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ABSTRACT 

NOVEL ADVANCEMENTS FOR IMPROVING SPROUT SAFETY 

MAY, 2016 

KYLE S. LANDRY 

B.S., FRAMINGHAM STATE COLLEGE 

M.S., UNIVERISTY OF MASSACHUSETTS AMHERST 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Lynne McLandsborough 

 

All varieties of bean sprouts (mung bean, alfalfa, broccoli, and radish) are 

classified as a “super-food” and are common staples for health conscious consumers. 

Along with the proposed health benefits, there is also an inherent risk of foodborne 

illness. When sprouts are cooked, there is little risk of illness. The purpose of this 

dissertation was to explore novel techniques to minimize or prevent the incidence of 

foodborne illness associated with the consumption of sprouts. Three areas were 

investigated: 1) the use of a biocontrol organism, 2) the use of a novel spontaneous 

carvacrol nanoemulsion, and 3) the influence of the sprouting environment, 

antimicrobial treatments, and the presence of pathogens on the microbiota of sprouts. 

Using a novel strain of Serratia plymuthica, the growth of Salmonella spp. or E. coli 

O157:H7 were either suppressed or inhibited on sprouts that were co-inoculated with S. 

plymuthica and either pathogen. A novel carvacrol nanoemulsion was developed and 

tested for its efficacy against contaminated sprouting seeds and storage stability. The 

initial formulation was able to inactive low levels (≤ 3 log CFU/g) of S. Enteritidis or E. 

coli O157:H7 on mung beans, alfalfa, and radish sprouting seeds, but not broccoli. It was 



 

vii 
 

found that pH and high levels (≥10% v/v) of organic load significantly influenced the 

antimicrobial properties of the emulsion. With the addition of 50 mM acetic or levulinic 

acid, the treatment was able to inactivate 4 log CFU/g and 2 log CFU/g of pathogens on 

mung beans or broccoli seeds, respectively. The emulsion was found to be stable and 

still effective up to 30 days of storage at room temperature. Microbial population 

studies, utilizing a terminal restricted fragment length polymorphism analysis, showed 

that the microbiota differed between sprouting seed varieties. During the course of 

aseptic germination, there was a population shift which resulted in a less diverse 

population, mainly compose of Pseudomonadaceae. Sprouts that were commercially 

germinated had a more diverse population than aseptically germinated sprouts when 

seeds from the same distributer were used, suggesting that the sprouting environment 

can influence the final microbiota. The presence of pathogens resulted in a microbiota 

predominantly composed of Pseudomonadaceae and Enterobacteriaceae. Sprouting 

seeds that were treated with the carvacrol nanoemulsion resulted in a population 

comprised of mostly Pseudomonadaceae. Seeds that were initially contaminated with S. 

Enteritidis and treated with the carvacrol nanoemulsion had no detectable Salmonella 

restricted fragments or viable cells, suggesting complete inactivation of the pathogen. 

Sprouts will continue to a food for health conscious consumers. They will also be 

scrutinized for their chronic correlation with foodborne pathogens such as Salmonella 

spp. and E. coli O157:H7. It is vital that research continues in the areas of prevention, 

disinfection, and detection of pathogens on produce. 
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CHAPTER 1 

INTRODUCTION 

 All varieties of bean sprouts (mung bean, alfalfa, broccoli, and radish) are 

classified as a “super-food” and are common staples for health conscious consumers. 

Along with the proposed health benefits, there is also an inherent risk of foodborne 

illness. When sprouts are cooked, there is little risk of illness. However, when consumed 

raw, the probability of foodborne illness is exacerbated. The sprouting process is ideal 

for microbial growth, lending to final aerobic counts of ≥ 9 log CFU/g of sprouts. 

Sprouting seeds containing any pathogenic bacteria, even at concentrations ≤ 0.1 CFU/g, 

may reach ≥ 8 log CFU/g of sprouts following germination.  

 As a result of frequent sprout related outbreaks, the Food and Drug 

Administration (FDA) released guidelines in 1999 which recommended treating 

sprouting seeds with a 20,000 ppm calcium hypochlorite soak prior to germination. Even 

after the implementation of these guidelines, sprout related foodborne illness continues 

to be a pertinent problem within the produce industry. As a result, research into 

acceptable and effective sprout disinfecting techniques continues to be a major focal 

point within the scientific community. The development of novel chemical, physical, and 

biological treatment techniques continues to advance produce safety.  

Understanding the influence of current treatment techniques, environmental 

microbiota found during production, and pathogens in the final microbiome of sprouts 

is also an important aspect of sprout safety. Within the literature, papers regarding the 

bacterial population of commercial and lab grown sprouts can be found (65, 144, 151). 
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However, studies comparing the microbiota of sprouts from various distributers, 

growing environments, and/or antimicrobial treatment types are limited. It is unknown 

if the final sprout microbiota is a direct result of the bacterial communities present on 

the seeds, sprouting environment or both.  

Each of these factors may promote or discourage the presence of pathogens 

and/or spoilage organisms. For example, seeds from a distributer from the west coast 

may have a different microbial community than seeds from the east coast. The same 

can be said for the environmental microbiota in processing plants and water sources 

between growers. The use of aquafer water, compared to the use of treated water may 

significantly influence the final microbial population. Understanding the effects of 

various pre-germination seed treatments on the final microbiome of the sprout is also 

limited. Calcium hypochlorite treatments may be more effective against one portion of 

the microbiota but not another, resulting in a change in the final microbiota of the 

sprout when compared to an untreated batch. These changes may be better, or they 

may provide the necessary foothold for more undesirable bacteria like pathogens 

and/or spoilage organisms. As previously mentioned, seeds contaminated with 

extremely low pathogen levels may have a final pathogen count greater than 8 log 

CFU/g of sprout (54, 86). It would be greatly beneficial to the sprout industry and food 

safety experts to understand how the initial low levels of pathogens affect the final 

phyllosphere.     
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1.1 Objectives 

The purpose of this research is to explore and develop novel technologies that can 

be used to reduce the incidence of foodborne illness associated with the consumption 

of raw sprouts. With this said the objectives are as follows: 

1) Determine the effectiveness of the antagonistic organisms Serratia 

plymuthica EJ against foodborne pathogens on contaminated sprouting 

seeds 

2) Develop and determine the effectiveness of a novel carvacrol nanoemulsion 

against foodborne pathogens on contaminated sprouting seeds  

3) Study the differences between lab grown and commercially grown sprout 

microbiota using the Terminal Restricted Fragment Length Polymorphism (T-

RFLP) analysis 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 The Lure of Sprouts: A Simple Functional Food 

 The number of consumers who are actively aware of their health and well-being 

has dramatically increased over the past few decades. As more foods are dubbed 

“super-foods”, the idea that commonly available foods can treat or prevent certain 

medical conditions will become more predominate within the food industry (220, 226). 

With a continued awareness that eating healthy may help manage or prevent certain 

illness, consumers will not only look for foods to satisfy hunger but also to improve their 

overall health (162).  

 One of the most readily available groupings of functional foods are fruits and 

vegetables (225). All fruits and vegetables contain numerous functional compounds, 

many of which have been linked to improved health (105). With an increase in 

nutritional self-awareness, the evolution of the diet-health model has moved towards 

more minimally processed, additive-free, natural foods. Sprouts, such as mung bean, 

radish, broccoli, and alfalfa, have been of great interest for their proposed health 

benefits, resulting in a resurgence of consumer interest throughout Europe and the 

United States of America (76, 93, 108).   

 Sprouts are naturally high in secondary metabolites such as flavonoids, 

glucosinolates, S-methylcystine sulfoxide, and anthocyanins (124, 148). There is 

evidence that sprouts contain active compounds which may slow aging (15, 176) and 

help prevent or limit Alzheimer’s disease (122), angiogenesis (253), asthma (198), and 
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various forms of cancer (69, 160, 202, 204). Out of all the phytochemicals found in 

sprouts, sulforaphanes have been the most recent and exciting addition to sprouts list of 

health claims. Sulforaphanes have been shown to increase the expression of 

cytoprotective genes that regulate numerous endogenous cellular defense mechanisms 

(127, 174, 233). It is believed that sulforaphanes are one of the main bioactive 

compounds responsible for the alleged health benefits of sprouts (105).  As a result of 

increased research, awareness, and marketing of sulforaphanes functional properties, 

sprout manufactures are allowed to market certain varieties of sprouts as a cancer 

preventive dietary supplement (105).  

 The proposed health benefits unfortunately do not mitigate the fact that spouts 

are considered a “high-risk” food product by multiple agencies. The ever pressing 

demand for minimally processed “super foods” has elevated sprouts to a trending 

health product. As sprouts are incorporated into more diets of individuals throughout 

the world, the need for an effective but consumer and environmental friendly 

antimicrobial treatment is imperative.     

2.2 Microbial Risks Associated with Sprouts 
 

With an increased consumption of sprouts, there is a proportion increase in the 

risk of foodborne illness.  Since the first report of foodborne illness linked to sprout 

based products in 1973, there have been numerous outbreaks worldwide (236, 241, 

262). The consumption of raw sprouts was responsible for over 10% of produce related 

foodborne illness during the 12 year span between 1990 and 2002 (120). The majority 

were caused by Salmonella spp. and Escherichia coli contamination although other 
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pathogens such as Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus 

have also been linked to outbreaks (54, 62, 84, 228).  

 All varieties of sprouts are considered a raw agricultural product and 

subsequently, have the apparent microbiological risks associated with such 

commodities. It has been widely established and recognized that contaminated 

sprouting seeds are the major source of foodborne pathogens (62, 84, 98). The initial 

source or point of contamination throughout the sprouting process can be hard to 

establish. Firstly, sprouting seeds are harvested from fields and either directly 

transported to sprouting facilities or sent to a distribution facility. It is possible for seeds 

to be contaminated during this time with various pathogenic microorganisms such as E. 

coli O157:H7, Bacillus cereus, and/or Salmonella spp. (147, 152, 191). It has been 

demonstrated that sprouting seeds, such as alfalfa, mung bean, and radish, can harbor 

bacterial populations of 6 log CFU/gram of seed (98, 189, 194). These populations are 

often comprised of ubiquitous, non-pathogenic organisms, however there have been 

cases where non-O157 E. coli have been isolated from sprouting seeds suggesting some 

form of fecal contamination (5, 194, 217).   

 Unfortunately, the sprouting process is also ideal for microbial proliferation. 

Seeds are often soaked for 2 – 4 hrs in lukewarm water and germinated for up to 5 days 

at room temperature (58, 207). During this time, even extremely low pathogen 

concentrations will reach ≥ 5 log CFU/g in 24 hrs (84). The testing of seeds prior to 

germination for the presence of pathogens is a common practice for many sprout 

producers (58, 207). However, the sample of seeds taken from each batch is not exactly 
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representative of all seeds, since seeds can often have extremely low levels of 

pathogens (≤ 0.1 CFU/g) (84). Pathogens can also become internalized within the sprout 

during germination,  further complicating the process (91, 255). Once internalized, the 

use of a topical disinfectant is ineffective. To fully understand the potential public health 

risk, one must focus on the two most common foodborne pathogens associated with 

sprout products, E. coli O157:H7 and Salmonella enterica.  

2.2.1 Escherichia Coli O157:H7 

 Escherichia coli is a ubiquitous, generally harmless organism present in the 

environment and the GI tract of animals. However there are several variants of E. coli 

that commonly cause severe cases of foodborne illness resulting in gastroenteritis, 

urinary tract infections, and kidney failure. The major variants are: 1) enterotoxigenic E. 

coli (ETEC), enteropathogenic E. coli (EPEC), and enterohemorrhagic E. coli (EHEC), with 

the latter being the most severe.     

Within the EHEC family, E. coli O157:H7 is most often linked to foodborne 

outbreaks and recalls. Escherichia coli O157:H7 is a Gram negative, facultative 

anaerobic, rod shaped bacterium first isolated in 1982 from individuals who had 

consumed partially cooked hamburgers (158). E. coli O157:H7 is an uncommon, yet 

serious foodborne pathogen that is not bound to any specific food commodity (158, 

188). E. coli O157:H7 virulence can be attributed to its ability to produce at least one of 

two possible Shiga toxins (Stx1 and/or Stx2). The severity of an infection, often 

mediated by the age and overall health of an individual, can range from asymptomatic 
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to lethal and anywhere in-between. Asymptomatic infections have been documented in 

varies outbreaks across the world. During an outbreak in England, over 15% of the 

tested population were found to be asymptomatic carriers of E. coli O157:H7 (101). A 

similar percentage (12% of the tested population) of asymptomatic carriers were also 

noted after an outbreak in Scotland that ultimately infected over 250 individuals and 

resulted in 17 deaths (48).  

 Even with reported asymptomatic infections, the majority of the infected 

population are symptomatic. Generally, healthy individuals would experience abdominal 

pain and non-bloody diarrhea for 1-4 days eventually progressing to bloody diarrhea 

(158, 237). In roughly 15% of those infected, the infection leads to hemolytic urea 

syndrome (HUS) 5-14 days following initial infection(237). Hemolytic urea syndrome is 

the diminishing of renal function leading to hypouresis or anuria (237). Renal 

impairment to this degree leads to increased urea and creatinine concentrations in the 

blood serum which results in the aggregation of platelets and fibrin in the microtubule 

vessels found within the kidneys (150). As red blood cells pass through the restricted 

blood vessels, they are fragmented and rendered inactive resulting in a condition known 

as microangiopathic hemolytic anemia (150, 188, 237).  

 In regards to foodborne HUS related instances, the most commonly affected age 

group is children under the age of five; the elderly and immunocompromised are also at 

an elevated risk (188). The occurrence of HUS in this age bracket may be high but is not 

definite. During an Irish outbreak, 60% of the asymptomatic infected population were 

children under the age of five (149). The Russian roulette infection style and potential 



 

9 
 

severity of E. coli O157:H7 infections makes it a high-profile pathogen whose potential 

presence in the food supply is alarming. The introduction of E. coli O157:H7 within the 

sprout industry is convoluted and unclear since the overall process from field to sprout 

is a multifaceted production with various opportunities for contamination. 

The initial source of E. coli O157:H7 is classically linked to ruminant animals, such 

as cattle and sheep. It is within these where E. coli O157:H7 proliferates, with no harm 

to the ruminant host, and is eventually shed into the environment through fecal 

excretion. The number of infected animals is inconsistent as indicated by the vast 

differences in the reported numbers of infected animals around the world. For example, 

the percentage of infected cattle per herd have ranged from 0.2% to over 45% (114, 

115). Wild birds, such as European Starlings (Sturnus vulgaris), are known carriers of E. 

coli O157:H7 and annually cause over $800 million dollars of agricultural damage in the 

United States (36, 50). The correlation between flocks of birds and contaminated 

produce, soil, irrigation water and animal feed has been studied for decades, yet a 

practical solution for this problem has yet to be discovered (36, 252). 

Pre-harvest contamination of the mother plant, from which sprouting seeds are 

obtained, can come from a variety of sources, but the two must common culprits are 

manure and contaminated irrigation water(24).  The use of improperly composted 

manure has been shown to dramatically increase the risk of contamination and is largely 

due to the fact that enteric pathogens can survive for extended periods of time in 

animal feces (109, 116, 168). Irrigation water may become contaminated when fecal 

excrement enters the supply during seasonal flooding or heavy rain storms. The transfer 
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of contaminated water sediments from one water supply to another has also been 

linked to crop contamination(95). 

2.2.2 Salmonella enterica  

 Salmonella enterica is a Gram negative, facultative anaerobe with over 2500 

serovars in 6 subgroupings (47). S. enterica is the leading cause of foodborne illness and 

is suspected of causing roughly 1.3 billion cases of foodborne illness annually, with 

symptoms ranging from mild intestinal discomfort to bacteremia and death (47). Among 

the serovars, typhoidal/enteric fever variants are the most concerning. The bacterium S. 

enterica serovar Typhi is responsible for human typhoid.  Fever, malaise, intestinal 

distress, and nausea are the initial symptoms of typhoid which are often experienced a 

week or two after consuming S. Typhi contaminated food (47). As the disease 

progresses, the fever worsens along with an increased risk of hepatosplenomegaly and 

abdominal tenderness (49, 111). In some cases, salmonellosis may result in a reactive 

form of arthritis known as Reiter’s syndrome 3-4 weeks after the initial infection.  In 

healthy individuals the infection can be controlled by the body’s defenses, however 

fluoroquinolones are often prescribed to reduce the duration of illness (111).  

 Non-typhoidal Salmonella serovars are responsible for an estimated 3 million 

deaths worldwide each year (179). Non-typhoidal strains, like typhoidal/enteric fever 

serovars, cause  nausea, cramps, and diarrhea during the onset of infection, however 

symptoms occur between 6 – 72hrs following consumption and the infection does not 

trigger a fever (47). Non- typhoidal Salmonella infections can occur throughout the 
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whole intestinal track and in some cases result in enterocolitis and Reiter’s syndrome 

(23, 155). If not systemic, infections last about one week in healthy individuals (23). If 

the infection is not limited to the gut, fluid and electrolyte replenishment plus 

antibiotics are often used (47).  

 The risk of Salmonella spp. infections will continue to be a major concern for the 

food industry since Salmonella spp. are ubiquitous throughout the farm-scape and are 

transported through various animal vectors (169). In regards to sprouting seeds, 

contamination is believed to occur prior to seed harvest or from human handling. 

Contaminated irrigation water or simply a flock of birds passing over a field can increase 

the risk of Salmonella spp. It was previously thought that Salmonella spp.  survived 

poorly on plant surfaces during pre-harvest conditions, where they would be 

continuously exposed to UV light, desiccation, and temperature fluctuations; however 

this is not the case (106). Various studies have demonstrated Salmonella spp.’s ability to 

survive and proliferate under these conditions (106). Besides unwelcoming conditions, 

plant surfaces also have pre-existing aggregates or biofilms from resident organisms 

that compete with pathogens for essential nutrients (17, 254). It has been shown that 

Salmonella spp. can easily integrate and thrive in pre-existing resident multicellular 

aggregates on various plant phyllospheres and, as a result, be protected from 

desiccation stresses such as drying (25, 211).   

 Salmonella enterica serovars most commonly associated with sprout based 

outbreaks are of the non-Typhoid type, however there was a case in Colorado which 

linked S. Typhi to contaminated alfalfa sprouts (140). There have been a variety of non-
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Typhoid serovars associated with sprouts, yet there seems to be no logical pattern 

between serovar, sprout variety, and/or location. A few reoccurring serovars include S. 

Newport, Saint Paul, Havana, Montevideo and Enteritidis (5, 31, 236).  

2.2.3 Sprout Based Outbreaks 

 The apparent risk of foodborne illness from the consumption of sprouts is 

illuminated by the number of outbreaks over the past few decades. In July of 1996, 

school lunches prepared with white radish sprouts were responsible for 9,451 reported 

cases of E. coli O157:H7 infections throughout Japan (163). During this incident, 12 

school children died and hundreds were hospitalized with complications (163). A year 

earlier, a major outbreak of S. Stanley in Finland and the Unites States was linked to 

contaminated alfalfa seeds obtained through the same distributor (147). Alfalfa sprouts 

were again responsible for an outbreak of hemorrhagic E. coli O157 in Minnesota and 

Colorado in 2003 (19, 63). Improper seed handling and disinfecting were to blame (63). 

Improper alfalfa seed disinfecting was also to blame for an E. coli O157:H7 outbreak in 

Virginia and Michigan between June and July of 1997 (26, 195). During the two month 

time frame, 82 people were infected, 36 of which required hospitalized and 4 

experienced HUS (26).     

One of the largest reported outbreaks linked to sprouting seeds occurred 

between May and June of 2011 in Germany and France and involved pathogenic E. coli 

O104:H4 (230). There were over 4,300 confirmed cases with 852 resulting in HUS and a 

total of 50 deaths (203). The source of E. coli O104:H4 was linked to a lot of fenugreek 
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seeds that had been imported from Egypt, and as a precautionary measure the German 

authorities banned the import of sprouting seeds from Egypt for 10 months (230).  

 The emergence of E. coli O104:H4 as a potential pathogen linked to sprouts is an 

ever greater indication that food safety practices are necessary to minimize the public 

health risks of sprouts. Unlike E. coli O157:H7, the E. coli O104:H4 strain from the 

German outbreak of 2011 was a hybrid organisms that had both characteristics of 

enterohemorrhagic and enteroaggregative E. coli (22). Termed an entero-aggregative-

hemorrhagic E. coli (EAHEC), E. coli O104:H4 has the ability to produce Shiga-toxins (stx) 

and fimbriae used to adhere to the intestinal walls (22, 80). This hemorrhagic ability 

combined with a highly effective attachment/effacement mechanism makes E. coli 

O104:H4 a severe threat to food safety (45, 230). 

 Salmonella spp. is responsible for more produce based outbreaks than any other 

bacterium, making up over 50% of produce related outbreaks in both Europe and the 

United States (31, 222). Salmonella spp. was responsible for 70% and 65% of the sprout 

related outbreaks in the United States and Europe during 2004–2012 (31).  During 2001, 

a multi-state outbreak of S. Enteritidis in Florida and Minnesota was connected to 

contaminated mung bean sprouts purchased at Asian markets and restaurants (243). It 

was determined that the mung beans, originally imported from China, distributed to 

Florida growers from a Kentucky based broker was the source of S. Enteritidis (243). The 

seed source was also the reason behind the Salmonella enterica serotype 

Bovismorbificans outbreak in Finland during 2009 (199). Alfalfa seeds purchased from an 

Italian grower/distributer had S. Bovismordificans concentrations of 4.3 MPN/g of seeds 
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(199). Unknown to the Finnish growers, the Italian grower/distributer did not test seed 

lots for Salmonella spp. prior to sale. In hindsight, this may have prevented the 42 

confirmed cases of salmonellosis (199).  

Salmonella enterica serovar Mbandaka was responsible for 82 confirmed cases 

of salmonellosis from January to April of 1999 in Oregon, Washington, Idaho, and 

California (98). Normally, the incidence of S. Mbandaka in Oregon was low, with an 

average of 1.5 cases per year attributed to that specific serovar (98). The rapid influx of 

S. Mbandaka cases in Oregon and surrounding states triggered an in-depth investigation 

that ultimately lead to the uncovering of a multistate outbreak (98). The contaminated 

seeds came from one California based farmer that was found to have multiple 

“probable” points for seed contamination which included river water and wild and/or 

domestic animal contact points (98).   

 The sheer number of sprout related outbreaks is quite alarming. The realization 

that sprouting seeds are the common vehicle for sprout contamination has redirected 

the focus of sprout safety on pathogen detection and the disinfection of sprouting 

seeds. Although it may seem simple in concept, the practical application, use and overall 

acceptance of disinfection techniques for sprouting seeds is quite challenging.         

2.3 Current and Potential Disinfection Techniques for Sprouting Seeds 

2.3.1 Challenges Associated with Sprouting Seeds 

 The majority of foodborne outbreaks associated with sprouts is linked to the 

sprouting seeds. The seeds of each sprout variety have different sizes, shapes, and 
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surface characteristics which may explain why there are more frequent outbreaks with 

certain varieties. For example, alfalfa have a rough or wrinkled topography which may 

enhance bacterial adhesion and protect pathogens from sanitizers  (43, 74). Mung beans 

on the other hand, have a hard generally smooth seed coat that may prove easier to 

disinfect than rough seed varieties (43). Also, within in each seed lot there are variations 

between seeds; some seeds may have experienced excessive drying or physical damage 

resulting in surface cracks, allowing for the internalization of pathogens (43, 74, 255). 

Even an undamaged seed can allow for internalization. All seeds have a micropyle who’s 

function is to allow water to enter the seed and trigger germination (14). The micropyle 

may also serve as an entering point for pathogens present in sprouting water. Seeds also 

have a large scar tissue area called the hilum (14). The size of the hilum is dependent on 

seed variety, however with all seeds, the hilum is a rough, porous area that can serve as 

an attachment site for microorganisms (Image 1.1).  

The actual method of bacterial effacement to produce is complicated and still 

under debate. Pathogens must be able to quickly attach and successfully proliferate or 

survive under less than ideal conditions. The general seed surface, known as the testa, is 

a hard structure designed to limit dehydration and infiltration by phytopathogens and 

insects (14, 197). Pathogens, such as Salmonella spp., can attach to these surfaces and 

other produce surfaces in just a few hours (10, 118, 184, 246). 
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When the testa is disrupted, a second seed coat, the tegmen, is exposed. Unlike the 

testa, the tegmen membrane is thin and papery in nature and possibly susceptible to 

bacterial penetration (213).  

The farm to grower pipeline may be just as significant of a contributor to sprout 

based outbreaks as seed characteristics. Sprouting seeds can be obtained two ways; 1) 

they could be grown domestically or 2) they could be imported from various nations 

worldwide (21, 98, 199, 207). Domestically produced sprouting seeds could be 

contaminated by various means such as animal and/or human contact, inadequate 

farming practices, or contaminated run-off water. Even with these present risks, farms 

within the United States are still regulated by various agencies that instill and enforce 

farming and safety polices designed to limit risks (74, 76, 93). Though present, the safety 

polices of foreign countries from which sprouting seeds are often imported may not be 

as stringent as our domestic regulations, however the same can be possible for our own 

exported seeds. Imported seeds from China, Egypt, and Italy have been the cause of 

Image 1.1. Scanning microscopy of the hilum on a mung bean. The porous nature of the hilum may act as a 
point of entry and/or attachment for various pathogens.   
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multiple outbreaks around the world and were the result of seed lots that were not 

screened for the presence of pathogens (199, 222, 230). 

 Testing seed lots for the presence of pathogens is unreliable, as indicated by the 

number of outbreaks. First, the sample size often taken for microbiological testing is 

extremely small (5 – 10 grams) compared to the size of the seed lot (54, 98). Pathogens 

can also be underneath the seed coat, internalized, or severely stressed limiting their 

ability to be detected during pre-enrichment (199). Coupled with the fact that 

pathogens are heterogeneously distributed throughout seed lots, there is a high chance 

of a false negative (43, 236).    

2.3.2 Current and Proposed Disinfecting Techniques  

Due to the correlation between outbreaks and sprouts, the Food and Drug 

Administration (FDA) released a set of guidelines stressing the importance of applying a 

disinfectant to sprouting seeds prior to germination, citing and recommending a 20,000 

ppm calcium hypochlorite soak (74, 78, 170). After implementation, sprout based 

outbreaks are still prevalent and continue to drive the search for a suitable, effective 

treatment.  

Sprouting seed treatments fall into three main categories: chemical, physical, 

and biological, all of which have their own benefits and limitations.   
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2.3.3 Chemical Treatment Techniques for Sprouting Seeds 

Antimicrobial chemical treatments are a widely used and studied method to 

combat microbial loads on all types of surfaces. Due to its proven effectiveness, it is only 

natural that chemical treatments would be suggested and strongly studied as a 

sprouting seed disinfectant. One major advantage of any chemical treatment is the 

convenience and affordability. Unfortunately, chemically based treatments are 

dependent on contact time, product – chemical ratio, stirring, and the presence of 

inhibiting or sequestering compounds (20, 54).  

The treatment of sprouting seeds with a 20,000 ppm calcium hypochlorite soak 

prior to germination is the current recommended treatment as presented in the FDA’s 

guide on reducing microbial food safety hazards for sprouting seeds (74). Variable in 

vitro data and the continued incidence of outbreaks suggests that the calcium 

hypochlorite is not a cure-all treatment for sprouting seeds. A quick literature search 

will reveal the inconsistencies with the calcium hypochlorite treatment. In one case, a 

10 min 20,000 ppm calcium hypochlorite treatment was able to generate ~5 log 

reduction in Salmonella Stanley  on alfalfa seeds (92). A later study, published in 2009, 

was only able to produce a 2.8 log reduction of a Salmonella spp. cocktail on alfalfa 

seeds following  a 45 min soak in 20,000 ppm calcium hypochlorite (137). Over the past 

few decades, the reported pathogen reduction on sprouting seeds using the 

recommended hypochlorite treatment ranged between  0.5 – 6.90 log CFU/g (54).  

With hypochlorites and any other reactive compound, the effectiveness is based 

on the amount of active compound available to interact with bacterial cells. The 
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antimicrobial activity of hypochlorite is based on two main reactions: 1)saponification 

and 2) chloramination (59). With saponification, hypochlorite breaks down triglycerides 

into fatty acid salts and glycerol (59). Hypochlorites solvent like properties can destroy 

key components needed for membrane function. Hypochlorites also neutralize amino 

acids which results in the release of hydroxyl ions forming hypochlorous acid (HOCl-) 

and hypochlorite ions (OCl-) (59). When hypochlorous acid comes in contact with 

organic tissue, chlorine is released and combines with amino groups forming 

chloramines (59). Chloramines interfere with cellular metabolism by oxidizing various 

cellular components, such as enzymes, lipid membranes, and nucleic acids. 

These highly reactive, oxidative species are free to interact with various 

compounds/molecules in the surrounding environment with no degree of specificity 

(79, 83). Generated free radicals stay at the formation site and rarely diffuse 

throughout the system, however more oxidative species and radicals can be generated 

through chain-reaction based mechanisms and/or various secondary reactions (79, 83, 

219). If a substantial number of free radicals are generated on a bacterium, cell death 

would result due to cytoplasmic membrane oxidation, protein denaturation, and 

oxidative destruction of DNA (60, 79, 87). The high pH (~12) of hypochlorites, from the 

rapid release of hydroxyl ions also promotes oxidation of bacterial cells (59). 

The presence of an organic load, such as extraneous carbohydrates, lipids, 

proteins, or pre-existing bacteria, could sequester the majority of generated 

hypochlorous acid, hypochlorite and hydroxyl ions and prevent interaction with 

pathogenic cells (99, 215). Depending on the practices of sprout growers, the 
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continued presence of organic materials during seed decontamination may be limiting 

the overall effectiveness. Produce particulates, biofilms, and recycled wash water have 

all been successful at reducing the efficacy of hypochlorites and can be present during 

sprouting (5, 19, 96, 143, 175). There have been studies looking at increasing the 

concentration of hypochlorite and/or treatment time, however this approach is not 

ideal. High concentrations of hypochlorites and/or increased contact time has negative 

effects on sprout yield. The use of higher concentrations of hypochlorites can also have 

unfavorable environmental impacts and is not morally accepted by the majority of 

organic sprout producers (54, 257).        

The demand for an alternative chemical treatment has resulted in rapid progress 

in this area of research. The diversity of proposed chemical treatments is vast. Seed 

treatment with organic acids (131, 264), fatty acids (38, 190), ammonia (110), alcohols 

(20), and electrolyzed water (113, 117) have all been studied as a potential alternative 

to hypochlorite.  Reductions of some proposed treatments were as high as 7 log CFU/g, 

however the cost, reliability, and practicality of the alternative treatments were not 

fully realized (38, 170). Germination rates, sprout yield, quality, and flavor profiles are 

all important factors that may be affected and must be studied in order to judge the 

practicality of any proposed treatment.  

The majority of proposed treatments focus on germination rates as a means of 

determining the effect of treatments on sprout quality. Germination rates are 

important for identifying the destructive nature of a treatment on the viability of post-

treated seeds, but it is not indicative of overall sprout quality. Sprout yield, size, and 
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palatability are not represented by studying germination rates. Like pathogens, 

chemical compounds can bind to or become internalized within produce, which may 

alter the final flavor profile of the product (139, 193). Proposed sprouting seed 

treatments that utilize free fatty acids or essential oils fall victim to possible 

undesirable flavor changes (28, 29, 38, 190).    

Free fatty acids are often synonymous with rancid aromas and taste sensations 

such as sour, bitter, pungent,  and astringent; all flavor descriptors that are not 

necessarily ideal for consumers (37). Similarly, essential oils are pungent in aroma and 

flavor (28). Post-treatment effects on produce flavor and overall quality is limited in the 

literature, however the use of essential oils as an antimicrobial treatment is a very 

active research area (28).   

Essential oils are natural compounds isolated from various plant sources that 

have gained wide acceptance as flavorings and antioxidant compounds (9, 28, 164). 

They also are natural, and in some cases,  food-grade  generally recognized as safe 

(GRAS) compounds which demonstrate a wide range of antimicrobial activity (28). Due 

to their standing, essential oils are of great interest to the food industry as a potential 

natural alternative to caustic disinfect treatments that have negative stereotypes with 

consumers (28, 54). There have been numerous studies addressing the antimicrobial 

properties of essential oils (28, 103). However, as with all oils, essential oils suffer from 

limited solubility in aqueous environments and it is not desirable to use pure 

compounds as an antimicrobial treatment for food products.  
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2.3.4 Physical Treatment Techniques for Sprouting Seeds 

The use of physical methods to inactivate pathogens in food systems are well 

established and widely accepted throughout the food industry. During the past few 

decades heat and/or high-pressure have been studied as potential treatments for 

pathogen inactivation on sprouting seeds. The use of a heat treatment for mung beans 

is very common in many Asian countries (11, 12, 112). Mung beans are soaked in 85 oC 

water for 10 sec to reduce both pathogenic levels and spoilage organisms (57). Due to 

their thick seed coats, mung beans can withstand short durations of treatment with 

≤85 oC water, making them ideal candidates for hot water treatments (234). 

Treatments ≥ 90 oC have been shown to have greater disinfection rates but results in a 

significant decrease in sprout yield (12). Other seed varieties, such as alfalfa and radish 

seeds do not have a thick outer coating and are more sensitive to hot water treatments 

(234). Hot water treatments of these varieties can result in decreased germination and 

sprout yields (119, 214).   

High pressure treatments are another well studied methodology for disinfecting 

sprouting seeds. Bacterial reductions of ~3.5 log CFU/g of seed have been observed 

when alfalfa seeds were treated with 600 MPa of pressure for 2 min (172). When 

treated with less pressure (100 – 250 MPa) a 2 log CFU/g reduction on both mung 

beans and alfalfa seeds was observed (186). Higher pressure treatments (≥ 600 MPa) 

provide the greatest microbial reduction values (~5 log) but significantly decreases the 

germination rates of all seed varieties by up to 60% (7). The use of a pressure based 

treatment was found to be most effective when used in combination with another 
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treatment, such as a heat or chemical based treatment (171, 187). These hurdle based 

approaches resulted in ≥ 6 log and ≥ 5 log reduction in pathogenic bacterial 

respectively (171, 187).  

The use of a physically based treatment protocol is more consistent, and in some 

cases more effective than commonly used chemical methods (54). However, unlike 

chemical treatments, physically based treatments require large, expensive, specialized 

equipment. Seed pasteurizers can cost in excess of $150,000, not include additional 

infrastructure or training costs.  

2.3.5 Biological Treatment Techniques for Sprouting Seeds 

The concept of using a bio-control agent to control fungal phytopathogens in 

agricultural settings is a well-researched area within the agricultural community. The 

perceived natural alternative to harsh pesticides is very attractive in concept and 

practicality, and may be another tool future farmers can use to help reduce pesticide 

usage (82, 141, 210). The use of bio-control organisms to prevent foodborne illness on 

fresh produce is an interesting area. There have been two proposed mechanisms for 

which biological control agents could be selected and applied: 1) isolate, identify, and 

characterize an organism(s) that is naturally antagonistic towards you target 

pathogen(s) or 2) use large inoculums or mixtures of a culture(s) that would thrive and 

out-compete any present or introduced pathogen(s). Both methods have been used 

successfully. For example, Pseudomonad spp. have been used as an antagonistic bio-

control against various phytopathogens (258) and a mixture of competitive exclusion 
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organisms was used to prevent Salmonella spp. colonization in young poultry and 

swine (3, 94, 142).   

The incidence of foodborne illness associated with the consumption of fresh 

produce has continued to increase, this is especially true for sprouts. Sprouts are 

produced in a warm, moist, hydroponic process which is also optimal for bacterial 

growth. Following the sprouting process, it is common for native microbial loads to 

reach as high as 6 – 9 log CFU/g (54, 68, 85). The same can be said for pathogens. It has 

been shown that seeds inoculated with less than 1 CFU/g yielded sprouts with 

pathogen counts over 6 log CFU/g (151, 262). The addition of bio-control organisms 

before or during the sprouting process may reduce or eliminate any present or 

accidently introduced pathogens.  

Studies exploring the use of competitive exclusion and/or antagonistic organisms 

during the sprouting process seem to be the most successful at reducing/eliminating 

pathogenic bacteria. For example, a study present by Matos and Garland explored 

microbial communities of mature sprouts as a potential source for competitive 

exclusion organisms(151). They found that germinating sprouting seeds in water 

inoculated with an established mature sprout microbiota significantly reduced 

Salmonella spp. numbers in the final product(151). The group also demonstrated that 

the microbial communities found on mature sprouts had greater fitness in the 

sprouting environment than Salmonella spp.. They hypothesized that the native 

microbiota could process and utilize the available nutrients more efficiently than 

Salmonella spp., significantly reducing the amount of available nutrients (151). Various 
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strains of Pseudomonades spp. have demonstrated potential for being a suitable 

biocontrol agent for sprouts, generating a ~5 log reduction in Salmonella spp.. (64, 

151).    

Lactic Acid Bacteria (LAB) are a well-studied group of organisms that have 

potential as a bio-control organism. LAB are considered food grade and GRAS by the 

FDA and have been used to preserve various dairy and meat products(232). Their 

ability to inhibit the growth of pathogenic bacteria is due to the production of various 

antagonistic compounds such as organic acids, bacteriocins, hydrogen peroxide, and 

diacetyl (16, 46, 232). The use of LAB on produce as antagonistic organisms against 

foodborne pathogens is well established in the literature. Apples, leafy greens, melons, 

and other various fresh produce have been used as model systems to demonstrate the 

potential uses for LAB (138, 177, 244). With sprouts, the use of LAB as a means of 

reducing the incidence of foodborne illness from sprouts is limited. Numerous studies 

have demonstrated that LAB only reduce final numbers of Salmonella spp. or E. coli by 

~2 log CFU/g (18, 260). Though a significant reduction in pathogenic cell numbers, 

there is still an inherent risk of foodborne illness.  

More recently, it was demonstrated that Salmonella spp.  levels could be 

controlled on mung bean  and alfalfa sprouts using a combination of the antagonistic 

bacterium Enterobacter asburiae and lytic bacteriophages (262). When contaminated 

(initial inoculum of 6 log CFU/g) sprout seeds were germinated in the presence of both 

the antagonistic bacteria and lytic phages, no Salmonella spp. was detected via 

enrichment. Treatment with just the E. asburiae did not completely eradicate 
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Salmonella, but did result in a 7 log reduction when compared to the control. A similar 

reduction was observed when contaminated mung bean seeds where sprouted in the 

presence of E. asburiae.  
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CHAPTER 3 

EFFECT OF SERRATIA PLYMUTHICA ON CONTAMINATED SPROUTING SEEDS 

3.1 Abstract 

There has been a multitude of Salmonella spp. and E. coli O157:H7 outbreaks 

associated with the consumption of bean sprouts throughout the world. The use of 

antagonistic, non-pathogenic organisms may help aid in the reduction of pathogens on 

bean sprouts, and ultimately limit the incidence of foodborne disease. In this study, the 

effectiveness of a novel stain (EJ) of Serratia plymuthica was evaluated against S. 

Enteritidis and E. coli O157:H7 contaminated sprouting seeds. Seeds were co-inoculated 

with various concentrations of pathogens and S. plymuthica and germinated for 5 days. 

Following germination, sprouts were tested for the presence of pathogens. Final S. 

Enteritidis and E. coli O157:H7 levels of < 3 CFU/g were found on mung bean and  radish 

sprouts  that had initial seed inoculums of 2 log CFU/g S. Enteritidis and 8 log CFU/g S. 

plymuthica EJ. The co-inoculated of mung bean or radish seeds with S. plymuthica EJ (8 

log CFU/g) and 5 log CFU/g of S. Enteritidis reduced or maintained the final pathogen 

levels on sprouts at 4 log and 5 CFU/g  respectively. The inoculation of broccoli seeds 

with S. plymuthica EJ resulted in significant reductions (> 3 log CFU) in final pathogen 

levels on broccoli sprouts. The novel strain of S. plymuthica was also found to produce 

extracellular siderophores and have the gene necessary for the production of the 

antagonistic compound pyrrolnitrin.     

3.2 Introduction 

 As the demand for fresh produce increases, so does the inherent risk of 

foodborne illness. As outbreaks continue to be a common occurrence within our food 



 

28 
 

supply, the development of alternative treatment methodologies will remain a pertinent 

area of research. Classically, chemical and/or physical treatments were the main area of 

focus for new antimicrobial technologies. However, the practical application of 

biocontrol organisms has shown to be a potential alternative to the traditional areas of 

study.  

 Microbial based preservation methods have be used since the dawn of 

civilization; one such example is food fermentation. In today’s health conscious society, 

the use of natural, old-world preservation techniques are more appealing than ever. The 

overall mindset surrounding bio-preservation is that the impact on food safety, food 

quality, and the environment are less than chemical and/or physio-chemical 

preservation methods (88). As for technical advantages, the use of bio-preservation 

techniques require little in advanced equipment and are, in theory, more cost effective 

(88). Secondly, the use of biological organisms may help reduce the propagation of 

antibiotic resistance among pathogenic species (81). 

 The mechanism by which antagonistic organisms function is broad. The lactic 

acid bacteria (LAB) are the most widely studied biocontrol organisms and have been 

shown to produce organic acids, anti-fungal compounds and various forms of 

bacteriocins (173). Though their main antagonistic mechanism is the production of 

organic acids, other inhibitory compounds such as diacetyl, propionate, bacteriocins and 

bacteriocins-like compounds are quite effective (173). Nisin, pediocin AcH/PA-1, lacticin 

3147, and cyclic peptide enterocin AS-48 are currently available or have promising 

potential for commercial applications (4, 90).  
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 There have been numerous studies assessing the effectiveness of antagonistic 

organisms against various foodborne pathogens on produce such as leafy greens, 

peppers, carrots, potatoes, and sprouts (135, 136, 242). The effectiveness of biocontrol 

organisms against foodborne pathogens is influenced by numerous factors including 

initial microbial populations, food matrices, and storage conditions (88, 221). These 

variables are believed to be the reasoning behind the wide range in effectiveness 

between tested produce varieties and between in vitro and in vivo models. Within a 

model system, Pseudomonas fluorescens, when co-inoculated with L. monocytogenes, 

was able to generate a > 3 log reduction in pathogenic cell numbers (27). Similar log 

reductions have also been noted for Salmonella spp.,  E. coli O157:H7, and 

phytopathogenic bacteria when tested using in vitro model systems (208, 245).          

 As previously stated, when a biocontrol organism’s effectiveness is evaluated on 

actual food products the perceived results are often less encouraging than in vitro 

results (221). For example, the effectiveness of Lactococcus lactis against L. 

monocytogenes on alfalfa sprouting seeds was found to be significantly less than 

previous reported in vitro results(180). The group found that L. monocytogenes levels 

reached >6 log CFU/g of sprouts after 48 hrs when initially inoculated with 2 log CFU/g  

of seed(180). When co-inoculated (2 log CFU/g of seed) with L. lactis, final numbers of L. 

monocytogenes were only reduced by 1 log CFU/g (180). Similar results were also 

reported by Cai et al.(30). In both cases the effectiveness of L. lactis against 

contaminated alfalfa sprouting seeds was significantly less than previous reports in 

model systems (180, 221). The successful use of LAB to eliminate pathogenic organisms 
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on fresh produce has yet to be demonstrated. However, significant reductions and 

suppression of pathogenic growth has been widely demonstrated throughout the 

literature (88, 177, 245). Though impressive, the presence of any pathogenic organisms 

on produce would still present an inherent risk of illness.  

 The use of novel biocontrol organisms and/or other bio-preservation methods 

(i.e. bacteriophage and antagonistic peptides) have been demonstrated as potential 

alternatives for the treatment of produce. A cocktail of lytic phage specific for various 

Salmonella serotypes was evaluated as a treatment for contaminated sprouting seeds 

(183). Even though reductions in pathogen  numbers were seen after 4 hrs post 

treatment, pathogen levels reached > 5 log CFU/g of seed after 24 hrs (183). However, 

the combined use of Enterobacter asburiae and lytic bacteriophage were able to reduce 

Salmonella spp. below detectable limits on both mung bean and alfalfa sprouting seeds 

(262). Similar results were reported when Enterobacter asburiae and lytic bacteriophage 

were used to treat S. Javiana contaminated tomatoes (263).  

 The use of bio-preservation techniques for bean sprouts is very attractive from 

both the industrial and consumer prospective. Currently, bean sprout growers are 

encouraged to soak sprouting seeds in a  2% calcium hypochlorite solution prior to 

germination (54). The implementation of this treatment has yet to curb the reoccurring 

incidence of sprout related foodborne illness. Novel physical and chemical treatment 

methodologies are promising areas of produce safety research, yet their practicality is 

often limited due to expensive, specialized equipment and/or potentially hazardous 

active ingredients. Bio-preservation techniques circumvent these problems, making it a 



 

31 
 

highly desirable and easily applicable commercial treatment. Sprout growers would be 

able to inoculate their seeds with biocontrol cultures and potentially prevent the growth 

of pathogens without the use of expensive equipment or caustic chemical treatments or 

additives. Also, any natural, environmentally friendly treatment would be rated highly 

by earth-friendly and health conscious consumers.  

 Recently, a strain of Serratia plymuthica was isolated from lettuce harvested 

from a local farm (Amherst, MA) which demonstrated antagonistic properties against S. 

Enteritidis and E. coli O157:H7 (56). The antagonistic properties of S. plymuthica EJ were 

found to inducible and heat resistant (56). Based on the strong antagonistic properties, 

S. plymuthica EJ was studied as a possible biocontrol organisms for sprouting seeds.       

3.3 Materials and Methods 

3.3.1 Bacterial strains and culture conditions  

 The bacterial strains used in the presented experiments were Salmonella 

enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045), an enhanced green 

fluorescent protein (EGFP) expressing Escherichia coli O157:H7 (ATCC 42895), and the 

previously isolated Serratia plymuthica EF (56, 192). Stock cultures of each organism 

were stored at -80 oC in tryptic soy broth (TSB; BD Diagnostic Systems, Cat# DF0064-07-

6) containing 25% (v/v) glycerol. Monthly, frozen stock cultures were transferred to 

working cultures by plating on tryptic soy agar (TSA; BD Diagnostic Systems, Cat# 

DF0370-075) slants/plates and incubating at 37 oC for 24 hrs. Following incubation, 

single colonies of E. coli O157:H7 were picked and transferred to Luria broth (Lennox, 
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LB) (Fisher BioReagents Cat# BP9724-500) plates containing 500 µg/mL ampicillin (Fisher 

Scientific Cat# BP1760-5). The absorbance at 600 nm was used to determine cells 

numbers, with an absorbance of 0.5 equal to 1.0 x 108 CFU as determined by plate 

counts.     

Periodically, working cultures were streaked on differential media to ensure 

purity. For S. Enteritidis, cultures were spread on xylose, lysine, deoxycholate (XLD) agar 

(Remel Cat# R459902). For E. coli O157:H7, cultures were spread on LB (Fisher 

BioReagents Cat# BP9724-500) plates containing  500 µg/mL ampicillin (Fisher Scientific 

Cat# BP1760-5) and 20 µg/mL IPTG (Thermo Scientific Cat# FERR0392) and observed 

under UV light. Cultures were incubated overnight in TSB at 37 oC on a rotary shaker set 

at 150 RPM. All cultures were diluted with TSB to the desired cell numbers.   

3.3.2 Generation of a 100 ug/mL nalidixic acid resistant S. plymuthica EJ strain 

 The isolated S. plymuthica EJ was inoculated in TSB containing 10 μg/mL nalidixic 

acid and incubated overnight at 32 oC. Overnight growth was streaked on TSA plates 

containing 10 μg/mL nalidixic acid and incubated overnight at 32 oC. An isolated colony 

was picked and inoculated in TSB containing 20 μg/ mL nalidixic acid and incubated 

overnight at 32 oC. This procedure was continued using 10 μg/mL intervals of nalidixic 

acid until a 100 μg/mL strain was obtained.  

3.3.3 Induction of antagonistic properties of a 100 µg/mL S. plymuthica EJ strain 

 A single vertical streak of nalidixic acid resistant S. plymuthica EJ strain was 

plated in the middle of a TSA plate and allowed to incubate overnight at 32 oC. Following 
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incubation, the agar plate was aseptically flipped and a single left-to-right streak moving 

from top-to-bottom of either S. Enteritidis or E. coli O157:H7 was plated and incubated 

overnight at 32 oC. Antagonistic colonies were picked using a sterile needle and plated 

on TSA containing 100 µg/mL nalidixic acid.   

3.3.4 Influence of S. plymuthica EJ supernatant on growth of foodborne pathogens  

A single vertical streak of nalidixic acid S. plymuthica EJ strain was plated in the 

middle of a TSA plate and allowed to incubate overnight at 32 oC. Following incubation 

the agar plate was aseptically flipped and a single left-to-right streak moving top-to-

bottom of either S. Enteritidis or E. coli O157:H7 was plated and again incubated 

overnight at 32 oC. Plates demonstrating antagonistic properties were aseptically 

transferred to sterile 250 mL Whirl-Pack bag containing 50 mL of TSB and stomached for 

60 sec. The blended solution was then transferred to sterile 50 mL centrifuge tubes and 

centrifuged for 25 min at 13,400 RPM. The remaining supernatant was filter sterilized 

through a 0.45 µm syringe filter and transferred to a sterile 50 mL conical tube which 

was stored at 2 oC. Prior to use, the supernatant was tested for the presence of 

antagonistic properties by dropping 20 µL of supernatant on TSA seeded with 4 log 

CFU/mL of either S. Enteritidis or E. coli O157:H7 and incubated overnight at 32 oC. 

Antimicrobial activity was visualized by a zone of clearing in and around the drop area.     

Overnight growth of either S. Enteritidis or E. coli O157:H7 was added to a test 

tube containing TSB and various concentrations of antagonistic extract (0%, 25%, 50%, 

or 75% (%v: %v); 9 mL total volume) for a final inoculum of 7 log CFU/mL. The cell 
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mixture (150 µL) was transferred to a 96-well plate (previously sterilized with 70% 

ethanol), covered, and incubated for various time intervals (6, 12, or 18 hrs) at 37 oC. At 

each time point the absorbance was read at 570 nm using a Bio-Tek ELX 800 plate 

reader (Bio-Tek; Winooski, VT).      

3.3.5 Storage viability of S. plymuthica EJ on mung beans 

Batches of beans (25 g) were soaked in a 50 mL suspension of 100 ug/ml nalidixic 

acid resistant S. plymuthica EJ (9 log CFU/mL) for 20 mins for a final inoculum level of 8 

log CFU/g. The inoculated beans were then transferred to a sterile glass petri dish 

containing sterile filter paper within a biological safety cabinet, and allowed to dry 

overnight at ambient temperature. Once dried the inoculated beans were stored for 

various time intervals (2, 4, 6, 12, 20, 25, or 30 days) at either 20 oC or 4 oC.   

To determine surviving cell numbers, each batche of beans were transferred to 

sterile 250 mL beakers containing 50 mL of 0.1% peptone water and placed on a rotary 

shaker set to 125 RPM for 15 mins. A dilution series was created and plated on the 

appropriate media. Spread plates were incubated at 32 oC for 24 hrs. 

3.3.6 Suppression of Salmonella Enteritidis or Escherichia coli 0157:H7 on Sprouting 

Seeds 

 All beans/seeds were generously provided by Jonathan’s Organics (Rochester, 

MA) and each treatment condition was tested and sprouted in triplicate. Beans/seeds 

(25g) were soaked in 50 mL (6 log, or 3 log CFU/mL) of S. Enteritidis or CyGe E. coli 

O157:H7 for 20 mins. Inoculated beans/seeds were transferred to 50 mL suspension of 
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100 ug/ml nalidixic acid resistant S. plymuthica EJ (9 log CFU/mL) and soaked for an 

additional 20 mins. The inoculated beans/seeds were then transferred to a sterile glass 

petri dish containing sterile filter paper within a biological safety cabinet, and allowed to 

dry overnight at ambient temperature.  

For mung beans, inoculated beans were placed in a 500 mL container and soaked 

in 150 mL of distilled water at 20oC for 24 hrs. The water was removed, and sprouting 

continued for 4 more days, with daily water by a 5-min soak in 150 ml of distilled water.  

Alfalfa, broccoli, and radish seeds (20 g) were poured in sterile 250 mL beakers 

and soaked in 150 mL of distilled water at 20 oC for 24 hrs. The water was drained, and 

seeds were transferred to sterile plastic trays lined with paper towels and germinated 

for 5 days at 20 oC.  Seeds were watered four times a day with sterile deionized water.  

 Sprouts were weighed to determine their yield and two 25 g batches were taken 

for microbiological testing. The samples were suspended in 225 mL of 0.1% peptone 

water and stomached for 60 s. A dilution series was created and plated on the 

appropriate media. For S. Enteritidis, dilutions were spread on XLD. For E. coli O157:H7, 

dilutions were spread on LB  plates containing  500 µg/mL ampicillin and 20 µg/mL IPTG 

and observed under UV light. For S. plymuthica EJ, dilutions were spread on TSA 

containing 100 ug/mL nalidixic acid. Samples were incubated at either 32 or 37 oC for 24 

hrs. For samples with low S. Enteritidis or E. coli 0157:H7 inoculation levels a most 

probable number (MPN) assay was used. Samples were appropriately diluted in LB 

Salmonella enrichment or LB broth containing 500 µg/mL ampicillin and incubated 
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overnight. Any positive tubes were streaked for confirmation. Total aerobic counts were 

determined by plating dilutions on TSA. 

3.3.7 Detection of the antagonistic prnC pyrrolnitrin gene 

The PCR was used to determine the possible production of the antagonistic 

compound pyrrolnitrin. Primers sets were designed by aligning the prnC gene of S. 

plymuthica (GenBank: JF274257.1 and NC_021659.1) and P. fluorescens (GeneBank: 

DQ058621.1 and DQ058619.1) using Clustal in SeaView (100). The prnC gene was 

amplified using 20 µL Fast-Mix French PCR pre-mix tubes (Bulldog Bio Cat# 25185) with 

primers prnCF (5’-CAG GAG CAC GAC CCG AAG GAG TT-3’) and prnCR (5’-GGT AGG ACG 

GGT GCA TCC AGT GC-3’), using the manufactures recommended procedure .   

Amplification was performed with a C1000 Thermal Cycler (Bio Rad, Hercules, 

CA) using a cycle program consisting of a 3 min initial denaturation step (95 oC); 30 

cycles of 95 oC for 60 sec, 75 oC for 15 sec, and 72 oC for  30 sec; and an 8 min final 

extension step at 70 oC. Amplification products were separated on a 1% agarose gel and 

visualized under UV light using Midori Green nucleic acid stain (Bulldog Bio, Cat #MG06). 

P. fluorescens was used as a positive control.  

3.3.8 Detection of extracellular siderophores 

 S. Plymuthica EJ was plated on CAS media which was prepared according to 

Schwyn and Neilands (209). Inoculated plates were incubated at 32 oC for 24 hrs. The 

presence of a pink halo surrounding the colony was indicative of siderophore activity. 
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3.4 Results 

3.4.1 Effect of S. plymuthica EJ extract on the growth of S. Enteritidis and E. coli O157:H7 

in vitro 

 The antagonistic properties of S. plymuthica EJ were only observed when grown 

in the presence of either pathogen. Therefore, S. plymuthica EJ was grown with either 

pathogen and a cell fee extract was prepared as explained in section 3.3.4. Prior to each 

test, the antimicrobial effect of the extract was tested by dropping 20 µL of extract on a 

TSA seeded with 4 log CFU/mL either S. Enteritidis or E. coli O157:H7. Antimicrobial 

activity was visualized by a zone of clearing in and around the drop, as seen in Figure 

3.1.  

 Figure 3.2 shows the effect of the antagonistic supernatant on the growth of 

either S.  Enteritidis or E. coli O157:H7. The addition of antagonistic supernatant had a 

significant effect on the growth of both pathogens. Following an 18 hr incubation, there 

was no significant difference in growth of S. Enteritidis in TSB containing a final volume 

consisting of 75% antagonistic extract when compared to Time 0. The growth of E. coli 

O157:H7 in the presence of 75% antagonistic extract was reduced by ~20% when 

compared to the control.  

3.4.2 Suppression of S. Enteritidis or E.coli O157:H7 on sprouting seeds 

 The effectiveness of S. plymuthica EJ on contaminated mung bean, alfalfa, 

broccoli, and radish seeds are summarized in Tables 3.1 – 3.8. Based on the results of an 

MPN assay, final S. Enteritidis and E. coli O157:H7 levels of < 3 CFU/g were found on  
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Figure 3.1. The effect of a S. plymuthica extract on either S. Enteritidis (A) or E. coli 

O157:H7 (B) seeded (4 log CFU/mL) TSA plates. A 20 µL drop of S. plymuthica extract 

was placed on a seeded TSA plate and incubated overnight at 32 oC.   
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Figure 3.2. The effect of a S. plymuthica extract on either S. Enteritidis (A) or E. coli 

O157:H7 (B) growth in relation to absorbance. A cell suspension (100 µL) with various 

concentrations of extract was transferred to a sterile 96-well plate and incubated at 37 

oC for various time intervals. The absorbance at each time point was read at 570 nm 

using a Bio-Tek ELX 800 plate reader.  
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mung bean and  radish sprouts  that had initial seed inoculums of 2 log CFU/g S. 

Enteritidis and 8 log CFU/g S. plymuthica EJ (Tables 3.1 – 3.4). When S. plymuthica EJ (8 

log CFU/g) was co-inoculated on mung bean or radish seeds containing 5 log CFU/g of S. 

Enteritidis, final pathogen levels on sprouts were reduced to or maintained at 4 log and 

5 CFU/g  respectively. The inoculation of broccoli seeds with S. plymuthica EJ resulted in 

significant reductions (> 3 log CFU) in final pathogen levels on broccoli sprouts when co-

inoculated with 2 log CFU/g of either E. coli O157:H7 or S. Enteritidis (Tables 3.7 and 

3.8) . However, when 8 log CFU/g of S. plymuthica EJ was co-inoculated with 5 log CFU/g 

of either pathogen, final pathogen levels grew > 8 log CFU/g of sprouts. Co-inoculation 

of S. plymuthica EJ with E. coli O157:H7 or S. Enteritidis on alfalfa seeds did not result in 

any reduction in final pathogen levels, regardless of the initial pathogen inoculation 

concentration (Tables 3.5 and 3.6). 

3.4.3 Detection of antagonistic compounds present in S. plymuthica EJ 

 The potential presence of two antagonistic compounds, pyrrolnitrin and 

extracellular siderophores were investigated. The presence of the gene prnC, which is 

necessary for the production of pyrrolnitrin was determined using the PCR with P. 

fluorescence as a positive control. As seen in Figure 3.3, the PCR resulted in bands within 

the size for the targeted gene for both S. plymuthica EJ and P. fluorescence. Even though 

the gene prnC is present within the genome of S. plymuthica EJ, further studies are 

needed validate the expression and production of pyrrolnitirin. S. plymuthica EJ tested 

positive for the production of extracellular siderophores as indicated by the pink halo 

present on CAS media (Figure 3.4).         
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Table 3.1. Effect of S. plymuthica EJ against S. Enteritidis contaminated mung beans1 

 

 
Sample 

 
Bean Yield (g) 

 
S. Enteritidis      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

78.4 ± 1.7 
 

ND 
 

ND 
 

9.21 ±0.17 

 
S. Enteritidis 
(2 log CFU/g) 

 
75.2 ± 7.2 

 
9.03 ± 0.65 

 
ND 

 
9.33 ± 0.35 

 
S. Enteritidis 
(5 log CFU/g) 

 
77.6 ± 3.45 

 
8.22 ± 0.30 

 
ND 

 
9.42 ± 0.27 

 
S. plymuthica 
(8 log CFU/g) 

 
77.3 ± 2.2 

 
ND 

 
9.15 ± 0.17 

 
9.10 ± 0.48 

S. Enteritidis 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

79.6 ± 2.5 

 
 

4.31 ± 0.05 

 
 

9.18 ± 0.15 

 
 

9.17 ± 0.75 

S. Enteritidis 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

76.5 ± 2.15 

 
 

ND 

 
 

9.05 ± 0.25 

 
 

9.19 ± 0.40 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 
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Table 3.2. Effect of S. plymuthica EJ against E. coli O157:H7 contaminated mung beans1 

 

 
Sample 

 
Bean Yield (g) 

 
E. coli O157:H7      

(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

75.5 ± 1.4 
 

ND 
 

ND 
 

9.32 ±0.09 

 
E. coli O157:H7 
(2 log CFU/g) 

 
71.9 ± 3.5 

 
8.97 ± 0.32 

 
ND 

 
9.58 ± 0.12 

 
E. coli O157:H7 
(5 log CFU/g) 

 
77.4 ± 1.8 

 
8.37 ± 0.11 

 
ND 

 
9.12 ± 0.19 

 
S. plymuthica 
(8 log CFU/g) 

 
76.3 ± 1.3 

 
ND 

 
9.25 ± 0.17 

 
9.19 ± 0.53 

E. coli O157:H7 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

75.5 ± 2.9 

 
 

4.16 ± 0.14 

 
 

9.18 ± 0.15 

 
 

9.09 ± 0.10 

E. coli O157:H7 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

76.8 ± 1.14 

 
 

ND 

 
 

9.17 ± 0.10 

 
 

9.29 ± 0.63 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 

. 
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Table 3.3. Effect of S. plymuthica EJ against S. Enteritidis contaminated radish seeds1 

 

 
Sample 

 
Bean Yield (g) 

 
S. Enteritidis      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

80.2 ± 8.5 
 

ND 
 

ND 
 

9.17 ±0.27 

 
S. Enteritidis 
(2 log CFU/g) 

 
84.6 ± 6.5 

 
8.91 ± 0.49 

 
ND 

 
9.51 ± 0.43 

 
S. Enteritidis 
(5 log CFU/g) 

 
76.3 ± 6.4 

 
9.61 ± 0.95 

 
ND 

 
9.01 ± 0.23 

 
S. plymuthica 
(8 log CFU/g) 

 
84.3 ± 4.7 

 
ND 

 
9.26 ± 0.25 

 
9.75 ± 0.58 

S. Enteritidis 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

85.2 ± 4.3 

 
 

5.88 ± 0.61 

 
 

9.27 ± 0.79 

 
 

9.30 ± 0.20 

S. Enteritidis 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

83.5 ± 13.5 

 
 

ND 

 
 

9.40 ± 0.70 

 
 

9.79 ± 0.45 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 

. 
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Table 3.4. Effect of S. plymuthica EJ against E. coli O157:H7 contaminated radish seeds1 

 
 

Sample 
 

Bean Yield (g) 
 

E. coli O157:H7      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

80.2 ± 3.04 
 

ND 
 

ND 
 

9.41 ±0.27 

 
E. coli O157:H7 
(2 log CFU/g) 

 
86.3 ± 7.1 

 
9.40 ± 0.30 

 
ND 

 
9.36 ± 0.27 

 
E. coli O157:H7 
(5 log CFU/g) 

 
78.5 ± 6.7 

 
9.31 ± 0.43 

 
ND 

 
9.61 ± 0.35 

 
S. plymuthica 
(8 log CFU/g) 

 
82.1 ± 3.6 

 
ND 

 
8.89 ± 0.28 

 
9.77 ± 0.05 

E. coli O157:H7 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

81.1 ± 2.06 

 
 

5.15 ± 0.44 

 
 

9.82 ± 0.60 

 
 

9.51 ± 0.48 

E. coli O157:H7 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

83.2 ± 4.5 

 
 

ND 

 
 

9.42 ± 0.17 

 
 

9.33 ± 0.51 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 

. 
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Table 3.5. Effect of S. plymuthica EJ against S. Enteritidis contaminated alfalfa seeds1 

 
 

Sample 
 

Bean Yield (g) 
 

S. Enteritidis     
  (log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

107.8 ± 11.7 
 

ND 
 

ND 
 

9.63 ±0.14 

 
S. Enteritidis 
(2 log CFU/g) 

 
112.0 ± 6.5 

 
8.95 ± 0.25 

 
ND 

 
9.13 ± 0.12 

 
S. Enteritidis 
(5 log CFU/g) 

 
101.8 ± 3.3 

 
9.57 ± 0.33 

 
ND 

 
9.63 ± 0.49 

 
S. plymuthica 
(8 log CFU/g) 

 
115.8 ± 13.2 

 
ND 

 
9.64 ± 0.68 

 
9.70 ± 0.12 

S. Enteritidis 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

108.0 ± 9.23 

 
 

9.26 ± 0.16 

 
 

8.99 ± 0.12 

 
 

9.44 ± 0.68 

S. Enteritidis 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

97.8 ± 6.74 

 
 

8.91 ± 0.13 

 
 

9.39 ± 0.26 

 
 

9.57 ± 0.44 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 
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Table 3.6. Effect of S. plymuthica EJ against E.coli O157:H7 contaminated alfalfa seeds1 

 
 

Sample 
 

Bean Yield (g) 
 

E. coli O157:H7      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

99.8 ± 1.5 
 

ND 
 

ND 
 

9.48 ±0.32 

 
E. coli O157:H7 
(2 log CFU/g) 

 
104.3 ± 9.1 

 
9.19 ± 0.27 

 
ND 

 
9.34 ± 0.15 

 
E. coli O157:H7 
(5 log CFU/g) 

 
102.9 ± 5.8 

 
9.12 ± 0.63 

 
ND 

 
9.70 ± 0.65 

 
S. plymuthica 
(8 log CFU/g) 

 
109.5 ± 20.1 

 
ND 

 
9.23 ± 0.25 

 
9.30 ± 0.37 

E. coli O157:H7 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
99.9 ± 12.3 

 
9.07 ± 0.31 

 
9.19 ± 0.21 

 
9.49 ± 0.19 

E. coli O157:H7 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
110.4 ± 12.5 

 
8.97 ±0.39 

 
9.11 ± 0.42 

 
9.17 ± 0.16 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 
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Table 3.7. Effect of S. plymuthica EJ against S. Enteritidis contaminated broccoli seeds1 

 
 

Sample 
 

Bean Yield (g) 
 

S. Enteritidis      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

93.3 ± 9.7 
 

ND 
 

ND 
 

9.63 ±0.52 

 
S. Enteritidis 
(2 log CFU/g) 

 
92.9 ± 3.5 

 
9.01 ± 0.50 

 
ND 

 
9.06 ± 0.36 

 
S. Enteritidis 
(5 log CFU/g) 

 
107.2 ± 8.5 

 
9.26 ± 0.24 

 
ND 

 
9.20 ± 0.28 

 
S. plymuthica 
(8 log CFU/g) 

 
95.7 ± 8.1 

 
ND 

 
9.65 ± 0.39 

 
9.28 ± 0.15 

S. Enteritidis 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

104.8 ± 14.5 

 
 

8.94 ± 0.43 

 
 

9.32 ± 0.13 

 
 

9.39 ± 0.39 

S. Enteritidis 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

101.7 ± 12.1 

 
 

1.42 ± 0.14 

 
 

9.45 ± 0.15 

 
 

9.69 ± 0.36 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 
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Table 3.8. Effect of S. plymuthica EJ against E.coli O157:H7 contaminated broccoli seeds1 

 
 

Sample 
 

Bean Yield (g) 
 

E. coli O157:H7      
(log CFU/g) 

 
S. plymuthica EJ 

(log CFU/g) 

Total Aerobic 
Count (log 

CFU/g) 
 

Control 
 

102.9 ± 4.1 
 

ND 
 

ND 
 

9.35 ±0.10 

 
E. coli O157:H7 
(2 log CFU/g) 

 
103.9 ± 6.7 

 
9.14 ± 0.17 

 
ND 

 
9.41 ± 0.07 

 
E. coli O157:H7 
(5 log CFU/g) 

 
98.2 ± 2.7 

 
9.58 ± 0.19 

 
ND 

 
9.36 ± 0.37 

 
S. plymuthica 
(8 log CFU/g) 

 
100.6 ± 12.8 

 
ND 

 
9.03 ± 0.11 

 
9.88 ± 0.80 

E. coli O157:H7 
(5 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

97.7 ± 4.4 

 
 

8.96 ± 0.40 

 
 

9.63 ± 0.44 

 
 

9.97 ± 0.20 

E. coli O157:H7 
(2 log CFU/g) 
S. plymuthica 
(8 log CFU/g) 

 
 

97.2 ± 5.7 

 
 

1.41 ±0.50 

 
 

9.44 ± 0.32 

 
 

9.84 ± 0.34 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g. 
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3.4.4 Storage viability of S. plymuthica EJ on mung beans 

If S. plymuthica is to be used as a biocontrol agent, it is important to understand 

the survival of this organism on the surface of sprouting seeds. The storage viability of S. 

plymuthica EJ dried on mung beans and stored at 4 oC and 20 oC can be seen in Figure 

3.5. Mung beans stored for 30 days at 4 oC had a 2.1 log CFU/g reduction in S. 

plymuthica EJ whereas beans stored at 20 oC had a 3.6 log CFU/g reduction. Storage at 

20oC resulted in significantly (p < 0.05) fewer viable cells than refrigerated storage.    

3.5 Discussion 

 With an increased annual consumption and constant risk of foodborne 

illness, the ability to prevent the growth of and/or inactivate foodborne pathogens on 

sprouts is of great importance. The potential use of biocontrol organisms as a means of 

reducing the incidence of foodborne illness is a promising technique. Various 

manuscripts have demonstrated the effectiveness and practicality of biocontrol 

organism as a preventative measure against foodborne pathogens (18, 27, 102, 133).  

The organisms S. plymuthica EJ has demonstrated strong antagonistic activity against S. 

Enteritidis and E. coli O157:H7 in both in vitro and in vivo settings. Figure 3.6 shows the 

antagonistic nature of S. plymuthica EJ against S. Enteritidis when utilizing the flip-plate 

method previously described in the materials and methods section. Germinated mung 

bean sprouts, whose seeds had been co-inoculated with pathogens and S. plymuthica EJ, 

continued to demonstrate antagonistic properties when placed on an agarose plate 

seeded with 4 log CFU/mL of E. coli O157:H7 or S. Enteritidis (Figure 3.7).             
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Figure 3.3. Gel electrophoresis of the amplified prnC gene of S. plymuthica EJ (B: 525 bp) 

and P. fluorescence (C: 525 bp). DNA ladder (A): 10, 8, 6, 5, 4, 3, 2, 1.5, 1, and 0.5 kb.   
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Figure 3.4. Siderophore activity of S. plymuthica EJ demonstrated on CAS media. 

 

 

 

 

 

 

 

 



 

52 
 

0 10 20 30
1

2

3

4

5

6

7

8

9
20

o
 C

4
o
 C

Detection Limit

Time (days)

S
u

rv
iv

a
l 

(l
o

g
 C

F
U

/g
)

 

Figure 3.5. Viability of S. plymuthica EJ on mung bean seeds when stored at either or 20 

oC for 30 days. Beans were inoculated with 100 ug/ml nalidixic acid resistant S. 

plymuthica EF for a final concentration of 8 log CFU/g of seed and stored at 4 oC or 20 oC 

for up to 30 days. Following storage, seeds were transferred to sterile 250 mL beakers 

containing 50 mL of 0.1% peptone water and placed on a rotary shaker set to 125 RPM 

for 15 mins. A dilution series was created and plated on the appropriate media. 
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Figure 3.6. Flip-plate method: A typical representation of the antagonistic activity of S. 

plymuthica against S. Enteritidis. 
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Figure 3.7. A typical representation of the antagonistic properties of a mung bean 

containing ≥ 8 log CFU/g of S. plymuthica EJ when placed and incubated on a seeded (4 

log CFU/mL S. Enteritidis) tryptic soy agarose plate at 32 oC.  
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The gene prnC, which is responsible for the antibiotic compound pyrrolnitrin, 

was found to be present in S. plymuthica EJ. Though primarily an anti-fungal compound, 

pyrrolnitirin has also been shown to effective against various Gram positive and 

negative opportunistic human pathogens and may play a role in the antagonistic nature 

of S. plymuthica EJ (44). The production of extracellular siderophores are a method by 

which a bacterium can sequester metals from the surrounding environment. 

Siderophores have been studied as a potential antimicrobial compound due to the fact 

that they can sequester and render iron unavailable for other microorganisms (107, 178, 

227). The production of extracellular siderophores and the potential expression of 

pyrrolnitrin may aid in the antagonistic nature of the isolated strain but are probably not 

the main mechanisms. Various bacteriocins, organic acids, and bacteriocin-like 

compounds are more likely the key compounds responsible for S. plymuthica EJ’s anti-

Salmonella and E. coli O157:H7 properties. Identification, purification, and 

characterization of any such compounds must be performed to fully understand the 

antagonistic mechanism of S. plymuthica EJ.  

As for the practical application of biocontrol organisms, there has been a push to 

further develop and investigate the use of such techniques on food based systems such 

as produce and ready-to-eat meats (88, 221, 227). The findings from this study 

illuminate the potential of such technology. This specific strain was able to suppress the 

growth of both E. coli O157:H7 and S. Enteritidis on mung bean, radish, and broccoli 

sprouts. Sprouts grown from mung beans or radish seeds had a final product that tested 

negative for the presence of either pathogen when initial inoculated with 2 log CFU/g 
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pathogen and 8 log CFU/g of S. plymuthica EJ. The robust storage viability of S. 

plymuthica EJ on sprouting seeds is reasonably impressive, with only a 3 log CFU/g and 

1.5 log CFU/g reduction when stored for 30 days at either 20 oC or 4 oC respectively. Due 

to the estimated low levels of pathogens present on sprouting seeds (≤ 1 log CFU/g), 

seeds with ≥ 5 log CFU/g S. plymuthica EJ may still be able to limit or prevent the 

proliferation of any present pathogen; further studies are needed to validate this claim. 

The utilization of a biocontrol organism(s) to help minimize the risk associated 

with minimally processed produce is just one of the many areas currently studied 

addressing this problem. With the increase of self-educated, health conscious 

consumers, “natural” solutions may be at the top of their list compared to traditional 

chemical and/or physical treatments. However, the influence of any artificially 

introduced biocontrol organisms on the soil and human microflora along with the 

production of any potentially hazardous compounds must be taken into consideration.         

                  

 

 

 

 

 

 



 

57 
 

CHAPTER 4 
EFFECTIVENESS OF A NOVEL SPONTANEOUS CARVACROL NANOEMULSION AGAINST 

SALMONELLA ENTERICA ENTERITIDIS AND ESCHERICHIA COLI O157:H7 ON 

CONTAMINATED MUNG BEAN AND ALFALFA SEEDS 

 

4.1 Abstract 

  Outbreaks of foodborne illness from consumption of sprouts have been linked to 

contaminated seeds prior to germination. Due to the long sprouting period at ambient 

temperatures and high humidity, germinating seeds contaminated with low pathogen 

levels (0.1 log CFU/g) can result in sprouts with high numbers (≥108 CFU/g) of 

pathogens. Currently, the recommended treatment method involves soaking seeds in 

20,000 ppm (2 %) calcium hypochlorite prior to germination. In this study, an alternative 

treatment involving soaking seeds in a carvacrol nanoemulsion was tested for its 

efficacy against S. Enteritidis (ATCC BAA-1045) or EGFP expressing E. coli O157:H7 (ATCC 

42895) contaminated mung bean and alfalfa seeds. The antimicrobial treatment was 

performed by soaking inoculated seed batches in the spontaneous nanoemulsion (4,000 

or 8,000 ppm) for 30 or 60 minutes. The spontaneous nanoemulsion was formed by 

titrating the oil phase (carvacrol and medium chain triglycerides) and water-soluble 

surfactant (Tween 80®) into sodium citrate buffer. Following treatment the numbers of 

surviving cells were determined by suspending the seeds in TSB and performing plate 

counts and/or Most Probable Number (MPN) enumeration. Treated seeds were 

sprouted and tested for the presence of the appropriate pathogen. This treatment 

successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis  and E. coli on 
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either seed types when soaked for either 30 or 60 min at nanoemulsion concentrations 

corresponding to 4,000 (0.4 %) or 8,000 (0.8 %) ppm carvacrol. Inoculated alfalfa seeds 

treated with 4,000 ppm nanoemulsion, required a 60 minute treatment time to show a 

similar 2-3 log reduction. Complete inactivation was confirmed by germinating treated 

seeds and performing microbiological testing. Total sprout yield was not compromised 

by any of the tested treatments. These results show that carvacrol nanoemulsions may 

be an alternative antimicrobial treatment method for mung bean and alfalfa seeds.    

 4.2 Introduction  

  Bean sprouts, specifically mung and alfalfa sprouts, have been associated with 

outbreaks of foodborne illness throughout the world (34, 35). The most frequent 

pathogen involved is Salmonella spp.. One of the most wide-spread, sprout based 

outbreak of salmonellosis occurred throughout Ontario in 2005 and resulted in over 600 

reported cases (35). The primary source of contamination is often linked to the seeds 

prior to sprouting (86, 98). This may be due to the fact that seeds from several 

producers are often consolidated into a single lot and sold to multiple growers. It has 

been shown that even extremely low levels of initial contamination (0.1 log CFU/g) will 

grow to substantial numbers during the sprouting process (86). In addition, pathogens 

can be internalized during sprouting, protecting them for sanitation processes following 

germination (67, 255). Therefore, it is necessary to find a safe and effective method to 

either decontaminate seeds prior to germination or a way to inactivate and retard the 

growth of pathogens during the sprouting process.   
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  Currently, a 20,000 ppm hypochlorite soak is used as a pre-treatment prior to 

germination to lower the risk of foodborne disease (241). However, chlorine is easily de-

activated in conditions with high organic loads and therefore requires constant 

monitoring to ensure that the proper concentration is maintained. Also, the actual 

topography and condition of the seeds along with the presence of protective sites 

protect bacteria from disinfectants (241). Soaking seeds in 20,000 ppm calcium 

hypochlorite for 15 min has an average reduction of 3.08 log CFU/g, but its efficacy 

reported in recent literature reports reductions ranging from 0.51 – 6.90 log CFU/g (11, 

13, 54). Treatment with such high levels of calcium hypochlorite is also considered 

unacceptable for the production of certified organic sprouts and is banned in some 

European countries (54).     

  One alternative method to using calcium hypochlorite is the use of antimicrobial 

essential oils. Essential oils are naturally occurring substances produced by various 

aromatic plants that have been shown to have antioxidant, antiradical, and 

antimicrobial properties (28). These substances are considered “natural”, their use for 

commercial applications is attractive since many consumers are now concerned about 

the addition of synthetic compounds to foods (28, 42). The essential oil carvacrol has 

been shown to reduce cell numbers and inactive S. Enteritidis and E. coli O157:H7 in 

broth and on food samples (145, 185, 196, 261). In an emulsified form, essential oils 

may be applied as an aqueous-based treatment.  In fact, fine droplets may improve the 

delivery of antimicrobial compounds to seeds because they may be able to penetrate 

into the cracks and crevices on the seeds surfaces.  
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Diagram 4.1. Schematic representation of the spontaneous emulsification 

process used to form antimicrobial nanoemulsions. 
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Emulsions containing very fine droplets (radius ≈ 100 nm) are referred to as 

nanoemulsions.  Nanoemulsions can be formed from both high-energy and low-energy 

methods (154).  High energy methods require specialized mechanical devices that are 

capable of generating intense mechanical forces that can intermingle and disrupt the oil 

and water phases, such as sonicators, high pressure valve homogenizers, or 

microfluidizers.  Low-energy methods rely on the spontaneous formation of fine oil 

droplets due to physicochemical processes that occur when certain combinations of 

surfactant, oil, and water are combined under appropriate conditions The use of low-

energy methods is highly attractive for preparing nanoemulsions for many applications 

because of its low cost and simplicity (41). A number of low-energy methods are 

available for producing nanoemulsions, e.g., spontaneous emulsification, emulsion 

inversion point, phase inversion temperature, and phase inversion composition methods 

(6, 51). The spontaneous emulsification method is one of the more suitable for 

commercial implementation since it simply involves titrating a mixture of oil and water-

soluble surfactant into water (Diagram 4.1) (51, 154). This method has recently been 

reported for fabricating effective antimicrobial nanoemulsions from essential oils (41).  

Based on these findings and the fact that carvacrol is a potent antimicrobial agent, the 

spontaneous emulsification method was used to produce carvacrol nanoemulsions. The 

emulsions storage stability and efficacy against artificially contaminated mung bean and 

alfalfa seeds was determined.  
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4.3 Materials and Methods 

4.3.1 Bacterial strains and culture conditions  

 The bacterial strains used in the presented experiments were Salmonella 

enterica subspecies  enterica serovar Enteritidis (ATCC BAA-1045) and an enhanced 

green fluorescent protein (EGFP) expressing Escherichia coli O157:H7 (ATCC 42895) 

(192). Stock cultures of each organism were stored at -80 oC in tryptic soy broth (TSB; BD 

Diagnostic Systems, Cat# DF0064-07-6) containing 25% (v/v) glycerol. Monthly, frozen 

stock cultures were transferred to working cultures by plating on tryptic soy agar (TSA; 

BD Diagnostic Systems, Cat# DF0370-075) slants/plates and incubating at 37 oC for 24 

hrs. Following incubation, single colonies of E. coli O157:H7 were picked and transferred 

to Luria broth (Lennox, LB) (Fisher BioReagents Cat#  BP9724-500) plates containing 500 

µg/mL ampicillin (Fisher Scientific Cat# BP1760-5). The absorbance at 600 nm was used 

to determine cells numbers, with an absorbance of 0.5 equal to 1.0 x 108 CFU for both E. 

coli O157:H7 and S. Enteritidis as determined by plate counts.     

Periodically, working cultures were streaked on differential media to ensure 

purity. For S. Enteritidis, cultures were spread on xylose, lysine, deoxycholate (XLD) agar 

(Remel Cat# R459902). For E. coli O157:H7, cultures were spread on LB (Fisher 

BioReagents Cat# BP9724-500) plates containing  500 µg/mL ampicillin (Fisher Scientific 

Cat# BP1760-5) and 20 µg/mL IPTG (Thermo Scientific Cat# FERR0392) and observed 

under UV light. Cultures were incubated overnight in TSB at 37 oC on a rotary shaker set 

at 150 RPM. All cultures were diluted with TSB to the desired cell numbers.   
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4.3.2 Formation of antimicrobial nanoemulsions  

  The preparation of the antimicrobial nanoemulsion was based on the optimized 

system presented by Chang, McLandsborough, and McClements (41). Preparation was 

as follows. Carvacrol (4 g) (Sigma-Aldrich, Cat# W224502-100G-K) was added to 6 g 

medium chain triglyceride (MCT) oil (Miglyol 812, Witten, Germany) and thoroughly 

mixed for 5 min. Once mixed, Tween 80® (10 g) (Sigma-Aldrich, Cat# P1754-500ml) was 

added to the oil mixture and mixed for another 5 min. The oil/Tween 80 mixture (20 g) 

was titrated, at a rate of 2 mL/min, into 80 g of 5.0 mM sodium citrate buffer (pH 3.5) 

containing a magnetic stirring bar set to 600 RPM and allowed to mix for an additional 

15 min.  The emulsion was filter sterilized through a sterile 0.45 µm syringe filter (Fisher 

Scientific Cat# 09-719-005) and stored in sterile 50 mL tubes at 2 - 5 oC for up to 3 

weeks.  Droplet size was measured using dynamic light scattering (Zetasizer Nano ZS, 

Malvern Instruments, UK).    

4.3.3 Storage stability of nanoemulsions  

  The nanoemulsion (20 mL) was placed in pre-sterilized test tubes and incubated 

at 20 oC. For thirty consecutive days, size measurements were recorded using a dynamic 

light scattering instrument (ZetasizerNano ZS, Malvern Instruments, UK). This 

instrument determines the particle size from intensity-time fluctuations of a laser beam 

(633 nm) scattered from a sample at an angle of 173°. Each individual measurement was 

an average of 13 runs. To determine if diluting the emulsion would have an impact on 

stability, stock nanoemulsion was diluted 5-fold in 5.0 mM sodium citrate buffer (pH 
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3.5) and size measurements were recorded for thirty consecutive days as described 

above. 

4.3.4 Sensitivity of S. Enteritidis and E.coli O157:H7 to the carvacrol nanoemulsion in 

vitro.   

Overnight growth (9 log CFU/mL) of either S. Enteritidis or E.coli O157:H7 was 

added to test tubes containing TSB (9 mL) and various concentrations of the carvacrol 

nanoemulsion (8000, 4000, 2000, 1000, 500, 250, and 125 PPM final carvacrol 

concentration), to give an initial level of approximately 6 log CFU/mL. The tubes were 

incubated at 37 oC for 24 hrs. A dilution series was created and plated on the 

appropriate media. For S. Enteritidis, dilutions were spread on XLD (Remel Cat# 

R459902). For E. coli O157:H7, dilutions were spread on LB (Fisher BioReagents Cat# 

BP9724500) plates containing  500 µg/mL ampicillin (Fisher Scientific Cat# BP1760-5) 

and 20 µg/mL IPTG (Thermo Scientific Cat# FERR0392) and observed under UV light. It 

was from this procedure that the MIC for both E. coli O157:H7 and S. Enteritidis were 

determined.  

4.3.5 Effectiveness of carvacrol nanoemulsion on S. Enteritidis or E. coli O157:H7 

contaminated mung beans and alfalfa seeds  

  All beans/seeds used in this study were generously provided by Jonathan’s 

Organics (Rochester, MA).  Beans/seeds were inoculated and sprouted using a modified 

version of the method presented by Ye et al. (262). Batches (20 g) of beans /seeds were 

soaked in 50 mL of diluted S. Enteritidis or E. coli O157:H7 for 20 min resulting in final 

inoculums of 8, 5, 3, or 2 log CFU/g. The inoculated beans/seeds were then transferred 
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to a sterile glass petri dish containing sterile filter paper within a biological safety 

cabinet, and allowed to dry overnight at ambient temperature. The inoculated 

bean/seed batches were placed in 250-mL beakers and treated by soaking in 50 mL of 

nanoemulsion (4,000 or 8,000 ppm) for 30 or 60 mins. For the control, contaminated 

batches were soaked in 5.0 mM, pH 3.5 sodium citrate buffer. After treatment, the 

batches were rinsed once with 50 mL of sterile deionized water and transferred to a 

Whirl-Pack bag containing 50 mL of TSB. The Whirl-Pack bag was placed on a rotary 

shaker set to 50 RPM for 15 min. After agitation, a dilution series was created and 

plated on the appropriate media and incubated at 37 oC for 24 hrs. For samples with low 

S. Enteritidis or E. coli O157:H7 inoculation levels (2 and 3 log CFU/g), a three tube Most 

Probable Number (MPN) assay was used in conjunction with spread plating according to 

the FDA’s Bacteriological Analytical Manual (BAM) (250). Samples were appropriately 

diluted in Lactose Broth (BD BBL Cat# DF0004-17-7) Salmonella enrichment or Luria 

Broth (Lennox) broth (Fisher Scientific Cat# BP9722-500) containing ampicillin (Fisher 

Scientific Cat# BP1760-5) (500 µg/mL) and incubated overnight. Dilution sets were 

checked for turbidity. Any positive tubes were streaked on selective/differential media 

for confirmation. Both treated inoculated and uninoculated samples were then 

sprouted.    

  Treated inoculated and uninoculated mung beans (20 g) and remaining broth 

were transferred to a sterile 1000 mL bottle and soaked in 150 mL of distilled water at 

20 oC for 24 hrs. The water was removed, and sprouting continued for 4 days at 20 oC, 

with daily water by a 5-min soak in 150 mL of distilled water. After four days, two 25 g 
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batches of sprouts were taken for microbiological testing. The samples were suspended 

in 225 mL of 0.1% peptone water and stomached for 1 min. A dilution series was 

created and plated on the appropriate media as previously described.  

  Treated inoculated and uninoculated alfalfa seeds (20 g) and remaining broth 

were poured in a sterile 250 mL beaker and soaked in 150 mL of distilled water at 20 oC 

for 24 hrs. The water was drained, and seeds were transferred to sterile plastic trays 

lined with paper towels and germinated for 5 days at 20 oC.  Seeds were watered four 

times a day with sterile deionized water. After sprouting, two 25 g batches of sprouts 

were suspended in 225 mL of 0.1% peptone water and stomached for 1 min. A dilution 

series was created and plated on the appropriate media as previously described.  

4.3.6 Statistical Analysis 

One-way ANOVA followed by Tukey’s multiple comparisons test (95% confidence 

interval) for total log reduction and total sprout yield was performed using GraphPad 

Prism version 5.01 for Windows, GraphPad Software, La Jolla California USA. 

4.4 Results 

4.4.1 Formation and stability of carvacrol nanoemulsions  

  Carvacrol nanoemulsions were prepared using the spontaneous emulsification 

method described in Section 4.2.2. The freshly prepared nanoemulsions had mean 

droplet diameters (Z-average) around 100 nm as determined by dynamic light 

scattering, which increased to around 200 nm after 30 days storage at 20 oC (Figure 4.1). 

These results indicated that nanoemulsions containing small droplets could initially be 
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formed, but are unstable resulting in droplet growth during long-term storage.  The 

growth in droplet size during storage could be inhibited by diluting the nanoemulsion 5-

fold with sterile sodium citrate buffer prior to storage (Figure 4.2).  A 5-fold dilution of 

the nanoemulsion corresponds to a carvacrol level of 8,000 PPM, which is the amount 

required for observed antimicrobial efficacy in this system. In addition, the in vitro 

antimicrobial efficacy of the stored nanoemulsions was not significantly different from 

that of the fresh nanoemulsions (data not shown).  These dilution and antimicrobial 

studies suggest that a nanoemulsion could be prepared and used for some time before 

it would need to be replaced, but further studies are needed to confirm this.    

4.4.2 Effectiveness of carvacrol nanoemulsions against S. Enteritidis or E. coli 0157:H7 

contaminated mung bean and alfalfa seeds  

  Preliminary experiments were carried out using bacteria dispersed within broth 

(rather than inoculated on seeds) to establish appropriate usage levels.  The minimum 

inhibitory concentration (MIC) of the antimicrobial nanoemulsions in broth was found to 

be ≈ 500 PPM carvacrol, with inactivation below the detectable level occurring at 

concentrations ≥ 4000 PPM carvacrol (Figure 4.3).  Based upon these results, levels of 

4000 and 8000 PPM carvacrol were selected to test as a disinfection agent for sprouting 

seeds. The effectiveness of the carvacrol nanoemulsion treatments on mung beans and 

alfalfa seeds is summarized in Tables 4.1 and 4.2. Using an MPN assay, final S. Enteritidis 

and E. coli O157:H7 levels of ≤ 3 CFU/g were found on mung bean seeds that had an 

initial inoculum of 3 log CFU/g or less when 4000 or 8000 PPM of carvacrol were used 

(Table 4.1 and 4.2). Treatment of contaminated alfalfa seeds with 8000 PPM for either 
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30 or 60 min yielded similar results for S. Enteritidis and E. coli O157:H7 with an initial 

inoculum of 3 log CFU/g or less. However, only the 60 min 4000 PPM carvacrol 

treatment was successful against both pathogens on alfalfa seeds (Table 4.3 and 4.4).   

All treatments that resulted in MPN numbers of ≤ 3 CFU/g were germinated and 

tested again for the presence of the pathogens using both plate counts and MPN. 

Following germination and microbiological testing, neither Salmonella nor E. coli 

O157:H7 were detected. These findings indicate that complete inactivation of both 

pathogens was achieved when treated with 8000 PPM. Total sprout yield was not 

compromised by any of the emulsion treatments. As seen in Table 5, there was no 

significant difference between treated and untreated sprout germination yields. It has 

been shown that some treatment methods such as high chlorine concentrations and 

pasteurization decontamination methods impact the germination rate of treated seeds 

and results in sub-par germination yields. The spontaneous carvacrol nanoemulsion was 

able to inactivate pathogens without affecting the sprout yield.  

4.5 Discussion 

The use of carvacrol as a potential food antimicrobial has been studied in 

various food systems including but not limited to fish, milk, and produce (123, 126, 201, 

249). For example, treatment of kiwifruit with 15 mM of carvacrol resulted in a 3 log 

reduction in spoilage organisms and significantly increased the fruits shelf life (201). The 

ability of carvacrol to inactive Salmonella spp. on celery was studied by Ravishankar et 

al. (196). The group found that treatment with 10,000 ppm (1%) carvacrol resulted in a 5 

log reduction of the pathogen when compared to the negative controls (196).  
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Figure 4.1.  Comparison of the mean diameter (Z-average) of freshly prepared and 

stored (30 days) carvacrol nanoemulsions. To distinguish between the samples 15 units 

were added to the relative intensity of the 30 day sample. 
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The potential use of carvacrol as an antimicrobial, in combination with existing 

treatment methods has been shown to be promising for the sprout industry. When a 

carvacrol treatment was combined with high temperature and pressure treatment 

protocols reductions of more than 5 log CFU/g where recorded (187).  This treatment is 

highly effective, yet results in a significant decrease in sprout germination rates (187). 

The use of carvacrol alone as an alternative treatment method for mung bean 

or alfalfa seeds has not been studied. Carvacrol itself is not water soluble and treatment 

with pure carvacrol is not economically ideal. The utilization of spontaneous 

nanoemulsion technology solubilizes carvacrol, demonstrating significant reductions in 

cell numbers with lower concentrations of the essential oil.        

For the commercial application of this technology, we envision that a 

nanoemulsion treatment would be applied by simply pouring emulsified carvacrol into 

an aqueous solution containing one or more batches of seeds in a well-ventilated area. 

Initially, we therefore tested the formation and stability of the antimicrobial 

nanoemulsion. The efficacy of a spontaneous antimicrobial nanoemulsion is directly 

influenced by the amount of lipid phase and surfactant in the system (41). If not 

properly optimized, the emulsion system may be subject to coalescence, Ostwald 

ripening, or flocculation, all of which can greatly reduce storage stability and 

antimicrobial activity (40). The emulsion stability data presented in this manuscript is 

very similar to the previously reported data for this optimized system (41).  
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Figure 4.2. Comparison of the increase in mean droplet diameter (Z-average) of undiluted 

and 5-fold diluted spontaneous nanoemulsions when stored for 30 days. All plotted 

means and standard deviations are from triplicate studies. 
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Figure 4.3. Sensitivity of Salmonella Enteritidis and Escherichia coli O157:H7 to the 

carvacrol nanoemulsion in TSB. Overnight growth (6 log CFU/mL) of either S. Enteritidis 

or E. coli O157:H7 was added to test tubes containing TSB and various concentrations of 

the carvacrol nanoemulsion. The tubes were incubated at 37 oC for 24 hrs and a dilution 

series was created and plated on the appropriate media. All plotted means and standard 

deviations are from triplicate studies. 
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Table 4.1.  Effect of carvacrol emulsion on E. coli O157:H7 contaminated mung bean 

seeds1,2 

  

 
 

Treatment 
Treatment 

Time 
(min) 

 
Initial 

Inoculum 
(log CFU/g) 

 
Cell Numbers 

after Treatment 
(log CFU/g) 

 
Total 
Log 

Reduction 

 
Pathogen 

Detected after 
Sprouting 

 
 
 
 

Control 

 

30 

8.2 ± 0.14 7.3 ± 0.15 0.86 ± 0.24A + 

5.5 ± 0.32 4.3 ± 0.22 1.3 ± 0.32A + 

3.2 ± 0.12 2.5 ± 0.27 0.89 ± 0.20A + 

2.6 ± 0.29 1.4 ± 0.20 1.4 ± 0.26A + 

     

 
 

60 

8.2 ± 0.15 7.4 ± 0.14 0.83 ± 0.11A + 

5.6 ± 0.22 4.5 ± 0.36 1.1 ± 0.34A + 

3.4 ± 0.21 2.4 ± 0.35 0.94 ± 0.22A + 

2.4 ± 0.24 1.1 ± 0.10 1.3 ± 0.28A + 

 
 
 
 

8000 ppm 

 

30 

8.2 ± 0.13 5.2 ± 0.15 3.0 ± 0.18A + 

5.3 ± 0.25 3.1 ± 0.35 2.2 ± 0.22B + 

3.2 ± 0.14 ND 3.2 ± 0.14A - 

2.4 ± 0.21 ND 2.4 ± 0.21B - 

     

 
60 

8.2 ± 0.03 4.6 ± 0.29 3.6 ± 0.29A + 

5.1 ± 0.06 2.5 ± 0.31 2.6 ± 0.35B + 

3.1 ± 0.12 ND 3.1 ± 0.12A - 

2.3 ± 0.29 ND 2.3 ± 0.29B - 

 
 
 
 

4000 ppm 

 
 

30 

8.3 ± 0.17 5.7 ± 0.47 2.6 ± 0.57A + 

5.3 ± 0.22 3.5 ± 0.43 1.8 ± 0.57B + 

3.1 ± 0.03 ND 3.1 ± 0.03A - 

2.4 ± 0.34 ND 2.4 ± 0.34A - 

     

 
 

60 
 

8.5 ± 0.32 5.5 ± 0.24 3.0 ± 0.55A + 

5.4 ± 0.24 2.3 ± 0.21 3.1 ± 0.45A + 

3.4 ± 0.33 ND 3.4 ± 0.33A - 

2.2 ± 0.05 ND 2.2 ± 0.05B - 
1 All means and standard deviations are from triplicate studies.  A “ND” indicates that no pathogens were detected using a three-tube 
MPN assay with a limit of detection of ≤ 3 MPN/g.  A “+” indicates that pathogens were detected after germination. A “-“indicates 
that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
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Table 4.2. Effect of carvacrol emulsion on S. Enteritidis contaminated mung bean 

seeds1,2 

 

 

 

 
 

Treatment 
Treatment 

Time 
(min) 

 
Initial 

Inoculum 
(log CFU/g) 

 
Cell Numbers 

after Treatment 
(log CFU/g) 

 
Total 
Log 

Reduction 

 
Pathogen 

Detected after 
Sprouting 

 
 
 
 

Control 

 

30 

8.1 ± 0.06 7.3 ± 0.30 0.84 ± 0.32A + 

5.4 ± 0.37 4.4 ± 0.23 1.0 ± 0.59A + 

3.3 ± 0.40 2.4 ± 0.33 0.90 ± 0.73A + 

2.2 ± 0.07 1.4 ± 0.22 0.77 ± 0.27A + 

     

 
 

60 

8.3 ± 0.22 7.5 ± 0.43 0.79 ± 0.34A + 

5.4 ± 0.31 4.3 ± 0.35 1.2 ± 0.62A + 

3.4 ± 0.38 2.4 ± 0.34 1.0 ± 0.62A + 

2.5 ± 0.29 1.3 ± 0.14 1.2 ± 0.33A + 

 
 
 
 

8000 ppm 

 

30 

8.3 ± 0.39 5.2 ± 0.37 3.1 ± 0.11A + 

5.7 ± 0.26 3.1 ± 0.20 2.6 ± 0.36A + 

3.2 ± 0.19 ND 3.2 ± 0.19A - 

2.1 ± 0.09 ND 2.1 ± 0.09B - 

     

 
60 

8.5 ± 0.31 4.01 ± 0.20 4.5 ± 0.11A + 

5.6 ± 0.36 2.22 ± 0.27 3.4 ± 0.40B + 

3.4 ± 0.28 ND 3.4 ± 0.28B - 

2.8 ± 0.29 ND 2.8 ± 0.29B - 

 
 
 
 

4000 ppm 

 
 

30 

8.2 ± 0.16 5.8 ± 0.23 2.4 ± 0.12A + 

5.4 ± 0.31 3.3 ± 0.30 2.1 ± 0.45A + 

3.7 ± 0.28 ND 3.7 ± 0.28B - 

2.2 ± 0.17 ND 2.2 ± 0.17A - 

     

 
 

60 
 

8.7 ± 0.24 5.2 ± 0.32 3.5 ± 0.40A + 

5.2 ± 0.12 2.5 ± 0.41 2.8 ± 0.52A + 

3.6 ± 0.41 ND 3.6 ± 0.41A - 

2.2 ± 0.29 ND 2.2 ± 0.29B - 
1 All means and standard deviations are from triplicate studies.  A “ND” indicates that no pathogens were detected using a 
three-tube MPN assay with a limit of detection of ≤ 3 MPN/g.  A “+” indicates that pathogens were detected after 
germination. A “-“indicates that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence 
interval. 
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Table 4.3. Effect of carvacrol emulsion on E. coli 0157:H7 contaminated alfalfa seeds1,2 

 

  

 
 
 

Treatment 
Treatment 

Time 
(min) 

 
 

Initial 
Inoculum 

(log CFU/g) 

 
 

Cell Numbers 
after Treatment 

(log CFU/g) 

 
 

Total 
Log 

Reduction 

 
 

Pathogen 
Detected after 

Sprouting 

 
 
 
 

Control 

 

30 

8.2 ± 0.17 7.9 ± 0.73 0.34 ± 0.89 A + 

5.7 ± 0.29 4.8 ± 0.77 0.90 ± 0.59A + 

3.8 ± 0.24 3.2 ± 0.11 0.57 ± 0.26A + 

2.1 ± 0.18 1.3 ± 0.22 0.79 ± 0.40A + 

     

 
 

60 

8.3 ± 0.30 8.2 ± 0.09 0.11 ± 0.38A + 

5.6 ± 0.54 5.0 ± 0.18 0.66 ± 0.62A + 

3.8 ± 0.28 3.0 ± 0.15 0.80 ± 0.42A + 

2.3 ± 0.24 1.3 ± 0.16 0.99 ± 0.40A + 

 
 
 
 
 

8000 ppm 

 
 

30 

8.7 ± 0.31 5.7 ± 1.17 2.9 ± 0.86A + 

5.7 ± 0.26 3.4 ± 0.33 2.2 ± 0.10A + 

3.5 ± 0.43 ND 3.5 ± 0.43A - 

2.2 ± 0.17 ND 2.2 ± 0.17A - 

     

 
 

60 

8.4 ± 0.10 5.3 ± 1.22 3.2 ± 1.13A + 

5.8 ± 0.55 3.2 ± 0.32 2.8 ± 0.38A + 

3.3 ± 0.23 ND 3.3 ± 0.23A - 

2.4 ± 0.46 ND 2.4 ± 0.46A - 

 
 
 
 
 

4000 ppm 

 
 

30 

9.0 ± 0.13 5.6 ± 0.53 3.4 ± 0.65A + 

5.5 ± 0.24 4.1 ± 0.58 1.5 ± 0.47B + 

3.5 ± 0.45 2.4 ± 0.69 1.1 ± 0.58B + 

2.4 ± 0.46 1.6 ± 0.41 0.84 ± 0.49B + 

     

 
 

60 
 

8.8 ± 0.15 5.0 ± 0.23 3.8 ± 0.37A + 

5.7 ± 0.10 3.6 ± 0.51 1.8 ± 0.73B + 

3.3 ± 0.15 ND 3.3 ± 0.15A - 

2.2 ± 0.14 ND 2.2 ± 0.14B - 
1 All means and standard deviations are from triplicate studies.  A “ND” indicates that no pathogens were detected using a three-
tube MPN assay with a limit of detection of ≤ 3 MPN/g.  A “+” indicates that pathogens were detected after germination. A “-
“indicates that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 

 
 



 

76 
 

 

Table 4.4. Effect of carvacrol emulsion on S. Enteritidis contaminated alfalfa seeds1,2 

 

 
 

 
 

Treatment 
Treatment 

Time 
(min) 

 
 
 

Initial 
Inoculum 

(log CFU/g) 

 
 
 

Cell Numbers 
after Treatment 

(log CFU/g) 

 
 
 

Total 
Log 

Reduction 

 
 
 

Pathogen 
Detected after 

Sprouting 

 
 
 
 

Control 

 

30 

8.4 ± 0.19 8.2 ± 0.54 0.16 ± 0.38A + 

5.8 ± 0.72 5.0 ± 0.18 0.76 ± 0.55A + 

3.2 ± 0.17 2.9 ± 0.03 0.31 ± 0.14A + 

2.3 ± 0.32 1.3 ± 0.13 1.0 ± 0.24A + 

     

 
 

60 

8.4 ± 0.42 8.2 ± 0.54 0.20 ± 0.50A + 

5.7 ± 0.29 4.8 ± 0.55 1.04 ± 0.84A + 

3.45 ± 0.15 2.9 ± 0.58 0.58 ± 0.46A + 

2.6 ± 0.27 1.3 ± 0.14 1.3 ± 0.23A + 

 
 
 
 

8000 ppm 

 

30 

8.4 ± 0.35 5.8 ± 1.17 3.3 ± 0.72A + 

5.9 ± 0.27 3.4 ± 0.33 2.2 ± 0.31B + 

3.5 ± 0.28 ND 3.5 ± 0.28A - 

2.1 ± 0.17 ND 2.1 ± 0.17B - 

     

 
60 

8.9 ± 0.21 4.7 ± 0.80 4.2 ± 0.92A + 

5.3 ± 0.45 3.1 ± 0.36 2.2 ± 0.09B + 

3.7 ± 0.58 ND 3.7 ± 0.58A - 

2.4 ± 0.43 ND 2.4 ± 0.43B - 

 
 
 
 

4000 ppm 

 
 

30 

8.5 ± 0.33 5.4 ± 0.35 3.1 ± 0.34A + 

5.8 ± 0.18 4.0 ± 0.51 1.8 ± 0.34B + 

3.6 ± 0.27 2.3 ± 0.19 1.3 ± 0.15B + 

2.6 ± 0.51 1.4 ± 0.23 1.2 ± 0.63B + 

     

 
 

60 
 

8.6 ± 0.13 4.7 ± 0.73 3.9 ± 0.63A + 

5.7 ± 0.22 3.3 ± 0.59 2.4 ± 0.75B + 

3.2 ± 0.17 ND 3.2 ± 0.17A - 

2.2 ± 0.16 ND 2.2 ±0.16B - 
1 All means and standard deviations are from triplicate studies.  A “ND” indicates that no pathogens were detected using a three-
tube MPN assay with a limit of detection of ≤ 3 MPN/g.  A “+” indicates that pathogens were detected after germination. A “-
“indicates that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
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The recommended FDA treatment method currently implemented by the 

industry is soaking seeds in 20,000 PPM calcium hypochlorite prior to germination. In 

theory, these high concentrations should inactive any pathogens present. However, this 

may not always be the case since the number of outbreaks has actually increased after 

the release of this recommendation. The antimicrobial nanoemulsions developed in this 

research have similar log reductions (2 -3 CFU/g) as reported for alternative chemical 

and physical method (54). It should be appreciated that this reduction was achieved 

without costly equipment while still being label friendly.      

A potential advantage of the nanoemulsions is their effectiveness against 

bacteria on both alfalfa and mung beans despite their large differences in physical 

characteristics. Mung bean seeds have a smooth surface, whereas alfalfa seeds have a 

rough surface which can act as a site for bacterial attachment and protection. In 

addition, when alfalfa seeds are added to water the seeds tend to clump together, 

which may provide additional protection for any bacteria present. Interestingly, 

clumping was not observed when alfalfa seeds were added to the carvacrol 

nanoemulsion, which may be due to surfactant inhibiting the hydrophobic attraction 

that normally occurs between bare seed surfaces.  As a result, any bacteria on the 

surfaces of the seeds may be more exposed to antimicrobial agents present in the 

surrounding aqueous phase.  In addition, the small size of these droplets (d ~ 100 nm) 

may allow them to enter any cracks or crevices on the seed thereby enabling them to 

inactivate bacteria trapped within the seeds. Nevertheless, further research is needed  
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Table 4.5. Effect of carvacrol emulsion on sprout yield1,2 

Treatment Treatment Time 
(min) 

Mung Bean Yield (g) Alfalfa Yield (g) 

 
Control 30 71.16 ± 7.00A 100.16 ± 12.66A 

60 74.13 ± 5.14A 97.63 ± 4.42A 

8000 PPM 30 75.23 ± 5.60A 104.00 ± 12.85A 

60 73.38 ± 9.02A 102.95 ± 9.64A 

4000 PPM 30 73.96 ± 4.41A 97.96 ± 16.97A 

60 77.22 ± 8.29A 99.72 ± 14.88A 

1 Bean yield averages were compared using Tukey’s Test with a 95% confidence interval. 
2 All means and standard deviations are from triplicate studies. 
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to establish the precise physicochemical basis of interaction between nanoemulsion 

droplets and seed coats.   

It has been shown that both intrinsic and extrinsic properties of a food matrix 

can influence the effectiveness of essential oils, such as carvacrol (28, 229, 238). For 

example, carvacrol is insoluble in water and like many other essential oils, can easily be 

dispersed or attracted to lipid phases present in a food system (28, 159). The production 

of a carvacrol nanoemulsion may help limit this problem by keeping carvacrol in the 

aqueous phase, where it can act on present pathogens (28, 41, 154). The susceptibility 

of bacteria to essential oils has been shown to be dependent on the pH of the treatment 

(224). A lower pH not only adds stress to bacterial cells but also increases the transfer of 

essential oils to bacterial membranes, increasing its observed effectiveness (121, 224). 

The carvacrol nanoemulsion treatment put forth in this study has a pH of 3.5 which 

utilizes the synergistic effects of both pH stress and an increased affinity of carvacrol to 

the bacterial membrane. The development of a novel antimicrobial treatment 

composed of all food grade and GRAS components may have important commercial 

implications. The use of a treatment method that is label friendly and as effective as the 

currently used recommended treatment may prove to be valuable for both the 

traditional and organic sprout industry.  

  In summary, a food-grade, GRAS carvacrol nanoemulsion was tested for its 

efficacy against S. Enteritidis and E. coli O157:H7 contaminated mung bean and alfalfa 

seeds. The antimicrobial nanoemulsions successfully inactivated the bacteria on 

contaminated seeds that were soaked for at least 30 min in systems containing 8000 
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PPM carvacrol. As described earlier, there have been several types of sprout seeds 

associated with outbreaks of either S. Enteritidis and/or E. coli O157:H7. Due to various 

factors such as seed topography, the nature of germination, and lack of reliable 

decontamination processes, the need to find a successful way to reduce foodborne 

illness is essential.  It would therefore be useful in future studies to test the efficacy of 

the antimicrobial nanoemulsions developed in this work against other foodborne 

pathogens such as Listeria monocytogenes and on other seed types to establish its range 

of efficacy.  
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CHAPTER 5 

EFFECTIVENESS OF A SPONTANEOUS CARVACROL NANOEMULSION AGAINST 

SALMONELLA ENTERICA ENTERITIDIS AND ESCHERICHIA COLI O157:H7 ON 

CONTAMINATED BROCCOLI AND RADISH SEEDS 

5.1 Abstract 

The incidence of foodborne illness associated with the consumption of fresh 

produce has continued to increase over the past decade. Sprouts, such as mung bean, 

alfalfa, radish, and broccoli, are minimally processed and have been sources for 

foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended 

for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial 

carvacrol nanoemulsion was tested against S. Enteritidis (ATCC BAA-1045) or EGFP 

expressing E. coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial 

treatments were performed by soaking inoculated seeds in nanoemulsions (4,000 or 

8,000 ppm) for 30 or 60 minutes. Following treatment, surviving cells were determined 

by performing plate counts and/or Most Probable Number (MPN) enumeration. 

Treated seeds were sprouted and tested for the presence of pathogens. Treatment 

successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on 

radish seeds when soaked for 60 min at concentrations ≥ 4,000 (0.4 %) ppm carvacrol. 

This treatment method was not affective on contaminated broccoli seeds. Total sprout 

yield was not influenced by any treatments. These results show that carvacrol 
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nanoemulsions may be an alternative treatment method for contaminated radish 

seeds.   

5.2 Introduction 

The incidence of foodborne illness associated with the consumption of fresh 

produce has continued to increase over the past decade. Between 1990 and 2005, 

there have been over 700 outbreaks, resulting in roughly 34,000 cases of 

foodborne illness (206). One potential reason for the increase in outbreaks may be 

due to the change in social eating habits and the accessibility of fresh produce. For 

example, the per capita demand and consumption of fresh produce has 

dramatically increased compared to past decades (93). Also, the produce industry 

has experienced a rapid globalization in its supply chain, making the 

implementation of universal protocols challenging (93). Yet, these sociological and 

supply changes do not fully explain the increased outbreaks seen in fresh produce. 

The incidence of outbreaks in particular produce systems, such as leafy greens and 

sprouts, have increased 4- fold compared to the increase in consumption (35, 108). 

The demand for minimally processed, natural produce has continued to 

increase despite the inherent risk of foodborne illness. At the forefront of this 

resurgence are sprouts. Sprouts, such as mung bean, alfalfa, radish, and broccoli, 

are minimally processed and can be vectors for both Salmonella spp. and E. coli 

O157:H7 (165). Prior to sprouting, seeds are generally soaked in lukewarm water 

(32 – 35 oC) for 2 – 4 hrs or allowed to soak at room temperature for 24 hrs (207). 
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Unfortunately, this necessary step not only triggers seed germination, but can also 

act as an enrichment step for any present human pathogen.  To help minimize the 

potential of foodborne illness, a 2% calcium hypochlorite soak is recommended 

prior to sprouting (241). However, rapid sequestering of free chlorine by organic 

load, inadequate pH adjustments, and seed topography limit its effectiveness (76, 

207, 259).         

A potential alternative to current recommended methods, is the use of 

emulsified essential oils. Essential oils are natural compounds that are isolated from 

various plant sources such as thyme, oregano, and basil, that demonstrate 

antimicrobial activity (28). One essential oil that has been shown to have promising 

antimicrobial properties against a variety of foodborne pathogens is carvacrol (28, 130, 

145, 185). Essential oils, alone, have minimal solubility in water. The spontaneous 

emulsification of carvacrol, originally put forth by Chang et al.(41), is simple to produce 

and requires minimal equipment and training (51, 154).  The nanoemulsion has also 

been shown to be effective against foodborne pathogens in both in vitro and in vivo 

sprout settings. In a broth based system, the minimal inhibitory concentration for the 

spontaneous carvacrol nanoemulsion was found to be 500 ppm, with complete 

inactivation at concentrations greater than or equal to 4000 ppm. When applied to a 

sprout based system, a 60 min treatment in 4,000 or 8,000 ppm carvacrol 

nanoemulsion resulted in complete inactivation of both S. Enteritidis and E. coli 

O157:H7 on both mung bean and alfalfa seeds. Based on these findings, the efficacy of 

the spontaneous carvacrol nanoemulsion at similar concentrations was tested against 
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S. Enteritidis and E. coli O157:H7 contaminated radish and broccoli seeds. The influence 

of organic loads on the emulsions antimicrobial efficiency in vitro was also studied. 

5.3 Materials and Methods 

5.3.1 Bacterial strains and culture conditions 

 The bacterial strains used in the presented experiments were S. Enteritidis (ATCC 

BAA-1045) and an enhanced green fluorescent protein (EGFP) expressing E. coli 

O157:H7 (ATCC 42895) (192). Stock cultures of each organism were stored at -80 oC in 

tryptic soy broth (TSB; BD Diagnostic Systems, Cat# DF0064-07-6) containing 25% (v/v) 

glycerol. Monthly, frozen stock cultures were transferred to working cultures by plating 

on tryptic soy agar (TSA; BD Diagnostic Systems, Cat# DF0370-075) slants/plates and 

incubating at 37 oC for 24 hrs. Following incubation, single colonies of E. coli O157:H7 

were picked and transferred to Luria broth (Lennox, LB) (Fisher BioReagents Cat# 

BP9724-500) plates containing 500 µg/mL ampicillin (Fisher Scientific Cat# BP1760-5). 

The absorbance at 600 nm was used to determine cells numbers, with an absorbance of 

0.5 equal to 1.0 x 108 CFU for both E. coli O157:H7 and S. Enteritidis as determined by 

plate counts.    

Periodically, working cultures were streaked on differential media to ensure 

purity. For S. Enteritidis, cultures were spread on xylose, lysine, deoxycholate (XLD) agar 

(Remel Cat# R459902). For E. coli O157:H7, cultures were spread on LB (Fisher 

BioReagents Cat# BP9724-500) plates containing  500 µg/mL ampicillin (Fisher Scientific 

Cat# BP1760-5) and 20 µg/mL IPTG (Thermo Scientific Cat# FERR0392) and observed 
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under UV light. Cultures were incubated overnight in TSB at 37 oC on a rotary shaker set 

at 150 RPM. All cultures were diluted with TSB to the desired cell numbers.   

 5.3.2 Formation of antimicrobial nanoemulsions 

  Carvacrol (4 g) (Sigma-Aldrich, Cat# W224502-100G-K) was added to 6 g of 

medium chain triglyceride (MCT) oil (Miglyol 812, Witten, Germany) and thoroughly 

mixed for 5 min at 125 RPM. Once mixed, Tween 80® (10 g) (Sigma-Aldrich, Cat# P1754-

500ml) was added to the oil mixture and mixed for another 5 min at 125 RPM. The 

oil/Tween 80 mixture (20 g) was titrated, at a rate of 2 mL/min, into 80 g of 5.0 mM 

sodium citrate buffer (pH 3.5) containing a magnetic stirring bar set to 600 RPM and 

allowed to mix for an additional 15 min.  The emulsion was filter sterilized through a 

sterile 0.45 µm syringe filter (Fisher Scientific Cat# 09-719-005) and stored in sterile 50 

mL tubes at 2 - 5 oC for up to 3 weeks.  Droplet size was measured using dynamic light 

scattering (Zetasizer Nano ZS, Malvern Instruments, UK) to ensure that the mean 

droplet diameter was ≈ 100 nm.     

5.3.3. Effect of organic load on the effectiveness of the carvacrol nanoemulsion against 

S. Enteritidis and E. coli 0157:H7 in vitro. 

Overnight growth (9 log CFU/mL) of either S. Enteritidis or E. coli O157:H7 was 

added to test tubes containing TSB (9 mL), carvacrol nanoemulsion (8000, 4000, 2000, 

1000, and 500 ppm final carvacrol concentration), and various concentrations of organic 

load (2%, 10%, or 20% v/v) to give an initial level of approximately 6 log CFU/mL. The 

tubes were incubated at 37 oC for 24 hrs. A dilution series was created and plated on the 

appropriate media. For S. Enteritidis, dilutions were spread on XLD (Remel Cat# 
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R459902). For E. coli O157:H7, dilutions were spread on LB (Fisher BioReagents Cat# 

BP9724500) plates containing  500 µg/mL ampicillin (Fisher Scientific Cat# BP1760-5) 

and 20 µg/mL IPTG (Thermo Scientific Cat# FERR0392) and observed under UV light.  

Organic loads were simulated with either horse serum (Thermo Scientific Cat# 

R55075) or homogenized mung bean sprouts purchased from a local supermarket. To 

produce the homogenized mung bean extract, 50 g of mung beans and 50 mL of sterile 

water were homogenized in an Oster Osterizer Classic ® blender (Oster: Boca Raton, FL, 

USA) for 45 sec.  

5.3.4 Effectiveness of a carvacrol nanoemulsion on contaminated seeds 

All seeds used in this study were generously provided by Jonathan’s Organics 

(Rochester, MA) and each treatment condition was tested and sprouted in triplicate. 

Seeds were inoculated and sprouted using a modified version of the method presented 

by Ye et al.(262). Batches (20 g) of seeds were soaked in 50 mL of diluted S. Enteritidis or 

E. coli O157:H7 for 20 min resulting in final inoculums of 8, 5, 3, or 2 log CFU/g. The 

inoculated seeds were then transferred to a sterile glass petri dish containing sterile 

filter paper within a biological safety cabinet, and allowed to dry overnight at ambient 

temperature. The inoculated bean/seed batches were placed in 250-mL beakers and 

treated by soaking in 50 mL of nanoemulsion (4,000 or 8,000 ppm) with agitation (125 

RPM) for 30 or 60 mins. For the control, contaminated batches were soaked in 5.0 mM, 

pH 3.5 sodium citrate buffer. After treatment, the batches were rinsed once with 50 mL 

of sterile deionized water and transferred to a Whirl-Pack bag containing 50 mL of TSB. 
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The Whirl-Pack bag was placed on a rotary shaker set to 50 RPM for 15 min. After 

agitation, a dilution series was created and plated on the appropriate media and 

incubated at 37 oC for 24 hrs. For samples with low S. Enteritidis or E. coli O157:H7 

inoculation levels (2 and 3 log CFU/g), a three tube most probable number (MPN) assay 

was used in conjunction with spread plating according to the FDA’s Bacteriological 

Analytical Manual (BAM) (250). Samples were appropriately diluted in Lactose Broth 

(BD BBL Cat# DF0004-17-7) Salmonella enrichment or Luria Broth (Lennox) broth (Fisher 

Scientific Cat# BP9722-500) containing ampicillin (Fisher Scientific Cat# BP1760-5) (500 

µg/mL) and incubated overnight. Dilution sets were checked for turbidity. Any positive 

tubes were streaked on selective/differential media for confirmation. Both treated 

inoculated and uninoculated samples were then sprouted.    

Both seed types were sprouted in a similar fashion as described by Fransisca et 

al.(81). Batches (10 g) of inoculated seeds were transferred to a sterile 250 mL beaker 

and soaked in 150 mL of distilled water at 20 oC for 24 hours. The water was removed, 

and the seeds transferred to 3 pieces of sterile filter paper (Fisher Scientific Cat# 09-803-

6D) on top of a sterile plastic test tube rack in a sterile stainless steel container with a 

lid. The seeds were sprouted in the dark at 20 oC for 72 hrs. The seeds were watered 

with 15 mL of distilled water every 8 hrs with a plastic spray bottle (Fisher Scientific Cat# 

03-438-12A). After sprouting, two 25 g batches of sprouts were suspended in 225 mL of 

0.1% peptone water and stomached for 1 min. A dilution series was created and plated 

on the appropriate media as previously described. 
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5.3.5 Statistical Analysis 

 One-way ANOVA followed by Tukey’s multiple comparison test (95% confidence 

interval) for total log reduction and total sprout yield. Differences in reduction between 

emulsion with organic load and without were compared using an unpaired t-test with a 

95% confidence interval. Statistical analysis was performed using GraphPad Prism 

version 5.01 for Windows, GraphPad Software, La Jolla California USA. 

5.4 Results 

5.4.1 Effect of organic load on the efficacy of the carvacrol nanoemulsions 

 The minimal inhibitory concentration (MIC) of the carvacrol nanoemulsion was 

found to be 500 ppm in a broth system. The influence of organic load on the 

effectiveness of carvacrol nanoemulsions against S. Enteritidis and E. coli O157:H7 was 

studied because antimicrobials are often utilized in complex environments in practical 

applications. Initially, we used purified horse serum as a model fluid that contained 

appreciable quantities of organic matter.  The effect of horse serum on the efficacy of 

the nanoemulsions can be seen in Figures 5.1A and 5.1B.  

 The addition of 2% (v/v) horse serum had no significant effect on the efficacy of the 

antimicrobial nanoemulsions against S. Enteritidis or E. coli O157:H7, with the results 

being similar to the control (Figures 5.1A and 5.1B). Comparable growth inhibition to 

that of the control, for both pathogens, occurred with carvacrol concentrations between 

500 and 1000 ppm.  The addition of 10 and 20% (v/v) horse serum actually led to a 

significant decrease in the effectiveness of the emulsion at the lowest carvacrol 
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concentration tested (500 ppm) when compared to the control. The addition of 20% 

(v/v) horse serum also greatly decreased the efficacy of the antimicrobial nanoemulsion 

through the tested concentrations. Only with 8000 ppm carvacrol were both pathogens 

reduced to undetectable levels. 

 At 500 PPM carvacrol, significant growth occurred for both S. Enteritidis 

(p=0.005) and E. coli O157:H7 (p = 0.04) in samples containing ≥ 10% (v/v) horse serum. 

The minimum inhibitory concentration (MIC) for samples containing 10% (v/v) horse 

serum was found to be 900 ppm carvacrol for both pathogens (Figures 5.1A and 5.1B). 

Reduction to undetectable levels was still observed at 4000 and 8000 ppm. Samples 

with 20% (v/v) horse serum demonstrated the most substantial decrease in 

effectiveness. The MIC for samples with 20% (v/v) horse serum was 2000 ppm carvacrol 

nanoemulsion and the reduction of pathogens to undetectable levels was only achieved 

with 8000 ppm carvacrol nanoemulsion (Figures 5.1A and 5.1B). 

The effect of homogenized mung bean sprouts on the efficacy of the 

spontaneous carvacrol nanoemulsion can be seen in Figures 5. 1C and 5.1D. As with 

horse serum, sprout homogenate concentrations ≤ 2% (v/v) did not significantly 

decrease the emulsions effectiveness against both pathogens. With the addition of ≥ 

10% (v/v) sprout homogenate, the previously determined MIC of 500 ppm was not valid, 

and a significant decrease in effectiveness was observed when compared to the control. 
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Figure 5.1. The effect of horse serum or bean homogenate on the effectiveness of the 

spontaneously emulsified carvacrol nanoemulsion against S. Enteritidis (A, C) and E. coli 

O157:H7 (B, D). All tests were performed in triplicate. A “*” designates that there was a 

statistically significant difference between the sample and control when compared using 

a t-test with a 95% confidence interval. An “a” indicates that the sample was subject to 

creaming following incubation. The designation log Tn CFU/mL indicates the initial cells 

numbers (Tn = 6 log CFU/mL) and log To CFU/mL is the observed numbers following a 24 

hour incubation period at 37 oC. 
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At 500 and 1000 ppm, significant growth was observed for S. Enteritidis and E. 

coli O157:H7 in samples containing ≥ 10% (v/v) sprout homogenate when compared to 

the control. The MIC for S. Enteritidis and E. coli O157:H7 in samples containing 10% 

(v/v) sprout homogenate were found to be 1500 and 2000 ppm respectively. In samples 

containing 10% (v/v) sprout homogenate, pathogens were reduced to undetectable 

levels following treatment with 4000 or 8000 ppm carvacrol nanoemulsion (Figures 5.1C 

and 5.1D). However, the reduction of S. Enteritidis or E. coli O157:H7 to undetectable 

levels in samples containing 20% (v/v) sprout homogenate was only observed following 

treatment with 8000 ppm carvacrol nanoemulsion (Figures 5.1C and 5.1D).  

 The addition of an organic load not only effected the emulsions efficacy, but also 

its physical stability. As seen in Figures 5.1 and 5.2, both horse serum and sprout 

homogenate concentrations of 20% (v/v) resulted in destabilization of the emulsion at ≤ 

4000 ppm carvacrol. A pictorial representation of the observed creaming in the 

presence of 20% (v/v) horse serum can be seen in Figure 5. 2.  Samples with a 10% (v/v) 

organic load (horse serum or sprout homogenate) only exhibited creaming and 

decreased effectiveness at concentrations > 4000 ppm carvacrol.   These results 

indicated that when the emulsion stability is reduced, the antimicrobial efficacy is also 

reduced. 
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5.4.2 Effectiveness of carvacrol nanoemulsion against S. Enteritidis or E. coli 0157:H7 

contaminated broccoli and radish seeds.       

The effectiveness of the carvacrol nanoemulsion treatments on broccoli and 

radish seeds is summarized in Tables 5.1-5.4. Based on the results of an MPN assay, 

final S. Enteritidis and E. coli O157:H7 levels of ≤ 3 CFU/g were found on radish seeds 

that had an initial inoculum of 3 log CFU/g or less when treated with either 4000 or 

8000 ppm of carvacrol nanoemulsion for 60 min (Tables 5.1 and 5.2).  

All treatments that resulted in MPN numbers ≤ 3CFU/g were germinated and 

tested again for the presence of the pathogens using both plate counts and MPN. 

Following germination and enumeration neither pathogen were detected using 

standard plate counts (detection limit of 2 log CFU/mL) when radish seeds with low 

levels of contamination were treated with 4000 or 8000 ppm carvacrol nanoemulsion 

for 60 min. It should be noted that seeds containing < 2 log CFU/g of pathogen following 

treatment, always resulted in > 8 log CFU/g of pathogen following germination. As 

indicated by the results of Tukey’s test, the treatment of contaminated radish seeds 

with 8000 ppm carvacrol nanoemulsion for 60 or 30 min consistently resulted in a 2.9 ± 

0.36 log reduction for both pathogens. However, treatment with 4000 ppm carvacrol 

nanoemulsion for 30 min only resulted in a 2.07 ± 0.38 log reduction for both 

pathogens. 
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Figure 5.2. The effect of 20% (v/v) horse serum on the stability of the spontaneous 

carvacrol nanoemulsion at various concentrations following a 24 hr incubation at 37 oC: 

(A) comparison between a 2000 ppm carvacrol nanoemulsion with (right) and without 

(left) 20% (v/v) horse serum, (B) comparison between a 4000 ppm carvacrol 

nanoemulsion with (right) and without (left) 20% (v/v) horse serum, (C) comparison 

between a 8000 ppm carvacrol nanoemulsion with (right) and without (left) 20% (v/v) 

horse serum. 

 

C B A 
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The treatment of broccoli seeds contaminated with high initial numbers of 

pathogens (8 or 5 log CFU/g) with either 4000 or 8000 ppm carvacrol nanoemulsion 

resulted in a significant reduction (≥ 2 log) of both pathogens when compared to the 

control (Table 5.3 and 5.4). However, at low cell concentrations (3 and 2 log CFU/g) the 

effectiveness of the nanoemulsion was comparable to that of the control. As seen in 

Table 5.5, there was no significant difference between treated and untreated sprout 

germination yields.  

5.5 Discussion 

The use of essential oils, such as carvacrol, as antimicrobials is appealing because 

these compounds are a “natural” alternative to traditional treatment methods (28). 

The effectiveness of carvacrol against various foodborne pathogens has been reported 

in numerous studies (28, 41, 129, 145, 185). The antimicrobial efficacy of carvacrol has 

been attributed to its ability to permeabilize and depolarize the cytoplasmic membrane 

(247, 248, 261). This phenomenon is a result of the hydrophilic hydroxyl group on the 

phenolic ring, which allows carvacrol to dissolve into and disrupt cytoplasmic 

membrane function (218, 247). However, even with this hydrophilic moiety, carvacrol 

is still predominantly hydrophobic and therefore has low water-solubility. The 

spontaneous emulsification process utilized in this and previous studies, allows for the 

dispersion of essential oils into aqueous phases in the form of small oil droplets (41, 

130). In a water-dispersible form, carvacrol is able to act on any pathogens also present 

in the surrounding aqueous phase or at surfaces (28, 41, 154). 
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Currently, the Food and Drug Administration (FDA) recommends a 20,000 ppm 

(2%) calcium hypochlorite treatment step prior to germination (241). Even after the 

implementation of this recommended treatment step, the number of sprout based 

foodborne outbreaks has increased (54, 241). One of the problems with the currently 

recommend treatment is the fact that calcium hypochlorite is easily deactivated by 

soluble organics. As a result of various treatment environments and conditions (206), 

the reported reductions of a 20,000 ppm calcium hypochlorite treatment on sprouting 

seeds ranges from 0.51 – 6.90 log CFU/g (28, 54, 206).   

To determine if the carvacrol nanoemulsions suffered from a similar reduction in 

efficacy in the presence of organic matter, the effect of organic load was tested using 

horse serum, the FDA standard for simulating organic load (250).  In addition, 

homogenized mung bean sprouts were also studied as another potential source of 

organic load. It was found that high organic loads (10 and 20% v/v) physically 

destabilized the emulsion, with rapid phase separation being observed visibly (Figure 

5.2).  This phenomenon is usually the result of droplet aggregation (such as 

coalescence and flocculation), and then rapid creaming due to the increase in net 

particle size.  Droplet aggregation may be induced by a number of different 

mechanisms in emulsions, such as electrostatic screening, bridging, depletion, or 

binding effects.   
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Table 5.1. - Effect of carvacrol emulsion on E. coli O157:H7 contaminated broccoli 

seeds12 

 

 

 

 
 
 

Treatment 
Treatment 

Time 
(min) 

 
 

Initial 
Inoculum 

(log CFU/g) 

 
 

Cell Numbers  
after Treatment 

(log CFU/g) 

 
 

Total 
Log 

Reduction 

 
 

Pathogen 
Detected after 

Sprouting 

 
 
 

Control 

 
30 

5.6 ± 0.25 4.2 ± 0.85 1.4 ± 0.55A + 

3.5 ± 0.23 2.5 ± 0.91 1.0 ± 0.73A + 

2.7 ± 0.21 1.9 ± 0.27 0.86 ± 0.47A + 

     

 
60 

5.4 ± 0.40 4.7 ± 0.28 0.81 ± 0.12A + 

3.6 ± 0.10 2.7 ± 0.20 0.84 ± 0.26A + 

2.6 ± 0.12 2.0 ± 0.12 0.66 ± 0.12A + 

 
 
 

8000 ppm 

30 
5.4 ± 0.48 3.6 ± 0.44 1.8 ± 0.82AB + 

3.4 ± 0.46 2.4 ± 0.27 1.0 ± 0.54B + 

2.6 ± 0.07 1.6 ± 0.17 1.0 ± 0.14B + 

     

 
60 

5.3 ± 0.40 3.1 ± 0.52 2.2 ± 0.42A + 

3.5 ± 0.63 2.3 ± 0.28 1.2 ± 0.78AB + 

2.7 ± 0.14 1.6 ± 0.06 1.0 ± 0.12B + 

 
 
 
 

4000 ppm 

 
 

30 

5.1 ± 0.56 4.1 ± 0.30 1.0 ± 0.34A + 

3.5 ± 0.44 2.7 ± 0.18 0.81 ± 0.40A + 

2.6 ± 0.12 1.7 ± 0.22 0.88 ± 0.26A + 

     

 
 

60 
 

5.2 ± 0.41 3.8 ± 0.28 1.4 ± 0.68A + 

3.9 ± 0.42 3.5 ± 0.15 0.87 ± 0.51A + 

2.7 ± 0.15 
 

2.5 ± 0.01 0.85 ± 0.06A 

+ 

1 All means and standard deviations are from triplicate studies. Following treatment, seeds were germinated and tested for the 
presence of pathogens.  A “ND” indicates that no pathogens were detected using a three-tube MPN assay. A “+” indicates that 
pathogens were detected after germination. A “-“indicates that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 5.2. - Effect of carvacrol emulsion on S. Enteritidis contaminated broccoli seeds 12 

 

 

 

 

 

 

 
 
 

Treatment 
Treatment 

Time 
(min) 

 
 

Initial 
Inoculum 

(log CFU/g) 

 
 

Cell Numbers    
after Treatment 

(log CFU/g) 

 
 

Total 
Log 

Reduction 

 
 

Pathogen 
Detected after 

Sprouting 

 
 
 

Control 

30 
5.8 ± 0.10 4.6 ± 0.13 1.14 ± 0.23A + 

3.8 ± 0.51 2.9 ± 0.24 0.89 ± 0.26A + 

2.6 ± 0.10 2.1 ± 0.45 0.51 ± 0.54B + 

     

 
60 

5.7 ± 0.24 4.5 ± 0.57 1.2 ± 0.60A + 

3.4 ± 0.17 2.4 ± 0.23 0.95 ± 0.38A + 

2.7 ± 0.17 2.1 ± 0.57 0.52 ± 0.69B + 

 
 
 
 

8000 ppm 

30 
5.6 ± 0.20 3.3 ± 0.78 2.3 ± 0.97A + 

3.4 ± 0.17 2.6 ± 0.07 0.85 ± 0.19B + 

2.5 ± 0.13 1.9 ± 0.23 0.34 ± 0.11B + 

     

 
60 

5.7 ± 0.65 3.8 ± 0.08 1.9 ± 0.63A + 

3.8 ± 0.27 2.4 ± 0.08 1.4 ± 0.19A + 

2.6 ± 0.39 1.4 ± 0.06 1.2 ± 0.43A + 

 
 
 
 

4000 ppm 

 
30 

5.4 ± 0.39 4.5 ± 0.74 0.95 ± 0.37A + 

3.6 ± 0.40 2.8 ± 0.16 0.81 ± 0.32A + 

2.8 ± 0.20 2.0 ± 0.16 0.86 ± 0.17A + 

     

 
 

60 
 

5.5 ± 0.55 4.4 ± 0.70 1.0 ± 0.89A + 

3.5 ± 0.31 2.3 ± 0.31 1.2 ± 0.58A + 

2.6 ± 0.39 1.4± 0.05 1.1 ± 0.34A + 

1 All means and standard deviations are from triplicate studies. Following treatment, seeds were germinated and tested for the 
presence of pathogens.  A “ND” indicates that no pathogens were detected using a three-tube MPN assay. A “+” indicates that 
pathogens were detected after germination. A “-“indicates that no pathogens were detected after germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 5.3. - Effect of carvacrol emulsion on E. coli O157:H7 contaminated radish seeds1 

 

 

 

 

 

 
 
 
 

Treatment 
 

Treatment 
Time 
(min) 

 
 
 

Initial 
Inoculum 

(log CFU/g) 

 
 
 

Cell Numbers 
after Treatment 

(log CFU/g) 

 
 
 

Total 
 Log 

Reduction 

 
 
 

Pathogen 
Detected after 

Sprouting 

 
 
 

Control 

30 
5.8 ± 0.32 4.8 ± 0.21 1.0 ± 0.26A + 

3.3 ± 0.54 2.5 ± 0.14 0.87 ± 0.54A + 

2.8 ± 0.37 2.0 ± 0.06 0.72 ± 0.43A + 

     

 
60 

5.4 ± 0.38 4.6 ± 0.52 0.80 ± 0.80A + 

3.4 ± 0.72 2.8 ± 0.15 0.70 ± 0.57A + 

2.8 ± 0.27 1.9 ± 0.38 0.86 ± 0.43A + 

 
 
 

8000 ppm 

 
30 

5.3 ± 0.53 2.6 ± 0.11 2.6 ± 0.58A + 

3.1 ± 0.28 ND 3.1 ± 0.28A - 

2.7 ± 0.28 ND 2.7 ± 0.28A - 

     

 
60 

5.6 ± 0.27 2.8 ± 0.27 2.8 ± 0.36A + 

3.4 ± 0.52 ND 3.4 ± 0.52A - 

2.6 ± 0.28 ND 2.6 ± 0.28A - 

 
 
 

4000 ppm 

 
30 

5.5 ± 0.61 3.8 ± 0.95 1.8 ± 0.49A + 

3.6 ± 0.84 1.7 ± 0.23 1.9 ± 0.65A + 

2.1 ± 0.50 ND 2.1 ± 0.50A - 

     

 
60 

 

5.3 ± 0.71 2.6 ± 0.20 2.7 ± 0.76A + 

3.0 ± 0.22 ND 3.0 ± 0.22A - 

2.6 ± 0.19 ND 2.6 ± 0.19A - 
1 All means and standard deviations are from triplicate studies. Following treatment, seeds were germinated and tested for 
the presence of pathogens.  A “ND” indicates that no pathogens were detected using a three-tube MPN assay.  A “+” 
indicates that pathogens were detected after germination. A “-“indicates that no pathogens were detected after 
germination  
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence 
interval. Groupings of statistical significance are indicated by superscripted letters. 
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Table 5.4. - Effect of carvacrol emulsion on S. Enteritidis contaminated radish seeds12 

 

 

 

 

 

 
 

Treatment Treatment 
Time 
(min) 

 
 

Initial 
Inoculum 

(log CFU/g) 

 
 

Cell Numbers 
after Treatment 

(log CFU/g) 

 
 

Total 
Log 

Reduction 

 
Pathogen 

Detected after 
Sprouting 

 
 
 

Control 

30 
5.6 ± 0.45 4.9 ± 0.31 0.66± 0.72A + 

3.6 ± 0.40 3.1 ± 0.16 0.45 ± 0.11A + 

2.6 ± 0.10 2.5± 0.05 0.17 ± 0.05A + 

     

 
60 

5.2 ± 0.35 4.3 ± 0.47 0.85± 0.83A + 

3.5 ± 0.82 2.7 ± 0.25 0.88 ± 1.03A + 

2.8 ± 0.35 2.2± 0.24 0.70 ± 0.53A + 

 
 
 

8000 ppm 

30 
5.5 ± 0.70 2.9 ± 0.17 2.6 ± 0.72A + 

3.2 ± 0.27 ND 3.2 ± 0.27A - 

2.2 ± 0.47 ND 2.2 ± 0.47A - 

     

 
60 

5.4 ± 0.54 3.1 ± 0.33 2.3 ± 0.41A + 

3.2 ± 0.75 ND 3.2 ± 0.75A - 

2.7 ± 0.07 ND 2.7 ± 0.07A - 

 
 
 
 

4000 ppm 

 
30 

5.0 ± 0.54 2.9 ± 0.19 2.1 ± 0.69A + 

3.4 ± 0.66 2.0 ± 0.47 1.4 ± 0.59A + 

2.3 ± 0.54 ND 2.3 ± 0.54A - 

     

 
60 

 

5.4 ± 0.77 3.1 ± 0.43 2.3 ± 0.47A + 

3.2 ± 0.54 ND 3.2 ± 0.54A - 

2.5 ± 0.10 ND 2.5 ± 0.10A - 
1 All means and standard deviations are from triplicate studies. Following treatment, seeds were germinated and tested for 
the presence of pathogens.  A “ND” indicates that no pathogens were detected using a three-tube MPN assay. A “+” 
indicates that pathogens were detected after germination. A “-“indicates that no pathogens were detected after 
germination. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence 
interval. Groupings of statistical significance are indicated by superscripted letters. 
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Table 5.5. Effect of carvacrol emulsion on sprout yield12 

Treatment Treatment Time 
(min) 

Radish Yield (g) Broccoli Yield (g)* 

 
Control 30 83.77 ± 7.49A 102.94 ± 9.22A 

60 82.19 ± 11.6A 114.19 ± 14.79A 

8000 PPM 30 80.35 ± 11.7A 92.99 ± 8.57A 

60 76.6 ± 6.96A 90.88 ± 11.17A 

4000 PPM 30 78.80 ± 10.5A 96.77 ± 7.07A 

60 81.36 ± 7.17A 88.39 ± 15.20A 

1 Bean yield averages were compared using Tukey’s Test with a 95% confidence interval. 
2 All means and standard deviations are from triplicate studies. 
*Yields from sprouting 25 g of broccoli seeds 
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Electrostatic screening is important in electrostatically-stabilized emulsions, and 

occurs when the ionic strength is increased due to binding of counter-ions with the 

charged surfaces.  Bridging occurs when a charged polymer binds to oppositely charged 

emulsion droplets.  Depletion occurs when there is a sufficiently high concentration of a 

non-adsorbed polymer in the aqueous phase due to an osmotic exclusion effect that 

induces an osmotic attraction between the droplets.  Binding effects may be the result 

of the surfactant molecules binding to other substances in the system, and thereby 

losing their ability to stability the emulsion droplets.   

The aqueous solutions containing organic matter used in this study (i.e., horse 

serum and homogenized mung bean) are likely to have contained a variety of 

constituents that could promote emulsion instability through these mechanisms.  The 

presence of mineral ions could promote instability through electrostatic screening 

effects, whereas the presence of proteins or polysaccharides could induce bridging or 

depletion flocculation.  Any substances with hydrophobic groups could bind surfactants, 

and thereby strip them from the oil droplet surfaces, resulting in droplet coalescence.  

We hypothesize that once the carvacrol droplets had creamed to the top of the systems 

(Figure 5.2) their ability to interact with the bacterial cells in the aqueous phase was 

greatly reduced. This would explain why there was an observed reduction in efficacy 

with creamed samples containing higher concentrations of organic load.  

As previously reported, a treatment using carvacrol nanoemulsions was 

successful at inactivating both S. Enteritidis and E. coli O157:H7 on contaminated mung 

bean and alfalfa seeds. To further establish the range of effectiveness, radish and 
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broccoli seeds contaminated with S. Enteritidis or E.coli O157:H7 were tested under 

similar treatment conditions. It was found that low levels (2 and 3 log CFU/g) of 

pathogens were inactivated when radish seeds were treated with 4,000 ppm and 8,000 

ppm carvacrol for 60 min. More interesting, is the fact that similar results could not be 

obtained on broccoli seeds. Treatment of broccoli seeds inoculated with high levels (8 

and 5 log CFU/g) of pathogens consistently produced a ≈ 2.0 log reduction. However, at 

lower inoculum levels the emulsions effectiveness was similar to that of the control. 

This “tailing-off” effect has been reported before with similar treatment methods (54). 

The lack of antimicrobial action on contaminated broccoli seeds may be contributed to 

compounds found within the seeds. Broccoli seeds/sprouts have significantly higher 

concentrations of glucosinolates, isothiocyanates, and sulforaphane than other sprout 

varieties (61, 134, 212). These charged compounds may be destabilizing the 

nanoemulsion or interacting with the reactive hydroxyl group of the carvacrol. Charged 

species can have a dramatic effect on nanoemulsion formation, stability, and 

functionality (39, 128).  It has also been shown that the binding/repulsion of essential 

oils to various charged species significantly decreases the observed antimicrobial 

effectiveness (161). Nevertheless, further research is needed to establish the 

physicochemical interaction and effect of these compounds on the stability and efficacy 

of antimicrobial nanoemulsions.  

The development of a food grade, generally recognized as safe (GRAS) 

antimicrobial treatment is of great interest to the food industry. The use of an essential 

oil or combination of essential oils may provide a label friendly alternative to some of 
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the currently used methods. The use of spontaneously emulsified essential oils as an 

antimicrobial treatment is relatively new and requires further studies. The interaction 

between carvacrol nanoemulsions and various food compounds and matrices has to be 

studied to better understand the physiochemical properties of these systems. With 

greater understanding of the system as a whole, the use of antimicrobial nanoemulsions 

may find a broad range of applications within the food industry.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 
 

CHAPTER 6 

MULTICOMPONENT ANTIMICROBIAL NANOEMULSIONS: INACTIVATION OF 

SALMONELLA SPP. ON SPROUTING SEEDS USING A SPONTANEOUS CARVACROL 

NANOEMULSION ACIDIFIED WITH ORGANIC ACIDS 

6.1 Abstract 

Over the past decade, there has been an increased demand for natural, 

minimally processed produce including sprout-based products. A 20,000 ppm calcium 

hypochlorite is currently recommend for all sprouting seeds prior to germination to 

limit sprout-related foodborne outbreaks. A potentially promising alternative is 

acidified spontaneous essential oil nanoemulsions. In this study, the efficacy of an 

acidified carvacrol nanoemulsion was tested against mung beans and broccoli seeds 

artificially contaminated with a S. Enteritidis cocktail (ATCC BAA-709, ATCC BAA-711 

and ATCC BAA-1045). Treatments were performed by soaking inoculated seeds in 

acidified (50 mM acetic or levulinic acid) carvacrol nanoemulsions (4,000 or 8,000 ppm) 

for 30 or 60 min. Following treatment, surviving cells were determined via plate counts 

and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and 

tested for the presence of pathogens and sprout yield. Treatment successfully reduced  

4 log CFU/g of S. Enteritidis on mung beans and 2 log CFU/g on broccoli seeds below 

our detection limit (≤ 3 MPN/g) when soaked for 30 min and produced a final sprout 

product with no detectable pathogens. Total sprout yield was not influenced by any 

treatment. 
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6.2 Introduction 

 Over the past few decade, there has been an increased demand for natural, 

minimally processed produce (97). The consumption of sprouted produce, like mung 

bean, alfalfa, broccoli, and radish sprouts, has dramatically increased, with millions of 

pounds being consumed in the United States alone (93, 207). Since 1995, there have 

been at least 40 reported outbreaks of foodborne illness, in the United States, 

associated with sprout consumption. The majority were caused by Salmonella and E. coli 

contamination, although other pathogens such as Listeria monocytogenes, Bacillus 

cereus, and Staphylococcus aureus have also been linked to outbreaks (54, 170, 228). 

With intentions on limiting sprout related outbreaks, government agencies 

modified existing and created regulatory guidelines targeting both industry and 

consumer audiences. First, the U.S. Department of Health and Human Services issued 

several reports on the risks associated with the consumption of raw or lightly cooked 

sprouts (72). Around the same time, the Food and Drug Administration (FDA) released 

updated manufacturing guidelines based on independent analyses on the science 

behind sprout related outbreaks (54, 73, 75). To help minimize the potential of 

foodborne illness, a 20,000 ppm calcium hypochlorite soak is currently recommended 

for seeds prior to sprouting (241). However, rapid sequestering of free chlorine by 

organics, inadequate pH adjustments, and seed topography all limit its effectiveness (76, 
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207, 259). Even with improved manufacturing guidelines and consumer education 

campaigns, the threat, incidence, and severity of sprout related illness is prevalent.   

The possibility and incidence of sprout related illness is a major concern within 

the food safety community. The increase in consumer demand for healthy, natural, and 

sustainable products like sprouts has put pressure on industry and regulatory agencies 

to find more effective methods for preventing and limiting sprout associated 

illnesses(77). The primary source of contamination is often linked to the sprouting seeds 

(86, 98). It has been shown that low levels of initial contamination (0.1 log CFU/g) will 

grow to substantial numbers during the sprouting process (86). Pathogens can be 

internalized during sprouting, protecting them from any post-germination treatment 

steps (67, 255). Soaking seeds in the recommended 20,000 ppm calcium hypochlorite 

for 15 min has a reported reduction range of 0.51 – 6.90 log CFU/g, but still has not 

been able to significantly reduce the amount of sprout related outbreaks (11, 13, 55). 

Also, high levels of calcium hypochlorite is also considered unacceptable for the 

production of certified organic sprouts and is banned in some European countries (54).  

A potential alternative to current recommended methods, is the use of 

emulsified essential oils. Essential oils are natural compounds that are isolated from 

various plant, sources that demonstrate antimicrobial activity (28). One essential oil that 

has been shown to have promising antimicrobial properties against a variety of 

foodborne pathogens is carvacrol (28, 130, 145, 185). Essential oils, alone, have minimal 

solubility in water. The spontaneous emulsification of carvacrol, originally put forth by 

Chang et al.(41), is simple to produce and requires minimal equipment and training 



 

107 
 

(154).  The nanoemulsion has also been shown to be effective against foodborne 

pathogens in both in vitro and in vivo sprout settings. In a broth-based system, the 

minimal inhibitory concentration for the spontaneous carvacrol nanoemulsion was 

found to be 500 PPM, with complete inactivation at concentrations greater than or 

equal to 4000 PPM. When applied to a sprout based system, a 60 min treatment in 

4,000 or 8,000 PPM carvacrol nanoemulsion resulted in complete inactivation of both 

Salmonella Enteritidis and Escherichia coli O157:H7 on both mung bean and alfalfa 

seeds. Similar results have been reported on radish seeds, however the carvacrol 

nanoemulsion did not produce significant log reduction against pathogens on 

contaminated broccoli seeds.   

Previous studies have demonstrated that the combination of organic acids (50 

mM levulinic acid) and anionic surfactants (sodium dodecyl sulfate) can inactivate 

pathogens on alfalfa seeds (264). For the spontaneous carvacrol nanoemulsion, Tween 

80® is the main surfactant used in the system. To determine if organic acids may be 

beneficial, acetic or levulinic acid was added to the nanoemulsion formulation and its 

efficacy tested on artificially contaminated mung bean and broccoli sprouting seeds. 

6.3 Materials and Methods 

6.3.1 Bacterial strains and culture conditions  

  The bacterial cultures used in the presented experiments were S. Enteritidis 

strains 709 (ATCC BAA- 709), 711 (ATCC BAA-711), and 1045 (ATCC BAA-1045).  Stock 

cultures of each organism were stored at -80 oC in tryptic soy broth (TSB; BD Diagnostic 
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Systems, Cat# DF0064-07-6) containing 25% (v/v) glycerol. Monthly, frozen stock 

cultures were transferred to working cultures by plating on tryptic soy agar (TSA; BD 

Diagnostic Systems, Cat# DF0370-075) slants/plates and incubating at 37 oC for 24 hrs.  

Periodically, working cultures were streaked on differential media to ensure 

purity. For S. Enteritidis, cultures were spread on xylose, lysine, deoxycholate (XLD) agar 

(Remel Cat# R459902). Cultures were incubated overnight in TSB at 37 oC on a rotary 

shaker set at 150 RPM. All cultures were diluted with TSB to the desired cell numbers.   

6.3.2 Effect of soaking seeds on organic acid buffers 

 Beans/seeds (20 g) were placed in 50 mL of organic acid buffer (5, 25, or 50 mM 

of acetic or levulinic acid) and placed on a shaker set at 125 RPM. The pH was measured 

every 10 min using a pH meter (Fisher Scientific Accumet Basic, Model: AB15, USA) for a 

total of 60 min. The pH meter was standardized using 4, 7, and 10 pH buffer solutions 

(Fisher Scientific, Cat# SB107-500, SB107-500, and SB115-500).     

6.3.3 Scanning Electron Microscopy (SEM) 

Prior to microscopy, samples were coated with 20 nm of gold by a Cressington 

Sputter Coater 108auto (Watford, UK) to prevent charging. Micrographs were captured 

with a JEOL Neoscope JCM 6000 Benchtop SEM (Nikon Instruments, Inc. Melville, NY) 

while operating at 10 kV. 

6.3.4 Formation of antimicrobial nanoemulsions  
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  The preparation of the antimicrobial nanoemulsion was based on a method 

previously reported by our group, but with a few modifications. Carvacrol (4 g) (Sigma-

Aldrich, Cat# W224502-100G-K) was added to 6 g of medium chain triglyceride (MCT) oil 

(Miglyol 812, Witten, Germany) and thoroughly mixed with a magnetic stir bar for 5 min 

at 125 RPM. Once mixed, Tween 80® (10 g) (Sigma-Aldrich, Cat# P1754-500ml) was 

added to the oil mixture and mixed with a magnetic stir bar for another 5 min at 125 

RPM. The oil/Tween 80® mixture (20 g) was titrated, at a rate of 2 mL/min, into 80 mL of 

either 50 mM levulinic (pH 2.8; Sigma-Aldrich, Cat# W262706) or 50 mM  acetic acid 

buffer (pH 2.5; Macron chemical, Cat# V196-05) containing a magnetic stirring bar set to 

600 RPM and allowed to mix for an additional 15 min.  The emulsion was filter sterilized 

through a sterile 0.45 µm syringe filter (Fisher Scientific Cat# 09-719-005) and stored in 

sterile 50 mL conical tubes at 2 - 5 oC for up to 3 weeks.  Droplet size was measured 

using dynamic light scattering (Zetasizer Nano ZS, Malvern Instruments, UK).    

6.3.5 Effectiveness of carvacrol nanoemulsion on contaminated seeds  

All beans/seeds used in this study were generously provided by Jonathan’s 

Organics (Rochester, MA). Each strain of S. Enteritidis was inoculated in separate test 

tubes containing TSB (9 mL) and incubated overnight at 37 oC. Overnight growth was 

pooled together for a final concentration of 9 log CFU/mL. Batches (20g) of beans/seeds 

were soaked in 50 mL of diluted S. Enteritidis cocktail at a concentration of 9, 6, 5, 4, or 

3 log CFU/mL for 20 min to achieve an inoculation level on beans/seeds of 8, 5, 4, 3, or 2 

log CFU/g, respectively. 
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The inoculated beans/seeds were then transferred to a sterile glass petri dish 

containing sterile filter paper (Fisher Scientific Cat# 09-803-6D) within a biological safety 

cabinet, and allowed to dry overnight at ambient temperature. For initial cell numbers, 

contaminated batches (5 g) were soaked in 50 mL of TSB for 15 min on a rotary shaker 

set to 150 RPM, plated on XLD, and incubated overnight at 37 oC.  To test the 

effectiveness of the acidified nanoemulsion, inoculated bean/seed batches (15 g) were 

placed in 250 mL beakers and treated by soaking in 50 mL of acidified nanoemulsion 

(4,000 or 8,000 ppm) with agitation (125 RPM) for 30 or 60 mins. For the control, 

contaminated batches were soaked in either 50 mM levulinic (pH 2.8; Sigma-Aldrich, 

Cat# W262706) or acetic acid (pH 2.5; Macron chemical, Cat# V196-05) buffer. After 

treatment, the batches were rinsed once with 50 mL of sterile deionized water and 

transferred to a sterile 250 mL beaker containing 50 mL of TSB. The beaker was placed 

on a rotary shaker set to 50 RPM for 15 min. After agitation, a dilution series was 

created and plated on XLD and incubated at 37 oC for 24 hrs. For treated seed batches 

that were expected to result in negative plate counts (based upon preliminary data), or 

that had low initial inoculation levels (2 and 3 log CFU/g), a three tube most probable 

number (MPN) assay was used in conjunction with spread plating according to the FDA’s 

Bacteriological Analytical Manual (BAM) for a final detection limit of ≤ 3 MPN/g (71). 

Samples were appropriately diluted in Lactose Broth (BD BBL Cat# DF0004-17-7) 

Salmonella enrichment and incubated overnight. Dilution sets were checked for 

turbidity. Any positive tubes were streaked on XLD media (Remel Cat# R459902) for 

confirmation. Both treated inoculated and uninoculated samples were then sprouted.    
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Mung Bean Sprouting: Treated inoculated and uninoculated mung beans (20 g) were 

transferred to a sterile 1000 mL bottle and soaked in 150 mL of distilled water at 20 oC 

for 24 hrs. The water was removed, and sprouting continued for 4 days at 20 oC, with 

daily water by a 5-min soak in 150 mL of distilled water. After four days, two 25 g 

batches of sprouts were taken for microbiological testing. The samples were suspended 

in 225 mL of 0.1% peptone water and stomached for 1 min. A dilution series was 

created and plated on XLD as previously described.  

Broccoli Seed Sprouting:  Batches (10 g) of inoculated and uninoculated broccoli seeds 

were transferred to a sterile 250 mL beaker and soaked in 150 mL of distilled water at 

20 oC for 24 hours. The water was removed, and the seeds transferred to 3 pieces of 

sterile filter paper (Fisher Scientific Cat# 09-803-6D) on top of a sterile plastic test tube 

rack in a sterile stainless steel container with a lid. The seeds were sprouted in the dark 

at 20 oC for 3 days. The seeds were watered with 15 mL of distilled water every 8 hrs 

with a plastic spray bottle (Fisher Scientific Cat# 03-438-12A). After sprouting, two 25 g 

batches of sprouts were suspended in 225 mL of 0.1% peptone water and stomached 

for 1 min. A dilution series was created and plated on the XLD as previously described. 

6.3.6 Influence of acidified nanoemulsion treat on sprout germination yield. 

Batches (20 g) of beans/seeds were placed in 250 mL beakers and treated by 

soaking in distilled water (control) or  50 mL of acidified nanoemulsion (4,000 or 8,000 

ppm) with agitation (125 RPM) for 30 or 60 mins. Following treatment, the beans/seeds 

were rinsed once with 50 mL of sterile deionized water and sprouting as previously 
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described in section 2.5. Sprouted broccoli or mung beans were transferred to a sterile 

250 mL Whirl-pack bag and weighed on a top-load balance.   

6.3.7 Storage stability of nanoemulsions  

  The nanoemulsion (20 mL) was placed in pre-sterilized test tubes and incubated 

at 20oC. For thirty consecutive days, size measurements were recorded using a dynamic 

light scattering instrument (ZetasizerNano ZS, Malvern Instruments, UK). To determine if 

diluting the emulsion would have an impact on stability, stock nanoemulsion was 

diluted 5-fold in either 50 mM levulinic (pH 2.8; Sigma-Aldrich, Cat# W262706) or 50 

mM acetic acid (pH 2.5; Macron chemical, Cat# V196-05) buffer and size measurements 

were recorded for thirty consecutive days using dynamic light scattering (Zetasizer Nano 

ZS, Malvern Instruments, UK). This instrument determines the particle size from 

intensity-time fluctuations of a laser beam (633 nm) scattered from a sample at an angle 

of 173°. Each individual measurements was an average of 13 runs. Samples were 

measured diluted (50 µL into 5 mL) to avoid multiple scattering effects. The 

effectiveness of the stored emulsion was evaluated by testing its antimicrobial 

properties on beans/seed artificially inoculated with 8 log CFU/g of Salmonella cocktail.  

6.3.8 The effect of pH on the effectiveness of the carvacrol nanoemulsion in vitro 

 The effectiveness of the acidified carvacrol nanoemulsion (5 mM or 50 mM 

acetic acid; 1,000 ppm carvacrol) at various pH units was measured monitoring the 

change log reductions of S. enterica. Briefly, 0.1 mL of S. enterica (9 log CFU/mL) was 

transferred to a sterile 2.0 mL conical centrifuge containing 0.9 mL sterile saline (0.85% 
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NaCl) and centrifuged for 1 min at 10,000 RPM. The supernatant was decanted, pellet 

suspended in 0.9 mL sterile saline, and centrifuged again for 1 min at 10,000 RPM. Again 

the supernatant was decanted and the pellet suspended in 0.9 mL sterile saline for a 

final concentration of 8 log CFU/mL. Carvacrol nanoemulsion (1 mL) and S. enterica (1 

mL) were combined in a sterile 2.0 mL conical centrifuge for a total volume of 2.0 mL 

with concentrations of 1,000 ppm carvacrol and 6 log CFU/mL S. enterica, respectively. 

The mixture was vortexed for 5 sec and allowed to incubate a room temperature for 5 

mins. Following incubation, serial dilutions were made in neutralizing broth (Remel Cat# 

R453042) and plated on TSA plates. Plates were allowed to incubate at 37 oC for 24 hrs.          

6.3.9 Statistical Analysis 

 Statistical analysis between pH values for all samples was performed using an 

unpaired two-tail t-test with a 95% confidence interval. A one-way ANOVA followed by 

Tukey’s multiple comparison test (95% confidence interval) was used to statistically 

analyze both total log reduction and total sprout yield. All statistical analyses were 

performed using GraphPad Prism version 5.01 for Windows, GraphPad Software, La Jolla 

California USA. 

6.4 Results 

6.4.1 Influence of seeds on the pH of the organic acid buffers. 

 In a previous study our group found that the antimicrobial efficiency of carvacrol 

emulsions prepared in 5 mM citrate buffer were much less effective on broccoli seeds, 

than observed with mung, alfalfa or radish.  It was also observed that brown matter 



 

114 
 

(assumed to be seed coat materials) would come off broccoli seeds during soaking, 

while less was seen with other seed types.  Therefore, in preparation for reformulation 

of antimicrobials with acetic and levulinic acid, we were curious if the pH of the solution 

was changing during treatment.  The pH of acid solutions at different molarities was 

monitored over time (Figure 6.1).   Mung beans had a slight yet significant effect on the 

pH of both the acetic and levulinic acid (Figures 6.1A and B) after soaking for 60 min 

regardless of acid concentration. Broccoli seeds, on the other hand, had a dramatic 

effect on the pH of both acetic and levulinic acid (Figures 6.1C and 6.1D) buffers. The 

greatest increase in pH for both seeds occurred within in the first 10 min for all 

concentrations and acid types (Figure 6.1). When soaked in acetic acid for 10 min, the 

pH for broccoli seeds soaked in 5 mM acetic acid increased by 1.48 pH units, 1.09 pH 

units for 25 mM acetic acid, and 0.6 pH units for 50 mM acetic acid. For levulinic acid, 

the pH increased by 1.6 pH units for 5 mM levulinic acid, 1.2 pH units for 25 mM 

levulinic acid, and 1 pH unit for 50 mM levulinic when soaked for 10 min. A significant 

difference was found when comparing the change in pH between seeds for each acid, as 

seen in Figures 6.2A and 6.2B. Broccoli seed’s effect on the pH of both acetic and 

levulinic acid was significantly greater than that of mung beans (Figure 6.2D). There was 

no significant difference found between the effects of mung beans on the change in pH 

for each acid at either 5 mM or 25 mM (Figure 6.2C). A significant difference was found 

between the effects of broccoli seeds on the change in pH for both acids at all 

concentrations tested. (Figure 6.2D). 
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In order to determine if seed coat materials were visually changed after soaking, 

seeds were observed using scanning electron microscopy. As seen in Figure 6.3, After 

soaking broccoli seeds, a noticeable change in surface structure was observed, with 

dimpled structures (Figure 6.3A) becoming much more defined after soaking in acid 

buffer (Figure 6.3B). No observable changes were noted for mung beans (Figure 6.4).  

6.4.2 The effect of pH on the effectiveness of the carvacrol nanoemulsion in vitro 

 The effect of pH on the antimicrobial activity of the acidified (5 mM or 50 mM 

acetic acid) carvacrol nanoemulsion can be seen in Figure 6.5. Maximum antimicrobial 

activity was achieved for both concentrations at pH 3.5. As the pH of the antimicrobial 

system increased through the range of 4 - 7, the effectiveness of a carvacrol 

nanoemulsion acidified with acetic acid was reduced by over 41% and 68% for 5 mM 

and 50 mM concentrations, respectively. A similar, yet more dramatic trend was 

observed for a carvacrol nanoemulsion acidified with levulinic acid. The effectiveness of 

the nanoemulsion against Salmonella spp. at a pH of 7was reduced by over 88% and 

61% for 5 mM and 50 mM levulinic acid concentrations.      

6.4.3 Effectiveness of an acidified carvacrol nanoemulsion against Salmonella spp. 

contaminated mung bean and broccoli seeds.  

 Due to the higher buffering capacity, 50 mM acids were selected for 

reformulation of nanoemulsions. The effectiveness of either a 50 mM levulinic or 50 

mM acetic acid acidified carvacrol nanoemulsion can be seen in Figures 6.6 and 6.7 

along with Tables 6.1 – 6.4.  On mung beans, with either acid system a 5 log reduction 

was observed with high inoculation levels (8 log CFU/g), however, during the course of 
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germination, levels of Salmonella increased to similar levels as observed on untreated 

samples.      
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Figure 6.1. The change in pH over time while soaking mung beans or broccoli seeds in either acetic or levulinic acid systems. 

Beans/seeds were placed in various concentrations of either an acetic or levulinic acid and the pH measured every 10 min. All 

points are means with standard deviations from triplicate studies.
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Figure 6.2. Influence of seed/bean and acid type on pH was studied by comparing initial (pHi) and final pH (pHf) values. The 

effect of seed type on the change in pH at various acetic or levulinic acid molarity is represented in A and B respectively. 

Comparison between initial and final pH of an acetic or levulinic acid solution following a 60 min soak with either mung beans 

(C) or broccoli seeds (D) was also examined. Statistical analysis between pH values for all samples was performed using an 

unpaired two-tail t-test with a 95% confidence interval. A “*” indicates that a significant difference was found between 

samples. An “ns” indicates that there was no significant difference between samples.
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Figure 6.3. Scanning electron microscopy (SEM) images of un-soaked (A) and soaked (B) 

broccoli seeds. When comparing both figures, an apparent decrease in surface material 

is observed between samples. 
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Figure 6.4. Scanning electron microscopy (SEM) images of un-soaked (A) and soaked (B) 

mung beans. When comparing both figures, no significant difference between surface 

materials is observed.  
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Figure 6.5. The influence of pH on the efficacy of a carvacrol nanoemulsion acidified 

with either acetic acid (A) or levulininc acid (B) against a Salmonella Enteritidis cocktail. 

The pH was adjusted using 10 M NaOH and each point represents an average value of 

three replicates. A “*” indicates a significant difference between each sample.   
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When inoculated with 5 log CFU/g, mung beans treated with all acidified emulsions, 

reduced levels to 1.5 log CFU/g, however, during the course of germination, levels of 

Salmonella increased to similar levels as observed on untreated samples.  With an initial 

inoculum of 4 log CFU/g, surviving levels of Salmonella on inoculated seeds was below 

detectable levels (less than 3 MPN/g) when treated with 4000 or 8000 ppm of carvacrol 

acidified with either organic acid (Figure 6.6A and 6.6B and Tables 6.1 and 6.2), and 

remained below detectable limits (1.5 log CFU/g)after germination. Total sprout yield 

was not compromised by any treatment (Table 6.5). 

The treatment was less effective on broccoli seeds (Figures 6.7A and 6.7B and 

Table 6.3 and 6.4).  On broccoli seeds, with either acid system a 2.6-3.4 log reduction 

was observed with high inoculation levels (8 log CFU/g) on seeds.  While the surviving 

cells increased during the germination process, the effectiveness of the levulinic acid 

and acetic acid buffered carvacrol nanoemulsions were more effective than observed 

when prepared with 5 mM citrate buffer.  When an initial inoculum of 2 log CFU/g and 

treated with 4000 or 8000 ppm of carvacrol acidified with either organic acid, levels of 

Salmonella were reduced to below detectable levels (≤ 3 MPN/g) and remained below 

detectable limits (1.5 log CFU/g)after germination. Total sprout yield was not 

compromised by any treatment (Table 6.6).  

6.4.4 Stability of nanoemulsions 

The change in acid concentration can influence the stability of emulsions, and to 

have practical applications, it is important to assess the emulsion stability. The freshly 
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prepared stock nanoemulsions with a concentration of 40,000 ppm carvacrol had mean 

droplet diameters (Z-average) around  100 nm for both 50 mM acetic and levulinic acid 

compared, to a mean particle diameter of approximately 90 nm when stocks were 

diluted to a working concentration of 8,000 ppm carvacrol in either acid (Figures 6.8 and 

6.9). After 30 days, the particle size had increased to approximately 100 nm for diluted 

emulsions stored at 8,000 ppm and 180 nm for stock emulsions stored concentrated 

(40,000 ppm). (Figures 6.8 and 6.9). Additionally, the polydispersity index decreased 

over time for all emulsions tested (Figure 6.10). These results indicate that while the 

droplet size is growing, it is also becoming more uniform with time. This is likely due to 

Ostwald Ripening, as the carvacrol may be moving from the oil droplet into the aqueous 

phase. However, when efficacy was tested after 30 days of storage the emulsion system 

was still effective with no significant difference in antimicrobial effectiveness when 

compared to the freshly prepared emulsion. Previous results showed that growth in 

droplet size during storage could be inhibited by diluting the nanoemulsion 5-fold with 

sterile sodium citrate buffer prior to storage. We observed that stability was greatly 

enhanced with dilution. 

6.5 Discussion 

The demand for minimally processed, natural produce has continued to increase 

despite the inherent risk of foodborne illness. At the fore front of this resurgence are 

sprouts. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally 

processed and can be vectors for a variety of human pathogens (166). Between 1990 

and 2005, there have been over 700 worldwide outbreaks, resulting in roughly 34,000  
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Table 6.1.  Effect of carvacrol emulsion acidified with 50 mM levulinic acid on 

contaminated mung beans1,2 

 

 

 
 

Treatment 
Treatment 

Time 
(min) 

 
Initial 

Inoculum 
(log CFU/g) 

 
Cell Numbers 

after Treatment 
(log CFU/g) 

 
Total 
Log 

Reduction  

 
Pathogen 

Detected after 
Sprouting 

 
 

 
Control 

30 
8.6 ± 0.72 7.7 ± 0.65  0.75 ± 0.43A + + + 
5.8 ± 0.68 4.9 ± 0.20 0.68 ± 0.83A + + + 
4.3 ± 0.34 3.9 ± 0.53 0.63 ± 0.50A + + + 

     
 

60 
8.8 ± 0.04 7.9 ± 0.50 1.02 ± 0.53A + + + 
5.8 ± 0.28 5.3 ± 0.61 0.71 ± 0.62A + + + 
4.7 ± 0.28 4.1 ± 0.27 0.64 ± 0.42A + + + 

 
 
 
8000 ppm 

30 
8.5 ± 0.53 3.5 ± 0.45 5.01 ± 0.15A + + + 

5.3 ± 0.44 1.5 ± 0.10 3.9 ± 0.54B + + + 

4.6 ± 0.66 ND >4.1 ± 0.66AB - - - 
     
 

60 
8.4 ± 0.50 3.8 ± 0.35 4.5 ± 0.48A + + + 

5.5 ± 0.57 1.3 ± 0.20 4.0 ± 0.60A + + + 

4.4 ± 0.60 ND >3.9 ± 0.60A - - - 
 
 

 
4000 ppm 

 
30 

8.4 ± 0.11 3.6 ± 0.76 5.1 ± 0.86A + + + 

5.3 ± 0.73 1.4 ± 0.27 3.7 ± 0.47B + + + 

4.6 ± 0.73 ND >4.1 ± 0.73AB - - - 
     
 
 

60 
 

8.6 ± 0.34 3.6 ± 0.32 5.0 ± 0.22A + + + 

5.6 ± 0.84 1.2 ± 0.21 4.0 ± 1.02A + + + 

4.5 ± 0.75 
 

ND >4.0 ± 0.75A 
- - - 

1 All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-
tube MPN assay with a detection limit of 3 MPN/g. Following treatment, seeds were germinated and tested for the presence of 
pathogens. A “+” indicates that pathogens were detected in one of triplicate samples and a “-“indicates that no pathogens were 
detected after germination as determined with a detection limit of 1.5 log CFU/g. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 6.2.  Effect of carvacrol emulsion acidified with 50 mM acetic acid on 

contaminated mung beans 1,2 

 

 

 

 

 
 

Treatment 
Treatment 

Time 
(min) 

 
Initial 

Inoculum 
(log CFU/g) 

 
Cell Numbers 

after Treatment 
(log CFU/g) 

 
Total 
Log 

Reduction  

 
Pathogen 

Detected after 
Sprouting 

 
 

 
Control 

 

30 

8.2 ± 0.08 7.4 ± 0.51  0.87 ± 0.53A + + + 
5.2 ± 0.40 4.8 ± 0.88 0.78 ± 0.84A + + + 
4.7 ± 0.45 3.8 ± 0.16 0.80 ± 0.64A + + + 

     
 
 

60 

8.7 ± 0.04 7.9 ± 0.50 1.03 ± 0.53A + + + 
5.8 ± 0.68 4.9 ± 0.20 0.69 ± 083A + + + 
4.3 ± 0.28 4.0 ± 0.60 0.53 ± 0.82A + + + 

 
 

 
8000 ppm 

30 
8.3 ± 0.31 3.6 ± 0.65 4.9 ± 0.52A + + + 

5.3 ± 0.46 1.4 ± 0.09 3.7 ± 0.48A + + + 

4.5 ± 0.74 ND >4.0 ± 0.74A - - - 
     
 

60 
8.9 ± 0.84 3.9 ± 0.19 4.6 ± 0.91A + + + 

5.1 ± 0.58  1.1 ± 0.05 3.8 ± 0.62A + + + 

4.0 ± 0.22 ND >3.5 ± 0.22A - - - 
 
 

 
4000 ppm 

 
30 

8.4 ± 0.30 3.3 ± 0.16 5.0 ± 0.30A + + + 

5.0 ± 0.47 1.4 ± 0.01 3.5 ± 0.46B + + + 

4.2 ± 0.47 
ND >3.7 ± 

0.47AB 
- - - 

     
 

60 
 

8.2 ± 0.40 3.4 ± 0.51 4.9 ± 0.89A + + + 

5.1 ± 0.59 1.3 ± 0.20 3.6 ± 0.62A + + + 

4.3 ± 0.46 ND >3.8 ± 0.46A - - - 
1 All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a 
three-tube MPN assay with a detection limit of 3 MPN/g. Following treatment, seeds were germinated and tested for the 
presence of pathogens. A “+” indicates that pathogens were detected in one of triplicate samples and a “-“indicates that no 
pathogens were detected after germination as determined with a detection limit of 1.5 log CFU/g. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 6.3. Effect of carvacrol emulsion acidified with 50 mM levulinic acid on 

contaminated broccoli seeds 1 

 
 

Treatment Treatment 
Time 
(min) 

 
 

Initial 
Inoculum 

(log CFU/g) 

 
 

Cell Numbers 
after Treatment 

(log CFU/g) 

 
 

Total 
Log 

Reduction  

 
 

Pathogen 
Detected after 

Sprouting 

 
 
 
 

Control 

 

30 

8.4 ± 0.43 7.5 ± 0.35 0.83 ± 0.58A + + + 
5.7 ± 0.86 4.7 ± 0.38 0.47 ± 0.55A + + + 
3.3 ± 0.52 3.0 ± 0.44 0.30 ± 0.91A + + + 
2.5 ± 0.13 2.3 ± 0.31 0.29 ± 0.37A + + + 

     
 
 

60 

8.5 ± 0.42 7.6 ± 0.10 0.74 ± 0.46A + + + 
5.6 ± 0.24 5.4 ± 0.67 0.38 ± 0.85A + + + 
3.6 ± 0.60 3.3 ± 0.59 0.27 ± 0.22A + + + 
2.5 ± 0.12 2.3 ± 0.12 0.20 ± 0.09A + + + 

 
 
 
 
 

8000 ppm 

 
 

30 

8.5 ± 0.23 5.1 ± 0.20 3.4 ± 0.41A + + + 

5.6 ± 0.33 3.8 ± 0.38 1.8 ± 0.65B + + + 

3.8 ± 0.14 2.8 ± 0.40 1.1 ± 0.52B + + + 
2.4 ± 0.09 ND >1.8 ± 0.09B - - - 

     
 
 

60 

8.3 ± 0.48 5.3 ± 0.11 2.9 ± 0.37A + + + 

5.6 ± 0.44 2.8 ± 0.82 2.9 ± 0.88A + + + 

3.9 ± 0.54 2.6 ± 0.16 1.2 ± 0.62B + + + 
2.1 ± 0.30 ND >1.6 ± 0.30AB - - - 

 
 
 
 
 

4000 ppm 

 
 

30 

8.0 ± 0.12 5.4 ± 0.17 2.6 ± 0.08A + + + 

5.9 ± 0.28 3.9 ± 0.43 2.09 ± 0.16A + + + 

3.8 ± 0.20 2.8 ± 0.11 0.97 ± 0.31B + + + 
2.6 ± 0.09 ND >2.1 ± 0.09A - - - 

     
 

 
60 

 

8.1 ± 0.26 5.3 ± 0.23 2.8 ± 0.49A + + + 

5.7 ± 0.51 3.9 ± 0.17 1.7 ± 0.46B + + + 

3.8 ± 0.38 2.6 ± 0.15 1.1 ± 0.40B + + + 
2.6 ± 0.15 ND >2.1 ± 0.15A - - - 

1All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-
tube MPN assay with a detection limit of 3 MPN/g. Following treatment, seeds were germinated and tested for the presence of 
pathogens. A “+” indicates that pathogens were detected in one of triplicate samples and a “-“indicates that no pathogens were 
detected after germination as determined with a detection limit of 1.5 log CFU/g. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 6.4. Effect of carvacrol emulsion acidified with 50 mM acetic acid on 

contaminated broccoli seeds1,2 

 

 
 

Treatment 
Treatment 

Time 
(min) 

 
Initial 

Inoculum 
(log CFU/g) 

 
Cell Numbers 

after Treatment 
(log CFU/g) 

 
Total 
Log 

Reduction  

 
Pathogen 

Detected after 
Sprouting 

 
 
 
 

Control 

 

30 

8.0 ± 0.38 7.5 ± 0.05 0.45 ± 0.42A + + + 
5.0 ± 0.19 4.4 ± 0.31 0.62 ± 0.38A + + + 
3.2 ± 0.10 2.9 ± 0.64 0.61 ± 0.60A + + + 
2.8 ± 0.53 2.1 ± 0.32 0.69 ± 0.88A + + + 

     
 
 

60 

8.4 ± 0.43 7.9 ± 0.50 0.48 ± 0.92A + + + 
4.9 ± 0.15 4.7 ± 0.69 0.53 ± 0.78A + + + 
3.2 ± 0.23 2.8 ± 0.24 0.43 ± 0.42A + + + 
2.6 ± 0.08 2.2 ± 0.24 0.45 ± 0.18A + + + 

 
 
 
 

8000 ppm 

 

30 

8.6 ± 0.30 5.3 ± 0.20 3.2 ± 0.38A + + + 

5.7 ± 0.48 3.9 ± 0.73 1.9 ± 0.25B + + + 

3.8 ± 0.22 2.7 ± 0.22 1.1 ± 0.08B + + + 
2.6 ± 0.15 ND >2.1 ± 0.15B - - - 

     
 

60 
8.7 ± 0.24 5.3 ± 0.36 3.4 ± 0.30A + + + 

5.6 ± 0.73 4.0 ± 0.57 1.5 ± 0.82B + + + 

3.9 ± 0.22 2.6 ± 0.04 1.3 ± 0.19B + + + 
2.6 ± 0.23 ND >2.1 ± 0.23B - - - 

 
 
 
 

4000 ppm 

 
 

30 

8.4 ± 0.28 5.6 ± 0.14 2.8 ± 0.27A + + + 

5.7 ± 0.41 4.6 ± 0.65 1.2 ± 0.45B + + + 

3.8 ± 0.11 2.6 ± 0.30 1.3 ± 0.40B + + + 
2.4 ± 0.08 ND >1.9 ± 0.08B - - - 

     
 
 

60 
 

8.4 ± 0.66 5.2 ± 0.71 3.1 ± 0.78A + + + 

5.7 ± 0.38 4.0 ± 0.36 1.7 ± 0.50B + + + 

3.9 ± 0.48 2.5 ± 0.26 1.2 ± 0.33B + + + 
2.6 ± 0.10 ND >2.1 ± 0.10AB - - - 

1 All means and standard deviations are from triplicate studies. A “ND” indicates that no pathogens were detected using a three-
tube MPN assay with a detection limit of 3 MPN/g. Following treatment, seeds were germinated and tested for the presence of 
pathogens. A “+” indicates that pathogens were detected in one of triplicate samples and a “-“indicates that no pathogens were 
detected after germination as determined with a detection limit of 1.5 log CFU/g. 
2 Total reduction averages within each treatment grouping were compared using Tukey’s Test with a 95% confidence interval. 
Groupings of statistical significance are indicated by superscripted letters. 
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Table 6.5.  Effect of carvacrol emulsion acidified with 50 mM levulinic acid on sprout 

yield1,2 

Treatment Treatment Time 
(min) 

Mung Bean Yield (g) Broccoli Yield (g) 

 
Control 30 78.3 ± 8.4A 52.1 ± 5.6A 

60 75.2 ± 9.1A 51.5 ± 11.7A 

8000 PPM 30 77.4 ± 5.7A 49.5 ± 3.1A 

60 78.6 ± 8.9A 49.3 ± 1.9A 

4000 PPM 30 84.4 ± 12.0A 52.9 ± 11.0A 

60 92.1 ± 18.7A 48.8 ± 3.5A 

1 Bean yield averages were compared using Tukey’s Test with a 95% confidence interval. 
2 All means and standard deviations are from triplicate studies. 
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Table 6.6. Effect of carvacrol emulsion acidified with 50 mM acetic acid on sprout 

yield1,2 

Treatment Treatment Time 
(min) 

Mung Bean Yield (g) Broccoli Yield (g) 

 
Control 30 78.3 ± 8.4A 52.1 ± 5.6A 

60 75.2 ± 9.1A 51.5 ± 11.7A 

8000 PPM 30 81.6 ± 8.7A 51.3 ± 2.5A 

60 79.1 ± 13.4A 54.9 ± 10.2A 

4000 PPM 30 84.4 ± 6.8A 54.5 ± 11.7A 

60 83.8 ± 4.2A 54.02 ± 5.5A 

1 Bean yield averages were compared using Tukey’s Test with a 95% confidence interval. 
2 All means and standard deviations are from triplicate studies. 
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Figure 6.6.Comparison of remaining cell numbers (CFU/g or MPN/g) of pathogen between the control (C or D) and a 30 min 

4,000 ppm acidified (50 mM acetic (A) or levulinic acid (B)) nanoemulsion on mung beans. As indicated by an “*”, there was a 

significant difference (un-paired t-test with a 95% confidence interval) between initial cell numbers and cell numbers after 

treatment and germination when treated with the acidified nanoemulsion. An “ns” indicates that there was no significant 

difference between samples. All plotted means and standard deviations are from triplicate studies. 
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Figure 6.7. Comparison of remaining cell numbers (CFU/g or MPN/g) of pathogen between the control (C) or D) and a 30 min 

4,000 ppm acidified (50 mM acetic (A) or levulinic acid (B)) nanoemulsion treatment on broccoli seeds. As indicated by an 

“*”, there was a significant difference (un-paired t-test with a 95% confidence interval) between initial cell numbers and cell 

numbers after treatment and germination when treated with the acidified nanoemulsion. An “ns” indicates that there was no 

significant difference between samples.  All plotted means and standard deviations are from triplicate studies. 
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cases of foodborne illness (206). One potential reason for the increase in outbreaks 

may be linked to the increase production, variety, and use of sprouts in the United 

States. For example, the per capita demand and consumption of sprouts has 

dramatically increased over the past decades with millions of pounds being consumed 

in the United States alone (93, 207).  

We have previously reported the ability of a spontaneous carvacrol 

nanoemulsion containing 5 mM sodium citrate to inactivate pathogens on certain 

sprouting seeds. This formulation produced significant pathogen reductions on 

contaminated mung bean, radish seed, and alfalfa seeds (2-3 log reduction) but not 

broccoli seeds (<1 log reduction). In this report, we present data showing that soaking 

broccoli seeds in an acidified buffer for 60 min increased the pH within the system, 

with the most significant increase in pH occurring after the first 10 min of soaking. It 

was found that buffers containing low concentrations of acid could not maintain 

desired pH levels during treatment.  To further investigate this phenomenon, SEM was 

performed on soaked and un-soaked seeds/beans. It was found that a noticeable 

change in surface structure on broccoli seeds occurred after a 10 min soak in acidified 

buffer. This observation, along with the change in buffer color to brown, may be an 

indication that seed coat material may be removed during soaking, and could possibly 

sequester protons, resulting in an increase in pH. In addition, any seed coatings or 

dispersal aids which were added to seeds during commercial production may possibly 

influence pH during soaking (239, 240). Unlike broccoli seeds, mung beans did not have 

a significant effect on the pH of the system or have any noticeable change in surface  
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Figure 6.8. Comparison of the mean diameter (Z-average) of freshly prepared and stored 

(30 days) stock (40,000 ppm) acidified carvacrol nanoemulsion. To distinguish between 

the samples 15 units were added to the relative intensity of the 30 day sample.  
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Figure 6.9. Comparison of the increase in mean droplet diameter (Z-average) of 

undiluted (40,000 ppm) and 5-fold (8,000 ppm) diluted acidified spontaneous carvacrol 

nanoemulsion when stored for 30 days. All plotted means and standard deviations are 

from triplicate studies. 
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Figure 6.10. Comparison of the change in polydispersity index of undiluted (40,000 ppm) 

and 5-fold diluted (8,000 ppm) acidified spontaneous carvacrol nanoemulsion when 

stored for 30 days. All plotted means and standard deviations are from triplicate studies.   
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characteristics after soaking. The antimicrobial effectiveness of the proposed acidified 

carvacrol nanoemulsion is sensitive to pH and loses potency with an increase in pH.  This 

may be why treatments with the original and acidified carvacrol nanoemulsion resulted 

in greater log reductions on mung beans than on broccoli seeds. 

Charged or reactive compounds such as cellulose, lignin, peptides, glycosides, 

and other reactive substances found in seeds can also have an effect on the 

nanoemulsion droplets as well (153, 154). Various mechanisms, such as electrostatic 

screening, bridging, and binding effects can decrease the solubility and overall 

effectiveness of the nanoemulsion. Once the solubility and stability of an emulsion is 

disrupted, rapid phase separation, as a result of droplet aggregation and creaming 

occurs. It has been demonstrated that the antimicrobial properties of the carvacrol 

nanoemulsion is greatly reduced following destabilization and creaming. It is believed 

that the reduction in efficacy is due to the inability of the carvacrol droplets to interact 

with the bacterial cells in the aqueous phase.  

We have observed optimal antimicrobial activity and overall stability of the 

carvacrol nanoemulsion was obtained at a pH ≤ 4.0 (41). Thus, changes in pH during 

treatment may explain why lower antimicrobial activity was observed during the 

treatment of contaminated broccoli seeds with a 5 mM sodium citrate spontaneous 

carvacrol nanoemulsion. It was found that 50 mM of either levulinic or acetic acid 

prevented the pH of the system from surpassing pH 3.5 for broccoli seeds. Mung beans 

did not exhibit a dramatic change in the pH levels for either 5 mM sodium citrate, or 
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any organic acids tested in this manuscript. Control of the pH during antimicrobial 

treatments may be essential for consistency in results.     

The addiction of these acids improved the effectiveness and maintained the 

stability of the carvacrol nanoemulsion. They are also proven antimicrobial compounds 

that have wide acceptability in the food safety community (200, 251). Organic acids 

have a direct impact on the intracellular pH of pathogens. Protonated organic acids can 

pass through the outer membrane of bacteria and once in the cytoplasm, dissociate, 

releasing protons and anions inside the cell. This sudden influx of charged compounds 

disrupts a cells homeostasis by acidifying the cytoplasm. If acid levels are high enough, 

functional enzyme denaturation will occur ultimately leading to cell death (32, 156). 

The development of spontaneous nanoemulsions in 50 mM acetic and levulinic acids 

increased the effectiveness of carvacrol nanoemulsions on both mung bean and 

broccoli seeds, while the acid alone (used as controls) did not provide significant 

reductions of Salmonella on either seed type (Figure 6.6 and 6.7). We believe the 

concentrations used in this study were not high enough to demonstrate any strong 

antimicrobial activity.  

There is a need to find an effective way to prevent, or at the very least reduce 

the incidence of foodborne illness from sprout based products. The presented 

treatment technique could be a food-grade, GRAS alternative to current caustic calcium 

hypochlorite or expensive pasteurization units. The use of a natural active ingredient, 

such as carvacrol, is an attractive alternative to traditional caustic treatments since 

many consumers are now concerned with the use of synthetic compounds within the 
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food industry (28). Sprout producers would be able to purchase or produce their own 

concentrated carvacrol nanoemulsion and dilute as needed based on their production 

volume. Based on the storage stability data, a concentrated stock solution could be 

stored for up to 30 days without any decrease in antimicrobial activity. Using the 

acidified spontaneous carvacrol nanoemulsion system, we were able to reduce 4 log 

CFU/g of a S. Enteritidis cocktail on mung bean seeds and produce a final sprout 

product that did not have any detectable (≤ 1.5 log CFU/g) levels of pathogen (Tables 

6.1 and 6.2). Since no Salmonella was detected on the final sprout product it can be 

assumed that the initial inoculum of Salmonella was inactivated with the treatment.   

Treatment of contaminated broccoli seeds consistently produced a 1.6 – 2.1 log 

reduction of S. Enteritidis with no detectable (≤ 1.5 log CFU/g) pathogens on sprouts 

from seeds initially contaminated with 2 log CFU S. Enteritidis per gram of broccoli 

seed. Based on these results, the proposed acidified emulsion treatment may 

supplement or replace the currently recommended treatment of sprouting seeds.   
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CHAPTER 7 

INFLUENCE OF SPROUTING ENVIRONMENT, ANTIMICROBIAL TREATMENTS, AND 

PATHOGENS ON THE MICROBIOTA OF SPROUTS 

 
7.1 Abstract 

 Sprouts are popular for health conscious and vegetarian consumers. 

Unfortunately, consumers are constantly being reminded about the potential risk of 

foodborne illness from eating bean sprouts. It has been shown that sprouting seeds in 

recycled germination water may limit the level of pathogen contamination on 

germinated sprouts. The presence or absence of certain organisms may influence the 

perishability and susceptibility for post-germination contamination. The microbial 

populations of both sprouting seeds and sprouts were studied using the terminal 

fragment length polymorphism (T-RFLP) analysis. The microbial population over the 

course of germination in a controlled setting was analyzed and compared to the final 

sprout microbiota of commercially grown sprouts using seeds from the same distributer. 

The influence of Salmonella spp. and treatment with an acidified carvacrol 

nanoemulsion on the final microbiota was also studied. Similar organismal families were 

found across the varieties, regardless of the initial population on each sprouting seed. 

The microbiota for each variety following aseptic germination was primarily composed 

of Pseudomonadaceae. Commercially germinated sprout varieties had significantly 

lower abundances of Pseudomonadaceae for all three varieties. Commercial sprouts 

also housed more diverse microbial families than aseptically grown sprouts, such as 

Bacillaceae, Sphingomonadaceae, Phyllobacteriacae, and Lactobacillaceae. When 
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sprouting seeds were inoculated with 1 log CFU/g S. Enteritidis, after germination the 

microbiota consisted of predominantly Pseudomonadaceae and Enterobacteriaceae for 

all varieties. Seeds that were treated with the antimicrobial nanoemulsion prior to 

germination had no detectable S. Enteritidis TRFs or viable cell counts as determined by 

plate counts, suggesting complete inactivation.      

7.2 Introduction 

 The continued promotion of sprouts as a natural superfood has moved sprout 

based products to the forefront of the health movement. The constant threat of 

foodborne illness has also illuminated the apparent health risks associated with sprouts. 

The majority of sprout related foodborne disease has been linked to contaminated 

sprouting seeds, which can yield final sprout products with pathogen levels >8 log CFU/g 

(86). This has resulted in the implementation of numerous governmental polices, both 

domestic and abroad, that are designed to mitigate the health risks of minimally 

processed sprouts (70, 76).  Yet, the occurrence of sprout related illness continues.  

 Recently, there has been a revived interest on the topic surrounding the 

microbiota of sprouting seeds and the environment in which they are sprouting. 

Organisms such as Bacillus spp., Pseudomonas spp., Lactococcus spp., and indicator 

organisms like coliforms have been found to be part of the sprout microbiota (8, 30, 

182, 257). The presence of potential antagonistic organisms, such as Lactococcus spp. 

and Pseudomonas spp., may actually aid in the limitation or even prevent the growth of 

pathogenic organisms and indicator organisms may elude to the presence of a “dirty” 
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sprouting environment or inadequate Good Manufacturing Practices (GMPs) (151, 262, 

263).  

Studies have demonstrated that introducing sprouting seeds to bacterial 

communities derived from used sprout water can hinder the growth of foodborne 

pathogens (151, 257). Sprout-derived organisms may be better suited for the sprouting 

environment and limit the presence of foodborne pathogens through competitive 

exclusion or through the production of antagonistic compounds. However, 

environmental factors such as climate, water supply, and variations in sprouting seeds 

can have an effect on the final microbiota (8, 194, 257).  

 A recent study demonstrated that the microbial populations of radish sprouts 

was dependent on season fluctuations (8). They found that both aerobic plate counts 

(APCs) and coliform levels were higher during the summer months than winter months 

and that there was a significant difference in both variables between different farms (8). 

The use of various antimicrobial treatments, such as calcium hypochlorite, electrolyzed 

water, and organic acids have also been shown to be effective against foodborne 

pathogens but also effect the sprout microbiome (66, 167, 231, 257). 

 Seed treatments, environmental factors, and/or slight changes during the 

germination process have an influence on the final sprout microbiota. Therefore, the 

purpose of this study is to analyze the microbial population over the course of 

germination in a controlled setting, and compare the final sprout microbiota to that of 

commercial sprouts grown from the same seed distributer. The influence of Salmonella 
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spp. and treatment with an acidified carvacrol nanoemulsion on the final microbiota will 

also be studied. Sprout based microbial communities would be profiled using Terminal 

Fragment Length Polymorphisms (T-RFLP) (Diagram 7.1). This technique fingerprints 

microbial communities by analyzing the lengths of restricted 16s rDNA sequences from 

microbial communities. Each fragment (TRF) will be identified by matching the length of 

the restricted fragment to hypothetical restricted fragments generated from a 16s rDNA 

library. Though not as deep as current next-generation sequencing technologies, this 

type of community analysis has be used with much success through out a variety of 

disciplines.   

7.3 Materials and Methods 

7.3.1 Bacterial strains and culture conditions  

  The bacterial culture used in the presented experiment was S. Enteritidis strains 

1045 (ATCC BAA-1045).  Stock cultures of the organism were stored at -80 oC in tryptic 

soy broth (TSB; BD Diagnostic Systems, Cat# DF0064-07-6) containing 25% (v/v) glycerol. 

Monthly, frozen stock cultures were transferred to working cultures by plating on tryptic 

soy agar (TSA; BD Diagnostic Systems, Cat# DF0370-075) slants/plates and incubating at 

37 oC for 24 hrs.  

Periodically, working cultures were streaked on differential media to ensure 

purity. For S. Enteritidis, cultures were spread on xylose, lysine, deoxycholate (XLD) agar 

(Remel Cat# R459902). Cultures were incubated overnight in TSB at 37 oC on a rotary 

shaker set at 150 RPM. All cultures were diluted with TSB to the desired cell numbers.   
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7.3.2 Formation of antimicrobial nanoemulsions  

  Carvacrol (4 g) (Sigma-Aldrich, Cat# W224502-100G-K) was added to 6 g of 

medium chain triglyceride (MCT) oil (Miglyol 812, Witten, Germany) and thoroughly 

mixed with a magnetic stir bar for 5 min at 125 RPM. Once mixed, Tween 80® (10 g) 

(Sigma-Aldrich, Cat# P1754-500ml) was added to the oil mixture and mixed with a 

magnetic stir bar for another 5 min at 125 RPM. The oil/Tween 80® mixture (20 g) was 

titrated, at a rate of 2 mL/min, into 80 mL of 50 mM acetic acid buffer (pH 2.5; Macron 

chemical, Cat# V196-05) containing a magnetic stirring bar set to 600 RPM and allowed 

to mix for an additional 15 min.The emulsion was filter sterilized through a sterile 0.45 

µm syringe filter (Fisher Scientific Cat# 09-719-005) and stored in sterile 50 mL conical 

tubes at 2 - 5 oC for up to 3 weeks.  Droplet size was measured using dynamic light 

scattering (Zetasizer Nano ZS, Malvern Instruments, UK).    

7.3.3 Sample preparation and DNA extraction for the native seed and sprout microbiota 

during germination  

 All beans/seeds and sprouts were generously donated by Jonathan’s Organics 

(Rochester, MA). Microbial population samples were taken at various time points during 

the germination process. For initial microbial populations on sprouting seeds, 100 g of 

seeds were added to a sterile 250 mL Whirl-Pack bag containing 200 mL of maximum 

recovery diluent (MRD :1 g/L peptone, 8.5 g/L sodium chloride, pH 7.0) with 0.025% 

sodium dodecyl sulfate (SDS) and vigorously shaken for 1 min (132). The cell suspension 

was then transferred to sterile 50 mL centrifuge tubes and centrifuged for 10 min at 

12,000 RPM. Following centrifugation, the supernatant from each tube was removed  
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Diagram 7.1 – Typical workflow for T-RFLP analysis (1). 
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and the pellets suspended in 10 mL of sterile saline. Suspended pellets were pooled 

together and centrifuged for another 10 min at 12,000 RPM. Again, the supernatant was 

removed and the final pellet suspended in 10 mL of sterile saline. The final cell 

suspension was stored at -80 oC in 25% glycerol until needed. 

For microbial population sampling during the germination process and of 

commercial sprout samples, 25 g of sprouting seeds/sprouts were added to a sterile 250 

mL Whirl-Pack bag containing 200 mL of MRD (1 g/L peptone, 8.5 g/L sodium chloride, 

pH 7.0) with 0.025% SDS and vigorously shaken for 1 min (132). The cell suspension was 

then transferred to sterile 50 mL centrifuge tubes and centrifuged for 10 min at 12,000 

RPM. Following centrifugation, the supernatant from each tube was removed and the 

pellets suspended in 10 mL of sterile saline. The final cell suspension was stored at -80 

oC in 25% glycerol until needed. DNA extracts from all samples were obtained using the 

PowerSoil® DNA Isolation Kit (Mo Bio Laboratories Cat# 12888-50) as directed by the 

manufacturer.  

7.3.4 Sample preparation and DNA extraction for contaminated, treated, and 

commercially germinated sprout microbiotas  

DNA extracts from all samples were obtained using the PowerSoil® DNA Isolation 

Kit (Mo Bio Laboratories Cat# 12888-50) as directed by the manufacturer. Preparation 

for each sample was performed as described below. 

7.3.4.1 Contaminated Mung Bean and Broccoli Samples 

All beans/seeds used in this study were generously provided by Jonathan’s 

Organics (Rochester, MA). S. Enteritidis 1045 was inoculated in TSB (9 mL) and 
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incubated overnight at 37 oC. Batches (20g) of beans/seeds were soaked in 50 mL of 

diluted S. Enteritidis cocktail at a concentration of 2 log CFU/mL for 20 min to achieve an 

inoculation level on beans/seeds of 1 log CFU/g. 

The inoculated beans/seeds were then transferred to a sterile glass petri dish 

containing sterile filter paper (Fisher Scientific Cat# 09-803-6D) within a biological safety 

cabinet, and allowed to dry overnight at ambient temperature. Samples that were not 

subjected to the carvacrol nanoemulsion treatment were germinated as described 

below. For treatment samples, artificially contaminated beans/seeds (20 g) were placed 

in sterile 250 mL beakers and soaked in the acidified carvacrol nanoemulsion (50 mM 

acetic acid, 8,000 ppm carvacrol) with agitation (125 RPM) for 30 min. For negative 

controls, beans/seeds not inoculated with S. enterica were also subjected to the same 

treatment conditions. After treatment, the batches were rinsed once with 50 mL of 

sterile deionized water and sprouted.   

Mung Bean Sprouting: Mung beans (20 g) were transferred to a sterile 1000 mL bottle 

and soaked in 150 mL of distilled water at 20 oC for 24 hrs. The water was removed, and 

sprouting continued for 4 days at 20 oC, with daily water by a 5-min soak in 150 mL of 

distilled water. After four days, 200 mL of MRD (1 g/L peptone, 8.5 g/L sodium chloride, 

pH 7.0) with 0.025% SDS was added to the 1 L bottle and vigorously shaken for 1 min 

(132). The final cell suspension was stored at -80 oC in 25% glycerol until needed. 

Broccoli Seed Sprouting:  Batches (10 g) of broccoli seeds were transferred to a sterile 

250 mL beaker and soaked in 150 mL of sterile distilled water at 20 oC for 24 hours. The 

water was removed, and the seeds transferred to 3 pieces of sterile filter paper (Fisher 
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Scientific Cat# 09-803-6D) on top of a sterile plastic test tube rack in a sterile stainless 

steel container with a lid. The seeds were sprouted in the dark at 20 oC for 3 days. The 

seeds were watered with 15 mL of sterile distilled water every 8 hrs. After sprouting, 

sprouts were aseptically transferred to a sterile 500 mL Whirl-Pack bag containing 200 

mL of MRD (1 g/L peptone, 8.5 g/L sodium chloride, pH 7.0) with 0.025% SDS and was 

vigorously shaken for 1 min (132). The final cell suspension was stored at -80 oC in 25% 

glycerol until needed. 

 Total aerobic and viable S. Enteritidis counts were performed by serially diluting 

the rinseate and plating on either TSA or XLD agar plates. Inoculated plates were 

allowed to incubate for 24 hr at 37 oC. 

7.3.4.2 Commercially Germinated Sprout Samples 

 Jonathan’s Organic mung bean and broccoli sprouts were obtained directly from 

the processing plant. Sprouts (35 g) were aseptically transferred to a sterile 500 mL 

Whirl-Pack bag containing 200 mL of MRD (1 g/L peptone, 8.5 g/L sodium chloride, pH 

7.0) with 0.025% SDS and was vigorously shaken for 1 min (132). The final cell 

suspension was stored at -80 oC in 25% glycerol until needed. 

7.3.5 Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis      

  
Nearly full length portions of the 16s rDNA were amplified using 20 µL Intron Hi-

Fidelity Maxime PCR pre-mix tubes (Bulldog Bio Cat# 25185) with VIC labeled (Applied 

Biosystems)  primers 8f (5’-AGAGTT TGA TCC TGG CTC AG-3’) and 1492R (5’-ACG GCT 

ACC TTG TTACGA CTT-3’), using the manufactures recommended procedure (157, 256). 
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Amplification was performed with a C1000 Thermal Cycler (Bio Rad, Hercules, CA) using 

a cycle program consisting of a 3 min initial denaturation step (95 oC); 34 cycles of 95 oC 

for 60 sec, 54 oC for 45 sec, and 70 oC for 60 sec; and an 8 min final extension step at 70 

oC (157). Amplification products were separated on a 1% agarose gel and visualized 

under UV light using Midori Green nucleic acid stain (Bulldog Bio, Cat #MG06).  

Restriction digestions were performed in 96-well microtiter plates. The PCR 

reaction products (7 µL) was combined with 10 U of MspI (New England Bio Labs) for a 

total reaction mixture of 30 µL. The reaction mixtures were incubated at 37 oC for 3 hr 

and then stored at -20 oC. DNA fragment analysis was performed with an AB3100 

sequencer (Applied Biosciences) at the University Of Massachusetts Genomics Resource 

Center.      

Initial analysis of terminal restriction fragments (TRFs) was performed using Peak 

Scanner v2.0 software (Applied Biosystems). Further analysis and cleanup was 

performed using the T-RFLP analysis package for R statistical analysis software with a 

cut-off between ≥50 and ≤500 bp (2). Clustering, and multi-dimensional scaling was 

performed using the Paleontological Statistics (PAST) software with a bootstrap sample 

value of 9999 (104). Any potential TRFs were identified by comparing TFRs to bacterial 

16s and soil databases using the MiCA T-RFLP Analysis APLAUS+ platform(216).                               

7.4 Results 

7.4.1 The influence of environment on the sprout microbiota 

 The comparison between the microbiota of each variety prior to sprouting can 

be seen in Figure 7.1. Though similar organismal families can be found across the 
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varieties, their clustering reveals little similarity between them. The family 

Peptococcaceae makes up the majority (52%) of the population on mung beans. 

Whereas, Peptococcaceae was found to have a lesser presence on broccoli seeds (24%) 

and no presence on alfalfa seeds (Figure 7.1). The presence of Sphingomonadaceae was 

comparable between mung bean (29%) and broccoli seeds (32%). Alfalfa seeds was also 

found to house Sphingomonadaceae, making up 13% of the microbiota.  

 Broccoli and alfalfa seeds housed microbial families not present on mung beans. 

Lactobacillaceae (22%) and Nocardiaceae (14%) were present on alfalfa seeds but not 

mung beans. Oxalobacteraceae was found to make up 13% and 2% of the microbial 

abundance on broccoli and alfalfa seeds respectively, with no detectable abundance on 

mung beans (Figure 7.1).  

The influence of sprouting conditions/environment for mung bean, broccoli, and 

alfalfa sprouts can been seen in Figures 7.2, 7.3, and 7.4 respectively. Regardless of the 

initial population on each sprouting seed, the microbiota for each variety following 

aseptic germination was primarily composed of Pseudomonadaceae (≥94% for all 

varieties).  

Commercially germinated sprout varieties had significantly lower abundances of 

Pseudomonadaceae for all three varieties. Commercial sprouts also housed more 

diverse microbial families than aseptically grown sprouts (Figure 7.5). Bacillaceae, 

Sphingomonadaceae, Phyllobacteriacae, and Lactobacillaceae were detected on  
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Figure 7.1 Comparison of the initial microbiota on mung beans (A), broccoli seeds (B), 

and alfalfa seeds (C). Hierarchical clustering was performed using the Bray-Curtis 

similarity index based on the paired grouping (UPGMA) algorithm. Bootstrap values 

were determined based on a sample value of 9999.  
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Figure 7.2 Comparison of the microbiota of mung bean sprouts germinated under sterile 

conditions and commercially grown mung bean sprouts from the same distributer. 

Mung beans were germinated in sterile containers and watered daily using sterile 

distilled water. Microbial samples were collected from the initial seeds (D) and after 1 

day (A), 4 days (B), and 5 days (C) of germination. Laboratory grown samples were 

compared to commercial germinated mung bean sprouts (E). Hierarchical clustering was 

performed using the Bray-Curtis similarity index based on the paired grouping (UPGMA) 

algorithm. Bootstrap values were determined based on a sample value of 9999.  
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Figure 7.3 Comparison of the microbiota of broccoli sprouts germinated under sterile 

conditions and commercially grown broccoli sprouts from the same distributer. Broccoli 

sprouts were germinated in sterile containers and watered daily using sterile distilled 

water. Microbial samples were collected from the initial seeds (A) and after 1 day (B), 4 

days (C), and 5 days (D) of germination. Laboratory grown samples were compared to 

commercial germinated broccoli sprouts (E). Hierarchical clustering was performed 

using the Bray-Curtis similarity index based on the paired grouping (UPGMA) algorithm. 

Bootstrap values were determined based on a sample value of 9999.  
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Figure 7.4 Comparison of the microbiota of alfalfa sprouts germinated under sterile 

conditions and commercially grown alfalfa sprouts from the same distributer. Alfalfa 

sprouts were germinated in sterile containers and watered daily using sterile distilled 

water. Microbial samples were collected from the initial seeds (B) and after 1 day (E), 4 

days (C), and 5 days (D) of germination. Laboratory grown samples were compared to 

commercial germinated alfalfa sprouts (A). Hierarchical clustering was performed using 

the Bray-Curtis similarity index based on the paired grouping (UPGMA) algorithm. 

Bootstrap values were determined based on a sample value of 9999.  
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Figure 7.5. Comparison of the microbiota of sprouts germinated under sterile conditions 

and commercial sprouts grown from the same distributer. The microbiota of aseptically 

germinated sprouts (broccoli sprouts (A), mung bean sprouts (B), alfalfa sprouts (C)) 

were compared to commercial grown varieties (alfalfa sprouts (D), broccoli sprouts (E), 

and mung bean sprouts (F)).Hierarchical clustering was performed using the Bray-Curtis 

similarity index based on the paired grouping (UPGMA) algorithm. Bootstrap values 

were determined based on a sample value of 9999.  
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commercially grown sprouts but not laboratory grown, even though those families were 

initial found on the sprouting seeds.          

7.4.2 Effect of an antimicrobial carvacrol nanoemulsion treatment and the presence of S. 

Enteritidis on the microbiota of sprouts  

The effect of the presence of S. Enteritidis on the final microbiota of germinated 

sprouts, and the microbiota of sprouts whose seeds were treated with an antimicrobial 

carvacrol nanoemulsion prior to germination can be seen in Figures 7.6 and 7.7. When 

mung beans were inoculated with 1 log CFU/g S. Enteritidis, after germination the 

microbiota consisted of Pseudomonadaceae and Enterobacteriaceae (Figure 7.6 lane B). 

Similar results were found with inoculated (1 log CFU/g S. Enteritidis) broccoli seeds; 

Pseudomonadaceae and Enterobacteriaceae were the dominate family of organisms 

(Figure 7.7 lane B). It was assumed that S. Enteritidis was the only organism represented 

within the Enterobacteriaceae classification since no other samples were found to have 

TRFs within that family. Sprouts that were germinated from non-treated contaminated 

mung beans and broccoli seeds resulted final S. Enteritidis counts of ≥ 8 log CFU/g of 

sprouts (Figure 7.8).  

Artificially contained and unadulterated mung beans and broccoli seeds that 

were treated with the carvacrol nanoemulsion had a final population that was ≥90% 

Pseudomonadaceae and overall Bray-Curtis similarity indices of 0.72 and 0.48 

respectively (Figure 7.6 and 7.7). The lack of TRFs representative of Enterobacteriaceae, 

along with no detectable S. Enteritidis using plate counts supports previous findings 
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Figure 7.6. Comparison of the microbiota of mung beans that were treated with a 

carvacrol nanoemulsion and/or contaminated with S. Enteritidis (1 log CFU/g of seed) 

germinated under sterile conditions. The microbiota of germinated sprouts 

(contaminated beans (B), treated beans (C), treated contaminated beans (D), and 

unadulterated beans (E)) were compared to commercial grown sprouts (A).Hierarchical 

clustering was performed using the Bray-Curtis similarity index based on the paired 

grouping (UPGMA) algorithm. Bootstrap values were determined based on a sample 

value of 9999.  
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Figure 7.7. Comparison of the microbiota of broccoli seeds that were treated with a 

carvacrol nanoemulsion and/or contaminated with S. Enteritidis (1 log CFU/g of seed) 

germinated under sterile conditions. The microbiota of germinated sprouts 

(contaminated seeds (B), treated seeds (D), treated contaminated seeds (E), and 

unadulterated seeds (C)) were compared to commercial grown sprouts (A).Hierarchical 

clustering was performed using the Bray-Curtis similarity index based on the paired 

grouping (UPGMA) algorithm. Bootstrap values were determined based on a sample 

value of 9999.  

 



 

 
 

158 

 

 

 

Figure 7.8. The total aerobic ( ) and S. Enteritidis ( ) counts of germinated mung bean 

(A) and broccoli (B) sprouts. The samples are as follows: (A) negative control, (B) 

contaminated sprouting beans, and (C) contaminated beans treated with a carvacrol 

nanoemulsion.   
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regarding the effectiveness of the acidified carvacrol nanoemulsion (Figure 7.8).   

7.5 Discussion 

 All varieties of sprouts are grown under conditions ideal for microbial growth. 

Coupled with the fact that sprouts are minimally processed and often consumed raw, 

the correlation between foodborne disease and sprouts should not be a surprise. The 

native microbiota of sprouting seeds and their sprouting environment may play a pivotal 

role in minimizing or preventing foodborne pathogen contamination on sprouts. It has 

been known for some time that the most common vector for foodborne pathogens are 

the sprouting seeds themselves. Microbial community fingerprinting of three sprouting 

seed varieties failed to indicate the presence of any foodborne pathogen, though a 

variety of microbial families commonly associated with soil and produce were noted.  

 The overall microbial populations on the final aseptically germinated sprouts 

varied greatly from the initial microbiota of the sprouting seeds. After 4 days of 

germination, the majority of the microbiota was comprised of Pseudomonadaceae, a 

family of ubiquitous organisms commonly associated with soil and produce. Other 

studies have also confirmed that ≥ 90% of the microbial population on sprouts were 

found to be Pseudomonadaceae (8, 257). However, one study found that 

Enterobacteriaceae was dominate on soy bean sprouts (167). The shift in microbial 

diversity from seed/bean to sprout was quite dramatic. The majority of populations 

present on seeds were not detectable on the final germinated product. For example, 

Lactobacillaceae (22%) was found on alfalfa seeds but went undetected on the 
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aseptically germinated alfalfa sprouts. Interestingly, Lactobacillaceae was present on 

commercially grown sprouts. Bacillaceae, Sphingomonadaceae, and Phyllobacteriacae 

all demonstrated a similar pattern of being present on commercially germinated sprouts 

and not laboratory grown.  

 The actual sprouting environment may play a role in this observation. Organisms 

within the families Lactobacillaceae, Bacillaceae, Sphingomonadaceae, and 

Phyllobacteriacae may not be able to grow or may be subject to competitive exclusion 

when grown under sterile conditions in the laboratory. On the other hand, these 

organisms may thrive and be part of the microbiota of the commercial sprouting 

environment. In this case, seeds may be exposed to high enough levels to minimize 

competitive exclusion or fully germinated sprouts may be exposed to these organisms, 

encouraging their presence on sprouts.  

 The classifications of detected organisms may allude to the presence of 

beneficial organisms both on sprouts and in the germinating environment. Organisms 

such as Lactobacillus spp. (Lactobacillaceae), Pseudomonas spp. (Pseudomonadaceae), 

Paenibacillus spp. (Paenibacillaceae), and Sphingomonas spp. (Sphingomonadaceae) 

have all been shown to demonstrate antagonistic activity against foodborne pathogens 

associated with bean sprouts (89, 125, 205). The presence of antagonistic organisms 

may explain way used sprout water can hinder the growth of foodborne pathogens 

(151, 257).          
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  The use of a T-RFLP analysis has been use to study gut, produce, plant roots, and 

soil microbial communities (52, 53, 223). The cost, time, and high degree of specificity 

and reproducibility are the main attractors to this method of community analysis. Even 

though T-RFLP analyses provide relative abundance values for each TRF, it suffers from 

low discriminatory power and limited depth when compared to next-generation 

sequencing technologies (235). Other limitations such as, amplification and labeled-

probe annealing biases have an influence on T-RFLP analyses, as they do in all 

methodologies utilizing the PCR (181). Unfortunately, the identification of individual 

organisms could not be achieved using this type of community fingerprinting.  

 Based on the findings of this study, it can be concluded that environmental 

factors from the sprouting environment can influence the microbiota of sprouts. The 

germination of sprouting seeds in a sterile environment promoted the growth of 

organisms adapted for that type of environment, as indicated by the dramatic shift in 

microbial population during the germination process for tested sprout varieties. When 

sprouted in a commercial setting, organisms that are present and thriving in the 

sprouting environment may the microbial community of sprouts. This was supported by 

the degree of similarity and node separation between the microbial communities of 

sprouts germinated in the laboratory and sprouts from a commercial sprout farm. With 

more understanding about how outside factors can influence sprouts microbial 

diversity, new and improved practices can be developed to help minimize the incidence 

of foodborne illness from the consumption of raw sprouts. 
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CHAPTER 8 

CONCLUSION 

 The paradoxical nature of sprouts continues to place them in the spotlight for 

both health benefits and foodborne illness. Throughout the world, governing agencies 

continue to implement regulations and practices designed to combat the biological 

issues often linked to sprouts. The purpose of the research presented in this dissertation 

was to explore creative approaches to this pressing issue. The utilization of either 

antagonist organisms or emulsified essential oils were found to potential alternatives to 

traditional techniques. 

 The novel S. plymuthica EJ was found quite effective against both S. Enteritidis 

and E. coli O157:H7 in both in vitro and in vivo settings. Unfortunately, the practical 

application of this technique is limited by a variety of factors. Extensive survivability, 

both on the seed and on the germinated sprout, studies need to be performed to 

determine if seeds stored for greater the 30 days would continue to have high enough 

levels to retard pathogenic growth. From this study, the novel isolate was able to 

survive for 30 days on sprouting seeds, with a final viable cell count of ~5 log CFU/g. The 

present findings have shown that number of ≥ 8 log CFU/g of S. plymuthica EJ are need 

to limit or prevent the proliferation of pathogens. Studies exploring the lower inoculum 

levels need to be completed before any practical applications can be discussed. 

Second, S. plymuthica is considered an opportunistic pathogen. A number of 

topical infections have been linked to S. plymuthica, some with severe complications 

(33, 146). This dramatically decreases the chances of this organism being considered a 
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potential biological control agent for produce systems. The results of this study do 

demonstrate the concept of biocontrol agents.  

Chemical sanitizing techniques are the most common and, more often than not, 

the most economical treatment method. The gold standard seed/bean disinfection is 

20,000 ppm calcium hypochlorite. A less caustic, more “natural” alternative to calcium 

hypochlorite may be the use of antimicrobial essential oils. These compounds are 

considered natural and have a better standing with consumers than hypochlorites. The 

use of spontaneously emulsified essential oil nanoemulsions were examined as a 

potential alternative treatment for sprouting seeds/beans. The essential oil used during 

these studies was carvacrol, an essential oil found in a variety of herbs. The 

antimicrobial activity of carvacrol has been linked to its ability to disrupt cellular 

membranes and effect pH gradients within cells. Using spontaneous emulsification, a 

carvacrol nanoemulsion was developed and tested on a variety of sprout based systems. 

This food-grade and GRAS antimicrobial treatment was able to inactivate both S. 

Enteritidis and E. coli O157:H7 on all tested sprout varieties. With a treatment per kg 

seed cost three-times that of bleach, this system is not the most economical treatment 

available but it is less expensive than premium commercial peroxyacetic acid products. 

Scale-up manufacturing process and packaging would also have to be optimized. 

The final aspect of this research was to see if the final microbiota on sprouts 

reliant on the initial microbial community on sprouting seeds/beans or is influenced on 

environmental factors. It was determined that the final microbiota of sprouts is 

different than sprouting seeds/beans and the introduction of pathogenic or 
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environmental organisms will affect the observable microbiota of germinated sprouts. 

These findings further emphasize the need for effective seed disinfectants and proper 

GMPs throughout the whole seed – market process. 

Sprouts will continue to a food for health conscious consumers. They will also be 

scrutinized for their chronic correlation with foodborne pathogens such as Salmonella 

spp. and E. coli O157:H7. It is vital that research continues in the areas of prevention, 

disinfection, and detection of pathogens on produce. Hopefully, the results found in this 

dissertation will help the advance towards safer produce.          
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