
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

July 2016

An Incremental Approach to Identifying Causes of System An Incremental Approach to Identifying Causes of System

Failures using Fault Tree Analysis Failures using Fault Tree Analysis

Huong T. Phan
University of Massachusetts

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Recommended Citation Recommended Citation
Phan, Huong T., "An Incremental Approach to Identifying Causes of System Failures using Fault Tree
Analysis" (2016). Doctoral Dissertations. 678.
https://scholarworks.umass.edu/dissertations_2/678

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/678?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

AN INCREMENTAL APPROACH TO
IDENTIFYING CAUSES OF SYSTEM FAILURES

USING FAULT TREE ANALYSIS

A Dissertation Presented

by

HUONG PHAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2016

College of Information and Computer Sciences

c© Copyright by Huong Phan 2016

All Rights Reserved

AN INCREMENTAL APPROACH TO
IDENTIFYING CAUSES OF SYSTEM FAILURES

USING FAULT TREE ANALYSIS

A Dissertation Presented

by

HUONG PHAN

Approved as to style and content by:

George S. Avrunin, Co-chair

Lori A. Clarke, Co-chair

Matt Bishop, Member

Wayne B. Burleson, Member

Leon J. Osterweil, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

DEDICATION

To my parents.

ACKNOWLEDGMENTS

I would like to thank my dissertation advisors, Professors Lori Clarke and George

Avrunin, for their guidance and especially their encouragement.

I also would like to thank the committee members, Professors Leon Osterweil,

Matt Bishop, and Wayne Burleson, for their feedback and support.

This work would not be possible without the initial work laid out by Bin Chen, a

former lab member, or without hours of discussion with current as well as former lab

members, Heather Conboy and Stefan Christov.

I am forever grateful for Bonnie Nasca and her husband Philip Nasca for giving

me unconditional love and support in my early time at UMass. They moved away

but we still remain family.

My time in Amherst was made enjoyable by my photography friends and especially

salsa friends. Thank you, friends.

Last but not least, I want to express by deep gratitude toward my family – my

parents, my sister’s family, my daughter, and my partner Sophal Khun – for all their

love and support.

v

ABSTRACT

AN INCREMENTAL APPROACH TO
IDENTIFYING CAUSES OF SYSTEM FAILURES

USING FAULT TREE ANALYSIS

MAY 2016

HUONG PHAN

B.I.T., QUEENSLAND UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor George S. Avrunin and Professor Lori A. Clarke

This work presents a systematic, incremental approach to identifying causes of

potential failures in complex systems. The approach builds upon Fault Tree Analysis

(FTA), but enhances previous work to deliver better results. FTA has been applied

in a number of domains to determine what combinations of events might lead to a

specified undesired event that represents a system failure. Given an undesired event,

FTA constructs a fault tree (FT) and computes its cut sets, the sets of events that

together could cause the undesired event. Such cut sets provide valuable insights

into how to improve the design of the system being analyzed to reduce the likelihood

of the failure. Manual FT construction can be tedious and error-prone. Previous

approaches to automatic FT construction are limited to systems modeled in specific

modeling languages and often fail to recognize some important causes of failures. Also,

these approaches tend to not provide enough information to help users understand

vi

how the events in a cut set could lead to the specified undesired event and, at the

same time, often provide too many cut sets to be helpful, especially when systems

are large and complex.

Our approach to identifying causes of potential system failures is incremental

and consists of two phases that support selective exploration. In the first phase, a

high-level FT, called the initial FT, is constructed based on the system’s data and

control dependence information and then the initial FT’s cut sets, called the initial

cut sets, are computed. In the second phase, users select one initial cut set for more

detailed analysis. In this detailed analysis, additional control dependence information

is incorporated and error combinations are considered to construct a more detailed

FT, called the elaborated FT, that focuses on the chosen initial cut set. The cut sets

of the elaborated FT, called the elaborated cut sets, are then computed, and concrete

scenarios are generated to show how events in each of those elaborated cut sets

could cause the specified undesired event. Our approach is applicable to any system

model that incorporates control and data dependence information. The approach also

improves the precision of the results by automatically eliminating some inconsistent

and spurious cut sets.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 5

2.1 Fault Tree Analysis . 5
2.2 Data Dependence . 9
2.3 Control Dependence . 15
2.4 The Process Modeling Language Little-JIL . 20
2.5 Related Work . 24

2.5.1 Variations of Fault Trees . 24
2.5.2 Other Automated Fault Tree Generation Work 25

3. APPROACH . 28

3.1 The Overall Approach . 29
3.2 Deriving Initial Fault Trees Using Simple Templates 32

3.2.1 DF Set: Templates To Derive Initial Fault Trees Based On
Data Flow Analysis . 32

3.2.1.1 Path-sensitive Reaching Definitions Problem
(PRDP) And Immediate Data Dependence 32

3.2.1.2 Deriving Fault Trees using Immediate Data
Dependence and Control Dependence
Information . 40

viii

3.2.1.3 Template DF-1: “b output from v is incorrect” 41
3.2.1.4 Template DF-2: “input to v is incorrect” 43
3.2.1.5 Template DF-3: “b is incorrect when exiting v” 44
3.2.1.6 Template DF-4: “b is incorrect when entering v” 45
3.2.1.7 Template DF-5: “execution incorrectly reaches v” 46
3.2.1.8 Template DF-6: “predicate p(u, t) incorrectly

holds” . 47

3.2.2 SP Set: Simple Templates To Derive Initial Fault Trees 48

3.2.2.1 Template SP-2: “input to v is incorrect” 49
3.2.2.2 Template SP-4: “b is incorrect when entering v” 51

3.3 “Issue ballot and get vote” Example . 52
3.4 Deriving The Focused Fault Tree . 57
3.5 Zooming In On An Initial Cut Set With Detailed Templates 61

3.5.1 Template DT-1: “b output from v is incorrect” 63
3.5.2 Template DT-2: “input to v is incorrect” . 64
3.5.3 Template DT-6: “predicate p(u, t) incorrectly holds” 65
3.5.4 Template DT-7: “predicate p(u, t) holds” . 65
3.5.5 Template DT-8: “execution correctly reaches v” 66
3.5.6 Elaborating The Focused Fault Tree . 66

3.6 Removing Inconsistent And Spurious Cut Sets . 68
3.7 Generating Scenarios . 74

4. EVALUATION . 77

4.1 Applying The Approach To Little-JIL Process Models 79

4.1.1 Translating A Little-JIL Model To A Control Flow Graph 79
4.1.2 Applying Simple Templates To Little-JIL Models 84

4.1.2.1 Elaborating “b is incorrect when s-POSTED” When s
Is Not The Root Step . 86

4.1.2.2 Elaborating “b is incorrect when s-POSTED” When s
Is The Root Step. 89

4.1.2.3 Elaborating “b is incorrect when s is COMPLETED” 90
4.1.2.4 Template LS-2: s incorrectly throws exception e 92

4.2 Case Studies On Four Little-JIL Processes . 94

4.2.1 Four Little-JIL Processes Used In The Approach’s
Evaluation . 94

4.2.2 Findings . 97

ix

4.2.2.1 Using the detailed templates led to scenarios that
completely specified the paths through the
process that could result in the failure. 98

4.2.2.2 Some spurious cut sets could be automatically
identified and therefore eliminated 99

4.2.2.3 The result size depended on multiple factors 100
4.2.2.4 Using all available control and data dependence

information resulted in a larger number of MCSs
for the domain experts to examine 102

4.3 Summary . 110
4.4 Little-JIL’s Abstraction Posing Limits On Our Fault Tree

Derivation . 111

5. CONCLUSIONS . 112

APPENDICES

A. PROOF OF EQUIVALENCE BETWEEN DF AND SP
TEMPLATE SETS . 116

B. PSEUDO-CODE FOR TEMPLATES . 129
C. LITTLE-JIL FTA TEMPLATES . 134

BIBLIOGRAPHY . 136

x

LIST OF TABLES

Table Page

2.1 Reaching Definitions Example. Showing the progress of the work-list
algorithm. 15

2.2 Control Dependence Example. 20

3.1 Path-sensitive Reaching Definitions Example. Showing the progress
of the work-list algorithm. 37

3.2 Templates In DF Set And SP Set. 50

3.3 Templates In DT Set And SP Set. 62

4.1 Evaluation Result: Spurious Cut Set Identification. 100

4.2 Evaluation Result: Result Size Comparison. 102

4.3 Evaluation Result: More MCSs To Examine. 103

4.4 Specifying Unlikely Events To Reduce Result Size. 107

4.5 Grouping CSs And MCSs In CV Process. 110

xi

LIST OF FIGURES

Figure Page

2.1 Fault Tree Example. 6

2.2 Fault Tree’s Compact vs. Fully Expanded Representation. 7

2.3 CFG With Decision Vertex (A) Converted To CFG With Edge
Predicates (B). 10

2.4 CFG Showing Reaching Definitions. 14

2.5 Reverse CFG And Its Corresponding Dominator Tree. 19

2.6 Little-JIL Process Model Of “Issue ballot and get vote”. 22

3.1 The Incremental Approach. 30

3.2 CFG Showing Path-sensitive Reaching Definitions. 35

3.3 Template DF-1 For Event Type “b output from v is incorrect” When
b ∈ Def (v). 42

3.4 Template DF-2 For Event Type “input to v is incorrect” When
b ∈ Def (v). The symbol * indicates that one event is added for
each (au, P) ∈ IDD(b, v) and the symbol ** indicates that one
event is added for each ei in the sequence P = 〈e1, . . . , en〉. 43

3.5 Template DF-3 For Event Type “b is incorrect when exiting v”. 44

3.6 Template DF-4 For Event Type “b is incorrect when entering v”. The
symbol * indicates that one event is added for each
(bu, P) ∈ IDD(b, v) and the symbol ** indicates that one event is
added for each ei in the sequence P = 〈e1, . . . , en〉. 45

3.7 Template DF-5 For Event Type “execution incorrectly reaches v”.
The Kleene star * indicates one event is added for each
(u→ t) ∈ CD(v). 46

xii

3.8 An Example CFG Of “Issue ballot and get vote”. 47

3.9 Template DF-6 For Event Type “predicate p(u,t) incorrectly holds”.
The Kleene star * indicates one event is added for each
a ∈ Use(p(u, t)). 47

3.10 Template SP-2 For Event Type “input to v is incorrect”. The Kleene
star * indicates one event is added for each a ∈ Use(v). 50

3.11 Template SP-4 For Event Type “b is incorrect when entering v”. The
Kleene star * indicates one event is added for each
u ∈ Pred(v). 51

3.12 CFG Annotated With Data Flow Information Of “Issue ballot and
get vote” System. 52

3.13 Applying Simple Templates to “Issue ballot and get vote” System
Model Given the Failure “ ballot is incorrect when ‘cast vote’
starts”. 54

3.14 Initial FT Derived From “Issue ballot and get vote” System Model
Given The Top Event “ballot is incorrect entering ‘cast vote’ ”. 56

3.15 Focused Fault Tree Example. 58

3.16 Focused Fault Tree Given Cut Set CS-2. 59

3.17 Template DT-1 For Event Type “b output from v is incorrect”. 64

3.18 Template DT-2 For Event Type “input into v is incorrect”. The
symbol * indicates that one event is added for each S, a subset of
Use(v), or S ∈ P(Use(v)). The symbol ** indicates that one
event is added for each artifact a ∈ S. 64

3.19 Template DT-6 For Event Type “predicate p(u, t) incorrectly holds”.
The symbol * indicates that one event is added for each S, a
subset of Use(p(u, t)), or S ∈ P(Use(p(u, t))). The symbol **
indicates that one event is added for each artifact a ∈ S. 65

3.20 Template DT-7 For Event Type “predicate p(u, t) holds”. 65

3.21 Template DT-8 For Event Type “execution correctly reaches v”. The
symbol * indicates that one event is added for each
(u→ t) ∈ CD(v). 66

xiii

3.22 Converting A Stem In The Focused Fault Tree. 68

3.23 Spurious Result Example. 71

4.1 CFG Of The Little-JIL Process Model Of “Issue ballot and get
vote”. 81

4.2 Adding “perform s” Vertex In The CFG For Each Leaf Step s. 82

4.3 Simplifying DF-3-case-3 When Applying to Little-JIL. 85

4.4 Parameter Binding Graph (PBG) Of “Issue ballot and get vote”. 87

4.5 Applying SP-4 To Elaborate “b is incorrect when s is POSTED”. 87

4.6 Example Of Applying SP-4 To “b is incorrect when s is POSTED”. 88

4.7 Template LS-1 For Event Type “b is incorrect when s is COMPLETED”
When b Is An Output Artifact Of Leaf Step s. 91

4.8 Elaborating “ ‘ballot @ issue regular’ is incorrect when ‘issue regular’
is COMPLETED” Using Template LS-1. 92

4.9 Template LS-2 For Event Type “s incorrectly throws exception e”. 93

4.10 Applying LS-2 to Elaborate “ ‘verify not-voted’ incorrectly throws
AlreadyVoted”. 93

4.11 Little-JIL Process Model Of “Count votes”. 95

4.12 Little-JIL Process Model Of “Chemotherapy”. 95

4.13 Little-JIL Process Model Of “In-patient blood transfusion”. 96

4.14 Evaluation Result: Result Size Comparison. 103

4.15 Evaluation Result: Comparing With Chen’s Approach. 104

4.16 Evaluation Result: Initial CSs and Corresponding Numbers of
Elaborated CSs and MCSs. 104

4.17 Specifying Unlikely Events To Reduce Result Size In All Cases. 107

4.18 Parameterizing Elaboration Depth To Control Result Size. 108

xiv

4.19 Grouping Cut Sets. 109

A.1 Base Case 1.1. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches v via
unguarded edge (u→ v). LHS: T1DF (v). RHS: T1 SP (v). 120

A.2 Base Case 1.2. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches u1 via
(u→ v) guarded by predicate p0. LHS: T1DF (v). RHS:
T1 SP (v). 121

A.3 Base Case 1.3. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches v via
a path guided by P = ∠u0, ..., un〉 with u0 ≡ start and un ≡ v.
LHS: T1 (v)DF . RHS: T1 (v)SP . 123

A.4 T1DF (v) Of Base Case 2. Elaboration of event “input to v is
incorrect” using the DF set, with v having two input a and a′

whose definitions come from the start vertex via paths guided by
P and P ′ respectively. 124

A.5 T1 SP (v) Of Base Case 2. Elaboration of event “input to v is
incorrect” using the SP set with v having two input a and a′

whose definitions come from the start vertex via paths guided by
P and P ′ respectively. 125

A.6 Induction Case. Elaboration of event “input to v is incorrect” with
an input a used at v and the definition of a from u0 reaches v via
a path guided by P . u0 6= start LHS: T1DF (v). RHS:
T1 SP (v). 127

C.1 Template LS-3 for Event Type “s incorrectly does not throw exception
e”. 135

xv

CHAPTER 1

INTRODUCTION

Any complex system is subject to failures. The likelihood of failures, however, can

often be reduced by improving the system design. To do so, one must understand

how a failure might happen, what the causes could be. One approach to identi-

fying causes of potential failures is to use Fault Tree Analysis (FTA), a deductive,

top-down analytical technique used in a variety of industries [12]. In FTA, an un-

desired event representing the system failure is specified, and the system model is

analyzed to find ways that the specified undesired event could occur. FTA includes

two parts: constructing a fault tree (FT) and analyzing the FT. A FT is a graphical

model that depicts the combinations of events that together could cause the speci-

fied undesired event, which is at the top of the FT. Hereafter we use top event to

refer to the undesired event representing the system failure being analyzed. Once the

FT is constructed, different quantitative and qualitative analyses can be applied. To

identify causes of the system failure, one uses a qualitative analysis that computes

the FT’s cut sets, which are combinations of events that might cause the top event.

Straightforward Boolean algebra can be applied to automatically compute a FT’s cut

sets.

Manual FT construction, however, is tedious and error prone. Many have at-

tempted to automate FT construction for various types of systems [3,4,14,21,22,24].

There are still some problems with these previous approaches. They are language de-

pendent; each approach is limited to systems that are modeled in a specific language,

e.g., ADA programs [21], Pascal programs [14], UML models [19,24,34], SysML mod-

1

els [22], and Little-JIL process models [3, 4]. They do not appear to fully exploit

control dependence information, hence producing incomplete FTs. In some cases,

published papers show little evidence of evaluation on real complex systems. Further,

the cut sets that are computed often do not provide users with enough information

to understand how all the events in a cut set could happen in a system execution

and lead to the occurrence of the top event. At the same time, these approaches

may provide too many cut sets to be helpful, especially when systems are large and

complex. Finally, these previous approaches do not seem to deal with false positives

— inconsistent and spurious cut sets1.

In an attempt to address the above problems, we investigated a two-phase ap-

proach that lets users incrementally gain deeper understandings of causes of system

failures. Given a system model and an undesired event representing a system fail-

ure, the first phase uses data and control dependence information from the model to

automatically construct, or derive, a high-level FT, called the initial FT, whose top

event is the undesired event. Also in this first phase, the cut sets from the initial

FT, called the initial cut sets, are computed and presented to users. In the second

phase, users can then select one initial cut set as the basis for more detailed analysis.

In this detailed analysis, with the focus on the chosen initial cut set, additional con-

trol dependence information is incorporated and error combinations are considered

to elaborate the initial FT to result in a more detailed FT, called the elaborated FT.

Its cut sets, called the elaborated cut sets, are then computed, and concrete scenarios

for each elaborated cut set are generated. A scenario is a system execution path that

contains all events in an elaborated cut set and shows how the events in the cut set

1A cut set is said to be inconsistent if it is impossible for all of the events in the cut set to occur
in one system execution. A cut set is said to be spurious if all system executions, each of which
contains all events in the cut set and does not contain all events in any other cut set, turn out to
not result in the top event.

2

could lead to the top event. After cut sets from FTs are computed, some inconsistent

and spurious cut sets are automatically identified and removed.

We implemented and evaluated our approach by applying it to models of four

non-trivial human-intensive systems from the medical and election domains. As part

of larger projects for modeling and analyzing human-intensive systems, these models

had been created with help from domain experts. These models are defined in Little-

JIL, a process modeling language [33], which provides sufficient control and data flow

information to support our approach. The terms process and system therefore are

used interchangeably from this point forward. By applying our approach to Little-JIL

process models, we show that the approach is generic and applicable to any language

that includes data and control flow information.

The contributions of this work are:

1. An improved approach to identifying causes of system failures using FTA that:

• is systematic in that it is based on data and control dependence, and thus

can be implemented using standard data and control flow analysis;

• identifies more cut sets through exploiting additional control dependence

information;

• supports selective incremental exploration of an initial high-level FT, thus

allows users to focus their effort and gain a deeper understanding on specific

areas of interest;

• improves the precision of the results (initial and elaborated cut sets) by

automatically removing some types of inconsistent and spurious cut sets.

2. Experimental results that demonstrate some of the strengths and weaknesses of

our approach.

The rest of the thesis is organized as follows. Chapter 2 presents the background

on FTA, data and control dependence, the process modeling language Little-JIL, and

3

related work on variations of FTs and other automated FT construction work. Chap-

ter 3 describes our two-phase approach based on data and control flow analyses. This

chapter focuses on the FT derivation for the two phases, the removal of spurious cut

sets, and the generation of scenarios. The discussion in this chapter is independent of

the system modeling language used. Chapter 4 shows the evaluation of our approach

using four systems modeled in Little-JIL. Finally, Chapter 5 presents our conclusions

and discusses potential future work.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

The first section of this chapter presents a brief history of Fault Tree Analysis

(FTA) and an introduction to elements of a fault tree (FT). Since our FT derivation

builds upon data and control flow analyses, the second and third sections provide

the necessary background of those areas. The forth section describes the Little-JIL

process definition language. And the last section discusses FTA-related work.

2.1 Fault Tree Analysis

Fault Tree Analysis (FTA) was first developed in 1962 at Bell Laboratories by

H.A. Watson in a contract with US Air Force to study the Minuteman Launch Con-

trol System. Since then the value of FTA has been well recognized and FTA has been

adopted by various industries, such as aerospace, nuclear power, chemical processing

and automotive [12]; and more recently FTA has been used in health care and se-

curity [3, 16, 32]. Lately, it has been adopted experimentally in reasoning about the

possibility of failures in election processes [25,28].

FTA is a deductive, top-down analytical technique that begins with a specification

of an undesired event representing a system failure. “The launch vehicle fails to ignite

at launch” and “no propellant is supplied to the thruster when the arming command

is initiated” are two examples of system failures from the aerospace industry [30].

With FTA, one first postulates the possibility of a particular system failure, and

then attempts to find out which events in the system could combine to cause the

actual occurrence of the failure, represented by an undesired event. Given the un-

5

Figure 2.1. Fault Tree Example.

desired event, FTA produces a fault tree (FT), a graphical model of all the various

combinations of events that could lead to the undesired event.

Events and gates are the basic elements of a FT. The event at the root (top) of

the tree is the undesired event, hereafter referred to as the top event. The logical

relationships of the events are shown by gates. A gate connects one or more input

events (typically drawn below the gate) to a single output event (typically drawn

above the gate); the gate is called the input gate of the output event. In a FT, the

primary events are the causal basic events; they are at the bottom of the tree and

are not further developed; they do not have input gates. On the other hand, the

intermediate events, including the top event, are events that have input gates.

Figure 2.1 shows an example of a FT with the top event A, intermediate events

B and C, and primary events D, E, F , G and H.

We consider two types of gates:

• AND gates specify that the output event occurs only if all input events occur

(inputs are assumed to be independent), e.g., in Figure 2.1, B occurs only if

both E and F occur.

6

Figure 2.2. Fault Tree’s Compact vs. Fully Expanded Representation.

• OR gates specify that the output event occurs only if at least one of the input

events occurs, e.g., in Figure 2.1, A occurs only if at least B or C or D occurs.

It is not uncommon to see an event being a contributing cause of more than one

other event. For example, in Figure 2.2(A), we see that the event F is an input

event of B’s input gate; F is also an input event of C’s input gate. We can compactly

represent the FT as shown in Figure 2.2(B). In this compact representation, the FT is

not really a tree as defined traditionally where there is exactly one path from the root

to any vertex. While the compact graph representation is smaller in size, it produces

the same cut sets as its fully expanded counterpart does. Therefore we choose the

compact graph representation and still use the term fault tree.

Once a FT is constructed, its cut sets and minimal cut sets can be computed using

Boolean algebra. A cut set is a set of primary events whose occurrence together could

cause the top event to occur. A cut set is considered minimal if, when any of its events

is removed from the set, the resulting set is no longer a cut set. To compute cut sets

from a FT, each gate in the FT is first translated into a Boolean equation. Consider

the FT example in Figure 2.2(B), the Boolean equations are shown as follows.

• A’s input gate: A = B + C + D

7

• B’s input gate: B = E · F

• C’s input gate: C = F + G + H

Given these equations, we can apply Boolean algebra to get rid of all intermediate

events, except for the top event, and obtain an equation whose left hand side is the top

event and the right hand side is a formula of primary events in Conjunctive Normal

Form. Each clause in this formula corresponds to a cut set, which contains all events

in that clause. The final equation computed for the example FT in Figure 2.2(B) is

A = E · F + F + G + H + D.

From this equation we get five cut sets: {E,F}, {F}, {G}, {H}, and {D}. Further

Boolean “minimization” produces four minimal cut sets {F}, {G}, {H}, and {D}.

The cut set {E,F} is not minimal because removing E from it, we have {F} which

is also a cut set.

A cut set indicates a potential system vulnerability, which might be a flaw or

weakness in the system’s design, implementation, or operation and management,

that could potentially allow a system failure to occur. A cut set with one element

represents a single point of failure. The probability of a system failure occurring could

be calculated if sufficient information about the probabilities of events in the cut sets

is available.

In our approach, we analyze systems that can be modeled as control flow graphs

(CFGs) annotated with data flow information. We define this modeling formalism

more precisely in the next section (Section 2.2). With system models of this type,

we target system failures that can be characterized as the arrival of an incorrect,

unsuitable data value as an input to a particularly critical vertex on the CFG or as

the production of an incorrect data value as an output of a vertex. Some examples

of such failures are “the wrong type of blood is transfused to a patient”, or “the

8

voter casts votes using an incorrect type of ballot”. And while minimal cut sets

have traditionally been used to obtain an estimate of reliability for complex systems,

we also pay attention to cut sets (i.e., not necessarily minimal) because we want to

present to users all possible scenarios about how the failure could arise.

2.2 Data Dependence

Our FTA approach builds upon data and control dependence information. To

define data dependence, we first introduce the Reaching Definitions Problem in this

section. The Reaching Definitions Problem is used as a basis for our Immediate Data

Dependence Problem, described later in Section 3.2. Even though the discussions

in this background section are about computer programs, they are applied to any

systems, including processes that involve human participants, that can be presented

by control flow graphs.

The Reaching Definitions Problem

The Reaching Definitions Problem introduced by Allen [1] is a well-known data

flow problem to answer the question: which variable definitions reach a given point

in a program?

A program is represented by a control flow graph (CFG). A CFG is a directed

and connected graph G = (V,E, start, end), where V is the set of vertices, E is the

set of edges, start is the single entry vertex, and end is the single exit vertex. For

any vertex v in V there exists a path from start to v and from v to end. Each

vertex represents a program unit (which could be a statement, a block of code, or

a procedure, depending on the desired level of granularity of analysis). As with a

typical graph structure, associated with each vertex v there are the sets Pred(v), and

Succ(v), which include the immediate predecessor and immediate successor vertices

of v respectively. To annotate the CFG with data flow information, for each vertex v,

9

let Def (v) and Use(v) be the sets that include the variables defined and referenced

at v respectively. Let Σ be the set of all variables in the program.

In the CFG representation of the program, we assume that a vertex v with more

than one successor has predicates associated with its outgoing edges. An edge that

has a predicate associated with it is called a guarded edge. Let (u→ v) denote an edge

from vertex u to vertex v in the CFG. If (u → v) is a guarded edge, we use p(u, v)

to denote the predicate on that edge. Readers might be familiar with CFGs that

have decision vertices represented as diamond shapes; each decision vertex has two

outgoing edges, one labeled T and one labeled F (e.g., the vertex c1 in Figure 2.3(A)

with the condition x > 0). In our CFG representation, the decision is explicitly

associated with the edges as in the example in Figure 2.3(B), we have the following

edge predicates: p(c1, s1) = x > 0, and p(c1, s2) = ¬(x > 0).

Figure 2.3. CFG With Decision Vertex (A) Converted To CFG With Edge Predi-
cates (B).

We also assume that the CFG representation does not contain loops. This restric-

tion is discussed later in section 3.2.1.

10

In the Reaching Definitions Problem, for the purpose of analysis, if variable b

is defined at vertex v, a label bv is created and that label is used to represent the

definition of b at v. A definition bv reaches a program point or vertex u if bv occurs

on some path in the CFG from start to u and is not followed by any other definition

of b on this path. For every variable b, a definition bstart reaches start. If definition

bstart reaches a use of b, it suggests that b has to be an input variable to the program,

or else it is a potential use before definition.

At each vertex v, we have the following information:

The set of definitions that v generates

GEN v = {bv | b ∈ Def (v)},

and the set of definitions that v can kill (i.e. redefine)

KILLv = {bu | b ∈ Def (v), u ∈ V }.

We use IN v to denote the set of definitions that reach v on some path through the

CFG, and OUT v to denote the set of definitions available right after v is executed.

Intuitively, OUT v contains the definitions that either are generated at v or reach v

and are not redefined at v.

IN v =


{bstart | b ∈ Σ} if v = start⋃
u∈Pred(v)

OUT u otherwise

OUT v = GEN v ∪
(

IN v \KILLv

)
The computation of IN v and OUT v is shown below.

In the terms described by Kildall [17], Reaching Definitions is an instance of a

distributive data flow framework defined by:

11

• The semi-lattice (L,∧) in which

– L, the domain of values, consists of all subsets of the set of definitions; and

– ∧, the binary meet operation, is set union ∪. Consequently, the partial

ordering on L is the set containment ⊇.

• The transfer function, f : V × L→ L

f(v, x) = GEN v ∪
(
x \KILLv

)

that has the homomorphism property (also called the distributivity property)

f(v, x) ∧ f(v, y) = GEN v ∪ (x \KILLv) ∪GEN v ∪ (y \KILLv)

= GEN v ∪ ((x ∪ y) \KILLv)

= f(v, x ∧ y)

Kildall provides an iterative algorithm, which he calls a “global analysis algo-

rithm”, that starts with an approximation and iteratively updates the “current ap-

proximate pool of optimizing information” associated with each vertex until no more

changes can be made. Kildall shows that the algorithm applied to a distributive data

flow analysis framework yields a unique maximal fixed point solution, independent

of the order in which vertices are visited. Cooper [11] gave a more efficient yet easy

to understand work-list algorithm by focusing the iteration on regions in the graph

where information is changing. The algorithm begins by initializing the sets at all

vertices and constructing an initial work-list. It then repeats the process of removing

a vertex from the work-list and updating its data-flow information. If the update

changes the data-flow information at the vertex, then all of the vertices that depend

on the changed information are added to the work-list.

12

The work-list approach for the Reaching Definitions Problem is shown in Algo-

rithm 2.1, starting with the “approximation” (IN v = ∅ for all v 6= start, IN start =

{bstart | b ∈ Σ}) and converging to the maximal fixed point solution.

input : CFG, GEN, KILL
output: IN, OUT

foreach v 6= start do
// initialize OUT on the assumption IN(v) = ∅ for all v
OUTv ←− GENv;

INstart ←− {bstart | b ∈ Σ};
worklist ←− {start } ;
while worklist is not empty do

Remove vertex v from worklist;
// Recompute the sets at vertex v
INv ←−

⋃
u∈Pred(v)

OUTu;

oldOUT ←− OUTv;

OUTv ←− GENv ∪
(

INv \ KILLv

)
;

if OUT(v) 6= oldOUT then
// recompute the IN and OUT sets for successors of v
Add each successors of v to worklist;

Algorithm 2.1: Compute Reaching Definitions.

Once the IN and OUT sets converge to the maximal fixed point solution, the

definitions reaching vertex v are:

REACH (v) = IN v.

If bu ∈ REACH (v) then v is said to be data flow dependent on u [18].

Example:

In Figure 2.4, x is defined at vertex 1 and vertex 7 , and it is used at vertex 8

to define z. Vertices 2 and 3 define Boolean variables p and q respectively. There is

another variable y defined at vertex 6. The edges (2 → 3), (2 → 7), (3 → 4), and

(3→ 5) are guarded with predicates p, ¬p, q, and ¬q respectively. In the figure, each

13

Figure 2.4. CFG Showing Reaching Definitions.

14

processing IN OUT work-list

start
{pstart, qstart,

xstart, ystart, zstart}
{pstart, qstart,

xstart, ystart, zstart}
1

1
{pstart, qstart,

xstart, ystart, zstart}
{x1, pstart, qstart,
ystart, zstart}

2

2
{x1, pstart, qstart,
ystart, zstart}

{x1, p2, qstart,
ystart, zstart}

3,7

3
{x1, p2, qstart,
ystart, zstart}

{x1, p2, q3,
ystart, zstart}

7,4,5

7
{x1, p2, qstart,
ystart, zstart}

{x7, p2, qstart,
ystart, zstart}

4,5,8

4
{x1, p2, q3,

ystart, zstart}
{x1, p2, q3,

ystart, zstart}
5,8,6

5
{x1, p2, q3,

ystart, zstart}
{x1, p2, q3,

ystart, zstart}
8,6

8
{x7, p2, qstart,
ystart, zstart}

{x7, p2, z8,
qstart, ystart}

6

6
{x1, p2, q3,

ystart, zstart}
{x1, p2, q3,
y6, zstart}

8

8
{x1, p2, q3,
y6, x7, qstart
ystart, zstart}

{z8, x1, x7, p2,
q3, qstart, y6, ystart}

Table 2.1. Reaching Definitions Example. Showing the progress of the work-list
algorithm.

CFG vertex is annotated with two sets on two lines: on the first line is the IN set of

the vertex, and on the second line is the OUT set. Table 2.1 shows the progress of

repeatedly updating the IN and OUT sets until reaching a fixed point.

2.3 Control Dependence

We use control dependence information in deriving FTs. This section describes

the necessary background information about control dependence.

• A vertex v is said to post-dominate a vertex t if all paths to the end vertex of

the CFG starting at t must go through v.

• A vertex v is said to be control dependent on an edge (u→ t) if

15

1. v post-dominates t, and

2. v does not post-dominate u.

Intuitively, this means that if the control flows from u to t along (u→ t), it will

eventually reach v; however, the control may reach end from u without passing

through v. Thus, u is a “decision-point” that influences the execution of v.

The Control Dependence Problem has been well studied in the literature. There are

different algorithms to compute the control dependence relation. Ferrante et al. [13]

provide an algorithm to compute control dependence given the post-dominator tree

of the CFG. The post-dominator tree in a CFG is the dominator tree in the reverse

CFG.

The reverse CFG of a CFG G = (V,E, start, end) is a graph G′ = (V,E ′, end, start).

The two graphs G and G′ have the same set of vertices V , however, in the reverse

CFG, end is the entry vertex and start is the exit vertex, and all the edges are

reversed, i.e. (u → v) ∈ E ⇐⇒ (v → u) ∈ E ′ for all u and v such that u 6= start

and v 6= end. Besides the reversed edges, an auxiliary edge (end→ start) is added

to the reverse CFG.

Next we show how to compute the dominator tree of any CFG. To compute

the post-dominator tree of a CFG, one just has to compute the dominator tree for

its reverse CFG. Note that, in this section, we do not require a CFG to have the

requirements about edge predicates as stated in the previous section. The notion of

control dependence do not depend on edge predicates.

Computing the dominator tree of a CFG G = (V,E, start, end)

A vertex u is said to dominate a vertex v if all paths from start of the CFG to v

must go through u.

u is said to strictly dominate v if u dominates v and u does not equal v.

16

The immediate dominator or idom of a vertex v is the unique vertex that strictly

dominates v but does not strictly dominate any other vertex that strictly dominates

v. Every vertex, except start, has a unique immediate dominator.

A dominator tree is a directed graph where each edge (u → v) means that u

immediately dominates v. Because each vertex has a unique immediate dominator,

that directed graph is a tree. The start vertex is the root of the tree.

The set of dominators of a vertex v, denoted Domv, is given by the solution to

the following set of equations:

Domv =
(⋂

u∈Pred(v)

Domu

)
∪ {v}.

In fact, the problem of computing the relation Dom, called the Dominators prob-

lem, is another instance of a distributive data-flow analysis framework mentioned

above, defined by

• The semi-lattice (L,∧) where

– L, the set of values to be propagated, is the power set of vertices in the

CFG,

– ∧, the meet operator, is set intersection ∩.

• The distributive transfer function f : V × L→ L is f(v, x) = x ∪ {v}.

The dominator of the start vertex is the start vertex itself. The set of dominators

for any other vertex v is the intersection of the sets of dominators for all predecessors

u of v. The vertex v is also in the set of dominators for v. Algorithm 2.2 shows the

algorithm, essentially adapted from Kildall’s [17]. As shown above, this algorithm

when terminates provides the maximal fixed point solution for Dominators.

Once the full dominance relation is computed, we build the dominator tree top-

down with the root as the start vertex as shown in Algorithm 2.3.

17

input : CFG
output: Dom relation

// Dominator of the start vertex is the start itself

Domstart ← {start}; // For all other vertices, set all vertices as the

dominators

foreach v 6= start do
Domv ← V;

// Iteratively eliminate vertices that are not dominators

while there are still changes in any Domv do
foreach v 6= start do

Domv ←
(⋂
u∈Pred(v)

Domu

)
∪ {v};

Algorithm 2.2: Compute dominance relation Dom.

Procedure buildSubTree(v,R)
// v is the vertex being processed,

// R is the remained vertices

foreach r ∈ R do
Remove v from Dom(r);
if r is then dominated only by itself then

Add r as a child to v;
Remove r from R;

foreach r just added as a child to v do
buildSubTree(r,R);

Procedure buildDomTree()

buildSubTree(start, V);

Algorithm 2.3: Compute dominator tree.

18

Figure 2.5, on the left hand side, shows the reverse CFG of the original CFG in

Figure 2.4, augmented with an edge from end to start. The reverse CFG is annotated

with the Dom set for each vertex. On the right hand side, Figure 2.5 shows the

dominator tree for that reverse CFG, so in fact, the tree is the post-dominator tree

of the original CFG.

Figure 2.5. Reverse CFG And Its Corresponding Dominator Tree.

Computing Control Dependence

Given the post-dominator tree, we can determine control dependence by examining

certain CFG edges. Let S consist of all edges (u → v) in the CFG such that v is

not an ancestor of u in the post-dominator tree (i.e., v does not post-dominate u).

We note that each (u → v) in S is a guarded edge. Let w denote the least common

ancestor of u and v in the post-dominator tree. Ferrante et al. [13] show that all

19

vertices in the post-dominator tree on the path from w to v, including v but not w

are control dependent on the edge (u→ v).

In our example, S = {(2 → 3), (2 → 7), (3 → 4), (3 → 5)}. Table 2.2 shows the

control dependence relation.

Edge Least Common Ancestor
Control dependent

vertices

(2→ 3) 8 6,3
(2→ 7) 8 7
(3→ 4) 6 4
(3→ 5) 6 5

Table 2.2. Control Dependence Example.

2.4 The Process Modeling Language Little-JIL

We implement and evaluate our approach by applying it to models of four real-

world human-intensive systems from the medical and election domains. These models

are defined in Little-JIL, a process modeling language. Therefore, this section provides

an introduction to Little-JIL. Details about the language can be found in [33].

Little-JIL is used to model processes. A process informally is a sequences of

tasks carried out to achieve a certain outcome. Each Little-JIL process model carries

control and data flow information, therefore they are suitable to be used as system

models in our approach. As mentioned earlier, we use the terms process and system

interchangeably.

Little-JIL represents a process as a hierarchy of steps carried out by agents that

may be humans, hardware devices, or software applications. A Little-JIL model

consists of activity diagrams showing the hierarchical decomposition of steps, a spec-

ification of the artifacts manipulated by the steps, and a specification of the agents

and resources needed to perform the steps.

20

A step is the basic building block of Little-JIL models. A Little-JIL step is a

specification of a unit of work assigned to an agent in the process. A step may be

decomposed into sub-steps (children). A leaf step has no sub-steps and its behavior

depends entirely on its assigned agent. A non-leaf step’s behavior consists of the

behaviors of its sub-steps and their order of execution. Every Little-JIL process

model has a root step that represents the entire process. This step is decomposed as

far as necessary to describe the process.

For example, a model reflecting the election process used by Yolo County, Califor-

nia1 consists of the root step “conduct election”, which is decomposed into sub-steps

representing activities such as the preparations made before the election day, the con-

duct of the election at a single precinct, the counting of ballots, and the post-election

canvass. These sub-steps in turn are decomposed into steps at a more specific level

of detail.

Figure 2.6 shows the part of the elaboration of “issue ballot and get vote”—one of

the steps in the Yolo County election process. Voters are checked for their eligibility

before being issued a ballot. If the voter is verified as eligible, a regular ballot is issued,

otherwise a provisional ballot (which is not examined unless the election is close) is

issued. In the Little-JIL model, the step “issue ballot and get vote” has two sub-

steps, namely “issue ballot” and “cast vote”. The sub-steps are executed sequentially

(denoted by the blue arrow → on the step bar). The step “issue ballot” in turn has

three sub-steps, “verify registered”, “verify not-voted” and “issue regular”, which are

also executed sequentially.

Each step may contain a specification for pre-requisites that must be satisfied

before an agent can begin the work and post-requisites to check that the work was

completed correctly (not present in this example).

1http://www.yoloelections.org/

21

input:
 voterName,
 votingRoll
exception:
 VoterNotRegistered

input:
 voterName,
 votingRoll
exception:
 AlreadyVoted

output:
 ballot

output:
 ballot

output:
 ballot

Handling
VoterNotRegistered

exception

Handling
AlreadyVoted

exception

input:
 voterName,
 votingRoll
output:
 ballot

input:
 voterName,
 votingRoll
output:
 ballot

input:
 ballot
output:
 ballot

Figure 2.6. Little-JIL Process Model Of “Issue ballot and get vote”.

22

The execution of a Little-JIL step is modeled as a progress through several states.

Step execution begins in the POSTED state during which the execution of the step is as-

signed to an agent. The execution then proceeds to the STARTED state when the agent

begins performing the step. Eventually the step enters either the COMPLETED state

(normal execution) or the TERMINATED state (the execution ends with an exception).

A step may also specify how to handle exceptions that are reported during the

execution of its descendant steps. An exception handler can be a Little-JIL step that

is capable of defining an arbitrarily complex response to an exception, or can be a

simple handler that specifies only how execution should continue after the occur-

rence of the exception. In the example in Figure 2.6, the steps “verify registered”

and “verify not-voted” might throw exceptions of types VoterNotRegistered and

AlreadyVoted respectively; the red cross × on the “issue ballot” step bar connects

to the “issue provisional” step that handles VoterNotRegistered exceptions; the red

cross × also connects to a reference of “issue provisional” (similar to invoking a prede-

fined procedure in a procedural programming language) which handles AlreadyVoted

exceptions. In this example, the handlers are specified so that the sub-steps throwing

the exception will be terminated, the handlers are executed and the process execution

moves to the COMPLETED state of “issue ballot”.

Each Little-JIL step has an artifact declaration that defines the artifacts it is

accessing or providing. Artifacts are generally passed through the coordination hier-

archy between steps and their sub-steps. For example, the ballot artifact is output

from the step “issue regular” to its parent step “issue ballot”; so is the ballot artifact

output from the step “issue provisional”. The voterName and votingRoll artifacts

are input into the step “issue ballot” from its parent “issue balot and cast vote”,

then passed down from “issue ballot” to its sub-steps “verify registered” and “verify

not-voted”.

23

A Little-JIL process model also includes agent specifications. Each step specifies

the kind of agent that is to be assigned to the step to be responsible for the execution

of that step2.

Little-JIL has been used to model different processes for different purposes. Con-

boy et al. [10] used a Little-JIL process model as the underlying model for a smart

checklist to mitigate the risk of stroke in cardiac surgeries. Many different anal-

yses have been performed on Little-JIL process models, namely finite state verifi-

cation [3, 29], online deviation detection [5], resource scheduling [27], automatic re-

quirement derivation [9], automatic failure mode and effect analysis [31], fault tree

analysis [3, 25], etc.

Given a Little-JIL process model, we can generate an appropriate CFG to be

used in our FTA approach. Section 4.1.1 describes how to generate a CFG from a

Little-JIL process model.

2.5 Related Work

This section discusses related work including the variations of FTs and what they

are used for, and the various approaches to automatic FT construction.

2.5.1 Variations of Fault Trees

Attack trees, introduced by Schneider [26] are similar to fault trees in the sense

that they are both hierarchical logic diagrams in which one event is represented as

a logical combination of lower-level events. Moore et al. [23] used attack trees and

attack patterns to model attacks for the purpose of documentation. Lazarus [20]

created a catalog of election attacks in the form of a single attack tree, attempting to

2Note that, while “cast vote” is a leaf step performed by an agent of type Voter, the step “issue
ballot” is not a leaf step, it composes of sub-steps which can be performed by the same or different
agent of type ElectionOfficial. The agent specification is not modeled in this example.

24

provide a threat model and a quantitative threat evaluation that are reusable across

different jurisdictions.

Helmer et al. [15] used augmented Software Fault Trees (SFTs), attack trees with

temporal order, to model intrusions. In their models, the root node represents the

intrusion and a minimal cut set contains events to be monitored to detect intrusions.

Their SFTs are then automatically converted to colored Petri nets for intrusion de-

tection systems.

2.5.2 Other Automated Fault Tree Generation Work

Many software tools, commercial as well as open-source, facilitate the manual

construction of FTs. When FTs become large, which they typically do, manual

construction, even with such tool support, may be error-prone and time-consuming.

There have been attempts to generate FTs automatically, for example from source

code written in programming languages. In [21], Leveson et al. proposed to use FTs

to guide analysts to identify errors that cause an Ada program to produce incorrect

outputs. The incorrect output is represented as the FT’s top event. Templates, one

for each kind of Ada statement, are used to elaborate immediate events to construct

the full FT. Friedman [14] also developed a template-based tool to construct FTs

given a Pascal program and a software-caused failure (post condition).

In [24], Pai and Bechta showed an algorithm to automatically derive FTs from

UML models. They pointed out that the disadvantage of their approach is the semi-

formal nature of UML. Because of UML’s ambiguous semantics, their FTs whose

derivation is based on one interpretation of the semantics, might be incorrect.

Zhao and Petriu [34] also generated FTs from UML models. They used a rule-

based transformation language ATL and created rules to map elements of UML mod-

els (sequence diagrams, use case diagrams, and composite structure diagrams) to

elements of FTs. Their top events, as well as other events in their FTs, are simply

25

“X fails”, where X could be the whole system, a hardware component, a software

component, or a use case. Our approach considers more types of events that involve

data and hardware/software/human behaviors.

Lauer et al. [19] synthesized FTs from different types of UML models (soft-

ware/hardware architecture diagrams and application models built on top of those

architectures). They focused on the separation of application independent and appli-

cation dependent views of the system. They claimed that in doing so various different

system concepts could be investigated with minimal re-modeling effort, thus could be

used at the early design stages.

In [22] Mhenni et al. presented a methodology to automatically generate FTs

from SysML system models. They represented a SysML Internal Block Diagram

(IBD) as a directed multi-graph, then used a graph traversal algorithm and identified

block design patterns in the IBD to generate sub-FTs and combined them all into a

generic FT. To produce a specific FT for an undesired top event, information from

separate FMEA (Failure Mode and Effect Analysis) was used to refine the generic FT.

Our approach starts from the top event, then traverse backward on the system’s flow

graph to identify errors, so the derived FT is specific for the given top event; we do not

generate a generic FT. Also, our approach exploits control flow information in system

models to construct FTs; their SysML IBDs provide only data flow information.

All of these approaches to automatic FT construction [19,22,24,34] target system

models of types different from what our approach does. Our approach targets system

models that are control flow graphs with data flow information so that we can exploit

the data and control dependence to generate FTs.

Closest to our approach, and what our work is built upon, is the FTA by Chen

et al. [3, 4]. They developed a framework that supports the automatic derivation

of FTs from rigorously defined process models. In that framework, templates are

used to elaborate FT events. More templates can be added to allow new types of

26

events. Given the specification of an undesired event representing a process failure,

they use control and data flows to trace back through the process model to identify

the original causes that could lead to the failure. They implemented and evaluated

the framework for processes modeled in Little-JIL. We already described the language

in the previous section of this chapter. Our approach is also template-based, and we

also evaluate our approach by applying it to processes modeled in Little-JIL. Their

approach, however, does not fully consider control dependence information and thus

fails to recognize certain causes of failures in a process model. In our approach, we

exploit both data and control dependence to construct FTs. In addition, they claimed

that their approach was generic and applicable to any process definition languages

as long as they incorporate sufficient data and control flow information, but they

only showed how the approach worked for Little-JIL. We explicitly show that our

approach is generic in the sense that it works on CFGs and most languages, including

Little-JIL, can be translated to CFG.

27

CHAPTER 3

APPROACH

In this chapter, we present our approach to identifying possible causes of potential

system failures using Fault Tree Analysis (FTA). This approach is incremental; it

allows users to selectively explore possible causes by initially presenting the users

with cut sets for a high-level, and thus smaller, fault tree (FT); the users can then

select one cut set for more detailed analysis, culminating in elaborated cut sets and

concrete scenarios which show how events in an elaborated cut set could lead to the

specified system failure. Our approach also attempts to produce precise results by

automatically eliminating some inconsistent and spurious cut sets.

The organization of this chapter is as follows:

• Section 3.1 presents the overall architecture of the approach.

• Section 3.2 shows the simple templates used in the first phase of analysis to

derive the initial FT.

• Section 3.3 describes the first phase of the approach by applying it to a small

model of an “Issue ballot and get vote” system. The section shows the derivation

of the initial FT and then shows the need for incremental selective exploration

of the FT’s cut sets. This example “Issue ballot and get vote” is used in the

following sections to keep illustrating the approach.

• Section 3.4 presents how to extract the part of the initial FT that focuses on a

selected cut set.

28

• Section 3.5 describes the detailed templates used in the second phase of analysis

to derive the elaborated FT that focuses on the selected cut set.

• Section 3.6 shows the elimination of inconsistent and spurious cut sets.

• Finally, section 3.7 explains the generation of concrete scenarios.

3.1 The Overall Approach

In this work, as mentioned in section 2.1, a system failure is defined to be an

input or output variable of a specific vertex in the system’s control flow graph (CFG)

receiving an incorrect value. Predefined templates exploit the system’s control and

data flows to trace back through the CFG to identify the causes that could lead to the

specified failure. Starting from the top event that represents the system failure, the

templates are applied iteratively to develop intermediate events until all intermediate

events have been fully developed, resulting in a FT whose leaves are all primary

events. The templates are categorized into simple and detailed templates. The simple

templates are used to derive a FT at the high level, called the initial FT. It is only

when users select a specific cut set from the initial FT that the detailed templates

are used to produce an elaborated FT, as described later in this chapter.

Figure 3.1 shows the overall approach. First, given the system model and the

undesired event representing the system failure, simple templates (section 3.2) are

used to derive the initial FT and then the initial cut sets from the initial FT are

automatically computed. In this phase of analysis, we only consider single errors

and do not consider combinations of errors. For example, a system execution unit’s1

output being incorrect could be caused by its input being incorrect (data dependence),

or the execution incorrectly reaching the unit (control dependence), or the unit being

1A system execution unit corresponds to a vertex in the system’s CFG.

29

1

System
Model

FT
Derivation

Simple
Templates

Initial
FT

Cut Set
Computation

Initial
Cut Sets

Cut Set FT
Projection

Focused
FT

FT
Derivation

Elaborated
FT

Cut Set
Computation

Elaborated
Cut Sets

User
Selection

Detailed
Templates

Elaborated
Cut Set

Scenario
Generation

User
Selection Scenarios

Undesired

Event

P
H

A
SE

 1

P
H

A
SE

 2

Figure 3.1. The Incremental Approach.

30

performed incorrectly, or any combination of those three reasons. In this phase, error

combinations are not considered.

Once the initial cut sets are computed from the initial FT, users can select one

cut set to focus on. This approach allows users to zoom in on a specific cut set by:

• creating a projection of the initial FT, called the focused FT, that keeps only

events relevant to this initial cut set (section 3.4);

• elaborating the focused FT using detailed templates to derive a more detailed

FT, called elaborated FT, which focuses on the chosen initial cut set (sec-

tion 3.5); and then

• automatically computing the cut sets of the elaborated FT, called the elaborated

cut sets. When computing cut sets for the initial FT as well as the elaborated

FT, we automatically identify some inconsistent and spurious cut sets and re-

move them from the result (section 3.6).

Users can then select one of the elaborated cut sets to explore even further. We

generate concrete scenarios that show the ways that the events in the chosen elabo-

rated cut set can occur and how they can then lead to the top event (section 3.7).

The next section presents the simple templates used in the first phase of this

approach.

31

3.2 Deriving Initial Fault Trees Using Simple Templates

Based on data and control dependence information, we develop simple templates

that can be used in the first phase of the analysis to derive the initial FT. Section

3.2.1 presents such templates which are called the DF templates. This work builds

upon the FTA Framework by Bin Chen [3], in which he also developed templates for

deriving FTs for Little-JIL process models. To leverage the existing implementations

by Chen, we decide to “re-use” some of the templates made by Chen, but generalize

them so that they are independent of system modeling languages. These templates

are called the SP templates and are described in section 3.2.2. The proof that the

two template sets, DF and SP, are equivalent is presented in Appendix A.

3.2.1 DF Set: Templates To Derive Initial Fault Trees Based On Data

Flow Analysis

Data flow dependence, in the form of Reaching Definitions, and control dependence

are described in the Background Chapter (sections 2.2 and 2.3 respectively). To derive

FTs in our approach, we need extra information, therefore we extend the Reaching

Definitions Problem to the Path-sensitive Reaching Definitions Problem (PRDP) to

answer the question: which variable definitions reach a given point (vertex) in a

system’s CFG, and which paths do the definitions take to reach that point? In this

section, we first describe the PRDP, and we then show how the data dependence

information derived by solving PRDP, together with control dependence information,

are used to develop the DF Template Set.

3.2.1.1 Path-sensitive Reaching Definitions Problem (PRDP) And Im-

mediate Data Dependence

First of all, we require CFGs to be acyclic, i.e., containing no loops. A CFG

that contains loops has an infinite number of paths. Our FT construction method

constructs events in the FT by walking along paths in the CFG; so a CFG with

32

infinitely many paths could result in a FT with infinitely many events. To deal with

loops, techniques such as unrolling to a given bound can be used.

As mentioned in the background section 2.2, the function Use : V → P(Σ)) asso-

ciates to each vertex the set of variables referenced at the vertex. We now extend the

domain of the function to include the edge predicates such that, Use(p(u, v)) is the set

of all variables referenced by the predicate p(u, v). In the example in Figure 2.3(B),

there are the following edge predicates: p(c1, s1) = x > 0, and p(c1, s2) = ¬(x > 0).

Therefore, Use(p(c1, s1)) = Use(p(c1, s2)) = {x}.

A vertex in the CFG might have multiple inputs and outputs, but not every output

is dependent on or influenced by all of the inputs. In such cases, a CFG can always

be normalized so that each vertex has at most one output and zero or more inputs,

and if the vertex has an output, that output is a function of all of the inputs.

Let P be the set of paths in the CFG G = (V,E, start, end). Each path P in P

is a sequence of vertices 〈v1, v2, ..., vn〉 with n ≥ 1 such that, for all i with 1 ≤ i < n,

there is an edge from vi to vi+1.

The set of path-sensitive definitions is

D = {(b, 〈v1, v2, ..., vn〉) | b ∈ Σ, 〈v1, v2, ..., vn〉 ∈ P , b ∈ Def (v1), b /∈ Def (vi), 1 < i ≤ n}.

Each element (b, 〈v1, v2, ..., vn〉) of D implies that b is defined at v1 and might be

propagated to vn via 〈v1, v2, ..., vn〉 which is a definition-clear path with respect to b.

Since we assume the CFG is acyclic and Σ is finite, we can see that D is also finite.

At each vertex v in the CFG, GEN v is the set of path-sensitive definitions gener-

ated by v

GEN v = {(b, 〈v〉) | b ∈ Def (v)},

and KILLv is the set of path-sensitive definitions that v might kill

33

KILLv = {(b, P) | b ∈ Def (v), P ∈ P}.

To solve the PRDP to answer the question “which variable definitions reach a

given point (vertex) in a system’s CFG, and which paths do the definitions take

to reach that point”, we employ Cooper’s work-list algorithm as in the traditional

Reaching Definitions Problem, but with the following IN and OUT sets:

• IN v contains the path-sensitive definitions that reach v:

IN v =


{(b, 〈start〉) | b ∈ Σ} if v = start⋃
x∈OUTu,u∈Pred(v)

g(v, x) otherwise

in which function g : V ×D −→ P(D) is defined as follows:

g(v, b, 〈v1, v2, ..., vn〉) =


{(b, 〈v1, v2, ..., vn, v〉)} if (vn → v) ∈ E

{} otherwise.

• OUT v contains the path-sensitive definitions that are available after the execu-

tion of v:

OUT v = GENv ∪ (IN v \KILLv).

We can see that the PRDP problem is also an instance of a distributive data-flow

framework with the semi-lattice (P(D),∪) and the transfer function f : V ×P(D) −→

P(D) as follows:

f(v,X) = GEN v ∪

(⋃
x∈X

g(v, x) \KILLv

)
.

It’s easy to see that f is distributive:

34

f(v,X ∪ Y) = f(v,X) ∪ f(v, Y).

Therefore, Cooper’s work-list algorithm [11], which essentially is the Kildall’s it-

erative algorithm [17]2, applied to the PRDP problem, is guaranteed to produce the

unique maximal fixed point solution where the IN and OUT sets for each vertex

converge. At that point, the IN v set contains the path-sensitive definitions that can

reach v.

Example:

Figure 3.2. CFG Showing Path-sensitive Reaching Definitions.

2Both are mentioned in the Background section 2.2.

35

We use the same CFG example as described in the background section 2.2 but this

time we will show the Path-sensitive Reaching Definitions information. In this CFG

(Figure 3.2), Σ = {p, q, x, y, z}, x is defined at vertex 1 and vertex 7 , and it is used

at vertex 8 to define z. Vertices 2 and 3 define Boolean variables p and q respectively.

There is another variable y defined at vertex 6. The edges (2→ 3), (2→ 7), (3→ 4),

and (3→ 5) are guarded with predicates p, ¬p, q, and ¬q respectively. In the figure,

each CFG vertex is annotated with two sets on two lines: on the first line is the IN

set of the vertex, and on the second line is the OUT set.

Table 3.1 shows the progress of iteratively updating the IN and OUT sets until

they converge. Below are some noteworthy example iterations:

• Showing the computation of IN v: Suppose we want to process vertex 1 , whose

immediate predecessor is start, and we already have

OUT start = {(b, 〈start〉) | b ∈ Σ}

from previous processing. Therefore, IN 1 = {(b, 〈start, 1〉) | b ∈ Σ}.

• Showing the computation of IN v: Suppose we want to process vertex 6 whose

immediate predecessors are 4 and 5, and we already have (x, 〈1, 2, 3, 4〉) ∈ OUT 4

and (x, 〈1, 2, 3, 5〉) ∈ OUT 5. So the definitions coming into vertex 6 are both

x being defined at vertex 1 through different paths, one through the path

〈1, 2, 3, 4〉, and one through the path 〈1, 2, 3, 5〉. We do not combine these two;

we keep them separately so that the end results really show different ways a defi-

nition can reach a vertex. Therefore, both (x, 〈1, 2, 3, 4, 6〉) and (x, 〈1, 2, 3, 5, 6〉)

are elements of IN 6.

• Showing the computation of OUT v: Have a look at vertex 7,

IN 7 = {(x, 〈1, 2, 7〉), (p, 〈2, 7〉)} ∪ {(b, 〈start, 1, 2, 7〉) | b ∈ Σ, b 6= x, b 6= p}

36

processing IN OUT work-list

start
{(p, 〈start〉), (q, 〈start〉),

(x, 〈start〉), (y, 〈start〉), (z, 〈start〉)}
{(p, 〈start〉), (q, 〈start〉),

(x, 〈start〉), (y, 〈start〉), (z, 〈start〉)} 1

1
{(p, 〈start, 1〉), (q, 〈start, 1〉),
(x, 〈start, 1〉), (y, 〈start, 1〉),

(z, 〈start, 1〉)}

{(x, 〈1〉),
(p, 〈start, 1〉), (q, 〈start, 1〉),
(y, 〈start, 1〉), (z, 〈start, 1〉)}

2

2
{(x, 〈1, 2〉), (p, 〈start, 1, 2〉),

(q, 〈start, 1, 2〉), (y, 〈start, 1, 2〉),
(z, 〈start, 1, 2〉)}

{(p, 〈2〉), (x, 〈1, 2〉),
(q, 〈start, 1, 2〉), (y, 〈start, 1, 2〉),

(z, 〈start, 1, 2〉)}
3,7

3

{(p, 〈2, 3〉), (x, 〈1, 2, 3〉),
(q, 〈start, 1, 2, 3〉),
(y, 〈start, 1, 2, 3〉),
(z, 〈start, 1, 2, 3〉)}

{(q, 〈3〉), (p, 〈2, 3〉),
(x, 〈1, 2, 3〉),

(y, 〈start, 1, 2, 3〉),
(z, 〈start, 1, 2, 3〉)}

7,4,5

7

{(p, 〈2, 7〉), (x, 〈1, 2, 7〉),
(q, 〈start, 1, 2, 7〉),
(y, 〈start, 1, 2, 7〉),
(z, 〈start, 1, 2, 7〉)}

{(x, 〈7〉), (p, 〈2, 7〉),
(q, 〈start, 1, 2, 7〉),
(y, 〈start, 1, 2, 7〉),
(z, 〈start, 1, 2, 7〉)}

4,5,8

4

{(q, 〈3, 4〉), (p, 〈2, 3, 4〉),
(x, 〈1, 2, 3, 4〉),

(y, 〈start, 1, 2, 3, 4〉),
(z, 〈start, 1, 2, 3, 4〉)}

{(q, 〈3, 4〉), (p, 〈2, 3, 4〉),
(x, 〈1, 2, 3, 4〉),

(y, 〈start, 1, 2, 3, 4〉),
(z, 〈start, 1, 2, 3, 4〉)}

5,8,6

5

{(q, 〈3, 5〉), (p, 〈2, 3, 5〉),
(x, 〈1, 2, 3, 5〉),

(y, 〈start, 1, 2, 3, 5〉),
(z, 〈start, 1, 2, 3, 5〉)}

{(q, 〈3, 5〉), (p, 〈2, 3, 5〉),
(x, 〈1, 2, 3, 5〉),

(y, 〈start, 1, 2, 3, 5〉),
(z, 〈start, 1, 2, 3, 5〉)}

8,6

8

{(x, 〈7, 8〉), (p, 〈2, 7, 8〉),
(q, 〈start, 1, 2, 7, 8〉),
(y, 〈start, 1, 2, 7, 8〉),
(z, 〈start, 1, 2, 7, 8〉)}

{(z, 〈8〉), (x, 〈7, 8〉),
(p, 〈2, 7, 8〉),

(q, 〈start, 1, 2, 7, 8〉),
(y, 〈start, 1, 2, 7, 8〉)}

6

6

{(q, 〈3, 4, 6〉), (q, 〈3, 5, 6〉),
(p, 〈2, 3, 4, 6〉), (p, 〈2, 3, 5, 6〉),

(x, 〈1, 2, 3, 4, 6〉), (x, 〈1, 2, 3, 5, 6〉),
(y, 〈start, 1, 2, 3, 4, 6〉),
(y, 〈start, 1, 2, 3, 5, 6〉),
(z, 〈start, 1, 2, 3, 4, 6〉),
(z, 〈start, 1, 2, 3, 5, 6〉)}

{(y, 〈6〉),
(q, 〈3, 4, 6〉), (q, 〈3, 5, 6〉),

(p, 〈2, 3, 4, 6〉), (p, 〈2, 3, 5, 6〉),
(x, 〈1, 2, 3, 4, 6〉),
(x, 〈1, 2, 3, 5, 6〉),

(z, 〈start, 1, 2, 3, 4, 6〉),
(z, 〈start, 1, 2, 3, 5, 6〉)}

8

8

{(y, 〈6, 8〉), (y, 〈start, 1, 2, 7, 8〉),
(q, 〈3, 4, 6, 8〉), (q, 〈3, 5, 6, 8〉),

(q, 〈start, 1, 2, 7, 8〉),
(p, 〈2, 7, 8〉), (p, 〈2, 3, 4, 6, 8〉),

(p, 〈2, 3, 5, 6, 8〉),
(x, 〈7, 8〉), (x, 〈1, 2, 3, 4, 6, 8〉),

(x, 〈1, 2, 3, 5, 6, 8〉),
(z, 〈start, 1, 2, 3, 4, 6, 8〉),
(z, 〈start, 1, 2, 3, 5, 6, 8〉)

(z, 〈start, 1, 2, 7, 8〉)}

{(z, 〈8〉),
(y, 〈6, 8〉), (y, 〈start, 1, 2, 7, 8〉),
(q, 〈3, 4, 6, 8〉), (q, 〈3, 5, 6, 8〉),

(q, 〈start, 1, 2, 7, 8〉),
(p, 〈2, 7, 8〉), (p, 〈2, 3, 4, 6, 8〉),

(p, 〈2, 3, 5, 6, 8〉),
(x, 〈7, 8〉), (x, 〈1, 2, 3, 4, 6, 8〉),

(x, 〈1, 2, 3, 5, 6, 8〉),

Table 3.1. Path-sensitive Reaching Definitions Example. Showing the progress of
the work-list algorithm.

37

and x is re-defined here, thus,

(x, 〈1, 2, 7〉) ∈ KILL7

GEN 7 = {(x, 〈7〉)}

∴ OUT 7 = {(x, 〈7〉), (p, 〈2, 7〉)} ∪ {(b, 〈start, 1, 2, 7〉) | b ∈ Σ, b 6= x, b 6= p}.

Immediate Data Dependence

We define the immediate data dependence of variable b at vertex v to be:

• all the definitions that reach v and are used at v to define b in case b ∈ Def (v),

or

• all the definitions of b that reach v in case b /∈ Def (v).

Instead of keeping the path information as a sequence of vertices from the vertex

where the variable is defined, we keep only the first vertex of the path and the guarded

edges along that path, which are sufficient to re-construct the path if need be. We

define a 1:1 mapping e as follows:

e : D −→ L× ω(E)

(b, 〈v1, v2, ..., vn〉) 7−→ (bv1 , 〈(vi1 → vi1+1), (vi2 → vi2+1)...(vik → vik+1)〉)

where

• L is a set of labels of the form bv with b ∈ Σ and v ∈ V ,

38

• ω(E) is the set of sequences of edges,

• For all j such that, 1 ≤ j ≤ k: (vij → vij+1) is a guarded edge, and

• For all m such that, 1 ≤ m ≤ n and m /∈ {i1, i2, ..., ik}: (vm → vm+1) is NOT a

guarded edge.

Intuitively, e(b, P) is a tuple of a definition of b at the first vertex of the path P

and the set of all the guarded edges on that path.

The immediate data dependence of variable b at vertex v is then defined formally

as follows:

IDD(b, v) =


{e(a, P) | a ∈ Use(v), (a, P) ∈ IN (v)} if b ∈ Def (v)

{e(b, P) | (b, P) ∈ IN (v)} if b /∈ Def (v)

Since we assume a vertex has at most one output, we can write IDD(v) in place

of IDD(b, v) in case b ∈ Def (v). In such cases, IDD(v) is the set of all definitions

that reach v and used at v to define the only output b.

In the above example, x is being used at 8 to define z, and

IN 8 = {(x, 〈1, 2, 3, 4, 6, 8〉), (x, 〈1, 2, 3, 5, 6, 8〉), (x, 〈7, 8〉), ..., (y, 〈6, 8〉), ...},

therefore IDD(z, 8) or IDD(8) = {(x1, 〈(2 → 3), (3 → 4)〉), (x1, 〈(2 → 3), (3 →

5)〉), (x7, 〈〉)} — only keep the definitions of x, and the path information includes the

vertex there x is defined and the set of guarded edges from that vertex to vertex 8.

Failure-influencing labels and variables

Let D be a binary relation over the set of labels L such that

D(au, bv)⇔ ∃P ∈ ω(E) : (au, P) ∈ IDD(b, v).

39

Informally, we say au directly influences the value of b at vertex v. The transitive

closure of D on L is the relation D+ in which D+(au, bv) denotes that au either directly

or indirectly influences the value of b at vertex v.

Recall that a system failure is defined to be an input or output variable of a

specific vertex in the system’s CFG receiving an incorrect value. For example, “b

output from v is incorrect”, or “b input to v is incorrect”. We call v the failure

vertex. If D+(au, bv), we call au a failure-influencing label and a a failure-influencing

variable.

3.2.1.2 Deriving Fault Trees using Immediate Data Dependence and Con-

trol Dependence Information

Our approach to FT construction is independent of the system modeling language

used as long as the language incorporates sufficient control and data flow information,

so that the CFG extracted from the system model complies with the requirements of

CFGs we have mentioned thus far, including having unique start and end vertices,

being acyclic, having edge predicates on outgoing edges of vertices with more than

one outgoing edges, having Def associated with each vertex, having Use associated

with each vertex and each edge predicate3.

In our approach, a system failure (top event) is specified as either an output from

a vertex being incorrect, or a variable input to a vertex being incorrect.

To derive the FT, we start with the top event as an intermediate event and repeat-

edly apply appropriate templates to elaborate intermediate events until all the leaves

of the resulting FT are primary events. Each template elaborates an intermediate

event and results in a partial FT. The intermediate event being elaborated is then

3We also assume that the checking of edge predicates are done correctly; our approach does not
consider faults caused by incorrect evaluation of edge predicates. If one wants to consider such
faults, one can add to the CFG an extra vertex whose output is the evaluation of the predicate. See
further discussion in section 3.2.1.8.

40

replaced with the partial FT. Any intermediate events in the partial FT are then

elaborated using appropriate templates.

So given the CFG, the immediate data dependence, the control dependence infor-

mation, and the top event, Algorithm 3.1 is used to derive the initial FT.

input : CFG, IDD, CD, topEvent
output: FT

visitedEvents ←− {};
worklist ←− {topEvent };
while worklist is not empty do

Remove event e from worklist;
if visitedEvents does not contain e then

Add e to visitedEvents;
Find appropriate template (elaboration procedure) t for e;
partial-fault-tree ←− elaborate e using t;
Replace e with the partial-fault-tree;
foreach leaf event e′ in the partial-fault-tree do

if e′ is not a primary event then
Add e′ to worklist;

// at this point topEvent is a fully derived FT

Return topEvent;

Algorithm 3.1: FT Derivation.

As stated in the Background section 2.1, one FT event can be an input event of

different gates. In the process of elaborating immediate events using templates, we

might encounter an intermediate event that is a leaf of the partial FT from elaborating

an event e1, and it is also a leaf of the partial FT from elaborating an event e2. In

this algorithm, the intermediate event is only elaborated once thanks to the use of

the set visitedEvents.

The remainder of this section shows the simple templates to derive the initial FTs

based on the immediate data dependence and control dependence information.

3.2.1.3 Template DF-1: “b output from v is incorrect”

Let v be a vertex in the CFG, and b be an output of v, i.e., b ∈ Def (v). The value

of b output from v is considered incorrect only if any of the followings happens:

41

1. Any of the inputs a into v is incorrect4, we call this a data dependence error,

2. The execution incorrectly reaches v, we call this a control dependence error,

3. The computation at v is done incorrectly, we call this an agent error.

By “the execution incorrectly reaches v”, we mean that on the execution path

from start to v, the execution takes an incorrect branch because of some error (one

of the three types mentioned above), while if taking the correct branch, the execution

might not reach v at all or the execution reaches v carrying a different input to v. Our

approach aims to identify such errors. We discuss this more fully when describing

Template DF-5 in section 3.2.1.7 below.

Figure 3.3. Template DF-1 For Event Type “b output from v is incorrect” When
b ∈ Def (v).

The FT template DF-1 in Figure 3.3 reflects the above mentioned relationship. In

that template, the event “v is performed incorrectly producing incorrect b”, depicted

by the green box, is a primary event; it is not further elaborated. In the context of

process model analysis, it can be interpreted as an agent’s error where the agent can be

a human, software, or a hardware device performing step v. The other events, “input

into v is incorrect” and “execution incorrectly reaches v” will be further elaborated

as discussed in the next sections 3.2.1.4 and 3.2.1.7 respectively.

4We assume that each vertex has at most one output and the output depends on all of the inputs.

42

Algorithm B.1 in the Appendix shows the pseudo-code of the procedure to elabo-

rate the intermediate event “b output from v is incorrect”. The input is the interme-

diate event to be elaborated. The algorithm creates a new gate for the intermediate

event, elaborates the gate and produces as the result the partial fault tree according to

the template. The algorithm’s output is the list of any newly generated intermediate

events of the partial fault tree.

3.2.1.4 Template DF-2: “input to v is incorrect”

Figure 3.4. Template DF-2 For Event Type “input to v is incorrect” When b ∈
Def (v). The symbol * indicates that one event is added for each (au, P) ∈ IDD(b, v)
and the symbol ** indicates that one event is added for each ei in the sequence
P = 〈e1, . . . , en〉.

Using immediate data dependence information, the event “input into v is incor-

rect” can be elaborated as in Template DF-2 in Figure 3.4. For each (au, P) ∈ IDD(v),

there is one event“input a into v from u is incorrect”, which in turn is a combination

of “a is incorrect when exiting u” and all the predicates on the guarded edges of P

(guiding the control from u to v) being true. Note that here we use “a is incorrect

when exiting u” instead of “a output from u is incorrect” to take care of the cases that

u is the start vertex or a is not an output of u. Template DF-3 (see section 3.2.1.5)

is in place to take care of these different cases.

43

In this elaboration, the event “predicate p on edge ei holds” is a primary event,

while the event “a is incorrect when exiting u” is an intermediate event which is

elaborated using Template DF-3 below.

Algorithm B.2 in the Appendix shows the pseudo-code of the procedure to elab-

orate the intermediate event “input into v is incorrect”.

3.2.1.5 Template DF-3: “b is incorrect when exiting v”

Figure 3.5. Template DF-3 For Event Type “b is incorrect when exiting v”.

Figure 3.5 shows the elaboration of the event type “b is incorrect when exiting v”.

It depends on whether v is the start vertex and whether b is an output of v.

• Case 1: v is the start vertex. In this case, b is defined outside of the system, it

is just an input into the system, therefore, the event “b is incorrect when exiting

v” is elaborated into the primary event “b input to the system is incorrect”5.

• Case 2: v is not the start vertex and b is an output of v. In this case, the execu-

tion of v does affect the value of b. Thus, the event “b is incorrect when exiting

v” is elaborated into the intermediate event “b output from v is incorrect”,

which can be further elaborated using Template DF-1 (see section 3.2.1.3).

5In Template DF-3, each OR gate has only one input event; it basically means the output event
occurs if the input event occurs. AND gates could also be used here since there is only one input
event. We choose to use OR gates.

44

• Case 3: v is not the start vertex and b is not an output of v. In this case, the

execution of v does not affect the value of b, thus b must have been incorrect

when entering v. Thus, the event “b is incorrect when exiting v” is elaborated

into the intermediate event “b is incorrect when entering v”, which can be

further elaborated using Template DF-4 (see section 3.2.1.6).

Algorithm B.3 in the Appendix shows the pseudo-code of the procedure to elab-

orate the intermediate event “b is incorrect when exiting v”.

3.2.1.6 Template DF-4: “b is incorrect when entering v”

Figure 3.6. Template DF-4 For Event Type “b is incorrect when entering v”. The
symbol * indicates that one event is added for each (bu, P) ∈ IDD(b, v) and the symbol
** indicates that one event is added for each ei in the sequence P = 〈e1, . . . , en〉.

In order to elaborate the event “b is incorrect when entering v”, we also use the

data dependence information IDD(b, v) as in template DF-2. Template DF-4 shown

in Figure 3.6 is essentially the same as template DF-2 shown in Figure 3.4.

Algorithm B.4 in the Appendix shows the pseudo-code of the procedure to elab-

orate the event “b is incorrect when entering v”.

45

3.2.1.7 Template DF-5: “execution incorrectly reaches v”

We use the control dependence information computed for each CFG vertex v to

elaborate the event “execution incorrectly reaches v”.

Recall that CD(v) denotes the set of edges that v is control dependent on:

CD(v)
def
= {(u→ t) | v is control dependent on (u→ t)}.

So, for each (u → t) in CD(v) there are two cases that allow the execution

to incorrectly reach v from u via the edge (u → t) as shown in template DF-5 in

Figure 3.7:

1. The execution incorrectly reaches u first, and then from there reaches v through

edge (u→ t) with predicate p(u, t);

2. The value of the predicate p(u, t) deciding the path from u to v is incorrect.

Figure 3.7. Template DF-5 For Event Type “execution incorrectly reaches v”. The
Kleene star * indicates one event is added for each (u→ t) ∈ CD(v).

Algorithm B.5 in the Appendix shows the pseudo-code of the procedure to elab-

orate the intermediate event “execution incorrectly reaches v”.

46

3.2.1.8 Template DF-6: “predicate p(u, t) incorrectly holds”

Figure 3.8. An Example CFG Of “Issue ballot and get vote”.

Figure 3.9. Template DF-6 For Event Type “predicate p(u,t) incorrectly holds”.
The Kleene star * indicates one event is added for each a ∈ Use(p(u, t)).

We assume that in the system model, the edge predicates (on guarded edges)

always get evaluated correctly. We do not take predicate evaluations into account

as places for potential errors. If a predicate could be evaluated incorrectly, it has to

47

be treated as a variable that is output from a vertex. For example, in the CFG in

Figure 2.3(B), the predicate p(c1, c1) is x > 0; we assume the evaluation of x > 0 is

always correct, thus the value of p(c1, c1) is only incorrect if x is incorrect. Another

example is in the election process as described in the Background section 2.4, to issue

an appropriate ballot (regular or provisional) the election official has to check for the

voter’s eligibility. If the voter is registered and has not marked as voted, the election

official issues a regular ballot, otherwise the election official issues a provisional ballot.

A CFG as shown in Figure 3.8 reflects such control flow. However, we assume that

the predicate evaluations are always done correctly, therefore if we use that CFG,

the errors in the predicate evaluations will not be identified. It is possible that the

election official does the check incorrectly (intentionally or not). So in order for such

error to be identified using our approach, the predicate has to be treated as output

variables (Boolean variables registered output from ‘verify register’ and notVoted

output from ‘verify not-voted’) as shown later in section 3.3.

With that assumption, we see that the predicate p(u, t) incorrectly holds only if

any variable used in the predicate is incorrect. Figure 3.9 shows template DF-6 to

elaborate the event “predicate p(u, t) incorrectly holds”. The elaboration pseudo-code

is given in Algorithm B.6 in the Appendix.

3.2.2 SP Set: Simple Templates To Derive Initial Fault Trees

In this section, we show another set of templates as an equivalent way to generate

the initial fault tree. In the DF template set, for data dependence errors, the templates

(DF-2 and DF-4) use the IDD information to go directly to the places in the CFG

where the variables-in-question are defined; these places could be many steps away

from the place where the variable is being used. In contrast to using IDD as in the DF

template set, the templates SP-2 and SP-4 in the SP set do not use IDD information,

48

they instead go back through the CFG, one step at the time. We call this set of

templates the SP set6.

The control dependence information usage in this SP set is still the same as in the

DF-set.

There are two reasons for using the templates described in this section:

1. Using this set of templates, we do not have to compute the immediate data

dependence information ahead of time. It is an advantage when the system

failure of interest is associated with a vertex “close” to the beginning of the

process; in this case, the part of the CFG to be explored is much smaller than

the entire CFG.

2. We can leverage the previous implementation of FTA on Little-JIL process

models, developed by Bin Chen [3]. Chen uses templates that trace the data

flow on the CFG, one vertex back at a time.

We prove that this SP set of templates generates FTs that are equivalent to those

produced by the templates in the DF set described earlier in section 3.2.1. By that

we mean given the same top event, the FT derived using the SP template set has the

same cut sets as the FT derived using the DF template sets. The induction proof is

presented in Appendix A.

Table 3.2 shows the difference between the two sets of templates. The SP set also

uses some templates from the DF set, namely DF-1, DF-3, DF-5, DF-6 but it has its

own templates SP-2 and SP-4 to replace DF-2 and DF-4 respectively.

3.2.2.1 Template SP-2: “input to v is incorrect”

Template SP-2 (Figure 3.10) is self-explanatory. We just add one event “a is

incorrect when entering v” for each input a ∈ Use(v).

6SP stands for Simple.

49

Template
in DF set

Event
Template
in SP set

Different templates
between two sets

DF-1 b output from v is incorrect DF-1 No
DF-2 input to v is incorrect SP-2 Yes
DF-3 b is incorrect when exiting v DF-3 No
DF-4 b is incorrect when entering v SP-4 Yes
DF-5 execution incorrectly reaches v DF-5 No
DF-6 predicate p(u,t) is incorrect DF-6 No

Table 3.2. Templates In DF Set And SP Set.

Figure 3.10. Template SP-2 For Event Type “input to v is incorrect”. The Kleene
star * indicates one event is added for each a ∈ Use(v).

50

3.2.2.2 Template SP-4: “b is incorrect when entering v”

The value of b does not change when the control flows from vertex u ∈ Pred(v) to

v. If there is a predicate p(u, v) on the edge (u→ v), then we include that condition

on our FT template SP-4, as shown in Figure 3.11. Note that this is a simple template

in which we focus on one single error at a time. Therefore the event “predicate p(u, v)

holds” is considered a primary event and there is no further elaboration. Later in

the analysis, if users choose to elaborate on this part of the FT, such events will be

converted to intermediate events and thus will be further elaborated.

Figure 3.11. Template SP-4 For Event Type “b is incorrect when entering v”. The
Kleene star * indicates one event is added for each u ∈ Pred(v).

Error events

In a cut set, only events of the following types are considered error events :

• v is performed incorrectly producing incorrect a,

• a input to the system is incorrect.

Events of other types are not considered error events. For example, “v produces

incorrect b due to input a” is rather a consequence event, or “predicate p(u, t) holds”

is a boolean condition.

51

3.3 “Issue ballot and get vote” Example

This section describes an example of analyzing a small model of an “Issue ballot

and get vote” (IB) system, from showing the derivation of the initial FT using the

SP template set to showing the need of incremental selective exploration of the cut

sets. This example system model is used in the following sections to keep illustrating

our approach.

Figure 3.12. CFG Annotated With Data Flow Information Of “Issue ballot and get
vote” System.

Figure 3.12 shows a CFG representation of “Issue ballot and get vote”, a very much

simplified portion of an election system that we already described in the background

section 2.4. When voters go to their polling place to vote, they are checked for

eligibility. In this model, the voter has to go through two checks. The first is to

52

verify that the voter is registered by checking if the voter name is in the voting roll

(represented by vertex ‘verify registered’). So the inputs to this vertex are voterName

and votingRoll, and the output is a Boolean registered indicating whether the

voter is registered or not. Both voterName and votingRoll are inputs to (this part

of) the system, they are not defined within the system. If the voter passes the first

check, then the second check ‘verify not voted’ is done to verify that the voter has not

[already] voted. The inputs to this vertex are also voterName and votingRoll. The

outputs include: (1) a Boolean notVoted indicating whether the voter has not voted

(passes the check) or already voted (fails the check); and (2) votingRoll updated

with the information that the voter has voted.

If either of the checks fails, the control flows to ‘issue provisional’ — the voter is

given a provisional ballot, which is typically not examined unless the election is close.

If the voter passes both checks, the system control flows to ‘issue regular’ — the voter

is given a regular ballot.

The voter, after being issued an appropriate ballot, casts the vote (the control

flows to ‘cast vote’).

Let us consider a system failure “ ballot input into ‘cast vote’ is incorrect”. It

could be an eligible voter casting his/her vote using an provisional ballot, or an inel-

igible voter casting his/her vote using a regular ballot. The failure can be translated

to “ ballot is incorrect when entering ‘cast vote’ ” so we can apply our templates.

We apply the simple templates in the SP set described in section 3.2.2 to derive the

initial FT. Starting at the top event “ ballot is incorrect when entering ‘cast vote’ ”,

template SP-4 is applied to elaborate the event, resulting in two new intermediate

events “ ballot is incorrect when exiting ‘issue regular’ ” and “ ballot is incorrect

when exiting ‘issue provisional’ ”. Note that since there are no predicates on the edges

from ‘issue regular’ and ‘issue provisional’ to ‘cast vote’, each AND gate has only one

input event (Figure 3.13).

53

Figure 3.13. Applying Simple Templates to “Issue ballot and get vote” System
Model Given the Failure “ ballot is incorrect when ‘cast vote’ starts”.

54

Template DF-3-case-3 is applied to elaborate the event “ ballot is incorrect when

exiting ‘issue regular’ ” since ballot is an output of ‘issue regular’, and ‘issue regular’

is not the start vertex. This results in the intermediate event “ ballot output from

‘issue regular’ is incorrect”, which is further elaborated using template DF-1. Since

‘issue regular’ does not have any input, there are only two cases: one is “ ‘issue regular’

is performed incorrectly and produces incorrect ballot”, and the other is “execution

incorrectly reaches ‘issue regular’ ”.

We keep applying the templates in the SP-set to elaborate intermediate events

until all the leaves of the resulting FT are primary events7. Figure 3.14 shows the

resulting initial FT. Note that the FT is in fact not exactly a tree structure as we

already mentioned in the Background section 2.1; there are several FT events each of

which is an input event to more than one gate.

Once the FT is derived, Boolean algebra is applied to compute its cut sets as

described in the Background section 2.1. There are 18 cut sets in this example, 3 of

which are found to be spurious using our technique discussed later in section 3.6. The

remained 15 cut sets are all minimal with one or two error events. Besides obvious

single-event cut sets such as

CS-1:

• ‘issue regular’ is performed incorrectly producing incorrect ballot

there are more complicated cut sets, e.g.,

7We could of course apply the templates in the DF set and would get an equivalent initial fault
tree. In order to do that we would have to compute in the IDD information before applying the DF
templates.

55

Figure 3.14. Initial FT Derived From “Issue ballot and get vote” System Model
Given The Top Event “ballot is incorrect entering ‘cast vote’ ”.

56

CS-2:

• ‘verify not-voted’ is performed incorrectly producing incorrect notVoted

• predicate ‘notVoted’ incorrectly holds due to input notVoted

One can understand from this cut set CS-2 that the Boolean notVoted has the

value true, but this value is incorrect because of the incorrect performance of the

‘verify not-voted’ step, implying that the voter is in fact already listed in the voting roll

as having voted. But it is not immediately understandable how the system execution

reaches the step ‘verify not-voted’ in the first place to produce the incorrect value of

notVoted and how this incorrect value of notVoted is related to the hazard. Our

new approach allows users to zoom in on a specific cut set by

• creating a projection of the initial FT that keeps only events relevant to this

cut set, resulting in what we call the focused FT ;

• applying detailed templates to this projected FT to derive a more detailed FT,

called elaborated FT ; and then

• automatically computing the new cut sets of the elaborated FT and generating

concrete scenarios showing ways that the events in the cut sets can occur and

how they can then lead to the failure.

The next section discusses the projection of a FT given a cut set to derive the

focused FT.

3.4 Deriving The Focused Fault Tree

Given a FT and one of its cut sets, the focused FT is a subtree of the original FT,

and the set of all the leaves of the subtree is exactly the given cut set.

57

For example, given the FT in Figure 2.1 and a cut set {E,F}, the focused FT is

the subtree as shown in Figure 3.15(B) — Figure 3.15(A) shows the original FT with

the irrelevant parts grayed out, so the reader has can see easily that the focused FT

is a subtree of the original; Figure 3.15(B) shows that subtree alone, only laid out

differently due to the graph layout algorithm of the yEd tool we use8.

Figure 3.15. Focused Fault Tree Example.

To derive the focused FT, we first mark all the primary events that are contained

in the given cut set as relevant. We traverse the tree from the root, recursively visit

each event’s input gate and each gate’s input events. After all of the input events of

a gate are visited, if (1) the gate is an OR gate and one of its events is relevant, or (2)

the gate is an AND gate and all of its input events are relevant, then mark the gate

as relevant. After an event’s input gate is visited, if the gate is marked as relevant,

then mark the event as relevant. Once all the marking is done, we can get rid of all

the gates and events that not marked as relevant. The remainder is the focused FT

with respect to the given cut set. By construction, the events and gates that are not

marked relevant are not relevant to showing how the primary events in the cut sets

are combined (via the Boolean gates) to lead to the top event.

8http://www.yWorks.com

58

Figure 3.16 shows the focused FT given the cut set CS-2. This focused FT is the

projection of the initial FT derived from “Issue ballot and get vote” model given the

failure “ballot is incorrect when ‘cast vote’ starts”, focusing on the cut set CS-2.

Figure 3.16. Focused Fault Tree Given Cut Set CS-2.

59

With the cut set CS-2, the focused FT reveals that because notVoted is incorrectly

true, the system execution incorrectly reaches ‘issue regular’, therefore the output

ballot from that vertex is considered incorrect. But the user might then want to

understand better how the execution can ever reach ‘verify not-voted’ in the first

place. We facilitate the understanding by applying our new detailed templates to

derive the focused-elaborated FT. The next section discusses the elaboration of the

focused FT using detailed templates.

60

3.5 Zooming In On An Initial Cut Set With Detailed Tem-

plates

In this second phase of the analysis, we elaborate the focused FT to an elabo-

rated FT (see the flow chart in Figure 3.1.) The key idea for this elaboration is

threefold: (1) considering how the execution reaches the original source of error, (2)

elaborating events that are considered primary in the initial FT, and (3) considering

the combinations of errors.

First, in deriving the initial FT, the SP templates allow users to trace back through

the control flow graph to where a data variable b first gets an incorrect value, let’s say

vertex v; it could be because an input a into v is incorrect, so the elaboration proceeds

further back to where a first gets the incorrect value; it could be because the value

of b input to the system is incorrect (if v is the start vertex); it could be because

the execution incorrectly reaches v so output b from v is considered incorrect; or it

could be because v is performed incorrectly, therefore producing an incorrect value of

b. For the latter case, no more further elaboration is done in deriving the initial FT.

In elaborating the focused FT, when we encounter the situation where v is performed

incorrectly producing incorrect b, we are interested in how the execution reaches v as

well.

Second, the event “predicate p(u, t) holds” which is considered a primary event

in the initial FT, is now considered an intermediate event in the elaborated FT. It is

elaborated by applying a new template.

Third, in deriving the initial FT, the SP templates consider only single errors as

input events to an OR gate, causing its output event. In elaborating the focused FT,

we consider combinations of errors, that is, sometimes two or more error events occur

together causing the output event.

To achieve the above three goals, we develop a new set of templates called DT —

detailed template set. Below, we describe how this DT template set is different from

61

the SP set: what SP templates can be used in the DT set, what SP templates have to

be replaced by their DT counterparts, and what detailed templates are newly added

to the DT set.

Table 3.3 shows the difference between the two sets of templates SP (simple) and

DT (detailed). The DT set also uses some templates from the SP set, namely DF-3

and SP-4 but it has its own templates DT-1, DT-2 and DT-6 to replace DF-1, SP-2

and DF-6 respectively. In addition, the DT set also has two new templates: DT-7 to

elaborate events of type “predicate p(u,t) holds” and DT-8 to elaborate “execution

correctly reaches v”. Both of those events are not applicable in deriving the initial FT

using the simple templates but they appear in elaborating the focused FT as shown

later in this section.

Template
in SP set

Event
Template
in DT set

Different templates
between two sets

DF-1 b output from v is incorrect DT-1 Yes
SP-2 input to v is incorrect DT-2 Yes
DF-3 b is incorrect when exiting v DF-3 No9

SP-4 b is incorrect when entering v SP-4 No10

DF-5 execution incorrectly reaches v DF-5 No11

DF-6 predicate p(u, t) incorrectly holds DT-6 Yes
N/A predicate p(u, t) holds DT-7 Yes
N/A execution correctly reach v DT-8 Yes

Table 3.3. Templates In DT Set And SP Set.

9There is no error combination in DF-3.

10SP-4 (Figure 3.11) elaborates the event of type “b is incorrect when entering v” by listing all
possible events of type “b is incorrect when exiting u” where u ∈ Pred(v). In one failure-enabling
scenario, the data item b can only flow to v from one predecessor u, it cannot be the case that “b is
incorrect when exiting u1” and “b is incorrect when exiting u2” at the same time, u1, u2 ∈ Pred(v),
to make “b is incorrect when entering v”. There cannot be a combination of errors here.

11DF-5 (Figure 3.7) elaborates the event of type “execution incorrectly reaches v”. The two single
errors being considered in this templates are (1) conjunction of (1a) the execution incorrectly reaches
u and (1b) predicate p(u, t) holds, and (2) the control-dependent edge predicate p(u, t) incorrectly
holds. To consider error combinations, we obviously would want to add another input event as a

62

3.5.1 Template DT-1: “b output from v is incorrect”

As mentioned in the simple template section 3.2.1, the value of b coming out of v

is considered incorrect only if any of the followings happens:

1. Any input into v is incorrect (data dependence error);

2. The execution incorrectly reaches v (control dependence error); or

3. v is performed incorrectly (agent error).

In this phase of analysis, we consider not only single errors but also combinations

of errors, therefore any combination of the three above should be listed as a possible

cause of the event “b output from v is incorrect”. Figure 3.17 shows the elaboration

of “b output from v is incorrect”, listing all possible combinations of errors. Note

that there is a special case where “agent error” is a conjunction of “v is performed

incorrectly producing incorrect b” and “execution correctly reaches v”. The latter

event is added, so that the final results (cut sets of the elaborated FT) provide

necessary information to construct concrete scenarios — execution paths in the system

model — showing how the failure could arise.

All the intermediate events in the template with generic names, such as “data de-

pendence error”, etc. are specific to the elaboration of “b output from v is incorrect”.

We index those events to separate them from those coming from the elaboration of

any other events of the same type “b′ output from v′ is incorrect”.

conjunction of (1a) and (2). However, template DT-7 elaborates the event (1b) “predicate p(u, t)
holds” as shown in Figure 3.20, resulting in the conjunction of (1a) and (2) to be an input event of
“execution incorrectly reaches v”. So there is no need to replace template DF-5.

63

Figure 3.17. Template DT-1 For Event Type “b output from v is incorrect”.

3.5.2 Template DT-2: “input to v is incorrect”

To elaborate this event, we have to iterate through all the possible combinations

of input variables into v, which are all possible subsets of Use(v), in other words, all

the elements in P(Use(v)) — the power set of Use(v) (see Figure 3.18).

Figure 3.18. Template DT-2 For Event Type “input into v is incorrect”. The symbol
* indicates that one event is added for each S, a subset of Use(v), or S ∈ P(Use(v)).
The symbol ** indicates that one event is added for each artifact a ∈ S.

64

3.5.3 Template DT-6: “predicate p(u, t) incorrectly holds”

Similar to DT-2 in section 3.5.2, to elaborate this event, we also have to iterate

through all the possible combinations of variables input to u to compute predicate

p(u, t), which are all possible subsets of Use(p(u, t)), in other words, all the elements

in P(Use(p(u, t))) — the power set of Use(p(u, t)) (see Figure 3.19).

Figure 3.19. Template DT-6 For Event Type “predicate p(u, t) incorrectly holds”.
The symbol * indicates that one event is added for each S, a subset of Use(p(u, t)),
or S ∈ P(Use(p(u, t))). The symbol ** indicates that one event is added for each
artifact a ∈ S.

3.5.4 Template DT-7: “predicate p(u, t) holds”

This template (Figure 3.20) is self-explanatory. The event “predicate p(u, t) holds”

is a disjunction of the intermediate event “predicate p(u, t) incorrectly holds” and the

primary event “predicate p(u, t) correctly holds”.

Figure 3.20. Template DT-7 For Event Type “predicate p(u, t) holds”.

65

3.5.5 Template DT-8: “execution correctly reaches v”

This template (Figure 3.21) does not explore or trace back causes of any error. It

basically serves the purpose of constructing the execution path in the process model,

which helps generate concrete scenarios of a cut set. In this template, we iterate

through all control dependent edges (u→ t) of v, i.e. (u→ t) ∈ CD(v). To have the

execution correctly reach v, we must have the execution correctly reaches u and the

predicate on the edge (u→ t) has to correctly hold.

Figure 3.21. Template DT-8 For Event Type “execution correctly reaches v”. The
symbol * indicates that one event is added for each (u→ t) ∈ CD(v).

3.5.6 Elaborating The Focused Fault Tree

Unlike deriving the initial FT using the simple templates in which we start with

one top event (representing the system failure), in this phase of analysis, to derive

the elaborated FT, we start with the focused FT, not just a single event. Note that

in the initial FT, all the primary events are of one of the following types:

• a input to the system is incorrect (from template DF-3-case-1);

• predicate p(u, t) holds (from templates SP-4 and DF-5);

• v is performed incorrectly producing incorrect b (from template DF-1).

66

The focused FT is the projection of the initial FT, keeping only events relevant

to the chosen initial cut set. Its primary events are thus also of the types mentioned

above.

In order to elaborate this focused FT, first, we have to make some of the primary

events become intermediate events so that we can elaborate them. Since the first

event type “a input to the system is incorrect” deals with the data item being incorrect

from outside of the scope of the system, no further elaboration is possible. The second

event type “predicate p(u, t) holds” can be further elaborated into a disjunction of the

primary event “predicate p(u, t) correctly holds” and the intermediate event “predicate

p(u, t) incorrectly holds” using template DT-7 as shown in Figure 3.20.

The last primary event “v is performed incorrectly producing incorrect b” only

appears in template DF-1 (Figure 3.3), which means it only “stems” from the event

“b output from v is incorrect”. To elaborate the event “v is performed incorrectly

producing incorrect b”, we must consider it as a single error as well as consider it as

a part of an error combinations as listed in template DT-1 (section 3.5.1). Therefore,

we convert the stem in the focused FT into a partial FT as shown in Figure 3.22. In

the figure, the top part is template DF-1. We are interested in only the stem with

the input event “v is performed incorrectly producing incorrect b”. The other two are

kept in the figure, but grayed out, so that readers easily see that the stem comes from

template DF-1. The bottom part of the figure is in fact template DT-1 and we keep

only the parts related to the agent error; the gray parts have nothing to do with the

agent error.

Note that given the system model and the failure, the detailed templates could

be applied from the beginning without having to applying the simple templates in

the first phase and then the detailed templates in the second. The result would

be one fault tree whose set of cut sets is the union of all elaborated cut sets of all

67

Figure 3.22. Converting A Stem In The Focused Fault Tree.

of the elaborated FTs when applying the two-phase approach. Using the two-phase

approach, however, allows users to selectively explore the possible causes of the failure.

3.6 Removing Inconsistent And Spurious Cut Sets

Our FT construction is based on templates, which more or less explore the local

errors around the FT events being elaborated. Once the elaborated FT is constructed,

the results incorporate information at a global scale, and the local exploration of

templates might result in some inconsistent and spurious outcomes.

A cut set is said to be inconsistent if it is impossible for all of its events to happen

in one system execution. For example, assuming the value of P does not change

during a system execution, P and ¬P cannot happen in the same execution, making

any cut set containing both P and ¬P inconsistent. We can automatically identify

such cut sets and remove them from the result.

68

A cut set is said to be spurious if all system executions, each of which contains

the events in this cut set and not all the events in any other cut set, turn out to not

result in the top event. We develop an algorithm to identify and eliminate certain

types of spurious cut sets. Below is a motivating example.

One cut set of the initial FT example shown in the previous section (Figure 3.14)

is:

Cut set S:

• voterName input to the system is incorrect

• predicate ‘registered’ incorrectly holds due to input registereda

• predicate ‘¬ notVoted’ holds

aThe variable registered is an input to the predicate ‘registered’.

Figure 3.23 shows, on the left hand side, the focused FT of cut set S. The focused

FT shows that, since voterName input to the system is incorrect, it makes the value

of registered incorrectly true, thus the predicate ‘registered’ incorrectly holds.

That means, the correct value of registered has to be false. Because the predicate

‘registered’ incorrectly holds, the execution goes to ‘verify not-voted’. In this sce-

nario, notVoted has the value false, leading the execution to ‘issue provisional’ and

then ‘cast vote’12. This execution path is marked as red on the CFG on the right

hand side of Figure 3.23.

So, if the error (“ voterName input to the system is incorrect”), which leads to

registered having the incorrect value true, was caught, then registered would

have had the correct value false and the execution would go from ‘verify registered’

12Of course there are other scenarios in which notVoted has the value true, either correctly or
incorrectly, but we are considering the scenario in which notVoted has the value false.

69

to ‘issue provisional’ and then “cast vote”. This execution path is marked as dashed

green on the CFG on the right hand side of Figure 3.23.

Both execution paths (one according to the cut set, and one with the error being

caught) end up at the same vertex ‘issue provisional’. Consider the case that person

A is not registered in his/her correct name; A then impersonates a registered voter

B, goes to the polling place, gives B’s name (thus voterName input to the system is

incorrect), is verified as registered, and then fails the ‘verify not-voted’ check because

B has already voted in this election, so A ends up getting a provisional ballot. So

this ineligible voter A does not get a regular ballot, but a ballot he or she should have

gotten if everything had been done correctly. This cut set is considered spurious.

We would like to identify cut sets of this sort and eliminate them. We have

developed an algorithm, shown as Algorithm 3.2, that can correctly identify some

spurious cut sets. It is based on the fact that, on the execution path, if at the first

branching vertex v that has two successors w1 and w2 and there is an event in the

cut set that says “predicate p(v, w1) incorrectly holds”, then we know that (v → w1)

is the incorrect branch, thus (v → w2) is the correct branch. Let P be the path in

the CFG from w2 to either the next branching vertex or the vertex right before end,

formally as follows:

P = 〈w2, w3, ..., wn〉

with n ≥ 2, ∀i such that 1 ≤ i < n, (wi → wi+1) ∈ E, wn 6= end, and either

(wn → end) ∈ E or ∃x, y ∈ V, x 6= y : (wn → x) ∈ E ∧ (wn → y) ∈ E.

Let VP be the set of all vertices in P , then if the incorrect execution from v to w1

somehow ends up at any w ∈ VP without encountering a failure-influencing label13, it

13i.e., encountering a vertex u whose output is a and that au is a failure-influencing label

70

Figure 3.23. Spurious Result Example.

71

Function isSpurious()
input : CFG, cutset– the cut set of interest
output: spurious– true if cutset is spurious, false otherwise

// Initialization

correctPlaces ←− ∅ ;
reachCorrectNotModData ←− false;
noErrSinceCorrect ←− true;

current ←− start;
while current 6= end do

// advance to the next vertex in the CFG

if current has only one successor then
current ←− the only successor;

else
use events with predicates in cutset to determine the next vertex, called next;

if reachCorrectNotModData ∧ (cutset contains error events at current)
then

noErrSinceCorrect ←− false;

if (correctPlaces = ∅) ∧ (cutset contains event “predicate on
(current→ next) incorrectly holds”) ∧ (current has only two successors)
then

correctPlaces ←− getCorrectPlaces(the other successor that is not
next) ;
modifiedDataFromBranch ←− false;

current ←− next;

if (correctPlaces 6= ∅) ∧ (current has output) then
modifiedDataFromBranch ←− true;

if (current ∈ correctPlaces) ∧ (modifiedDataFromBranch = false) then
reachCorrectNotModData ←− true;

spurious ←− reachCorrectNotModData ∧ noErrSinceCorrect;
return spurious;

Function getCorrectPlaces(v)
input : v
output: correctPlaces

correctPlaces ←− ∅ ;
while v 6= end do

correctPlaces ←− correctPlaces +{v } ;
if v has only one successor then

v ←− the successor ;

else
return correctPlaces;

return correctPlaces;

Algorithm 3.2: Determine Spurious.

72

is safe to say that even taking the incorrect branch, the outcome is the same14. So if

the outcome at w is the same, whether taking the incorrect branch (v → w1) or the

correct branch (v → w2) to w, and from w to the end of the execution, no more error

is made to lead to the top event, then the cut set is decided to be spurious.

In the algorithm, we call VP the correctPlaces. We use noErrSinceCorrect

to keep track whether the execution from correctPlaces to the end encounters any

more error events. Once the correctPlaces has been found, we also use

modifiedDataFromBranch to keep track whether the execution from the branching

point v has encountered any failure-influencing label. We use reachCorrectNotModData

to keep track whether or not the execution has reaches the correctPlaces without

encountering any failure-influencing label along the way.

This algorithm is sound, but not complete. We cannot guarantee that when the

algorithm returns false, the input cut set is not spurious.

14When the execution takes the incorrect branch from v to w1, even if the execution ends up at
w ∈ VP but the execution has changed some data which affects the value of the variable at the
failure vertex, we cannot guarantee that the outcome is the same as when the execution takes the
correct branch from v to w2.

73

3.7 Generating Scenarios

Given a cut set, we can generate a scenario showing how the failure may arise.

We call the vertex mentioned in the top event the failure vertex vf . A scenario is an

execution path in the CFG, from start to vf , that contains all events in the cut set.

By the way our FTs are constructed, the primary events can only be of the fol-

lowing types:

• E1: b input to the system is incorrect,

• E2: v is performed incorrectly and produces incorrect b,

• E3: predicate p(u, t) holds.

We want to find a path in the CFG from start to vf that includes all vertices

mentioned in the E2 events, called E2 vertices, and satisfies all the predicates men-

tioned in E3 events, called E3 predicates, of the cut set. E1 events are simply put at

the start vertex.

It’s noted that each E3 event uniquely identifies an edge (u→ t). When searching

for scenarios, we want to make sure that, at the decision-making vertex u, the control

flow has to take the edge (u→ t) and not any other outgoing edges emanating from

u. Therefore, we may ignore all of these other outgoing edges emanating from u from

the CFG.

The remaining problem is simply finding a path between start and vf that con-

tains the E2 vertices in the cut set. We employ a best-first-search algorithm to solve

this problem.

For this search problem, each search state is a structure that contains the following

information: the CFG vertex v that this node corresponds to, and the goal status g

that contains the remaining E3 vertices that we still need to cover in order to satisfy

the goal.

74

Let S be the set of all E2 vertices of the given cut set. The initial state has no

parent so the CFG vertex it corresponds to is the start, and the goal status g is S.

The goal state must have the failure vertex vf as the corresponding CFG vertex, and

the goal status g must be ∅.

We use a worklist to store search states to be examined and a visited list to

store all states that have been evaluated and will not be looked at again. We also

use parent to map a search state to its parent state in order to reconstruct the CFG

path after reaching the goal state. The initial state has no parent.

Algorithm 3.3 shows the algorithm that returns a scenario given the cut set.

Note that this algorithm is a best-first-search algorithm. In order to get all possible

scenarios, one can apply a typical breath-first-search algorithm on the CFG to get

all the paths from start to vf and select all the paths that contain the all of the E2

vertices of the given cut set.

75

input : cut set, CFG, vf
output: scenario

// pre-process the CFG

foreach E3 event “predicate p(u, t) holds” in the cut set do
Delete all edges {(u→ t′) | t′ 6= t} from the CFG;

// the initial state

current.v ←− start;
current.g ←− S; // all the E2 vertices in the cut set

parent [current] ←− null;

visited ←− ∅;
worklist ←− {current} ;

while worklist is not empty do
current ←− the search state from worklist with fewest vertices in its goal status g;
Remove current from worklist;
Add current to visited;

if current.v = vf ∧ current.g = ∅ then // reach the goal

// trace back from current using recorded parent
// initialize scenario, which is a sequence of vertices

scenario ←− 〈current.v〉 ;
while current.v 6= start do

current ←− parent [current] ;
// add the current vertex to head of the scenario sequence

scenario ←− 〈current.v〉+ scenario;

Return scenario;

Compute successors of current;
// successor of current is s such that

// (current.v, s.v) is an edge in CFG

// and s.g = current.g − s.v

foreach successor s of current do
if s is not in worklist then

Add s to worklist;
parent [s] ←− current;

Algorithm 3.3: Generate Scenario.

76

CHAPTER 4

EVALUATION

In this work, we designed and implemented a two-phase Fault Tree Analysis ap-

proach that automatically identified causes of potential failures in complex systems

and allows users to incrementally explore those causes. To evaluate this approach,

we applied it to several non-trivial real-world human-intensive processes: Issue Ballot

and Get Vote (IB), Count Votes (CV), Chemotherapy (CM), In-patient Blood Trans-

fusion (BT). These systems have been subjects of other projects to model and analyze

human-intensive processes [7, 8, 28]. As mentioned earlier, although they are called

processes, they are indeed systems with control and data flow information, suitable

subjects for our approach.

Both IB and CV processes are sub-processes of the larger election process in Yolo

County, California. The CM and BT processes are also real-world processes that were

employed by Baystate Medical Center, a hospital in Springfield, Massachusetts, at

the time the above-mentioned projects were conducted. As those projects’ outcomes,

the process models were available to be used in this work. In those projects, analysts

had shadowed performers of the real processes, and interviewed the performers and

domain experts who could also be the process performers to elicit the process models.

The analysts, with the help from the domain experts, had then reviewed, evaluated,

and corrected the process models to make sure the models accurately and concisely

represent the the processes. The processes were modeled in Little-JIL, a modeling

language with expressive and well-defined semantics so that the resulting models can

be analyzed rigorously.

77

We chose these processes because, first, their process models were readily available

for analysis so we did not have to elicit the process models. Second, these processes

are important real-life processes. Third, these processes incorporate non-trivial data

and control flows, therefore they are good vehicles for demonstrating and evaluating

our approach.

By applying the two-phase FTA approach to the four processes with corresponding

failure specifications, we have found that:

1. Using the detailed templates led to scenarios that completely specified the paths

through the process that could result in the failures. This finding confirms the

usability of the approach which is to help users better understand possible causes

of process failures.

2. Some spurious cut sets could be automatically identified and therefore elimi-

nated. However, among the four processes, we only discovered spurious cut sets

in the IB process. Our algorithm did not find spurious cut sets in the other

processes.

3. The FTA result size, in terms of the numbers of initial cut sets, of elaborated

cut sets and and of minimal cut sets (MCSs), depended on multiple factors,

which include the overall number of failure-influencing variables, the number of

such variables input to a step, the number of steps that have multiple failure-

influencing inputs, and the complexity of the control flow to the step that cor-

responds to the top event.

4. Using all available control and data dependence information resulted in a larger

number of MCSs for the domain experts to examine. We discovered MCSs that

were not found using Chen’s approach. The larger number of MCSs, however,

could be overwhelming to the users. We suggest in this chapter some techniques

that could be used to make the FTA result more manageable.

78

In the remainder of this chapter, we first describe how a Little-JIL process model

is translated to a CFG suitable to be used in our FTA approach. We then give a

brief introduction to the four selected processes. After that, we present our findings

in more details. Finally, we discuss the impact on FT derivation of some limitations

of Little-JIL.

4.1 Applying The Approach To Little-JIL Process Models

Our FTA approach works on system models represented as CFGs with data flow

information. To apply our approach to a Little-JIL process model, first we have to

translate the Little-JIL model to a CFG.

4.1.1 Translating A Little-JIL Model To A Control Flow Graph

As mentioned in the Background Chapter (section 2.4), Little-JIL represents a

process as a hierarchy of steps. A step is the basic building block of a Little-JIL

model. A step represents a unit of work in the process and may be decomposed into

sub-steps. Every Little-JIL model has a root step that represents the entire process.

This step is decomposed as far as necessary to describe the process. The execution of

a Little-JIL step is modeled as progress through several states. Step execution begins

in the POSTED state during which the execution of the step is assigned to an agent.

The execution then proceeds to the STARTED state, when the agent begins performing

the step. Eventually the step enters either the COMPLETED state (normal execution)

or the TERMINATED state (the execution ends with an exception).

In the CFG representation G = (V,E, start, end) of a Little-JIL model, each

CFG vertex is a state of a step in the Little-JIL model. There is an edge from u to v

if and only if the step state u may immediately precede v according to the Little-JIL

process definition. We can determine whether step state u may immediately precede

step state v based on the Little-JIL semantics. The CFG start vertex is the POSTED

79

state of the root step, because it is the first state of any process execution. Since the

execution can end at the COMPLETED or TERMINATED state of the root step, we add an

extra end vertex, and an edge from each COMPLETED or TERMINATED state of the root

step to this end vertex. Figure 4.1 shows the CFG corresponding to the Little-JIL

model of the IB (“Issue ballot and get vote”) process described in section 2.4.

We note that in the CFG for a Little-JIL model, each vertex represents a state of

a step rather than an execution unit. Those step states (vertices) cannot produce or

update values for any artifact (data item). In a Little-JIL model, only leaf steps can

produce or update values of its output artifacts. So to make it easier to understand

the adaptation of our FTA approach to Little-JIL process models, for each leaf step

s, we introduce an intermediate vertex “perform s” to represent the actual execution

of the step s, and only these vertices have Def and Use information1. The addition

of the new vertex is as follows:

• add one new vertex called “perform s”;

• add outgoing edges for “perform s” to the existing immediate successors of “s

STARTED”;

• remove all outgoing edges of “s STARTED”; and

• add one edge from “s STARTED” to “perform s”;

• add input artifacts of s to the Use of “perform s”;

• add output artifacts of s to the Def of “perform s”.

. Figure 4.2 shows an example for such addition for a leaf step s which has one

exception e.

1We show later in Section 4.1.2.3 that in the actual implementation, we do not need to add this
type of vertex.

80

Figure 4.1. CFG Of The Little-JIL Process Model Of “Issue ballot and get vote”.
81

Figure 4.2. Adding “perform s” Vertex In The CFG For Each Leaf Step s.

In the CFG of the IB process (Figure 4.1), there are six vertices of type “perform

s” (e.g., “perform verify registered”, “perform verify not-voted”) corresponding to six

leaf steps in the Litte-JIL model of the process; they are annotated with Def and Use

information.

As we require the CFG to be acyclic, we first have to “unroll” and “bound”

the Little-JIL model. The recursive steps and steps with unbounded cardinality are

unrolled to step instances up to bounds given by the analyst. Note that unbounded

cardinality is a Little-JIL language feature that allows the agent of the step to decide

how many times the step should be repeated. Unbounded cardinality does not mean

the step is repeated infinitively. For example, in the “Count Votes” process as shown

later in this chapter (Figure 4.11), the step “count votes for precinct” has unbounded

cardinality (depicted by the + symbol) used to indicate the step is executed once

for each precinct. An example of infinite recursive execution is: step S throws an

exception e, which is handled by step H, and the exception handling specification

specifies that S is restarted after e is handled by H. Thus the loop S → H → S →

H → ... could be infinite. There is no infinite recursion in the four process models in

our evaluation.

The details of process unrolling are given in section 3.2.2 of Chen’s PhD thesis [3].

The process analyst is asked to designate upper bounds for recursive steps as well

82

as steps with unbounded cardinalities. Given these bounds, a process unrolling pre-

processor unrolls the input Little-JIL process model into a unrolled version of the

process that contains a finite number of step instances. In addition, a step may be

used multiple times in a Little-JIL process via step references. The process unrolling

turns each step reference into a step instance. As a result, the unrolled process model

becomes a tree of step instances. From this point forward, we use “process” to re-

fer to the unrolled Little-JIL process model, and we use “step” and “step instance”

interchangeably to refer to a step instance in the unrolled Little-JIL process model.

In the Little-JIL model of the IB process, ‘issue provisional’ is defined to handle the

exception VoterNotRegistered thrown by ‘verify registered’; and a reference to ‘issue

provisional’ is defined to handle the exception AlreadyVoted thrown by ‘verify not-

voted’. Once the unrolling of the Little-JIL process model is done, ‘issue provisional’

and ‘issue provisional’ reference are two separate independent step instances. We use

indices to distinguish them — ‘issue provisional 1’ and ‘issue provisional 2’ as shown

in the CFG (Figure 4.1). Note that the Algorithm 3.2 to determine the spuriousness

of a cut set has to consider ‘issue provisional 1’ and issue provisional 2’ as the same

step.

If a leaf step s is specified with an exception, named e, it means that from

the STARTED state of the step, the execution can either go to COMPLETED state or

TERMINATED state of the step, depending on whether e is thrown or not. With the

addition of the vertex “perform s” for the leaf step s, we have edges from this vertex

to its immediate successors guarded with predicates as follows:

• from “perform s” to “s COMPLETED”: the edge predicate is “s does not throw

exception e”,

• from “perform s” to “s TERMINATED”: the edge predicate is “s throws exception

e”.

83

In case the leaf step s is specified to have more than one exception e1, e2, ..., en, we

can duplicate the “s TERMINATED” state and add predicates on the edges as follows:

• the guarded edge from “perform s” to “s COMPLETED” has the edge predicate

“s does not throw any exception”, which is equivalent to

∧
i

(s does not throw ei),

• a guarded edge from “perform s” to “s TERMINATED i” with the edge predicate

“s throws exception ei”.

Little-JIL allows a step to throw more than one exception in one execution, but

here we assume that a step can throw at most one exception in one execution. To

handle multiple exception throwing in a single execution, more vertices and edges

should be added to the CFG; we leave this for future work.

In the IB process example, Figure 4.1 shows four predicates on four edges, two

outgoing from “perform verify registered”, and two from “perform verify not-voted”.

We treat these predicates specially when customizing the FTA templates for Little-

JIL as described later in section 4.1.2.

4.1.2 Applying Simple Templates To Little-JIL Models

Most vertices in the Little-JIL CFG have the form “s−{STATE}” in which {STATE}

is one of the possible step states. At those vertices, an artifact’s value does not change

between entering and exiting the vertices. Therefore, an event of type “a is incorrect

when exiting s−{STATE}” will be elaborated using the Template DF-3-case-3 as shown

in Figure 4.3 (A). To make the fault tree smaller and easier to understand without

changing the final result (cut sets), we can substitute the the sub-tree (Figure 4.3

(A)) by a single event “a is incorrect when s is {STATE}”.

84

So from this point forward, when we elaborate an event of type “a is incorrect

when s is {STATE}”, it means we elaborate the event “a is incorrect when entering

s-{STATE}”.

Figure 4.3. Simplifying DF-3-case-3 When Applying to Little-JIL.

In our generic approach, a system failure is specified to be an incorrect variable

input to or output from a specific execution unit of the system (each execution unit

is a vertex in the system’s CFG). With Little-JIL models, we also specify a failure

to be an artifact input to or output from a specific step. But since a step does not

correspond to a vertex in the Little-JIL model’s CFG, we have to translate the failure

specification differently.

For example, the failure is “b input to step s is incorrect” is translated to “b is

incorrect when s is STARTED”; the failure is “b output from step s is incorrect” is

translated to “b is incorrect when s is COMPLETED”.

To derive the initial FT, simple templates in the SP set are applied. And to derive

the elaborated FT, detailed templates in the DT set are applied as described in the

Approach Chapter. Most of the applications are straight forward, however, we make

some adjustments or create new templates to better suit Litte-JIL. In the remainder

of this section, we describe the adjustments and the new Little-JIL FTA templates. It

85

is important to note that all these variations could be expressed in terms of different

ways of translating from Little-JIL to the CFG.

4.1.2.1 Elaborating “b is incorrect when s-POSTED” When s Is Not The

Root Step

We want to present this template because it shows the use of Little-JIL’s param-

eter bindings. As described in the Background Chapter, each Little-JIL step has an

artifact declaration that specifies the artifacts it is accessing or providing. Artifacts

are generally passed through the coordination hierarchy between steps and their sub-

steps using parameter binding. In the “Issue ballot and get vote” example, the ballot

artifact is an output parameter of the step ‘issue regular’; it is bound to the ballot

parameter of the parent step ‘issue ballot’; so is the ballot output parameter of the

step ‘issue provisional’. Parameters of different steps might have the same name,

(‘issue ballot’, ‘issue regular’, ‘issue provisional’ and ‘cast vote’ all have a parameter

called ballot), therefore we use ‘parameter name @ step name’ to distinguish them.

We use a graph, called Parameter Binding Graph (PBG), to capture the bindings

among different parameters. It is a directed graph Gp = (Vp, Ep) where Vp is the set

of parameters in the process, and Ep is the set of edges. There is an edge from p1 to

p2 if and ony if there is a parameter binding indicating that p1’s value is passed to

p2. So in Gp, a definition-free path from p1 to p2 is a path in Gp from p1 to p2, along

which none of the parameters except p1 and p2 is an output parameter of a leaf step.

Recall that only leaf steps in Little-JIL are allowed to change the value of its output

parameter. Thus, a definition-free path from p1 to p2 indicates that the value of p1 is

passed to p2.

Figure 4.4 gives the PBG for the “Issue ballot and get vote” process.

Go back to elaborating “b is incorrect when s-POSTED” when s is not the root

step. Given that s is not the root step (which would make s-POSTED the start vertex

86

Figure 4.4. Parameter Binding Graph (PBG) Of “Issue ballot and get vote”.

of the CFG), applying the simple template SP-4, we basically have the elaboration as

shown in Figure 4.5. In this elaboration, if there exists a parameter of s′, named a,

and there is a from a to b in the PBG, then b′ ≡ a, otherwise b′ ≡ b. In case there is

no such a, the template is exactly the same as SP-4. In case there is such a parameter

a, i.e., a’s value is passed to b, saying “b is incorrect when s′−{STATE}” is equivalent

to saying “a is incorrect when s′−{STATE}”.

Figure 4.5. Applying SP-4 To Elaborate “b is incorrect when s is POSTED”.

87

Figure 4.6. Example Of Applying SP-4 To “b is incorrect when s is POSTED”.

88

In Figure 4.6 (A) showing the example of applying SP-4 to “ ‘votingRoll @ verify

not-voted’ is incorrect when ‘verify not-voted is POSTED’ ”, we see that ‘verify not-

voted - POSTED’ is immediately preceded by ‘verify registered - COMPLETED’. Since

there is no parameter of ‘verify register’ being passed into ‘votingRoll @ verify not-

voted’, the elaboration results in the new intermediate event “ ‘votingRoll @ verify

not-voted’ is incorrect when ‘verify registered is COMPLETED’ ”.

Further elaboration arrives at the event “ ‘votingRoll @ verify not-voted’ is incor-

rect when ‘verify registered is POSTED’ ”. Also applying template SP-4 (Figure 4.6

(B)), this time we see that ‘verify registered - POSTED’ is immediately preceded by

‘issue ballot - STARTED’. Since the parameter ‘votingRoll @ issue ballot’ is bound to

‘votingRoll @ verify not-voted’ (see the PBG in Figure 4.4), the elaboration results in

the new intermediate event “ ‘votingRoll @ issue ballot’ is incorrect when ‘issue ballot

is COMPLETED’ ”.

4.1.2.2 Elaborating “b is incorrect when s-POSTED” When s Is The Root

Step

When s is the root step, “s-POSTED” is the start vertex of the CFG.

Obviously if b is an input parameter of s, then the event “b is incorrect when

s-POSTED” must be caused by “b input to the process is incorrect”, similar to DF-

3-case-1. We decide to not elaborate the event in this case. It is easily understood

that “b is incorrect when the root step is posted” means “b input to the process is

incorrect”.

If b is not an input parameter of s, the event “b is incorrect when s-POSTED” is

marked as impossible. The impossible events are pruned from the fault tree after the

whole fault tree is derived.

89

4.1.2.3 Elaborating “b is incorrect when s is COMPLETED”

In Little-JIL, only leaf steps can manipulate their own parameters, non-leaf steps

can only pass parameters. Thus the elaboration of “b is incorrect when s is COMPLETED”

depends on whether s is a leaf step, and whether b is the output artifact of s.

In the case s is a leaf step and b is the output artifact of s, we can see that b’s

value can be propagated from only “perform s”, on the condition that s must not

throw any exception2. Template SP-4 is used to elaborate “b is incorrect when s is

COMPLETED” as shown in Figure 4.7 (A). In Figure 4.7, we use circled numbers to

mark the fault tree events. For the purpose of brevity, we use those numbers to refer

to the events.

Applying Template SP-4 to event 1 yields two intermediate events — 3 “b is

incorrect when exiting ‘perform s’ ” and 4 “s does not throw any exception”. We

discuss how to elaborate the latter event later in the next section. Elaborating the

former event is straightforward, using Template DF-1. Templates SP-2, SP-4, and

DF-3-case-3 are then applied to yield the fault tree as we have in Figure 4.7 (A).

We can compact the fault tree in Figure 4.7 (A) into the fault tree in Figure 4.7

(B) to make the tree smaller without compromising the result. First of all, since b

is the output of s, the value of b can be propagated to “s-COMPLETED” only from

“perform s”, therefore there is only one event input to the gate of event 1 . So we

can collapse 1 and 2 into 12 in Figure 4.7 (B). Event 13 is just event 3 with

a different name3.

By definition, Use(“perform s”) contains all and only the input artifacts of the

step s; “s-STARTED is the only vertex immediately precedes “perform s”; and for the

2According to the copy-in-copy-out semantics of parameter passing in Little-JIL, if a leaf step is
terminated, the value of the parameter that it changes will not be copied out.

3As mentioned before, the addition of the vertex “perform s” is just for the purpose of easy
understand the approach’s application to Little-JIL. The actual implementation does not have this
vertex addition.

90

simplification desceribed above (Figure 4.3), we can collapse events 8 9 10 11 into

the event 18 . Lastly, the event 17 is just 7 with slightly different name.

We call such an elaboration in Figure 4.7 (B) Template LS-1.

Figure 4.7. Template LS-1 For Event Type “b is incorrect when s is COMPLETED”
When b Is An Output Artifact Of Leaf Step s.

For example, in the “Issue ballot and get vote” Little-JIL process, at some point

when deriving the fault tree, we encounter the event “ ‘ballot @ issue regular’ is

incorrect when ‘issue regular’ is COMPLETED”. Since ‘ballot @ issue regular’ is the

output artifact of the leaf step ‘issue regular’, we apply Template LS-1 to elaborate

the event as shown in Figure 4.8. Note that the step ‘issue regular’ does not have any

input, so this elaboration yields only one intermediate event “execution incorrectly

reaches ‘issue regular-STARTED’ ”.

91

Figure 4.8. Elaborating “ ‘ballot @ issue regular’ is incorrect when ‘issue regular’ is
COMPLETED” Using Template LS-1.

In cases that s is not a leaf step or b is not an output of s, the elaborations are

straight forward using the templates in the SP set.

4.1.2.4 Template LS-2: s incorrectly throws exception e

A Little-JIL step’s specification can contain exceptions the step may throw during

its execution. A non-leaf step may throw exceptions propagated from its sub-steps.

The decision of whether an exception is thrown from a leaf step depends totally on

the agent performing the step. Then the leaf step incorrectly throwing exception

might be caused by:

• one of the inputs into the step being incorrect,

• the agent’s misperformance.

Figure 4.9 shows the template LS-2 to elaborate the event “s incorrectly throws

exception e”. Figure 4.10 shows an example of applying the template to elaborate

the event “ ‘verify not-voted’ incorrectly throws AlreadyVoted” when deriving the

initial FT for the “Issue ballot and get vote” Little-JIL process model.

A similar template for elaborating “s incorrectly does not throw exception e” is

shown in the Appendix C.1.

92

Figure 4.9. Template LS-2 For Event Type “s incorrectly throws exception e”.

Figure 4.10. Applying LS-2 to Elaborate “ ‘verify not-voted’ incorrectly throws
AlreadyVoted”.

93

4.2 Case Studies On Four Little-JIL Processes

We evaluated the approach on four different processes which were modeled in

Little-JIL. In this section, we briefly describe the processes, then present our findings.

4.2.1 Four Little-JIL Processes Used In The Approach’s Evaluation

We used models of four different real-world processes in our approach’s evaluation.

These process models are the result of extensive process elicitation done by analysts;

they shadowed the performers of the processes and interviewed domain experts to

capture the real-world processes as closely as possible. These process models have

been used in other analyses and have been described in published papers (see [2,6,7,

25].)

The first process is the “Issue ballot and get vote” (IB) process that we use from

the beginning to illustrate the approach. It involves the voter authentication, the

issue of an appropriate ballot, and the casting of votes. The failure is that a voter

casts his/her votes with an incorrect ballot.

The second process we used in our evaluation is the “Count votes” (CV) process,

also in the election domain. Like the IB process model, the CV process model is

also based on the real-world election process at Yolo County, California. To count

the votes, election officials first count votes in each precinct then add each precinct’s

result into the total counts, then perform a random audit (manual recount of 1% of

ballot to ensure consistency), and then, finally, if no exceptions are raised, report final

vote totals to Secretary of State. A recount of all ballots is performed if the random

audit raises any exception. The failure being analyzed is “the incorrect vote totals

are reported to Secretary of State”. Figure 4.11 shows the top level of the Little-JIL

model of the CV process.

The third and forth processes are in the medical domain: “Chemotherapy” (CM)

and “In-patient blood transfusion” (BT) processes.

94

count votes

count votes from all precincts report final vote totals to Secretary of State

perform ballot and vote count

perform reconciliations scan votes confirm tallies match handle discrepancyadd vote count to vote total

manually count votes

perform random audit

select precincts for 1% mandatory manual audit confirm audit tallies are consistentmanually count votes

recount votesinitialize counts securely store election artifacts

count votes from precinct

+

 may throw

VoteCountInconsistentException

done separately

per precinct

 may throw

VoteCountInconsistentException

continues after handling

VoteCountInconsistentException

Figure 4.11. Little-JIL Process Model Of “Count votes”.

prepare for and administer first cycle of chemotherapy

perform consultation and assessment perform initial review of patient records perform pharmacy tasks obtain patient informed consent perform final pharmacy tasks
first day of chemo

prepare chemotherapy drugs administer chemotherapy drugs

create and process consult note

dictate consult note transcribe and place consult note in patient's record

perform chemotherapy process

consider alternative treatment

refer patient to an oncologist

perform initial review of patient records

perform pharmacy tasks

obtain patient informed consent

perform final pharmacy tasks

transcribe and place consult note in patient's record

consider alternative treatment

install portacath

install portacath
?

New Post It 19

Prerequisite:

refer patient to an oncologist

agent: Pharmacist agent: clinic RN

<=> consultation channel

takes from "consultation channel"

agents: clinic MA, oncologist

throws

PathologyReportDoesNotIndicateCancer

.......

on the day before

administering

chemotherapy

agent: Practice RN agent: Pharmacist agent: Nurse Practitioner agent: Nurse Practitioner agent: Pharmacist

complete

Figure 4.12. Little-JIL Process Model Of “Chemotherapy”.

95

The CM process model (Figure 4.12) covers multiple phases of the chemotherapy

process, which includes diagnosing the patient and ordering chemotherapy; thorough

review of the treatment plan and medication orders by a medical assistant, a nurse,

and a pharmacist; conducting an informational/teaching session with the patient and

obtaining an informed consent form; preparing chemotherapy drugs, performed by a

pharmacist and pharmacy technicians; and assessing the patient and administering

the drugs, performed by a nurse. The failure to be analyzed is “incorrect drugs are

administered to the patient”.

perform in-patient blood transfusion

carry out physician order for transfusion

prepare documentation for blood pick-up perform follow through checkpick up blood from blood bank perform transfusioncheck for existence of type and screen

+

Pre: confirm physician order for blood transfusion

The agent type (i.e Nurse) is specified here

and the rest of the substeps inherit the

agent from their parent step.

uses SpecimenLabeling and

VPID modules

Figure 4.13. Little-JIL Process Model Of “In-patient blood transfusion”.

The BT model defines the blood transfusion process, which includes the following:

the nurse confirming there is an order from the physician to transfuse blood to a

patient, verifying the patient’s ID, getting the blood product from the blood bank,

and administering the blood product to the patient. The failure to be analyzed is

“incorrect blood product is administered to the patient”.

All of the above processes are defined in Little-JIL and translated to appropriate

CFGs to be used with our approach. The four processes vary in size (number of steps,

thus number of CFG vertices and edges) and number of artifacts as shown later.

For each case study, we applied the simple templates to generate the initial FT,

computed the initial cut sets and MCSs. For each initial cut set, we applied the

96

detailed templates to generate the elaborated FT, computed its cut sets and MCSs.

We then collected all elaborated FTs (some of them were duplicates as expected) and

removed duplications, so the result was unique elaborated cut sets; we also computed

the elaborated MCSs from those unique elaborated cut sets.

4.2.2 Findings

By applying the two-phase approach of FTA to the four process models with

corresponding failure specifications, we have found that:

1. Using the detailed templates led to scenarios that completely specified the paths

through the process that could result in the failure.

2. Some spurious cut sets could be automatically identified and therefore elimi-

nated.

3. The size of the results of FTA, in terms of the numbers of initial cut sets, of

elaborated cut sets and and of MCSs depended on multiple factors, including

the overall number of failure-influencing variables, the number of such variables

input to a step, the number of steps that have multiple of such inputs, and the

complexity of the control flow to the failure steps.

4. As expected, using all available control and data dependence information re-

sulted in a larger number of MCSs for the domain experts to examine. We

discovered MCSs that were not found before using Chen’s approach. These

MCSs fell into two categories: in one category, the MCSs elaborated on MCSs

previously found using Chen’s approach, detailing how the process execution

could reach the error-making steps; in the second category, the MCSs repre-

sented failure causes in which some steps were executed while they should not

have been executed. MCSs in the second category were found by our approach

by exploiting control dependence information in process models. The larger

97

number of MCSs, however, could be overwhelming to users. We suggested four

techniques that could be used to make the FTA result more manageable.

In this section, we describe the above findings in more details.

4.2.2.1 Using the detailed templates led to scenarios that completely

specified the paths through the process that could result in the

failure.

As described in the Approach Chapter, we first generated the initial FT for each

case, computed its initial cut sets and elaborated each initial cut set to view its

elaborated FT and elaborated cut sets. An example of such incremental exploration

of the IB process was described earlier (section 3.3).

Below is another example, taken from the CV process. In the first stage, the

initial FT was derived, its cut sets were computed. One of the initial cut sets is:

CS-1:

• ‘recount votes’ produces incorrect recountedVoteTotals due to agent’s mis-

performance

The step ‘recount votes’ is not on the normal process execution path. If the

vote counting and auditing went without any exception, ‘recount votes’ would not

be executed. This initial cut set (which was also produced as an MCS using Chen’s

approach) did not explain how the execution could get to ‘recount votes’. So in

the second phase, we derived the elaborated FT using the detailed template. The

elaborated cut sets showed multiple ways how the execution could first reach ‘recount

votes’, then the agent performing ‘recount votes’ produced an incorrect output; all

of these led to the failure “ totalTallies input to ‘report vote totals to Secretary of

State’ is incorrect”. One such a way to reach ‘recount votes’ and produce incorrect

vote counts is shown in the following elaborated cut set:

98

CS-1-1:

• ‘confirm audit tallies are consistent’ incorrectly throws

VoteCountInconsistentException due to agent’s misperformance

• ‘recount votes’ produces incorrect recountedVoteTotals due to agent’s mis-

performance

It is not easy to see that in order for the step ‘recount votes’ to be executed, the

step ‘confirm audit tallies are consistent’ has to throw the exception

VoteCountInconsistentException, either correctly or incorrectly (in the above ex-

ample, the exception was thrown incorrectly due to the agent’s misperformance). In

the case the exception is thrown incorrectly, we, however, could not automatically in-

fer from the Little-JIL process definition what caused the exception to be thrown. The

users might only able to infer from the exception name, VoteCountInconsistent-

Exception, that the vote counts were somehow inconsistent, therefore the exception

was thrown. This Little-JIL language feature, leaving the decision of throwing excep-

tion to the agent performing the step, is a strength (allowing abstraction), but also a

weakness (inhibiting automatic inference); we discuss this matter more in Section 4.4.

Using this incremental approach with the simple templates in the first phase and

the detailed templates in the second phase did not only produce a more accurate

result (an error has to happen in certain conditions in order to cause the failure), but

also appeared to provide better understanding of the real causes of the failure.

4.2.2.2 Some spurious cut sets could be automatically identified and

therefore eliminated

The spurious cut set identification algorithm introduced in section 3.6 was able to

identify spurious cut sets in only one of the four cases — the IB process. Table 4.1

shows the result.

99

Table 4.1. Evaluation Result: Spurious Cut Set Identification.

Process
cut sets

before elimination
identified spurious

cut sets
percentage

IB 429 96 22%
CV 57505 0 0%
CM 183 0 0%
BT 355 0 0%

In the IB process case study, 96 out of 429 unique elaborated cut sets were found

to be spurious, according to the algorithm, i.e., 22% reduction in the number of cut

sets. All of the identified spurious cut sets in the IB process were conforming to the

pattern described in the example in section 3.6.

In other case studies, because of the nature of the processes, there were no cut

sets fitting the “profile” of spuriousness that the algorithm aims to identify, that

is: in the execution path corresponding to the events in the cut set4, at the first

branching vertex, taking the correct branch definitely leads to a specific step S without

encountering any failure-influencing labels, while taking the incorrect branch also

definitely leads to S without encountering any failure-influencing labels along the

way; and from S to the end of the execution, no further error occurs. Generally, if a

process has multiple checks with two possible outcomes: one outcome is when all the

checks pass, and the other is when any of the checks fails, then there will be spurious

cut sets identified by the algorithm.

4.2.2.3 The result size depended on multiple factors

We consider several measures of the result size: the numbers of initial cut sets,

of initial MCSs, of unique elaborated cut sets, and of elaborated MCSs. In addition

to the four process models mentioned above, we created a variation of the “Count

4The path that contains all of the events in the cut set.

100

votes” process, called CV2, by removing the artifact coverSheet from all the steps.

The purpose is to compare the result size when there is a difference in the number of

failure-influencing variables and everything else is the same.

Table 4.2 shows the result sizes of all of the case studies. The charts in Figure 4.14

show the comparisons in terms of process models’ CFG sizes (numbers of vertices and

of edges) and the FTA result sizes (numbers of initial MCSs and of elaborated MCSs).

In the IB process, there are two places where the process’s CFG branches out,

corresponding to the two Little-JIL steps in the process that might throw exceptions

— ‘verify registered’ and ‘verify not-voted’ — hence the number of edges is one more

than the number of vertices (see Figure 4.1 and Figure 2.6). Similarly, for the CV and

CV2 processes, each also has two such steps — ‘confirm tallies match’ and ‘confirm

audit tallies are consistent’ — hence the number of edges is one more than the number

of vertices (see Figure 4.11). The CM process has four and the BT process has more

than 20 such steps.

We observe that the size of the CFG in terms of numbers of vertices and edges

does not seem to have a much clear effect on the FTA result size. The CM pro-

cess’ CFG has more vertices and edges than the CFG of the IB or the CV pro-

cesses, but the CM’s FTA result is smaller than the FTA result of the other pro-

cesses. The BT process had a much larger CFG compared to the rest of the pro-

cesses but its FTA result was much smaller, especially compared to the CV pro-

cesses. On the other hand, BT had fewer failure-influencing variables: bloodProduct,

bloodTypeAndScreen, and bloodProductDocument; only one step had two of those

inputs (“release blood product from blood bank” with inputs bloodProductDocument

and bloodTypeAndScreen). CV had five failure-influencing variables: tallies, total-

Tallies, coverSheet, paperTrail, and voteRepository; many steps had multiple

of those artifacts as inputs. The number of failure-influencing variables in the process

appears to play a large role in the FA result size.

101

Table 4.2. Evaluation Result: Result Size Comparison.

Process
CFG #

failure-
influencing
variables

Result

vertices # edges
#

initial
CSs

#
initial
MCSs

#
elaborated

CSs

#
elaborated

MCSs

IB 26 27 3 15 15 333 25
CM 60 63 2 10 9 183 19
BT 315 339 3 10 10 345 74
CV 48 49 5 29 29 57505 357
CV2 48 49 4 27 27 12615 220

To investigate this further, we compared CV and CV2, we saw that by having one

fewer failure-influencing variable (coverSheet), CV2’s FTA result was reduced by 7%

in the number of initial MCSs (27 vs. 29), and by 38% in the number of elaborated

MCSs (220 vs. 357).

There are multiple factors that seem to affect the FTA result size:

1. The overall number of failure-influencing variables,

2. The complexity of the control flow to the failure steps, how many paths there

are to the failure steps or size of the control dependence set (CD) of the failure

steps,

3. The number of failure-influencing variables input to a step,

4. The number of steps that have multiple failure-influencing inputs.

Future research would be needed to analyze the actual effects of these factors and

maybe other factors on the FTA result size.

4.2.2.4 Using all available control and data dependence information re-

sulted in a larger number of MCSs for the domain experts to

examine

As explained the in the Approach Chapter, the new two-phase approach exploits

available control and data flow information to provide more details to the FTA result,

102

C. Number of MCSs depends on multiple factors

• BT has a larger CFG but less hazard-dependent
artifacts, compared to CV.
– BT: blood product, blood type & screen, blood product

document. Only one step has 2 of those inputs (“release
blood product from blood bank” with inputs blood product
document and blood type and screen.)

– CV: tallies, total tallies, cover sheet, paper trail, vote
repository. Many steps have multiple inputs.

• CV vs. CV2: removing 1 input to the process (cover
sheet) considerably reduces the number of MCSs
(see table).

Process
CFG

#Dependent
Artifacts

New approach

#Vertices #Edges
#MCSs-
initial

#MCS-
elaborated

IB 26 27 3 15 35
CM 60 63 2 9 19
BT 315 339 3 10 74

CV 48 49 5 29 357
CV2 48 49 4 27 220

1

0

50

100

150

200

250

300

350

400

IB CM BT CV CV2

CFG #Vertices

CFG #Edges

0

50

100

150

200

250

300

350

400

IB CM BT CV CV2

#MCS-initial

#MCS-elaborated

Figure 4.14. Evaluation Result: Result Size Comparison.

Table 4.3. Evaluation Result: More MCSs To Examine.

Process
Chen’s Approach 2-phase Approach

MCSs # initial MCSs # elaborated MCSs
IB 2 15 35

CM 2 9 19
BT 5 10 74
CV 7 29 357
CV2 6 27 220

especially the control dependence information. Table 4.3 and Figure 4.15 show that

in each case study our new FTA approach provided many more initial MCSs and

elaborated MCSs than Chen’s approach did.

We obviously discovered MCSs that were not identified using Chen’s approach. For

example, in the IB process, Chen’s approach only found two MCSs, both were single-

points-of-failure: one was {“Step ‘issue regular ballot’ produces wrong ballot”}, and

the other was {“Step ‘issue provisional ballot’ produces wrong ballot”}. Those two

MCSs were identified as two of the cut sets from our initial FT. We elaborated each of

those two initial cut sets, such that the resulting elaborated cut sets showed how the

process execution reached the error steps (‘issue regular ballot’ in the first initial cut

set, and ‘issue provisional ballot’ in the second initial cut set). Our final MCSs were

extracted from the elaborated cut sets. Our approach identified, in addition to those

103

0

50

100

150

200

250

300

350

400

IB CM BT CV CV2

Chen's approach #MCSs

New 2-stage approach
#MCSs-initial

New 2-stage approach
#MCSs-elaborated

Figure 4.15. Evaluation Result: Comparing With Chen’s Approach.

Initial
CS

#elaborated Cut-
Sets

#elaborated
MCSs

1 8 5

2 52 5

3 4 1

4 38 5

5 4 2

6 44 10

7 104 25

8 4 1

9 44 10

10 44 10

11 44 10

12 4 2

13 4 2

14 104 25

15 4 2

Initial
CS

#elaborated
Cut-Sets

#elaborated
MCSs

1 32 9

2 16 3

3 46 6

4 60 9

5 32 6

6 92 18

7 46 6

8 16 3

9 64 18

10 32 6

Initial
CS

#elaborated
Cut-Sets

#elaborated
MCSs

1 64 16

2 178 1

3 128 32

4 178 1

5 128 32

6 64 16

7 128 32

8 128 32

9 192 40

10 192 40

Initial
CS

#elaborated Cut-
Sets

#elaborated
MCSs

1 3288 23

2 1040 12

3 1480 6

4 616 2

5 1344 12

6 1248 6

7 616 2

8 1344 12

9 2488 36

10 1644 1

11 1040 12

12 1668 4

13 744 1

14 3288 46

15 3288 23

16 1480 6

17 744 1

18 1248 6

IB CM BT CV

Figure 4.16. Evaluation Result: Initial CSs and Corresponding Numbers of Elabo-
rated CSs and MCSs.

104

two initial cut sets, many more initial cut sets and then elaborated MCSs that exposed

the causes of the failure, including errors made by agents in the authentication steps

(‘verify registered’, or ‘verify not-voted’), or errors in the artifacts (voterName, or

votingRoll), etc.

In the CM process, Chen’s approach found only two MCSs: one was {“Step ‘pre-

pare chemotherapy drugs’ produces wrong chemo drug”}, and the other was { “Step

‘create chemotherapy orders’ produces wrong chemo orders”, “Step ‘perform initial

review of patient record’ does not throw exception PracticeRNFindsProblemWithOrders”,

“Step ‘perform pharmacy tasks’ does not throw exception

PharmacistFindsProblemWithOrders”}. In addition to those initial cut sets and

their elaborated MCSs, we found others, here is an example:

• ‘confirm pathology report indicates cancer’ incorrectly does not throw Pathol-

ogyReportDoesNotIndicateCancer due to agent’s misperformance

• ‘perform initial review of patient record’ correctly does not throw PracticeRN-

FindsProblemWithOrders

• ‘perform pharmacy tasks’ correctly does not throw PharmacistFindsProb-

lemWithOrders

The above MCS exposed the possible causes of the system failure in which the error

made by the oncologist who performed the step ‘confirm pathology report indicates

cancer’5 (incorrectly not throwing the PathologyReportDoesNotIndicateCancer ex-

ception) eventually led to the execution of the step ‘administer chemotherapy drugs’,

which should have not been executed in the first place, hence the failure.

Having more MCSs (and even more cut sets) in the result, however, appeared

to be overwhelming, especially in the case of the CV process. Figure 4.16 shows, for

5Step “confirm pathology report indicates cancer” is a sub-step of “perform consultation and
assessment” shown in the CM’s Little-JIL model in Figure 4.12.

105

each process, the initial cut sets (CSs) and their corresponding numbers of elaborated

CSs and MCSs. For example, in IB process, the elaboration of the initial cut set #1

resulted in 8 elaborated CSs, 5 of which were MCSs. In CV process, the number of

elaborated CSs of a single initial CS went up to more than 3,000 which seems very

unmanageable.

To make the FTA result more accessible to users, we suggest the following:

1. Allow users to specify events that do not have to be considered because they

are regarded as too unlikely to occur. We call them unlikely events.

2. Allow even more incremental exploration by parameterizing the depth of fault

tree elaboration.

3. Group cut sets into equivalence classes.

4. Present only MCSs, and show CSs up on request.

Below we discuss each of the above suggestions in more detail.

4.2.2.4.1 Allow specification of unlikely events. Domain experts might spec-

ify some events that are unlikely to happen, so they can be removed from consider-

ation. For example, in the CV case study, if the event “coverSheet input to process

is incorrect” was specified as unlikely, the FTA result size could be substantially re-

duced (by almost 80% in the number of unique elaborated CSs, about 40% in the

number of elaborated MCSs, see Table 4.4).

We applied some specification of unlikely events, one for each case study, as shown

in Figure 4.17. The unlikely events were chosen randomly6. The result sizes were

reduced considerably in all cases. Further experiments that specify other randomly

6We did not know in advance how often those events appeared in the cut sets before the unlikely-
event specification. Obviously, the more cut sets the event appears in, the more the number of cut
sets is reduced when the event is specified to be unlikely.

106

Table 4.4. Specifying Unlikely Events To Reduce Result Size.

Process
#

initial
CSs

unique
elaborated

CSs

Across all initial CSs
Average #

of
elaborated

CSs

Average #
of

elaborated
MCSs

Max #
of elaborated

MCSs

CV
(original)

29 57505 9263 45 180

CV’
(with unlikely event specs)

27 12615 2019 28 108

CV’ vs. CV -7% -78% -78% -39% -40%

chosen events to be unlikely should be carried out to verify the effectiveness of this

suggestion.

Reduction in # of initial CSs

Process Original
With unlikely
event specs

Reduction

IB 15 11 -27%
CM 10 9 -10%
BT 10 9 -10%
CV 29 27 -7%
Reduction in # of unique elaborated CSs

Process Original
With unlikely
event specs

 Reduction

IB 333 57 -83%
CM 183 91 -50%
BT 345 153 -56%
CV 57505 12615 -78%

Unlikely events (arbitrary choice):
• IB: votingRoll input to the process is

incorrect
• CM: "perform pharmacy tasks"

incorrectly does not throw
PharmacistFindsProblemWithOrders due
to agent's misperformance

• BT: "prepare documentation for blood
pick up" produces incorrect
bloodProductDoc due to agent's
misperformance

• CV: coverSheet input to the process is
incorrect

Figure 4.17. Specifying Unlikely Events To Reduce Result Size In All Cases.

4.2.2.4.2 Allow even more incremental exploration by parameterizing the

depth of fault tree elaboration. Recall the algorithm for elaborating a fault tree:

we iteratively apply appropriate templates to elaborate all existing leaf events that

are not primary events until all leaf events are primary. In each iteration, we increase

one more level of elaboration. We call the number of iterations the elaboration depth.

We speculated that by limiting the elaboration depth, the numbers of CSs and MCSs

107

in the result were not as many compared to those in unlimited-depth elaboration.

To confirm the speculation, we performed the FT elaboration with various depths on

the CV process. The result is shown in Figure 4.18. There were 29 CSs in the initial

FT. The graph shows the number of elaborated CSs for each of the 29 initial CSs in

three cases, varied by the elaboration depths: Full (unlimited depth), Depth=3 and

Depth=1.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CSs Full

CSs Depth=3

CSs Depth=1

Figure 4.18. Parameterizing Elaboration Depth To Control Result Size.

4.2.2.4.3 Group cut sets into equivalence classes. Cut sets can be parti-

tioned into groups given an equivalence relation. Here is an example of an equivalence

relation: Two cut sets are equivalent if they have the same set of error events. Recall

that events in cut sets are primary events and some of them are not error events:

• Branch condition (predicate p correctly holds). In Little-JIL, we have: Step S

correctly throws / does not throw exception E.

• Consequence event (v produces incorrect b due to input a). In Little-JIL, we

have: Step S produces incorrect b due to input a; Step S incorrectly throws/

does not throw exception E due to input a.

Error events in cut sets are of the following types:

108

• v is performed incorrectly producing incorrect b. In Little-JIL: Step S produces

incorrect b due to agent’s misperformance; Step S incorrectly throws / does not

throw exception E due to agent’s misperformance.

• a input to the system is incorrect. In Little-JIL: a is incorrect when ROOT step

is POSTED.

Figure 4.19 shows an example in the CV case study of two cut sets belonging to

the same group because they have the same set of error events.

--- Group 9 ---

{

"recount votes" produces incorrect recountedVoteTotals due to agent's misperformance

paperTrail is incorrect when "count votes" is posted

}

--- containing 2 cut sets:

{

"confirm audit tallies are consistent" incorrectly throws VoteCountInconsistentException due to incorrect input tallies

"confirm tallies match" incorrectly does not throw VoteCountInconsistentException due to incorrect input tallies

"recount votes" produces incorrect recountedVoteTotals due to agent's misperformance

"scan votes" produces incorrect tallies due to incorrect input paperTrail

paperTrail is incorrect when "count votes" is posted

}

{

"confirm audit tallies are consistent" incorrectly throws VoteCountInconsistentException 44 due to incorrect input tallies

"confirm tallies match" correctly throws VoteCountInconsistentException

"manually count votes" produces incorrect tallies due to incorrect input paperTrail

"recount votes" produces incorrect recountedVoteTotals due to agent's misperformance

paperTrail is incorrect when "count votes" is posted

}

Figure 4.19. Grouping Cut Sets.

We experimented with grouping on the CV process. Table 4.5 shows the result

across all the initial cut sets. On average, the number of cut set groups (203 CS

groups) is only 2.2% of the number of elaborated CSs (9263 CSs), and the number

of MCS groups (15 MCS groups) is only 34% of the number of MCSs (45 MCSs).

We noted that with this grouping, each group could correspond to more than one

scenario (the example above). So even though the grouping allowed users to focus

on error events, elaboration on the grouping to reveal all corresponding scenarios is

necessary to provide users with better understanding of the vulnerabilities.

109

Table 4.5. Grouping CSs And MCSs In CV Process.

elaborated CSs # elaborated MCSs # CS groups # MCS groups

AVG 9263 45 203 15
MAX 20284 180 320 44
MIN 1832 1 104 1

4.2.2.4.4 Present only MCSs, and show CSs up on request. As seen in

Figure 4.16, the numbers of MCSs in the result are less overwhelming. So if we

present the result by showing only MCSs, and present CSs only upon user’s request,

it might be a better user experience. Another suggestion is to present all CSs, but

sort the CSs by their minimality and then by the number of error events in each CS.

This allows users to easily focus their effort on what might be more important.

4.3 Summary

In summary, we found that the approach was promising but inherited several

limitations and thus needed more improvement. First of all, we saw that using the

detailed templates led to scenarios that completely specified the paths through the

process that could result in the failure. Second, some spurious cut sets could be

automatically identified and therefore eliminated. However, it was quite unexpected

that among four case studies, the approach only identified spurious cut sets in only

one case (IB process). We have not yet identified (even manually) spurious cut sets

in other processes. One should investigate more if spurious cut set elimination is

desirable. Third, we found that the number of elaborated CSs (and MCSs) depended

on multiple factors, not necessarily on the CFG size. The most likely factor was the

number of failure-influencing variables overall and per step. And finally, we found that

using all available control and data dependence information resulted in a much larger

number of MCSs for the domain experts to examine. We made some suggestions to

make result less overwhelming to users.

110

4.4 Little-JIL’s Abstraction Posing Limits On Our Fault Tree

Derivation

The Little-JIL definition language highlights the use of abstractions, but as a

consequence, it limits our FT derivation as follows.

First, a leaf step in Little-JIL definition is only defined by its interface, including

the inputs, outputs, agent, and possible exceptions. The step specification does not

define how the outputs are computed from the inputs. Therefore we have to assume

each output depends on all of the inputs. Thus, leaf steps that do not satisfy this

assumption will cause the derived fault tree to contain incorrect sub-trees. We were

able to annotate leaf steps with output-input dependence information, so that the

derived fault trees were more accurate. However, it is desirable to have a feature in

the language to specify the output-input dependence information.

Second, in Little-JIL, when a step is declared to have an exception, the decision of

whether or not to throw the exception during the process execution depends on the

agent performing that step. For example, the step ‘confirm audit tallies are consis-

tent’ is defined with an exception VoteCountInconsistentException. This Little-JIL

language feature allows procedural abstraction; the details of how it is decided that

the exception has to be thrown are omitted. However, as mentioned in Section 4.2.2.1,

this feature also inhibits automatic inference of the fault tree events of type “step S

correctly throws exception E”, which usually are the cases when something goes wrong

thus the process has to deviate from its normal execution path. With no further de-

tails provided in the process definition about which cases the exception should be

thrown, we cannot automatically infer those cases and further derive the fault tree,

we have to treat those events “step S correctly throws exception E” as primary events.

111

CHAPTER 5

CONCLUSIONS

Fault Tree Analysis (FTA) has been widely used in various industries to study

failures of complex systems, either after the fact or as a preventive measure. We are

interested in the latter — identifying causes of potential system failures — so that

modifications can be made to the system designs to reduce the possibility of such

failures.

FTA is a deductive, top-down analysis technique that aims to determine the vari-

ous combinations of hardware and software faults and human errors that could cause

a specified undesired event representing a system failure. Given a specified undesired

event, FTA produces a fault tree (FT) and computes its cut sets — combinations of

events that could lead to the occurrence of the undesired event at the top of the tree,

referred to as the top event.

Straightforward Boolean algebra can be used to compute a FT’s cut sets, but the

construction of the FT itself is still an on-going problem. As manual FT construc-

tion is time consuming and prone to errors, work has been done to automate the

FT construction for various system models. Previous approaches to automatic FT

construction, however, are mostly language dependent; they are limited to systems

modeled in specific languages. Some of these types of models do not carry data or

control dependence information, or even if they do (Pascal, ADA, Little-JIL), control

dependence information is not fully exploited, therefore FTs produced by the respec-

tive FT construction approaches are incomplete. There is little evidence that these

approaches have been applied to non-trivial systems; only simple systems were shown

112

in the papers presenting the approaches. Once a FT is constructed and its cut sets

are computed, the cut sets alone often do not provide enough information to show

users how events in a cut set together can cause the top event. At the same time,

there might be too many cut sets to be useful, especially when systems are large and

complex. Moreover, previous FTA approaches do not seem to attend to false positives

— cut sets that in fact do not cause the top event.

In this thesis, we investigated a systematic two-phase approach to identifying

causes of potential system failures using FTA as follows:

• Phase 1: Given a system model and an undesired event representing a system

failure, we first use data and control dependence information from the system

model to automatically derive a high-level FT, called the initial FT, whose top

event is the undesired event; and then present users with the cut sets, called

the initial cut sets, from the initial FT.

• Phase 2: Users can then select one initial cut set for more detailed analysis. This

analysis considers additional control dependence information and combinations

of possible errors to generate an elaborated FT that focuses on the initial cut

set of interest. This second phase produces as its final result concrete scenarios,

each of which is a system execution path that contains all the events in a cut

set of the elaborated FT, showing how the events in the cut set could lead to

the top event.

System models used in this approach are control flow graphs (CFGs) and since

most system modeling languages can be translated to CFG, therefore this approach

is generally applicable.

To evaluate this approach, we applied it to several systems in the medical and

election domains. These systems have been subjects of other projects [7, 8, 28] to

model and analyze human-intensive processes. Although being called “processes”,

113

they are in fact “systems” in our approach. The systems are modeled in Little-JIL,

a modeling language with expressive and well-defined semantics so that the resulting

models can be analyzed rigorously. Even though these system models are relatively

small, they are useful because they were carefully defined with the help from domain

expert in order to closely reflect the real-world systems.

By applying the two-phase FTA approach to the four systems with corresponding

system failures, we found that:

1. Using the detailed templates led to scenarios that completely specified the paths

through the system model that could result in the failure. This finding confirms

the usability of the approach which is to help users better understand the causes

of the failures.

2. Some spurious cut sets could be automatically identified and therefore elimi-

nated. However, among the four systems, we only discovered spurious cut sets

in one system. Our algorithm did not find spurious cut sets in the other sys-

tems. The reason is the other three systems do not have the control flows that

fit the “profile” of spuriousness that the algorithm is aiming to identify.

More work can be done in this area to develop more refined algorithms to

identify different types of spurious cut sets.

3. There were multiple factors that affected the number of cut sets in the FTA

results. Those factors included the overall number of failure-dependent data

items, the number of such data items input to a control flow graph’s vertex,

the number of vertices that have multiple failure-dependent inputs, and the

complexity of the control flow to the failure vertices.

4. Using all available control and data dependence information resulted in a larger

number of cut sets for the domain experts to examine. We discovered cut sets

114

that were not found before in the previous Chen’s approach. The larger number

of cut sets, however, could be overwhelming to users.

We suggested and performed some preliminary exploration of some techniques

that could be used to make the FTA result more manageable:

1. Allow users to specify events that do not have to be considered because they

are regarded as too unlikely to occur,

2. Allow even more incremental exploration by parameterizing the depth of fault

tree elaboration,

3. Group cut sets into equivalence classes,

4. Present only minimal cut sets, and show cut sets up on request.

Future work should include more thorough evaluation of the above suggested

techniques and more investigation into other techniques to help manage the easily-

overwhelming FTA results.

Other areas for future work include: considering systems with concurrency and

examining other techniques to manage loops in system models. In case of using loop

unrolling, the user would have to choose a bound, and that choice may not be easy

to make. We unrolled loops twice in our evaluation and the future work should also

investigate other bounds and compare the results.

115

APPENDIX A

PROOF OF EQUIVALENCE BETWEEN DF AND SP
TEMPLATE SETS

116

Two fault trees T1 and T2 are said to be equivalent if and only if they have the

same set of cut sets. We write T1
∼= T2.

Given a fault tree T , a subtree of T is a tree consisting of an event in T and all

of its descendants in T .

Suppose we have two fault trees T and T ′ that are identical, except for the elab-

oration of an event E in both T and T ′. The subtree in T with top event E is called

TE, while the subtree in T ′ with top event E is called T ′E. It is easy to see that if

TE
∼= T ′E then T ∼= T ′.

In deriving a fault tree T given a top event H, a template is applied to elaborate

an intermediate event E of a specific type, generating a fault tree TE whose top

event is E. Each resulting fault tree TE is a subtree of current version T (still being

elaborated).

The two sets of templates DF and SP are the same except for two templates: DF-2

and SP-2 for the event “input into v is incorrect”, DF-4 and SP-4 for the event “b is

incorrect when entering v”. Therefore, in order to prove that the two sets generate

equivalent fault trees, we only need to show the following statements are correct:

S1(v): If the elaboration of “input into v is incorrect” using DF set
generates fault tree T1DF (v) and the elaboration of “input into v is incor-
rect” using SP set generates fault tree T1 SP (v) then T1DF (v) ∼= T1 SP (v).

S2(b,v): If the elaboration of “b is incorrect when entering v” using
DF set generates fault tree T2DF (b, v) and the elaboration of “b is incor-
rect when entering v” using SP set generates fault tree T2 SP (b, v) then
T2DF (b, v) ∼= T2 SP (b, v).

A.1 Proof of S1(v)

Let’s look at DF-2 (Fig. 3.4, page 43) to elaborate an event of type “input into

v is incorrect”. Basically the template iterates through all possible definitions that

reach v and are used as input in v.

Every time DF-2 is applied, a new intermediate event of type “a is incorrect when

exiting u” for each input a ∈ Use(v) is created. Note that by the construction of

117

DF-2, either u is the not start vertex (implying a is defined at u) or u is the start

vertex. If u is not the start vertex, DF-3-case-2 (Fig. 3.5, page 3.5) will be applied

generating another event of type “input into u is incorrect” and then DF-2 is applied

again.

Only when we reach the event of type “a is incorrect when exiting u” and u is

the start vertex, then DF-3-case-1 can be applied, generating the primary event “a

input into the system is incorrect”, the fault tree elaboration terminates.

Informally, the template application along one branch of the fault tree, starting

from “input into v is incorrect” has this formulation DF-2 - (DF-3-case-2 - DF-2)* - DF-1

(the Kleene star * indicates 0 or more times).

Let L(v) be the maximum number of times that DF-2 has to be applied along one

tree branch before the elaboration terminates. For example, in Figure A.1, L(u1) = 1.

We are going to prove S1(v) by induction. We first prove that S1(v) is correct for

all v with L(v) = 1.

A.1.1 Proof of S1(v) - Base case: L(v) = 1

Case 1: There is only one element in IDD(v)

Suppose (au, P) is the only element in IDD(v) — definition of a at u reaches v

via the path guided by P and a is used at v.

Suppose the path is u0 → u1 → ... → un where u0 ≡ u and un ≡ v1. And

along that path, there are m guarded edges (uk1 → uk1+1), ..., (ukm → ukm+1) with

0 ≤ m ≤ n, 0 ≤ ki < n. Without loss of generality, we assume ki < kj if i < j. Let

pi denote the predicate on the guarded edge (ui → ui+1).

In this case (Base Case 1), since (au, P) is the only element in IDD(v), we can

infer that v has only one input a, and there is only one path guided by P from u to

v. Since L(v) = 1, u has to be the start vertex. Recall that u0 ≡ u and un ≡ v. So

1We use v1 ≡ v2 to denote v1 and v2 are the same vertex.

118

in this Base Case 1 (L(v) = 1 and there is only one element in IDD(v)), u0 is the

start vertex.

A.1.1.0.5 Case 1.1: n = 1 and (u0 → u1) is not a guarded edge: In this

case, there is no predicate on the edge (u0 → u1).

• Using the DF template set: Applying DF-2 then DF-3-case-1 will generate the

fault tree T1DF (v) as in the left hand side of Figure A.1.

• Using the SP template set: Applying SP-2, SP-4, then DF-3-case-1 will generate

the fault tree T1 SP (v) as in the right hand side of Figure A.1.

In each fault tree in Figure A.1, the event “predicate p0 holds” is left there to show

full template DF-2, but it is shaded gray because (u0 → u1) is unguarded, there is no

such predicate.

Both of these trees have only one cut set, that is {“a input to the system is

incorrect”}.

A.1.1.0.6 Case 1.2: n = 1 and (u0 → u1) is a guarded edge: In this case,

there is predicate p0 on the edge (u0 → u1).

• Using the DF template set: Applying DF-2 then DF-3-case-1 will generate the

fault tree T1DF (v) as in the left hand side of Figure A.2.

• Using the SP template set: Applying SP-2, SP-4 and then DF-3-case-1 will

generate the fault tree T1 SP (v) as in the right hand side of Figure A.2.

Both of these trees have only one cut set, that is {“a input to the system is

incorrect”, “p0 holds”}.

A.1.1.0.7 Case 1.3: n > 1:

• Using the DF template set: Applying DF-2 then DF3-case-1 will generate the

the fault tree T1DF (v) as in the left hand side of Figure A.3.

119

Figure A.1. Base Case 1.1. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches v via unguarded edge
(u→ v). LHS: T1DF (v). RHS: T1 SP (v).

120

Figure A.2. Base Case 1.2. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches u1 via (u→ v) guarded
by predicate p0. LHS: T1DF (v). RHS: T1 SP (v).

121

• Using the SP template set:

– First applying template SP-2 to the event “input to un is incorrect”, we

get “a is incorrect when entering un” . Then applying SP-4, we get “a

is incorrect when exiting un−1” and potentially primary event “predicate

pn−1 holds” if (un−1 → un) is a guarded edge (see Figure A.3).

– Obviously, because of the construction of IDD(v), we can see that a is never

defined at any ui, 0 < i < n. Therefore, since a is not defined at un−1,

template DF-3-case-3 can be applied to get “a is incorrect when entering

un−1”. Applying SP-4 again, we get “a is incorrect when exiting un−2”

and potentially primary event “predicate pn−2 holds” if (un−2 → un−1) is

a guarded edge.

– The two templates DF-3-case-3 and SP-4 are repeatedly applied until we

reach “a is incorrect when exiting u0”.

– Finally, since u0 ≡ start, DF-3-case-1 can be applied and we get the fault

tree T1 SP (v) as in the right hand side of Figure A.3.

Both of the trees T1DF (v) and T1 SP (v) have only one cut set, that is {“a input

to the system is incorrect”, “pk1 holds”,..., “pkm holds”}.

Case 2: IDD(v) has more than one element

Since we are still proving the base case of S1(v) with L(v) = 1, IDD(v) having more

than one element means that there are more than one variable defined at the start

vertex and used at v. We provide the proof for IDD(v) having two elements. The case

of more than two can be proved similarly. Suppose IDD(v) = {(au0 , P), (a′u0
, P ′)},

u0 ≡ start.

• (au0 , P) ∈ IDD(v) — a is used at v and the definition of a at u0 reaches v via the

path guided by P . Suppose the path is u0 → u1 → ...→ un where un ≡ v. And

122

Figure A.3. Base Case 1.3. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from start reaches v via a path guided by
P = ∠u0, ..., un〉 with u0 ≡ start and un ≡ v. LHS: T1 (v)DF . RHS: T1 (v)SP .

123

along that path, there are m guarded edges (uk1 → uk1+1), ..., (ukm → ukm+1)

with 0 ≤ m ≤ n, 0 ≤ ki < n. Let pi denote the predicate on the guarded edge

(ui → ui+1).

• (a′u0
, P ′) ∈ IDD(v) — a′ is used at v and the definition of a′ at u0 reaches v via

the path guided by P ′. Suppose the path is u0 → u′1 → ...→ u′n′ where u′n′ ≡ v.

And along that path, there are m′ guarded edges (u′k′1
→ u′k′1+1), ..., (u

′
k′
m′
→

u′k′
m′+1) with 0 ≤ m′ ≤ n′, 0 ≤ k′i < n’. Let p′i denote the predicate on the

guarded edge (u′i → u′i+1).

Figure A.4. T1DF (v) Of Base Case 2. Elaboration of event “input to v is incorrect”
using the DF set, with v having two input a and a′ whose definitions come from the
start vertex via paths guided by P and P ′ respectively.

Figure A.4 and Figure A.5 show the elaboration of event “input to v is incorrect”

using the DF set and SP set respectively. Both fault trees T1DF (v) and T1 SP (v) have

two cut sets {“a input to the system is incorrect”, “pk1 holds”,..., “pkm holds”} and

{‘a input to the system is incorrect”, “p′k′1
holds”,..., “p′k′

m′
holds”}. In other words

T1DF (v) ∼= T1 SP (v).

124

Figure A.5. T1 SP (v) Of Base Case 2. Elaboration of event “input to v is incorrect”
using the SP set with v having two input a and a′ whose definitions come from the
start vertex via paths guided by P and P ′ respectively.

125

∴ S1(v) is correct for all v that have L(v) = 1. QED base case.

A.1.2 Proof of S1(v) - Induction case L(v) > 1

Assume S1(u) is correct with every vertex u that L(u) < t.

Let’s consider S1(v) with vertex v that L(v) = t. Again, first we prove that S1(v)

is correct when v has only one input a, and (au, P) ∈ IDD(v) — the definition of a

at u reaches v via the path guided by P , and a is used at v. Suppose the path is

u0 → u1 → ... → un where u0 ≡ u and un ≡ v. And along that path, there are m

guarded edges (uk1 → uk1+1), ..., (ukm → ukm+1) with 0 ≤ m ≤ n, 0 ≤ ki < n. Let pi

denote the predicate on the guarded edge (ui → ui+1).

Similar to case 1 in section A.1.1:

• Using DF set, first DF-2 is applied. Since L(v) > 1, u0 is not the start vertex,

so DF-3-case-2 is applied next, generating “a output from u0 is incorrect”, then

DF-1 is applied next generating “input into u0 is incorrect”. Elaboration of

“input into u0 is incorrect” gives us the fault tree T1DF (u0) (see Figure A.6).

• Using SP set, first SP-2 then SP-4 are applied, then DF-3-case-3 and SP-4 are

repeatedly applied until we get to “a output from u0 is incorrect”, then DF-1 is

applied next generating “input into u0 is incorrect”. Elaboration of “input into

u0 is incorrect” gives us the fault tree T1 SP (u0).

Since both sets use the same template DF-5 to elaborate “execution incorrectly

reaches u0”, and T1DF (u0) ∼= T1 SP (u0) (because L(u0) = t − 1 and the induction

assumption says S1(v) is correct for all v with L(v) < t), we can see that the two fault

trees T ′DF and T ′SP (surrounded by dashed rectangles in Figure A.6) are equivalent.

Suppose the same set of cut sets they have is C ′. Then, T1DF (v) and T1 SP (v) both

have the same set of cut sets C as follows:

126

Figure A.6. Induction Case. Elaboration of event “input to v is incorrect” with an
input a used at v and the definition of a from u0 reaches v via a path guided by P .
u0 6= start LHS: T1DF (v). RHS: T1 SP (v).

127

C = {C ∪ {“pk1holds”,...,“pkmholds”} | ∀C ∈ C ′}

∴ T1DF (v) ∼= T1 SP (v).

Similar proof can be done as in case 2 of section A.1.1 to show that S1(v) is correct

when L(v) = t and v has more than one input.

By induction, we have shown that S1(v) is correct for all v.

With the same reasoning, we can show that S2(v) is correct for all v.

Hence, we see that the two template sets generate equivalent fault trees. QED.

128

APPENDIX B

PSEUDO-CODE FOR TEMPLATES

129

input : event e of type “b output from v is incorrect”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);

// case 1: agent dependence

create new event eAgent of type “v is performed incorrectly producing incorrect b”;
orGate.addInEvent(eAgent);
// this is a primary event, not added to the newEvents set

// case 2: data dependence

create new event eData of type “input into v is incorrect”;
orGate.addInEvent(eData);
add eData to newEvents;

// case 3: control dependence

create new event eControl of type “execution incorrectly reaches v”;
orGate.addInEvent(eControl);
add eControl to newEvents;

Algorithm B.1: DF-1 Elaborate event “b output from v is incorrect”.

130

input : event e of type “input to v is incorrect”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);
foreach (au, P) in IDD(v) do

create new event eauP of type “input a to v from u via P is incorrect”;
orGate.addInEvent(eauP);
create new AND gate andGate;
eauP.setGate(andGate);
create new event eau of type “a is incorrect when exiting u”;
add eau to newEvents;
andGate.addInEvent(eau);

foreach ei in P do
create new event ep of type “predicate p(ei) holds”; andGate.addInEvent(ep);
// this event is primary in the initial fault tree, so it is not

added to the newEvents set.

Algorithm B.2: DF-2 Elaborate event “input into v is incorrect”.

input : event e of type “b is incorrect when exiting v”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);
if v == start vertex then

create new event eInput of type “b input to system is incorrect”;
orGate.addInEvent(eInput);
// this event is primary, so it is not added to the newEvents set.

else if b is output of v then
create new event eOutput of type “b output from v is incorrect”;
orGate.addInEvent(varOutputEvent);
add eOutput to newEvents;

else
// this is when v is not the start vertex and b is not output of v
create new event ePassing of type “b is incorrect when entering v”;
orGate.addInEvent(ePassing);
add ePassing to newEvents;

Algorithm B.3: DF-3 Elaborate event “b is incorrect when exiting v”.

131

input : event e of type “b is incorrect when entering v”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);
foreach (bu,P) in IDD(b, v) do

create new event ebuP called “definition of b reaches v from u via P is incorrect”;
orGate.addInEvent(ebuP);
create new AND gate andGate;
ebuP.setGate(andGate);
create new event ebu of type “b is incorrect when exiting u”; add ebu to newEvents;
andGate.addInEvent(ebu);
foreach ei in P do

create new event ep of type “predicate p(ei) holds”;
andGate.addInEvent(ep);
// this event is primary in the initial fault tree so it is not

added to the newEvents set.

Algorithm B.4: DF-4 Elaborate event “b is incorrect when entering v”.

132

input : event e of type “execution incorrectly reaches v”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);
foreach (u→ t) in CD(v) do

create new event eutv called “execution incorrectly reach v from u through (u→ t)”;
orGate.addInEvent(eutv);
create new OR gate orGateTwo; eutv.setGate(orGateTwo);
create new event eOne called “execution incorrectly reach u then from there reach v
through (u→ t)”;
orGateTwo.addInEvent(eOne);

create new AND gate andGate;
eOne.setGate(andGate);
create new event eOneA of type “execution incorrectly reach u”;
andGate.addInEvent(eOneA);
add eOneA to newEvents;

create new event ep of type “predicate p(u, t) holds”;
andGate.addInEvent(ep);
// this is primary event in the initial fault tree so it is not

added to the newEvents set.

create new event epIncorrect of type “predicate p(u, t) incorrectly holds”;
orGateTwo.addInEvent(epIncorrect);
add epIncorrect to newEvents;

Algorithm B.5: DF-5 Elaborate event “execution incorrectly reaches v”.

input : event e of type “predicate p(u, t) incorrectly holds”
output: newEvents– the new intermediate events generated from applying this template

newEvents ←− {};
create new OR gate orGate;
e.setGate(orGate);
create new event epu called “p(u, t) is incorrect when exiting u”;
orGate.addInEvent(epu);

create new OR gate orGateTwo;
epu.setGate(orGateTwo);
foreach a used in predicate p(u, t) do

create new event eau of type “a is incorrect when exiting u”;
orGateTwo.addInEvent(eau);
add eau to newEvents;

create new FINAL event ep “p(u, t) holds”;
orGate.addInEvent(ep);

Algorithm B.6: DF-6 Elaborate event “predicate p(u, t) incorrectly holds”.

133

APPENDIX C

LITTLE-JIL FTA TEMPLATES

134

Figure C.1. Template LS-3 for Event Type “s incorrectly does not throw exception
e”.

C.1 Template LS-3: s incorrectly does not throw exception

e

A Little-JIL step’s specification can contain exceptions the step may throw during

its execution. A non-leaf step may throw exceptions propagated from its sub-steps.

The decision of throwing an exception from a leaf step depends totally on the agent

performing the step. Then the leaf step incorrectly not throwing exception might be

caused by:

• one of the inputs into the step being incorrect,

• the agent’s misperformance.

Figure C.1 shows the template LS-3 to elaborate the event “s incorrectly does not

throw exception e”.

135

BIBLIOGRAPHY

[1] Allen, Frances E. Control Flow Analysis. In Proceedings of a Symposium on
Compiler Optimization (New York, NY, USA, 1970), ACM, pp. 1–19.

[2] Bishop, Matt, Conboy, Heather, Phan, Huong, Simidchieva, Borislava I.,
Avrunin, George S., Clarke, Lori A., Osterweil, Leon J., and Peisert, Sean. In-
sider Threat Identification by Process Analysis.

[3] Chen, Bin. Improving Processes Using Static Analysis Techniques. PhD thesis,
University of Massachusetts, Amherst, MA 01003, USA, Sept. 2010.

[4] Chen, Bin, Avrunin, George S., Clarke, Lori A., and Osterweil, Leon J. Au-
tomatic Fault Tree Derivation from Little-JIL Process Definitions. In Software
Process Change, Qing Wang, Dietmar Pfahl, David M. Raffo, and Paul Wernick,
Eds., no. 3966 in Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Jan. 2006, pp. 150–158.

[5] Christov, Stefan, Avrunin, George S., and Clarke, Lori A. Online Deviation
Detection for Medical Processes. pp. 395–404.

[6] Christov, Stefan, Avrunin, George S., Clarke, Lori A., Osterweil, Leon J., and
Henneman, Elizabeth. A Benchmark for Evaluating Software Engineering Tech-
niques for Improving Medical Processes.

[7] Christov, Stefan, Chen, Bin, Avrunin, George S., Clarke, Lori A., Osterweil,
Leon J., Brown, David, Cassells, Lucinda, and Mertens, Wilson. Rigorously
Defining and Analyzing Medical Processes: An Experience Report. In Models in
Software Engineering, Holger Giese, Ed., no. 5002 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Sept. 2007, pp. 118–131.

[8] Clarke, Lori A., Chen, Yao, Avrunin, George S., Chen, Bin, Cobleigh, Rachel,
Frederick, Kim, Henneman, Elizabeth A., and Osterweil, Leon J. Process Pro-
gramming to Support Medical Safety: A Case Study on Blood Transfusion. In
Unifying the Software Process Spectrum, Mingshu Li, Barry Boehm, and Leon J.
Osterweil, Eds., no. 3840 in Lecture Notes in Computer Science. Springer Berlin
Heidelberg, May 2005, pp. 347–359. DOI: 10.1007/11608035 29.

[9] Conboy, Heather, Avrunin, George S., and Clarke, Lori A. Modal Abstraction
View of Requirements for Medical Devices Used in Healthcare Processes.

136

[10] Conboy, Heather, Maron, Jason K., Stefan, Christov C., Avrunin, George S.,
Clarke, Lori A., Osterweil, Leon J., and Zenati, Marco A. Process Modelling of
Aortic Cannulation in Cardiac Surgery: Toward a Smart Checklist to Mitigate
the Risk of Stroke.

[11] Cooper, Keith D., Harvey, Timothy J., and Kennedy, Ken. Iterative data-flow
analysis, revisited. Tech. rep., 2004.

[12] Ericson II, Clifton A. Fault Tree Analysis - A History. In 17th International
System Safety Conference (1999).

[13] Ferrante, Jeanne, Ottenstein, Karl J., and Warren, Joe D. The Program Depen-
dence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst. 9,
3 (July 1987), 319–349.

[14] Friedman, M.A. Automated software fault-tree analysis of Pascal programs. In
Reliability and Maintainability Symposium, 1993. Proceedings., Annual (1993),
pp. 458–461.

[15] Helmer, Guy, Wong, Johnny, Slagell, Mark, Honavar, Vasant, Miller, Les, and
Lutz, Robyn. A Software Fault Tree Approach to Requirements Analysis of an
Intrusion Detection System. Requirements Engineering 7, 4 (Dec. 2002), 207–220.

[16] Hyman, William A.; Johnson, Erin. Fault Tree Analysis of Clinical Alarms.
Journal of Clinical Engineering (2008), 85–94.

[17] Kildall, Gary A. A Unified Approach to Global Program Optimization. In
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (New York, NY, USA, 1973), POPL ’73, ACM,
pp. 194–206.

[18] Kuck, D. J., Kuhn, R. H., Padua, D. A., Leasure, B., and Wolfe, M. Dependence
Graphs and Compiler Optimizations. In Proceedings of the 8th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (New York, NY,
USA, 1981), POPL ’81, ACM, pp. 207–218.

[19] Lauer, Christoph, German, Reinhard, and Pollmer, Jens. Fault Tree Synthesis
from UML Models for Reliability Analysis at Early Design Stages. SIGSOFT
Softw. Eng. Notes 36, 1 (Jan. 2011), 1–8.

[20] Lazarus, Eric L. Change Result of Election Successfully. attack tree, 2010.

[21] Leveson, N.G., Cha, S.S., and Shimeall, T.J. Safety verification of Ada programs
using software fault trees. IEEE Software 8, 4 (July 1991), 48–59.

[22] Mhenni, F., Nguyen, Nga, and Choley, J.-Y. Automatic fault tree generation
from SysML system models. In 2014 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM) (July 2014), pp. 715–720.

137

[23] Moore, A. P., Ellison, R. J., and Linger, R. C. Attack Modeling for Information
Security and Survivability. Tech. rep., Carnegie Mellon University, Software
Engineering Institute, 2001.

[24] Pai, G.J., and Bechta Dugan, J. Automatic synthesis of dynamic fault trees from
UML system models. In 13th International Symposium on Software Reliability
Engineering, 2002. ISSRE 2003. Proceedings (2002), pp. 243–254.

[25] Phan, Huong, Avrunin, George S., Clarke, Lori A., Leon, Osterweil J., and
Bishop, Matt. A Systematic Process-Model-based Approach for Synthesizing
Attacks and Evaluating Them. In Presented as part of the 2012 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections (Berkeley, CA, 2012),
USENIX.

[26] Schneier, Bruce. Attack Trees. Dr. Dobb’s Journal (1999).

[27] Shin, Seung Yeob, Brun, Yuriy, Osterweil, Leon J., Balasubramanian, Hari, and
Henneman, Philip L. Resource Specification for Prototyping Human-Intensive
Systems. In Proceedings of the 18th International Conference on Fundamental
Approaches to Software Engineering (FASE) (2015), pp. 332–346.

[28] Simidchieva, Borislava I., Engle, Sophie J., Clifford, Michael, Jones, Alicia Clay,
Peisert, Sean, Bishop, Matt, Clarke, Lori A., and Osterweil, Leon J. Modeling
and Analyzing Faults to Improve Election Process Robustness. In Proceedings
of the 2010 International Conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (Berkeley, CA, USA, 2010), EVT/WOTE’10, USENIX
Association, pp. 1–8.

[29] Simidchieva, Borislava I., and Osterweil, Leon J. Generation, Composition, and
Verification of Process Families. In SPLC ’14: Proceedings of the 18th Interna-
tional Software Product Line Conference (Italy, Sept. 2014), pp. 207–216.

[30] Vesely, WE, Dugan, J, Fragola, J, Minarick, J, and Railsback, J. Fault Tree
Handbook with Aerospace Applications. NASA Office of Safety and Mission
Assurance (2002). NASA HQ.

[31] Wang, Danhua, Pan, Jingui, Avrunin, George S., Clarke, Lori A., and Chen,
Bin. An Automatic Failure Mode and Effect Analysis Technique for Processes
Defined in the Little-JIL Process Definition Language.

[32] Ward, J.R., Lyons, M.N., Barclay, S., Anderson, J., Buckle, P., and Clarkson,
P.J. Using fault tree analysis (FTA) in healthcare: a case study of repeat pre-
scribing in primary care. In Patient Safety Research: Shaping the European
Agenda (2007).

[33] Wise, Alexander. Little-JIL 1.5 Language Report. Tech. rep., Uinversity of
Massachussetts Amherst, 2006.

138

[34] Zhao, Zhao, and Petriu, Dorina. {UML Model to Fault Tree Model Transfor-
mation for Dependability Analysis}. In Proceedings of the International Confer-
ence on Computer and Information Science and Technology (Ottawa, Ontario,
Canada, May 2015).

139

	An Incremental Approach to Identifying Causes of System Failures using Fault Tree Analysis
	Recommended Citation

	tmp.1461292262.pdf.Sm4IT

