but was still greater than the 

control condition of no practice with any cue (only 29% recalled).  

 Figure 9 shows the breakdown of final test memory accuracy for target items 

that received test practice, conditional on the outcome (correct or incorrect recall) 

of the practice test. For both the immediate and delayed final test conditions, recall 

for same-cue test practice targets mirrored the outcome of the practice test. Targets 

that were recalled on the practice test were almost always recalled on the final test 

when the same cue was given (p(correct | correct) = .95 in the immediate condition, 

p(correct | correct) = .86 in the delayed condition). Targets that were not recalled on 

the practice test were almost never recalled when the same cue was given 

(p(correct | incorrect ) = .02 in the immediate condition, p(correct | incorrect) = .03 

in the delayed condition). Similarly, a successful retrieval on the practice test 

resulted in better retrieval of that target item on the final test, even when the 

practice test was taken with different word cue. In both the immediate and delayed 
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final test conditions, targets were more likely to be recalled in response to the 

unpracticed cue word when they had successfully recalled the target on the practice 

test using a different cue word (p(correct | correct) = .63 in the immediate 

condition, , p(correct | correct) = .37 in the delayed condition) relative to when the 

retrieval attempt was unsuccessful on the practice test (p(correct | incorrect ) = .48 

in the immediate condition, p(correct | incorrect) = .23 in the delayed condition). 

However, this relative advantage was much narrower than in the same-cue test 

practice condition. A statistical analysis of this interaction was prevented because of 

missing cells introduced by grouping final test outcomes based on practice test 

outcomes for that item (3 subjects in the immediate condition made no errors on 

the practice tests for same-cue targets, and 1 subject in the immediate condition 

made no errors on the practice tests for other-cue targets items, resulting in missing 

cells for these participants in the p(correct | incorrect) condition).  

2.4 PCR Model  

2.4.1 Implementation 

We fit the PCR model to the proportion of correctly recalled target items on 

the final test for the no practice and restudied targets, as well as the joint proportion 

of items recalled/not recalled on the practice and final tests for targets that received 

test practice. We fit the model to these proportions for each subject that 

participated in the experiment. Goodness of fit was assessed by minimizing the 

negative binomial log likelihood of the model’s accuracy predictions. It was not 

possible to calculate the likelihood ratio to perform statistical test of the model’s 
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goodness of fit due to missing cells in the observed data of some participants5. To 

generate model predictions in each of the target item practice type conditions, we 

simulated six quantities of interest: 

 pr1, the number of features able to be activated by retrieval cues following 

the initial encoding episode using the first cue word. 

 pr2, the number of features able to be activated by retrieval cues following 

the initial encoding episode using the other cue word.  

 L, the increase in the number of features activated by retrieval cues following 

PR practice, relative to initial encoding. 

 θ, the number of features that must be activated by retrieval cues to support 

convergent retrieval. 

 R, the reduction in CR threshold (θ) following successful retrieval practiced. 

 F, the reduction in pr due to forgetting during the retention interval. 

 

The values of each of these quantities for each item were determined using 

Monte Carlo simulation of binomial random samples. We used five free parameters 

to fit the data from each subject: an encoding rate probability parameter e, which 

controlled the value of pr1 and pr2 for each item, a learning rate probability 

parameter l, which controlled the value of L for each item, a threshold reduction 

probability parameter r, which controlled the value of R for each item, and a 

                                                        
5 Some participants has a joint probability of recalling on the practice test and not 
recalling on the final test equal to zero. This zero in the observed data ends up in the 
denominator of the likelihood ratio statistic, causing its value to be undefined. 
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forgetting rate probability parameter f, which controlled the value of F for each item. 

The distribution of item CR thresholds, θ, was determined by binomial random 

sampling, with the probability parameter t fixed at .5, and the number of features for 

each item fixed at 100. No parameters related to retrieval time were included in 

model for these data. We also included a ‘space out’ parameter s that was allowed to 

vary for each subject, representing the probability that on any given trial, a 

participant would not attempt to retrieve the target item in response to the cue. This 

was necessary since the outcomes of the successive retrieval attempts using 

identical memory cues is deterministic in the PCR model, and some randomness was 

needed in order to have a non-zero probability of recalling a target item on the final 

test following a failure to recall that item on the practice test with the same cue 

word6. 

The probability of recalling an item on the practice test is given by calculating 

p(pr1 > θ). When the associations from cue features to target features are 

strengthened through restudy or successful retrieval practice, PCR assumes that 

amount of features activated increases by the quantity L, but that changes in the 

current temporal context reduce the amount of features activated by the quantity F. 

Thus, performance on final test following restudy is given by p(pr1 + L - F > θ). 

Calculating performance on the final test for targets cued with the same cue that 

received test practice requires summing over two quantities: the probability of 

                                                        
6 We chose to use the “space out” parameter as a matter of mathematical simplicity. 
Other sources of randomness within the memory system could be proposed to 
handle this fluctuation in outcomes between practice and final tests, such as random 
changes in the number of features activated by retrieval cues. 
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recalling given a prior successful recall, p(pr1 + L – F > θ – R), and the probability of 

recalling given a failure to previously recall, p(pr1 - F> θ), because items which are 

not recalled receive no boost to their pr values and no reduction to their CR 

threshold θ. Calculating performance on the final test for targets that were practiced 

with a cued recall test but cued with a different, unpracticed cue word on the final 

test also requires summing over two quantities: the probability of recalling given 

successful practice test retrieval, p(pr2 –  F > θ – R), and the probability of recalling 

given a failure to recall on the practice test, p(pr2 – F > θ). Note that there is no need 

for two separate forgetting rates between the immediate and delayed final test 

group because the immediate/delayed manipulation was done between subjects 

and the model was applied to each individual subject. 

Importantly, pr1 and pr2 were sampled independently of one another, so the 

amount of feature activation from one cue word did not affect the amount of feature 

activation from the other cue word. Following from this, any increase to the number 

of features activated from the retrieval cues (via restudy or successful test practice) 

applies only to the cue utilized during practice. But while the amount of feature 

activation from each different cue is independent, the target item itself has the same 

CR threshold throughout the experiment, regardless of retrieval cues. In other 

words, the CR threshold value is assumed to be a property of the target item itself, 

while the amount of feature activation in PR is property of the associations learned 

between the cue and target item. Thus, while the amount of feature activation from 

one of the learned cues may be below the CR threshold, the amount of feature 

activation from the other cue may be above the CR threshold. This distinction is 
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especially important to the other-cue test practice condition. After receiving 

successfully retrieving an item on the practice test in response to cue one, the items 

CR threshold is assumed to be lowered, meaning it becomes easier to retrieve 

regardless of the cue used to activate its features. Thus when the unpracticed 

second cue associated with the target word is presented on the final test, the target 

item will be more readily retrieved, even though it received no explicit practice with 

that cue. 

2.4.2 Results 

After fitting the model to each subject’s data, the model’s predicted recall 

accuracies and best fitting parameters were averaged across the fits to individual 

subjects. The average final test recall accuracy predictions for the four target item 

practice types, and the conditional recall accuracy predictions on the final test for 

the two types of tested target items are shown Figure 8 and Figure 9 respectively. 

The model’s fit to the joint probability of recall on the practice test and final test can 

be seen in Figure 10, along with observed joint averages from both groups of 

participants. The model’s best fitting parameters (which are shown in Table 2) 

produce predictions which closely approximate the observed data. Predicted 

performance is higher for the immediate final test than for the delayed test, and the 

pattern recall accuracies for the four target practice types are qualitatively matched 

in both groups (study practice > same-cue test practice > other-cue test practice > 

no practice). The only significant discrepancy between the fitted predictions and the 

observed data is found in the conditional probabilities of other-cue tested target 
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items, where the model under predicts the observed accuracy for items not recalled 

on the practice test, and over predict the accuracy for items that were correctly 

recalled on the practice test. However, this discrepancy results primarily from some 

subject’s low number of observations in some of these conditions (i.e. nearly perfect 

recall on the practice test, or nearly all errors on the practice tests. 

2.5 Discussion 

Experiment 1 tested and confirmed the prediction of the PCR model that 

successful retrieval practice should result in learning that generalizes to memory 

tests using other retrieval cues. We observed the surprising result that retrieving a 

target on a practice test is beneficial to memory on a later test regardless of whether 

the cues used on the final test match those used at the practice test. This can be seen 

in the data for the other-cue test practice condition, such that targets that received 

test practice with another cue are always better recalled than the control condition, 

and are recalled just as frequently as same-cue test practice targets on an immediate 

final test. Thus, it appears that test practice can enhance the retrievability of an item 

itself. This benefit was primarily observed for an immediate final test however, 

meaning that the retrieval cues themselves are not rendered unimportant to later 

retrieval outcomes by testing.   

This prediction of cue generalization stems from the convergent retrieval 

learning hypothesis as proposed by the PCR model. Specifically, we argue that that 

the act of retrieving from memory requires a type of pattern completion of the 

partially activated memory trace, and successful retrieval results in increases to the 
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associations that support this process. The observation that practicing retrieval of a 

target word with one cue word results in a higher probability of retrieving that 

target word in response to an independent cue which received no additional 

practice supports the convergent retrieval learning hypothesis. Importantly, the 

PCR model was able to capture this cue generalization effect in the model fitting 

exercise, while also fitting the classic pattern of resulting found in testing effect 

paradigms. Extant theories of memory which model learning as strengthening of the 

associations between retrieval cues and memory traces cannot readily explain the 

generalization of memory benefits from retrieval practice with one experimentally 

associated cue word to another cue word. We believe this result instead points to a 

form of learning about the target memory itself independently of retrieval cues. We 

now turn to testing a second prediction of the convergent retrieval learning 

hypothesis, specifically that if memory retrieval strengthens intra-item feature 

associations, that these strengthened associations will lead to reduced retrieval 

latency on subsequent memory tests.
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CHAPTER 3 

EXPERIMENT 2 

3.1 Testing the recall latency prediction of PCR 

As outlined previously, we assume that the primary retrieval process 

partially activates stored memory traces using retrieval cues, and that it takes time 

to completely activate and “fill in” the missing features during the CR process before 

a recall response may be given. After successful convergent retrieval forms new 

associative connections between items, attempting to recall again with the same 

memory cues will not require as many time steps to completely activate the 

remaining features in the item. Such a situation is schematically outlined in Figure 7. 

The left panel of Figure 7 shows the pattern of intra-item feature associations after a 

successful convergent retrieval attempt. If the same cues are used to guide a later 

retrieval attempt (i.e. the same two features are activated, as in the top right panel), 

then the remaining three features can simultaneously become active via intra-item 

feature associations immediately afterwards. Without the increase in intra-item 

associations learned from successful convergent retrieval, this process would take 

much longer, as it requires each remaining feature to become activate one at a time 

to support pattern completion (such a situation is shown in the left panel of Figure 

7.) Thus, this predicts that even when no difference in accuracy is observed between 

a practice test and a final test (i.e. when convergent retrieval is supported by 

retrieval cues), the retrieval time will be faster on a the final test than on the 

practice test 
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Such a pattern of results has been recently demonstrated in a cued recall paradigm 

(van den Broek, Segers, Takashima, & Verhoeven, 2014). In this experiment, we 

utilized a free recall paradigm, as allowing participants more flexibility in 

structuring the retrieval process provides better window into the dynamics of the 

retrieval process, and a more constraining data set for modeling. Participants were 

instructed to learn simple word lists in an initial study phase, after which the list 

was either restudied, or a free recall test was given. Immediately after this practice 

phase, a final free recall test was given. The results showed that while restudy 

practice produced the highest memory accuracy for the lists, test practice produced 

the fastest responses despite having little effect on overall accuracy, in line with our 

predictions. Below, further details of the experimental method, behavioral results 

and modeling results with the PCR model are given.  

3.2 Methods 

3.2.1 Participants  

34 individuals from the University of Massachusetts were recruited from the 

undergraduate subject pool. Participants were given one unit of credit that could be 

applied either toward class participation requirements or extra credit opportunities 

in undergraduate psychology classes. 

3.2.2 Materials  

List items consisted of 180 English nouns randomly selected from a pool of 

words. The word pool was gathered using the English Lexicon Project database 
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(Balota et al., 2007). All words in the pool were moderate frequency English nouns7 

with lengths between four and 10 characters and concreteness and imageability 

ratings of over 500 (Brysbaert & New, 2009). 

3.2.3 Procedure  

The experiment used a single factor (test practice vs. study practice) within-

subjects blocked design. Each block consisted of three phases: an initial learning 

phase, a practice phase, and a final test phase. For the initial learning phase, 

participants studied a list of 15 serially presented words, where each word was 

presented alone for three seconds in the center of a computer monitor. During study 

practice blocks, word lists were re-presented to participants in identical serial 

order. During test practice blocks, participants took a 90 second free recall test 

where they were instructed to recall as many words as possible from the list of 

words they had just studied. Practice test responses were given with the computer 

keyboard. No feedback about performance on the practice test was given. During the 

final test phase for all blocks, participants took a 90 second free recall test (an 

identical format as the practice test).  

Between initial study and practice, as well as the practice and final test 

phases, participants completed a 20 second math distractor task. The distractor task 

required participants to calculate a running cumulative sum of 5 consecutively 

presented single digit integers (5 seconds for each sequence presentation, 5 seconds 

to enter a response, with 2 repetitions of the sum task between each phase). Four 

                                                        
7 As in Experiment 1, moderate frequency was defined as having between five and 

200 usages per million words, as measured by the SUBTLEXUS  database. 
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study practice and four test practice blocks were presented in alternating order for 

each participant, with the method of practice for the initial block counter balanced 

across participants. This designs yielded 12 total test observations per subject: four 

baseline practice tests, four final tests following test practice, and four final tests 

following restudy practice. The entire experiment lasted approximately 45 minutes. 

3.3 Behavioral Results 

Recalled items were checked for accuracy first by an automated routine 

performing strict string comparison between responses and list items. Recall 

responses that were scored incorrect by the automated procedure were then double 

checked and scored by hand. Because there are no explicit instructions or temporal 

cues given by the experimenter telling participants to give each response in a free 

recall paradigm, the reaction time for a specific response in this data set is 

considered to be the elapsed time between responses (also known as the inter-

retrieval time). This elapsed time between each response given was measured by 

the time between confirming the last correct response8 (confirmation was given by 

hitting the “Enter” key after typing in the response) and the first keystroke of the 

next entered response, except for the first item output, where it was measured as 

the elapsed time between the onset of the response window and the first keystroke 

of the first response. 

                                                        
8 If an item from the word list was output more than once, it was not treated as a 
correct response after the first time. 
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Free recall accuracy and reaction time across the three conditions (baseline or 

initial practice test, final test after restudy practice, and final test after free recall 

test practice) were analyzed with a one-way repeated measures ANOVA. There was 

a significant effect of practice on accuracy (F2,66 = 174.9, p < .001), and Bonferroni - 

corrected pairwise t-tests showed significant differences between recall accuracy on 

the final test between the restudy and test practice conditions (81% correct vs 59% 

correct, t33 = 14.2, p < .001, Cohen’s dz = 1.83), a significant improvement in 

accuracy on the final test after restudy practice from the practice test (81% correct 

vs 61% correct, t33 = 13.1, p < .001, Cohen’s dz = 1.64) and a small but significant 

decrease in accuracy on the final test after test practice from the practice test (61% 

correct vs 59% , t33 = -3.9, p < .01, Cohen’s dz = .12).  

 The average reactions times in the three conditions were not normally 

distributed, each failing the Shapiro-Wilk test for normality, so the data were 

transformed using the natural logarithm for statistical analysis. After the natural 

logarithm transform, reaction times from each condition no longer failed the 

Shapiro-Wilk test for normality. There was a significant effect of practice on the log 

reaction times (F2, 66 = 20.72, p < .001). Bonferroni corrected pairwise t-tests 

showed no significant decrease in the log transformed reaction times on the final 

test following test practice relative to restudy practice (.289 seconds  versus .327 

seconds, t33 = -1.01, p = .95, Cohen’s dz = .13), a significant decrease in log reaction 

time after restudy practice from the practice test (.327 seconds versus .51 seconds, 

t33 = -5.66, p < .001, Cohen’s dz = .69) and a significant decrease in log transformed 

reaction time on the final test after test practice from in log transformed reaction 
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time the practice test (.51 seconds vs .289 seconds, t33 = 5.3 , p < .001, Cohen’s dz = 

.82). 

A breakdown of accuracy and response time by each items serial position in 

the output responses is shown for the three conditions in Figure 11 and Figure 12, 

respectively. Figure 11 shows the probability of recalling at least one items from the 

list, the probability of recalling at least two items from the list, etc., all the way up 

through the probability of recalling all 15 items from the list. Thus, perfect 

performance would be shown in the figure as a horizontal line at y = 1. This figure 

demonstrates that restudy practiced increased the probability of recalling more 

items from the list relative to the amount recalled on the practice test, while the 

probability of recalling more items from the list is slightly smaller on the final test 

than on the practice test following test practice. When breaking the reaction times 

down by the items serial position in recall output, it can be see that reaction times 

are relatively stable across output positions on the final test following test practice, 

as evidence by the relatively straight line connecting the response times at each 

output position. On the other hand, reaction times increased as a function of output 

position on both the practice test and on the final test following restudy practice, as 

shown by the upward slope in the connecting the reaction times observed for items 

output later in the list. This pattern of results (an accuracy advantage for restudy 

practice, but a speed advantage for test practice) is in line with the predictions of the 

PCR model.  
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3.4 PCR Model 

3.4.1 Implementation 

The PCR model was simultaneously fit to both the accuracy and reaction 

times of each participant. Monte Carlo simulation methods were used to estimate 

four quantities of interest for each of the 15 items on the test list (1000 simulations 

per item):  

 pr, the number of features able to be activated by retrieval cues following the 

initial encoding episode 

 θ, the number of features that must be activated by retrieval cues to support 

pattern completion. 

 L, the increase in the number of features activated by retrieval cues following 

PR practice, relative to initial encoding. 

 R, the reduction in CR threshold (θ) following successful retrieval practiced. 

 

Seven free parameters were allowed to vary in the simulations of these 

quantities. As in the previous implementations, a probability parameter e was used 

to control the rate of feature activation after the initial encoding opportunity, a 

probability parameter l was used to control the amount of increase in feature 

activation after restudy or successful retrieval on the practice test, and a probability 

parameter r was used to control the amount of reduction to the convergent retrieval 

threshold θ after successful retrieval on the practice test. The parameters 

controlling the  minimum and maximum time spent retrieving (or attempting to 

retrieve) an item from memory, Tmin and Tmax were allowed to vary for each subject, 
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as well the λ parameter which controlled the rate of decrease in reaction time as the 

distance to the CR threshold increased. The variability of the distribution of 

convergent retrieval threshold was allowed to vary, and was controlled by the t 

parameter9. 

As in each previous implementation, the probability of recalling an item on 

the practice test is given by calculating p(pr1 > θ). However, we also model the 

cumulative amount of time spent retrieving items from the list, and any items which 

would only be able to be recalled outside the 90 second response window are 

considered a failure to recall. The amount of time spent time spent retrieving (or 

attempting to retrieve) an item from memory was controlled by the negative 

exponential function show in Equation 6. Restudy or successful retrieval practice 

increases the amount of PR feature activation by the quantity L. Thus, performance 

on final test following restudy is given by finding p(pr + L > θ ), while performance 

on the final test following test practice requires summing over two quantities: the 

probability of recalling given a prior successful recall, p(pr + L > θ – R), and the 

probability of recalling given a failure to previously recall, p(pr - F> θ). Since 

increases in the value of pr and reductions in the value of of θ both change the 

distance to the convergent threshold (pr – θ), both restudy practice and successful 

test practice can reduce the response time of retrieval attempts subsequent to 

                                                        
9 As mentioned in the section outlining the implementation of the PCR model used 
to fit the data from Roediger and Karpicke’s Experiment 1, a continuous 
approximation to the binomial distribution using the beta distribution was utilized 
in the simulations. Here, the distribution of item CR threshold was a symmetric beta 
distribution with one free parameter (i.e. beta shape parameter a = shape parameter 
b = PCR model parameter t). For more details of the beta approximation, see 
Mathematical Appendix A. 
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practice. In contrast to the implementations used to model other experiments in this 

paper, forgetting between the practice phase and the final test phase was not 

included in the model, to reduce the number of free parameters and because the 

delay between the practice and final test was minimal.  

The model simulation method produced output detailing both the predicted 

probability of recalling at least x items from the word list (where x ranges from 1 to 

the total number of words on the list, 15) in each of the three conditions, as well as 

distribution of reaction times for items recalled at each output position (output item 

number 1 through output item number 15). Best fitting model parameters were 

identified by maximizing the likelihood of each observed data point from each 

subject under a joint reaction time and accuracy probability distribution 

approximated by smoothing and normalizing the distribution of reaction times 

produced by the PCR model10. Best fitting model parameters are shown in Table 3.  

3.4.2 Results 

The accuracy predictions of the best fitting PCR model as applied to each 

subject data were averaged at each output position, and these averages are shown 

as compared to the observed data in Figure 13. The median reaction times of the 

best fitting PCR model as applied to each subject data was calculated at each output 

position, and these medians are shown in Figure 14. As these plots show, the PCR 

model is able to capture the structure of the accuracy and reaction times observed 

                                                        
10 Details of the smoothing and normalization procedure used to create the joint 
accuracy and reaction time distributions are given in Mathematical Appendix B. 
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in the data. In the accuracy plots showing the probability of recalling an item at each 

output position, predicted performance on the practice test and final test after 

practice testing pattern together, with more items recalled from the lists following 

restudy practice, just as in the observed data. In the plots showing the median 

reaction times at each output position, the model captures the trend of increasing 

reaction times as a function of output position in the baseline practice test and final 

test after restudy practice conditions, as well as the stable reaction times across 

output positions on the final test practice test, just as in the observed data. 

3.5 Discussion 

The results of Experiment 2 confirmed the prediction of a second hidden 

benefit following test practice. The development of the PCR model predicted that 

successful test practice would increase the strength of intra-item feature 

associations, resulting in the ability to more quickly recall items on a subsequent 

final test. In a free recall paradigm, we observed that response times decreased on 

an immediate final test following both restudy and test practice relative to response 

times on the baseline practice test, but that responses times were decreased by the 

highest magnitude following test practice. This decrease in reaction time following 

test practice is consistent with previous experimental findings (van den Broek et al., 

2014). This speed up in responding was in contrast to the effects of restudy and test 

practice on accuracy: restudy strongly boosted recall accuracy, whereas accuracy 

accurately decreased slightly on the final test where the list of words was practiced 

with a free recall test. A negative correlation has been observed previously between 
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the number of items output in a free recall test and the rate at which the items are 

output (see Wixted & Rohrer, 1994 for a review of these free recall latency findings) 

but we argue that that such a small difference in the number of items recalled alone 

(an average of 9.15 recalled per list on the practice test and an average of 8.85 items 

recalled per list) is unlikely to explain the sharp decrease in response times. 

Additionally, response times also decreased while the number of items output 

increased in the restudy condition, pointing towards other mechanisms working to 

produce the observed changes in reaction time apart from simple changes in the 

number of items recalled. 

 When fit to the data observed from each subject, the PCR model was able to 

capture the pattern of accuracy and reaction time changes in each condition, further 

supporting the convergent retrieval learning hypothesis. They key feature of the 

model which allows it to fit the observed data is the assumption that it takes time to 

“fill in the blanks” of features in a memory trace not activated by retrieval cues, and 

that successful convergent retrieval speeds up subsequent retrieval attempts by 

strengthening the associative connections between intra-item  features. The model 

fitting exercise provided a strong challenge for the PCR, as fitting each observed 

data point from each subject places significant constraint on the model. Despite this 

constraint, the only discrepancy between the pattern of observed results and the 

predictions of the PCR model was that the observed data showed a small decrease in 

accuracy for final tests following test practice relative to accuracy on the practice 

test, while the PCR model predicted a slight in increase in performance. This stems 

from that fact that the model predicts that some failures to recall an item from the 
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list on the practice test are due to running out of time on the test, and that the 

increased response speed for items that were recalled can mean that on later tests, 

there is just enough time to retrieve an item that was left out on previous tests due 

to the time limit.  

We can consider two possible explanations for this small discrepancy. The 

first is that there was forgetting between the practice and final test, a process which 

was not included in the model of Experiment 2. A small degree of forgetting between 

the two tests might be able to lower the weakest items in memory (those which are 

just above the CR threshold, and likely the last to be attempted in the list) below the 

CR threshold. Alternatively, this discrepancy may be due to the fact that this 

implementation of the PCR model has a relatively simple memory search process, in 

which items are attempted to be retrieved in the order of their pr values, and items 

do not interfere with the retrieval of other items. In reality, there is good evidence 

that list items do interfere with one another at retrieval (Gillund & Shiffrin, 1984; 

Ratcliff, Clark, & Shiffrin, 1990). A possible explanation the small decrease in 

accuracy is that the retrieval of items target items on the practice and final test 

made them so strong in memory that they repeatedly outcompeted weaker items 

for retrieval (i.e. a list-strength effect). Some evidence for this possibility can be 

found in an analysis of repeats (the number of times a target word was output more 

than once) during the practice and final test phases. On the practice test, there were 

an average of .26 repeated words per list, while repeats on the final test increased to 

an average of .43 words per list, suggesting that some words became more difficult 

to not repeatedly retrieve after test practice. Despite this discrepancy, we argue that 
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the model’s predictions are consistent with the observed data, and provide strong 

support for the PCR model’s novel theoretical component of convergent retrieval 

learning.  
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CHAPTER 4 

GENERAL DISCUSSION 

4.1 Overview of Findings 

This paper introduces a new model of memory retrieval, dubbed the Primary 

and Convergent Retrieval model. This model’s chief contribution to the field of 

existing memory models is the assumption that associative learning can take place 

between the individual features that compose a memory trace, an assumption we 

argue is warranted by evidence from experimental paradigms showing that not all 

forms of practice have equivalent effects on long term memory. We provide support 

for the CR learning hypothesis by applying the PCR model to data from experiments 

previously reported in the literature, and running two novel experiments which 

confirmed key predictions of the PCR model of hidden benefits for retrieval practice 

on immediate final tests. In the first experiment, we tested and confirmed the 

prediction that because convergent retrieval learning from retrieval practice 

strengthens intra-item feature associations, benefits from successful retrieval 

guided with one cue should generalize to another unpracticed cue. In the second 

experiment, we tested and confirmed the prediction that because convergent 

retrieval learning from retrieval practice strengthens intra-item feature 

associations, subsequent retrieval attempts would proceed more quickly thanks to 

the increase in connectivity between features.  Here, the implications of the success 

of the PCR model in explaining past and present data are discussed first for the field 

of research surrounding the testing effect and then for the field of memory models. 
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4.2 Broader Implications 

Despite being first documented nearly 100 years ago, there have been no 

well specified (i.e., mathematical) models of the cognitive processes that underlie 

the testing effect. Prior verbal theories have explained the benefit of retrieval 

practice in various ways, appealing to mainly the desirable difficulty induced 

through the effort required to retrieve items from memory (Bjork & Bjork, 1992; 

Jacoby, 1978; Roediger & Karpicke, 2006b), the opportunity for  elaborative 

processing strategies (Carpenter, 2009; McDaniel & Masson, 1985; Pyc & Rawson, 

2010), and a transfer appropriate processing framework (Roediger & Karpicke, 

2006a). A serious problem in debates over different theoretical accounts of test 

practice benefits stems from the fact that the explanations offered by various 

authors are not mutually exclusive from one another, making strong tests of their 

hypothesis difficult. The current paper offers a more concrete and testable theory 

about the source of retrieval practice benefits by connecting the literature on the 

testing effect with the broader literature describing computational models of 

memory. 

The PCR model explains the long term benefits of test practice by 

hypothesizing that two independent learning process take place when information 

is recalled (PR learning and CR learning), while only a single learning process takes 

place when information is restudied (PR learning). Since retrieval practice engages 

the additional CR learning mechanism, it provides additional protection against 

interference/forgetting. This protection comes in the form of strengthened intra-

item feature associations, where this strengthening driven by the need to activate 
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features of memory traces left inactive by retrieval cues. As shown by applying the 

PCR model to the data from Roediger and Karpicke 2006a, The CR learning 

mechanism provides a process based explanation of the cross-over interaction with 

practice method and retention interval, which has not been present in previous 

literature.  

The CR learning mechanism also provides an explanation of why test practice 

benefits fail to appear when the practice test involves recognition. Carpenter and 

DeLosh (2006), as well as Glover (1989) tested participants using all possible 

combinations of free recall, cued recall, and recognition memory tests for the 

practice test and the final test. Both studies found the highest performance for items 

that received a free-recall practice test, regardless of what type of memory test was 

taken for the final test. Their findings show that the testing effect seems related to 

the degree to which the test practice requires the act of retrieval. This is consistent 

with the explanation of retrieval practice benefits offered by the PCR models. Since 

CR learning is hypothesized to underlie the benefits of retrieval practice, and CR 

learning requires that intra-item features associations activate features of the 

memory trace left dormant by the retrieval cues to occur, then recognition practice 

will not induce this pattern competition process since presentation of the 

recognition probe necessarily activates the features of that item, and the pattern 

completion process is irrelevant. 

It is also important to situate the PCR model within the context of extant 

models of memory. Despite differences between existing models of memory and the 

functional form of the implementation of PCR used in this paper, PCR incorporates 
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many ideas from these existing models of memory. PCR still includes the key 

assumptions from the memory models previously discussed (SAM, REM, MINERVA, 

and the Complementary Learning Systems model). Specifically, we assume that 

retrieval from long term memory is a two stage process requiring the use of 

information from memory system about the overall strength of memories, as well as 

information about the specific content of the memory traces. Indeed, direct 

comparisons between the processes of the PCR model and the retrieval processes in 

these previous model can be drawn.  The amount of features activated by retrieval 

cues during the Primary Retrieval process in PCR is analogous to the sampling 

strength of a memory in SAM, or the echo intensity in MINERVA, or the magnitude of 

the signal from the cortical network in the Complementary Learning Systems model. 

Each of these provides information about the absolute strength of the memory for a 

particular item, or about the magnitude of the memory system’s response across 

many items.  An items Convergent Retrieval threshold in PCR is analogous to the 

recovery strength of a memory in SAM, or the echo content in MINERVA, or the 

magnitude of the signal from the hippocampal network in the Complementary 

Learning Systems. Each of these quantities provides a measure of how easily the 

content of a specific episodic memory can be restored and thus recalled. The 

Convergent Retrieval process in PCR is most similar to pattern completion process 

in the hippocampal network from the Complementary Learning Systems model, and 

the echo content sharpening process in the MINERVA model. Each of these 

processes uses the currently active features of a memory trace to try and help bring 
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the currently active features “online” so that the memory system settles into a stable 

state to recall an item.  

However, PCR differs from these previous models in one significant way. 

Prior models assumed that any learning process which took place would only 

strengthen the association between the retrieval cues and the features of the target 

memory trace. Then, these associations would make the magnitude of the memory 

response larger and its content clearer on subsequent attempts to retrieve the 

target memory with those retrieval cues. PCR retains this assumption, contained in 

the Primary Retrieval process, but posits an additional form of associative learning 

between the individual features of an item themselves, contained in the Convergent 

Retrieval Process. While this learning is indeed a separate process, it does not 

require the invocation of any additional learning mechanisms. Convergent Retrieval 

learning is still based on learning to associate one feature with another, based on 

their concurrent activation, just as in the Primary Retrieval process. The difference 

between the two is that in PR, the features associations cross discretized items, 

while in the CR learning process the associations are simply learned within the 

features that define a discretized items. Thus, the PCR model implies that when the 

convergent retrieval process is invoked (which is any time recall is necessary), 

something is learned about the internal consistency of the target memory itself. This 

greater internal consistency allows it to be more easily retrieved in the future, 

regardless of context or cue, and helps the memory to “spring to mind” more readily. 

This final point is a significant departure from the structure of extant memory 
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models, and will hopefully spark further investigation and research of item-specific 

learning in the future.
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Table 1: Best fitting PCR model parameters as applied to Roediger and 

Karipicke, 2006, Experiment 1 
 
  

Parameter e l r f2 f2 Tmin G2 

Value .585 .102 .090 .137 .064 15.725 .042 
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Table 2: Average best fitting parameters for the PCR model used in 
Experiment 1 

 
 

Parameter e l  r f s 
-log 

likelihood 

Immediate 

Final Test 
Value 

.528 .185 ..064 .043 .045 43.89 

Delayed 

Final Test 
.521 .137 .035 .109 .08 45.4 
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Table 3: Average best fitting parameters for the PCR model used in 
Experiment 2 

 

Parameter e l  t  r Tmin  Tmax  λ 
-log 

likelihood 

Value 0.535 0.070 146.932 0.039 0.908 53.132 0.808 509.688 
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Figure 1: Recall accuracy in Experiment 1 of Roediger and Karpicke 2006a.  
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Figure 2: Schematic diagram of primary retreival  
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Figure 3: Schematic diagram of primary retreival process at encoding  
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Figure 4: Schematic diagram of sucessful (left panel)  and unsuccesful (right 

panel) convergent retrieval process. 
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Figure 5: Reaction time function in the PCR model 
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Figure 6: Recall accuracy performance predicted by the PCR model from 

Experiment 1 of Roediger and Karpicke 2006 
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Figure 7: Outcomes of subsequent retreival attempts following succesful 

convergent retreival and convergent retrieval learning. 
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Figure 8: Recall accuracy on the final cued recall test of Experiment 1. 
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Figure 9: Conditional probability of recall on final test in Experiment 1. 
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Figure 10: Joint distribution of recall outcomes on the final and practice tests 

in Experiment 1. 
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Figure 11: Free recall accuracy observed in Experiment 2. 
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Figure 12: Elapsed time (in seconds) between recall outputs in each condition 

of Experiment 2. 
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Figure 13: Free recall accuracy observed predicted by the PCR model. 
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Figure 14: The observed  and predicted time (in seconds) between recall 

outputs in each condition of Experiment 2. 
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APPENDIX A 
 

BETA APPROXIMATION TO THE BINOMIAL 

  The beta distribution was to model the amount of feature activation in the PR 

process and the CR threshold because of the assumption that features of an item 

stored in memory are not discretely active or inactive. However, the parameters of 

the Binomial distribution (probability of success, and the number of trials) 

remained more interpretable than the shape parameters of the beta distribution and 

were used throughout as free parameters. So, the probability of success and total 

number of trials were used to find the mean and variance of the binomial 

distribution they parameterized, and this mean and variance were used to solve for 

the shape parameters of the beta distribution with the identical mean and variance. 

For any given binomial distribution with parameters p (the probability of 

success) and N (the total number of trials), the mean, μ, of this binomial distribution 

is given by 𝜇 = 𝑁𝑝 and the variance, σ2, is given by 𝜎2 = 𝑁𝑝(1 − 𝑝). In our 

simulations, p is generally a free parameter, and N is fixed at 100 (the number of 

features for each item). 

After finding μ and σ2, these values were divided by N to put them on the 

same scale as the mean and variance of the beta distribution. Then, these values 

were used to solve for the two shape parameters of a beta distribution with the 

same mean and variance as the binomial distribution parameterized with p and N. 

The first shape parameter a was found with the equation: 

𝑎 = 𝜇 [
𝜇(1 − 𝜇)

𝜎2
− 1] 
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And the second shape parameter b was found with the equation: 

𝑏 = (1 − 𝜇) [
𝜇(1 − 𝜇)

𝜎2
− 1] 

After simulating random samples from a beta distribution with shape 

parameters a and b 100 times for each item, the resulting samples (bounded in the 

range (0, 1) were multiplied by N to put them back on the original scale of the 

binomial distribution. 

  



 

 77 

APPENDIX B 
 

APPROXIMATING THE REACTION TIME DISTIBUTION  

As described in the “PCR implementation and results” section of Experiment 2, the 

PCR model simulates the memory accuracy and reaction time (time spent 

attempting convergent retrieval before actually recalling or rejecting the item as 

unrecallable) 1000 times for each item in the word list. Thus, in some proportion of 

the 1000 list simulations in each of the 3 conditions (baseline practice test, final test 

after restudy, and final test after test practice) only 1 item will be output, or only 

two items will be output, etc., up to all 15 items output. Each of the simulated 

outputs is associated with a specific reaction time, and thus an “empirical” 

distribution of reaction times associated with the items recalled at each output 

position can be formed from the model’s output. 

To assess goodness of fit to the observed data, this distribution of reaction 

times at each output position was smoothed using Gaussian kernel density 

estimation with a kernel bandwidth of 1. The kernel density was estimated at 900 

evenly spaced points between .1 seconds and the maximum observable reaction 

time, 90 seconds. We will denote the estimated density at point i for output position 

j as Dij. Next, the density at each of these 900 points was divided by the grand sum of 

the density across all 900 points, thus making the new grand sum of the density at 

all 900 points equal to 1. Mathematically, the new density at point i in output 

position j, D’ij, is given by: 
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𝐷′𝑖𝑗 =
𝐷𝑖𝑗

∑ 𝐷𝑖𝑗
900
𝑖=1

 

This was done for the reaction times in each of the observed output positions 

from the model’s simulations (i.e. one up to a maximum of 15). A final step of 

normalization was done in order to take into account the models predicted accuracy 

for each condition. The density each of the 900 points in each of the output positions 

was multiplied by the proportion of simulations (out of 1000) in which the model 

produced an output at that positions. Mathematically, the new density at point i in 

output position j is given by 

𝐷′′𝑖𝑗 = 𝐷′𝑖𝑗 ∗
𝑠𝑗

1000
 

Where 𝑠𝑗  gives the number of simulated lists in which the model produced an 

n output at position j. In other words, the densities were normalized by the 

probability of recalling at least j items. Thus, the grand sum of the densities over all 

the 900 points, spaced evenly between .1 to 90 seconds, across all output positions 

one through 15 was one (in each of the conditions), creating a joint reaction time 

and accuracy probability distribution. 

 Finally, these doubly normalized density values were used to assess the 

likelihood of each observation from the subject. For example, the height of the 

density curve for output position one, D’’1 at each of the observed reaction for the 

first item output in the practice test baseline condition would determine the 

likelihood of that data. Since the density was calculated for responses times at 

tenths of a second intervals, observed reaction times were rounded to the nearest 
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tenth of a second before calculating the density at that point. Then these likelihoods 

were log transformed and summed to compute the overall likelihood of all the 

observations.
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