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ABSTRACT 

DNA-BASED EPIGENETIC CHANGES IN RECURRENT AND TAMOXIFEN-

RESISTANT BREAST CANCER 

 

MAY 2016 

 

KRISTIN E. WILLIAMS, A.B., MOUNT HOLYOKE COLLEGE 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Kathleen F. Arcaro 

 

 

Roughly two-thirds of all breast cancers are Estrogen Receptor  (ER)-positive 

and can be treated with an anti-estrogen such as Tamoxifen, however resistance occurs in 

33% of women who take the drug for more than 5 years. In addition to this acquired 

antiestrogen resistance, de novo- or intrinsic-resistance occurs primarily in ER-negative 

tumors but also occasionally in ER-positive tumors. Aberrant DNA promoter 

methylation, a major epigenetic mechanism by which gene expression is altered in 

cancer, is thought to play a role in this resistance. To date, few studies have examined 

promoter methylation and Tamoxifen resistance in breast cancer. Of the studies 

conducted, one detected drug-specific promoter methylation and gene expression profiles 

in an ER-positive, Tamoxifen-selected MCF-7 derivative cell line. However, studies 

using both ER-positive and –negative, Tamoxifen-selected cell lines have not been 

described until now. 

 

To develop an understanding of Tamoxifen-resistance and identify novel 

pathways and targets of aberrant methylation, I first analyzed two Tamoxifen-resistant 

clones of MCF-7, one that retained expression of ER (TMX2-11) and one that lost 

expression of the gene (TMX2-28) after 6-months of Tamoxifen treatment, by Illumina 

HumanMethylation450 BeadChip (HM450BC). I found that prolonged treatment with 

Tamoxifen induced hypermethylation and hypomethylation throughout the genome.  

Compared to MCF-7, the ER-positive line, TMX2-11 had 4,000 hypermethylated sites, 

while the ER-negative line, TMX2-28 had over 33,000. Analysis of CpG sites in both 

TMX2-11 and TMX2-28 revealed that the two Tamoxifen-selected lines share 3,000 

hypermethylated CpG sites with 21% of those sites being located in the promoter region.  

Promoter methylation and expression of two genes, MAGED1 and ZNF350,  in both 

Tamoxifen-resistant cell lines demonstrated cell line-specific responses to treatment with 

5-aza-2’deoxycitidine (5-Aza). Sixteen additional genes involved in signal transduction, 

cell adhesion, transcriptional repression, inflammatory response, cell proliferation and 

hormone response were chosen for further analysis based on their shared 

hypermethylation or their reduced expression in TMX2-28 as detected in a previously 

completed expression array. Five genes, RORA, THBS1, CAV2, TGFβ2, and BMP2 had 

decreased expression in TMX2-28, but not TMX2-11 as compared to MCF-7, and 5-Aza 
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increased expression of the genes. This indicates that Tamoxifen is affecting a set of 

genes similarly in both the ER-positive and -negative breast cancer cell lines, however 

overall methylation changes are more pronounced in the ER-negative line. Our data as 

well as others suggest that DNA methylation may be contributing to Tamoxifen-

resistance. 

 

I hypothesized that both ER-positive and ER-negative second human breast 

tumors occurring after anti-estrogen treatment would be hypermethylated. I characterized 

the methylation profiles of 70 human breast tumor samples using the HM450BC. These 

data confirm previous findings that ER-positive breast tumors have more 

hypermethylated CpG sites than ER-negative tumors. Stratification of the tumors by ER-

positive first and second tumor sets shows that methylation is greater in first tumors.. 

Additionally, I saw that first tumors from ipsilateral pairs had higher methylation than the 

second tumors; in contrast, second tumors from contralateral pairs had higher methylation 

than in the first tumor. These data, together with the fact that tumor progression is 

associated with an increase in methylation, are consistent with the prediction that 

ipsilateral, not contralateral, tumors are more likely to be a true recurrence.  

 

Pathway analysis was conducted to provide insight into biomarkers associated 

with tumors that recur. Two pathways, ‘homophilic cell adhesion via plasma membrane 

adhesion molecules’ and ‘cell fate commitment’, were selected for further analysis. ER-

positive first tumors that recurred as either ER-positive or ER-negative compared with 

non-recurrent tumors shared hypermethylated genes in the homophilic cell adhesion 

pathway. ER-positive first tumors that recurred as ER-negative compared with ER-

positive first tumors that recurred as ER-positive were associated with a unique set of 

hypermethylated genes in the cell fate commitment pathway. To examine the association 

of methylation changes in my tumor data set with breast cancer patient survival data, 

Kaplan-Meier plots were created using TGCA breast cancer data available online. 

Expression of the genes only hypermethylated in each individual comparison group in the 

homophilic cell adhesion pathway was linked to overall survival. These data suggest that 

the genes hypermethylated only in ER-positive tumors recurring as ER-negative are a 

potential signature for poor survival.  

 

The underlying mechanisms of anti-estrogen resistance are poorly understood. 

Variable responses to breast cancer therapy highlights the need for biomarkers that can 

effectively guide treatment. The findings presented here underscore the potential use of 

breast tumor stratification based on methylation biomarkers in guiding treatment. 
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CHAPTER 1 

 

INTRODUCTION 

 

The Biology of Breast Cancer 

 The breast is composed of three basic structures, lobules, ducts, and stroma 

(Figure 1.1) [1, 2]. Lobules consist of small, hollow, grape-like structures called alveoli, 

which are responsible for the production of milk during lactation. A grouping of 15-20 

lobules is called a lobe. Lobules are connected by ducts, which assist in carrying milk to 

the nipple where it is discharged during lactation. Lobules are composed of both luminal 

cells, the secretory cells that line the inside of the duct, and myoepithelial cells, the 

contractile cells that lie behind the luminal cells [3-5]. Ducts also contain both luminal 

and myoepithelial cells and recent research has suggested the presence of mammary stem 

cells (MaSCs), which give rise to both the luminal and myoepithelial cells of the breast 

through a series of progenitor cell intermediates (Figure 1.2) [3]. Both cell layers sit on 

top of a basement membrane, which is surrounded by adipocytes and fibroblasts that 

comprise the stroma of the breast. Stroma, the fatty and connective tissue, encloses the 

areas between the lobules and ducts.  

 Breast cancer, a disease characterized by abnormal and uncontrolled cell growth, 

can occur in either the cells lining the lobules (lobular cancers) or those lining the ducts 

(ductal cancers). The two most common types of breast cancer occur in the ducts. One in 

five new cases of non-invasive cancer is diagnosed as Ductal Carcinoma In Situ (DCIS). 

This type of breast cancer is highly treatable and many diagnoses are a result of advanced 
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screening methods, such as mammograms [1]. Infiltrating Ductal Carcinoma (IDC), the 

most common type of invasive breast cancer, makes up between 70-80% of all breast 

cancer cases, and if left untreated it is likely metastasis will occur [1].  

 It was estimated that in 2015 around 232,000 new cases of breast cancer occurred 

and of those affected approximately 40,000 were expected to die from the disease, 

making it the second leading cause of all cancer deaths in women [1].  

 

Molecular Subtypes of Breast Cancer 

Through the use of high-throughput gene expression analyses, breast cancer has 

been classified into five subtypes: Luminal A, Luminal B, HER2-enriched, Basal-like and 

Claudin-low (see Figure 1.2) [3, 6]. These classifications are based on specific markers 

either present or absent from the tumor cells. Luminal A tumors have the best prognosis 

and are least likely to see patient relapse. Tumors from this subgroup are estrogen 

receptor (ER) & progesterone receptor (PR)-positive, human epidermal growth factor 

receptor 2 (HER2) negative, and express low levels of Ki67, a proliferation marker 

associated with higher grade tumors at increasing levels [7]. Similarly to Luminal A, 

Luminal B tumors are also ER and PR-positive, but can either be HER2 negative and 

Ki67 high or are positive for HER2. Additionally, Luminal B tumors have a higher 

expression of genes involved in proliferation as compared with Luminal A tumors and 

are classified as having a high risk of recurrence. Luminal tumors stain positive for the 

cytokeratins (CK) 8 and 18. The HER2 subgroup consists of tumors that are HER2 

positive, do not express basal genes, have low expression of luminal genes and are highly 

proliferative. Basal-like tumors are ER and PR-negative and HER2-negative and a 
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combined data set of 400 tumors showed that the basal-like subset had the highest 

percentage of triple negative tumors at 49% when compared with the other subsets [6]. 

They are also defined as having positive staining for CK5/6 and EGFR. The Claudin-low 

subgroup is the least prevalent subtype; 12-14% of all breast tumors are classified as 

Claudin-low. In addition to having low expression of Claudin, a tight junction 

component, it is most similar in terms of hormone expression to the Basal-like subgroup 

with most tumors having the ER & PR-negative/HER2-negative phenotype. However 

Claudin-low tumors differ from Basal-like tumors in that have low expression of a cluster 

of cell-cell adhesion proteins and high expression of a cluster enriched for immune 

system response genes [6]. Both Basal-like and Claudin-low tumors are classified as 

having a high risk of recurrence. 

 

The Estrogen Receptor  

 Estrogen Receptor-α (ERα) is encoded by the ESR1 gene and plays a critical role 

in cell proliferation during both a woman’s normal menstrual cycle and preparing the 

breasts for lactation during pregnancy. Natural estrogens, steroids produced and secreted 

by the ovaries, travels through the blood stream and binds to ERα in the breast and uterus 

[8]. Aromatase, the enzyme responsible for conversion of androstenedione and 

testosterone, which are secreted by the adrenal zona fasculata and the ovarian stroma, is 

present in high concentrations in the ovaries of pre-menopausal, but not post-menopausal 

women [9]. In both pre- and post-menopausal women, aromatase is also present in 

subcutaneous fat, the liver, muscle and the normal breast [10, 11]. There are three major 

forms of estrogen produced by the ovaries: estrone (E1), which is converted from 
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androstenedione, 17β-estradiol (E2), converted from testosterone, and estriol (E3) (Figure 

1.3A) [12]. ERα is located within the nucleus of the cell and when bound to estrogen, 

induces a conformational change in the protein allowing activation of ERα through 

dimerization (Figure 1.4) [13]. This activation results in transcription of genes controlled 

by the Estrogen Response Element (ERE), many of which are involved in cell 

proliferation (Figure 1.5) [8, 12, 14]. In the normal human non-lactating breast, only 7% 

of cells are ERα -positive, with the majority concentrated in lobules [15].  

 In contrast to ERα, the mechanism and role of Estrogen Receptor-β (ERβ) in 

breast cancer, has remained a mystery. ERβ is encoded in the ESR2 gene and the protein 

is not expressed endogenously at detectable levels in any breast cancer cell lines [16]. 

Hypermethylation of the ERβ promoter has been shown to downregulate mRNA 

expression of the gene in both breast cancer cell lines and tumors, specifically in those 

with an unfavorable prognosis [16]. Treatment of the cell lines with demethylating agents 

resulted in increased mRNA expression of ERβ, suggesting a potential biomarker for 

poor prognosis breast tumors [16-18]. 

 In breast cancer, ERα is expressed in the tumor and is a determining factor in 

establishing a treatment regime, however PR expression is used in conjunction as a 

prognostic marker. ER-positive tumors with PR expression have a positive prognostic 

outcome as opposed to those with no PR expression [19]. The PR, is a transcription factor 

and recent research has shown that the functional importance of the protein in disease 

outcome is the cross-talk between the PR and ER in gene expression [19]. This cross-talk 

is believed to regulate the expression of a group of genes that are associated with better 

disease prognosis [19]. 
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Breast Cancer Treatments 

After a breast cancer diagnosis there are multiple options for treatment of the 

tumor including radiation, chemotherapy, hormonal therapy and targeted therapy. The 

suggested treatment path depends on the molecular subtype, size, and tumor stage. 

Radiation therapy uses high-energy rays to target cancer cells left in the breast after 

surgery and is given to both lumpectomy and mastectomy patients [20].  

Neoadjuvant therapy is chemotherapy given before tumor excision. It is given to 

patients with larger tumors with the goal of shrinking the tumor for easier excision. 

Adjuvant therapy is given post-surgery to prevent reoccurrence of the tumor, it is 

recommended for low risk tumors with lymph node metastases larger than 2 cm and 

aggressive tumors that are larger than 0.5 cm with any lymph node metastases [21]. 

Commonly used chemotherapeutics are highlighted in Table 1. These chemotherapies can 

be given in alone or combination with another drug [20, 22]. Administration of adjuvant 

therapy depends on whether the woman was pre-menopausal or post-menopausal at 

diagnosis. Pre-menopausal women are given the anti-estrogen, Tamoxifen for 5 years 

whereas post-menopausal women are given either an aromatase inhibitor or Tamoxifen 

for 5 years [23]. 

Roughly 70% of all breast cancer cases are ER-positive and a majority are easily 

treated with, Tamoxifen (4-hydroxytamoxifen). Tamoxifen, a selective estrogen receptor 

modulator (SERM), has been extensively used to treat breast cancer for over 40 years 

[24]. A competitive inhibitor of estrogen, Tamoxifen functions in the cell by preventing 

E2 from binding to the ERα and ultimately blocking cell growth in ERα-positive breast 

tumors (Figure 1.6) [8]. The binding of Tamoxifen to ERα induces a conformational 
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change, different from that caused by estrogen, which inhibits the dimerization of the 

subunits and ultimately leads to inhibition of the protein (Figure 1.4B) [13, 25]. 

While the majority of women respond well to Tamoxifen, approximately 33% of 

all patients treated with the drug for more than 5 years have disease recurrence [26]. 

Determining the mechanisms responsible for this acquired resistance has been the subject 

of investigation in recent years. Researchers have examined possible mechanisms of 

resistance including loss of expression or function of ERα, changes in expression of co-

repressor and co-activator proteins, increase in growth factor activity, autophagy, stress 

responses, and more recently epigenetic modifications, such as histone modifications and 

DNA methylation [25, 27-31]. Additionally, the extent to which the acquired Tamoxifen 

resistance is due to biological changes in the cells or forced selection of cells resistant to 

the drug is unclear [29]. Though considerable research has been done in the field of 

Tamoxifen resistance, the mechanism of resistance is proving to be a complex one and 

more research is needed to determine additional factors involved. 

 Additional anti-estrogen drugs are available, but not widely used in treatment 

regimes. Toremifene (chloro-tamoxifen) and droloxofine (3-hydroxytamoxifen) are not 

generally given due to their direct similarities to Tamoxifen as derivatives of the drug 

[32]. Raloxifene, another anti-estrogen, was found to decrease the incidence of invasive 

breast cancer and is widely given as both an osteoporosis treatment as well as a 

chemopreventive drug for aggressive breast cancers [32]. Faslodex (Fulvestrant), is given 

to post-menopausal women due to its ability to act as a pure antagonist to the estrogen 

receptor, by binding to and degrading it [32].  
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 The aromatase inhibitors (AIs), anastrazol, exemestane, and letrozole, function by 

blocking aromatase enzyme activity in the cell. As described previously, the ovaries 

produce aromatase in pre-menopausal women, whereas aromatase in post-menopausal 

women is created by fat and muscle cells. In both cases estradiol is produced from 

conversion of testosterone by aromatase [10]. AIs are generally given to post-menopausal 

women with hormone receptor-positive breast cancer as the primary treatment. Treatment 

with Tamoxifen has a 33% relapse rate regardless of whether chemotherapy was used and 

that rate increases if a metastasis is present [10]. AIs have been shown to decrease disease 

progression and increase survival rates among post-menopausal women as compared with 

other hormonal therapies [10]. 

 Finally, targeted therapies are available for those tumors that are positive for 

HER2 and negative for ER and PR. Treatment with trastuzumab (Herceptin), a 

monoclonal antibody, targets the extracellular component of the HER2 protein and 

prevents dimerization [33]. This inhibits cell growth, reduces angiogenic factors and 

induces apoptosis in the cells [33]. In addition to being used for HER2 positive tumors, 

trastuzumab is also used with metastatic breast cancer as a secondary treatment. 

 

DNA Methylation  

 Epigenetics is the study of reversible and heritable modifications that affect gene 

expression, but do not cause changes in the DNA sequence [34]. Non-tumorigenic cells 

use a host of epigenetic mechanisms such as acetylation, methylation, sumolyation, 

phosphorylation, and ubiquitination to regulate expression of genes [35]. In normal cells, 

these transient epigenetic modifications play important roles by communicating to the 
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cell the need for gene expression during critical times in development, in response to 

environmental toxins or chemicals, and in aging [36]. However in response to certain 

environmental factors, the epigenetics of the cell can be altered and ultimately lead to 

diseases such as cancer. An epigenetic mechanism identified in breast carcinogenesis is 

DNA methylation.  

DNA methylation is the addition of a methyl group (-CH3) by DNA 

methyltransferases (DMNTs) to the cytosine of a 5’-Cytosine-phosphate-Guanine-3’ 

(CpG) site in the DNA. During replication, DNA on the parent strand remains methylated 

while the newly replicated daughter strand is unmethylated, this is known as 

hemimethylation and it is important for maintenance of DNA methylation [37]. DNA 

methylation across the human genome is heterogeneous and segments of unmethylated 

DNA are mixed with methylated ones [38]. The CpG rich regions of the DNA, called 

CpG islands, are found in about half of all genes in the human genome and span 

anywhere from 500-5000 bp [38]. In the last 30 years researchers have discovered that 

these CpG islands, particularly in promoter regions proximal to the transcriptional start 

site (TSS), play a critical role in transcriptionally silencing genes (Figure 1.7) [39-41]. 

Methylation of CpG islands is a highly regulated biological process important for 

controlling expression of genes that require activation during a specific point in the cell 

cycle [41]. In normal cells, CpG islands directly upstream of the TSS are unmethylated. 

Stretches of DNA with unmethylated CpG islands upstream of the TSS are not wound 

tightly around nucleosomes, leaving the DNA in an open arrangement and accessible to 

transcription factors (Figure 1.8) [41, 42]. Alternatively, in the case of cancer, CpG sites 

in promoter regions can be aberrantly methylated, leading to silencing of tumor 
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suppressor, cell-adhesion, and growth regulatory genes [42]. The hypermethylation of 

CpG sites in promoters attracts nucleosomes to the DNA, which irreversibly silences 

genes with the addition of histone methylation markers on histone H3 at lysine residues 9 

and 27 (H3K9 and H3K27) or histone H4 at lysine 20 (H4K20), and DNMT3A and 

DNMT3B to the nucleosome (Figure 1.8) [43]. Treatment with a demethylating agent 

such as 5-aza-2’-deoxycitidine (5-Aza) has been shown to inhibit the irreversible 

methylation that occurs in cancer cells [42]. 5-Aza replaces the cytosine that is normally 

incorporated into the DNA strand, thereby trapping DNMTs on the DNA and halting 

methylation [42]. Demethylation of CpG islands in cancer cells using agents such as 5-

Aza is a promising therapeutic target, as non-cancerous DNA is largely unmethylated and 

thus unaffected [42]. 

Until recently, gene silencing by DNA methylation was focused solely on the 

promoter region, however recent research has shown that the body region of the gene also 

plays an important role. One recent study by Yang et al. found methylation in the body 

region correlates with increased gene expression and that treatment with 5-Aza decreased 

expression of genes overexpressed in colon cancer [44]. The function of body 

methylation is still unknown, however it has been suggested that it blocks initiation of 

intergenic promoters, affecting repetitive DNAs, or affects the rate of transcription by 

forming an ordered structure [44, 45]. 

In breast cancer, hypermethylation has been found to affect the expression of 

several genes, such as p16, RARB2, GSTP1, RASSF1, and 14-3-3 [46]. Therefore, 

DNA promoter methylation is considered one of the most promising breast cancer 
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biomarkers, as the changes in promoter methylation are thought to occur early in disease 

progression and are potentially reversible with treatment. 

 

Tamoxifen Resistant Breast Cancer Cell Line Model 

Our laboratory has been studying the changes in gene expression and signaling 

pathways that occur between ERα-negative and ERα-positive breast cancers for the last 

10 years [31, 47, 48]. In order to observe these changes, we utilized the ERα-negative, 

Tamoxifen-resistant breast cancer cell line, TMX2-28. These cells were cloned from the 

parent MCF-7 breast cancer cell line, which was maintained in Tamoxifen for six months 

[49]. In contrast to the parent cell line, the TMX2-28 cells are basal-like in their 

cytokeratin-gene expression, aggressive, and invasive [47, 50]. We also obtained TMX2-

4 and TMX2-11, two additional cell lines that were cloned from MCF-7 alongside 

TMX2-28.  However, unlike the TMX2-28 cell line, TMX2-4 and TMX2-11 express 

ERα mRNA and protein and are non-invasive or migratory (Figure 1.9) [48, 49](Fagan-

Solis, unpublished data). Together these cell lines, ERα -positive MCF-7 and Tamoxifen-

selected derivatives, ERα -positive TMX2-4 and TMX2-11 and ERα -negative TMX2-28, 

provided a unique opportunity to investigate epigenetic changes related to Tamoxifen 

exposure and ERα expression. 

 

HumanMethylation450 BeadChip 

For this research, we used the Illumina HumanMethylation450 BeadChip 

(HM450BC) as a high-throughput way to analyze DNA methylation in both breast cancer 

cell lines and breast tumors. The HM450BC analyzes the methylation of 482,421 
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individual CpG dinucleotides in the human genome. It is enriched for CpG sites in both 

the promoter region with over 140,000 CpG sites located in the transcriptional start site 

regions 200 and 1500 (TSS200 & TSS1500) and CpG islands with 96% coverage 

(150,000 CpG sites) [51]. While there are other methylation analysis approaches 

available, they have limitations. The HumanMethylation27 BeadChip (HM27BC), which 

analyzed 27,000 CpG sites in the human genome, was the predecessor to the HM450BC 

and was phased out at the time of our analysis. Methyl specific PCR (MSP) is a PCR 

based analysis that requires primer design around areas in the promoters of genes, which 

can contain one or more CpG sites and therefore it may not distinguish the methylation of 

individual CpG sites [52]. Methylated DNA immunoprecipitated-sequencing (MeDIP-

seq) is most similar to HM450BC with the number of CpG sites interrogated, however 

the protocol is not automated and is therefore less favorable to use with a large number of 

samples as it is cost-prohibitive [53].  
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Drug (Abbreviation) Brand Name 

Cyclophosphamide (C) Cytoxan 

Docetaxel (T) Taxotere 

Doxorubicin (A) Adriamycin 

Epirubicin (E) Ellence 

Methotrexate (M) Maxtrex 

Paclitaxel (T) Taxol 
 

 

 

Table 1.1. Commonly used chemotherapeutics in breast Cancer treatment [22].  
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Figure 1.1 Structure of the human breast.  

 

Lobules and ducts are surrounded by fatty connective tissue called the stroma. Luminal 

and epithelial cells line the lobules and ducts [2]. 
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Figure 1.2 Mammary epithelial hierarchy and the molecular subtypes of human 

breast cancer.  

 

Mammary stem cells give rise to progenitor cells from two pathways, luminal and 

myoepithelial. Luminal progenitor cells give rise to mature ductal and alveolar cells 

whereas myoepithelial progenitor cells give rise to mature myoepithelial cells. Tumor 

subtypes listed show the associated cell type based on expression analysis [3]  
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Figure 1.3 Chemical structure of estrogens.  

 

17β-estradiol (E2), estriol (E3), and estrone (E1). 
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Figure 1.4 Structure of the Estrogen Receptor.  

 

Structure of ER bound to A) 17-β-estradiol and B) Tamoxifen. When estradiol is bound, 

the signaling loop (colored green) of the estrogen receptor is activated. Binding of 

Tamoxifen causes the loop to take an inactive shape [13]. 
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Figure 1.5 Activation of estrogen responsive genes controlled by estrogen molecule 

binding to the estrogen receptor.  

 

Briefly, the estrogen molecule binds to the estrogen receptor and activates the estrogen 

response elements (ERE) and genes involved in cell proliferation [8]. 
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Figure 1.6 Mechanism of Tamoxifen (antiestrogen) in an ER-positive breast cell.  

 

Binding of Tamoxifen to the ER blocks binding of the ER to the DNA and inhibits gene 

activation [8]. 
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Figure 1.7 Promoter methylation plays a key role in regulating transcription.  

 

A) CpG islands in the promoter region of a normal cell are unmethylated allowing for 

binding of transcription machinery and activation of transcription B) In a cancer cell, 

CpG islands in the promoter are methylated and transcription cannot occur  [54]. 
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Figure 1.8 Methylation and nucleosome condensation.  

 

The addition of methyl groups to the CpG sites of DNA results in tight winding of the 

DNA around histones and transcriptional repression. Conversely, demethylation of the 

DNA allows for transcription to occur  [55]. 
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Figure 1.9 Differences in ER- gene and protein expression occur across 

Tamoxifen-selected cell lines.  

 

A) Gene expression analysis shows that ER is expressed similarly to the parental strain, 

MCF-7, in two of the tamoxifen-selected cell lines, TMX2-4 and TMX2-11. ER gene 

expression in tamoxifen-selected TMX2-28 is abolished. B) Protein expression by 

western blot confirms gene expression [49]. 
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CHAPTER 2 

 

HIGH DENSITY ARRAY ANALYSIS OF DNA METHYLATION IN 

TAMOXIFEN-RESISTANT BREAST CANCER CELL LINES 

 

Introduction 

 

Estrogen receptor- (ER) status remains one of the most important breast cancer 

diagnostic and prognostic biomarkers. Roughly 70% of all breast cancers are ER-

positive and can be treated with an antihormone such as Tamoxifen. However, a meta-

analysis of 150,000 women from 200 randomized trials found that 33% of women 

receiving Tamoxifen for five years had recurrence (acquired resistance) within 15 years 

and 26% died [26]. In addition to this acquired antiestrogen resistance, de novo- or 

intrinsic-resistance occurs primarily in ER-negative tumors but also occasionally in 

ER-positive tumors [32]. Studies of endocrine resistance and global gene expression in 

Tamoxifen-resistant cell cultures and human tumors have detected alterations in 

numerous pathways including ER-signaling, growth factor receptor and cytoplasmic 

signaling, cell cycle, apoptosis and cell survival signaling [56]. A recent proteomics 

analysis of an ER-negative, Tamoxifen-resistant MCF-7 derivative showed changes in 

expression of genes involved in metastasis, tumorigenesis, and ER-signaling pathways 

[57]. However, knowledge of the specific molecular mechanisms that cause these 

changes and determine the endocrine-resistance is far from complete.   
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 DNA promoter methylation is a major epigenetic mechanism by which gene 

expression is altered in cancer. DNA methyltransferases (DMNTs) are responsible for the 

addition of methyl groups to the cytosine of a CpG site [39]. In normal adult tissue, CpG 

islands remain largely unmethylated; however, in the case of cancer, hypermethylation of 

normally unmethylated cytosines in promoter CpG islands frequently results in gene 

silencing, while hypomethylation of normally methylated cytosines in CpGs outside 

promoter regions leads to genetic instability [46]. Suppression of genes involved in cell 

cycle control, DNA repair, apoptosis and cell survival, and toxicant metabolism is 

thought to play a major role in the etiology and progression of cancer.  

 To date, few studies have examined promoter methylation and Tamoxifen 

resistance in breast cancer. Of the studies conducted, one detected drug-specific promoter 

methylation and gene expression profiles in an ER-positive, Tamoxifen-resistant MCF-

7 derivative cell line [30]. Another study demonstrated that promoter hypermethylation 

was not the cause of decreased progesterone receptor expression in a Tamoxifen-resistant 

but estrogen-dependent MCF-7 derived clone [58]. However, methylation analysis of 

both ER-positive and ER-negative Tamoxifen-resistant cell lines derived from a single 

parental line have not been reported until now. 

 In the present study, we examine DNA methylation in two Tamoxifen-resistant 

clones of MCF-7, TMX2-11 and TMX2-28. TMX2-11 retained expression of ER, while 

TMX2-28 lost expression of the gene [49]. We found that prolonged treatment with 

Tamoxifen induced hypermethylation and hypomethylation throughout the genome.  

Analysis of methylation and expression of two genes with promoter methylation in both 
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Tamoxifen-resistant cell lines demonstrated cell line-specific responses to treatment with 

5-aza-2’deoxycitidine (5-Aza).   

 

 

Materials and Methods 

 

Cell Culture, RNA and DNA Purification 

TMX2-11 and TMX2-28 were kindly provided by John Gierthy (Wadsworth 

Center Albany, NY). MCF-7 cells were purchased from the American Type Culture 

Collection (ATCC). Cell lines were grown in Dulbecco’s modified eagle medium 

(without phenol red) supplemented with 5% cosmic calf serum (Hyclone), 2.0 mM of L-

glutamine, 0.1 mM of nonessential amino acids, 10 ng/mL of insulin, 100 units/mL of 

penicillin, and 100 µg/mL of streptomycin. Cells were maintained at 37°C with 5% CO2 

in a humidified incubator and media was changed every 2 days. MCF-7 cells were 

cultured with and without 10-10 M E2 (Sigma-Aldrich) added to the media for 14 days.  

 RNA was purified in triplicate for each cell line using TriReagent (Molecular 

Research Center, Inc) and DNA was purified using QIAamp DNA Mini kit (Qiagen) as 

per manufacturer suggestion and protocols previously described [47, 50]. Purified RNA 

and DNA samples were quantified using a NanoDrop 8000 (Thermo Scientific). 

 

Illumina HumanMethylation450 BeadChip (HM450BC) 

Samples purified from MCF-7, TMX2-11, TMX2-28, and short-term (14 day) 10-

10 M E2-treated MCF-7 using the QIAmp DNA Mini kit (Qiagen) were sent to the core 
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facility at Roswell Park Cancer Institute for HM450BC (Illumina) analysis. Briefly, DNA 

sent to Roswell Park Cancer Institute was quantitated by PicoGreen (Molecular Probes) 

prior to bisulfite treatment with the EZ DNA methylation kit (Zymo). Bisulfite-treated 

DNA was amplified at 37°C for 20-24 hours after treatment with 0.1N NaOH. The DNA 

was then fragmented at 37°C for 1 hour using an enzymatic process and subsequently 

precipitated in 100% 2-propanol at 4°C for 30 minutes followed by centrifugation at 

3000xg at 4°C for 20 minutes. Dried pellets were resuspended in hybridization buffer, 

48°C for 1 hour followed by 95°C for 20 minutes, then loaded onto the HM450BC and 

incubated at 48°C for 16-24 hours. Following hybridization of DNA to the primers on the 

BeadChip, unhybridized and non-specific DNA was removed using wash buffers to 

prepare the chip for staining. After a single base extension of the hybridized primers 

using labeled nucleotides, the BeadChip was stained with Cy-3 and Cy-5 fluorescent dyes 

and read using the Illumina iScan Reader. The image data were then analyzed using 

Illumina GenomeStudio to assess efficiency of the reaction. Methylation of the 

interrogated CpG loci were calculated as the ratio of the fluorescent signals of methylated 

to unmethylated sites (beta values).  

 

5-Aza-2’deoxycitidine Treatment of Cells 

 Cells were seeded into 6-well plates at varying concentrations (MCF-7 and 

TMX2-11: 150,000 cells/well; TMX2-28 and MDA-MB-231: 100,000 cells/well) and 

allowed to attach overnight at 37°C and 5% CO2. Two experiments were completed 9 

months apart. Triplicate replicate wells were treated with either 0.1% DMSO (vehicle 

control) or 2.5 µM 5-aza-2’deoxycitidine (Sigma-Aldrich) in 0.1% DMSO for 4 days, 
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refreshing the media every other day. On the fourth day, DNA and RNA were purified 

from the cells as described above and concentration and quality were evaluated using the 

NanoDrop 8000 (Thermo Scientific). 

 

Pyrosequencing 

DNA (1 µg) was bisulfite treated using the EpiTect Bisulfite kit (Qiagen) and 

PCR Primers were designed using the Pyromark Assay Design Software (Qiagen).  One 

µL of bisulfite treated DNA was amplified using the Pyromark PCR kit (Qiagen) in a 

BioRad MyCycler and the following gene specific primers designed to target CpG sites 

in the TSS200 promoter region of the gene analyzed by the BeadChip: ZNF350 

(NM_021632) GRCh37 HG19 Map position (MAPINFO) Ch19 coordinates: 52490101, 

52490120, 52490127, and 52490173; Primers for pyrosequencing: FWD Biot-5’-

TTGGTTTTTGGTTTAAAAATTTGTTAT-3’, REV 5’-

ACACTAACCTCTATTTTCTCCAAATACACAA-3’, SEQ 5’- 

ACTCCTACTTCTAAAATCCT-3’; MAGED1 (NM_001005332) MAPINFO ChX 

coordinate: 51546021; Primers for pyrosequencing: FWD 5’-

GAGGTTTGAGTTAAGGGATTAAGATGA-3’, REV 5’-Biot-

TACCCCCTCCTTCACTTCAA-3’, SEQ 5’- AGATGAAGGGAGATATTT-3’. 

Additional CpG sites not analyzed by the BeadChip were assessed in the pyrosequencing 

assay due to their proximity to the CpG sites of interest. Single stranded products were 

prepared for pyrosequencing by PyroMark vacuum prep tool (Biotage). Pyrosequencing 

reactions were performed using a Pyromark Q24 system (Biotage) and manufacturers 
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protocol (Qiagen). Data were analyzed using Pyromark Q24 Software for percent 

methylation at the CpG sites interrogated.  

 

Quantitative Real Time Reverse Transcriptase-PCR (qRT-PCR) 

Primers for qRT-PCR were designed using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the UCSC RefGene Accession 

number associated with the CpG site of interest (MAGED1 NM_001005332, ZNF350 

NM_021632) or as previously described [59]: MAGED1 FWD 5’-

CCTTCTTCGTCAAGCCCCCAG-3’, REV 5’- AGGCAGCATTTGGACCCTTT-3’; 

ZNF350 FWD 5’-CCCAGTTGAATGCTGTCTTCC-3’, REV 5’-

CCACTCCTCCCAAGTGAAGTC-3’. qRT-PCR analysis was carried out as previously 

described on a Roche LightCycler using the Qiagen OneStep RT-PCR kit (Qiagen) and 

SYBR green I nucleic acid stain (Invitrogen) [47, 50]. Total RNA (75 ng) was combined 

with OneStep RT-PCR master mix, dNTPs, SYBR green (2X), and primers (25 M each) 

described above in chilled capillaries (Roche). RNA was reverse transcribed for 30 

minutes at 50°C and subsequent amplification was assayed for 45 cycles using 

fluorescence generated by intercalating SYBR green dye into the resulting DNA product. 

Relative mRNA expression levels were normalized to hypoxanthine ribosyltransferase 

(HPRT) as described previously  [47]. 

 

Data Analysis 

Using the Minfi package for R [60], a beta MDS was created from the beta values 

of the top 1000 CpG sites that deviate the greatest most among the samples in the 
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HM450BC data files. GenomeStudio Methylation Module (v.1.9) was used to analyze the 

beta values of the methylation data obtained from the HM450BC. CpG sites with 

detection p-values of <0.01 were selected to ensure statistically significant CpG site data 

were analyzed. Average beta value of >0.3 (range from 0-1) was used as a cutoff for 

hypermethylated CpG site divergence in the Tamoxifen resistant cell lines and an average 

beta value of <0.3 for hypomethylated CpG sites. Lastly, to discern differences in the 

CpG site methylation data in Tamoxifen-resistant cell lines as compared to the parental 

line, MCF-7, a positive fold change was calculated as average beta of Tamoxifen 

resistant cell line over parental cell line. A negative fold change was calculated as the 

parental cell line over the Tamoxifen resistant clone. GraphPad Prism (GraphPad 

Software Inc.) was used to analyze and graph the biological replicate statistical results 

from pyrosequencing and qRT-PCR and to calculate a Pearson correlation coefficient for 

HM450BC and pyrosequencing data. Unpaired students t-test with a p-value of <0.05 

were considered statistically significant.  The Database for Annotation, Visualization and 

Integrated Discovery (https://david.ncifcrf.gov) was used to conduct pathway analysis 

from a list of genes associated with CpG sites described above as hyper- or 

hypomethylated. 

  

Results 

 

Tamoxifen-selection results in extensive changes in DNA methylation 

To compare DNA methylation among the Tamoxifen-selected cell lines, the 17β-

estradiol (E2)-treated cells and the non-treated parental cell line, we used 
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Multidimensional Scaling (MDS) to analyze results from the HM450BC. Beta values of 

the top 1000 CpG sites that varied most among samples were plotted using the Minfi 

package for R.  As illustrated in the MDS plot, one of the two Tamoxifen-selected cell 

lines and the E2-treated MCF-7 do not deviate from the parental MCF-7 on Dimension 1 

(Figure 2.1). These three groups all have a value of -7.5 relative units (RUs) on the X-

axis (Dimension 1), and all are positive for ER.  In contrast, the Tamoxifen-selected, 

ER-negative cell line, TMX2-28, falls about 28 RUs from the other samples. The 

deviation in Dimension 1 was restricted to the ER-negative cell line suggesting that the 

methylation in this Dimension may be secondary to the loss of ER and not a direct 

consequence of Tamoxifen-selection. In contrast, the deviation in Dimension 2, while 

significantly less than that of Dimension 1, may reflect methylation changes directly 

related to the E2 and Tamoxifen treatments. Both of the Tamoxifen-selected cell lines 

show a modest deviation in the same direction on Dimension 2. TMX2-11 is roughly 4 

RUs from MCF-7, while TMX2-28 is one RU from the parent cell line. We treated MCF-

7 cells with E2 for 14 days to examine the overall effect that short-term treatment with a 

known ERα agonist had on methylation. Interestingly, the E2-treated MCF-7 cells deviate 

by 1.5 RUs from the untreated MCF-7 but in the opposite direction as the two 

Tamoxifen-selected cell lines.  

 

Differentially methylated CpG (dmCpG) sites in the Tamoxifen-selected lines are 

primarily hypermethylated 

To further assess the effects of prolonged Tamoxifen treatment on DNA 

methylation we prepared scatter plots comparing all CpG sites among the Tamoxifen-
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selected cell lines and the parental line (Figure 2.2). The areas outlined in blue on each of 

the scatterplots in Figure 2.2 include data points for dmCpG sites that show a 2-fold 

change and have average beta values >0.3.  The beta value cut-off point of 0.3 was 

chosen based on previous literature demonstrating significant changes in CpG site 

methylation between Tamoxifen-resistant and parental cell lines [61-63]. The scatter 

plots confirm and expand the results illustrated in the MDS plots; prolonged treatment 

with Tamoxifen results in methylation changes that are more pronounced in the cell line 

that lost expression of ER (Figure 2.2A &B). Additionally, for both cell lines the 

majority of dmCpGs are hypermethylated. Roughly eight times more CpG sites are 

hypermethylated in TMX2-28 as compared to TMX2-11 (33,752 versus 4,309; Table 

2.1). While hypomethylation was less common, there are twice as many hypomethylated 

CpG sites in TMX2-28 as compared to TMX2-11 (5,252 versus 2,593; Table 2.1). The 

methylation patterns of TMX2-11 and control MCF-7 (Figure 2.2A) are more similar 

than those of the two Tamoxifen-resistant lines TMX2-11 and TMX2-28 (Figure 2.2C). 

In contrast to prolonged Tamoxifen treatment, 14 days of treatment with E2 resulted in 

few dmCpGs, and these are primarily hypomethylation changes (Figure 2.2D and Table 

2.1).  

To assess the effects of Tamoxifen on DNA methylation while limiting the 

potential bias due to loss of ERα in TMX2-28, we restricted the next set of analyses to 

CpG sites with methylation changes in similar directions (both hyper- or 

hypomethylated) in both TMX2-11 and TMX2-28 as compared to the parent cell line, 

MCF-7.  The Tamoxifen-selected cell lines share roughly 3,000 hypermethylated (>0.3 
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average beta value and >2-fold change from MCF-7) and 200 hypomethylated (<0.3 

average beta value and <-2-fold change from MCF-7) CpG sites (Table 2.1).  

 

dmCpG sites are found primarily in the intergenic, body and promoter regions 

To obtain a better understanding of the effect of Tamoxifen on breast cancer cells, 

differential methylation of TMX2-11 and TMX2-28 as compared to MCF-7 was 

examined over the entire genome. Figure 2.3A shows the number of CpG sites included 

on the HM450BC in each of five regions: promoter (TSS200 and TSS1500 regions; 

29%), 5’UTR/1st Exon (12%), body (31%), 3’UTR (3%) and intergenic (areas not 

included in the previous four regions; 25%)  [51]. The functional genomic distribution of 

dmCpGs in the Tamoxifen-selected lines is shown in Figure 2.3B and C. In general the 

distribution of hyper- and hypomethylated CpG sites reflects their representation on the 

BeadChip. Thirty-two percent of CpG sites with hypermethylation are found in intergenic 

regions followed closely by the body (30%) and promoter regions (21%; Figure 2.3B). 

Results are similar for hypomethylated CpG sites with 32% located in the body, 30% in 

the promoter, and 22% in intergenic regions (Figure 2.3C). A single CpG site may be 

counted several times if there are multiple transcripts or gene-overlap, so that the total 

number of methylated CpG sites in Figure 2.3B and C do not add up to those in Table 

2.1. 

 Figure 2.3D summarizes neighborhood location of all CpG sites on the 

HM450BC as described in the GenomeStudio Methylation Module user guide (Illumina, 

San Diego, CA); shores (23%) are located 0-2 kb and shelves (10%) are 2-4 kb from the 

canonical CpG islands, while the remainder of the sequence is defined as open sea (36%; 
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Figure 2.3D) [51, 64]. The relationship of shared hyper- and hypomethylated CpG sites in 

the Tamoxifen-selected lines to the canonical CpG islands is shown in Figure 2.3E and F. 

The pattern of the hypermethylated sites deviates from their representation on the 

HM450BC. Only 10% of hypermethylated CpG sites lie within the CpG islands, while 

31% of the CpGs included on the BeadChip are within an island (Figure 2.3D and E). 

The open sea region has the greatest number of hypermethylated sites (68% of all 

hypermethylated CpGs) and deviates the greatest from the representation on the 

BeadChip (36% of all CpGs). In contrast, the pattern of the hypomethylated genes 

reflects their representation on the BeadChip.  

  

Sensory perception is among the top pathways affected by Tamoxifen selection 

Pathway analyses were conducted on genes with dmCpG sites in both TMX2-11 

and TMX2-28 as compared to MCF-7. The first DAVID analysis separately examined 

genes with either hyper- or hypomethylated sites occurring anywhere in the gene. The top 

20 pathways with hypermethylated genes, out of an extensive list of statistically 

significant pathways, and the top 5 statistically significant pathways with hypomethylated 

genes are shown in Table 2.2. The hypermethylated pathway with the highest statistical 

significance is sensory perception of smell, which includes 100 olfactory receptor genes 

(see Appendix A). This is followed closely by the cell surface linked signal transduction 

pathway, which includes many of the same olfactory receptor genes as described above, 

as well as genes involved in the WNT and TGFβ signaling pathways.  Sixty-four genes in 

the cell adhesion pathway have increased methylation and the majority of these genes are 

involved in ECM-receptor interaction pathways (Table 2.2).  The hypomethylated gene 
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list was less associated with any specific pathway, presumably due to the small number 

of hypomethylated dmCpGs.  

Next we conducted DAVID analyses restricted to hypermethylated genes in either 

the promoter or the body regions. The top pathways with promoter hypermethylated 

genes are sensory perception of smell and sensory perception of chemical stimulus (70 

and 72 genes respectively) with the majority being olfactory receptor genes (Appendix 

B).  In comparison, the top pathways with body hypermethylated genes are ion and metal 

ion transport (51 and 34 genes respectively), followed by cell adhesion (42 genes; 

Appendix C). The promoter and body regions share only six out of the top 20 

hypermethylated gene pathways (Table 2.3).   

 

Promoter methylation of ZNF350 and MAGED1 

 Given that promoter methylation (TSS200 and TSS1500 regions; Figure 2.4A) 

can alter gene expression in cancer [39, 46], we wanted to further examine the role of 

promoter methylation in the Tamoxifen selected cell lines. We selected two genes with at 

least two dmCpG sites that had beta values above 0.3 and a >2-fold change in the 

promoter region in both TMX2-11 and TMX2-28 as compared to MCF-7 from the 

HM450BC. Expression of both genes has been shown to be downregulated in breast 

cancer, yet DNA promoter methylation has not been suggested as a potential mechanism 

of decreased expression [59, 65]. The first gene, zinc finger protein 350 (ZNF350), a 

DNA damage response protein, has increased methylation in 7 out of 10 promoter CpG 

sites represented on the HM450BC in TMX2-11 and in 8 out of 10 in TMX2-28 (Figure 

2.4B). The second gene, melanoma antigen family D1 (MAGED1), a tumor antigen and 
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putative regulator of p53 transcription has five CpG promoter sites in transcript variant 3 

represented on the HM450BC. Of these five sites, all are hypermethylated in TMX2-28 

and four are hypermethylated in TMX2-11 (Figure 2.4C). There were 120 additional 

genes that also displayed hypermethylation in at least two CpG sites in the promoter, 

approximately 40% of which are thought to play a role in cancer (Appendix D).  

 To confirm the methylation observed with the BeadChip and evaluate the TSS200 

region (flanking region upstream of the TSS) in greater depth, we designed 

pyrosequencing assays to interrogate CpG sites in both ZNF350 and MAGED1. The 

pyrosequencing assay for ZNF350 examines seven CpG sites, four of which were 

represented on the HM450BC (Figure 2.4B, orange box). The pyrosequencing assay for 

MAGED1 examines four CpG sites, one of which was included on the HM450BC 

(Figure 2.4C, orange box). Results obtained from pyrosequencing of bisulfite-modified 

DNA (percent methylated) confirm the increased promoter methylation discovered on the 

HM450BC for both ZNF350 and MAGED1 (Table 2.4). For ZNF350, the percent 

methylation in MCF-7 cells is remarkably similar to beta values for all four CpG sites 

examined with both methods. Likewise, the percent methylation in ZNF350 in the 

Tamoxifen-selected cell lines is highly comparable to the beta values.  A similar trend is 

observed for MAGED1. A strong correlation is seen between HM450BC beta values and 

pyrosequencing values for all CpG sites assayed (Pearson r = 0.931, p= <0.0001; 

Appendix E). 

 Figure 2.5 shows the detailed pyrosequencing results for MCF-7 and the 

Tamoxifen-selected cell lines. For both ZNF350 and MAGED1 the CpG-site specific 

pattern is highly reproducible in DNA isolated nine months apart. Pyrosequencing across 
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all sites confirm greater mean methylation in TMX2-11 (30% increase) and TMX2-28 

(17% increase) as compared to MCF-7 for ZNF350 (Figure 2.5A). Results for MAGED1 

also confirm greater mean methylation, TMX2-11 (3% increase) and TMX2-28 (30% 

increase; Figure 2.5B).    

 

Treatment with 5-Aza reverses DNA methylation in TMX2-28 

 To assess whether promoter methylation of ZNF350 and MAGED1 could be 

reversed to the levels of MCF-7, cell cultures were treated with 2.5 M of 5-Aza or 

vehicle control for 4 days. Pyrosequencing of CpG sites in the TSS200 region of ZNF350 

reveals a significant, 23% decrease in methylation (from 27 to 20) in TMX2-28 treated 

with 5-Aza (p=0.006; Figure 2.6A). Likewise, a 31% decrease in methylation is observed 

in the promoter of MAGED1 in TMX2-28 (p = 0.0002; Figure 2.6B).  A small (10%) but 

significant decrease in methylation is also observed in TMX2-11 cells (Figure 2.6B). 

 

Decreasing methylation results in increased expression of ZNF350 and MAGED1 in 

TMX2-28 

 After determining that treatment with 5-Aza decreased promoter methylation, we 

asked whether the 5-Aza treatment also increases mRNA expression levels. We 

compared mRNA levels of ZNF350 and MAGED1 in treated and control cell lines. 

Treatment with 5-Aza significantly increases the expression of ZNF350 in TMX2-28 (5.6 

fold) as compared to the untreated cell cultures (Figure 2.6A). Interestingly, the 

expression of ZNF350 also increases in TMX2-11 (2 fold) even though there is no 

change in promoter methylation (Figure 2.6A). In TMX2-11, ZNF350 expression levels 
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are equivalent to those of MCF-7, while in the TMX2-28 cells ZNF350 is significantly 

overexpressed (TMX2-28 5-Aza vs. MCF-7 Control: p=0.04; Figure 2.6A). Treatment 

with 5-Aza increases expression of MAGED1 in TMX2-28 (442 fold) to a level 

significantly above that of MCF-7 (p= 0.028; Figure 2.6B).  In contrast, the expression of 

MAGED1 is not increased in TMX2-11, despite the significant decrease in methylation 

(Figure 2.6B).  

 Analysis of the ER-negative line, MDA-MB-231 is included for comparison 

with TMX2-28. Treatment with 5-Aza increases the expression of ZNF350 in MDA-MB-

231 (p=0.008) to levels similar to TMX2-28, but has no effect on MAGED1.  Promoter 

methylation of ZNF350 and MAGED1 is low in MDA-MB-231 and not altered by 5-Aza 

treatment. 

 

Discussion 

 

Acquired Tamoxifen resistance occurs in approximately 33% of all women who 

are given the drug for 5 years [26]. The mechanism of this acquired resistance by the 

cells is largely unknown, however DNA methylation has been shown to differ between 

Tamoxifen-resistant and Tamoxifen-sensitive cell lines [30, 58]. Past studies examined 

methylation changes in ER-positive, Tamoxifen-resistant cell lines. Here we present 

methylation data on both ER-positive and ER-negative Tamoxifen-resistant cell lines 

derived concurrently from the parental cell line, MCF-7.  

We found substantial overall changes in methylation, suggesting that DNA 

methylation is contributing to Tamoxifen resistance in both ERα-positive and -negative 
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cell lines.  Interestingly, the loss of ERα expression in TMX2-28 does not appear to be 

controlled by changes in methylation.  TMX2-28 ER has an average of 3% methylation 

in the promoter region as analyzed by pyrosequencing and treatment with 5-Aza does not 

cause re-expression (see Chapter 3, Figure 3.7).  Further studies examining histone 

modifications and other epigenetic changes will likely provide insight into the loss of 

ER expression in TMX2-28. 

Since the ER-negative TMX2-28 cells show significantly greater methylation 

changes than the ER-positive TMX2-11 cells, it is likely that a large percent of the 

observed DNA methylation is secondary to the loss of ER expression. To eliminate the 

bias due to ER loss and to focus on pathways most relevant to Tamoxifen-resistance, we 

examined CpG sites similarly methylated in both TMX2-11 and TMX2-28 as compared 

with the parental MCF-7 line. The number of hypermethylated sites in both cell lines is 

greater than the number of hypomethylated and the dmCpGs are distributed across the 

gene regions. Because of the importance of promoter methylation in controlling gene 

expression [46, 65], the HM450BC is enriched for CpG sites in the promoter region, with 

over 140,000 sites represented in the TSS200 and TSS1500 regions [51] Recent 

literature, however, suggests that body methylation may play an equally important role in 

controlling gene expression [66, 67]. Less than 1% of the promoter and body CpG sites 

represented on the HM450BC are hypermethylated in both TMX2-11 and TMX2-28 and 

of these dmCpGs, slightly more are in the body than in the promoter region (0.66% 

versus 0.52%). 

ZNF350 is frequently underexpressed in primary breast cancer [59]. It functions 

as a transcriptional repressor by binding to its co-repressor, BRCA1, and silencing target 



 38 

genes involved in DNA damage response [59]. Treatment with 5-Aza increased 

expression of ZNF350 in both Tamoxifen-resistant cell lines as well as MDA-MB-231, 

yet only in TMX2-28 was a significant decrease in promoter methylation observed. 

Expression of ZNF350 in TMX2-11 and MDA-MB-231 may be regulated by an upstream 

factor or by methylation outside of the CpGs examined. Published studies using 5-Aza to 

induce expression of genes downregulated in cancer indicate that multiple factors, such 

as location of CpG sites within the island regions, transcription factor promoter 

methylation and histone methylation play a role in controlling expression [68-72]. A 

further investigation into gene expression using array-based methods may help elucidate 

the genes affected specifically by promoter methylation. 

 MAGED1 is an adaptor protein involved in regulation of various cellular 

processes altered in cancer including apoptosis, proliferation and cell growth [65, 73]. 

MAGED1 is downregulated in cancer and it has been reported that transfection of the 

gene into breast cancer cells lacking MAGED1 inhibits proliferation and invasion of the 

cells [65]. Treatment with 5-Aza significantly decreases methylation of MAGED1 in both 

TMX2-11 and TMX2-28, but concomitant increased expression occurs only in TMX2-

28.  This suggests that methylation may be necessary, but not sufficient to re-express 

MAGED1 in TMX2-11 as the methylation decreases, but no change in expression is 

seen. No changes in either methylation or expression of MAGED1 were observed in 

MDA-MB-231.  Cell line differences in response to 5-Aza highlight the difficulty of 

using agents, which target methylation to treat breast cancer.  TMX2-28 are more 

sensitive to the effects of 5-Aza and their appearance is notably altered (flatter, rounder 

and larger in appearance) after four days of treatment (See Chapter 3, Figure 3.8). The 
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differences among the cell lines are analogous to the differences among breast cancers in 

patients. Not all breast tumors will respond similarly to treatment with demethylating 

agents and future emphasis must be placed on identifying markers that accurately predict 

response to treatment.    
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Table 2.1  CpG methylation changes in Tamoxifen-resistant cell lines as 

compared to the parental line 

 TMX2-11 

/MCF-7 

TMX2-28 

/MCF-7 

MCF-7 E2  

/MCF-7 

TMX2-11 and 

TMX2-28 /MCF-7 

Increased 

Methylation* 
4,039 33,752 128 3,130 

Decreased 

Methylation** 
2,593 5,252 1,698 203 

No Change in 

Methylation 
472,153 436,113 479,003 431,909 

*Increased methylation: >2-fold change, >0.3 beta-value in TMX2-11, TMX2-28, 

or E2 treated MCF-7; **Decreased methylation: >2-fold change, >0.3 beta-value in 

MCF-7; No change in methylation: <2-fold change in all lines. Detection p-value of 

< 0.01 was used to distinguish statistically significant methylation changes. 
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Table 2.2  Hyper- and hypomethylated pathways shared by TMX2-11 

and TMX2-28 

Hypermethylated* 

Pathway p value 

sensory perception of smell 2.13E-34 

cell surface receptor linked signal transduction 4.28E-33 

neurological system process 1.34E-32 

sensory perception of chemical stimulus 1.72E-32 

G-protein coupled receptor protein signaling 

pathway 

5.72E-30 

cognition 2.95E-27 

sensory perception 6.98E-26 

ion transport 5.82E-08 

cell-cell signaling 4.29E-07 

transmission of nerve impulse 2.94E-06 

synaptic transmission 1.13E-05 

neuron differentiation 1.83E-05 

metal ion transport 2.07E-05 

behavior 5.32E-05 

cell motion 1.41E-04 

regulation of system process 2.78E-04 

cell adhesion 3.77E-04 

biological adhesion 3.91E-04 

neuron projection development 4.75E-04 

calcium ion transport 5.98E-04 

Hypomethylated** 

Pathway p value 

fear response 0.007 

cell morphogenesis involved in differentiation 0.025 

neuron development 0.028 

multicellular organismal response to stress 0.029 

  neuron differentiation 0.030 

* Top 20 hypermethylated pathways ** Top 5 hypomethylated pathways 
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Table 2.3  Hypermethylated pathways in the promoter and body regions shared 

by TMX2-11 and TMX2-28* 

Promoter Body 

Pathway p value Pathway p value 

sensory perception of smell 6.50E-32 ion transport 7.35E-09 

sensory perception of 

chemical stimulus 
8.96E-31 metal ion transport 4.77E-07 

G-protein coupled receptor 

protein signaling pathway 
5.19E-26 cell adhesion 2.95E-06 

neurological system process 2.31E-22 biological adhesion 3.02E-06 

sensory perception 6.40E-21 cell-cell signaling 1.78E-05 

cognition 6.69E-21 cation transport 1.96E-05 

cell surface receptor linked 

signal transduction 
2.52E-20 

multicellular organismal 

response to stress 
7.55E-05 

defense response to bacterium 0.00135 
transmission of nerve 

impulse 
8.78E-05 

gamma-aminobutyric acid 

signaling pathway 
0.00220 neurological system process 1.01E-04 

ion transport 0.00229 appendage development 1.10E-04 

transmission of nerve impulse 0.00257 limb development 1.10E-04 

regulation of cell migration 0.00334 calcium ion transport 1.33E-04 

behavior 0.00420 
cell surface receptor linked 

signal transduction 
1.35E-04 

synaptic transmission 0.00533 response to pain 1.60E-04 

chemotaxis 0.00619 neuron differentiation 1.66E-04 

taxis 0.00619 muscle organ development 2.15E-04 

cell-cell signaling 0.00738 cell motion 2.50E-04 

regulation of locomotion 0.00908 regulation of system process 3.11E-04 

response to drug 0.00917 
di-, tri-valent inorganic 

cation transport 
3.26E-04 

regulation of cell motion 0.00944 synaptic transmission 5.24E-04 

*Top 20 hypermethylated pathways  
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Table 2.4  Comparison of ZNF350 methylation by HumanMethylation450 

BeadChip and Pyrosequencing in Tamoxifen-resistant and Parental Cell Lines 
MAPINFO 

coordinate 
MCF-7 TMX2-11 TMX2-28 

BeadChip* Pyroseq** BeadChip* Pyroseq** BeadChip* Pyroseq** 

ZNF350 

52490101 9 8 41 34.6 46 27 

52490120 12 12.3 51 48.6 37 33 

52490127 7 10 49 47 30 27 

52490173 7 9.7 45 31.3 34 21 

MAGED1 

51546021 17 28.3 44 33 79 71 

MAPINFO coordinate = genomic coordinate of C in CpG site; *Average beta value times 100; 

**Average percent methylation per site; n = 3 biological replicates   
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Figure 2.1. Visual representation of DNA methylation among the breast cancer cell 

lines.   

 

Methylation beta values of the 1000 CpG sites that varied the most among the four 

groups were used with the Minfi package for R to prepare the multidimensional scaling 

(MDS) plot. Dimension 1 and 2 represent arbitrary distances among samples. 
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Figure 2.2. Scatter plots indicate genome-wide methylation changes in Tamoxifen-

resistant lines compared with the parental.  

 

TMX2-11 (A), TMX2-28 (B) and MCF-7 treated with 10-10 M E2 for 14 days (D) were 

compared with the parental line, MCF-7 and the Tamoxifen-resistant clones TMX2-11 

and TMX2-28 (C) were compared against each other using GenomeStudio to determine 

the overall changes in methylation. Dashed lines mark the average beta cut-off value of 

0.3 for each sample; center red line represents equal beta values in the two samples; outer 

red lines mark the two-fold change in average beta values for each sample; blue boxes 

enclose all CpG sites with average beta values >0.3 and a >2-fold change in methylation.  
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Figure 2.3. Location of aberrantly methylated CpG sites shared between TMX2-11 

and TMX2-28.  

 

Functional genomic location of all CpG sites on the BeadChip (A) hypermethylated (B) 

and hypomethylated (C) CpG sites. Neighborhood location of all CpG sites on the 

BeadChip (D) hypermethylated (E) and hypomethylated (F) CpG sites. Promoter is 

TSS200 and TSS1500 regions of the gene; Intergenic regions are undefined locations in 

GenomeStudio; shores, located 0-2 kb and shelves, 2-4 kb from the canonical CpG 

island; open sea is defined as the remainder of the sequence.  
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Figure 2.4. ZNF350 and MAGED1 are differentially methylated in Tamoxifen 

resistant cells.  

 

A) A map of typical CpG site locations in a gene. Promoter region (TSS200 and 

TSS1500) is shown in orange. B) ZNF350 C) MAGED1 heat maps show average beta 

values of CpG sites interrogated across the gene. Functional genomic location and 

MAPINFO coordinate are shown for each CpG site. Orange boxes around MAPINFO 

and functional genomic location show promoter region CpG sites. Orange highlighted 

CpG sites indicate location of pyrosequencing primers. Average beta value is represented 

by the scale on right with the highest methylation value (1) in red and the lowest (0) in 

green. 
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Figure 2.5. CpG site methylation of ZNF350 and MAGED1 in Tamoxifen-resistant 

and parental cell lines.  

 

CpG sites in the TSS200 region of A) ZNF350 and B) MAGED1 were analyzed by 

pyrosequencing. CpG sites present on the BeadChip are highlighted in orange. Two 

experiments conducted 9 months apart demonstrate the permanence of methylation 

changed: Filled symbols indicate Experiment 1 (Exp1) and open symbols indicate 

Experiment 2 (Exp2). Each experiment consisted of three biological replicates for each 

cell line.  
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Figure 2.6. Comparison of gene expression and promoter methylation in ZNF350 

and MAGED1.  

 

Relative mRNA levels measured by qRT-PCR and average percent methylation of the 

TSS200 regions measured by pyrosequencing of A) ZNF350 and B) MAGED1 in control 

cultures and cultures treated with 5-Aza for four days. A) Treatment with 5-Aza resulted 

in significantly increased expression of ZNF350 in TMX2-11, TMX2-28 and MDA-MB-

231; however, only TMX2-28 showed a corresponding significant decrease in promoter 

methylation (see text).  B) Treatment with 5-Aza resulted in a significant increase in 

expression of MAGED1 in TMX2-28, however a significant decrease in methylation was 

observed in both TMX2-11 and TMX2-28 (see text). Comparisons were made on results 

from triplicate biological samples using an unpaired student’s T-test; * = p < 0.05 and ** 

= p < 0.01.  Two independent experiments were conducted nine months apart with 

similar results; results from experiment 1 are shown.  
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CHAPTER 3 

 

FURTHER CHARACTERIZATION OF GENES ABERRANTLY METHYLATED 

AND DIFFERENTIALLY EXPRESSED IN TAMOXIFEN-RESISTANT CELL 

LINES 

 

Introduction 

 

The HumanMethylation450 BeadChip (HM450BC) interrogates 485,764 CpG 

sites in the human genome, 92,000 of which are located in both the proximal promoter 

(within 200-1,500 bp upstream of the transcription start site) and a CpG island [51]. In 

Chapter 2, it was shown that the Tamoxifen-selected cell lines, TMX2-11 and TMX2-28 

share 3,000 hypermethylated and 200 hypomethylated CpG sites as compared with MCF-

7. Two of the hypermethylated genes, MAGED1 and ZNF350, were discussed in more 

detail. Treatment with 5-Aza was found to increase expression of both MAGED1 and 

ZNF350 in the ERα-negative cell line TMX2-28, however only expression of ZNF350 

was increased in the ERα-positive, TMX2-11 cells. 

It is well known that treatment with the demethylase, 5-Aza restores expression of 

genes that are hypermethylated in cancer by inhibiting DNMT1 [30, 74-76]. Clinical 

trials targeting aberrantly methylated DNA using demethylases including 5-Aza are 

established for cancers of the blood, such as Acute Myeloid Leukemia (AML). Treating 

patients with 5-Aza has been shown to both successfully combat the disease and prolong 

patient life, especially in the case of AML, a disease that can result from the 

hypermethylation of genes in white blood cells [77-79]. Currently there are six clinical 
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trials using 5-Aza to target methylation in breast cancer (clinicaltrials.gov) [80, 81]. I 

postulated that long-term exposure to Tamoxifen causes alterations in the methylation 

profile of breast cancer cells therefore, treating cells with a combination of 5-Aza and 

Tamoxifen would reverse the cancer phenotype and restore sensitivity to Tamoxifen.  

Using methyl donors such as S-adenosylmethionine (SAM) to reverse the cancer 

phenotype is not as conventional as using demethylating agents, however, Pakneshan et 

al. showed that treatment with SAM blocked proliferation of MDA-MB-231 cells [82]. 

This was accomplished by methylating urokinase (uPA), a gene implicated in the 

progression of breast cancer, using SAM  [82]. Additionally, a study using human gastric 

and colon cancer cell lines showed that treatment with SAM heavily methylated the 

previously hypomethylated promoter regions of c-myc and H-ras [83]. This study also 

demonstrated that non-cancerous cells were not affected by SAM treatment [83]. 

I hypothesized that treatment of Tamoxifen-resistant breast cancer cells with a 

combination of 5-Aza and SAM would reverse the aberrantly methylated CpG sites, both 

hypermethylated and hypomethylated, and decrease proliferation of the rapidly growing 

TMX2-28 cells.  

 In this chapter, I present results from a series of experiments aimed at reversing 

the aberrant methylation associated with prolonged Tamoxifen treatment. Sixteen 

hypermethylated genes that were selected for further expression and methylation analysis 

are discussed. Twelve genes as described in Table 3.1 were hypermethylated in at least 

two CpG sites in the promoter region of both TMX2-11 and TMX2-28. Genes involved 

in signal transduction, cell adhesion, transcriptional repression, inflammatory response, 

cell proliferation and hormone response were chosen for analysis (see Table 3.1).  
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Two genes were chosen for their involvement in the signal transduction pathway; 

A kinase (PRKA) anchor protein 12 (AKAP12), a scaffold protein and regulator cell 

growth [84] and Bone Morphogenic Protein 2 (BMP2), a member of the cytokine family 

of proteins identified for their involvement in cartilage and bone formation and a positive 

regulator of the WNT pathway [85]. Collagen Type VI, Alpha 5 (Col29A1 or Col6A5) 

was selected for its association with cell adhesion and extracellular matrix formation  

[86]. Two growth regulators were chosen for their involvement in breast cancer; 

Regenerating islet-derived 1 (REG1A), a growth factor and indicator of prognosis in 

multiple cancer types including breast [87] and protachykinin 1 (TAC1), a neuropeptide 

with anti-proliferative and anti-apoptotic effects found to be differentially methylated in 

DCIS and IDC breast tumors as compared with normal tissue [88, 89].  

Half of the genes selected for further analysis are transcriptional regulators in the 

cell. Three of the genes are involved in transcriptional repression. Growth factor 

independent 1 transcription factor (GFI1), is involved in hematopoiesis [90], histone 

deacetylase 9 (HDAC9), is a transcriptional regulator responsible for deacetylation of 

lysines on core histones and ultimately epigenetic repression in the cell [91] and 

transcription factor 12 (TCF12), is a transcriptional repressor that is upregulated in 

metastatic colon cancer [92]. Two genes act as tumor suppressors in breast cancer; 

Leucine zipper putative tumor suppressor 1 (LZTS1), a tumor suppressor associated with 

increased cell motility and invasion when downregulated in poor prognosis in breast 

cancer [93] and RAR-related orphan receptor A (RORA), a regulator of gene expression 

of various cellular functions and a putative tumor suppressor in breast cancer [94]. 

Finally, structure specific recognition protein 1 (SSRP1), the nuclear DNA binding 
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domain of histone chaperone p80, is a protein involved in nucleosome reorganization 

during transcription, elongation and DNA repair [95].  

Four genes were selected for their reduced expression in TMX2-28 in a 

previously completed expression array [47, 50]. Of these genes caveolin 2 (CAV2), a 

membrane component of caveolae, vesicles involved in cellular transport is involved in 

signal transduction, lipid metabolism and cell growth [96]. The gene, growth regulation 

by estrogen in breast cancer 1 (GREB1), is an ER co-activator required for ER-positive 

breast cancer cell growth and proliferation and shown to be a good clinical outcome 

predictor [97]. Tumor growth factor beta 2 (TGFβ2) is a cytokine involved in breast 

cancer and overexpression of the protein has been connected with progression of the 

disease [98]. Lastly, Thrombospondin 1 (THBS1) is a glycoprotein involved in cellular 

functions related to tumor progression and metastasis and mediates cell-cell and cell-

matrix interactions [99]. 

Gene expression and promoter methylation was examined in MCF-7, TMX2-11 

and TMX2-28 both with and without treatment with 5-Aza. Treatment with the drug 

resulted in an increase in expression of five genes in TMX2-28: RORA, BMP2, THBS1, 

CAV2, and TGFβ2. Additionally, cell lines were treated with 5-Aza, Tamoxifen, or a 

combination of the drugs and assessed for proliferation. Proliferation was unaffected in 

MCF-7 and TMX2-11 after 5-Aza or Tamoxifen treatment, however, 5-Aza caused a 

significant decrease in proliferation in TMX2-28. Lastly, treatment of MDA-MB-231 

cells with the methyl donor SAM, did not decrease expression or increase methylation of 

uPA, a gene shown previously to be methylated by SAM in vitro, indicating that 
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treatment with the molecule was ineffective [82]and therefore no further experiments 

with SAM were conducted. 

 

Materials and Methods 

 

Cell Culture, RNA and DNA Purification 

TMX2-11 and TMX2-28 were kindly provided by John Gierthy (Wadsworth 

Center Albany, NY). MCF-7 cells were purchased from the American Type Culture 

Collection (ATCC). Cell lines were grown in Dulbecco’s modified eagle medium 

(without phenol red) supplemented with 5% cosmic calf serum (Hyclone), 2.0 mM of L-

glutamine, 0.1 mM of nonessential amino acids, 10 ng/mL of insulin, 100 units/mL of 

penicillin, and 100 µg/mL of streptomycin. Cells were maintained at 37°C with 5% CO2 

in a humidified incubator and media was changed every 2 days. MCF-7 cells were 

cultured with and without 10-10 M E2 (Sigma-Aldrich) added to the media for 14 days.  

 RNA was purified in triplicate for each cell line using TriReagent (Molecular 

Research Center, Inc) and DNA was purified using QIAamp DNA Mini kit (Qiagen) as 

per manufacturer suggestion and protocols previously described [47, 50]. Purified RNA 

and DNA samples were quantified using a NanoDrop 8000 (Thermo Scientific). 

 

5-Aza-2’deoxycitidine (5-Aza) and Tamoxifen Treatment of Cells 

Cells were seeded into 6-well plates at varying concentrations (MCF-7 and 

TMX2-11: 150,000 cells/well; TMX2-28 and MDA-MB-231: 100,000 cells/well) and 

allowed to attach overnight at 37°C and 5% CO2. Two experiments were completed 9 

months apart. Triplicate replicate wells were treated with either 0.1% DMSO (vehicle 
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control), 2.5 µM 5-Aza (Sigma-Aldrich) in 0.1% DMSO, 10-6 M Tamoxifen in 0.1% 

DMSO, or a combination of 5-Aza and Tamoxifen for 72-hours, refreshing the media 

every other day. After 72-hours, DNA and RNA were purified from the cells as described 

above and concentration and quality were evaluated using the NanoDrop 8000 (Thermo 

Scientific). 

 

S-adenosylmethionine (SAM) Treatment of MDA-MB-231 Cells 

MDA-MB-231 cells were seeded into 12-well plates at 50,000 cells/well and 

allowed to attach overnight at 37°C and 5% CO2. Triplicate replicate wells were treated 

with either 0.1% EtOH (vehicle control) or 100 µM SAM (New England Biolabs) for 6 

days, refreshing the media every other day. DNA and RNA were purified using the 

methods described previously and concentration and quality were assessed using the 

NanoDrop 8000 (Thermo Scientific). 

 

Quantitative Real Time Reverse Transcriptase-PCR (qRT-PCR) 

Primers for qRT-PCR were created using the UCSC RefGene Accession number 

associated with the CpG site of interest on the HM450BC and designed to span an exon-

exon junction using Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) for 

the following genes: AKAP12, BMP2, COL29A1, GFI1, HDAC9, IL7F, LZTS1, 

REG1A, RORA, SSRP1, TAC1, TCF12, CAV2, GREB1, and TGFβ (Table 3.2). 

Additionally, the following genes, THBS1, ERα, and uPA, were designed to span an 

exon-exon junction using Primer-BLAST but were not designed around a CpG site on the 

HM450BC (Table 3.2). All primers were purchased from Integrated DNA Technologies, 
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Inc. qRT-PCR analysis was carried out as previously described on a Roche LightCycler 

using the Qiagen OneStep RT-PCR kit (Qiagen) and SYBR green I nucleic acid stain 

(Invitrogen) [47, 50]. Total RNA (75 ng) was combined with OneStep RT-PCR master 

mix, dNTPs, SYBR green (2X), and primers (25 M each) described above in chilled 

capillaries (Roche). RNA was reverse transcribed for 30 minutes at 50°C and subsequent 

amplification was assayed for 45 cycles (denaturation: 95ºC for 15 sec; annealing: 60ºC 

for 15 sec; extension 72ºC for 30 sec) using fluorescence generated by intercalating 

SYBR green dye into the resulting DNA product. Relative mRNA expression levels were 

normalized to hypoxanthine ribosyltransferase (HPRT) as described previously [47].  

 

Pyrosequencing 

DNA (1 µg) was bisulfite treated using the EpiTect Bisulfite kit (Qiagen) and 

PCR Primers were designed using the Pyromark Assay Design Software (Qiagen).  One 

µL of bisulfite treated DNA was amplified using the Pyromark PCR kit (Qiagen) in a 

BioRad MyCycler and gene specific primers for ESR1, THBS1, RORA, and uPA were 

purchased from Integrated DNA Technologies, Inc. (Table 3.3). Pyrosequencing primers 

were designed to span a region of the promoter where the HM450BC showed 

hypermethylation in at least two CpG sites in both TMX2-11 and TMX2-28, except in 

the case of THBS1, which was hypermethylated only in TMX2-28. Additional CpG sites 

not analyzed by the BeadChip were assessed in the pyrosequencing assay due to their 

proximity to the CpG sites of interest. Single stranded products were prepared for 

pyrosequencing by PyroMark vacuum prep tool (Biotage). Pyrosequencing reactions 

were performed using a Pyromark Q24 system (Biotage) and manufacturers protocol 
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(Qiagen). Data were analyzed using Pyromark Q24 Software for percent methylation at 

the CpG sites interrogated.  

 

Data Analysis 

GraphPad Prism (GraphPad Software Inc.) was used to analyze and graph the 

biological replicate statistical results from pyrosequencing and qRT-PCR and to calculate 

a Pearson correlation coefficient for HM450BC and pyrosequencing data. Unpaired 

student’s t-test with a p-value of <0.05 were considered statistically significant. 

 

Results 

 

To assess the extent to which methylation controls gene expression in Tamoxifen-

resistant cell lines, a panel of 16 genes were analyzed by qRT-PCR. A summary of the 

differentially methylated CpG (dmCpG) sites hypermethylated on the HM450BC and the 

mean average beta value of the dmCpG sites for each gene can be seen in Table 3.4 and 

3.5. Twelve of the 16 genes, AKAP12, BMP2, COL29A1, GFI1, HDAC9, IL17F, 

LZTS1, REG1A, RORA, SSRP1, TAC1, and TCF12, were selected out of a pool of 

3,130 genes that met the following criteria: had an average β-value of >0.3 in TMX2-11 

and TMX2-28, a >2-fold change in methylation in both TMX2-11 and TMX 2-28 as 

compared to the parental line MCF-7, a detection p-value of <0.01 on the HM450BC, and 

at least 2 hypermethylated CpG sites in either the TSS200 or TSS1500 region (Table 3.4).  

An additional four genes, CAV2, GREB1, TGFB2, and THBS1 were chosen from 

a list of downregulated genes on a cDNA microarray analysis comparing TMX2-28 with 

MCF-7 [50]. Additionally, these genes matched the HM450BC criteria mentioned above 
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for TMX2-28, but not TMX2-11, as compared with MCF-7. All of the genes examined 

here have been shown previously to be involved in metastasis, cell proliferation, 

transcriptional repression, or apoptosis, and for seven of the fourteen genes, expression in 

cancer is known to be affected by methylation (Table 3.5).  

 

AKAP12, REG1A, and HDAC9 have low expression in MCF-7 and Tamoxifen-

resistant cell lines 

Three genes, AKAP12, REG1A, and HDAC9, had extremely low expression 

levels in MCF-7, TMX2-11, and TMX2-28 (Figure 3.1). Of these genes, REG1A had 

significantly higher expression in TMX2-11 as compared with MCF-7 (p=0.0131), 

however expression remained extremely low (0.000026 and 0.000004 respectively) 

(Table 3.4). Two additional genes, Col29A1 and TAC1, had no expression in any of the 

cell lines (see Table 3.4). 

 

Decreased expression of GREB1 and increased expression of LZTS1 

No expression differences were seen between the Tamoxifen-resistant cell lines 

and MCF-7 in SSRP1, GFI1 or TCF12 (Figure 3.2A-C). Treatment of MCF-7, TMX2-11, 

TMX2-28, and the ER-negative cell line MDA-MB-231 with 5-Aza did not result in an 

expression change in these genes. An increase in expression of TCF12 was seen in the 5-

Aza treated MCF-7 as compared with the control, but this increase was not significant 

(p=0.1295). Similarly, a non-significant decrease in expression was seen in GFI1 5-Aza 

treated MCF-7 as compared to control (p=0.2556). In contrast, significant changes in 

expression were observed in GREB1 and LZTS1.  A significant decrease in expression of 
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GREB1 as compared to the control MCF-7 was seen in both TMX2-11 and TMX2-28 

(p=0.0001 for both), however 5-Aza treatment did not result in an expression increase 

(Figure 3.2D). Additionally, a non-significant increase in expression of GREB1 is seen in 

5-Aza treated MCF-7 as compared with the control (p=0.1126). LZTS1 had a significant 

increase in expression in the control TMX2-28 samples as compared with the MCF-7 

control (p=0.0037), however 5-Aza treatment did not alter expression further (Figure 

3.2E). 

 

Expression of TGFβ2 and CAV2 increases in TMX2-28 cells with 5-Aza treatment 

 Compared with MCF-7, expression of TGFβ2 decreased significantly in TMX2-

28 cells (p=0.009), however no change was seen in TMX2-11 cells (Figure 3.3A). 

Treatment with 5-Aza resulted in a significant increase in expression in MCF-7 

(p=0.0191) and MDA-MB-231 (p=0.048) (Figure 3.3A), but not TMX2-11. Expression 

of TGFβ2 increased significantly in 5-Aza treated TMX2-28 as compared with the 

control, yet expression of the gene remained low (p=0.0002) (Figure 3.3A).  

CAV2 had a significant decrease in expression in TMX2-28 cells as compared 

with MCF-7 (p=0.0111) (Figure 3.3B). A slight, but non-significant decrease was also 

seen in TMX2-11 as compared with MCF-7 (Figure 3.3B). Treatment with 5-Aza 

significantly increased expression of the gene in both TMX2-28 (p=0.0013) and MDA-

MB-231 (p=0.0004), but did not affect the expression of the gene in TMX2-11 (Figure 

3.3B). 
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RORA is hypermethylated in Tamoxifen-resistant lines 

RORA was hypermethylated in 40 out of 111 CpG sites on the HM450BC with 

the majority of the sites being located in the body of the gene (Figure 3.4A). Seven CpG 

sites were located within the promoter region in four of the six transcript variants of the 

gene (Figure 3.4A). A total of seven promoter CpG sites in transcript variant 4 were 

chosen for further interrogation by pyrosequencing, two of which, 60885258 and 

60885322 (Figure 3.4A orange highlighted CpG sites in orange box) were included on 

the HM450BC. A significant increase in the average percent methylation from MCF-7 

(22%) was seen in both TMX2-11 (34.5%) and TMX2-28 (38.8%) (p=0.0001 for both 

cell lines). Treatment with 5-Aza decreased methylation 26% (from 51.8% to 38.8%) in 

TMX2-28 in the region analyzed by pyrosequencing, however no significant change in 

expression occurred (t=0.8706 and p=0.4044) (Figure 3.4B). Further investigation shows 

that the methylation decrease seen in 5-Aza treated TMX2-28, was not specific to a few 

CpG sites; all seven CpG sites interrogated by pyrosequencing had decreased methylation 

(Appendix F, panel A). No change in methylation was seen in TMX2-11 (Figure 3.4B). 

Low expression of RORA was seen in all cell lines and while 5-Aza treatment increased 

expression in TMX2-28, it was not significant (Figure 3.4B).  

 

THBS1 expression and methylation are affected by 5-Aza treatment in TMX2-28 

cells 

 THBS1 was downregulated in TMX2-28 in cDNA microarray analysis previously 

conducted [50]. DNA methylation was evaluated on the HM450BC and half of the 

promoter CpG sites for THBS1 were hypermethylated in TMX2-28 cells (Figure 3.5A). 
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Two promoter CpG sites, including one site interrogated by the HM450BC, were 

analyzed by pyrosequencing and a significant increase in methylation (93%, p=0.0001) 

was seen in TMX2-28 (54.3%) as compared with MCF-7 (3.3%, Figure 3.5 B; Figure 

3.5A, orange highlighted CpG in orange box). Methylation of both TMX2-11 and MCF-7 

was low (5.5% and 3.3% respectively) and 5-Aza treatment resulted in a slight increase in 

methylation of both of these cells lines (10.8% and 8.3% respectively). Interestingly, 

there was a significant 34% decrease in methylation of TMX2-28 after 5-Aza treatment 

(p=0.0001). This decrease was seen in both CpG sites probed by pyrosequencing in 5-

Aza treated TMX2-28 cells (Appendix F, panel B). qRT-PCR analysis confirmed cDNA 

microarray results showing expression of THBS1 in TMX2-28 was significantly 

decreased as compared to MCF-7 (p=0.0001). Treatment of the cells with 5-Aza 

significantly increased expression, however expression remained exceedingly low 

(p=0.0001). Expression of THBS1 was significantly increased in ER-negative, MDA-

MB-231, after treatment with 5-Aza despite no change in methylation (p=0.0001). 

 

Expression and methylation of BMP2 are increased in TMX2-28 cells 

The HM450BC revealed that BMP2 was hypermethylated in four out of five 

promoter CpG sites (40-60% methylation) in both TMX2-11 and TMX2-28 (Figure 3.6A, 

orange box).  qRT-PCR analysis showed a significant increase in expression of BMP2 in 

TMX2-28 control as compared with the MCF-7 control (p=0.0001) (Figure 3.6B). 

Expression of BMP2 in TMX2-11 was low and comparable with expression levels in 

MCF-7 (Figure 3.6B). Treatment with 5-Aza did not significantly affect expression of 

BMP2 in either TMX2-11 or TMX2-28 (p=0.7229) (Figure 3.6B). Pyrosequencing of 
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BMP2 was attempted, however due to the overabundance of CpG sites within the 

promoter region no primer set could be designed using the PSQ Assay Design Software. 

 

5-Aza treatment does not result in re-expression of ERα in TMX2-28 or MDA-MB-

231 

Previous results from Gozgit et al., Fagan-Solis et al., and Fasco et al. show that TMX2-

28 cells do not express ERα mRNA or protein, while TMX2-11 has increased expression 

of the gene [47-49]. HM450BC methylation results showed hypermethylation in 26 out 

of 38 promoter CpG sites among 4 different gene transcripts (Appendix G, blue boxes). 

To determine whether the decrease in expression in TMX2-28 was due to methylation of 

the gene, MCF-7, TMX2-11, TMX2-28 and MDA-MB-231 cells were analyzed for ERα 

expression changes after treatment with 5-Aza. TMX2-28 had a significant increase in 

mRNA expression of ERα, but the expression was exceedingly low in both control 

(0.00048) and 5-Aza treated (0.00078) samples (p=0.036) (Figure 3.7). No significant 

increase in expression was seen in MCF-7, TMX2-11 or the ER-negative line, MDA-

MB-231 (Figure 3.7). Pyrosequencing of the control samples revealed low methylation in 

the promoter region in TMX2-11 and TMX2-28 (1.3 and 2.7% respectively) therefore 

methylation was not assayed in 5-Aza treated samples (Figure 3.7). 

 

5-Aza treatment results in decreased cell proliferation of TMX2-28 

I observed 3,000 hypermethylated genes in our Tamoxifen-resistant cell lines on 

the HM450BC and wanted to determine if Tamoxifen-sensitivity could be restored with 

short-term 5-Aza treatment. MCF-7, TMX2-11, and TMX2-28 cells were treated with 5-
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Aza, Tamoxifen, a combination of 5-Aza and Tamoxifen or the vehicle control and 

analyzed by MTS assay for cell proliferation (cytotoxicity assay data shown in Appendix 

H). TMX2-28 was significantly affected by 5-Aza, which reduced cell proliferation by 

35% (p=0.0001) and caused the cells to take on a rounder, flatter appearance (Figure 3.8). 

In contrast, 5-Aza did not affect the proliferation of TMX2-11 (Figure 3.8). As expected, 

treatment with Tamoxifen alone had no effect on either TMX2-11 or TMX2-28 (Figure 

3.8). Treatment with a combination of 5-Aza and Tamoxifen concurrently had no effect 

on TMX2-11. Furthermore, it did not result in an additional decrease in the proliferation 

of TMX2-28 (43% decrease) (Figure 3.8). An unusual, but not unprecedented finding 

was that treatment with Tamoxifen resulted in a more rapid proliferation of MCF-7 as 

compared to control (136% increase, p=0.0001) (Figure 3.8).  

To determine if treatment with a methylating agent would also affect 

proliferation, MDA-MB-231 cells were treated with S-adenosylmethionine (SAM) using 

the protocol described in Pakneshan et al., a cytotoxicity assay was completed to obtain a 

suitable concentration (Appendix I) [82]. The results showed no significant decrease in 

expression (p=0.45) or increase in methylation (p=0.44) of the uPA gene after 6 days of 

treatment with the molecule (Figure 3.9A & B). Upon further investigation, New England 

Biolabs (NEB) does not recommend using SAM to treat cells in vitro as it is neutral pH 

labile and unlikely to be active when it enters the cell (personal communication). 

Additionally, if methyltransferase activity in the cell is altered, the addition of SAM 

alone may not be effective. Therefore, this experiment was not completed using MCF-7, 

TMX2-11 and TMX2-28. 
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Discussion 

 

In Chapter 2 overall methylation changes that occur between the parental cell line 

and the Tamoxifen-resistant cell lines were discussed. It was found that two clones, 

TMX2-11 and TMX2-28 derived from MCF-7 cells treated long-term with Tamoxifen 

resulted in methylation changes and a greater number were seen in the ERα-negative line, 

TMX2-28 as compared with the ERα-positive line, TMX2-11. The two Tamoxifen-

resistant lines shared over 3,000 hypermethylated and 200 hypomethylated CpG sites 

with the promoter region representing 22% of the total. The significant increase in 

methylation suggests that DNA promoter methylation is playing a role in acquired 

Tamoxifen-resistance. 

To address whether hypermethylation of CpG sites in the promoter affects mRNA 

expression in Tamoxifen-resistant cell lines, a panel of 18 hypermethylated genes 

involved in pathways previously shown to be affected by long-term Tamoxifen treatment 

(metastasis, cell proliferation, transcriptional repression, and apoptosis) were selected for 

qRT-PCR analysis. Two genes, MAGED1 and ZNF350 were examined earlier in Chapter 

2. Five of the remaining 16 genes analyzed, AKAP12, REG1A, HDAC9, Col29A1 and 

TAC1 had little or no expression in MCF-7, TMX2-11 and TMX2-28 control samples. 5-

Aza treated RNA was not analyzed for these genes as the purpose of this experiment was 

to determine whether expression of the Tamoxifen-resistant cell lines differed from 

MCF-7. Promoter methylation did not appear to affect expression of these genes as MCF-

7 had low overall methylation on the HM450BC and did not express the genes. 

An additional five genes, LZTS1, SSRP1, GFI1, TCF12, and GREB1 were 

expressed in all of the cell lines analyzed, however expression of SSRP1, GFI1, and 
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TCF12 did not differ between the Tamoxifen-resistant lines and the parental line. The 

tumor suppressor LZTS1 is downregulated in many cancers by promoter methylation and 

Wang et al found a decrease in expression to be correlated with an increase in invasive 

characteristics and poor prognosis in breast cancer  [93]. Our results for MDA-MB-231 

expression mimic those of Wang et al. who found that MDA-MB-231 cells express low 

levels of LZTS1 and ectopically expressing the gene inhibits cell migration, however no 

comparison was made to a non-invasive, non-migratory line such as MCF-7. We saw that 

expression of LZTS1 in the highly invasive MDA-MB-231 line was equivalent to the 

levels seen in MCF-7. Treatment of MDA-MB-231 cells with 5-Aza did not increase 

expression indicating that methylation does not play a role in controlling expression of 

the gene. Contrary to the finding of Wang et al. [93], that promoter methylation was not 

related to invasiveness in the ER-positive MDA-MB-231 cells, we found that both 

promoter methylation and expression of LZTS1was increased in our invasive ER-

negative TMX2-28 as compared with the non-invasive MCF-7. However, 5-Aza 

treatment did not further increase expression of LZTS1 in TMX2-28. Therefore, the gene 

was not analyzed by pyrosequencing for changes in promoter methylation after 5-Aza 

treatment. 

Comparison of data from a cDNA microarray previously run in our lab with the 

HM450BC data allowed for selection of a panel of 4 genes that were both downregulated 

and hypermethylated in TMX2-28 as compared with MCF-7 [50]. TGF2, a tumor 

suppressor frequently inactivated in breast cancer, has been previously found to be 

downregulated in a Tamoxifen-resistant, MCF-7 derivative when compared with the 

parental line  [30, 98]. Our data resemble those of Fan et al. who showed that TGF2 was 
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downregulated in an ER-positive, Tamoxifen-resistant cell line [30]. We see that TGF2 

is expressed at low levels in the ER-negative TMX2-28, but not the ER-positive TMX2-

11. We also see that in TMX2-28 treatment with 5-Aza significantly increases expression 

of the gene. Similarly, CAV2 expression was found to be downregulated in the ER-

positive, Tamoxifen-resistant cell line in the Fan et al. paper as well as in TMX2-28 and 

we saw that treatment with 5-Aza increased expression of the gene in TMX2-28. CAV2 

has been investigated in breast cancer and decreased expression is associated with poor 

prognosis, and basal-like tumors  [96]. Interestingly, a stronger association was seen in 

tumors lacking ER and PR, those expressing basal cytokeratin markers (5/6, 14, and 17), 

and those with higher proliferation rates, characteristics TMX2-28, but not TMX2-11 

possesses. It is also noteworthy that the expression of both TGF2 and CAV2 is higher in 

the aggressive line, MDA-MB-231, than in MCF-7, and that the MDA-MB-231 cells 

behave similarly to TMX2-28 in response to 5-Aza treatment. This expression increase 

after 5-Aza treatment suggests the need for a case-based treatment regimen in breast 

cancer.  

RORA (or ROR) is a steroid hormone receptor used in a wide range of 

transcriptional regulation processes in the body, from controlling inflammation to 

participation in carcinogenesis through angiogenesis  [100]. The primary isoforms of 

RORA expressed in normal breast tissue are isoforms 1 and 4 and mRNA expression of 

RORA is downregulated in a number of breast cancer cell lines, including MCF-7  [101]. 

Our data show that mRNA expression of RORA transcript variant 4 in TMX2-28 is low, 

however expression is greater than that of MCF-7. Treatment of TMX2-28 with 5-Aza 

resulted in a non-significant upregulation of RORA expression. Methylation in the 
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promoter region of RORA transcript variant 4 was significantly increased in both TMX2-

11 and TMX2-28 in comparison to MCF-7 and treatment with 5-Aza decreased 

methylation in TMX2-28, but not TMX2-11. Interestingly, the expression of RORA in 

TMX2-28 was similar to that of MDA-MB-231, another ER-negative cell line, yet 

methylation in the control MDA-MB-231 cells was only 12% compared with 51.8% 

methylation in the TMX2-28 control. Treatment with 5-Aza did not affect the 

methylation or expression of MCF-7 or TMX2-11, suggesting that expression of the gene 

may not be directly controlled by promoter methylation in those cell lines. 

A third gene downregulated in TMX2-28 on the cDNA microarray, THBS1, has 

been identified as downregulated in breast cancer cell lines and breast tumors [102, 103]. 

Methylation analysis of nine-breast cancer cell lines, including MCF-7 and MDA-MB-

231, using bisulfite genomic sequencing showed no methylation of the gene [102]. Using 

pyrosequencing, we see that methylation of THBS1 in the promoter region of both MCF-

7 and MDA-MB-231 cells is low (3.3% and 3.8% average respectively) and a slight, but 

non-significant increase in methylation is seen in TMX2-11 (5.5%). THBS1 is 

hypermethylated in TMX2-28 cells at 54.3% and treatment with 5-Aza significantly 

decreases promoter methylation and increases expression of the gene, indicating that 

methylation plays a role in gene expression. The extent of this role however is unknown 

and will need to be examined further as the expression increase, although significant, is 

very slight. A longer treatment with 5-Aza may be the key to determining whether 

demethylating THBS1 in TMX2-28 cells leads to expression levels similar to MCF-7 and 

confirming that methylation is playing a role in suppressing expression. 
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The final gene analyzed for expression changes based on methylation data from 

the HM450BC was BMP2. Recent research has shown that expression of BMP2 is 

frequently decreased in breast cancer, however downregulation is not associated with 

tumor type, and re-expression of the gene inhibits proliferation and encourages apoptosis 

in breast cancer cell lines [104, 105]. In this study, we found that the TSS200 region of 

BMP2 is more highly methylated in the Tamoxifen-resistant cell lines than the parental 

line in the HM450BC data. Unfortunately, the overabundance of CpG sites in the 

promoter region was prohibitive and we were unable to analyze the region of interest by 

pyrosequencing as primers could not be created. While pyrosequencing is considered a 

gold standard for analyzing a region of interest in the promoter, in Chapter 2 we 

compared pyrosequencing methylation percentages with beta values of individual CpG 

sites on the HM450BC and confirmed that the HM450BC methylation results are 

sufficient to provide an assessment of the area (Chapter 2, Figure 2.5). Interestingly, the 

expression of BMP2 in TMX2-28 is significantly higher than MCF-7 and is similar to 

that of ER-negative, MDA-MB-231. Treatment with 5-Aza does not affect expression 

levels in TMX2-28, however expression is significantly higher in the 5-Aza treated 

MDA-MB-231 as compared with the control. We see that the body of BMP2 has low 

methylation in MCF-7 and TMX2-11, whereas in TMX2-28 it is highly methylated. 

Emerging research suggests that body methylation may play a role in expression of the 

gene. 

To confirm that TMX2-11 retained ER expression and TMX2-28 lost expression 

of the gene qRT-PCR analysis was run. We saw that expression of the ER is increased 

in TMX2-11 and that TMX2-28 lost expression of the gene, confirming what has 
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previously been shown in the literature [49]. Average methylation of the gene was less 

than 4% in the parental and Tamoxifen-resistant lines, as compared with the ER-

negative MDA-MB-231 cells, which had an average methylation of 16.3%. We also 

examined the cell lines post-treatment with 5-Aza and saw that TMX2-28 had a slight, 

but significant increase in expression. The knowledge that methylation of the gene was 

low in both Tamoxifen-resistant lines and that 72-hour 5-Aza treatment did not restore 

expression levels of TMX2-28 to those in MCF-7, suggests that expression of ER in 

TMX2-28 is not directly controlled by methylation of the gene. Additional analysis 

spanning the promoter would give a more thorough assessment of the role that 

methylation is playing in expression of the gene, as the primer set used for 

pyrosequencing only analyzed a small region of the promoter and it was not a region 

included in the HM450BC. 

To determine whether the Tamoxifen-resistant cell lines retained resistance to the 

drug, cells were treated for 72-hours with 10-6 M Tamoxifen and proliferation was 

measured. As expected, Tamoxifen had no effect on TMX2-11 and TMX2-28. 

Conversely, the drug increased proliferation of MCF-7 and decreased proliferation of 

MDA-MB-231. Previous studies have suggested that long-term culturing of cells in low 

estrogen media can elicit increased sensitivity to the weak estrogenic effects of 

Tamoxifen and result in increased proliferation  [106, 107]. As our MCF-7 cells have 

been cultured in low-estrogen media for >7 years, further investigation of this effect is 

needed to determine if treating the cells with estrogen both short term and long term prior 

to 5-Aza and Tamoxifen treatment reduces the observed Tamoxifen-induced cell 

proliferation. Treatment of the cells with the demethylating agent 5-Aza had no effect on 
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the proliferation of TMX2-11, MCF-7 or MDA-MB-231 cells. Conversely, TMX2-28 

had a decrease in proliferation, however the addition of Tamoxifen to the media 

concurrently did not strengthen the reduction. Generally, breast cancer cell lines are 

treated simultaneously with 5-Aza and Tamoxifen for proliferation assessment, however 

pre-treatment of our Tamoxifen-resistant lines with 5-Aza to initiate demethylation 

before adding Tamoxifen may be required as we did not see an additive effect. 

While treatment with 5-Aza had an effect on methylation, expression and cell 

growth, SAM did not. SAM is thought to inhibit demethylation of the DNA by acting as a 

methyl donor for DMNTs to stimulate hypermethylation  [108]. In clinical applications, 

SAM is prescribed as a dietary supplement to combat the effects of liver disease, 

depression, and colon cancer which often result from DNA hypomethylation [83, 109, 

110]. In laboratory studies, SAM is used along with the CpG methyltransferase SssI to 

methylate DNA in vitro through a PCR reaction (NEB). However, SAM is unstable at pH 

7.5 and 37ºC for an extended period, which results in the molecule being unsuitable for 

cell culture use (NEB, personal communication). This may explain why only a few 

studies have reported using SAM to methylate cell cultures in vitro [82, 83, 108]. To 

further assess the use of SAM as a methylating agent in TMX2-11 and TMX2-28, it is 

important to analyze the activity of DMNTs in the cell lines as altered activity could 

result in an imbalance in the methylation pathway.  
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Table 3.1  Summary of Genes and their functions 

Genes chosen based on hypermethylation of TMX2-11 and TMX2-28 in HM450BC 

Full Gene Name 
Gene 

Acronym 
RefSeq # Function 

A-kinase Anchor Protein AKAP12 NM_144497 Signal transduction 

Bone Morphogenic Protein 2 BMP2 NM_001200 
Positive regulator of WNT pathway, bone and 

cartilage formation 

Collagen, Type VI, Alpha 5 COL29A1 NM_153264 
Epidermal collagen involved in cell adhesion 

and extracellular matrix formation 

Growth Factor Independent 1 

Transcription Repressor 
GFI1 NM_001127215 Transcriptional repressor 

Histone Deacetylase 9 HDAC9 NM_058176 
Histone deacetylase and transcriptional 

repressor 

Interleukin 17F IL17F NM_052872 
Cytokine involved in inflammatory response 

and TGFB signaling pathway 

Leucine Zipper, Putative 

Tumor Suppressor 1 
LZTS1 NM_021020 Transcriptional regulation 

Regenerating Islet-Derived 1 

Alpha 
REG1A NM_002909 Regulator of cell proliferation 

RAR-Related Orphan 

Receptor A 
RORA NM_134262 Transcriptional regulation and angiogenesis 

Structure Specific 

Recognition Protein 1 
SSRP1 NM_003146 Transcriptional regulation 

Tachykinin, Precursor 1 TAC1 NM_013998 Encodes hormones that invoke vasodilation 

Transcription Factor 12 TCF12 NM_207037 Transcriptional regulation 

Genes chosen based on mRNA expression array 

Full Gene Name 
Gene 

Acronym 
RefSeq # Function 

Caveolin 2 CAV2 NM_001233 

Protein binding involved in signal 

transduction, lipid metabolism, cell growth 

and apoptosis 

Growth Regulation By 

Estrogen In Breast Cancer 1 
GREB1 NM_149803 Estrogen response gene in cell proliferation 

Transforming Growth Factor, 

Beta 2 
TFGB2 NM_001135599 Receptor signaling 

Thrombospondin 1 THBS1 NM_003246 Mediates cell-cell and cell-matrix interactions 
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Table 3.2   qRT-PCR Primers 

Genes Chosen Based on HM450K Hypermethylation 

Gene Forward Sequence 5’3’ Reverse Sequence 3’5’ 

AKAP12 ATCTGGGGAAATGCATCCGC TCTCTGTCCAACTGTGATGGTG 

BMP2 AGAATAACTTGCGCACCCCA ACCATGGTCGACCTTTAGGAG 

Col29A1 CCACCCTCTGGATCATCACT GTTTTCTGTGCCACCGTTCT 

GFI1 GAGCGTGGCCACCGGCTGCACGCA 
GCTCCGTTCCTGCGAGTGCACG

GC 

HDAC9 GAGCCCCAAATGAGGTTGGA TGCCGTCACTTTGTACCCTC 

IL17F CTGCTGTCGATATTGGGGCT AGTGACAGTGTAATTCCAGGGG 

LZTS1 TTTGGACTGCTTCTCTCAGTTCCTGC 
TTTGACAATGTGTTGCCCAACCA

AAG 

REG1A GACCTCAAGCACAGGATTCCA CCAGGTTGAGTTGAGTTGGAGA 

RORA CTTCTTTCCCTACTGTTCGTTC GCTCTTCTCTCAAGTATTGGC 

SSRP1 GTGCACCACAGGCAAGAATG GCTTGGGTTCATGCCCTCTT 

TAC1 ACTGTCCGTCGCAAAATCCA AGCATCCCGTTTGCCCATTA 

TCF12 TAATCGGGGTGGTTGGATGC TGGGGAAAACATCGCACTGA 

Genes Chosen Based on Expression Array 

CAV2 AGACGGAGAAGGCGGACGTA 
ATTAAAATCCAGATGTGCAGAC

AGC 

GREB1 GCTTAGCCTCTTGGCTGGTT CACTCGGCTACCACCTTCTA 

TGFB2 TCTTCCCCTCCGAAAATGCC GCAATAGGCCGCATCCAAAG 

THBS1 TTGTCTTTGGAACCACACCA CTGGACAGCTCATCACAGGA 

Other Genes of Interest 

ERα ATGATCAACTGGGCGAAGAG GATCTCCACCATGCCCTCTA 

uPA GCTCACCACAACGACATTGC CACCTGCCCTCCTTGGAA 
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Table 3.3 Pyrosequencing Primers 

 

Gene Forward 5’3’ Reverse 3’5’ Sequencing  

THBS1 

BIOT- 

TGAAATTTAATAAA

TATGTGTTTTAGGA

ATAT 

CCCATCTTAACACTT

AAACCTAACAAAA 

3’-

ACATTCATCAAAC

AACAAT-5’ 

RORA 
AGGTGTAGATTAGG

ATTTTGGTTATTGG

TATA 

BIOT-

TCTAACCACTTTCTA

CCCCCACT 

5’-

GAGTTTTTTTAGAA

AGAT-3’ 

ER  
GAGGTGTATTTGGA

TAGTAGTAAGTT 

BIOT-

CTATTAAATAAAAAA

AAACCCC 

5’-

GAGGGYGTYGTTT

AYGAGTTTA-3’ 

uPA 
TGTTGGTGATATTT

GGGGATTGTTATT 

BIOT- 

CCCAACTCTAAAACC

TCCTAAAATCCTCT 

5’-

TGTGTTTTTGGGAG

AGTA-3’ 
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Table 3.4  Overview of methylation and expression data from genes selected based on HM450BC hypermethylation in TMX2-

11 and TMX2-28 

 

 

CpG site 

(MAPINFO) 

HM450BC CpG Site 

Hypermethylation 

(Avg. Beta) 

HM450BC Mean CpG 

Site Hypermethylation 

(Avg. Beta) 

qRT-PCR (relative expression) 

Untreated 5-Aza Treated 

Gene 

Acronym 

 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

AKAP12 151646552 0.335 0.747 0.834 0.364 0.841 0.872 0.00075 0.00093 0.0003 
   

AKAP12 151646540 0.393 0.935 0.911 
         

BMP2 6748710 0.075 0.458 0.474 0.075 0.471 0.491 0.0046 0.0037 0.196 0.0051 0.01 0.241 

BMP2 6748730 0.029 0.602 0.650 
         

BMP2 6748719 0.127 0.347 0.388 
         

BMP2 6748712 0.071 0.476 0.452 
         

COL29A1 130063469 0.094 0.529 0.406 0.146 0.693 0.562 0 0 0 0 0 0 

COL29A1 130064261 0.121 0.776 0.742 
         

COL29A1 130063505 0.221 0.773 0.538 
         

GFI1 92950836 0.113 0.443 0.667 0.105 0.515 0.729 0.114 0.029 0.024 0.024 0.029 0.02 

GFI1 92950711 0.107 0.483 0.583 
         

GFI1 92950698 0.095 0.620 0.937 
         

HDAC9 18535232 0.221 0.601 0.796 0.248 0.602 0.806 0.00046 0.00068 0.0017 
   

HDAC9 18534872 0.387 0.825 0.807 
         

HDAC9 18535263 0.134 0.380 0.816 
         

IL17F 52109385 0.201 0.471 0.445 0.198 0.442 0.475 0.092 0.13 0.27 
   

IL17F 52109347 0.194 0.413 0.505 
         

CpG sites are hypermethylated CpGs in TMX2-11 and TMX2-28 as compared with MCF-7 in TSS200 and TSS1500 
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Table 3.5  Overview of methylation and mRNA expression of genes underexpressed in TMX2-28 from Affymetrix 

array 

 CpG site 

(MAPINFO) 

HM450BC CpG Site 

Hypermethylation 

(Avg. Beta) 

HM450BC Mean CpG 

Site Hypermethylation 

(Avg. Beta) 

qRT-PCR (relative expression) 

Untreated 5-Aza Treated 

G
en

e 

A
cr

o
n

y
m

 

 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

M
C

F
-7

 

T
M

X
2
-1

1
 

T
M

X
2
-2

8
 

CAV2 116139322 0.093 0.097 0.517 0.129 0.101 0.664 0.103 0.044 0.0049 0.183 0.084 0.277 

CAV2 116139367 0.184 0.159 0.748 
         

CAV2 116139374 0.194 0.135 0.834 
         

CAV2 116139391 0.103 0.104 0.663 
         

CAV2 116139414 0.097 0.061 0.645 
         

CAV2 116139425 0.103 0.051 0.575 
         

GREB1 11679605 0.222 0.309 0.800 0.121 0.139 0.873 0.067 0.018 0 0.131 0.057 0 

GREB1 11679845 0.045 0.023 0.807 
         

GREB1 11679872 0.043 0.056 0.917 
         

GREB1 11679879 0.087 0.122 0.890 
         

GREB1 11680020 0.083 0.069 0.844 
         

GREB1 11680057 0.243 0.256 0.980 
         

TFGB2 218518468 0.101 0.092 0.938 0.044 0.045 0.677 1.612 0.824 0.0032 3.19 1.246 0.017 

TFGB2 218518579 0.033 0.032 0.907 
         

TFGB2 218518675 0.034 0.036 0.905 
         

TFGB2 218518963 0.039 0.044 0.443 
         

TFGB2 218519232 0.013 0.022 0.193 
         

THBS1 39873209 0.006 0.013 0.015 0.040 0.032 0.080 0.053 0.052 0.00012 0.053 0.051 0.00028 

THBS1 39873258 0.075 0.052 0.145 
         

CpG sites are hypermethylated CpGs in TMX2-28 as compared with MCF-7 in TSS200 and TSS1500 
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Figure 3.1 Low levels of AKAP12, REG1A, and HDAC9 mRNA are expressed in 

Tamoxifen-resistant cell lines.  

 

Three genes, (A) AKAP12 (B) REG1A and (C) HDAC9 are expressed at extremely low 

levels in MCF-7, TMX2-11 and TMX2-28. REG1A (B) is significantly more expressed 

in TMX2-11 as compared with MCF-7 (p=0.0131). Comparisons were made from 

triplicate biological replicates using unpaired students t-test. 
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Figure 3.1 Low levels of AKAP12, REG1A, and HDAC9 mRNA are expressed in 

Tamoxifen-resistant cell lines. Three genes, (A) AKAP12 (B) REG1A and (C) HDAC9 are 

expressed at extremely low levels in MCF-7, TMX2-11 and TMX2-28. REG1A (B) is 

significantly more expressed in TMX2-11 as compared with MCF-7 (p=0.0131). 

Comparisons were made from triplicate biological replicates using unpaired students t-test. 
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(Figure 3.2) 
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Figure 3.2. 5-Aza treatment does not affect mRNA expression of TCF12, SSRP1, GFI1, GREB1 and LZTS1. 

Expression of (A) TCF12 (B) SSRP1 (C) GFI1 and (D) GREB1 (E) LZTS1 is shown pre and post treatment 

with 2.5 mM 5-Aza. (A-C) No significant effect is seen in either control or 5-Aza treated samples for SSRP1 

or GFI1. 
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Figure 3.2 Continued. (D) A significant decrease in expression of GREB1 is seen in TMX2-11 and TMX2-28 

control samples (p = <0.0001 for both). (E) Expression of LZTS1 in TMX2-28 differs significantly from MCF-7 

(p = 0.0037).  Comparisons were made from triplicate biological replicates using unpaired students t-test. 
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Figure 3.2. 5-Aza treatment does not affect mRNA expression of TCF12, SSRP1, 

GFI1, GREB1 and LZTS1. 

 

 Expression of (A) TCF12 (B) SSRP1 (C) GFI1 and (D) GREB1 (E) LZTS1 is shown pre 

and post treatment with 2.5 mM 5-Aza. (A-C) No significant effect is seen in either 

control or 5-Aza treated samples for SSRP1 or GFI1. 

 (D) A significant decrease in expression of GREB1 is seen in TMX2-11 and TMX2-28 

control samples (p = <0.0001 for both). (E) Expression of LZTS1 in TMX2-28 differs 

significantly from MCF-7 (p = 0.0037).  Comparisons were made from triplicate 

biological replicates using unpaired students t-test. 
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Figure 3.3 mRNA expression of TGFβ2 and CAV2 increases after 5-Aza treatment 

in TMX2-28 cells.  

 

(A) Expression of TGFB2 is significantly decreased in TMX2-28 as compared with 

MCF-7 (p = 0.009). Treatment with 2.5 μM 5-Aza results in a significant increase in 

expression in MCF-7 and MDA-MB-231, and TMX2-28 (p = 0.0191, 0.048, and 0.0002, 

respectively). (B) Expression of CAV2 is significantly decreased in TMX2-28 as 

compared with MCF-7 and treatment with 5-Aza significantly increases expression of the 

gene (p = 0.0111 and 0.0013, respectively). A significant increase is also seen in MDA-

MB-231 cells after 5-Aza treatment (p = 0.0004). Comparisons were made from triplicate 

biological replicates using unpaired students t-test. 
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Figure 3.4 RORA promoter methylation, but not mRNA expression increases after 

5-Aza treatment in TMX2-28.  

 

(A) A heat map shows methylation of CpG sites in RORA interrogated by the 

HM450BC. More than half of the CpG sites have increased methylation (β-value) in both 

TMX2-11 and TMX2-28 as compared with MCF-7. The orange box includes the 

promoter region of the transcript interrogated. Sites highlighted in orange (MAPINFO 

60885258 & 60885233) are those further interrogated by pyrosequencing. (B) No 

expression change is seen between TMX2-11, TMX2-28 and MCF-7. A significant 

increase in methylation is seen in both TMX2-11 and TMX2-28 as compared with MCF-

7 (p = 0.0001 for both). Treatment with 2.5 μM 5-Aza results in an additional 

methylation increase in TMX2-28 only (p = 0.0001). Comparisons were made from 

triplicate biological replicates using unpaired students t-test. 
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Figure 3.5. mRNA expression and promoter methylation of THBS1 are affected by 

5-Aza treatment.  

 

(A) The heat map of THBS1 shows an increase in methylation (β-value) in 10 CpG sites 

in the promoter region (orange box). MAPINFO site 39871808 (highlighted in orange) 

was analyzed further by pyrosequencing analysis. (B) A significant decrease in 

expression is seen only in TMX2-28 as compared to MCF-7. Treatment with 5-Aza 

resulted in a significant increase in expression and decrease in methylation in TMX2-28 

(p = 0.0001 for both). A significant increase in promoter methylation occurs in 5-Aza 

treated MCF-7 (p = 0.0253). A significant change in expression, but not methylation is 

seen in MDA-MB-231 (p = 0.0001). Comparisons were made from triplicate biological 

replicates using unpaired students t-test. 
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Figure 3.5. mRNA expression and promoter methylation of THBS1 are affected by 5-Aza treatment. (A) The 

heat map of THBS1 shows an increase in methylation (β-value) in 10 CpG sites in the promoter region (orange 

box). MAPINFO site 39871808 (highlighted in orange) was analyzed further by pyrosequencing analysis. (B) A 

significant decrease in expression is seen only in TMX2-28 as compared to MCF-7. Treatment with 5-Aza 

resulted in a significant increase in expression and decrease in methylation in TMX2-28 (p = 0.0001 for bot h). A 

significant increase in promoter methylation occurs in 5-Aza treated MCF-7 (p = 0.0253). A significant change in 

expression, but not methylation is seen in MDA-MB-231 (p = 0.0001). Comparisons were made from triplicate 

biological replicates using unpaired students t-test. 
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Figure 3.6. mRNA expression and promoter methylation of BMP2 are increased in 

TMX2-28 cells.  

 

(A) The heat map of BMP2 shows an increase in methylation in four out of five CpG 

sites in the promoter region (orange box). (B) A significant increase in expression is seen 

in TMX2-28 as compared with MCF-7 (p = 0.0001). No change in expression is seen 

after treatment with 5-Aza. A significant increase in expression is seen in MDA-MB-231 

after treatment with 5-Aza. Comparisons were made from triplicate biological replicates 

using unpaired students t-test. 
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Figure 3.6. mRNA expression and promoter methylation of BMP2 are increased in TMX2-28 cells. (A) The heat 

map of BMP2 shows an increase in methylation in four out of five CpG sites in the promoter region (orange box). 

(B) A significant increase in expression is seen in TMX2-28 as compared with MCF-7 (p = 0.0001). No change in 

expression is seen after treatment with 5-Aza. A significant increase in expression is seen in MDA-MB-231 after 

treatment with 5-Aza. Comparisons were made from triplicate biological replicates using unpaired students t-test. 
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Figure 3.7 ERα is not re-expressed in TMX2-28 or MDA-MB-231 cells after 

treatment with 5-Aza.  

 

TMX2-11 has a significant increase in expression of ERα as compared with MCF-7 

(p=0.0008). TMX2-28 (p=0.0004) and MDA-MB-231 (p=0.0004) have a significant 

decrease in expression as compared with MCF-7. Treatment with 2.5 M 5-Aza for 48 

hours resulted in a small, but significant increase in expression in TMX2-28 (p = 0.036). 

Average percent methylation is low (<4%) in MCF-7, TMX2-11, and TMX2-28 control 

cells and therefore 5-Aza treated samples were not analyzed for methylation changes. 

Comparisons were made from triplicate biological replicates using unpaired students t-

test. 
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Figure 3.8 5-Aza treatment decreased cell proliferation in TMX2-28.  

 

Cells were seeded at varying concentrations in 96-well plates and treated with 2.5 μm 5-

Aza in DC5 for 4 days and cell proliferation was assessed by MTS assay.  5-Aza results 

are represented as percent of control. TMX2-28 cell proliferation is decreased by 35% (p 

= 0.0001) in 5-Aza treated samples and 43% (p = 0.0001) in 5-Aza + Tamoxifen treated 

samples compared with the control. The change in proliferation is non-significant 

between the two treatments (p = 0.36). MCF-7 Tamoxifen treated samples have a 136% 

(p = 0.0001) increase in cell proliferation compared with the control. Replicates from two 

separate experiments were combined (n = 8) and an unpaired student’s t-test was 

completed to determine significance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 5-Aza-2’deoxycitidine treatment decreased cell proliferation in TMX2-28. 

Cells were seeded at varying concentrations in 96-well plates and treated with 2.5 µm 5-Aza 

in DC5 for 4 days and cell proliferation was assessed by MTS assay.  5-Aza results are 

represented as percent of control. TMX2-28 cell proliferation is decreased by 35% (p = 

0.0001) in 5-Aza treated samples and 43% (p = 0.0001) in 5-Aza + Tamoxifen treated 

samples compared with the control. The change in proliferation is non-significant between 

the two treatments (p = 0.36). MCF-7 Tamoxifen treated samples have a 136% (p = 0.0001) 

increase in cell proliferation compared with the control. Replicates from two separate 

experiments were combined (n = 8) and an unpaired student’s t-test was completed to 

determine significance. 
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Figure 3.9 mRNA expression and DNA methylation of uPA in MDA-MB-231 cells is 

unaffected by S-adenosylmethionine (SAM).  

 

Cells were treated with 100 M SAM or a vehicle control for 6 days and (A) expression 

and (B) methylation were measured. No significant change is seen between the control 

and the SAM treated cells in (A) expression (p = 0.44) or (B) methylation (p = 0.45) 

assays. Comparisons were made from triplicate biological replicates using unpaired 

students t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. B. 

Figure 3.9 mRNA expression and DNA methylation of uPA in MDA-MB-231 cells 

is unaffected by S-adenosylmethionine (SAM). Cells were treated with 100mM 

SAM or a vehicle control for 6 days and (A) expression and (B) methylation were 

measured. No significant change is seen between the control and the SAM treated 

cells in (A) expression (p = 0.44) or (B) methylation (p = 0.45) assays. 

Comparisons were made from triplicate biological replicates using unpaired 

students t-test. 
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CHAPTER 4 

 

HIGH-DENSITY ARRAY ANALYSIS OF DNA METHYLATION IN HUMAN 

BREAST TUMOR SAMPLES 

 

Introduction 

 

 In Chapter 2, I reported that both the ER-positive Tamoxifen-selected cell line, 

TMX2-11, and the ER-negative Tamoxifen-selected cell line, TMX2-28, had significant 

hypermethylation as compared with the ER-positive parental line, MCF-7. I predicted 

that both ER-positive and ER-negative second breast tumors occurring in women after 

anti-estrogen treatment would be hypermethylated as compared with primary ER-positive 

tumors. Furthermore, based on the greater methylation of the ER-negative, TMX2-28 cell 

line, I predicted that second ER-negative tumors would be more methylated than second 

ER-positive tumors. Finally, I suggested that differences in methylation profiles among 

individual ER-positive primary tumors could be used to predict the hormonal status of the 

second tumor, and thereby allow a more precise and targeted treatment for individual 

women.   

At this point it is necessary to digress and discuss the terminology used for second 

breast tumors. In some breast cancer literature, all tumors occurring after or during 

treatment of the primary tumor may be referred to as a recurrence [111]; i.e. the woman 

has a recurrence of breast cancer. However, for tailored effective treatment, it is 

considered important to distinguish between a true new primary or de novo tumor, and a 

recurrence originating from cells of the first primary. Classifying second tumors as new 
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primaries or true recurrences is primarily based on histopathologic and clinical 

characteristics. Typically, 75% of second tumors occurring in the same breast, ipsilateral 

tumors, are classified as recurrences while only 15% of second tumors occurring in the 

opposite breast, contralateral tumors, are classified as recurrences [111]. True recurrent 

contralateral tumors represent metastasis and therefore, in general are associated with a 

less favorable diagnosis than a new primary contralateral tumor [111]. In practice, 

however, it remains difficult to distinguish true recurrences from new primaries and the 

literature uses “recurrence” broadly to indicate a second tumor that may or may not be a 

clonal descendant of the primary tumor. Accordingly, I use the terms second and 

recurrent tumor interchangeably and not to distinguish clonal origin. It is important to 

note that almost all second tumors in women who had ER-positive primary tumors 

develop under anti-estrogen selection regardless of whether they are true recurrences or 

new primaries. 

In general ER-positive tumors have been shown to have greater DNA methylation 

than do ER-negative tumors [112-115]. For example, a study by Fackler and colleagues 

[114] of 103 primary invasive breast tumors and 21 normal breast tissue samples using 

HumanMethylation27 BeadChip (HM27BC) data found that ER-positive tumors were 

more highly methylated than ER-negative ones. Examination of methylation with regards 

to gene location showed that ER-positive tumors had a greater number of 

hypermethylated CpG sites than ER-negative tumors in the promoter region. The authors 

went on to identify a set of 40 CpG sites with the greatest amount of hypermethylation in 

ER-positive (27 probes) and ER-negative (13 probes) breast tumors and found that these 

sites were capable of classifying additional tumor samples into hormone receptor status 
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subgroups [114]. While this study confirms that hormone receptor status plays a role in 

breast tumor methylation, it did not examine methylation in recurrent tumors. To date, 

little is known regarding the DNA methylation profiles of second tumors and the extent 

to which methylation patterns are associated with ER status.   

 

The present human study was designed to include both the primary and second 

tumors from women who had ER-positive primary tumors and received anti-estrogen 

treatment before the second, either ER-positive or ER-negative, tumor occurred. The 

major goals of this design were to i) determine the extent to which methylation data from 

ER-positive primary tumors could be used to further categorize these tumors and predict 

the ER-status of the second tumor, and ii) determine whether the group of ER-negative 

second tumors that occurred in women who had ER-positive primary tumors were highly 

methylated. In addition, the study design included primary and recurrent tumors from a 

group of women who had only ER-negative tumors as well as primary tumors from 

women who did not have a recurrence. Inclusion of these groups allowed me to i) expand 

and refine our knowledge of the DNA methylation differences between ER-positive and 

ER-negative tumors, and ii) determine the extent to which DNA methylation of primary 

tumors can be used to predict recurrence.  

  My data confirm previous findings that ER-positive breast tumors have more 

hypermethylated CpG sites than ER-negative tumors. When the tumors were stratified by 

occurrence, it was found that first tumors, not second tumors, are predominantly 

responsible for the hypermethylation of the ER-positive group as compared with the ER-

negative group. Further stratification by side of tumor recurrence revealed that first 

tumors from pairs in which the second tumor occurred in the contralateral breast were 
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more hypermethylated than those from ipsilateral pairs. In contrast, second tumors 

recurring in the ipsilateral breast were more hypermethylated than those recurring in the 

contralateral breast. These data suggest that methylation is playing a role in progression 

of the tumor particularly if the second tumor is more likely to be a recurrence rather than 

a new tumor. Additionally, paired tumors stratified by ER-status of the second tumor 

indicated that ER-negative second tumors with ER-positive first tumors had the greatest 

overall methylation differences, particularly in the second tumor. Pathway analysis was 

completed to provide insight into biomarkers associated with tumors that recur. Two 

pathways, ‘homophilic cell adhesion via plasma membrane adhesion molecules’ and ‘cell 

fate commitment’, were selected for further analysis. ER-positive first tumors that 

recurred as either ER-positive or ER-negative compared with non-recurrent tumors 

shared hypermethylated genes in the homophilic cell adhesion pathway. ER-positive first 

tumors that recurred as ER-negative compared with ER-positive first tumors that recurred 

as ER-positive were associated with a unique set of hypermethylated genes in the cell fate 

commitment pathway.  Kaplan-Meier plots from TCGA data showed that expression of 

the genes only hypermethylated in each individual comparison group in the homophilic 

cell adhesion pathway was linked to overall survival. Similarly those genes shared 

between ER-positive first tumors with either ER-negative or ER-positive second tumors 

in the cell fate commitment pathway were also linked to survival.  

 

Materials and Methods 
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Human Tissue 

Institutional Review Board (IRB) approval was obtained from Baystate Medical 

Center for the study. Identifiers were removed and samples were labeled sequentially to 

ensure patient anonymity. Ninety-one samples were identified as available in the database 

maintained by the Department of Surgical Pathology at Baystate Medical Center. The 

following blocks for 86 of the 91 tumors were located and pulled: tumors from women 

who had an ER-positive first tumor (19) and an ER-positive second tumor (20); from 

women who had an ER-negative first tumor (7) and an ER-negative second tumor (8); 

from women who had an ER-positive first tumor (7) and an ER-negative second tumor 

(8). In 5 cases, blocks for either first or second tumors were not available from the same 

woman, however those cases were included as we had demographic data on the missing 

blocks (see Table 4.1 and Figure 4.1). Additionally, 4 third tumors were collected from 

women with an ER-positive primary and an ER-positive second tumor, 2 third tumors 

from women with an ER-negative primary and an ER-negative second tumor, and 1 third 

tumor from a woman with an ER-positive primary and an ER-negative second tumor. 

Eight non-recurrent ER-positive and two non-recurrent ER-negative breast tumors were 

also collected for a total of 86 tumors (Table 4.1). Clinical and pathological data for the 

86 tumors are in Appendix J. Of these 86 tumors, HM450BC data was collected for 70 

tumors and clinical and pathological data are summarized in Table 4.2.  

Primary tumors were matched to a second tumor from the same woman in either 

the ipsilateral or contralateral breast, where possible. The 70 tumors for which HM450BC 

data were obtained included 50 paired tumors as follows: 14 paired tumors from women 

with ER-positive primary and ER-positive second tumors, 5 tumor pairs from women 
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with ER-negative first tumors and ER-negative second tumors, and 6 tumor pairs from 

women with ER-positive first tumors and ER-negative second tumor. Tumors were given 

group labels for reading ease: ER-positive first tumors (A1) with ER-positive second 

tumors (A2); ER-negative first tumors (B1) with ER-negative second tumors (B2); ER-

positive first tumors (C1) with ER-negative second tumors (C2) (Table 4.3). Tissue was 

prepared for DNA purification in 10μm thick sections from the corresponding formalin-

fixed paraffin embedded (FFPE) blocks. A summary of characteristics for the 50 paired 

tumors from groups A, B and C as well as the 8 non-recurrent tumors can be found in 

Table 4.4. 

 

Immunohistochemistry (IHC) 

FFPE tissue blocks from 70 breast tumors were sectioned at a thickness of 4μm 

and placed on slides (7 slides for each tumor). The slides were stained for ER, PR, HER2, 

CK5/6, CK14, and p40 using the UltraView Universal DAB Detection Kit on the 

Ventana BenchMark Ultra platform. CK5 and Ki67 were performed on the Dako 

autostainer platform using the Dako Advanced HRP Polymer System. Additionally, 

hemotoxylin and eosin (H&E) slides were prepared for tumor verification. Antibodies 

used were optimized for each protein: ER (Ventana CONFIRM anti-estrogen receptor 

SP1 rabbit monoclonal primary antibody), PR (Ventana CONFIRM anti-progesterone 

receptor 1E2 rabbit monoclonal primary antibody), HER2 (Ventana PATHWAY anti-

HER2/neu antibody 4B5 rabbit monoclonal antibody), CK5/6 (Ventana anti-Cytokeratin 

5/6 (D5/16B4) mouse monoclonal primary antibody), CK14 (Ventana anti-Cytokeratin 

14 mouse monoclonal primary antibody), p40 (Biocare anti-p40 mouse monoclonal 
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antibody), and Ki67 (Dako mouse monoclonal MIB-1 antibody). Slides were dehydrated 

in ethanol and xylene post-staining and coverslips were added. One anatomical 

pathologist (Rahul Jawale) conducted scoring of the slides. Allred scores were recorded 

for ER & PR ranging from 0-8 with a score of 3 and above considered as positive for 

receptor status and tumors were considered HER2 positive if 30% of the cells contained 

3+ membrane staining. CKs were scored on the intensity of immunoreactivity ranging 

from a score of 0-4 (negative to strong staining) and percent of positive cells was 

recorded. Ki67 was scored as percent of positive cells within the area of invasive cells 

with 0% being the lowest score and 100% being the highest. 

 

DNA Purification 

DNA was purified from FFPE breast tissue sections using the BiOstic FFPE tissue 

DNA isolation kit (Mo Bio, Carlsbad, CA). Briefly, the breast tumor size was measured 

using the H&E stained slide to determine the number of sections needed to purify a 

minimum of 500ng of DNA. For samples exceeding 4mm x 4mm, a single tissue section 

was purified. For samples smaller than 4mm x 4mm, two to four 5-10μm tissue sections 

were combined into a single tube prior to purification. As illustrated in Appendix K, 

sections were prepared for DNA extraction by arranging the unstained slide on top of the 

tumor marked H&E stained slide. Tissue was carefully removed from the slide by 

scraping using a sterile needle. Purification and concentration was completed as 

described by manufacturer. 
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Illumina HumanMethylation450 BeadChip (HM450BC) 

 DNA from breast tumor samples purified using the BiOstic FFPE tissue DNA 

isolation kit (Mo Bio, Carlsbad, CA) were sent to the core facility at the University of 

Southern California (USC) for HM450BC (Illumina) analysis. DNA sent to USC was 

bisulfite treated with the EZ DNA methylation kit (Zymo) and a MethylLight PCR 

reaction was completed to analyze the quality of the DNA. Two different assessments of 

the DNA were completed. The first assessment was an ALU-C4 bisulfite control reaction 

to test for sample quality and integrity. An ALU-C4 (HB-313) Ct value below 19 was 

considered passing (see Table 4.1). The second test, Conv 100% (HB-365), was to 

determine bisulfite conversion completeness and tested, unconverted (0%) and fully 

converted (100%) DNA. Of the 86 tumors collected, 70 passed QC (see Table 4.1). The 

age of the FFPE tumor block appeared to have an effect on the quality of DNA that was 

extracted from the sample. Tumors that failed QC were among the oldest tumor blocks 

and had poor quality DNA after extraction. As expected, the size of the tumor was also 

important, tumors less than 4mm x 4mm provided little DNA. Bisulfite treated DNA that 

passed QC analysis was amplified at 37°C for 20-24 hours after treatment with 0.1N 

NaOH. The DNA was then fragmented at 37°C for 1 hour using an enzymatic process 

and subsequently precipitated in 100% 2-propanol at 4°C for 30 minutes followed by 

centrifugation at 3000xg at 4°C for 20 minutes. Dried pellets were resuspended in 

hybridization buffer, 48°C for 1 hour followed by 95°C for 20 minutes, then loaded onto 

the HM450BC and incubated at 48°C for 16-24 hours. Following hybridization of DNA 

to the primers on the BeadChip, unhybridized and non-specific DNA was removed using 

wash buffers to prepare the chip for staining. After a single base extension of the 
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hybridized primers using labeled nucleotides, the BeadChip was stained with Cy-3 and 

Cy-5 fluorescent dyes and read using the Illumina iScan Reader. The image data were 

then analyzed using Illumina GenomeStudio to assess efficiency of the reaction. 

Methylation of the interrogated CpG loci were calculated as the ratio of the fluorescent 

signals of methylated to unmethylated sites (beta values). A beta value of 1 corresponds 

with complete methylation of DNA at the probe site and a beta value of 0 is no 

methylation DNA at the probe site. 

 

 

Data Analysis 

GenomeStudio methylation module software was used to analyze methylation 

data from the HM450BC. To ensure that only CpGs with complete bead hybridization 

were used in the analysis, only those sites with a detection p-value of ≤0.05 were 

included in the analysis (Illumina). Detection p-value is the likelihood that the measured 

signal is above background and therefore significant. CpG sites containing SNPs within 

10 base pairs of the site were omitted, due to literature reports indicating SNPs in this 

region can affect probe binding [116]. For most analyses, a 2-fold cutoff in either 

direction was used to determine hypermethylated or hypomethylated CpG sites. This 

cutoff was selected based on previously reported literature values [51, 53, 114]. 

Additionally, for noted analyses a false discovery rate (FDR) of 0.05 was computed in 

GenomeStudio for each CpG site and only those sites with a DiffScore of ≥ 22 and a 

greater than 1.5-fold change for hypermethylated CpG sites or ≤-22 and a less than 0.67-

fold change for hypomethylated CpG sites, corresponding with a p-value of ≤ 0.01, were 

considered statistically significant. The DiffScore is calculated using the Illumina custom 
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model, which assumes that the beta value, under a set of biological conditions such as 

tumor versus normal, is normally distributed among the replicates. STATA 

(http://www.stata.com) was used to compute unpaired student’s t-test and one-way 

ANOVA. Those analyses with a p-value of <0.05 were considered statistically 

significant. Gene lists were obtained from the list of differentially methylated CpG sites. 

Panther Classification System (www.pantherdb.org) was used to conduct pathway 

analysis from a list of genes associated with hyper- and hypomethylated dmCpG sites 

described above. Kaplan-Meier plots (http://kmplot.com/) were created using genes 

associated with differential methylation in multiple comparison groups. 

 

 

Results 

 

Breast tumors were classified by ER-status and occurrence. Three major groups of 

tumors were used in most analyses. The first tumor group, A, was collected from women 

who had an ER-positive primary and their second tumor was ER-positive, the second 

group, B, was from women with an ER-negative primary tumor and an ER-negative 

second tumor, and the third group, C, was from women who had an ER-positive primary 

tumor and their second tumor was ER-negative. In addition to the 58 first and second 

tumors mentioned above, there were 4 third tumors from groups A & B and a group of 8 

primary tumors (6 ER-positive and 2 ER-negative), from women who did not have a 

second tumor, for a total of 70 tumors that passed QC and were analyzed by HM450BC 

(Table 4.5 and Figure 4.1). The majority of analyses in this study were restricted to 50 

paired tumors, including 14 paired tumors from women with ER-positive first tumors 

(A1) and ER-positive second tumors (A2), 5 paired tumors from women with ER-

http://www.pantherdb.org/
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negative first tumors (B1) and a second ER-negative tumor (B2), and 6 paired tumors 

from women with ER-positive first tumors (C1) and a second ER-negative tumor (C2) 

(Table 4.6). Third tumors and the 8 primary tumors with no recurrence were omitted from 

paired analyses. 

Patient and tumor demographics based on all 70 tumors are shown in Table 4.2. 

The average patient age at first tumor occurrence was 56.6 years old, while the average 

age at recurrence was 64.1 years old; 20% more women were menopausal at recurrence 

(13 women versus 21 women). Tumors on average recurred after 67.8 months. PR status 

did not vary significantly between primary and recurrent tumors, however the number of 

HER2 positive tumors was slightly higher in the recurrent group (14.7% in primary 

versus 25% in recurrent). Interestingly, the number of Ki67 high tumors was 20% greater 

in recurrent tumors than primary ones (23.5% in primary versus 44.4% in recurrent). 

Tumors were also stained for basal markers CK 5/6 and 14. Half of the ER-negative 

tumors that recurred as ER-negative stained positive for both markers (Appendix J). 

Additionally, two ER-positive tumors that recurred as ER-negative stained positive for 

both markers and one tumor stained positive for CK14 only (Appendix J). Tumor grade 

ranged from 0-3 with the majority of tumors falling into categories 2 and 3 in primary 

tumors (33.3 and 36.3% respectively) and category 3 in recurrent tumors (63.6%). 

Invasive ductal carcinoma (IDC) was the most common type of tumor found in both 

primary and recurrent (67.6 and 72.2% respectively) followed by ductal carcinoma in situ 

(DCIS) at 14.7 and 13.9%, invasive lobular carcinoma (ILC) at 11.8 and 11.1%, and 

finally invasive carcinoma with a mix of ductal and lobular characteristics (IDLC) at 5.9 

and 2.8%. All tumors that stained positive for basal markers were IDC (Appendix J). 
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Recurrent tumors were more likely to occur in the ipsilateral breast as the primary tumor 

(60%) than in the contralateral breast (40%). Tumor size did not vary between groups, 

with approximately half of the tumors being smaller than 20mm and half being larger 

than 20mm. Of the 34 primary tumors we collected, anti-hormonal treatment data were 

available for only 23 women. Of the 26 ER-positive primary tumors collected, 4 women 

were treated with only Tamoxifen, 7 were treated with an aromatase inhibitor (AI), and 5 

were treated with a mixture of Tamoxifen and an AI. Chemotherapy data was available 

for 26 of the primary tumors and of those the majority were not treated with 

chemotherapeutics (46.1%). The remaining tumors were treated with Adriamycin 

(doxorubicin) and cyclophosphamide in combination with either paclitaxel (23.1%) or 

docetaxel (11.6%) or another chemotherapeutic that was not noted in the patients record 

(Table 4.2) 

Table 4.4 shows the demographic data restricted to paired tumors and separated 

into groups based on the ER-status of the first and second tumors. Group A had 14, 

Group B had 5, and Group C had 6 tumor pairs (see Table 4.4 A, B, and C respectively). 

Additionally, demographic data on 6 unpaired ER-positive, non-recurrent tumors are 

included for comparison (see Table 4.4D). One-way ANOVA and student’s t-tests were 

run for all comparisons, however only the statistically significant result is presented in 

this section. The average age of patients at primary and recurrent tumor occurrence in 

Group A were 56.8 and 64.1 years old and the TTR was 87.6 months (Table 4.4A). The 

average age of patients at primary tumor occurrence in Group B was the highest among 

all groups at 61.4 years old. However, average age of patients at tumor recurrence in 

Group B was similar to those in Group A (64.2 years old) (Table 4.4B). Group C patients 
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at primary tumor occurrence had an average age of 53 years old and at recurrent tumor 

occurrence were the youngest of all groups at 60.3 years old (Table 4.4C). Patients with 

non-recurrent tumors had an average age similar to those of Group A (56.5 years old) 

(Table 4.4D). In Group A the average ER staining score was 7.6 in both primary and 

recurrent tumors, which is unsurprising given that both groups of tumors are ER-positive 

(Table 4.4A). The Group C ER-positive primary tumors had similar ER staining as Group 

A (7.8) (Table 4.4A &C) and no samples in Group B or recurrent samples in Group C 

had ER staining (Table 4.4B & C). PR staining was highest in Group A primary tumors 

with an average score of 5.9 out of a possible 8 (Table 4.4A). HER2 expression was 2-

fold higher in both primary and recurrent tumors in Group C than in both Groups A & B. 

Expression of Ki67 was significantly higher in ER-negative tumors in both Group B and 

Group C as compared with ER-positive tumors from Group A and recurrent ER-positive 

tumors in Group C (p=0.0138). ER-negative tumors in Group B were all Grade 3 IDC 

whereas tumors in Groups A and C ranged from grade 0-3 and IDC was the most 

commonly found type. Second tumors in Groups A & C were both ipsilateral and 

contralateral to the primary tumor, however Group B second tumors were only found in 

the ipsilateral breast. Primary tumors in Group C had a tendency to be larger than all 

other tumor groups with 83% of the tumors being ≥20mm. Finally, chemotherapy records 

were not available for many of the tumors. ER-positive primary tumors from Group A 

had the most information available. No treatment was given to 7 women in Group A, AC 

+ paclitaxel was given to 3 women, and 2 women had other forms of treatment not 

previously described. Three women with ER-negative primary tumors in Group B 

received AC + docetaxel, and AC + paclitaxel or no treatment was given to only one 
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woman each. Only one tumor treatment record was available for Group C and that 

woman received a form of chemotherapy that is not listed in the table, but is one of 

several different combinations of chemotherapeutics. In general I found that PR, HER2 

and Ki67 were associated with ER-status, however the overall the sample size was too 

small to further stratify based on other tumor characteristics such as tumor type and 

chemotherapy received. 

 Next, I compared the ER-positive primary tumors that had recurrences with the 

ER-positive non-recurrent tumors. The average age of women with ER-positive, non-

recurrent tumors (Table 4.4D) was 53.2 years, which was approximately the same age of 

women with primary tumors from Group C. ER levels in the non-recurrent tumors was 

slightly higher than primary tumors from Groups A and C with a mean score of 8. In the 

non-recurrent tumors, PR and Ki67 levels were the lowest of the three groups with a 

mean score of 3.7 and 2.7 respectively, and HER2 levels fell between Groups A and C 

with a mean score of 0.7. Finally, the distribution of tumor types among non-recurrent 

tumors was similar to ER-positive primary tumors from Groups A and C. IDC was the 

most common type of tumor, followed by ILC and DCIS. 

 

ER-positive versus ER-negative tumors: greater hypermethylation in ER-positive 

tumors 

Several research groups have shown that ER-positive tumors have a greater 

number of hypermethylated CpG sites as compared to ER-negative tumors [114, 115]. To 

determine whether this finding held true for the current tumor set, I initially compared 41 

ER-positive tumors with 22 ER-negative tumors. First, second and third tumors labeled 
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as either ER-positive or ER-negative were included in this analysis. A visual examination 

of the data showed that overall, ER-positive tumors had slightly higher methylation than 

ER-negative tumors. ER-positive tumors had 3,046 CpGs with mean beta values 2-fold 

greater than ER-negative tumors, 1,098 CpGs with mean beta values 2-fold greater than 

ER-positive tumors (Figure 4.2A, outer red lines). Distribution analysis of the ER-

positive and ER-negative tumor groups revealed that methylation is slightly higher in ER-

positive tumors, a median of 0.44 as compared with a median of 0.41 in ER-negative 

tumors (Figure 4.2B).   

 

ER-status and differential hypermethylation of 35 target CpGs: confirmation of 

previously identified dmCpGs 

Fackler et al. found a subset of 40 CpG probes on the HumanMethylation27K 

BeadChip to be differentially methylated with regards to ER-status (27 hypermethylated 

in ER-positive and 13 hypermethylated in ER-negative). I compared the 41 ER-positive 

tumors with the 22 ER-negative tumors filtering for the 40 CpG sites. Of the 40 

hypermethylated CpG sites, only 35, 23 hypermethylated in ER-positive and 12 

hypermethylated in ER-negative tumors, were included on the HM450BC (Appendix L). 

Overall, methylation of the 35 CpG sites was low, with no sites having a mean average 

beta value >0.4 (Figure 4.3). Of the 23 sites identified by Fackler and colleagues to be 

hypermethylated in ER-positive as compared with ER-negative tumors, 12 CpGs (52%) 

had a 2-fold higher methylation in our data set and the remaining 11 were 

hypermethylated in ER-positive tumors to a lesser degree (see Figure 4.3, blue dots). 

Nine out of 12 CpGs (75%) previously shown to be hypermethylated in ER-negative 
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tumors exhibited a 2-fold greater methylation among ER-negative tumors in our data set 

(see Figure 4.3, green dots). Of the remaining sites, one was slightly hypermethylated 

(fold change < 2) and two did not deviate from the x=y line (Figure 4.3, center red line). 

Distribution analysis reveals a large methylation difference between ER-positive and ER-

negative tumors for the 35 sites. The median average beta for the 23 CpG sites that are 

hypermethylated in ER-positive tumors is 0.19, which is considerably higher than the 

methylation of ER-negative tumors at 0.10 (Figure 4.4A). The heat map analysis shows 

that all but one of the 23 CpG sites (cg02755525) has higher methylation in the ER-

positive tumors (Figure 4.4B). Distribution analysis of the CpG sites hypermethylated in 

ER-negative tumors shows that ER-negative tumors have a median average beta of 0.25, 

which is much higher than ER-positive tumors at 0.07 (Figure 4.5A). Two of the 12 CpG 

sites previously shown to be hypermethylated in ER-negative tumors (cg00720137 and 

cg08090772) do not differ in methylation from ER-positive tumors (Figure 4.5B). The 

overall methylation signature of the 35 CpG sites in our data is similar to the one 

presented in the data from Fackler et al.  [114], however trends for some sites were 

weaker than previously reported. This was especially true of CpG sites shown as 

hypermethylated in ER-positive tumors. 

 

ER-associated trends in methylation within groups of first, and groups of recurrent 

tumors: methylation differences between ER-positive and ER-negative tumors are 

reduced in second tumors 

I next compared ER-positive and ER-negative tumors classified by occurrence 

(either first tumor or second tumor) to determine the extent to which ER-associated 
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methylation was altered by tumor occurrence. As shown in the scatterplot analyses, the 

trend for greater methylation among ER-positive tumors is predominantly driven by first 

tumors (Figure 4.6A). Among first tumors, 10,314 CpGs were more methylated with a 2-

fold change in ER-positive tumors, and only 1,235 CpGs were more methylated in ER-

negative tumors; ER-positive tumors had 8.35 times more methylated CpGs. In contrast, 

the tendency for greater methylation in ER-positive tumors was reduced when the 

analysis was limited to recurrent tumors. Among recurrent tumors, 3,110 CpGs were 

more methylated in ER-positive, and 2,198 CpGs were more methylated in the ER-

negative tumors; ER-positive tumors had only 1.41 times more methylated CpGs. The 

distribution analyses (Figures 4.6 C & D), support the conclusion based on the scatterplot 

analyses. Median methylation of ER-positive first tumors was 0.44 as compared to a 

median methylation of 0.39 in ER-negative first tumors. In contrast, the methylation 

distributions of ER-positive and ER-negative second tumors were similar, with median 

methylation of 0.43 and 0.44, respectively (Figure 4.6D).  It is noteworthy that among 

recurrent tumors, the ER-negative tumors had slightly higher median beta values than the 

ER-positive tumors. 

 

Differential methylation based on both occurrence and ER-status of primary and 

recurrent tumors: ER-negative second tumors from women who had ER-positive 

primary tumors have greater hypermethylation 

Next, I examined the three groups of paired first and second tumors from the 

same woman as described previously. Tumors were assigned group labels and occurrence 

labels for clarification. Group A is the ER-positive primary and ER-positive second, 
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Group B is the ER-negative primary and ER-negative second, and Group C is the ER-

positive primary and ER-negative second. First (1) tumors are the primary tumor, and 

second (2) tumors are the first recurrence of the tumor in the woman (Table 4.3). Third 

tumors were not used for these analyses.  

The first comparison, ER-positive second tumors with ER-positive first tumors 

(A2 versus A1), showed the smallest difference in methylation (Figure 4.7A). Only 69 

CpG sites in the second tumor were greater than 2-fold higher as compared to the first 

tumor (Figure 4.7A). The second comparison, ER-negative first tumors with ER-negative 

second tumors (B2 versus B1) showed slightly higher methylation in the second tumor 

among CpGs with methylation values below an average beta of 0.4.  A total 204 CpG 

sites had a 2-fold difference (Figure 4.7B). The third comparison, women with ER-

positive first tumors and ER-negative second tumors (C2 versus C1) showed the greatest 

methylation differences. ER-negative second tumors (C2) were more methylated than 

ER-positive first tumors with 3,652 CpG sites having a 2-fold higher methylation (Figure 

4.7C). A distribution analysis showed that the ER-positive first tumors do not vary much 

from their second tumors (median average beta 0.44 versus 0.44) (Figure 4.7D; red), nor 

do ER-negative first tumors vary from the second tumors (median average beta 0.38 

versus 0.39) (Figure 4.7D; blue). However, ER-negative second tumors with ER-positive 

first tumors have higher methylation than their ER-positive first tumors (median average 

beta 0.46 versus 0.42) (Figure 4.7D; purple). Additionally, ER-negative second tumors 

with ER-positive first tumors have higher methylation than ER-negative tumors that recur 

as ER-negative. This indicates that ER-negative second tumors that occur after ER-
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positive first tumors may have a different methylation profile than both ER-positive 

tumors and ER-negative tumors. 

 

Differential methylation based on occurrence and side: second tumors from 

ipsilateral pairs have the greater hypermethylation 

I considered that a second tumor occurring in the same or ipsilateral breast as the 

primary tumor was more likely to be a recurrence of the original tumor than a tumor 

occurring in the opposite or contralateral breast. Accordingly, I reorganized the 25 pairs 

of tumors, comprising groups A, B and C, into two groups: those for which both first and 

second tumors occurred in the same breast (n=15 ipsilateral pairs) and those for which the 

first and second tumors occurred in different breasts (n=10 contralateral pairs) (Table 

4.7).  I found that first tumors from the contralateral pairs had more hypermethylated 

CpG sites with a greater than 2-fold change (1147 CpG sites) than first tumors from 

ipsilateral pairs (133 CpG sites) (Figure 4.8A).  In contrast, among second tumors, those 

in ipsilateral pairs had more hypermethylated CpG sites with a greater than 2-fold change 

(2007 CpG sites) than those in contralateral pairs (278) (Figure 4.8B) and the number of 

dmCpGs was more than that observed in the combined comparisons between first tumors 

(Figure 4.8A versus 4B).   

 

Differential methylation in ER-positive and ER-negative second tumors based on 

side: ER-negative tumors from contralateral pairs have greater hypermethylation 

I further stratified all second tumors (shown in Figure 4.8B) by ER-status to 

determine if the greater methylation observed in second tumors from ipsilateral pairs was 
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modified by the presence of ER. Table 4.8 provides the sample size and ER-status of 

primary and second tumors; only second tumors were used in the present analysis. 

Methylation patterns of second tumors from ipsilateral and contralateral pairs appear to 

be modified by ER-status. The pattern in ER-positive second tumors was similar to that 

observed in the analysis of all second tumors; i.e. there was a greater number of 

hypermethylated CpG sites with a greater than 2-fold change in tumors from ipsilateral 

pairs than in contralateral pairs (4203 vs. 467) (Figure 4.9A). This pattern, however, was 

reversed in ER-negative second tumors; the number of hypermethylated CpG sites with a 

greater than 2-fold change in tumors from contralateral pairs was three times more than 

that observed in tumors from ipsilateral pairs (10280 vs. 3042) (Figure 4.9B). It should be 

noted that all of the ER-negative second tumors from contralateral pairs occurred in 

women who had ER-positive primary tumors (see Group C2 in Table 4.9). Finally, side-

based differences in methylation were 2.8 times greater in ER-negative second tumors 

than in ER-positive second tumors (13,322 and 4670 dmCpGs, respectively.  

 

Further analysis of paired tumors stratified by ER-status of primary and recurrent 

and by location: greater methylation among second tumors from ipsilateral pairs 

and first tumors from contralateral pairs 

Having observed some side-based differences in methylation related to ER-status, 

occurrence, and location, I next asked whether differences in methylation between the 

paired first and second tumors from Groups A, B, and C, were associated with location.  

As shown in Table 4.9, ER-positive and ER-negative, primary and second tumors were 

further stratified by location. A visual analysis of the paired tumors from Group A 
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showed that ER-positive second tumors from ipsilateral pairs have more hypermethylated 

sites with a greater than 2-fold change (560 CpGs) than the primary tumor in the pair (95 

CpGs) (Figure 4.10A). In contrast, tumors from Group A from contralateral pairs had 

more hypermethylated CpGs with a greater than 2-fold change in the first tumors than in 

the second tumors (2862 vs. 204 CpG sites) (Figure 4.10B). Analysis of Group B was not 

warranted, as all tumors in this group were from ipsilateral pairs, and therefore the 

scatterplot and analysis is identical to Figure 4.7B. Comparisons of tumors from Group C 

show that ipsilateral pairs have the greatest number of dmCpGs of all groups (22853 

CpGs hypermethylated with a greater than 2-fold change in the ER-negative second 

tumors (C2), and 9543 CpG sites hypermethylated in the ER-positive first tumors (C1). 

However limited information can be inferred due to the small sample size (n=2 pairs) 

(Table 4.9 and Figure 4.11A). Group C tumors from contralateral pairs had more CpGs 

hypermethylated in the ER-positive first tumors (6261) than in the ER-negative second 

tumors (1885) (Figure 4.11B). This analysis indicates that stratification of the samples 

into side of second tumor occurrence may be important to discriminate methylation 

changes that occur in tumors that are more likely to be true recurrences.  

 

Statistical differences in methylation by subgroups 

While the visual analyses were useful in obtaining a global overview of 

differences in methylation patterns between groups, statistical analyses are useful in 

identifying individual CpGs that are significantly differentially methylated. For the 

following sections, an FDR of 0.05 was computed in GenomeStudio for each CpG site 

and only those sites with a DiffScore of ≥ 22 and fold change of >1.5 for 
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hypermethylated CpGs or ≤-22 and a fold change of <0.67 for hypomethylated CpG sites, 

corresponding with a p-value of ≤ 0.01, were considered statistically significant. These 

criteria were used for all subsequent analyses. 

In the first set of analyses, Group A2, B1, C1 and C2 were each compared to 

Group A1 (reference). As shown in Table 4.10, first and second ER-positive tumors from 

the same women (A2 versus A1) were compared and it was discovered that there are 1.7 

times more hypomethylated CpG sites than hypermethylated ones (914 hypermethylated 

versus 1588 hypomethylated) (Table 4.10). ER-negative first tumors (B1) were compared 

to ER-positive first tumors (A1) to elucidate the methylation patterns in ER-negative 

tumors as compared with ER-positive ones. It was found that B1 had 4491 

hypermethylated CpG sites and 38044 hypomethylated sites than A1 (Table 4.10). Lastly, 

analysis was completed to determine whether methylation of a distinct set of CpG sites or 

genes results in ER-positive first tumors that recur as ER-negative (C1) or ER-positive 

first tumors that recur as ER-positive (A1). These data show that there are 5056 

hypermethylated CpG sites and 3131 hypomethylated CpG sites in C1 as compared to A1 

suggesting that methylation plays a role in a tumors response to treatment with an 

antiestrogen such as Tamoxifen (Table 4.10). 

Group B1 was used as a reference in the second set of analyses. The first analysis 

compared ER-negative second tumors with the ER-negative first tumors from the same 

women (B2 versus B1). This analysis revealed that there were almost twice as many 

hypomethylated CpG sites than hypermethylated CpG sites (5815 hypomethylated sites 

versus 3036 hypermethylated sites) (Table 4.11). Comparing ER-positive first tumors that 

recurred as ER-negative (C1) with ER-negative first tumors that recurred as ER-negative 
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(B1) revealed a substantial number of hypermethylated CpG sites (34117); almost 5 times 

as many as the number of hypomethylated sites (6989) (Table 4.11). ER-negative second 

tumors (C2) had a similar number of hypermethylated CpG sites as their ER-positive first 

tumors (C1) when compared to the ER-negative B1 group (35809). Comparing the two 

ER-negative second tumor groups, B2 and C2, to each other we see that there are almost 

12 times as many hypermethylated CpG sites in group C2. This indicates that while both 

groups B2 and C2 are ER-negative, they have distinct methylation profiles. 

 The last set of analyses was completed using C1 as a reference group. ER-positive 

first tumors were compared to their ER-negative second tumors (C2 versus C1). As 

expected, there were more hypermethylated CpG sites in this comparison than in the 

previous two first versus second tumor analyses (A2 versus A1 and B2 versus B1). There 

were 2.4 times as many hypermethylated CpG sites than hypomethylated sites in C2 

versus C1 (18770 hypermethylated sites versus 8731 hypomethylated sites) (Table 4.12). 

 

Functional genomic location of methylation among comparison groups 

To gain a better understanding of where hypermethylation and hypomethylation 

occurs within gene regions in our breast tumor samples, groups were compared against 

each other in two graphs. The first graph, hypermethylated CpG sites within gene 

regions, shows that ER-negative C2 versus ER-positive C1 had the greatest number of 

dmCpGs (Figure 4.12). Comparing C2 with C1, revealed that the body contained the 

greatest number of hypermethylated CpGs, followed by the intergenic region and the 

promoter (Table 4.13). The group with the highest number of hypermethylated CpGs in 

the promoter region was ER-positive C1 compared with ER-positive A1 (Figure 4.12 and 
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Table 4.13). This was particularly interesting, because these are two ER-positive breast 

tumor groups with two different outcomes in their second tumors, one group stayed ER-

positive while the other became ER-negative. Comparison of hypomethylation among the 

groups shows that the ER-negative groups B1 & B2 have the highest number of altered 

CpG sites and that both body and promoter methylation are similar in these groups 

(Figure 4.13 and Table 4.14).  

 

Thirty-five previously identified CpG sites remain hypermethylated with respect to 

ER-status when groups are stratified by first and second tumor occurrence 

Distribution analysis was completed on groups A, B and C, to determine whether 

the 35 CpG sites previously identified by Fackler and colleagues [114] represented 

overall methylation of the tumors. We found that the 23 CpG sites found to be 

hypermethylated in ER-positive tumors were also hypermethylated in each ER-positive 

subgroup in our study: A1, A2, and C1 (Figure 4.14). Methylation of the 23 CpG sites in 

the ER-positive groups ranged from a median average beta of 0.15 in C1, 0.18 in A1 and 

0.2 in A2, whereas the ER-negative tumor groups ranged from 0.07 in B1 and B2 to 0.09 

in C2 (Figure 4.14). Twelve CpG sites identified as hypomethylated in ER-negative 

tumors were also hypomethylated in our study (Figure 4.15). ER-negative groups B1, B2, 

and C2 had median average beta values that ranged from 0.22 in B1, 0.27 in B2 and 0.24 

in C2, where the ER-positive groups A1, A2 and C1 had values ranging from 0.07 in A1 

and C1 to 0.08 in A2 (Figure 4.15).    
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Pathway Analysis of differentially methylated genes among ER-positive first tumors 

and non-recurrent tumors 

I was interested in comparing ER-positive first tumors from women who went on 

to experience a second tumor (recurrence) and women who did not have a tumor 

recurrence (NR). To understand how methylation differs between recurrent tumors and 

those that do not recur, I compared ER-positive first tumors that recurred as either ER-

positive (A1) or ER-negative (C1) to 6 ER-positive NR tumors and the number of 

dmCpG sites and associated genes were determined. Results from both hypermethylated 

and hypomethylated analyses are presented in Table 4.15. The ER-positive recurring as 

ER-positive A1 group was the least different from the NR group with only 2275 

hypermethylated sites associated with 1367 hypermethylated genes, whereas the ER-

positive recurring as ER-negative C1 group had 4321 hypermethylated sites and 2056 

associated hypermethylated genes. The number of hypomethylated genes was similar 

between the two groups with the A1 group having 6266 hypomethylated CpG sites and 

2592 associated genes and the C1 group having 6903 hypomethylated CpG sites and 

3149 associated genes. Pooled analysis indicated that there were no duplicate CpG sites 

in both the hyper- and hypomethylated lists from A1 vs. NR or C1 vs. NR. However, 

pooled analysis of the genes showed that there were 302 duplicate genes between the 

hyper- and hypomethylated lists in A1 vs. NR and 930 duplicate genes in C1 vs. NR 

(Table 4.15).  

 In addition to identifying the differentially methylated CpGs between primary and 

non-recurrent tumors, I was interested in which CpGs were differentially methylated 

between ER-positive primary tumors from pairs that differed in the ER-status of the 
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recurrent tumor. Identifying these CpGs would allow me to determine the extent to which 

methylation patterns in primary ER-positive tumors could predict the ER-status of the 

recurrent tumor and potentially contribute to personalized treatment. Therefore, I 

compared ER-positive first tumors from pairs that recurred as ER-negative (C1) with ER-

positive first tumors from pairs that recurred as ER-positive (A1) to determine which 

gene pathways were altered. The ER-positive primary tumors from pairs that recurred as 

ER-negative (C1) had 5054 hypermethylated CpGs as compared with A1 and those CpGs 

corresponded with 2008 hypermethylated genes (Table 4.15). The number of 

hypomethylated CpG sites was 3121 in C1 with 1714 genes associated with those sites 

(Table 4.15). Pooled analysis of the hyper- and hypomethylated CpG sites showed no 

duplicated CpG sites among the groups, however there were 243 genes present in both 

lists. 

 To determine potential genes and pathways of interest, hypermethylated, 

hypomethylated and pooled lists were compared between the three groups to find CpG 

sites and genes unique to each comparison group. C1 versus A1 had the greatest number 

of unique CpG sites and genes in the hypermethylated group set with 3289 CpG sites and 

825 genes (64% and 48% of the total respectively. Interestingly, the group with the 

greatest number unique hypomethylated CpG sites was A1 versus NR with 3484 (56%), 

however C1 versus NR had the greatest number of unique genes (870; 38%). In the 

pooled group, C1 versus NR had the highest number of both hyper- and hypomethylated 

CpG sites (4677) and genes (1147) combined with 41% and 24% of total respectively 

(Table 4.15). 
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Pathway analysis was conducted on genes with dmCpG sites in each of the three 

groups, A1 versus NR, C1 versus NR and C1 versus A1. The analysis separately 

examined CpG sites that were either hyper- or hypomethylated anywhere in the gene. The 

top 20 hyper- and hypomethylated pathways out of an extensive list of biological process 

GO terms that had a >2-fold enrichment and a p-value of <0.01 for each comparison 

group are presented in Tables 4.16 and 4.17. The hypermethylated pathways with the 

greatest fold enrichment were neuron fate commitment for A1 versus NR (4.68; p = 

0.00045), neuron fate specification for C1 versus NR (>5; p = 0.00024), and dorsal spinal 

cord development (>5; p = 0.00095) (Table 4.16). The pathways with highest fold 

enrichment in the hypomethylated groups were telencephalon regionalization in A1 

versus NR (>5; p=0.049), regulation of cardiac muscle cell differentiation in C1 versus 

NR (>5; p=0.027), and positive regulation of cardiac muscle cell differentiation (>5; 

p=0.016) (Table 4.17).  

 An intergroup hypermethylated pathway comparison was done to determine 

which GO terms were seen across groups. The ER-positive first tumor A1, which 

recurred as ER-positive and the ER-positive C1, which recurred as ER-negative groups 

versus NR tumors shared five hypermethylated pathways: cell fate commitment, central 

nervous system neuron differentiation, cell-cell adhesion via plasma membrane adhesion 

molecules, homophilic cell adhesion via plasma membrane adhesion molecules, and 

neuron fate commitment (Table 4.16, blue highlighted). ER-positive C1 tumors versus 

NR tumors shared five hypermethylated pathways with C1 tumors versus A1. Those 

pathways are cell differentiation in spinal cord, cell fate determination, dorsal spinal cord 

development, forebrain neuron differentiation, and neural retina development (Table 
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4.16, red highlighted). Among the top 20 differentially methylated pathways, A1 versus 

NR shared no pathways with C1 versus A1 and there were no pathways shared between 

all three hypermethylated groups. 

Similarly, an intergroup hypomethylated pathway comparison was made to 

determine hypomethylated shared GO terms between groups. Nine pathways were shared 

between A1 versus NR and C1 versus NR, autonomic nervous system development, cell 

differentiation in spinal cord, embryonic eye morphogenesis, forebrain regionalization, 

neuron fate commitment, neuron fate specification, regulation of cardiac muscle cell 

proliferation, regulation of heart growth, and ventral spinal cord development (Table 

4.17, orange highlighted). C1 versus NR shared four pathways with C1 versus A1: 

neuron fate commitment, positive regulation of cardiac muscle tissue development, 

regulation of cardiac muscle cell differentiation and regulation of cardiac muscle tissue 

development (Table 4.17, green highlighted). Three pathways were shared by A1 versus 

NR and C1 versus A1, ear morphogenesis, inner ear morphogenesis, and neuron fate 

commitment (Table 4.17, purple highlighted). All hypomethylated groups, A1 versus NR, 

and C1 versus NR shared one pathway, neuron fate commitment (Tables 4.16 and 4.17, 

red text). It is important to note that out of 19000 dmCpG sites, approximately 10% 

(1802) are found in both lists (Appendix M). Out of 6462 genes present in all three 

groups, 1833 are present in both the hyper- and hypomethylated lists (Appendix N). As 

multiple CpG sites can represent a single gene on the HM450BC, further analysis is 

needed to determine whether hyper- and hypomethylation of these genes is occurring in 

the same or different gene regions. A comparison of the genes shared between all six 

groups can be seen in Appendix O. 
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 In addition to pathways present among groups, I was also interested in pathways 

present in each individual tumor group analyzed. These pathways may be a valuable tool 

in defining a methylation profile that will determine whether a primary tumor is prone to 

recur and whether the second tumor is likely to be ER-positive or ER-negative. 

Hypermethylated pathways likely to contain genes that offer clues to tumor recurrence 

were mesenchyme development and cell-cell adhesion, which was unique to A1 versus 

NR and endocrine system development, unique to C1 versus NR (Table 4.16 and 4.17 

yellow highlighted). A hypermethylated pathway unique to C1 versus A1 where the 

primary tumors are ER-positive, but the second tumors are either ER-negative (C2) or 

ER-positive (A2) is the non-canonical WNT signaling pathway, which plays a role in 

tumor progression (Table 4.16, yellow highlighted) [117]. The non-canonical WNT 

signaling pathway is also present in the A1 versus NR in the hypomethylated pathway set 

(Table 4.17, yellow highlighted). A hypomethylated pathway only found in C1 versus 

NR tumors is the mesenchymal to epithelial transition, genes from this pathway are found 

to be upregulated in metastatic tumors allowing new tumors to form in distal sites [118]. 

Lastly, four hypomethylated pathways in the C1 versus A1 group are likely to provide 

information on why tumors recur as either ER-negative or ER-positive. Regulation of 

morphogenesis of a branching structure, which includes genes involved in mammary 

gland development, regulation of BMP signaling pathway and positive regulation of 

ossification, which contain many of the same growth factors involved in tumor 

proliferation and migration [119], and homophilic cell adhesion via plasma membrane 

adhesion molecules, genes from which assist in linking cells through identical plasma 

membrane adhesion molecules (Table 4.17).  
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 Two pathways, homophilic cell adhesion via plasma membrane adhesion 

molecules and cell fate commitment were hypermethylated in A1 versus NR and C1 

versus NR, but hypomethylated in C1 versus A1. Homophilic cell adhesion via plasma 

membrane pathway is a child term of the cell-cell adhesion via plasma membrane 

pathway, the ancestor chart for which can be seen in Figure 4.16. Of the 67 genes altered 

among the three groups in the homophilic cell adhesion pathway, 43 genes (64%) are in 

the protocadherin family, a subgroup of the cadherin family, from which there were also 

7 genes (Table 4.18). Table 4.18 shows the number of genes shared between each group. 

A1 versus NR and C1 versus NR shared the most genes between groups with 16 (blue 

highlighted), A1 versus NR shared 4 genes with C1 versus A1 (orange highlighted) and 

C1 versus NR shared 1 gene with C1 versus A1 (Table 4.18, green highlighted). Twenty 

genes were shared by all three groups, of which almost all were protocadherins (90%) 

(Table 4.18, purple highlighted). The other two genes shared by all three groups were 

Calsyntenin 2 (CLSTN2), the function of which is unknown although it is believed to be 

involved in calcium signaling (humanproteinatlas.org), and FRAS1 Related Extracellular 

Matrix Protein 2 (FREM2), amplification of which is found in gliasarcomas undergoing 

mesenchymal transition [120]. The gene CDH13 was found to be hypermethylated only 

in A1 versus NR whereas C1 versus NR had 13 genes and C1 versus A1 had 12 genes 

(Table 4.18). Interestingly, high expression of the genes hypermethylated (and 

presumably down-regulated) in C1 versus NR was associated with better survival as 

calculated with simple Kaplan-Meier plots using TCGA data (Table 4.19) 

(http://kmplot.com/). Likewise, high expression of the genes hypermethylated in C1 as 

compared to A1 was also associated with a better in survival (Table 4.19).  
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 The other pathway, cell fate commitment, a child term of cell differentiation, had 

116 genes altered in all three pathways combined (Figure 4.17 and Table 4.20). Twenty-

one genes were in both A1 versus NR and C1 versus NR hypermethylated lists (blue 

highlighted), 14 genes were in both C1 versus NR hypermethylated and C1 versus A1 

hypomethylated (green highlighted), and 8 genes were hypermethylated in A1 versus NR, 

but hypomethylated in C1 versus A1 (Table 4.20, orange highlighted). Kaplan-Meier 

plots of the TCGA data revealed that high expression of the genes hypermethylated in 

both A1 versus NR and C1 versus NR was linked to good survival (Table 4.21). Further 

analysis of these genes revealed that 21 out of 65 CpG sites identified were 

hypermethylated in both groups (Table 4.21, MAPINFO). One gene, PAX3, has three 

CpG sites shared between the two groups and two of the CpG sites are located within 400 

bases of each other. Three other genes, NKX2-5, PAX6, and VSX2, have two shared 

CpG sites, however the CpG sites are located at least 2000 bp apart. 

DNA transcription factors and signaling proteins were among the genes with 

altered methylation. One gene, RORA, which is shared by A1 versus NR 

hypermethylated and C1 versus A1 hypomethylated, was shown to be hypermethylated in 

the promoter region of both the ER-positive and ER-negative breast cell lines TMX2-11 

and TMX2-28 as compared with the ER-positive parental MCF-7 line (Chapter 3). 

However, among the tumors, dmCpGs in RORA were located in the body region of the 

gene (Figure 4.18). Seven genes are shared by all three groups: GFI1, HES5, PAX2, 

PRDM1, SATB2, SOX8, and TLX3 (Table 4.20, purple highlighted). In Chapter 3 we 

also reported that GFI1 was hypermethylated in both TMX2-11 and TMX2-28 as 

compared with MCF-7. In agreement with the cell line observations, the heatmap in 
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Figure 4.19 shows that GFI1 is hypermethylated in the TSS1500 region in all three 

groups of tumors. 

 Lastly, all groups except the C1 versus A1 hypermethylated shared one pathway, 

neuron fate commitment. This pathway is a child term of cell fate commitment and 

accordingly, shared 46 genes with that pathway (Figure 4.20 and Table 4.22). AT-rich 

sequence-binding protein-2 (SATB2), a DNA transcription factor involved in chromatin 

remodeling, was the only gene shared by all 5 pathways. Clustering analysis based on the 

36 SATB2 CpGs interrogated on the HM450BC shows that the group A1 is more similar 

to the NR group than the C1 group (Figure 4.21). C1 is hypomethylated as compared 

with NR in 6 CpG sites and hypermethylated in 5 CpG sites. A1 is hypermethylated as 

compared with NR in 8 CpG sites and hypomethylated in 7 CpG sites (Figure 4.21). 

Compared with A1, C1 is hypermethylated 4 CpG sites all located in the body of the 

gene, and hypomethylated in 11 CpG sites across the gene (Figure 4.21). 

 

 

Discussion 

 

While patients with specific breast cancer subtypes are treated similarly with 

regards to therapy, breast cancer is a heterogeneous disease. Recent literature is only 

beginning to provide an understanding as to why patients with similar subtypes do not 

have similar outcomes after chemotherapeutic treatment [114]. Currently, tumors are 

classified based on expression of ER, PR, and HER2 as well as expression of the luminal 

markers CK8/18 and the basal markers CK 5/6, CK14 and Ki67. The use of the anti-

estrogen, Tamoxifen along with chemotherapy, extends long-term, disease free survival 
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for women with ER-positive tumors and reduces the risk of a contralateral tumor 

recurrence [121]. However not all tumors respond to treatment, approximately 30% of 

women have disease recurrence [26]. Aside from chemotherapy, there are limited 

treatments available for ER-negative tumors and consequently, women with ER-negative 

primary tumors are more likely to have recurrence within 5 years of treatment [121]. It 

has also been shown that up to 80% of ER-negative patients with tumors 1cm or less 

respond well to local therapy and remain disease free [121]. ER-negative tumors are also 

more unlikely to recur as contralateral tumors than ER-positive tumors [121]. DNA 

methylation has been suggested as a mechanism able to provide clues into tumor 

disparity and recurrence likelihood. 

DNA methylation provides relatively stable biomarkers for exploration. High-

throughput analysis from the HM450BC provides information on 485,000 CpG sites in 

the human genome, with enrichment in the promoter region. In Chapters 2 and 3, I 

discussed HM450BC analysis of human breast cancer cell lines treated long-term with 

Tamoxifen. I found that the ER-positive Tamoxifen-selected cell line, TMX2-11, and the 

ER-negative Tamoxifen-selected cell line, TMX2-28, were hypermethylated as compared 

to the parent, ER-positive cell line, MCF-7. Using this knowledge, I hypothesized that 

both ER-positive and ER-negative second human breast tumors occurring after anti-

estrogen treatment would be hypermethylated. Additionally, I predicted that ER-negative 

second tumors occurring after ER-positive first tumors would be more hypermethylated 

than ER-positive second tumors occurring after ER-positive first tumors. I collected 

genome-wide methylation data on 70 tumors analyzed by HM450BC. Tumor 

characteristic data were collected for all 70 tumors, but given the small sample size for 
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each tumor group, it was not feasible to further stratify the tumors based on 

characteristics. 

Recently, Fackler et al. used the HM27BC to analyze 103 sporadic invasive 

primary breast cancers and found that ER-positive tumors are more highly methylated 

than ER-negative tumors [114]. They then selected a panel of candidate 40 CpGs that 

were among those with the highest fold-change differences and hypermethylated in either 

only the ER-positive or only the ER-negative tumor sets as potential biomarkers. In the 

present study, I compared methylation of ER-positive tumors with ER-negative tumors 

and found a similar methylation pattern as previously reported; ER-positive tumors were 

more highly methylated than ER-negative ones. I then examined methylation of the 35 

CpG sites available on the HM450BC out of the 40 CpG sites previously described as 

being hypermethylated in either ER-positive or ER-negative tumors. The overall 

methylation signature of the 35 CpG sites shows a similar trend with previously reported 

results; the median average beta of ER-positive tumors was higher than ER-negative 

tumors (0.19 vs. 0.1). However, unlike the previous study, methylation of the CpG sites 

in the present study is low and not all sites had a significant change in methylation.  

Building on the knowledge that methylation is affected by ER-status; I considered 

that methylation was also influenced by tumor occurrence. Tumors were separated into 

two groups, ER-positive versus ER-negative first tumors and ER-positive versus ER-

negative second tumors. I determined that greater methylation of ER-positive tumors is 

driven by a decrease in methylation among ER-negative first tumors, which is consistent 

with the literature as no other group has compared methylation of recurrent tumors [63, 

114]. Interestingly, ER-negative second tumors had a similar median methylation as ER-
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positive first and second tumors. This was an unexpected finding as overall methylation 

of the ER-negative TMX2-28 cell line was greater than that of the ER-positive TMX2-11, 

although both were derived from the same parental line after prolonged Tamoxifen 

treatment. I expected to see that ER-negative second tumors had greater methylation than 

the ER-positive second tumors. However, ER-negative second tumors did have higher 

methylation than ER-negative first tumors, which was presumed to be associated with 

either tumor progression or the inclusion of ER-negative second tumors recurring from 

ER-positive first tumors. Therefore, the next set of analyses focused on groups of 50 

paired first and second tumors from the same woman stratified by ER-status and 

occurrence.  

In fact, I did find that separation of the tumors by their first tumor and recurrent 

tumor mattered greatly. ER-negative second tumors as compared to their matched ER-

positive primary tumors have the greatest number of hypermethylated sites among the 

three groups analyzed. Additionally, I found that Group B1, ER-negative first tumors, 

when compared separately to Group A1, ER-positive first tumors, had 38,000 

hypomethylated CpG sites, which likely accounts for the overall hypomethylation of the 

ER-negative tumors. Hypermethylation of the ER-negative second tumors can be 

attributed to Group C2, which had 35,000 hypermethylated CpG sites when compared to 

Group B1. These data closely resemble those of TMX2-28 as compared with MCF-7, 

suggesting that methylation plays a role in tumor progression. Similarly to what is 

occurring in TMX2-28, it is important to note that loss of ER could be playing a role in 

the overall methylation increase in ER-negative second tumors recurring from ER-
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positive first tumors. Future analysis would control for this by comparing the Groups C2 

with A2 and determining the CpG sites and genes similarly methylated in both groups. 

As described previously, second tumors are generally referred to as a recurrence 

as they occur after or during treatment of a primary tumor [111]. However, this 

terminology may not be appropriate in some cases as the second tumor may be a new 

tumor rather than a de novo tumor. Therefore, I sought to determine whether the 

methylation profiles of paired tumors occurring in the ipsilateral and contralateral breasts 

differ. A comparison of ER-positive second tumors showed that tumors recurring in the 

ipsilateral breast had greater methylation than those in the contralateral breast, whereas 

ER-negative second tumors saw greater methylation in the contralateral breast as 

compared to the ipsilateral breast. All tumors from the ER-negative second contralateral 

tumor group were from group C2, while ER-negative ipsilateral tumors are from group 

B2 and C2. Higher methylation in recurrent ER-negative tumors from women with ER-

positive primary tumors is consistent with the TMX2-28 data. Tumors were then 

separated into first and second paired comparison groups as described above, controlling 

also for side of tumor recurrence. In general, I saw that second tumors from ipsilateral 

pairs had higher methylation than the first tumors; in contrast, first tumors from 

contralateral pairs had higher methylation than in the second tumor. These data taken 

with the fact that tumor progression is associated with an increase in methylation are 

consistent with the prediction that ipsilateral, not contralateral tumors are more likely to 

be a true recurrence.  

 Until recently, DNA methylation studies have primarily focused on the promoter 

region as it is well established that promoter methylation affects gene expression [122]. 
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Emerging research in the field has shown that in addition to promoter methylation, body 

methylation also affects gene expression and treatment with a demethylating agent 

reduces aberrant overexpression of the gene [44]. To understand where methylation is 

occurring in the present study, comparison groups were assessed for dmCpGs in each 

gene region. I found that although the BeadChip is enriched for promoter region, ER-

negative paired second tumors, the body has greater hypermethylation than the promoter 

regardless of the ER-status of the paired first tumor (ER-positive or ER-negative). 

Additionally, we see that the ER-negative second tumors in group B2 compared with its 

paired ER-negative first tumors, B1, and the other ER-negative second recurrent tumor 

group, C2, have more hypomethylated CpG sites in the body. To establish potential 

biomarkers for the primary and recurrent tumor groups discussed in this chapter, future 

studies would focus on methylation changes in relation to the functional genomic 

location. This will provide further insight into how methylation shapes each tumor group. 

 Pathway analysis focused on the ER-positive first tumor groups, A1 and C1, and 

ER-positive, non-recurrent tumors. This was done to gain understanding of the pathways 

and associated genes affected by methylation in i) tumors that recur as opposed to tumors 

that do not recur and ii) ER-positive tumors that recur as ER-negative compared to those 

that recur as ER-positive.  

It was also important to understand how methylation of genes compare between 

the three analyses as it would provide insight into biomarkers associated with ER-positive 

tumors that recur as either ER-positive or ER-negative. Genes shared between 

hypermethylated in ER-positive first tumor groups A1 and C1 compared to NR and 

hypomethylated in C1 compared to A1 were determined. This was done to find genes that 
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while, hypermethylated in the ER-positive first tumors recurring as ER-negative as 

compared with the non-recurrent, are less methylated than those genes hypermethylated 

in ER-positive first tumors recurring as ER-positive. Two pathways homophilic cell 

adhesion via plasma membrane adhesion molecules and cell fate commitment fit these 

terms. 

To associate methylation changes in my tumor data set with breast cancer patient 

survival data, Kaplan-Meier plots were created using TGCA breast cancer data available 

online for those genes in the homophilic cell adhesion pathway which were only 

hypermethylated in each of the 3 individual groups (Table 4.18, white highlighted genes). 

I found that low expression is linked to decreased survival in 10 of the 13 genes only 

hypermethylated in ER-positive first tumors that recur as ER-negative (C1) as compared 

with non-recurrent tumors. Likewise, 6 of 12 genes hypermethylated only in ER-positive 

first tumors recurring as ER-negative (C1) as compared with ER-positive first tumors 

recurring as ER-positive (A1) are associated with survival. A single gene, CDH13, was 

hypermethylated in A1 versus NR and expression was not associated with survival. 

Similar analysis was completed for genes shared between A1 versus NR and C1 versus 

NR in the cell fate commitment pathway. High expression was linked to good survival in 

13 out of 21 shared genes. Preliminary analysis revealed that of the genes idenified as 

hypermethylated in both groups, one-third of the CpG sites were shared between the 

groups. Of those, only one gene had 2 CpG sites located within 500 bp of each other, 

indicating that individual sites, not clusters are affected. These data suggest that the genes 

hypermethylated only in ER-positive tumors recurring as ER-negative are a potential a 
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signature for poor survival, however additional research is needed to determine the extent 

to which these genes are playing a role.  

Finally, two genes shared in the cell fate commitment pathway, RORA and GFI1 

were also found to be hypermethylated in both TMX2-11 and TMX2-28 and were 

analyzed for expression in Chapter 3. While RORA was found to be hypermethylated in 

the promoter region of both TMX2-11 and TMX2-28, expression was low and did not 

increase with 5-Aza treatment. In the current study, I saw that differential RORA 

methylation was restricted to the body region of the gene, suggesting a different 

mechanism of control. In both the tumor study and the cell line data, methylation of GFI1 

occurred in the promoter region. However, GFI1 expression analysis in TMX2-11 and 

TMX2-28 showed that although the gene was hypermethylated in the promoter, 

expression the gene was not significantly different from MCF-7.    

 

 

Future Directions 

 

 I have presented data that suggest that methylation is a useful biomarker for 

determining whether a tumor is likely to recur and gives clues as to whether the recurrent 

tumor will be hormone receptor positive or negative. Small samples size is one limitation 

of the current study. Additional tumor samples from each of the groups would allow for 

further stratification based on characteristics such as tumor type and treatment. Further 

investigation into side of tumor recurrence is also important to determine whether a 

tumor is a true recurrence or a new tumor. A larger tumor database would also allow for 
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investigation of how methylation relates to patient demographics. While it has been 

established that DNA methylation can be used as a method of determining whether first 

and second tumors are clonally related, using array comparative genomic hybridization 

(aCGH) would confirm the relationship [111]. 

 To further understand which genes are unique biomarkers in each tumor group, 

additional analyses are needed. One analysis would compare ER-negative second tumors 

that occur from either ER-positive or ER-negative primary tumors. While these tumors 

are both hormone receptor negative and the gross pathology would look similar, they 

arose from different primary tumor types. Uncovering these various molecular subtypes 

would lead to personalized care. 

Finally, as recent literature has described the importance of body methylation in 

gene expression, it is prudent to examine the functional genomic location in relation to 

primary tumors and second tumor outcomes. Using HM450BC data to focus on different 

gene regions would provide an understanding as to how functional genomic location 

plays a role in methylation of each tumor subgroup. 
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Table 4.1 DNA concentrations and bisulfite conversion controls for all 86 tumors 
ER+ to ER+ 

First Tumor Second Tumor Third Tumor 
Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4 

(HB-313)  

Ct value 

CONV-100% 

(HB-365)  

Ct value 
Patient & 

Tumor ID 
DNA  

Concentration 
ALU-C4 

(HB-313)  

Ct value 

CONV-100% 

(HB-365)  

Ct value 
Patient & 

Tumor ID 
DNA  

Concentration 
ALU-C4 

(HB-313) 

Ct value 

CONV-100% 

(HB-365)  

Ct value 
A1A 26.51 17.1 31.1 A1B 31.74 14.4 28.0 

    
A2A 21.15 18.6 33.3 A2B 79.95 14.2 29.1 

    
A3A 11.8 22.2 36.2 A3B 36.96 16.3 29.9 

    
A4A 25.36 21.9 35.5 A4B No Block Available 

    A5A 20.19 22.7 36.8 A5B 12.06 18.5 33.4 
    

A6A No Block Available A6B 31.91 22.1 35.9 A6C 42.66 23.8 26.5 
A7A 22.8 18.2 34.2 A7B 15.47 16.3 29.5 

    
A8A 12.6 17.7 30.4 A8B 24.14 18.3 33.4 A8C 56 25.36 21.9 
A9A 27.1 23.1 38.1 A9B 30.14 18.0 32.0 A9C 47.36 16.0 29.9 

A11A 38.64 18.2 31.7 A11B 47.23 17.0 31.1 A11C 16.7 19.2 33.0 
A10A No Block Available A10B 20.55 20.5 34.3 

    
A12A 23.16 25.3 41.3 A12B 29.15 16.0 29.9 

    
A13A 53.22 18.1 31.8 A13B 25.34 17.5 31.1 

    
A14A 22.88 14.7 28.8 A14B 30.08 18.0 31.9 

    
A15A 25.27 14.8 28.7 A15B 25.4 18.2 32.2 

    
A16A 47.01 14.9 28.1 A16B 26.45 17.4 31.0 

    
A17A 17.2 18.1 31.4 A17B 46.87 18.4 34.2 

    
A18A 16.46 19.9 32.7 A18B 24.68 17.3 30.2 

    
A19A 24.25 18.1 30.6 A19B 39.44 14.6 27.3 

    
A20A 37.82 17.2 30.9 A20B 32.39 13.5 27.7 

    
A21A 36.13 17.1 30.6 A21B 32.74 16.3 29.8 

    
Red highlighted samples did not pass QC, no block could be found for blue highlighted samples; DNA concentration in g/l 
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Table 4.1 Cont. DNA concentrations and conversion controls for all 86 tumors 
ER- to ER- 

First Tumor Second Tumor Third Tumor 
Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4 

(HB-313) 

 Ct value 

CONV-100% 

(HB-365) 

Ct value 
Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4  

(HB-313)  

Ct value 

CONV-100% 

(HB-365) 

Ct value 
Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4 

(HB-313)  

Ct value 

CONV-100% 

(HB-365) 

Ct value 
B1A 17.91 20.8 33.9 B1B 18 17.3 31.7 

    
B2A 55.14 16.8 29.9 B2B 71.99 14.5 27.1 

    
B3A 57.13 17.7 31.2 B3B 44.37 15.1 28.7 

    
B4A 87.51 16.8 30.0 B4B 67.7 15.4 28.4 B4C 65.91 17.1 30.3 
B5A 28.96 16.8 30.8 B5B 24.06 18.9 32.2 B5C 65.27 16.1 29.8 
B7A 76.85 18.9 32.9 B7B 126.1 18.2 34.5 

    
B8A 45.55 16.4 30.2 B8B 68.49 19.7 34.4 

    
B9A No Block Available B9B 46.51 16.5 30.2 

    
Red highlighted samples did not pass QC, no block could be found for blue highlighted samples; DNA concentration in g/l 
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Table 4.1 Cont.  DNA concentrations and conversion controls for all 86 tumors 
ER+ to ER- 

First Tumor Second Tumor Third Tumor 

Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4  

(HB-313) 

 Ct value 

CONV-100% 

(HB-365)  

Ct value 
Patient & 

Tumor ID 
DNA 

 Concentration 
ALU-C4 

(HB-313)  

Ct value 

CONV-100% 

(HB-365)  

Ct value 
Patient & 

Tumor ID 
DNA 

Concentration 
ALU-C4 

(HB-313)  

Ct value 

CONV-100%  

(HB-365)  

Ct value 
C1A No Block Available C1B 23.93 16.2 29.5 

    
C2A 49.72 15.7 28.9 C2B 22.79 15.5 28.4 

    
C3A 20.72 19.4 32.7 C3B 107.5 16.0 30.3 

    
C4A 23.62 17.6 31.0 C4B 43.8 14.7 28.2 

    
C5A 19.06 14.5 28.4 C5B 32.04 15.6 29.5 

    
C6A 21.89 18.7 34.2 C6B 120.7 16.9 30.9 

    
C7A 33.26 17.7 31.4 C7B 24.77 18.4 34.5 C7C 18.44 22.6 36.8 
C8A 26.49 19.6 33.4 C8B 16.28 20.1 34.1 

    
Red highlighted samples did not pass QC, no block could be found for blue highlighted samples; DNA concentration in g/l 



 

 

1
3

0
 

Table 4.1 Cont. DNA concentrations and conversion controls 

for all 86 tumors 
No Recurrence 

First Tumor 

Patient & 
 Tumor ID 

DNA 

Concentration 
ALU-C4 (HB-

313) Ct value 
CONV-100% (HB-

365) Ct value 

N1 28.57 18.2 33.6 
N2 21.75 19.2 34.4 
N3 26.24 15.9 31.2 
N4 23.83 16.2 33.3 
N5 21.61 16.8 32.1 
N6 28.46 12.2 29.1 
N7 103.5 17.3 34.7 
N8 32.4 16.4 32.7 
N9 36.85 19.8 None 
N10 26.46 17.2 33.2 

Red highlighted samples did not pass QC; DNA concentration in g/l 
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Table 4.2 Patient and tumor characteristics 

Age (in years) mean (SD) range 

    At Primary  56.6 (12.3), 37 - 84 

    At Recurrence 64.1 (12.6), 39 - 90 

Menopausal n (%)  

    At Primary 13 (38%) 

    At Recurrence 21 (58%) 

TTR1 (in months) mean (SD) range 67.8 (59.5) 10-252 

Tumors 

 
Primary2 

(34) 

Recurrent 

(36) 

ER status n (%) 

+ 26 (76.5) 19 (52.8) 

- 8 (23.5) 17 (47.2) 

PR status n (%) 

+ 20 (58.8) 16 (44.4) 

- 14 (41.2) 20 (55.6) 

HER2 status n (%) 

+ 5 (14.7) 9 (25) 

- 29 (85.3)  27 (75) 

Ki67 IHC n (%) 

low (≤15) 26 (76.5) 20 (55.6) 

high (>15) 8 (23.5) 16 (44.4) 

Tumor Grade n (%)3 

0 5 (15.1) 5 (15.1) 

1 5 (15.1) 2 (6.1) 

2 11 (33.3) 5 (15.1) 

3 12 (36.3) 21 (63.6) 

Tumor Type n (%) 

DCIS 5 (14.7) 5 (13.9) 

IDC 23 (67.6) 26 (72.2) 

ILC 4 (11.8) 4 (11.1) 

IDLC 2 (5.9) 1 (2.8) 

Location of Recurrence(s) n (%)4, 5 

Ipsilateral to primary NA 21 (60) 

Contralateral to primary NA 14 (40) 

Tumor Size n (%)3  

≥20 mm 13 (48.2) 13 (52) 

<20 mm 14 (51.8) 12 (48) 
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Anti-hormonal Therapy n (%)3 

No 7 NA 

Yes, Tam 4 NA 

Yes, AI 7 NA 

Yes, Tam & AI 5 NA 

Chemotherapy Type n (%)3, 6 

AC + paclitaxel 6 (23.1) NA 

AC + docetaxel 3 (11.6) NA 

Other 5 (19.2) NA 

None  12 (46.1) NA 
1TTR = time to recurrence 
2Primary tumors include the 8 non-recurrent tumors 
3Indicates that data are missing for some samples; percentages 

are calculated on the available data 
4Includes second recurrences; missing laterality for one tumor 
5Follow-up identified two ER-positive samples as lung 

metastases; analyses are done under the assumption that the 

tumor occurred in the opposite breast 
6AC = Adriamycin (doxorubicin) and C = cyclophosphamide 

NA = not applicable 

See text for scoring of ER, PR, HER2 and Ki67 
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Table 4.3 Sample group re-labeling for readability 

 
Group 

 Tumor A B C 

First (1) ER-positive ER-negative ER-positive 

Second (2) ER-positive ER-negative ER-negative 
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Table 4.4 Patient and tumor demographics by groups A, B, C and non-recurrent 

ER-positive 

A. Paired ER-positive primary tumors to ER-positive recurrent tumors 

 
Primary Tumor  

(n=14) 

Recurrent Tumor 

(n=14) 

Age   
 

    

      

      mean (SD) range 

 

56.8 (15.5) 37-84 64.1 (15.1) 40-90 

TTR1  87.6 (60.1) 12-252 
   

ER   7.6 (0.8) 5-8 7.6 (1.1) 4-8 

PR   5.9 (2.5) 0-8 4.5 (2.8) 0-8 

HER2  0.4 (0.8) 0-3 0.6 (1.1) 0-3 

Ki67  6.8 (10.0) 0-30 8.9 (10.8) 0-30 
    

Tumor Grade2 (n)   

0 1 2 

1 4 2 

2 5 3 

3 3 6 

Tumor Type 
DCIS (1), IDC (10), ILC 

(2), IDLC (1) 

DCIS (2), IDC (8), 

ILC (3), IDLC (1) 

Location3  Ipsi: 8 Contra: 6 

Tumor Size ≥20 mm (6), <20 mm (8) 
≥20 mm (8), <20 

mm (6) 

Chemotherapy Type2, 4   

AC + paclitaxel 3  

AC + docetaxel 0  

Other 2  

None  7  
   

B. Paired ER-negative primary tumors to ER-negative recurrent tumors  

 
Primary Tumor  

(n=5) 

Recurrent Tumor 

(n=5) 

Age       

 

      

      mean (SD) range 

61.4 (12.9) 46-79 64.2 (13.6) 48-80 

TTR1  34 (33.14) 10-90 
   

ER  0 (0) 0-0 0 (0) 0-0 

PR 0 (0) 0-0 0 (0) 0-0 

HER2 0.6 (1.3) 0-3 0.6 (1.3) 0-3 

Ki67 13.8 (11.0) 2-25 26 (6.5) 20-35 
    

Tumor Grade (n)2   

0 0 0 
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1 0 0 

2 0 0 

3 5 5 

Tumor Type  IDC (5) IDC (5) 

Location   Ipsi: 5 

Tumor Size  ≥20 mm (3), <20 mm (2) 
≥20 mm (3), <20 

mm (2) 

Chemotherapy Type2, 4   

AC 0  

AC + paclitaxel 1  

AC + docetaxel 3  

Other 0  

None  1  
   

C. Paired ER-positive primary tumors to ER-negative recurrent tumors  

 
Primary Tumor 

 (n=6) 

Recurrent tumor 

(n=6) 

Age   

 

 

      mean (SD) range 

53 (8.2) 42-65 60.3 (6.1), 53-68 

TTR1  82.8 (77.7) 17-216 
   

ER  7.8 (0.4) 7-8 0 (0) 0-0 

PR 3.8 (4.2) 0-8 0 (0) 0-0 

HER2 1.2 (1.5) 0-3 1.5 (1.6) 0-3 

Ki67 5.7 (5.8) 0-15 16.2 (14.2) 0-35 
    

Tumor Grade2  (n)   

0 2 2 

1 0 0 

2 3 0 

3 1 4 

Tumor Type  
DCIS (2), IDC (3), IDLC 

(1) 
DCIS (2), IDC (4) 

Location   Ipsi: 2 Contra: 4 

Tumor Size  ≥20 mm (5), <20 mm (1) 
≥20 mm (4), <20 

mm (2) 

Chemotherapy Type2, 4   

AC + paclitaxel 0  

AC + docetaxel 0  

Other 1  

None  0  

D. ER-positive non-recurrent tumors (n=6) 

Age  

 

       mean (SD) range 

53.2 (8.9) 44-69 
  

ER 8 (8) 8-8 

PR 3.7 (3.6) 0-8 
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HER2 0.7 (1.2) 0-3 

Ki67 IHC  2.7 (3.8) 0-10 
   

Tumor Grade2 (n)  

0 1 

1 1 

2 3 

3 1 

Tumor Type DCIS(1), IDC(3), ILC(2) 

Tumor Size  ≥20 mm (3), <20 mm (3) 

Chemotherapy Type2  

AC + paclitaxel 2 

AC + docetaxel 0 

 Other 1 

 None  3 
1TTR = time to recurrence 
2Indicates that data are missing for some samples; percentages are calculated on the 

available data 
3 Follow-up identified two samples as lung metastases; analyses are done under the 

assumption that the tumor occurred in the opposite breast 
4AC = Adriamycin (doxorubicin) and C = cyclophosphamide 

See text for scoring of ER, PR, HER2 and Ki67 
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Table 4.5 All tumors separated by first recurrence 

  
ER-positive to 

ER-positive 

ER-negative to 

ER-negative 

ER-positive to 

ER-negative 
Non-recurrent 

First Tumor 14 (0) 6 (1) 6 (0) 8 

Second Tumor 18 (4) 7 (2) 7 (1) 
 

Third Tumor 2 (1) 2 0 
 

Totals 34 (5) 15 (3) 13 (1) 8 

Numbers in parentheses are unpaired samples, where no paired tumor was included in 

total. 
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Table 4.6 Paired tumors separated by occurrence and ER-status 

  

ER-positive 

to ER-

positive 

ER-negative to 

ER-negative 
ER-positive to 

ER-negative 

A B C 

First Tumor 1 14 5 6 

Second Tumor 2 14 5 6 

Totals 28 10 12 

Red highlighted boxes represent ER-positive samples, blue 

highlighted boxes represent ER-negative samples. 
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Table 4.7 Group sizes
1 

for first and second tumors 

stratified by location 

  Ipsilateral Contralateral 

First Tumor 15 10 

Second Tumor 15 10 

Total 30 20 

1
Includes paired tumors only 
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Table 4.8 Group sizes
1
 for all ER-positive and ER-negative tumors stratified by 

occurrence and location 

  Ipsilateral Contralateral 

First Tumor 
ER-positive 10 10 

ER-negative 5 0 

Second 

Tumor 
ER-positive 8 6 

ER-negative 7 4 

Total 30 20 

1
Includes paired tumors only 

2
Only second tumors were included in the analysis 
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Table 4.9 Group sizes
 
for paired tumors stratified by ER-status, 

occurrence and location 

 Group Separated by 

First and Second 

Tumor 

Ipsilateral Contralateral 

A1 (ER-positive) 8 6 

A2 (ER-positive) 8 6 

B1 (ER-negative) 5 0 

B2 (ER-negative) 5 0 

C1 (ER-positive) 2 4 

C2 (ER-negative) 2 4 

Total 30 20 
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Table 4.10 

Hyper- and hypomethylation of CpG sites using Group A1 as the reference 

ER-positive to ER-

positive 

ER-negative to ER-

negative 

ER-positive to ER-

negative 

Group A Group B Group C 

1st Tumor (1) REFERENCE 

2nd Tumor (2) --- 

Number in top half is hypermethylated CpG sites, bottom half is hypomethylated CpG sites 

hypermethylation: >1.5-fold change and DiffScore >22; hypomethylation: <0.67-fold change and 

DiffScore <-22. Detection p-value of < 0.01 was used to distinguish statistically significant methylation 

changes.* 

914 
1588 

5056 
3131 

14329 
7936 

4491 
38044 
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Table 4.11 

Hyper and hypomethylation of CpG sites using Group B1 as the reference 

ER-positive to ER-

positive       

(n =14 pairs) 

ER-negative to ER-

negative     

 (n = 5 pairs) 

ER-positive to ER-

negative     

(n = 6 pairs) 

Group A Group B Group C 

1st Tumor (1) --- REFERENCE 

2nd Tumor (2) === 

Number in top half is hypermethylated CpG sites, bottom half is hypomethylated CpG sites 

hypermethylation: >1.5-fold change and DiffScore >22; hypomethylation: <0.67-fold change and 

DiffScore <-22. Detection p-value of < 0.01 was used to distinguish statistically significant methylation 

changes.* 

3036 
5815 

35809 
1504 

6989 
34117 
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Table 4.13 Hypermethylated CpG sites within gene regions 

 
A2/A1 B2/B1 C2/C1 C1/A1 B1/C1 B2/C2 

Promoter 376 967 4541 2200 42 1279 

5’UTR/first 

Exon 
256 549 3146 1397 265 877 

Body 245 843 6574 1166 927 775 

3’UTR 3 47 658 59 56 63 

Intergenic 164 894 5552 833 1006 689 
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Table 4.14 Hypomethylated CpG sites within gene regions 

 
A2/A1 B2/B1 C2/C1 C1/A1 B1/C1 B2/C2 

Promoter 790 1116 3598 1103 11654 16818 

5’UTR/first 

Exon 
395 1225 2172 567 6052 8896 

Body 330 1786 2014 916 9885 17456 

3’UTR 31 109 124 64 738 1369 

Intergenic 277 1234 1688 3131 9326 14708 
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Table 4.15 Differentially methylated CpG sites and genes within groups 

 

Hypermethylated Hypomethylated Pooled 

A1-NR C1-NR C1-A1 A1-NR C1-NR C1-A1 A1-NR C1-NR C1-A1 

Number of sites with 

altered methylation 
2275 4321 5054 6266 6903 3121 8541 11224 8175 

Number of gene 

names with altered 

methylation 

1367 2056 2008 2592 3149 1714 3657 4700 3479 

 
Number of altered 

sites unique1 to the 

pairing (%2) 

1454 

(64%) 

1781 

(41%) 

3289 

(65%) 

3484 

(56%) 

2896 

(42%) 

1773 

(57%) 

3201 

(37%) 

4677 

(41%) 

3278 

(40%) 

Number of altered 

gene unique to the 

pairing (%2) 

661 

(48%) 

532 

(26%) 

825 

(41%) 

846 

(32%) 

870 

(28%) 

653 

(38%) 

634 

(17%) 

1141 

(24%) 

663 

(19%) 

1Refers to unique CpGs for parings within either the hypermethylated or hypomethylated set 
2Percentage is the number of unique CpG sites or genes compared to the total number of CpG sites or genes with 

duplicate terms removed. 
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Table 4.16 Top 20 hypermethylated pathways in each comparison group 

GO biological process complete 
Genes in 

pathway (1189) 

Fold  

Enrichment 
P-value 

A1 vs. NR hypermethylated       

neuron fate commitment (GO:0048663) 19 4.68 4.53E-04 

homophilic cell adhesion via plasma membrane adhesion 

molecules (GO:0007156) 41 4.63 1.86E-11 

cell-cell adhesion via plasma-membrane adhesion molecules 

(GO:0098742) 44 3.72 2.99E-09 

cell fate commitment (GO:0045165) 44 3.2 3.86E-07 

regulation of heart contraction (GO:0008016) 27 2.97 7.78E-03 

mesenchyme development (GO:0060485) 29 2.93 4.06E-03 

ear development (GO:0043583) 33 2.76 2.58E-03 

central nervous system neuron differentiation (GO:0021953) 27 2.72 3.98E-02 

inner ear development (GO:0048839) 28 2.64 4.67E-02 

embryonic organ morphogenesis (GO:0048562) 41 2.46 2.19E-03 

regulation of neuron differentiation (GO:0045664) 67 2.42 7.03E-07 

sensory organ morphogenesis (GO:0090596) 35 2.39 2.81E-02 

forebrain development (GO:0030900) 48 2.37 6.52E-04 

pattern specification process (GO:0007389) 57 2.36 4.56E-05 

regulation of neuron projection development (GO:0010975) 46 2.35 1.39E-03 

regionalization (GO:0003002) 43 2.29 6.70E-03 

cell-cell adhesion (GO:0098609) 80 2.28 1.84E-07 

tube morphogenesis (GO:0035239) 45 2.21 9.75E-03 

regulation of neurogenesis (GO:0050767) 75 2.19 4.76E-06 

positive regulation of neurogenesis (GO:0050769) 44 2.18 1.95E-02 

regulation of system process (GO:0044057) 53 2.18 1.84E-03 
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Table 4.16 Cont.    

C1 vs. NR hypermethylated       

neuron fate specification (GO:0048665) 16  > 5 2.38E-04 

dorsal spinal cord development (GO:0021516) 11  > 5 4.42E-02 

neuron fate commitment (GO:0048663) 28 4.51 9.16E-07 

cell differentiation in spinal cord (GO:0021515) 22 4.41 1.24E-04 

cell fate specification (GO:0001708) 26 4.25 1.41E-05 

forebrain generation of neurons (GO:0021872) 24 4.22 6.50E-05 

cell fate determination (GO:0001709) 16 4.07 2.99E-02 

neural retina development (GO:0003407) 17 4.05 1.59E-02 

forebrain neuron differentiation (GO:0021879) 19 3.88 7.66E-03 

homophilic cell adhesion via plasma membrane adhesion 

molecules (GO:0007156) 50 3.69 1.26E-10 

central nervous system neuron differentiation (GO:0021953) 56 3.68 3.75E-12 

central nervous system neuron development (GO:0021954) 23 3.6 2.10E-03 

dorsal/ventral pattern formation (GO:0009953) 29 3.42 1.91E-04 

spinal cord development (GO:0021510) 31 3.41 6.83E-05 

cell-cell adhesion via plasma-membrane adhesion molecules 

(GO:0098742) 61 3.37 9.37E-12 

cell fate commitment (GO:0045165) 71 3.37 4.40E-14 

cerebellum development (GO:0021549) 25 3.25 4.25E-03 

endocrine system development (GO:0035270) 37 3.21 1.33E-05 

camera-type eye morphogenesis (GO:0048593) 30 3.15 6.46E-04 

pancreas development (GO:0031016) 23 3.13 2.16E-02 

neuron migration (GO:0001764) 31 3.11 5.15E-04 
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Table 4.16 Cont.       

C1 vs. A1 hypermethylated       

dorsal spinal cord development (GO:0021516) 13  > 5 9.50E-04 

cerebellar cortex formation (GO:0021697) 11  > 5 4.20E-02 

cerebellar granular layer development (GO:0021681) 9  > 5 4.17E-02 

cell differentiation in hindbrain (GO:0021533) 12  > 5 2.40E-02 

dopamine receptor signaling pathway (GO:0007212) 13  > 5 1.36E-02 

cerebral cortex neuron differentiation (GO:0021895) 12  > 5 1.04E-02 

spinal cord association neuron differentiation (GO:0021527) 10  > 5 9.22E-03 

calcium ion-dependent exocytosis of neurotransmitter 

(GO:0048791) 14  > 5 9.62E-04 

cerebellar cortex morphogenesis (GO:0021696) 13 4.82 4.02E-02 

reproductive behavior (GO:0019098) 13 4.82 4.02E-02 

non-canonical Wnt signaling pathway (GO:0035567) 14 4.74 2.18E-02 

embryonic camera-type eye development (GO:0031076) 15 4.66 1.18E-02 

hindbrain morphogenesis (GO:0021575) 17 4.65 2.48E-03 

cerebellum morphogenesis (GO:0021587) 15 4.54 1.62E-02 

embryonic eye morphogenesis (GO:0048048) 14 4.47 4.13E-02 

hindlimb morphogenesis (GO:0035137) 15 4.42 2.21E-02 

cell fate determination (GO:0001709) 17 4.34 6.29E-03 

cell differentiation in spinal cord (GO:0021515) 21 4.24 5.11E-04 

regulation of catecholamine secretion (GO:0050433) 15 4.21 3.98E-02 

forebrain neuron differentiation (GO:0021879) 20 4.11 1.68E-03 

neural retina development (GO:0003407) 17 4.07 1.48E-02 

Genes shaded blue are those shared by A1 vs. NR hypermethylated and C1 vs. NR hypermethylated, 

shaded red are shared by C1 vs. NR hypermethylated and C1 vs. A1 hypermethylated, shaded yellow are 

unique to each group, neuron fate commitment in red text is shared by 5 groups  
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Table 4.17 Top 20 hypomethylated pathways in each group 

GO biological process complete 

Genes in 

pathway 

(1189) 

Fold  

Enrichment 
P-value 

A1 vs. NR hypomethylated       

telencephalon regionalization (GO:0021978) 10  > 5 4.85E-02 

dorsal spinal cord development (GO:0021516) 13  > 5 1.65E-02 

spinal cord association neuron differentiation (GO:0021527) 11  > 5 1.32E-02 

forebrain regionalization (GO:0021871) 16  > 5 6.80E-04 

regulation of mesonephros development (GO:0061217) 14 4.6 3.02E-02 

regulation of cardiac muscle cell proliferation (GO:0060043) 16 4.58 6.74E-03 

neuron fate specification (GO:0048665) 16 4.58 6.74E-03 

regulation of organ formation (GO:0003156) 16 4.44 1.01E-02 

neuron fate commitment (GO:0048663) 35 4.38 1.13E-08 

autonomic nervous system development (GO:0048483) 21 4.24 5.20E-04 

cell differentiation in spinal cord (GO:0021515) 27 4.2 8.82E-06 

embryonic eye morphogenesis (GO:0048048) 17 4.19 1.02E-02 

non-canonical Wnt signaling pathway (GO:0035567) 16 4.18 2.16E-02 

cell fate specification (GO:0001708) 33 4.18 1.52E-07 

olfactory lobe development (GO:0021988) 16 3.94 4.38E-02 

regulation of heart growth (GO:0060420) 19 3.92 6.64E-03 

inner ear morphogenesis (GO:0042472) 45 3.88 5.06E-10 

ear morphogenesis (GO:0042471) 52 3.81 1.13E-11 

ventral spinal cord development (GO:0021517) 21 3.8 2.94E-03 

forelimb morphogenesis (GO:0035136) 17 3.77 4.05E-02 

spinal cord development (GO:0021510) 44 3.76 2.75E-09 
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Table 4.17 Cont.    

C1 vs. NR hypomethylated       

regulation of cardiac muscle cell differentiation (GO:2000725) 13  > 5 2.64E-02 

mesenchymal to epithelial transition (GO:0060231) 12  > 5 2.49E-02 

regulation of transcription from RNA polymerase II promoter 

involved in heart development (GO:1901213) 11  > 5 2.06E-02 

ventral spinal cord interneuron differentiation (GO:0021514) 13  > 5 7.99E-03 

cardiac epithelial to mesenchymal transition (GO:0060317) 15  > 5 5.04E-03 

neuron fate specification (GO:0048665) 21 4.97 3.62E-05 

ventral spinal cord development (GO:0021517) 31 4.64 4.94E-08 

positive regulation of cardiac muscle tissue development 

(GO:0055025) 17 4.62 2.78E-03 

neuron fate commitment (GO:0048663) 43 4.44 2.05E-11 

positive regulation of heart growth (GO:0060421) 15 4.4 2.35E-02 

cell differentiation in spinal cord (GO:0021515) 34 4.38 2.35E-08 

spinal cord motor neuron differentiation (GO:0021522) 21 4.28 4.42E-04 

regulation of cardiac muscle cell proliferation (GO:0060043) 18 4.26 4.04E-03 

embryonic hindlimb morphogenesis (GO:0035116) 18 4.26 4.04E-03 

forebrain regionalization (GO:0021871) 15 4.23 3.74E-02 

autonomic nervous system development (GO:0048483) 25 4.17 4.24E-05 

embryonic eye morphogenesis (GO:0048048) 20 4.08 1.93E-03 

regulation of cardiac muscle tissue development (GO:0055024) 27 4.04 2.01E-05 

hindlimb morphogenesis (GO:0035137) 21 3.95 1.62E-03 

regulation of heart growth (GO:0060420) 23 3.93 4.92E-04 

proximal/distal pattern formation (GO:0009954) 18 3.89 1.46E-02 
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Table 4.17 Cont.    

C1 vs. A1 hypomethylated       

positive regulation of cardiac muscle cell differentiation (GO:2000727) 8  > 5 1.62E-02 

regulation of cardiac muscle cell differentiation (GO:2000725) 10  > 5 1.58E-02 

positive regulation of cardiac muscle tissue development (GO:0055025) 12  > 5 8.90E-03 

cell fate determination (GO:0001709) 15 4.56 1.50E-02 

regulation of cardiac muscle tissue development (GO:0055024) 16 4.47 9.02E-03 

positive regulation of muscle organ development (GO:0048636) 16 4.3 1.50E-02 

positive regulation of striated muscle tissue development (GO:0045844) 16 4.3 1.50E-02 

positive regulation of muscle tissue development (GO:1901863) 16 4.21 1.91E-02 

neuron fate commitment (GO:0048663) 21 4.05 1.05E-03 

regulation of morphogenesis of a branching structure (GO:0060688) 16 3.98 3.83E-02 

regulation of BMP signaling pathway (GO:0030510) 21 3.59 6.97E-03 

positive regulation of ossification (GO:0045778) 21 3.55 8.46E-03 

nerve development (GO:0021675) 19 3.52 3.09E-02 

endoderm development (GO:0007492) 19 3.47 3.72E-02 

inner ear morphogenesis (GO:0042472) 25 3.32 2.79E-03 

cell fate commitment (GO:0045165) 58 3.3 1.08E-10 

homophilic cell adhesion via plasma membrane adhesion molecules 

(GO:0007156) 37 3.27 7.69E-06 

embryonic skeletal system morphogenesis (GO:0048704) 22 3.2 2.42E-02 

ear morphogenesis (GO:0042471) 28 3.17 1.47E-03 

regulation of striated muscle tissue development (GO:0016202) 24 3.16 1.12E-02 

kidney epithelium development (GO:0072073) 30 3.16 5.81E-04 

Genes shaded orange are shared by A1 vs. NR hypomethylated and C1 vs. NR hypomethylated, green are shared by C1 vs. 

NR hypomethylated and C1 vs. A1 hypomethylated, purple are shared by A1 vs. NR hypomethylated and C1 vs. A1 

hypomethylated, yellow are those unique to each group, neuron fate commitment in red text is shared by 5 groups 
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Table 4.18 Homophilic cell adhesion via plasma 

membrane pathway genes 

A1 vs. NR  

Hypermethylated 

C1 vs. NR  

Hypermethylated 

C1 vs. A1  

Hypomethylated 

CDH12 CADM3 AMIGO2 

CDH13 CDH11 CDH10 

CDH16 CDH12 CDH18 

CDH18 CDH16 CELSR3 

CDH22 CDH22 CLSTN2 

CELSR3 CDH23 FAT1 

CLSTN2 CDH7 FREM2 

FREM2 CLSTN2 ME3 

PCDH9 DCHS2 NPTN 

PCDHA1 DSCAML1 PCDH10 

PCDHA10 FREM2 PCDH17 

PCDHA11 ME3 PCDHA1 

PCDHA12 PCDH9 PCDHA10 

PCDHA13 PCDHA1 PCDHA11 

PCDHA2 PCDHA10 PCDHA12 

PCDHA3 PCDHA11 PCDHA13 

PCDHA4 PCDHA12 PCDHA2 

PCDHA5 PCDHA13 PCDHA3 

PCDHA6 PCDHA2 PCDHA4 

PCDHA7 PCDHA3 PCDHA5 

PCDHA8 PCDHA4 PCDHA6 

PCDHA9 PCDHA5 PCDHA7 

PCDHAC1 PCDHA6 PCDHA8 

PCDHAC2 PCDHA7 PCDHA9 

PCDHB9 PCDHA8 PCDHAC1 

PCDHGA1 PCDHA9 PCDHAC2 

PCDHGA10 PCDHAC1 PCDHB14 

PCDHGA2 PCDHB18 PCDHB17 

PCDHGA3 PCDHGA1 PCDHB4 

PCDHGA4 PCDHGA10 PCDHB5 

PCDHGA5 PCDHGA11 PCDHB7 

PCDHGA6 PCDHGA2 PCDHB9 

PCDHGA7 PCDHGA3 PCDHGA1 

PCDHGA8 PCDHGA4 PCDHGA2 

PCDHGA9 PCDHGA5 PCDHGA3 

PCDHGB1 PCDHGA6 PCDHGB1 

PCDHGB2 PCDHGA7 PVRL4 

PCDHGB3 PCDHGA8   

PCDHGB4 PCDHGA9   
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PCDHGB5 PCDHGB1   

PCDHGB6 PCDHGB2   

  PCDHGB3   

  PCDHGB4   

  PCDHGB5   

  PCDHGB6   

  PCDHGB7   

  PTPRM   

  PTPRT   

  PVR   

  RET   

Genes shaded purple are those shared by all three paired analyses, 

blue are shared by A1 vs. NR hypermethylated and C1 vs. NR 

hypermethylated, green are shared by C1 vs. NR hypermethylated 

and C1 vs. NR hypomethylated, orange are shared by A1 vs. NR 

hypermethylated and C1 vs. A1 hypomethylated 
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Table 4.19 Association of survival with genes identified in ER-positive 

first tumors from pairs with ER-negative second tumors 

Genes hypermethylated only in C1 versus NR 

Gene Affymetrix probe p-value 
Expression pattern linked 

to good survival  

CADM3 221921_s_at 0.0516 high 

CDH11 236179_at 0.4105 --- 

CDH23 232845_at 0.0002 high 

CDH7 220679_s_at 2.10E-07 high 

DCHS2 220373_at 0.0012 high 

DSCAML1 232059_at 0.0005 high 

PCDHB18 pseudogene 
 

--- 

PCDHGA11 211877_s_at 0.0248 high 

PCDHGB7 1552661_at 0.0979 --- 

PTPRM 1555579_s_at 1.10E-07 high 

PTPRT 205948_at 4.40E-16 high 

PVR 1556582_at 1.70E-07 high 

RET 211421_s_at 3.91E-02 high 

Genes hypermethylated only in C1 versus A1 

Gene Affymetrix probe p-value 
Expression pattern linked 

to good survival 

AMIGO2 222108_at 0.696 --- 

CDH10 220115_s_at 1.90E-06 high 

FAT1 201579_at 0.7623 --- 

NPTN 202228_s_at 0.0431 high 

PCDH10 1552925_at 0.0134 high 

PCDH17 228863_at 0.0036 low 

PCDHB14 231726_at 0.0141 high 

PCDHB17 216313_at 0.3612 --- 

PCDHB4 240317_at 0.0002 high 

PCDHB5 223629_at 0.3683 --- 

PCDHB7 231738_at 0.5007 --- 

PVRL4 223540_at 0.3589 --- 

Genes hypermethylated only in A1 versus NR 

Gene Affymetrix probe p-value 
Expression pattern linked 

to good survival 

CDH13 204726_at 0.8509 --- 



 

 157 

Table 4.20 Cell fate commitment genes 

A1 vs. NR  

Hypermethylated 

C1 vs. NR  

Hypermethylated 

C1 vs. A1  

Hypomethylated 

BCL11B ASCL1 ATOH1 

BMP4 BARHL2 BARHL2 

C17orf96 BCL11B BMP4 

DLL1 CDON CDC73 

FEV CHD5 CHD5 

FEZF2 CYP26B1 DLL1 

FGF3 DLX2 DLX1 

FOXA2 DSCAML1 DMRTA2 

FOXN4 FEV DOCK7 

GAP43 FEZF2 EYA1 

GATA4 FGF10 FGFR1 

GFI1 FGF3 GAP43 

GSC FGF8 GATA2 

HES5 FGFR1 GFI1 

HEY2 FGFR2 HES5 

HNF1B FGFR3 HEY2 

HOXA13 FOXA2 HIPK2 

IFRD1 GATA4 HOXA13 

NKX2-5 GDF7 HOXC10 

NODAL GDNF HOXC11 

NOTCH3 GFI1 ISL1 

NOTCH4 GLI2 ISL2 

NTRK3 GSC LHX3 

OLIG3 GSX2 MEF2C 

PAX2 HES5 NKX2-1 

PAX3 HNF1B NKX2-2 

PAX6 IHH NKX6-2 

PRDM1 ISL1 NR2E1 

ROR2 ISL2 NRG1 

RORA MNX1 NTF3 

SATB2 MYOD1 ONECUT1 

SIX1 NEUROG1 ONECUT2 

SIX3 NKX2-1 OTX2 

SMO NKX2-5 PAX2 

SOX8 NKX6-1 POU4F1 

SOX9 NOTCH4 POU6F2 

TBR1 NR2E1 PRDM1 

TFAP2C NTF3 RAG2 

TLX3 NTF4 RORA 
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TRIM15 NTRK3 SATB2 

VSX2 OLIG2 SFRP1 

WNT1 OLIG3 SMAD2 

WNT10A ONECUT1 SOX17 

WNT7A PAX2 SOX18 

  PAX3 SOX2 

  PAX6 SOX5 

  PAX7 SOX8 

  POU4F1 TBR1 

  POU6F2 TBX3 

  PRDM1 TGFB1I1 

  PRDM14 TGFB2 

  PTCH1 TLX3 

  PTF1A TRIM15 

  SATB2 WNT2 

  SFRP1 WNT3A 

  SIX1 WNT5A 

  SIX3 WNT7B 

  SOX1 WT1 

  SOX12   

  SOX8   

  SOX9   

  TBX1   

  TLX3   

  VSX2   

  WNT1   

  WNT10A   

  WNT3   

  WNT3A   

  WNT6   

  WNT7A   

  WT1   

Genes shaded purple are those shared by all three pathways, 

blue are shared by A1 vs. NR hypermethylated and C1 vs. NR 

hypermethylated, green are shared by C1 vs. NR 

hypermethylated and C1 vs. NR hypomethylated, orange are 

shared by A1 vs. NR hypermethylated and C1 vs. A1 

hypomethylated 
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Table 4.21 Association of survival with genes identified in 

ER-positive first tumors with either ER-negative or ER-

positive second tumors  

 

Gene 
Affymetrix 

probe 
p-value 

Expression 

pattern 

linked to 

good 

survival 

Shared CpG 

sites 

(MAPINFO) 

BCL11B 219528_s_at 2.330E-02 high 99708008 

FEV 207260_at 1.100E-05 high 219847233 

FEZF2 221086_s_at 6.400E-05 high 62359390 

FGF3 214571_at 3.260E-02 high 69632883 

FOXA2 40284_at 1.600E-04 high 22566143 

GATA4 205517_at 9.878E-01 --- --- 

GSC 1552338_at 6.133E-01 --- --- 

HNF1B 205313_at 1.000E-10 high 36105064 

NKX2-5 206578_at 7.246E-01 --- 
172660996 

172662130 

NOTCH4 205247_at 3.800E-08 high 32164503 

NTRK3 206462_s_at 7.900E-12 high 88798448 

OLIG3 1556371_at 7.993E-01 --- --- 

PAX3 231666_at 4.800E-03 high 

223065390 

223158076 

223158408 

PAX6 235795_at 6.698E-01 --- 
31824973 

31828715 

SIX1 228347_at 7.300E-04 high 61116382 

SIX3 242054_s_at 5.500E-01 --- 45171583 

SOX9 202936_s_at 3.300E-01 --- 70119120 

VSX2 missing under 3 possible names 
 

74704714 

74725362 

WNT1 208570_at 1.000E-04 high 49371987 

WNT10A 223709_s_at 5.400E-08 high --- 

WNT7A 210248_at 4.500E-04 high --- 
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Table 4.22 Genes shared in both cell fate commitment and 

neuron fate commitment pathways 

Genes  Genes  

ASCL1 NKX2-1 

ATOH1 NKX2-2 

BCL11B NKX6-1 

BMP4 NKX6-2 

C17orf96 NOTCH3 

DLX1 NRG1 

DLX2 NTRK3 

DMRTA2 OLIG2 

EYA1 OLIG3 

FEV OTX2 

FEZF2 PAX3 

FOXA2 PAX6 

FOXN4 PAX7 

GATA2 POU4F1 

GLI2 PTF1A 

GSX2 SATB2 

HES5 SIX1 

HOXC10 SOX1 

IHH TBR1 

ISL1 TFAP2C 

ISL2 TGFB2 

LHX3 TLX3 

MNX1 WNT1 

 

 

 

 

 

 

 

 



 

 161 

 

 

Figure 4.1. Flow chart explaining tumor selection and criteria for analysis by 

HM450BC.  

 

 

 

 

91 primary, secondary and tertiary 

breast tumors identified from database 

86 primary, secondary and tertiary 

breast tumor blocks were pulled, 

DNA was extracted and sent to 

USC Core facility for QC analysis  

Additional DNA was extracted 

from 16 of the 20 tumors that 

did not pass QC 

70 primary, secondary and tertiary 

tumors were run on the Illumina 

HumanMethylation450 BeadChip 

DNA from 4/16 tumors passed QC = 25% 

pass rate

DNA from 66/86 tumors passed QC = 77% 

pass rate
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Figure 4.2. Methylation of ER-positive breast tumors compared with ER-negative 

breast tumors. 

 

To visualize data, average beta values of 41 ER-positive tumors were compared with 

average beta values of 21 ER-negative breast tumors using GenomeStudio. A) Slightly 

greater mean methylation in ER-positive tumors was observed: 3,046 CpGs were 

hypermethylated in ER-positive tumors and 1,098 CpGs were hypermethylated sites in 

ER-negative tumors. Outer red lines mark the 2-fold change in methylation; center red 

line represents equal average beta values in the two groups. B) Average beta distribution 

analysis of 425,489 CpG sites by box plot. Box is 25
th

 and 75
th

 percentiles; red line is 

median average beta value. 

Figure 4.2. Methylation of ER-positive breast tumors compared with ER-negative breast tumors. To visualize data, 

average beta values of 41 ER-positive tumors were compared with average beta values of 21 ER-negative breast tumors 

using  GenomeStudio. A. Slightly greater mean methylation in ER-positive tumors was observed: 3,046 CpGs were 

hypermethylated in ER-positive tumors and 1,098 CpGs were hypermethylated  sites in ER-negative tumors. Outer red lines 

mark the 2-fold change in methylation; center red line represents equal average beta values in the two groups. B. Average 

beta distribution analysis of 425,489 CpG sites by box plot. Box is 25th and 75th percentiles; red line is median average beta 

value. 
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Figure 4.3. Analysis of 35 CpG sites previously shown to be differentially methylated 

between ER-positive and ER-negative breast tumors. 

 

Twenty-three CpG sites previously identified as hypermethylated in ER-positive tumors 

(blue squares), and 12 CpG sites previously identified as hypermethylated in ER-negative 

tumors (green squares) were assessed in 41 ER-positive tumors and 21 ER-negative 

tumors. Outer red lines represent 2-fold difference in methylation; center red line 

represents equal beta values between groups. 

 

 

 

 

 

 

 

Figure 4.3. Analysis of 35 CpG sites previously shown to be differentially methylated between 

ER-positive and ER-negative breast tumors. Twenty-three CpG sites previously identified as 

hypermethylated in ER-positive tumors (blue squares), and 12 CpG sites previously identified as 

hypermethylated in ER-negative tumors (green squares) were assessed in 41 ER-positive tumors and  

21 ER-negative tumors. Outer red lines represent 2-fold difference in methylation; center red line 

represents equal beta values between groups. 
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Figure 4.4. Methylation analysis of 23 CpG sites previously identified as 

hypermethylated in ER-positive tumors. 

 

Average beta distribution analysis of all 23 CpG sites by box plot. Box is 25
th

 and 75
th

 

percentiles; red line is median average beta value. B) Heat map shows average beta 

values of the 23 individual CpG sites. Only one CpG site, cg02755525 does not differ in 

methylation between ER-positive and ER-negative tumors. Green represents 0% 

methylated; red represents 100% methylated. 
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Figure 4.4. Methylation analysis of 23 CpG sites previously identified as hypermethylated in ER-positive 

tumors. A) Average beta distribution analysis of all 23 CpG sites by box plot. Box is 25th and 75th percentiles; red 

line is median average beta value. B) Heat map shows average beta values of the 23 individual CpG sites. Only one 

CpG site, cg02755525 does not differ in methylation between  ER-positive and ER-negative tumors. Green represents 

0% methylated; red represents 100% methylated. 
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Figure 4.5. Methylation analysis of 12 CpG sites previously identified as 

hypermethylated in ER-negative tumors. 

 

A) Average beta distribution analysis of all 12 CpG sites by box plot. Box is 25
th

 and 75
th

 

percentiles; red line is median average beta value. B) Heat map shows average beta 

values of the 12 individual CpG sites. Two CpG sites, cg00720137 and cg0610631, had 

no change in methylation between ER-positive and ER-negative tumors. Green represents 

0% methylated; red represents 100% methylated 
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Figure 4.5. Methylation analysis of 12 CpG sites previously identified as hypermethylated in ER-negative 

tumors. A) Average beta distribution analysis of all 12 CpG sites by box plot. Box is 25th and 75th percentiles; red 

line is median average beta value. B) Heat map shows average beta values of the 12 individual CpG sites. Two CpG 

sites, cg00720137 and cg0610631, had no change in methylation between ER-positive and ER-negative tumors. 

Green represents 0% methylated; red represents 100% methylated. 
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Figure 4.6. Methylation analysis of tumors stratified by both ER-status and 

occurrence. 

 

A) 20 ER-positive first tumors had 10,314 hypermethylated CpG sites when compared to 

6 ER-negative first tumors, which had 1,235 hypermethylated CpG sites. B) 14 ER-

positive second tumors had 3,110 hypermethylated CpG sites when compared to 14 ER-

negative second tumors, which had 2,198 hypermethylated CpG sites. Outer red lines 

represent a 2-fold change in methylation between the two groups and center red line 

represents equal methylation in both cases. Distribution analysis of C) ER-positive first 

tumors compared with ER-negative first tumors and D) ER-positive second tumors 

compared with ER-negative second tumors. Box is 25
th

 and 75
th

 percentiles; red line is 

median average beta value. 
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Figure 4.7. Visual analysis of paired tumors stratified by ER-status of the primary 

and second. 

 

Methylation of A) 20 ER-positive first tumors were compared with 20 ER-positive 

second tumors from the same women, B) 5 ER-negative first tumors were compared with 

5 ER-negative second tumors from the same women, and C) 6 ER-positive first tumors 

were compared with 6 ER-negative second tumors from the same women. Outer red lines 

represent 2-fold change in methylation between first and second tumors; center red line is 

equal methylation between samples. D) Distribution analysis of the three tumor groups in 

A, B and C above. Groups are indicated in colors: red is ER-positive first tumors with 

ER-positive second tumors; blue is ER-negative first tumors with ER-negative second 

tumors; and purple ER-positive first tumors with ER-negative second tumors. Box is 25
th

 

and 75
th

 percentiles; red line is median average beta value. 
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Figure 4.8. Comparison of first and second tumors stratified by side of second 

tumor occurrence. 

 

A) First tumors from ipsilateral (n=15) and contralateral (n=10) pairs are compared. B) 

Second tumors from ipsilateral (n=15) and contralateral (n=10) pairs are compared. Blue 

dots are CpG sites hypermethylated in tumors (both first and second) from ipsilateral 

pairs; green dots are CpG sites hypermethylated in tumors (both first and second) from 

contralateral pairs. Outer red lines represent 2-fold change in methylation; center red line 

is no change in methylation between tumors. 
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Figure 4.8. Comparison of first and second tumors stratified by side of second tumor occurrence. A. First tumors 

from ipsilateral (n=15) and contralateral (n=10) pairs are compared. B.  Second tumors from ipsilateral (n=15) and 

contralateral (n=10) pairs are compared. Blue dots are CpG sites hypermethylated in tumors (both first and second) from 

ipsilateral pairs; green dots are CpG sites hypermethylated in tumors (both first and second) from contralateral pairs. 

Outer red lines represent 2-fold change in methylation; center red line is no change in methylation between tumors. 
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Figure 4.9. Analysis of second tumors stratified by ER-status and side of second 

tumor occurrence. 

 

A) ER-positive second tumors from ipsilateral pairs (n=8) were compared to ER-positive 

second tumors from contralateral pairs (n=6). B) ER-negative second tumors from 

ipsilateral pairs (n=7) were compared to ER-negative second tumors from contralateral 

pairs (n=4). Blue dots represent CpG sites with a 2-fold change in methylation in second 

tumors (either ER-positive or ER-negative) from the ipsilateral pairs. Green dots 

represent CpG sites with a 2-fold change in methylation in second tumors (either ER-

positive or ER-negative) from the contralateral pairs. Center red line is equal methylation 

in both group. 

 

 

 

Figure 4.9. Analysis of second tumors stratified by ER-status and side of second tumor occurrence. A. ER-positive second 

tumors from ipsilateral pairs (n=8) were compared to ER-positive second tumors from contralateral pairs (n=6).  B. ER-negative 

second tumors from ipsilateral pairs (n=7) were compared to ER-negative second tumors from contralateral pairs (n=4). Blue dots 

represent CpG sites with a 2-fold change in methylation in second tumors (either ER-positive or ER-negative) from the ipsilateral 

pairs. Green dots represent CpG sites with a 2-fold change in methylation in second tumors (either ER-positive or ER-negative) 

from the contralateral pairs. Center red line is equal methylation in both groups. 
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Figure 4.10. Analysis of paired tumors from Group A (ER-positive primary and ER-

positive second) stratified by side of location. 

 

8 ER-positive second tumors from ipsilateral pairs have more hypermethylated CpG sites 

than the first tumor (green dots). B) 6 ER-positive first tumors from contralateral pairs 

have more hypermethylated CpG sites than the second tumor (blue dots). Outer red lines 

are 2-fold change in methylation between groups; center red line equals no change in 

methylation between groups. 
 

 

 

 

 

 

Figure 4.10. Analysis of paired tumors from group A (ER-positive primary and ER-positive second) stratified by side of 

location. A. 8 ER-positive 2nd tumors from ipsilateral pairs have more hypermethylated CpG sites than the 1st tumor (green dots). 

B. 6 ER-positive 1st tumors from contralateral pairs have more hypermethylated CpG sites than the 2nd tumor (blue dots). Outer 

red lines are 2-fold change in methylation between groups; center red line equals no change in methylation between groups. 
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Figure 4.11. Analysis of paired tumors from Group C (ER-positive primary and ER-

negative second) stratified by side of location. 

 

2 ER-negative second tumors from ipsilateral pairs have more hypermethylated CpG sites 

than the first ER-positive tumor (green dots). B) 4 ER-positive first tumors from 

contralateral pairs have more hypermethylated CpG sites than the second ER-negative 

tumor (blue dots). Outer red lines are 2-fold change in methylation between groups; 

center red line equals no change in methylation between groups. 

 

 

 

 

 

 

Figure 4.11. Analysis of paired tumors from group C (ER-positive primary and ER-negative second) stratified by side 

of location. A. 2 ER-negative 2nd tumors from ipsilateral pairs have more hypermethylated CpG sites than the 1st ER-

positive tumor (green dots). B. 4 ER-positive 1st tumors from contralateral pairs have more hypermethylated CpG sites than 

the 2nd ER-negative tumor (blue dots). Outer red lines are 2-fold change in methylation between groups; center red line 

equals no change in methylation between groups. 
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Figure 4.12 CpG site hypermethylation within gene regions. 

 

The functional genomic location of hypermethylated CpG sites on the BeadChip was 

analyzed for A2 versus A1, B2 versus B1, C2 versus C1, C1 versus A1, B1 versus C1, 

and B2 versus C2. Promoter includes TSS200 and TSS1500 regions of the gene; 

Intergenic region is all undefined locations in GenomeStudio. 
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Figure 4.13 CpG site hypomethylation within gene regions. 

 

The functional genomic location of hypomethylated CpG sites on the BeadChip was 

analyzed for A2 versus A1, B2 versus B1, C2 versus C1, C1 versus A1, B1 versus C1, 

and B2 versus C2. Promoter includes TSS200 and TSS1500 regions of the gene; 

Intergenic region is all undefined locations in GenomeStudio. 

 

0

4500

9000

13500

18000

22500

Promoter 5’UTR/1st 
Exon

Body 3’UTR Intergenic

A2/A1
B2/B1
C2/C1
C1/A1
B1/C1
B2/C2



 

 174 

 

Figure 4.14. Group methylation analysis of twenty-three CpG sites previously 

identified as hypermethylated in ER-positive breast tumors. 

 

Distribution analysis of 23 previously identified CpG sites that were hypermethylated in 

ER-positive tumors was assessed in ER-positive first tumors (A1) with ER-positive 

second tumors (A2), ER-negative first tumors (B1) with ER-negative second tumors (B2) 

and ER-positive first tumors (C1) with ER-negative second tumors (C2). Box is 25
th

 and 

75
th

 percentiles; red line is median average beta value. 
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Figure 4.15. Group methylation analysis of twelve CpG sites previously identified as 

hypermethylated in ER-negative breast tumors. 

 

Distribution analysis of 12 previously identified CpG sites that were hypermethylated in 

ER-negative tumors was assessed in ER-positive first tumors (A1) with ER-positive 

second tumors (A2), ER-negative first tumors (B1) with ER-negative second tumors (B2) 

and ER-positive first tumors (C1) with ER-negative second tumors (C2). Box is 25
th

 and 

75
th

 percentiles; red line is median average beta value. 
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Figure 4.16. Ancestor chart for homophilic cell adhesion via plasma membrane 

pathway. 
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Figure 4.17. Ancestor chart for cell fate commitment pathway. 
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Figure 4.18. Differential RORA methylation is found in the gene body.  

 

Of the 97 RORA CpGs included on the HM450BC, the majority of those differentially 

methylated were found in the body. In C1, 17 CpG sites were differentially methylated in 

the body region and in A1, 21 were differentially methylated in the body region. 
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Figure 4.19. Differential methylation of GFI1 occurs most frequently in the promoter region.  

 

A1 is more frequently hypomethylated in the promoter region (TSS200 and TSS1500) as compared to 

NR with 10 hypomethylated CpG sites out of 44 CpG sites. C1 is more frequently hypermethylated in 

the promoter as compared to NR with 11 out of 44 CpG sites being hypermethylated. 
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Figure 4.20. Ancestor chart for neuron fate commitment. 
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Figure 4.21. SATB2 is differentially methylated between A1, C1 and NR. 

 

Clustering analysis shows that methylation of SATB2 is most similar between A1 and 

NR. Hypermethylation occurs more frequently in A1 and NR than in C1, where 

hypomethylation occurs more frequently. A1 and C1 have 14 and 13 dmCpG sites 

respectively, as compared to NR. 
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APPENDICES 

APPENDIX A 

HYPER AND HYPOMETHYLATED PATHWAYS SHARED BY TMX2-11 AND 

TMX2-28 

 

Hypermethylated* 

Pathway Genes p value 

sensory perception 

of smell 

OR5L1, OR2J2, OR1J4, OR4D10, 

OR52D1, OR8K1, OR4S2, OR52L1, 

OR8K3, OR5R1, OR5M1, OR5M3, 

OR4M1, OR5M9, OR10AG1, OR4D6, 

OR1S2, OR5M8, CNGA2, OR1S1, 

OR5H14, OR8J1, OR52K1, OR5H15, 

OR8J3, OR13F1, OR2D3, OR2L8, 

OR2B3, OR8U8, OR2L13, OR1G1, 

OR6A2, OR2T33, OR5AS1, OR10C1, 

OR10W1, OR5P3, OR2AG1, OR7G1, 

OR5P2, OR5M10, OR52E4, OR6C75, 

OR5AC2, OR2M4, OR2M5, OR12D2, 

OR52M1, OR12D3, OR4A15, OR11H6, 

OR4A16, OR10A6, OR52A1, OR5H2, 

OR4K17, OR11A1, OR51Q1, OR9A4, 

OR5W2, OR13A1, OR14J1, OR5AN1, 

OR5I1, OR52B2, OR52B4, OR2W1, 

OR2H1, GRM8, OR5V1, GRM7, OR6Q1, 

OR5D14, OR5D16, OR8H3, OR5D18, 

OR1L3, OR5A1, OR5A2, OR9Q1, 

OR9Q2, OR13C3, OR9I1, OR10G9, 

OR5E1P, OR5B12, OR5AP2, OR13C8, 

OR5B17, OR9G9, OR1B1, OR5K4, 

OR9G1, OR9G4, OR5B2, OR5T2, 

OR5B3, OR5T1, OR4X1, OR13D1, 

OR10Q1, OR8H2 

 

2.13E-34 

 

cell surface 

receptor linked 

signal 

transduction 

ADCY5, GPR123, LPHN2, HTR1B, 

S1PR1, GRIN2B, OR52L1, OR4S2, 

GAB1, ROS1, ADAM9, OR5R1, 

ATRNL1, OR1S2, OR4D6, OR1S1, 

VEGFC, GRB10, PPBP, OR52K1, F2, 

HTR6, OR13F1, ROR1, ROR2, 

ADAMTS1, OR2D3, OR2B3, GNAI1, 

4.28E-33 
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OR8U8, AKAP12, EPHB1, GPR141, 

SORCS3, OR1G1, ITGBL1, HCRTR1, 

OR6A2, BAI3, FCER1A, GUCY2F, 

BMP2, OR5P3, OR2AG1, TCF7, OR7G1, 

OR5P2, SMAD5, MAML2, TAX1BP3, 

KCNK2, BTLA, OR12D2, OR52M1, 

OR12D3, SFRP2, NOTCH4, PTENP1, 

FGF5, OR10A6, OR52A1, FGF9, 

OR11A1, OR51Q1, SIRPB1, EDNRB, 

OR9A4, OR5W2, OR13A1, NMUR2, 

SPG21, OR5AN1, OR52B2, OR52B4, 

OR2W1, GRM3, CCND1, GRM2, 

DACT1, CHRDL1, GRM8, OR2H1, 

GRM7, OR5V1, WNT9B, NPPB, IL12B, 

RAPGEFL1, CXCL5, APC2, OR5D14, 

GPR63, OR5D16, CXCL2, FPR1, 

OR5D18, FPR2, OR5A1, OR5A2, 

OR9Q1, OR9Q2, OR13C3, DGKB, 

PTK2B, OR5E1P, OR5AP2, OR5B12, 

NPFFR2, OR13C8, OR5B17, OR1B1, 

DGKK, DGKI, GRIA4, PTGFR, OR5T2, 

OR5B2, OR5B3, OR5T1, OR13D1, 

MC4R, OR10Q1, IFT52, BAMBI, 

WNT7A, HTR2A, BMP10, OR5L1, 

OR2J2, OR1J4, OR4D10, OR52D1, 

MARCO, OR8K1, WNT2, TIAM1, 

OR8K3, INSR, IRS2, OR5M1, BAIAP2, 

OR5M3, FGF22, DLL1, SOCS5, OR4M1, 

OR5M9, FGF20, OR10AG1, OR5M8, 

NCAM1, GABRR3, OR5H14, OR8J1, 

OR8J3, OR5H15, GPR50, AKAP4, 

C3AR1, OR2L8, PKHD1, OR2L13, 

ITGB6, OR2T33, OR5AS1, OR10C1, 

ENTPD1, DEFB1, OR10W1, GABRE, 

OR5M10, GABRA4, GABRA3, 

GABRA6, OR52E4, OR6C75, OR2M4, 

OR5AC2, OR2M5, OR4A15, OR11H6, 

OR4A16, CD274, ADRA1B, ADRA1A, 

MERTK, OR5H2, LEPR, PREX2, 

OR4K17, TAAR8, TAAR9, IAPP, 

RSPO3, HEY2, RSPO2, OR14J1, NRG1, 

GABRG1, OR5I1, GABRG3, CCDC88C, 

ARID5B, FSHR, ADRB2, CHRM2, 

OR6Q1, GAP43, GPRC5C, OR8H3, 

APH1B, GPR6, TAC1, OXTR, OR1L3, 

PF4, GPRC5B, MSX2, APLNR, HRH1, 
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OR10G9, OR9I1, PTN, APC, OR9G9, 

PTPRD, FLT1, GNAO1, OR5K4, OR9G1, 

OR9G4, RGS13, OR4X1, OR8H2, 

BMPR1B, ADAMDEC1 

neurological 

system process 

RP1, SYT5, OR5L1, OR2J2, OR1J4, 

OR4D10, OR52D1, WNT2, OR8K1, 

CTTNBP2, HTR1B, BDNF, S1PR1, 

OR4S2, GRIN2B, OR52L1, OR8K3, 

CHRNA7, OR5R1, KCND2, OR5M1, 

TRPA1, SIX3, OR5M3, OR4M1, OR5M9, 

OR10AG1, OR4D6, OR1S2, OR1S1, 

CNGA2, CTNNA2, OR5M8, GABRR3, 

LRAT, CAMK4, OR5H14, OR52K1, 

OR8J1, OR8J3, OR5H15, HTR6, OR13F1, 

OR2D3, OR2L8, OR2B3, OR8U8, ASZ1, 

RIMS1, OR2L13, OR1G1, KCNMB2, 

HCRTR1, CRB1, OR6A2, OR5AS1, 

OR2T33, OR10C1, OR10W1, GUCY2F, 

OR2AG1, OR5P3, OR5P2, OR7G1, 

OR5M10, GABRA3, GABRA6, OR52E4, 

OR6C75, NR4A3, OR2M4, OR5AC2, 

OR2M5, FOXP2, OR12D2, OR12D3, 

OR52M1, OR4A15, OR11H6, OR4A16, 

ADRA1B, CHRND, CACNA1E, RIT2, 

MERTK, CACNA1C, PTENP1, OR10A6, 

OR52A1, OR5H2, OR4K17, OR11A1, 

OR51Q1, MBP, SLC1A4, KCNQ5, 

OR9A4, WDR36, OR5W2, IAPP, 

SLC24A2, OR13A1, NMUR2, CNTNAP2, 

OR14J1, IMPDH1, KCNQ1, USH2A, 

OR5AN1, GABRG1, OR52B2, OR5I1, 

GABRG3, OR52B4, RAX, NRXN3, 

NRXN1, OR2W1, GRM3, EYA1, GRM2, 

GRM8, OR2H1, SBF2, GRM7, OR5V1, 

PLLP, IL12B, OR6Q1, OAT, ABLIM1, 

OR5D14, OR8H3, OR5D16, TAC1, 

OR5D18, OXTR, OR1L3, COL2A1, 

OR5A1, OR5A2, OR9Q1, ESPN, OR9Q2, 

OR13C3, HRH1, OR10G9, OR9I1, 

OR5E1P, OR5AP2, OR5B12, PTN, 

SCNN1A, NEFL, OR13C8, SCNN1D, 

OR5B17, OR1B1, OR9G9, OR5K4, 

DLGAP2, OR9G1, TBX1, AFF2, OR9G4, 

GRIA4, OR5T2, OR5B2, OR5B3, OR5T1, 

OR4X1, GRIA2, GRIA1, OR13D1, 

OR10Q1, OR8H2, PBX3, APBB1, 

1.34E-32 
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WNT7A, HTR2A 

 

sensory 

perception of 

chemical 

stimulus 

OR5L1, OR2J2, OR1J4, OR4D10, 

OR52D1, OR8K1, OR4S2, OR52L1, 

OR8K3, OR5R1, OR5M1, TRPA1, 

OR5M3, OR4M1, OR5M9, OR10AG1, 

OR4D6, OR1S2, OR5M8, CNGA2, 

OR1S1, OR5H14, OR8J1, OR52K1, 

OR5H15, OR8J3, OR13F1, OR2D3, 

OR2L8, OR2B3, OR8U8, OR2L13, 

OR1G1, OR6A2, OR2T33, OR5AS1, 

OR10C1, OR10W1, OR5P3, OR2AG1, 

OR7G1, OR5P2, OR5M10, OR52E4, 

OR6C75, OR5AC2, OR2M4, OR2M5, 

OR12D2, OR52M1, OR12D3, OR4A15, 

OR11H6, OR4A16, OR10A6, OR52A1, 

OR5H2, OR4K17, OR11A1, OR51Q1, 

OR9A4, OR5W2, OR13A1, OR14J1, 

OR5AN1, OR5I1, OR52B2, OR52B4, 

OR2W1, OR2H1, GRM8, OR5V1, GRM7, 

OR6Q1, OR5D14, OR5D16, OR8H3, 

OR5D18, OR1L3, OR5A1, OR5A2, 

OR9Q1, OR9Q2, OR13C3, OR9I1, 

OR10G9, OR5E1P, OR5AP2, OR5B12, 

OR13C8, SCNN1A, SCNN1D, OR5B17, 

OR9G9, OR1B1, OR5K4, OR9G1, 

OR9G4, OR5B2, OR5T2, OR5B3, 

OR5T1, OR4X1, OR13D1, OR10Q1, 

OR8H2 

 

1.72E-32 

 

G-protein 

coupled 

receptor protein 

signaling 

pathway 

ADCY5, GPR123, OR5L1, OR2J2, 

OR1J4, OR4D10, OR52D1, OR8K1, 

LPHN2, HTR1B, S1PR1, OR4S2, 

OR52L1, OR8K3, INSR, OR5R1, 

ATRNL1, OR5M1, OR5M3, OR4M1, 

OR5M9, OR10AG1, OR4D6, OR1S2, 

OR1S1, OR5M8, GABRR3, PPBP, 

OR5H14, OR52K1, OR8J1, OR8J3, 

OR5H15, HTR6, OR13F1, GPR50, 

OR2D3, OR2L8, C3AR1, OR2B3, 

GNAI1, OR8U8, PKHD1, AKAP12, 

OR2L13, GPR141, OR1G1, SORCS3, 

HCRTR1, OR6A2, OR5AS1, OR2T33, 

BAI3, OR10C1, ENTPD1, DEFB1, 

OR10W1, GABRE, OR2AG1, OR5P3, 

OR5P2, OR7G1, GABRA4, OR5M10, 

5.72E-30 
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GABRA3, GABRA6, OR52E4, OR6C75, 

KCNK2, OR2M4, OR5AC2, OR2M5, 

OR12D2, OR12D3, OR52M1, OR11H6, 

OR4A15, OR4A16, ADRA1B, ADRA1A, 

OR10A6, OR52A1, OR5H2, PREX2, 

OR4K17, OR11A1, OR51Q1, TAAR8, 

TAAR9, EDNRB, OR9A4, OR5W2, 

IAPP, OR13A1, NMUR2, OR14J1, 

OR5AN1, GABRG1, OR52B2, OR5I1, 

GABRG3, OR52B4, FSHR, OR2W1, 

GRM3, ADRB2, GRM2, GRM8, CHRM2, 

OR2H1, GRM7, OR5V1, OR6Q1, 

RAPGEFL1, GAP43, GPRC5C, CXCL5, 

OR5D14, GPR63, OR8H3, OR5D16, 

CXCL2, FPR1, GPR6, TAC1, OR5D18, 

OXTR, PF4, OR1L3, FPR2, GPRC5B, 

OR5A1, OR5A2, OR9Q1, OR9Q2, 

APLNR, OR13C3, HRH1, DGKB, 

OR10G9, OR9I1, OR5E1P, OR5AP2, 

NPFFR2, OR5B12, OR13C8, OR5B17, 

OR1B1, OR9G9, GNAO1, OR5K4, 

DGKK, OR9G1, OR9G4, DGKI, PTGFR, 

OR5T2, OR5B2, RGS13, OR5B3, OR5T1, 

OR4X1, OR13D1, MC4R, OR10Q1, 

OR8H2, HTR2A 

 

cognition RP1, OR5L1, OR2J2, OR1J4, OR4D10, 

OR52D1, OR8K1, BDNF, OR4S2, 

GRIN2B, OR52L1, OR8K3, CHRNA7, 

OR5R1, OR5M1, TRPA1, SIX3, OR5M3, 

OR4M1, OR5M9, OR10AG1, OR4D6, 

OR1S2, OR1S1, CNGA2, OR5M8, LRAT, 

OR5H14, OR52K1, OR8J1, OR8J3, 

OR5H15, OR13F1, OR2D3, OR2L8, 

OR2B3, OR8U8, RIMS1, OR2L13, 

OR1G1, CRB1, OR6A2, OR2T33, 

OR5AS1, OR10C1, OR10W1, GUCY2F, 

OR5P3, OR2AG1, OR5P2, OR7G1, 

OR5M10, OR52E4, OR6C75, OR5AC2, 

OR2M4, OR2M5, FOXP2, OR12D2, 

OR52M1, OR12D3, OR11H6, OR4A15, 

OR4A16, ADRA1B, MERTK, 

CACNA1C, PTENP1, OR10A6, OR52A1, 

OR5H2, OR4K17, OR11A1, OR51Q1, 

SLC1A4, OR9A4, WDR36, OR5W2, 

IAPP, SLC24A2, OR13A1, OR14J1, 

2.95E-27 
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IMPDH1, KCNQ1, USH2A, OR5AN1, 

OR52B2, OR5I1, OR52B4, RAX, 

OR2W1, EYA1, GRM8, OR2H1, OR5V1, 

GRM7, IL12B, OR6Q1, OAT, ABLIM1, 

OR5D14, OR8H3, OR5D16, OXTR, 

TAC1, OR5D18, OR1L3, COL2A1, 

OR5A1, OR5A2, OR9Q1, ESPN, OR9Q2, 

OR13C3, OR10G9, OR9I1, OR5E1P, 

OR5AP2, OR5B12, PTN, OR13C8, 

SCNN1A, SCNN1D, OR5B17, OR1B1, 

OR9G9, OR5K4, OR9G1, AFF2, TBX1, 

OR9G4, OR5T2, OR5B2, OR5B3, 

OR5T1, OR4X1, GRIA1, OR13D1, 

OR10Q1, OR8H2, APBB1, HTR2A 

 

sensory 

perception 

RP1, OR5L1, OR2J2, OR1J4, OR4D10, 

OR52D1, OR8K1, OR4S2, GRIN2B, 

OR52L1, OR8K3, OR5R1, OR5M1, 

TRPA1, SIX3, OR5M3, OR4M1, OR5M9, 

OR10AG1, OR4D6, OR1S2, OR1S1, 

CNGA2, OR5M8, LRAT, OR5H14, 

OR52K1, OR8J1, OR8J3, OR5H15, 

OR13F1, OR2D3, OR2L8, OR2B3, 

OR8U8, RIMS1, OR2L13, OR1G1, CRB1, 

OR6A2, OR2T33, OR5AS1, OR10C1, 

OR10W1, GUCY2F, OR5P3, OR2AG1, 

OR5P2, OR7G1, OR5M10, OR52E4, 

OR6C75, OR5AC2, OR2M4, OR2M5, 

OR12D2, OR52M1, OR12D3, OR11H6, 

OR4A15, OR4A16, MERTK, OR10A6, 

OR52A1, OR5H2, OR4K17, OR11A1, 

OR51Q1, OR9A4, WDR36, OR5W2, 

IAPP, SLC24A2, OR13A1, OR14J1, 

IMPDH1, KCNQ1, USH2A, OR5AN1, 

OR52B2, OR5I1, OR52B4, RAX, 

OR2W1, EYA1, GRM8, OR2H1, OR5V1, 

GRM7, IL12B, OR6Q1, OAT, ABLIM1, 

OR5D14, OR8H3, OR5D16, OR5D18, 

TAC1, COL2A1, OR1L3, OR5A1, 

OR5A2, OR9Q1, ESPN, OR9Q2, 

OR13C3, OR9I1, OR10G9, OR5E1P, 

OR5AP2, OR5B12, OR13C8, SCNN1A, 

SCNN1D, OR5B17, OR9G9, OR1B1, 

OR5K4, OR9G1, TBX1, OR9G4, OR5T2, 

OR5B2, OR5B3, OR5T1, OR4X1, 

OR13D1, OR10Q1, OR8H2, HTR2A 

6.98E-26 
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ion transport SLC9A9, SLC9A6, SCN3A, GABRB1, 

SLC26A2, KCNIP4, WNT2, MARCO, 

KCNQ5, CTTNBP2, ATP2B4, GRIN2B, 

SLC24A3, SLC24A2, NMUR2, 

SLCO1C1, ANO2, ANO5, CHRNA7, 

ANO4, MCOLN2, KCNQ1, OCA2, 

GABRG1, GABRG3, SVOP, KCND2, 

ATP4B, TRPA1, CACNG3, CNGA2, 

GABRR3, ATP2C2, ATP2C1, RYR3, F2, 

CLIC6, RYR2, KCNH8, SCN11A, PLLP, 

KCNH5, SLC38A4, SLC39A12, KCNA4, 

ASZ1, KCNMB2, KCNS3, KCNS2, 

SLCO1A2, CYP27B1, SCN9A, SCNN1A, 

SCNN1D, GABRQ, GABRE, TRPC4, 

SLC8A1, SLC12A1, GABRA4, GABRA3, 

KCNB2, GABRA6, ATP11B, GRIA4, 

CACNA2D3, KCNK2, KCNJ4, 

SLCO1B3, SLC17A3, GRIA2, KCNJ9, 

SLC17A4, GRIA1, SLC5A8, CACNA1H, 

SCN4B, CHRND, HEPH, CACNA1E, 

KCTD16, CACNA1C, CLCN7 

 

5.82E-08 

 

cell-cell 

signaling 

FGF5, SYT5, FGF9, FGF14, ILDR2, 

GDNF, MBP, WNT2, SLC1A4, KCNQ5, 

CTTNBP2, HTR1B, BDNF, GRIN2B, 

IAPP, NMUR2, LTB, GABRG1, 

GABRG3, KCND2, NRXN3, SIX3, 

NRXN1, FGF20, CTNNA2, GABRR3, 

GRM3, GRB10, GRM2, CAMK4, GRM8, 

GRM7, HTR6, WNT9B, GPR50, CXCL5, 

ASZ1, TAC1, OXTR, RIMS1, EPHB1, 

HCRTR1, IL17A, HRH1, CRB1, IFNA7, 

FCER1A, BMP2, TRHDE, GABRA3, 

DLGAP2, GABRA6, GRIA4, TNFSF9, 

GRIA2, GRIA1, SALL1, MC4R, 

ADRA1B, ADRA1A, CACNA1E, RIT2, 

LRP2, MERTK, CACNA1C, WNT7A, 

HTR2A 

 

4.29E-07 

 

transmission of 

nerve impulse 

SYT5, ASZ1, TAC1, OXTR, RIMS1, 

KCNMB2, MBP, WNT2, SLC1A4, 

CTTNBP2, KCNQ5, HCRTR1, HRH1, 

HTR1B, S1PR1, GRIN2B, NMUR2, 

CNTNAP2, GABRG1, GABRG3, 

KCND2, DLGAP2, NRXN3, GABRA3, 

2.94E-06 
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GABRA6, GRIA4, NRXN1, CTNNA2, 

GABRR3, GRM3, GRM2, CAMK4, 

GRIA2, GRIA1, SBF2, GRM8, GRM7, 

HTR6, PLLP, CACNA1E, RIT2, 

CACNA1C, WNT7A, HTR2A 

 

synaptic 

transmission 

SYT5, ASZ1, TAC1, OXTR, RIMS1, 

MBP, WNT2, SLC1A4, CTTNBP2, 

KCNQ5, HCRTR1, HTR1B, HRH1, 

GRIN2B, GABRG1, GABRG3, KCND2, 

NRXN3, GABRA3, DLGAP2, GABRA6, 

GRIA4, NRXN1, CTNNA2, GABRR3, 

GRM3, GRM2, CAMK4, GRIA2, GRM8, 

GRIA1, GRM7, HTR6, CACNA1E, RIT2, 

CACNA1C, WNT7A, HTR2A 

 

1.13E-05 

 

neuron 

differentiation 

TUBB2B, HELT, RORA, PRKG1, GDNF, 

RTN1, EFHD1, BDNF, S1PR1, 

CNTNAP2, ROBO2, UNC5C, ROBO3, 

NRXN3, STMN2, BAIAP2, NRXN1, 

FGF20, CTNNA2, FARP2, SLITRK2, 

BTG4, RELN, CNTN4, GAP43, DCC, 

PKHD1, SOX5, BRSK1, EPHB1, 

ALDH1A2, CRB1, PTK2B, TNR, GFI1, 

OLFM3, DCX, NEFL, APC, GNAO1, 

BHLHE22, PTPRZ1, NTNG1, LMX1A, 

PBX3, BMPR1B, APBB1, WNT7A, 

PTENP1 

 

1.83E-05 

 

metal ion 

transport 

SLC9A9, SLC9A6, SCN3A, KCNIP4, 

KCNQ5, ATP2B4, GRIN2B, SLC24A3, 

NMUR2, SLC24A2, CHRNA7, KCNQ1, 

KCND2, ATP4B, TRPA1, CACNG3, 

ATP2C2, ATP2C1, RYR3, F2, RYR2, 

SCN11A, KCNH8, KCNH5, SLC38A4, 

SLC39A12, KCNA4, KCNMB2, KCNS3, 

CYP27B1, KCNS2, SCN9A, SCNN1A, 

SCNN1D, SLC8A1, TRPC4, SLC12A1, 

KCNB2, CACNA2D3, KCNK2, KCNJ4, 

KCNJ9, SLC17A3, SLC17A4, SLC5A8, 

CACNA1H, SCN4B, CACNA1E, HEPH, 

KCTD16, CACNA1C 

 

2.07E-05 

 

behavior HELT, LEPR, GDNF, BSX, EDNRB, 

HTR1B, BDNF, GRIN2B, NMUR2, 

SLC24A2, ROBO2, CHRNA7, ROBO3, 

5.32E-05 
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GRM2, PPBP, GRM7, RELN, RASD2, 

CCL1, C3AR1, CXCL5, CXCL2, FPR1, 

ASTN1, TAC1, OXTR, PF4, FPR2, ESPN, 

PLCL1, HCRTR1, SCN9A, PTN, GFI1, 

DEFB1, GNAO1, TBX1, AFF2, NR4A3, 

FOXP2, CXCL17, GRIA1, NLGN4X, 

ADRA1B, MC4R, CACNA1C, PBX3, 

APBB1, PTENP1, HTR2A 

 

cell motion NEURL, ZEB2, PRKG1, GDNF, DSTN, 

WNT2, CTTNBP2, EDNRB, BDNF, 

DAB1, VNN1, ROBO2, ROBO3, UNC5C, 

NR2F2, NRXN3, ARID5B, NRXN1, 

CTNNA2, ELMO1, VEGFC, RELN, 

CNTN4, IL12B, GAP43, AKAP4, DCC, 

VIM, FPR1, ASTN1, ASZ1, PF4, CDH2, 

FPR2, EPHB1, PTK2B, TNR, CLASP2, 

DCX, APC, FN1, FLT1, TBX1, LMX1A, 

ETS1, BMPR1B, APBB1, SELE, PTENP1 

 

1.41E-04 

 

regulation of 

system process 

KCNE1L, BMP10, LZTS1, TAC1, OXTR, 

CDH2, GDNF, KCNMB2, EDNRB, 

HTR1B, BDNF, GRIN2B, SLC24A2, 

NMUR2, LTB, KCNQ1, SLC8A1, 

GNAO1, FLT1, KCNB2, GRIA4, 

LAMA2, GRM3, ADRB2, GRIA2, 

CHRM2, GRM8, ADRA1B, CACNA1H, 

NPPB, RYR2, CNTN4, PBX3, 

CACNA1C, HTR2A 

 

2.78E-04 

 

cell adhesion DLC1, COL21A1, MYBPC2, NELL1, 

SDC3, REG3A, ARHGAP6, DAB1, 

S1PR1, DGCR6, CNTNAP2, VNN1, 

ROBO2, ADAM9, CNTNAP5, NRXN3, 

SIGLEC12, NRXN1, BTBD9, CTNNA2, 

NCAM1, CD84, ARVCF, ATP2C1, 

LSAMP, ROR2, RELN, SGCE, CNTN4, 

CHL1, PARVA, DCHS2, CLDN17, 

PLXNC1, PKHD1, TNC, ASTN1, 

COL2A1, FPR2, CDH2, APLP1, ITGBL1, 

IGSF11, LAMB4, CDH7, COL6A6, 

FAT3, PTK2B, FAT4, TNR, HEPN1, 

ITGB6, DEFB118, COL8A1, ENTPD1, 

FN1, APC, TNXB, LAMA2, COL19A1, 

NLGN4X, COL29A1, BMPR1B, SELE 

 

3.77E-04 
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biological 

adhesion 

DLC1, COL21A1, MYBPC2, NELL1, 

SDC3, REG3A, ARHGAP6, DAB1, 

S1PR1, DGCR6, CNTNAP2, VNN1, 

ROBO2, ADAM9, CNTNAP5, NRXN3, 

SIGLEC12, NRXN1, BTBD9, CTNNA2, 

NCAM1, CD84, ARVCF, ATP2C1, 

LSAMP, ROR2, RELN, SGCE, CNTN4, 

CHL1, PARVA, DCHS2, CLDN17, 

PLXNC1, PKHD1, TNC, ASTN1, 

COL2A1, FPR2, CDH2, APLP1, ITGBL1, 

IGSF11, LAMB4, CDH7, COL6A6, 

FAT3, PTK2B, FAT4, TNR, HEPN1, 

ITGB6, DEFB118, COL8A1, ENTPD1, 

FN1, APC, TNXB, LAMA2, COL19A1, 

NLGN4X, COL29A1, BMPR1B, SELE 

 

3.91E-04 

 

neuron 

projection 

development 

 

DCC, PKHD1, PRKG1, GDNF, EPHB1, 

EFHD1, BDNF, PTK2B, TNR, ROBO2, 

UNC5C, ROBO3, DCX, NEFL, APC, 

GNAO1, NRXN3, PTPRZ1, BAIAP2, 

NTNG1, NRXN1, LMX1A, CTNNA2, 

SLITRK2, RELN, CNTN4, BMPR1B, 

APBB1, GAP43, PTENP1 

4.75E-04 

 

calcium ion 

transport 

TRPC4, SLC8A1, TRPA1, CACNG3, 

CACNA2D3, ATP2C2, ATP2B4, 

CYP27B1, GRIN2B, SLC24A3, ATP2C1, 

RYR3, SLC24A2, NMUR2, F2, 

CACNA1H, RYR2, CHRNA7, 

CACNA1E, CACNA1C 

 

5.98E-04 

 

Hypomethylated** 

    

Pathway Genes p value 

fear response BDNF, CCK, GRIK2 

 

0.007256045 

 

cell 

morphogenesis 

involved in 

differentiation 

SEMA5A, BDNF, CCK, KAL1, 

C22ORF28, DCLK1 

 

0.025362986 

 

   

neuron 

development 

SEMA5A, BDNF, CCK, KAL1, RORB, 

DCLK1, NTM 

 

0.027953923 

 

multicellular 

organismal 

response to 

BDNF, CCK, GRIK2 

 

0.028802466 
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stress 

neuron 

differentiation 

SEMA5A, BDNF, CCK, KAL1, RORB, 

SMARCA1, DCLK1, NTM 

 

0.029533905 
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APPENDIX B 

HYPERMETHYLATED PATHWAYS SHARED BY TMX2-11 AND TMX2-28 IN 

THE PROMOTER 

 

Pathway Genes p value 

sensory perception 

of smell 

OR10A6, OR5H2, OR5L1, OR11A1, OR2J2, OR1J4, 

OR51Q1, OR4D10, OR52D1, OR8K1, OR9A4, 

OR4S2, OR5W2, OR13A1, OR8K3, OR5AN1, 

OR52B2, OR5I1, OR52B4, OR5M1, OR4M1, OR4D6, 

OR1S2, OR1S1, OR5M8, CNGA2, OR5H14, OR52K1, 

GRM8, OR5V1, OR5H15, OR2D3, OR2L8, OR2B3, 

OR8U8, OR8H3, OR1L3, OR5A2, OR2L13, OR9Q1, 

OR1G1, OR9Q2, OR13C3, OR9I1, OR10G9, OR5E1P, 

OR5AP2, OR2T33, OR5B12, OR5AS1, OR10C1, 

OR10W1, OR5B17, OR9G9, OR5P3, OR2AG1, 

OR7G1, OR5P2, OR5K4, OR9G1, OR6C75, OR2M4, 

OR5B3, OR2M5, OR4X1, OR52M1, OR11H6, 

OR13D1, OR4A16, OR8H2 

6.50E-32 

sensory perception 

of chemical 

stimulus 

OR10A6, OR5H2, OR5L1, OR11A1, OR2J2, OR51Q1, 

OR1J4, OR4D10, OR52D1, OR8K1, OR9A4, OR4S2, 

OR5W2, OR13A1, OR8K3, OR5AN1, OR52B2, 

OR5I1, OR52B4, OR5M1, OR4M1, OR4D6, OR1S2, 

OR1S1, OR5M8, CNGA2, OR5H14, OR52K1, GRM8, 

OR5V1, OR5H15, OR2D3, OR2L8, OR2B3, OR8U8, 

OR8H3, OR1L3, OR5A2, OR2L13, OR9Q1, OR1G1, 

OR9Q2, OR13C3, OR9I1, OR10G9, OR5E1P, 

OR5AP2, OR2T33, OR5B12, OR5AS1, OR10C1, 

SCNN1A, SCNN1D, OR10W1, OR5B17, OR9G9, 

OR5P3, OR2AG1, OR7G1, OR5P2, OR5K4, OR9G1, 

OR6C75, OR2M4, OR5B3, OR2M5, OR4X1, 

OR52M1, OR11H6, OR13D1, OR4A16, OR8H2 

8.96E-31 

G-protein coupled 

receptor protein 

signaling pathway 

OR5L1, OR2J2, OR1J4, OR4D10, OR52D1, OR8K1, 

HTR1B, S1PR1, OR4S2, OR8K3, OR5M1, ATRNL1, 

OR4M1, OR4D6, OR1S2, OR5M8, OR1S1, GABRR3, 

PPBP, OR5H14, OR52K1, HTR6, OR5H15, OR2D3, 

C3AR1, OR2L8, OR2B3, OR8U8, AKAP12, GPR141, 

OR2L13, OR1G1, OR2T33, OR5AS1, OR10C1, 

DEFB1, OR10W1, GABRE, OR5P3, OR2AG1, 

OR7G1, OR5P2, GABRA3, GABRA6, OR6C75, 

OR2M4, OR2M5, OR52M1, OR11H6, OR4A16, 

OR10A6, OR5H2, OR11A1, OR51Q1, EDNRB, 

TAAR9, OR9A4, OR5W2, OR13A1, OR5AN1, 

GABRG1, OR5I1, OR52B2, OR52B4, FSHR, GRM3, 

5.19E-26 
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CHRM2, GRM8, OR5V1, GAP43, CXCL5, GPR63, 

CXCL2, OR8H3, GPR6, FPR1, TAC1, OR1L3, PF4, 

FPR2, OR5A2, OR9Q1, OR9Q2, HRH1, OR13C3, 

DGKB, OR9I1, OR10G9, OR5E1P, OR5B12, 

OR5AP2, OR5B17, OR9G9, GNAO1, OR5K4, 

OR9G1, DGKK, OR5B3, RGS13, OR4X1, OR13D1, 

OR8H2 

neurological 

system process 

OR5L1, OR2J2, OR1J4, OR4D10, OR52D1, OR8K1, 

CTTNBP2, BDNF, HTR1B, S1PR1, OR4S2, OR8K3, 

OR5M1, SIX3, OR4M1, OR4D6, OR1S2, OR5M8, 

CNGA2, OR1S1, GABRR3, OR5H14, OR52K1, 

HTR6, OR5H15, OR2D3, OR2L8, OR2B3, OR8U8, 

ASZ1, RIMS1, OR2L13, KCNMB2, OR1G1, CRB1, 

OR2T33, OR5AS1, OR10C1, OR10W1, OR5P3, 

OR2AG1, OR7G1, OR5P2, GABRA3, GABRA6, 

OR6C75, OR2M4, OR2M5, OR52M1, OR11H6, 

OR4A16, CHRND, PTENP1, OR10A6, OR5H2, 

OR11A1, OR51Q1, SLC1A4, OR9A4, WDR36, 

OR5W2, OR13A1, CNTNAP2, KCNQ1, OR5AN1, 

GABRG1, OR5I1, OR52B2, OR52B4, NRXN1, 

GRM3, GRM8, OR5V1, OR8H3, TAC1, OR1L3, 

OR5A2, OR9Q1, OR9Q2, HRH1, OR13C3, OR9I1, 

OR10G9, OR5E1P, OR5B12, OR5AP2, SCNN1A, 

SCNN1D, OR5B17, OR9G9, OR5K4, DLGAP2, 

OR9G1, GRIA4, OR5B3, OR4X1, GRIA1, OR13D1, 

OR8H2, APBB1 

2.31E-22 

sensory perception 

OR10A6, OR5H2, OR5L1, OR2J2, OR11A1, OR51Q1, 

OR1J4, OR4D10, OR52D1, OR8K1, OR9A4, WDR36, 

OR4S2, OR5W2, OR13A1, OR8K3, KCNQ1, 

OR5AN1, OR52B2, OR5I1, OR52B4, OR5M1, SIX3, 

OR4M1, OR4D6, OR1S2, OR1S1, OR5M8, CNGA2, 

OR5H14, OR52K1, GRM8, OR5V1, OR5H15, OR2D3, 

OR2L8, OR2B3, OR8U8, OR8H3, TAC1, OR1L3, 

RIMS1, OR5A2, OR2L13, OR9Q1, OR1G1, OR9Q2, 

OR13C3, CRB1, OR9I1, OR10G9, OR5E1P, OR5AP2, 

OR2T33, OR5B12, OR5AS1, OR10C1, SCNN1A, 

SCNN1D, OR10W1, OR5B17, OR9G9, OR5P3, 

OR2AG1, OR7G1, OR5P2, OR5K4, OR9G1, OR6C75, 

OR2M4, OR5B3, OR2M5, OR4X1, OR52M1, 

OR11H6, OR13D1, OR4A16, OR8H2 

6.40E-21 

cognition 

OR10A6, OR5H2, OR5L1, OR2J2, OR11A1, OR51Q1, 

OR1J4, OR4D10, OR52D1, OR8K1, SLC1A4, BDNF, 

OR9A4, WDR36, OR4S2, OR5W2, OR13A1, OR8K3, 

KCNQ1, OR5AN1, OR52B2, OR5I1, OR52B4, 

OR5M1, SIX3, OR4M1, OR4D6, OR1S2, OR1S1, 

OR5M8, CNGA2, OR5H14, GRM8, OR52K1, OR5V1, 

6.69E-21 



 

 195 

OR5H15, OR2D3, OR2L8, OR2B3, OR8U8, OR8H3, 

TAC1, OR1L3, OR5A2, RIMS1, OR2L13, OR9Q1, 

OR1G1, OR9Q2, OR13C3, CRB1, OR9I1, OR10G9, 

OR5E1P, OR5AP2, OR2T33, OR5B12, OR5AS1, 

OR10C1, SCNN1A, SCNN1D, OR10W1, OR5B17, 

OR9G9, OR5P3, OR2AG1, OR7G1, OR5P2, OR5K4, 

OR9G1, OR6C75, OR2M4, OR5B3, OR2M5, OR4X1, 

OR52M1, GRIA1, OR11H6, OR13D1, OR4A16, 

OR8H2, APBB1, PTENP1 

cell surface 

receptor linked 

signal transduction 

BMP10, OR5L1, OR2J2, OR1J4, OR4D10, OR52D1, 

OR8K1, MARCO, HTR1B, S1PR1, OR4S2, OR8K3, 

IRS2, OR5M1, ATRNL1, FGF22, SOCS5, OR4M1, 

OR4D6, OR1S2, OR1S1, OR5M8, GABRR3, VEGFC, 

GRB10, PPBP, OR5H14, OR52K1, HTR6, F2, 

OR5H15, ADAMTS1, OR2D3, C3AR1, OR2L8, 

OR2B3, OR8U8, AKAP12, GPR141, OR2L13, 

OR1G1, OR2T33, OR5AS1, OR10C1, DEFB1, 

OR10W1, GABRE, BMP2, OR5P3, OR2AG1, TCF7, 

OR7G1, OR5P2, GABRA3, GABRA6, SMAD5, 

OR6C75, TAX1BP3, OR2M4, OR2M5, OR52M1, 

SFRP2, OR11H6, OR4A16, PTENP1, OR10A6, 

OR5H2, OR11A1, OR51Q1, TAAR9, EDNRB, 

OR9A4, OR5W2, OR13A1, OR5AN1, GABRG1, 

OR52B2, OR5I1, OR52B4, FSHR, GRM3, DACT1, 

CHRDL1, GRM8, CHRM2, OR5V1, GAP43, CXCL5, 

APC2, GPR63, OR8H3, CXCL2, GPR6, FPR1, TAC1, 

PF4, OR1L3, FPR2, OR5A2, OR9Q1, OR9Q2, HRH1, 

OR13C3, DGKB, OR9I1, OR10G9, PTK2B, OR5E1P, 

OR5AP2, OR5B12, APC, OR5B17, OR9G9, GNAO1, 

OR5K4, OR9G1, DGKK, GRIA4, RGS13, OR5B3, 

OR4X1, OR13D1, OR8H2, IFT52 

2.52E-20 

defense response to 

bacterium 

DEFB121, PPBP, DEFB125, DEFB118, DEFB128, 

DEFB116, DEFB115, DEFB1, CTSG, DMBT1, 

DEFB119 

0.0013571

61 

gamma-

aminobutyric acid 

signaling pathway 

GABRG1, GABRE, GABRR3, GABRA3, GABRA6 
0.0022000

12 

ion transport 

SLC9A6, GABRB1, SLC39A12, ASZ1, SLC26A2, 

KCNIP4, KCNMB2, KCNS3, MARCO, CTTNBP2, 

SLC24A3, SCN9A, SLCO1C1, ANO5, MCOLN2, 

ANO4, KCNQ1, SCNN1A, SCNN1D, GABRG1, 

GABRE, SLC8A1, SVOP, GABRA3, GABRA6, 

GRIA4, CNGA2, GABRR3, KCNJ4, ATP2C2, KCNJ9, 

GRIA1, F2, SLC5A8, SCN4B, CHRND, HEPH 

0.0022975

48 

transmission of 

nerve impulse 

GABRG1, DLGAP2, GABRA3, GABRA6, ASZ1, 

TAC1, NRXN1, GRIA4, RIMS1, KCNMB2, SLC1A4, 

0.0025710

8 
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CTTNBP2, GABRR3, GRM3, HRH1, HTR1B, S1PR1, 

GRM8, GRIA1, HTR6, CNTNAP2 

regulation of cell 

migration 

BMP10, IRS2, ONECUT1, TAC1, LAMA2, VEGFC, 

S1PR1, SERPINE2, PTK2B, UNC5C, HDAC9, 

PTENP1, APC 

0.0033478

62 

behavior 

CCL1, C3AR1, HELT, CXCL5, CXCL2, FPR1, TAC1, 

PF4, FPR2, EDNRB, PLCL1, BDNF, HTR1B, SCN9A, 

ROBO2, GFI1, DEFB1, GNAO1, CXCL17, PPBP, 

GRIA1, NLGN4X, APBB1, PTENP1, RASD2 

0.0042000

34 

synaptic 

transmission 

GABRG1, DLGAP2, GABRA3, GABRA6, ASZ1, 

TAC1, NRXN1, GRIA4, RIMS1, SLC1A4, CTTNBP2, 

GABRR3, HRH1, HTR1B, GRM3, GRM8, GRIA1, 

HTR6 

0.0053343

57 

chemotaxis 
CCL1, C3AR1, EDNRB, CXCL17, PPBP, CXCL5, 

CXCL2, FPR1, ROBO2, PF4, FPR2, DEFB1 

0.0061942

79 

taxis 
CCL1, C3AR1, EDNRB, CXCL17, PPBP, CXCL5, 

CXCL2, FPR1, ROBO2, PF4, FPR2, DEFB1 

0.0061942

79 

cell-cell signaling 

CXCL5, ASZ1, TAC1, RIMS1, SLC1A4, CTTNBP2, 

HTR1B, HRH1, BDNF, IL17A, IFNA7, CRB1, 

GABRG1, BMP2, TRHDE, DLGAP2, GABRA3, 

GABRA6, SIX3, GRIA4, NRXN1, GABRR3, GRB10, 

GRM3, GRM8, GRIA1, SALL1, HTR6, LRP2 

0.0073813

35 

regulation of 

locomotion 

BMP10, IRS2, ONECUT1, TAC1, LAMA2, VEGFC, 

S1PR1, SERPINE2, PTK2B, UNC5C, HDAC9, 

PTENP1, APC 

0.0090853

41 

response to drug 

GABRE, NES, SLC8A1, GNAO1, ASZ1, ADIPOQ, 

CTTNBP2, CYP7B1, BDNF, PTK2B, SLC18A1, 

LRP2, PTENP1, APC 

0.0091754

27 

regulation of cell 

motion 

BMP10, IRS2, ONECUT1, TAC1, LAMA2, VEGFC, 

S1PR1, SERPINE2, PTK2B, UNC5C, HDAC9, 

PTENP1, APC 

0.0094469

85 
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APPENDIX C 

HYPERMETHYLATED PATHWAYS SHARED BY TMX2-11 AND TMX2-28 IN 

THE GENE BODY 

 

Pathway Genes p value 

ion transport 

SLC9A9, KCNIP4, WNT2, KCNQ5, GRIN2B, NMUR2, 

SLC24A2, ANO2, CHRNA7, KCNQ1, OCA2, GABRG3, 

KCND2, ATP4B, TRPA1, CACNG3, CNGA2, ATP2C1, 

RYR3, CLIC6, RYR2, PLLP, SCN11A, KCNH8, KCNH5, 

SLC38A4, SLC39A12, SCN9A, SCNN1A, GABRQ, 

GABRE, TRPC4, SLC12A1, GABRA4, KCNB2, 

GABRA3, ATP11B, GRIA4, CACNA2D3, KCNK2, 

SLCO1B3, GRIA2, GRIA1, SLC17A4, CACNA1H, 

SCN4B, CACNA1E, HEPH, KCTD16, CACNA1C, 

CLCN7 

7.35E-09 

metal ion 

transport 

SLC9A9, SLC38A4, SLC39A12, KCNIP4, KCNQ5, 

GRIN2B, SLC24A2, NMUR2, SCN9A, CHRNA7, 

KCNQ1, SCNN1A, TRPC4, SLC12A1, KCND2, ATP4B, 

KCNB2, TRPA1, CACNG3, CACNA2D3, KCNK2, 

ATP2C1, SLC17A4, RYR3, CACNA1H, SCN4B, RYR2, 

HEPH, SCN11A, CACNA1E, KCNH8, KCTD16, 

CACNA1C, KCNH5 

4.77E-07 

cell adhesion 

DLC1, DCHS2, PLXNC1, PKHD1, NELL1, ASTN1, 

COL2A1, FPR2, CDH2, SDC3, APLP1, ITGBL1, REG3A, 

IGSF11, ARHGAP6, COL6A6, FAT3, DGCR6, VNN1, 

CNTNAP2, COL8A1, ENTPD1, ADAM9, NRXN3, 

CNTNAP5, NRXN1, BTBD9, CTNNA2, NCAM1, 

LAMA2, COL19A1, ATP2C1, LSAMP, NLGN4X, ROR2, 

RELN, SGCE, CNTN4, COL29A1, SELE, CHL1, PARVA 

2.95E-06 

biological 

adhesion 

DLC1, DCHS2, PLXNC1, PKHD1, NELL1, ASTN1, 

COL2A1, FPR2, CDH2, SDC3, APLP1, ITGBL1, REG3A, 

IGSF11, ARHGAP6, COL6A6, FAT3, DGCR6, VNN1, 

CNTNAP2, COL8A1, ENTPD1, ADAM9, NRXN3, 

CNTNAP5, NRXN1, BTBD9, CTNNA2, NCAM1, 

LAMA2, COL19A1, ATP2C1, LSAMP, NLGN4X, ROR2, 

RELN, SGCE, CNTN4, COL29A1, SELE, CHL1, PARVA 

3.02E-06 

cell-cell 

signaling 

FGF9, FGF14, ILDR2, RIMS1, EPHB1, WNT2, KCNQ5, 

BDNF, GRIN2B, NMUR2, LTB, BMP2, GABRG3, 

KCND2, TRHDE, NRXN3, GABRA3, GRIA4, NRXN1, 

FGF20, TNFSF9, CTNNA2, CAMK4, GRIA2, GRM8, 

GRIA1, GRM7, ADRA1B, WNT9B, ADRA1A, GPR50, 

1.78E-05 
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CACNA1E, RIT2, LRP2, CACNA1C, WNT7A 

cation 

transport 

SLC9A9, SLC38A4, SLC39A12, KCNIP4, KCNQ5, 

GRIN2B, SLC24A2, NMUR2, SCN9A, CHRNA7, 

KCNQ1, SCNN1A, TRPC4, SLC12A1, KCND2, ATP4B, 

KCNB2, TRPA1, CACNG3, CACNA2D3, KCNK2, 

ATP2C1, SLC17A4, RYR3, CACNA1H, SCN4B, RYR2, 

HEPH, SCN11A, CACNA1E, KCNH8, KCTD16, 

CACNA1C, KCNH5 

1.96E-05 

multicellular 

organismal 

response to 

stress 

EDNRB, BDNF, GRIN2B, NMUR2, GRM7, TRPA1, 

SCN9A, RELN 

7.55E-05 

transmission 

of nerve 

impulse 

GABRG3, KCND2, GABRA3, NRXN3, NRXN1, GRIA4, 

RIMS1, CTNNA2, WNT2, KCNQ5, CAMK4, GRIA2, 

GRIN2B, GRM8, SBF2, GRIA1, NMUR2, GRM7, 

CNTNAP2, PLLP, CACNA1E, RIT2, CACNA1C, 

WNT7A 

8.78E-05 

neurological 

system 

process 

WNT2, KCNQ5, BDNF, GRIN2B, SLC24A2, NMUR2, 

CNTNAP2, CHRNA7, KCNQ1, IMPDH1, USH2A, 

GABRG3, OR5R1, KCND2, RAX, OR5M1, NRXN3, 

TRPA1, OR5M3, NRXN1, OR5M9, CTNNA2, CNGA2, 

OR5M8, EYA1, LRAT, CAMK4, SBF2, OR2H1, GRM8, 

GRM7, PLLP, ABLIM1, OR8U8, COL2A1, RIMS1, 

OR9Q1, OR5AP2, NEFL, SCNN1A, GUCY2F, OR9G9, 

OR5M10, GABRA3, OR9G1, TBX1, AFF2, GRIA4, 

FOXP2, GRIA2, GRIA1, ADRA1B, CACNA1E, RIT2, 

CACNA1C, PBX3, WNT7A 

1.01E-04 

appendage 

development 

MSX2, ALDH1A2, RAX, FGF9, PRRX1, COL2A1, 

ZBTB16, ASPH, SP8, MECOM, NR2F2, WNT7A 

1.10E-04 

limb 

development 

MSX2, ALDH1A2, RAX, FGF9, PRRX1, COL2A1, 

ZBTB16, ASPH, SP8, MECOM, NR2F2, WNT7A 

1.10E-04 

calcium ion 

transport 

TRPC4, TRPA1, CACNG3, CACNA2D3, GRIN2B, 

ATP2C1, RYR3, SLC24A2, NMUR2, CACNA1H, RYR2, 

CACNA1E, CHRNA7, CACNA1C 

1.33E-04 

cell surface 

receptor 

linked signal 

transduction 

FGF9, GPR123, LEPR, ADCY5, PREX2, WNT2, EDNRB, 

GRIN2B, NMUR2, GAB1, RSPO2, HEY2, NRG1, INSR, 

ADAM9, GABRG3, OR5R1, OR5M1, CCDC88C, 

BAIAP2, ARID5B, DLL1, OR5M3, FGF20, OR5M9, 

OR5M8, NCAM1, CHRDL1, GRM8, OR2H1, GRM7, 

WNT9B, ROR1, GPR50, ROR2, GAP43, AKAP4, 

GPRC5C, OR8U8, PKHD1, GNAI1, APH1B, AKAP12, 

FPR2, EPHB1, OR9Q1, ITGBL1, SORCS3, MSX2, 

APLNR, DGKB, OR5AP2, BAI3, ENTPD1, GUCY2F, 

GABRE, OR9G9, PTPRD, BMP2, FLT1, GABRA4, 

OR5M10, GABRA3, MAML2, SMAD5, OR9G1, DGKK, 

DGKI, GRIA4, PTGFR, KCNK2, BTLA, NOTCH4, 

1.35E-04 
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ADRA1B, ADRA1A, BAMBI, WNT7A, ADAMDEC1 

response to 

pain 

EDNRB, GRIN2B, NMUR2, TRPA1, SCN9A, RELN 1.60E-04 

neuron 

differentiation 

PKHD1, RORA, PRKG1, RTN1, EPHB1, EFHD1, 

ALDH1A2, BDNF, CNTNAP2, ROBO3, OLFM3, NEFL, 

NRXN3, STMN2, PTPRZ1, BAIAP2, NTNG1, NRXN1, 

LMX1A, FGF20, CTNNA2, BTG4, CNTN4, RELN, 

PBX3, WNT7A, GAP43 

1.66E-04 

muscle organ 

development 

POU6F1, ARID5B, UTRN, MYL1, MOV10L1, TBX1, 

FOXP2, LAMA2, COL19A1, HLX, CACNA1H, VGLL2, 

ZFPM2, SGCE, NRG1, NR2F2, TCF12 

2.15E-04 

cell motion 

ASTN1, ZEB2, CDH2, FPR2, PRKG1, EPHB1, DSTN, 

WNT2, EDNRB, BDNF, VNN1, CLASP2, ROBO3, 

NR2F2, FLT1, NRXN3, ARID5B, TBX1, NRXN1, 

LMX1A, ELMO1, CTNNA2, ETS1, CNTN4, RELN, 

SELE, GAP43, AKAP4 

2.50E-04 

regulation of 

system 

process 

LZTS1, FLT1, KCNB2, CDH2, GRIA4, LAMA2, EDNRB, 

BDNF, GRIA2, GRIN2B, GRM8, NMUR2, SLC24A2, 

ADRA1B, CACNA1H, RYR2, CNTN4, PBX3, 

CACNA1C, KCNQ1, LTB 

3.11E-04 

di-, tri-valent 

inorganic 

cation 

transport 

TRPC4, TRPA1, CACNG3, CACNA2D3, GRIN2B, 

ATP2C1, RYR3, SLC24A2, NMUR2, CACNA1H, RYR2, 

CHRNA7, CACNA1E, HEPH, CACNA1C 

3.26E-04 

synaptic 

transmission 

GABRG3, KCND2, GABRA3, NRXN3, NRXN1, GRIA4, 

RIMS1, CTNNA2, WNT2, KCNQ5, CAMK4, GRIA2, 

GRIN2B, GRM8, GRIA1, GRM7, CACNA1E, RIT2, 

CACNA1C, WNT7A 

5.24E-04 

 



 

 200 

 

APPENDIX D 

 

GENES WITH TWO OR MORE HYPERMETHYLATED CPG SITES IN THE 

PROMOTER IN BOTH TMX2-11 AND TMX2-28 IN ORDER OF DECREASING 

NUMBER OF HYPERMETHYLATED CPGS 

 

 

Official Gene Symbol 

Number of 

hypermethylated 

CpGs 

Average 

fold change 

TMX2-11 

Average 

fold change 

TMX2-28 

EDNRB 11 2.44 3.19 

SORBS2 7 4.98 7.95 

EVX2 6 3.05 3.70 

ZBTB20 6 4.19 5.56 

CXorf67 5 3.34 3.08 

MIR568 5 4.33 5.19 

ZNF350 5 4.63 3.82 

BMP2 4 9.09 9.55 

COL21A1 4 4.62 7.30 

CSGALNACT1 4 2.88 5.56 

CXCL2 4 6.35 16.98 

FMO6P 4 2.24 2.52 

RGS13 4 3.00 3.50 

ZNF385B/MIR1258 4 5.90 9.33 

ASZ1 3 2.44 2.94 

C18orf20 3 2.67 3.05 

CHRDL1 3 2.30 2.55 

COL29A1 3 5.17 4.29 

COX7B2 3 2.67 3.98 

DGKK 3 2.39 2.70 

ELAVL4 3 3.66 5.16 

FAM55D 3 4.69 9.05 

GFI1 3 4.98 7.07 

HDAC9 3 2.56 3.92 

HOXB9 3 2.67 3.94 

LOC284688 3 3.39 3.93 

LZTS1 3 3.49 4.67 

MAGEA5 3 3.44 5.32 

MIR452 3 4.03 2.87 

MIR548I4 3 3.35 5.59 

MOV10L1 3 2.32 4.45 

OR2M5 3 2.63 6.26 

PAK3 3 2.63 2.75 

PRKCDBP 3 2.26 2.36 

VANGL2 3 5.57 7.40 

ZNF215 3 4.96 10.56 

ZNF22 3 3.51 3.87 

ACTL9 2 3.00 3.49 

AKAP12 2 2.30 2.40 

ALDH3A1 2 2.06 2.95 

ASCL2 2 2.18 3.45 
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BMP15 2 3.96 4.14 

C6orf64 2 3.49 4.92 

CDC14C 2 4.28 4.25 

CDKL2 2 2.49 2.38 

CEACAM18 2 3.03 6.18 

CNGA2 2 6.83 7.06 

COL6A6 2 3.55 3.12 

CXCL5 2 2.96 2.76 

DEFB115 2 2.86 4.38 

DEFB116 2 4.44 8.06 

DEFB118 2 2.18 2.53 

FAM151B 2 2.25 2.83 

FAM19A4 2 5.55 4.79 

FAM55A 2 3.18 6.89 

FPR2 2 2.44 3.61 

FSHR 2 2.66 2.74 

GABRE 2 2.97 2.77 

GAP43 2 4.87 4.37 

GLYATL1 2 2.17 3.45 

GRB10 2 3.40 5.56 

GRM3 2 3.19 3.93 

GRM8 2 2.15 3.38 

GRXCR1 2 2.61 3.76 

GUCY1A2 2 5.19 8.96 

HCG4 2 2.60 3.36 

HELT 2 4.80 3.55 

HS3ST1 2 5.88 10.5 

IL17A 2 2.38 2.55 

IL17F 2 2.23 2.41 

KCNIP4 2 2.75 3.93 

KCNJ4 2 2.20 2.44 

KRTAP11-1 2 2.80 4.67 

KRTAP27-1 2 2.44 4.55 

LOC441666 2 2.19 2.14 

LOC728640 2 2.29 2.80 

LRP2 2 4.87 3.04 

MAGEA10 2 2.82 3.87 

MAGED1 2 3.56 5.58 

MAP3K15 2 6.48 5.50 

MAPRE2 2 2.67 2.85 

METTL11B 2 2.88 3.12 

MIR105-1 2 6.28 6.03 

MIR548F3 2 3.81 5.46 

MIR592 2 3.42 4.53 

MIR921 2 2.66 3.32 

MOXD2 2 3.11 4.64 

MS4A13 2 2.17 3.31 

MS4A4A 2 2.06 3.14 

MS4A6A 2 2.15 3.14 

MTUS2 2 3.09 4.55 

OR1S1 2 5.29 6.93 

OR2J2 2 2.73 3.15 

OR4D6 2 2.59 3.37 

OR5AS1 2 2.18 4.25 

OR5B12 2 11.67 17.35 

OR5E1P 2 3.25 6.42 

OR5H15 2 2.69 4.28 

OR5P3 2 4.93 10.71 

OR5V1 2 3.80 6.60 
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OR5W2 2 3.06 2.57 

OR8H3 2 2.92 2.70 

PPBP 2 2.78 4.04 

PRKG2 2 2.85 3.59 

REG1A 2 2.31 4.19 

REG1B 2 3.44 5.86 

RORA 2 3.00 2.46 

SGIP1 2 2.10 3.13 

SIX3 2 3.26 7.35 

SLC1A4 2 7.09 9.10 

SLC35F4 2 2.88 5.10 

SLC46A1 2 2.16 2.22 

SSRP1 2 3.29 6.83 

TAC1 2 2.30 3.36 

TCF12 2 2.77 4.32 

TIGIT 2 2.70 2.45 

UNC5D 2 2.15 2.52 

ZNF396 2 4.21 4.36 

ZNF615 2 2.56 4.01 

ZSCAN18 2 2.45 2.23 
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APPENDIX E 

COMPARISON OF HM450BC AND PYROSEQUENCING DATA SHOWS 

CORRELATION BETWEEN ANALYSIS METHODS 

 

 

 
 

 

CpG site methylation data from Table 4 were plotted to determine the correlation 

coefficient of the HM450 BeadChip (x-axis) and pyrosequencing (y-axis) data. All four 

ZNF350 and the single MAGED1 CpG sites are included on the graph. A single replicate 

was used for HM450 BeadChip data and the average of three replicates was used for 

pyrosequencing data. HM450 BeadChip beta value times 100 was calculated to compare 

with pyrosequencing percents. Pearson coefficient (R) = 0.931, p-value =<0.0001. 
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APPENDIX F 

METHYLATION OF RORA AND THBS1 ACROSS CPG SITES 

INTERROGATED BY PYROSEQUENCING  

 

 
 

A) RORA methylation decreases in all seven CpG sites analyzed by pyrosequencing. 

Methylation of CpG site 5258 (MAPINFO 60885258, highlighted in orange), a site 

interrogated by the HM450BC, decreases to levels similar to those in MCF-7 and TMX2-

11. Site 5233 (MAPINFO 60885233, highlighted in orange), another site interrogated by 

the HM450BC, also shows a decrease in methylation to levels similar to TMX2-11. B) 

Two sites were analyzed by pyrosequencing in the THBS1 gene, one of which, 1808 was 

on the HM450BC. Pyrosequencing analysis shows that treatment with 5-Aza decreases 

the levels of both CpG sites interrogated, however levels were not decreased to those of 

MCF-7 or TMX2-11. Analysis was completed using two separate experiments conducted 

9 months apart (n=6). 

Appendix Figure 3.1 Methylation of RORA and THBS1 across CpG sites interrogated 

by pyrosequencing. (A) RORA methylation decreases in all seven CpG sites analyzed 

by pyrosequencing. Methylation of CpG site 5258 (MAPINFO 60885258, highlighted 

in orange), a site interrogated by the HM450BC, decreases to levels similar to those in 

MCF-7 and TMX2-11. Site 5233 (MAPINFO 60885233, highlighted in orange), 

another site interrogated by the HM450BC, also shows a decrease in methylation to 

levels similar to TMX2-11. (B) Two sites were analyzed by pyrosequencing in the 

THBS1 gene, one of which, 1808 was on the HM450BC. Pyrosequencing analysis 

shows that treatment with 5-Aza decreases the levels of both CpG sites interrogated, 

however levels were not decreased to those of MCF-7 or TMX2-11. Analysis was 

completed using two separate experiments conducted 9 months apart (n=6). 

A. 

B. 

5242 5267 5282 5286 5308 

1808 1752 

5258 5233 

RORA 

THBS1 
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APPENDIX G 

HM450BC METHYLATION OF THE ER GENE  
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Appendix Figure 3.2 HM450BC methylation of the ER 

gene. Hypermethyation was present in 26 out of 38 CpG 

sites in the promoter region in TMX2-28 as compared 

with MCF-7 (blue box).  
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APPENDIX H 

CYTOTOXCICITY ASSAY TO DETERMINE 5-AZA CONCENTRATION 

 

 

 
 

Cells were treated in triplicate with 1, 2.5, 5, or 10 μM 5-Aza or a vehicle control (0 μM) 

for 4 days. TMX2-4 was most sensitive to the drug at low concentrations, with a 14 and 

19% decrease in proliferation at 1 and 2.5 M respectively. Consequently, a 

concentration of 2.5 M was chosen for further experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 3.3 Cytotoxicity assay to determine 5-Aza treatment concentration. Cells 

were treated in triplicate with 1, 2.5, 5, or 10 µM 5-Aza or a vehicle control (0 µM) for 4 

days. TMX2-4 was most sensitive to the drug at low concentrations, with a 14 and 19% 

decrease in proliferation at 1 and 2.5 uM respectively. Consequently, a concentration of 2.5 

uM was chosen for further experiments. 
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APPENDIX I 

CYTOTOXCICITY ASSAY TO DETERMINE SAM CONCENTRATION 

 

 

 
Cells were treated in triplicate with 50, 100, 200, or 300 μM SAM or a vehicle control (0 

μM) for 6 days. TMX2-4 was most sensitive to the drug concentrations, with a 27 and 

65% decrease in proliferation at 200 and 300 uM respectively. Therefore, concentration 

of 100 M was chosen for further experiments. 

 

 

 

 

Appendix Figure 3.4 Cytotoxicity assay to determine SAM treatment concentration. Cells were 

treated in triplicate with 50, 100, 200, or 300 µM SAM or a vehicle control (0 µM) for 6 days. 

TMX2-4 was most sensitive to the drug concentrations, with a 27 and 65% decrease in 

proliferation at 200 and 300 uM respectively. Therefore, concentration of 100 uM was chosen 

for further experiments. 
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APPENDIX J 

INDIVIDUAL PATIENT CHARACTERISTICS 
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A11A A1 45 No 0 
 

8 4 1 30 Neg Neg Neg Left . IDC . . 
AC+ 

pac 
Yes 

M
at
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ed
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rs
: 

E
R

+
 t

o
 E

R
+

 

A11B A2 46 No 1 12 8 6 0 30 Neg Neg Neg Left 50 IDC 3 
   

A13A A1 60 No 0 
 

8 6 0 0 Neg Neg Neg Right . DCIS 0 . None No 

A13B A2 72 Yes 1 143 8 4 0 1 Neg Neg Neg Right 12 DCIS 0 
   

A14A A1 62 No 0 
 

8 7 0 20 Neg Neg Neg Left 10 ILC 1 
Tam & 

AI 
None Yes 

A14B A2 74 Yes 1 142 8 0 0 0 Neg Neg Neg Left 30 ILC 3 
   

A15A A1 59 Yes 0 
 

8 8 0 1 Neg Neg Neg Right 25 IDC 3 AI 
AC+ 

pac 
Yes 

A15B A2 61 Yes 1 17 8 0 0 15 Neg Neg Neg Left . DCIS 0 
   

A16A A1 77 Yes 0 
 

7 0 0 15 Neg Neg Neg Right 22 IDLC 2 AI None No 

A16B A2 80 Yes 1 45 8 4 0 25 Neg Neg Neg Right 33 IDLC 3 
   

A17A A1 77 Yes 0 
 

8 7 0 1 Neg Neg Neg Left . IDC 1 
Tam & 

AI 
None No 

A17B A2 78 Yes 1 17 8 7 0 1 Neg Neg Neg Right 30 IDC 2 
   

A18A A1 37 No 0 
 

8 8 0 1 Neg Neg Neg Left 12 IDC 2 AI other No 

A18B A2 58 Yes 1 252 8 8 0 1 Neg Neg Neg Left 15 IDC 2 
   

A19A A1 43 No 0 
 

8 4 0 0 Neg Neg Neg Left 3 IDC 1 
Tam & 

AI 
None No 

A19B A2 49 No 1 70 8 6 0 2 Neg Neg Neg Right 5 IDC* 3 
   

A1A A1 47 No 0 
 

8 8 0 0 Neg Neg Neg Right 8 IDC 2 AI other No 

A1B A2 59 Yes 1 148 8 6 1 3 Neg Neg Neg Left . IDC* . 
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A20A A1 59 Yes 0 
 

8 3 0 0 Neg Neg Neg Left 10 IDC 2 
Tam & 

AI 
None No 

A20B A2 68 No 1 103 8 0 0 0 Neg Neg Neg Right 7 IDC 1 
   

A21A A1 38 No 0 
 

5 4 3 20 Neg Neg Neg Left 15 IDC 3 Tam None No 

A21B A2 40 No 1 21 4 4 3 20 Neg Neg Neg Left 10 IDC 3 
   

A2A A1 41 No 0 
 

7 8 1 4 Neg Neg Neg Left 15 IDC 2 Tam 
AC+ 

pac 
No 

A2B A2 46 No 1 55 7 4 3 20 Neg Neg Neg Left 13 IDC 3 
   

A7A A1 84 Yes 0 
 

8 8 0 3 Neg Neg Neg Left 20 ILC 1 . unkn No 

A7B A2 90 Yes 1 74 8 8 0 6 Neg Neg Neg Left 22 ILC 2 
   

A8A A1 66 Yes 0 
 

8 7 0 0 Neg Neg Neg Right 15 IDC 3 . unkn No 

A8B A2 76 Yes 1 128 8 6 1 0 Neg Neg Neg Left 55 ILC 1 
   

A8C   81 Yes 2 55 8 6 3 30 Neg Neg Neg Right 35 ILC 3       

U
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ed

 

A9B 
 

61 No 1 134 7 4 0 0 Neg Neg Neg Left . IDC 3 
   

A12B 
 

39 No 1 38 8 7 0 20 Neg Neg Neg . . IDC* . 
   

A9C 
 

62 No 2 21 0 0 0 40 Neg Neg Neg Right . IDC 3 
   

A3B 
 

65 Yes 1 52 8 6 0 4 Neg Neg Neg Right 15 IDC 2 
   

A5B 
 

72 Yes 1 76 8 5 1 7 Neg Neg Neg Left 9 IDC 2 
   

B2A B1 66 No 0   0 0 0 20 Pos . 
Occ

a 
Left 15 IDC 3 No 

AC+ 

doc 
Yes 
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E
R
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R
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B2B B2 74 No 1 90 0 0 0 20 Pos Pos Neg Left 10 IDC 3 
   

B3A B1 46 No 0 
 

0 0 0 2 Pos . Neg Right 9 IDC 3 No 
AC+ 

doc 
No 

B3B B2 48 No 1 37 0 0 0 25 Pos Pos Neg Right 5 IDC 3 
   

B4A B1 79 No 0 
 

0 0 0 2 Neg Neg Neg Left 38 IDC 3 No None Yes 

B4B B2 80 No 1 10 0 0 0 30 Neg Neg Neg Left . IDC 3 
   

B5A B1 52 Yes 0 
 

0 0 3 20 Neg Neg Neg Right 
 

IDC 3 No 
AC+ 

doc 
No 

B5B B2 53 Yes 1 11 0 0 3 20 Neg Neg Neg Right . IDC 3 
   

B7A B1 64 Yes 0 
 

0 0 0 25 Neg Neg Neg Right 20 IDC 3 No 
AC+ 

pac 
Yes 

B7B B2 66 Yes 1 22 0 0 0 35 Pos Pos 
Pos 

F 
Right 45 IDC 3 
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B4C   81 No 2 11 0 0 0 10 Neg Neg Neg Left   IDC 3       

U
n

m
at
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ed

 

B8A 
 

52 No 0 
 

0 0 0 35 Pos 
Pos 

F 

Occ

a 
Left . IDC 3 No unkn No 

B9B 
 

78 Yes 1 25 0 0 0 15 Neg Neg Neg Right . IDC 3 
   

B1B 
 

66 Yes 1 45 0 0 0 20 Neg Pos Neg Left . IDC . 
   

B5C 
 

55 Yes 2 32 0 0 3 30 Neg Neg Neg Right 
 

IDC 3 
   

C2A C1 51 No 0   8 0 3 15 Neg Neg Neg Right 36 DCIS 0 
Tam & 

AI 
. No 

M
at

ch
ed

  
p

ai
rs

: 
E

R
+

 t
o

 E
R

- 
 C2B C2 53 No 1 17 0 0 3 2 Neg Neg Neg Left 60 DCIS 0 

   
C3A C1 47 No 0 

 
8 8 0 10 Neg Neg Neg Left . IDC 2 Tam unkn No 

C3B C2 65 Yes 1 216 0 0 0 30 Pos Pos Neg Left 32 IDC 3 
   

C4A C1 58 Yes 0 
 

8 0 1 3 Neg Neg Neg Left 30 IDC 2 . unkn No 

C4B C2 64 Yes 1 71 0 0 0 15 Pos Pos Pos Right 20 IDC 3 
   

C5A C1 65 No 0 
 

8 0 3 5 Neg Neg Neg Left 12 IDC 3 yes other No 

C5B C2 68 No 1 36 0 0 3 15 Neg Neg Neg Right 19 IDC 3 
   

C6A C1 42 No 0 
 

7 7 0 0 Neg Neg Neg Right . DCIS 0 yes unkn No 

C6B C2 55 No 1 132 0 0 0 35 Neg Pos Neg Right 14 IDC 3 
   

C7A C1 55 Yes 0 
 

8 8 0 1 Neg Neg Neg Left 26 IDLC 2 yes unkn No 

C7B C2 57 Yes 1 25 0 0 3 0 Neg Neg Neg Right 43 DCIS 0 
   

C1B   68 Yes 1 60 0 0 3 10 Neg Neg Neg Right 50 DCIS 2 Tam     U
 

N1 
 

46 No 0 
 

8 8 0 2 Neg Neg Neg Right 9.6 IDC 2 yes 
AC+ 

pac 
No 

N
o

n
re

cu
rr

en
ts

 N10 
 

69 Yes 0 
 

0 0 0 50 Pos Neg Pos Left 25 IDC 3 yes other No 

N3 
 

69 Yes 0 
 

8 8 0 0 Neg Neg Neg Right 10 ILC 2 AI None No 

N4 
 

44 No 0 
 

8 0 0 0 Neg Neg Neg Left 24 DCIS 0 Tam None No 

N5 
 

54 No 0 
 

8 3 1 10 Neg Neg Neg Right 4 ILC 1 AI None No 

N6 
 

51 No 0 
 

8 3 3 3 Neg Neg Neg Left 24 IDC 3 yes 
AC+ 

pac 
No 

N7 
 

55 No 0 
 

8 0 0 1 Neg Neg Neg Left 25 IDC 2 AI other Yes 

N8   64 Yes 0   0 0 0 1 Neg Neg Neg Right 25 DCIS 0 No None Yes 

1Group refers to the 3 sets of matched primary and recurrent tumors described in text 
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2Time to recurrence is in months 
 

3IDC = invasive ductal carcinoma; DCIS = ductal carcinoma in situ; ILC = invasive lobular carcinoma; IDLC = invasive ductal & lobular 

carcinoma  

4Tam = Tamoxifen; AI = aromatase inhibitor; yes = treatment received but type unknown 
 

5AC = Adriamycin (doxorubicin) and cyclophosphamide; pac = paclitaxel; doc = docetaxel; other = one of several different combinations; 

unkn = treatment received but type unknown  

6Follow-up treatment refers to treatment following the excision of the primary tumor 
 

*Indicates lung metastases; Samples A1B, A12B, and A19B 

Missing data are represented with a "."  

Not applicable are left blank 
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APPENDIX K 

DIAGRAM OF TISSUE MICRODISSECTION FOR DNA PURIFICATION 

Unstained breast tissue section on 

slide placed over H&E stained slide 

as guide for tumor 

Carefully macrodissected tissue 

using a sterile needle and placed 

into microcentrifuge tube 

5-10 µm thick FFPE 

tissue slice 

Sent DNA to USC for QC and HM450K analysis 

Purified DNA using MoBio BiOstic FFPE DNA purification kit 

Analyzed DNA for quality and concentration 

Ethanol precipitation if needed 
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APPENDIX L 

35 HYPERMETHYLATED AND HYPOMETHYLATED CPG SITES AND 

ASSOCIATED GENES 

ER-Positive Hypermethylated (23 CpG Loci) 

TargetID SYMBOL PRODUCT 

cg09068528 ACADL 
acyl-Coenzyme A dehydrogenase; long 

chain precursor 
cg00116234 ADAMTSL1 ADAMTS-like 1 isoform 2 

cg00079563 ARFGAP3 
ADP-ribosylation factor GTPase 

activating protein 3 

cg08690031 CDCA7 
cell division cycle associated protein 7 

isoform 1 

cg14998713 ETS1 
v-ets erythroblastosis virus E26 oncogene 

homolog 1 
cg14228238 EVI1 ecotropic viral integration site 1 
cg12998491 FAM78A hypothetical protein LOC286336 
cg00679738 FAM89A hypothetical protein LOC375061 

cg01657408 
FLJ31951  

(RNF145) hypothetical protein LOC153830 

cg18108623 
FLJ34922  

(SLFN11) hypothetical protein FLJ34922 
cg01561916 HAAO 3-hydroxyanthranilate 3;4-dioxygenase 

cg01868782 HEY2 
hairy/enhancer-of-split related with 

YRPW motif 2 
cg12370791 HOXB9 homeo box B9 
cg14188232 ITGA11 integrin; alpha 11 precursor 

cg02755525 NETO2 
neuropilin- and tolloid-like protein 2 

precursor 
cg14019317 PROX1 prospero-related homeobox 1 
cg25336579 PSAT1 phosphoserine aminotransferase isoform 2 
cg12717594 RECK RECK protein precursor 

cg06377278 RUNX3 
runt-related transcription factor 3 isoform 

2 
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cg15239123 SMOC1 
secreted modular calcium-binding protein 

1 

cg00893242 SND1 
staphylococcal nuclease domain 

containing 1 

cg01186777 TNFSF9 
tumor necrosis factor (ligand) 

superfamily; member 9 
cg12874092 VIM vimentin 

ER-Negative Hypermethylated (12 CpG Loci) 

TargetID SYMBOL PRODUCT 

cg08090772 ADHFE1 alcohol dehydrogenase; iron containing; 1 

cg27650175 DAB2IP DAB2 interacting protein isoform 1 

cg14063008 DAB2IP DAB2 interacting protein isoform 1 

cg07981910 DAB2IP DAB2 interacting protein isoform 2 

cg05684891 DAB2IP DAB2 interacting protein isoform 2 

cg00720137 DYNLRB2 dynein; cytoplasmic; light polypeptide 2B 

cg14874121 HSD17B4 estradiol 17 beta-dehydrogenase 4 

cg07433344 HSD17B8 estradiol 17 beta-dehydrogenase 8 

cg16541031 IRF7 interferon regulatory factor 7 isoform a 

cg23178308 PDXK Pyridoxal (pyridoxine, vitamin B6) kinase 

cg17599586 PISD phosphatidylserine decarboxylase 

cg08108311 WNK4 WNK lysine deficient protein kinase 4 
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APPENDIX M 

SHARED CPG SITES BETWEEN HYPERMETHYLATED AND 

HYPOMETHYLATED PATHWAYS 

 

MAPINFO MAPINFO MAPINFO MAPINFO MAPINFO MAPINFO 

1000471 13889871 21814787 39969264 65494101 97507666 

100075304 139017424 21814789 39969297 65601167 97657432 

100075396 139144055 21814793 40204479 6565046 97657553 

100259329 139208223 21835945 40254712 65670237 97657608 

100259341 139283681 219646481 40428713 65670841 98279166 

100318154 139396524 21984339 40428986 66049932 98480124 

1004213 139538222 21985589 40825980 66135527 98620518 

100441223 139539092 21985613 41086050 66135734 98620572 

100784781 13957159 21985628 41086274 66189297 98850691 

100881458 139589617 21985706 41086680 6622294 98850881 

100882213 140261697 219857927 41086800 6622297 98881259 

100882334 140306205 219867925 41131315 6622338 98945131 

1008964 140306208 21988147 41267981 6622425 98945949 

100913842 140306377 21988173 41268130 66597378 99283201 

101111427 140345966 220025712 41511175 66878654 99357437 

101380601 140346199 220025719 41624841 66878709 99382193 

101419479 140346236 220406470 41786692 66878810 99439119 

101419483 140346263 22122872 41818756 66878871 99439685 

101570703 140346293 222436985 41818770 67048577 99470550 

101618394 140346309 22263347 4198058 67134587 99470560 

102090791 140346394 223175334 42139507 67350976 99470618 

102090979 140346403 223900693 42445059 67351490 99531765 

102107676 140381745 224903393 42543442 67360805 9957221 

102158209 140566710 224903977 42633783 67410806 9957467 

102414501 140566767 22518317 42982929 67410995 9957531 

102568886 140700272 22539908 4298749 67837483 996280 

102729375 140855547 226411247 43099350 67837689 
 

10276984 140855582 226736713 43142086 68165759 
 

102807849 140855857 226925181 43142093 68166241 
 

102809984 140856330 228029433 43153216 68260574 
 

102810101 141490067 228029452 43153223 68481049 
 

102810157 141490097 228225687 43188257 68481342 
 

102863004 141490153 228604037 43242911 68546467 
 

103046736 14183018 228604240 43428471 68546507 
 

103046930 14183064 228645045 4357579 68546579 
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103046943 14183086 228645634 4357716 68547088 
 

103047053 14183212 228645688 43597565 688132 
 

103052468 142053720 228645710 43662979 68864324 
 

1031205 14212636 228645796 43702080 68864523 
 

10316358 142139002 228645859 43702277 68864529 
 

10316367 142494953 228646224 43864466 68864546 
 

103352267 142552914 228872121 43864628 68864549 
 

103352294 142607799 23038177 43902315 68870812 
 

103425389 142607939 230579435 43922174 68870892 
 

103600846 142682652 231762962 43971928 69240429 
 

103601188 142682682 23208349 43989949 69243285 
 

10382828 143060037 23217017 44040206 69243398 
 

10383164 143532735 232260305 44059003 69243486 
 

104153148 143743939 232395061 44258271 69243510 
 

104178949 143766916 232527265 44258572 69243752 
 

104383499 144533322 23261117 44319719 69326897 
 

104383715 144621971 233464194 44320173 69634372 
 

104383722 144629702 233464229 44331108 69634400 
 

104383724 1446802 233792732 44420276 69725117 
 

104383730 144680893 235813272 44450962 69725223 
 

104383798 145027948 23607951 44540794 69726397 
 

104584098 14516815 236227653 44763979 69760119 
 

10458667 145473631 237027592 44763993 69786306 
 

104609432 145566975 23712355 44764101 70033592 
 

10479966 145718405 23712364 44928967 70033624 
 

104850745 145878963 2375010 44928992 70033627 
 

104851909 145878979 2375420 44928995 70034475 
 

104902678 146257484 24130450 44947976 70034491 
 

10532886 146257862 241760025 45056008 7005733 
 

10534809 146258427 24229575 45056057 70313417 
 

105628017 1463554 242743214 45056325 70351524 
 

105628022 1463620 242743588 45056646 70415514 
 

105628027 14643925 24358236 45065052 7041565 
 

105663093 146614298 24358327 45097940 7041599 
 

105760444 146614596 24360156 45128769 7041930 
 

105760890 146833171 24360391 45128775 70655862 
 

10591633 1475742 24449668 45241222 70745466 
 

106331160 148033708 244893503 45331082 70745540 
 

106331166 148651359 2461278 45403493 70745601 
 

106532491 148651363 246785611 45444623 70746654 
 

106533997 148663426 247611502 45444767 70758965 
 

107005390 148663571 248020692 45496476 71122946 
 

107019166 148663583 248020697 45496482 71123004 
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107282483 148663829 24837564 45613825 71123154 
 

107502023 148664322 24857719 45614290 71123196 
 

107713049 148664420 25019044 45614300 71123290 
 

107713740 148881226 25019747 45614720 71264579 
 

107777602 149068864 25219897 45614848 71264678 
 

107798913 149068974 25219914 45662262 71404443 
 

107799197 14924712 25219961 45670865 71497113 
 

107799660 14925198 25219976 45670875 71640369 
 

10812817 149632705 25241427 45695643 71666682 
 

1083002 150186289 25241462 45696455 71679959 
 

1083491 150211855 25242031 45696465 72052924 
 

108523056 150390267 25439375 4580777 72123958 
 

108523409 150390274 25464008 45960367 72141625 
 

108924366 150464124 25465219 45960834 72352968 
 

108924560 150464265 25465242 46317036 72388282 
 

10895950 150497346 25559743 46354562 72416469 
 

10895978 150497496 25621328 46354565 72416677 
 

109235928 150497663 25703528 46354630 72459953 
 

109294168 150497669 25864083 46414355 72596557 
 

109648208 150497703 25935223 46438743 72612125 
 

109747333 150497740 25944514 46477273 73030356 
 

109964033 150674972 26108391 46477288 73099917 
 

109964223 150674980 26108399 46507705 73145006 
 

109964581 150675025 26108401 46641708 73149356 
 

110009282 150675859 26108410 46655387 73331405 
 

110223967 151479894 26108412 46655394 73435229 
 

110228269 1523917 26172302 46655561 73449519 
 

110453107 152850698 26223310 46655580 73676012 
 

110454063 153601123 26284938 46655588 73706527 
 

110581872 153652247 26370552 46655790 73893202 
 

110582247 15413437 26370717 46669221 73972820 
 

110582420 15413461 2652640 4667753 73973008 
 

110583036 154335014 2659081 46703422 74005557 
 

110583377 154681128 2659305 46719761 74005562 
 

110583599 154797867 26625273 46742865 74005566 
 

11059577 154797892 26625307 46800467 74044539 
 

11059677 154797917 26625359 46825840 74045075 
 

110703888 155247706 26625766 46924050 74236251 
 

110704080 155664311 26626134 46932308 74236288 
 

110704116 155665249 2674285 46992909 74347435 
 

110754087 156433108 268923 47133964 74533976 
 

110754101 156433300 268950 4715520 74534090 
 

110958892 156433317 268976 47301741 74725980 
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110958977 156433350 27012615 47307743 74726136 
 

110959356 156433367 27044629 47394431 74868604 
 

110959647 156572731 27044685 47468154 74868670 
 

110960177 157180005 27045048 47518747 74868725 
 

110960186 157261106 27053221 47576957 74892744 
 

110960198 15761854 27053247 47653309 74951923 
 

111162296 158141570 27053250 47691301 74988951 
 

111217406 158365160 27053559 4771201 75139139 
 

111472183 158449803 27112287 4775638 75139347 
 

11148769 15847977 27112305 48046859 75139364 
 

11148932 15848067 2721819 48075568 75139470 
 

11149068 15848072 27224092 48086162 75139482 
 

111637200 15848253 27238279 48086580 75139490 
 

111730545 15848264 27239728 48206749 751830 
 

111840957 159200676 27280423 48206884 751833 
 

111981687 160761085 2738746 48397225 752149 
 

112531653 160973736 27389879 48398535 752180 
 

112533260 16179633 27411030 48398730 75368902 
 

112629604 16179660 27455004 48462306 75369055 
 

112832547 16180048 27717801 48462862 75369224 
 

112930675 162273011 27723409 48494536 75379166 
 

112931182 162930177 27763865 48503057 75480246 
 

112931194 162930188 27782628 48503163 75528813 
 

11349023 162930325 27782658 4868983 7554681 
 

114176105 162930666 27799380 4870012 75601276 
 

114178220 162930671 28032282 48988066 75612223 
 

114180814 16310359 28034797 49372180 75629039 
 

11430447 16375404 28034816 49378032 7566656 
 

114695695 1639534 28199109 49427684 75670903 
 

114898409 164264853 28199456 49521109 7568539 
 

114898440 164265004 28219613 495736 75787820 
 

114918693 164265012 28241425 495817 75788038 
 

114937784 16555379 28351906 49737236 75788212 
 

114938002 166039444 28352098 49812963 75788231 
 

115132761 166421992 28366600 49888944 75788287 
 

115377939 166795323 28396039 49926070 75831210 
 

115530150 166809971 28492265 49962507 75896720 
 

115630748 167350883 28503060 49962509 75896801 
 

115803805 167599527 2861914 49962609 75905604 
 

115918745 167599631 2864736 49962729 75955844 
 

11592958 167956581 289390 50134915 76189770 
 

116163765 168149401 28983117 5018805 76381687 
 

116381660 168149519 28983120 50194228 76381937 
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116383634 1685555 28983122 5026393 76382149 
 

11653600 16871106 28995458 5026543 76476158 
 

116997308 168728076 28998195 50354998 76510579 
 

117317515 168728081 28998214 50355307 76633627 
 

117513042 168728213 29106422 50496857 76838549 
 

117513101 168728270 29125104 50608218 76838560 
 

11752089 16884364 29302016 50638648 76976057 
 

117537264 16884576 29336262 50717667 77160030 
 

117586817 16926335 29338258 50791419 77168916 
 

117798954 16926680 29338432 50810682 77246968 
 

11783294 169387139 29394775 50817213 77270312 
 

118030848 169940192 29450584 50828905 77459677 
 

118030970 170600562 29451235 50832651 77460719 
 

11810173 170646566 29711918 5085586 77607222 
 

118603742 17137306 29711922 5085597 77719326 
 

118603880 171572714 29711941 5085713 77719408 
 

118603908 172359575 29716597 50893226 77734206 
 

118603938 172543905 29716601 50969997 77736904 
 

118753705 17281327 29794657 50970086 77765305 
 

118899024 17282284 29855347 50982818 77776587 
 

118960340 17282333 29855435 51147769 78004303 
 

119040090 17398264 29894737 51221603 78079801 
 

11919376 17399405 29894903 5140001 78080068 
 

119227631 174219209 29894986 51568336 78080193 
 

119234736 174871289 29895037 51842336 78237432 
 

119274192 175084743 29911036 51869353 78272372 
 

119298355 1753623 29967531 51869589 78272378 
 

119298513 1753636 30018720 51869672 78272393 
 

119419786 175547056 30116489 51869678 78423530 
 

119610526 175547399 30138339 51869680 78449647 
 

11969958 175792176 30144547 51869687 78450357 
 

11970145 175792510 30206046 5207312 7851280 
 

119769268 175792973 30227883 52074483 78549324 
 

119916017 175793049 30431699 52196506 78913147 
 

1202468 176047485 30449081 52241186 78933407 
 

12038718 176986856 30484033 52419380 789928 
 

120514968 176987174 30606026 52419483 789930 
 

120628572 17699773 30670159 52456361 79151188 
 

120628874 177004604 30890555 52499571 79151719 
 

1206682 177099102 30890583 52511853 79152102 
 

1206693 17726965 30938073 52626476 79152112 
 

1206703 178017571 3109053 52626524 79234251 
 

1206739 178017578 31126267 52626668 79318146 
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1206758 178257266 31158158 53013726 79318875 
 

120806383 178257292 31170822 53350498 79373381 
 

120969079 178257317 31193985 53564 79578343 
 

121412970 178257407 31360817 54155663 79724519 
 

121413143 178257585 31483285 54156330 79739863 
 

12156718 178257590 31483774 54164310 79740185 
 

121783544 178313656 31609347 54402704 80055067 
 

121993049 178450763 31609351 54411773 80186763 
 

121993098 179660224 31619231 54422775 80530701 
 

121993378 179754483 31620378 54423807 80531597 
 

121993696 179754521 31684836 54477 80656888 
 

122399344 179754529 31831428 54618544 80696445 
 

122854796 179754603 31831553 54671440 8103101 
 

122872351 179754615 31831803 54675137 81123613 
 

122872836 180017349 31833013 54675154 8112956 
 

122872838 18011922 31833016 54912286 8113573 
 

122872996 180123317 31835534 54966247 81187125 
 

122873018 180479829 31835577 55033982 81187198 
 

12290322 180631909 3202077 55092884 81187610 
 

123167276 180725907 32110523 55102849 819227 
 

123167507 180726035 32111001 55366610 82116365 
 

123167522 180726249 32226684 55370423 82116392 
 

123167770 180726252 3227741 5543548 82116456 
 

12329223 180726328 3227751 5544099 82116571 
 

12329242 180726349 3227981 5544169 82116596 
 

12329745 180979631 3232246 55443757 82167764 
 

12329826 18208422 32433833 55524333 82167774 
 

12330263 182521880 32456910 55672036 82192663 
 

12330332 183066337 32456912 55690381 82193449 
 

123379308 183155573 32457158 55865288 82193460 
 

123673331 18319362 32460799 55991782 82193704 
 

123748753 183993995 32485396 56224627 82444798 
 

123753198 18486241 32489203 5629371 82965088 
 

124124875 18487771 32489555 5629683 82965868 
 

124529273 185827293 32526065 5630016 83377929 
 

124639215 186648279 32639011 5630348 83478878 
 

124639221 186648285 32714023 563891 8367425 
 

124738871 186648544 32714038 56536599 83679643 
 

124782817 187025886 32907636 56609274 83776269 
 

124791197 187025897 32907639 56623215 83776271 
 

124890314 187065831 33037792 56623312 84002370 
 

125259369 187066279 330732 56623390 84002599 
 

125284203 187092 3310268 56666334 841436 
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125284241 187476599 33173024 56677335 8429439 
 

125284245 1875011 33183713 5681323 84419202 
 

125284359 1876131 33216697 56833197 84419242 
 

125932073 18900772 33245114 56879554 84651521 
 

125986472 189203962 33245457 56879559 84651816 
 

126006749 189838686 33245471 56879662 85358477 
 

126069089 190539103 33351568 56915347 85430336 
 

126069645 191045309 33397679 56998622 85640810 
 

126240239 191045668 33486937 57016682 85954316 
 

126625864 19188414 33487058 5713100 85954331 
 

126626298 19189456 33590495 57194562 85954336 
 

126626364 19191417 33701353 57198533 860925 
 

126626557 192126742 33792148 57250780 86300605 
 

126873139 192127457 34392203 57365116 86383236 
 

127439539 192232077 34405681 57463991 86383252 
 

127440000 19281019 34442360 57836242 86383300 
 

127644075 19281140 34442377 57978892 86539022 
 

127807500 19281185 34460557 58213109 86543092 
 

127837931 19281197 34625543 58227267 86543519 
 

12809014 194208441 34629400 58358384 86658385 
 

12809420 19437157 34645109 58514497 8699462 
 

128152075 19483394 34657676 58520847 87105216 
 

12838028 19562810 34894648 58545728 87521180 
 

12838136 1958851 35395837 58609473 88070661 
 

1283875 1958883 35517516 58609730 88071195 
 

128431947 19617439 356222 58609744 8810139 
 

128433373 196366451 35639492 58609764 8810980 
 

128458240 19668147 35639632 58609770 88295472 
 

128458281 196729632 35639653 58619169 88324169 
 

128470599 1967781 35639656 5890411 88324597 
 

128530306 1968232 35772996 5890430 88324879 
 

128720884 19706186 35772999 59104825 88717134 
 

128796079 19706365 3585406 59189791 88731631 
 

128796097 19748910 3585609 59216714 88752056 
 

129685695 197808017 3606853 59477172 88793252 
 

130339733 19812592 36389575 59990120 88875836 
 

13043878 19970334 36531652 60383672 88875840 
 

130645645 19988706 36591112 6063654 88928467 
 

130646497 200323147 36788387 6069929 8906601 
 

13124215 200323768 36909413 60779652 8907213 
 

1312475 20044428 36920332 60780415 89080179 
 

13137129 20085047 36985996 60795818 89080191 
 

131513927 200992656 36986513 61051317 89163804 
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131593259 201450560 36988217 61051341 8925752 
 

1316815 201450575 36989454 61051348 89323758 
 

131800430 201450601 37005570 61148894 89324033 
 

13201456 201857621 37006107 61149009 89346205 
 

13201650 20255992 37006611 61188431 89378460 
 

13201655 202611730 37096148 6121909 89748238 
 

13201662 202679456 37096487 6122107 89911298 
 

13201844 202679504 37288705 61276447 90035945 
 

13202437 202899877 3730151 61276678 90039805 
 

13202476 20346426 37366294 61335254 90039809 
 

132052870 20349241 37403242 61468757 90114063 
 

132052887 20349568 37434260 61553938 90228815 
 

132262353 204797566 37434950 61553954 90343174 
 

132312702 205424985 3751076 61554106 90343192 
 

132329846 205538293 3751199 61583910 90343204 
 

132657819 205538310 3751618 61583924 90343208 
 

132722045 205538427 3751739 61583979 90343220 
 

132722421 20626133 37764118 61584072 90455799 
 

132904689 20690628 37783689 61584108 9049273 
 

132906443 20690807 37783879 61615739 90527978 
 

133066054 20691126 37839684 61615913 90895083 
 

133110244 20691161 37839769 61703735 90967113 
 

133320728 20691180 37839829 61777090 90967157 
 

133492476 20691429 37839918 62185401 90967165 
 

133493171 20711985 37839923 6243880 90967894 
 

133493200 207308829 37839943 62477362 91643544 
 

133758089 20768389 37840438 62477480 91670134 
 

133758161 207817630 37956425 62732892 91870067 
 

133890532 20792243 37956434 62784802 92053021 
 

134067789 20792323 38071166 6280583 92053063 
 

134125573 20792476 38071301 6281104 920786 
 

134201505 20806543 38071498 6281197 92417998 
 

134261413 20806663 38258441 62948235 92937735 
 

134282207 208084415 38258451 63263824 93389246 
 

134282404 208084436 38258884 63285425 93520269 
 

134282864 208084456 38334166 63422640 93520275 
 

134285972 20834843 38334176 63429038 93551004 
 

134755679 209848535 38670804 63461803 93583253 
 

134755955 209921370 38670840 63506148 93583693 
 

134871962 21084420 38670985 637035 93616072 
 

134871966 21092936 38691791 637162 93966978 
 

134871973 21121564 38691799 637173 94136 
 

134901294 212780243 38691801 637175 94449797 
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134974048 21280288 38794831 63792210 94473671 
 

134974192 2137067 3881141 63802272 94501467 
 

13504687 214148856 38879544 63802280 95225681 
 

135050702 214148892 38879699 63802491 95361208 
 

135090367 214148958 39196998 64188108 95361223 
 

135150497 214148976 39197233 64188163 95402189 
 

135150517 214161251 39197256 64188166 95570657 
 

1354522 216100 39197260 64240654 95620306 
 

13546145 21634945 39197417 64241013 95653942 
 

135476297 2163608 39197424 6439864 95691647 
 

135476893 21646662 39261432 6440065 95947146 
 

136114344 21649722 393239 64512188 96012592 
 

13617012 21650028 39466575 64513068 97055150 
 

137243382 21656374 39853885 64513156 97172480 
 

137244090 2167496 39893185 64839958 97173034 
 

137522960 217559020 39893261 65127973 97203640 
 

13839913 217559131 39893438 65128112 9745295 
 

138666040 217559207 39893520 65183745 97505764 
 

138666050 21769430 39957298 6546777 97506251 
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APPENDIX N 

SHARED GENES BETWEEN HYPERMETHYLATED AND 

HYPOMETHYLATED PATHWAYS 

 
Gene Gene Gene Gene Gene Gene 

MARCH11 CNST GRID2IP MIR548N RASL10A UNC13A 

SEPT5 CNTN1 GRIK5 MIR9-3 RASSF2 UNC5A 

A2BP1 CNTNAP2 GRIN2A MIXL1 RAX UNC5C 

AASS CNTNAP5 GRIN2C MKX RBM20 UNCX 

ABCB1 COBL GRIN2D MME RBM24 UQCRC1 

ABCB4 COCH GRIN3B MMP14 RBMS1 USP2 

ABCG2 COL11A2 GSC2 MMP15 RBP4 USP4 

ABCG5 COL15A1 GSG1L MMP17 RCSD1 UST 

ABLIM3 COL18A1 GSTCD MMP9 RELL2 UVRAG 

ABR COL23A1 GSTP1 MNX1 REM2 VASH1 

ABRA COL25A1 GSX1 MOBKL2B RFPL2 VAX1 

ACADM COL2A1 GSX2 MOXD1 RFTN1 VCAN 

ACADS COL4A1 H2AFJ MPO RFX4 VENTX 

ACAN COL4A2 HAAO MPPED2 RFX7 VEPH1 

ACCN1 COL4A3 HAPLN3 MRC2 RFX8 VGF 

ACCN4 COL4A4 HAPLN4 MRGPRF RGL2 VGLL2 

ACE COL5A1 HAS2 MRPL18 RGMA VIM 

ACHE COL5A3 HAS2AS MSI1 RGNEF VIPR2 

ACOXL COL6A2 HAS3 MSRA RGS14 VPS37B 

ACSF2 COL7A1 HBM MSX1 RGS17 VSIG10L 

ACTN2 COL8A1 HCCA2 MT1DP RGS20 VSTM2B 

ADAM11 COL9A1 HCG4 MT1M RGS7BP VSTM2L 

ADAM23 COL9A2 HCG4P6 MT2A RHCG WBSCR26 

ADAM8 COLEC12 HCN1 MT3 RHOU WDR17 

ADAMTS1 COMP HCN2 MTNR1A RIBC1 WDR86 

ADAMTS10 CORO2B HCN3 MTP18 RIMS1 WFDC10A 

ADAMTS16 COTL1 HDAC3 MUL1 RIMS2 WFDC3 

ADAMTS17 COX19 HECW1 MUM1 RIMS3 WFDC9 

ADAMTS19 COX6B2 HECW2 MXI1 RIPK4 WHAMM 

ADAMTS2 CPAMD8 HELT MXRA7 RNASEH2A WHAMML1 

ADAMTS3 CPEB1 HEPACAM MYCBPAP RNF123 WHAMML2 

ADAMTS7 CPLX1 HERC5 MYEF2 RNF150 WIPF1 

ADAMTS9 CPLX2 HES5 MYO1C RNF157 WIT1 

ADARB2 CPM HEY2 MYO3A RNF175 WNK2 

ADCY1 CPNE2 HFM1 MYO7A RNF180 WNT1 

ADCY3 CPNE8 HGSNAT MYOD1 RNF182 WNT16 

ADCY5 CPT1C HHEX NACAD RNF213 WNT2 

ADCY8 CR1L HHIP NAV1 RNF219 WNT3 

ADORA1 CREB3L1 HHIPL1 NAV2 RNF32 WNT3A 

ADORA2B CREG2 HIC1 NBEA RNLS WNT9B 

ADPRH CRHBP HIF3A NBL1 ROBO3 WRB 

ADRA2C CRHR1 HIST1H2AE NCAM1 ROR1 WRN 

ADRB1 CRHR2 HIST1H2AJ NCAN ROR2 WSCD2 

AFAP1L1 CRISPLD1 HIST1H2BG NCOA7 RORA WT1 

AGAP1 CRMP1 HIST1H2BM 
NCRNA001

71 
RPA2 XKR5 
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AGAP11 CRTAC1 HIST1H4K NDFIP2 RPGRIP1L XKR6 

AGPAT9 CRYBA2 HIST3H2A NDRG4 RPL31 XKR7 

AGPS CRYM HIST3H2BB NECAB2 RPP25 ZAK 

AGTR1 CSF1 HK2 NEDD9 RPRM ZBTB17 

AHDC1 CSMD2 HLA-A NEK10 RPRML ZBTB7B 

AJAP1 CSMD3 HLA-C NELL1 RPS4X ZC3H12C 

AK5 CTHRC1 HLA-DQB1 NEU1 RPTOR ZCWPW1 

AKAP12 CTNNA2 HLA-DRB5 NEURL3 RREB1 ZDHHC22 

AKR1B1 CTNND2 HLA-F NEUROD2 RSPH9 ZEB1 

ALDH1A2 CTSC HLA-G NEUROG1 RSPO1 ZFP82 

ALDH1A3 CTTNBP2 HLA-H NFASC RSPO3 ZFPM2 

ALDH1L1 CUGBP2 HLA-J NFATC1 RSPO4 ZIC2 

ALDH7A1 CUX1 HLA-L NFATC2 RTBDN ZIC4 

ALK CUX2 HLX NFATC4 RTN1 ZIC5 

ALKBH3 CWH43 HMGCLL1 NFIC RTN4R ZNF134 

ALOX12B CYBA HNF1B NFIX RUNX2 ZNF154 

ALPL CYGB HOXA10 NFKBID RXFP3 ZNF175 

ALX4 CYP1B1 HOXA11 NGB RYR3 ZNF214 

AMOTL1 CYP26B1 HOXA11AS NGEF S100A6 ZNF215 

AMPH CYP27A1 HOXA13 NGFR SALL1 ZNF217 

ANGPTL4 CYP2U1 HOXA7 NHEJ1 SALL3 ZNF22 

ANGPTL6 CYP4V2 HOXB13 NHLH2 SAMD11 ZNF232 

ANK1 CYP7B1 HOXB3 NICN1 SAMD14 ZNF233 

ANKLE1 CYS1 HOXB4 NID1 SAMD4A ZNF268 

ANKRD19 CYTSB HOXC4 NID2 SAMD5 ZNF287 

ANKRD24 D4S234E HOXC8 NKAIN2 SASH1 ZNF311 

ANKRD26 DAB1 HPCA NKAIN4 SATB2 ZNF334 

ANKRD34A DACT1 HPSE NKD2 SBF2 ZNF37A 

ANKS1A DACT2 HPSE2 NKIRAS2 SC65 ZNF382 

ANO1 DBC1 HR NKX1-2 SCAMP5 ZNF385B 

ANO5 DBX2 HRH2 NKX2-1 SCARF2 ZNF385D 

ANO8 DCBLD2 HRH3 NKX2-3 SCD ZNF391 

ANTXR1 DCDC2 HRK NKX2-5 SCGB3A1 ZNF454 

AOX1 DCHS2 HRNBP3 NKX2-6 SCGN ZNF501 

AP3B2 DCLK1 HS3ST1 NKX2-8 SCHIP1 ZNF513 

APBB1 DDAH2 HS3ST2 NKX3-2 SCN3B ZNF518B 

APC2 DDB2 HS3ST3A1 NKX6-1 SCN4B ZNF529 

APCDD1L DDIT4L HS3ST3B1 NLGN1 SCRN1 ZNF542 

AQP5 DDX28 HS3ST4 NLRP14 SCRT1 ZNF606 

ARHGAP20 DENND3 HS3ST6 NLRP3 SCRT2 ZNF615 

ARHGAP22 DEPDC7 HSD11B1L NLRX1 SDC2 ZNF660 

ARHGAP24 DFFA HSD17B12 NMBR SDK1 ZNF727 

ARHGDIG DGAT2 HSD17B8 NME5 SDK2 ZNF777 

ARHGEF10 DGKE HSPA2 NMNAT2 SEC14L5 ZNF836 

ARHGEF17 DGKG HSPG2 NMNAT3 SEC23B ZNF879 

ARHGEF4 DGKZ HTR2A NMUR1 SEL1L3 ZSCAN1 

ARHGEF7 DIRAS1 HTR4 NOG SELO ZSCAN12 

ARID5A DISC1 HTR7 NOL4 SELV ZSCAN18 

ARL10 DKK1 HTRA3 NOS1 SEMA3B 
 

ARMC3 DKK2 HUNK NOTUM SEMA5B 
 

ARNT2 DLC1 HUS1 NOVA2 SEMA7A 
 

ARPC1B DLL1 HYDIN NPAS2 SENP2 
 

ARVCF DLL3 ICAM5 NPAS4 4-Sep 
 

ASAH2B DLX4 ICOSLG NPPB 9-Sep 
 

ASAM DLX6AS IDUA NPPC SERGEF 
 

ASB18 DMPK IGF2 NPR1 SERP2 
 



 

 226 

ASCL1 DMRT1 IGF2AS NPTX1 SERPINA10 
 

ASS1 DMRT2 IGF2BP1 NPY5R SERPINE2 
 

ATCAY DNAJB13 IGF2R NQO1 SFRP1 
 

ATF3 DNAJB6 IGFBP3 NR2E1 SFRP4 
 

ATP10A DNAJC15 IGFBP5 NRG2 SFRP5 
 

ATP11A DNAJC17 IGLON5 NRG3 SFRS8 
 

ATP1B2 DNAJC6 IGSF11 NRXN2 SFT2D3 
 

ATP5G1 DNER IGSF9B NTF3 SGCE 
 

ATP8A2 DNTTIP1 IL17RC NTM SH3BP2 
 

ATP8B2 DOC2A IL17RD NTN1 SH3PXD2B 
 

ATP9A DOCK10 IL17RE NTRK2 SHANK1 
 

AUTS2 DOT1L IMMP2L NTRK3 SHISA2 
 

AVP DPF1 INPP4B NTSR2 SHISA4 
 

B3GAT1 DPF3 INPP5A NUAK1 SHISA7 
 

B3GAT2 DPP10 INS-IGF2 NUDT19 SHROOM3 
 

B3GNT7 DPP4 INSM1 NXN SIGIRR 
 

B4GALNT1 DPP6 INSM2 NXPH1 SIM2 
 

B4GALNT3 DPY19L2P4 INTS12 NXPH2 SIRPA 
 

B4GALT4 DPYD IQSEC2 NXPH3 SIX1 
 

BAALC DPYSL3 IQSEC3 OCA2 SIX4 
 

BACH2 DRD1 IRF4 ODZ4 SKAP1 
 

BAHCC1 DRD4 IRF8 OGDHL SKAP2 
 

BAI1 DSCAML1 IRX2 OLFM2 SLAIN1 
 

BAI2 DSEL IRX4 OLIG1 SLC12A5 
 

BAIAP2 DST ISL1 ONECUT1 SLC15A1 
 

BARHL2 DUOX2 ISL2 ONECUT2 SLC16A12 
 

BARX2 DUOXA2 ISLR2 ONECUT3 SLC16A3 
 

BASP1 DUS2L ISM1 OPCML SLC16A9 
 

BAT2 DUSP6 ISM2 OPRK1 SLC17A9 
 

BCAS3 DYDC1 ITGA11 OPRM1 SLC18A3 
 

BCAT1 DYDC2 ITGA8 OSBPL3 SLC1A2 
 

BCL11A DYNC1I1 ITGB3 OSR2 SLC27A6 
 

BCL11B DYNC1I2 ITIH5 OTOP1 SLC2A4 
 

BDNF DYSF ITPKA OTX1 SLC2A9 
 

BEGAIN DZIP1 ITPKB OXR1 SLC30A3 
 

BEND6 EBF3 JAKMIP1 OXTR SLC32A1 
 

BEST3 EBF4 JAM2 P4HA3 SLC34A1 
 

BHLHE22 ECE2 JAZF1 PAK7 SLC35D3 
 

BMP3 ECEL1 JPH2 PALLD SLC35F1 
 

BMP4 EDC3 JPH3 PANX2 SLC37A1 
 

BMP7 EDIL3 KAAG1 PAPLN SLC39A3 
 

BMP8A EDN1 KAL1 PAPPA SLC43A2 
 

BMP8B EDNRB KANK4 PAQR8 SLC43A3 
 

BMPER EEF1D KATNB1 PAQR9 SLC44A4 
 

BNC2 EFHA2 KBTBD11 PARD3 SLC47A1 
 

BOC EFNA2 KBTBD8 PARD6G SLC4A4 
 

BOLA2 EFNA5 KCNA1 PARP14 SLC4A8 
 

BOLA2B EGFLAM KCNA3 PARP8 SLC6A12 
 

BRD2 EIF3E KCNA6 PAX1 SLC6A15 
 

BRDT ELAC1 KCNB1 PAX2 SLC6A18 
 

BRSK2 ELAVL3 KCNB2 PAX3 SLC6A2 
 

BRUNOL4 ELMO1 KCNC3 PAX5 SLC6A5 
 

BRUNOL6 ELMOD1 KCNC4 PAX6 SLC7A14 
 

BSCL2 ELOVL4 KCND3 PAX7 SLC8A3 
 

BSN ELP2P KCNG1 PAX9 SLC9A3 
 

BTBD11 EMB KCNH2 PCBP1 SLC9A9 
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BTBD17 EMID2 KCNH6 PCDH21 SLCO5A1 
 

BTNL9 EML1 KCNH8 PCDHA1 SLFN11 
 

C10orf107 EMX1 KCNIP2 PCDHA10 SLIT1 
 

C10orf140 EN1 KCNIP3 PCDHA11 SLIT2 
 

C10orf25 EN2 KCNJ10 PCDHA12 SLIT3 
 

C10orf46 ENTPD3 KCNJ12 PCDHA13 SLITRK1 
 

C10orf55 EOMES KCNJ2 PCDHA2 SLITRK5 
 

C10orf58 EPB41L3 KCNJ6 PCDHA3 SMARCD3 
 

C10orf90 EPHA10 KCNK10 PCDHA4 SMC1A 
 

C10orf91 EPHA3 KCNK13 PCDHA5 SMCP 
 

C10orf93 EPHA4 KCNK3 PCDHA6 SMO 
 

C11orf87 EPHA6 KCNK5 PCDHA7 SMPD3 
 

C11orf90 EPHA8 KCNMA1 PCDHA8 SNAP25 
 

C11orf92 EPHB1 KCNMB4 PCDHA9 SNAP91 
 

C11orf93 EPHB2 KCNN1 PCDHAC1 SNCB 
 

C12orf56 EPHB6 KCNN3 PCDHAC2 SNHG6 
 

C13orf15 EPO KCNQ1 PCDHB9 SNTG2 
 

C13orf27 ERGIC1 KCNQ2 PCDHGA1 SNX22 
 

C13orf36 ESRRG KCNQ3 PCDHGA10 SNX32 
 

C13orf38 ETFB KCNQ4 PCDHGA11 SOCS1 
 

C14orf37 ETV1 KCNQ5 PCDHGA12 SOCS2 
 

C15orf38 ETV5 KCNS2 PCDHGA2 SORBS3 
 

C15orf59 EVC KCNT1 PCDHGA3 SORCS1 
 

C17orf102 EVX2 KCTD1 PCDHGA4 SORCS2 
 

C17orf51 EXD1 KCTD10 PCDHGA5 SORCS3 
 

C17orf62 F7 KCTD12 PCDHGA6 SOX1 
 

C19orf30 FAAH2 KCTD14 PCDHGA7 SOX11 
 

C19orf44 FABP5 KCTD19 PCDHGA8 SOX17 
 

C19orf51 FAM114A2 KCTD8 PCDHGA9 SOX18 
 

C19orf70 FAM123C KDM2A PCDHGB1 SOX2OT 
 

C19orf76 FAM131B KDM2B PCDHGB2 SOX8 
 

C1QL1 FAM135A KDR PCDHGB3 SP5 
 

C1QL2 FAM149A KHDC1 PCDHGB4 SP9 
 

C1QTNF1 FAM150B KIAA0922 PCDHGB5 SPAG16 
 

C1orf115 FAM163A KIAA1024 PCDHGB6 SPATA13 
 

C1orf173 FAM164A KIAA1026 PCDHGB7 SPATA18 
 

C1orf190 FAM167B KIAA1217 PCDHGC3 SPDYA 
 

C1orf38 FAM171A1 KIAA1239 PCOLCE2 SPG20 
 

C1orf70 FAM172A KIAA1462 PCSK2 SPHK1 
 

C1orf86 FAM176A KIAA1530 PDE1C SPOCK1 
 

C1orf92 FAM176B KIAA1755 PDE3B SPOP 
 

C1orf94 FAM181B KIAA1804 PDE4A SPRED3 
 

C1orf95 FAM188B KIAA1826 PDE4C SPSB4 
 

C20orf103 FAM189A1 KIF1A PDE4D SRC 
 

C20orf166 FAM19A5 KIF21B PDGFRA SREBF1 
 

C20orf195 FAM20A KIF5C PDIA6 SRF 
 

C20orf200 FAM24B KIFC3 PDK4 SRRM3 
 

C21orf29 FAM38B KISS1R PDLIM3 SRRM4 
 

C2orf43 FAM43A KIT PDLIM4 SS18L1 
 

C2orf88 FAM53A KL PDX1 SSTR1 
 

C2orf89 FAM60A KLC1 PDZRN4 ST3GAL2 
 

C3orf55 FAM66C KLC2 PEG10 ST5 
 

C3orf72 FAM69B KLHL14 PEX14 ST6GAL1 
 

C4orf31 FAM69C KLHL29 PEX5L ST6GAL2 
 

C5orf38 FAM78B KLK1 PFKFB3 ST8SIA1 
 

C5orf49 FAM82B KLK13 PFKP ST8SIA2 
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C6orf145 FAM89A KNDC1 PGCP ST8SIA4 
 

C6orf174 FAR1 KRR1 PGF STARD9 
 

C6orf176 FBLIM1 KY PHACTR1 STC1 
 

C7orf13 FBLL1 L3MBTL3 PHF21B STK32A 
 

C7orf31 FBLN5 LAMC2 PHLDA2 STK32B 
 

C7orf57 FBRSL1 LATS2 PHLDB3 STL 
 

C7orf58 FBXL15 LBH PHLPP1 STMN2 
 

C8orf34 FBXL16 LBX2 PHOSPHO1 STMN3 
 

C8orf42 FBXO17 LBXCOR1 PHOX2B SULF2 
 

C8orf45 FBXO32 LCLAT1 PI4K2A SULT1A3 
 

C8orf56 FDFT1 LDHD PIAS1 SULT1A4 
 

C8orf73 FER1L6 LEPR PID1 SULT4A1 
 

C8orf79 FES LEPREL1 PIK3AP1 SV2B 
 

C8orf84 FEZF2 LGALS3BP PIK3CD SVIL 
 

C9orf142 FGF12 LGR4 PITX2 SYCE1L 
 

CA10 FGF14 LGR6 PITX3 SYF2 
 

CA4 FGF18 LHB PLA2G7 SYN2 
 

CA7 FGF19 LHFP PLAU SYN3 
 

CABP1 FGF2 LHFPL5 PLCB1 SYNE1 
 

CABP7 FGF3 LHX1 PLCD1 SYNGAP1 
 

CACHD1 FGF4 LHX2 PLCL2 SYNJ2 
 

CACNA1A FGF5 LHX5 PLD5 SYNPR 
 

CACNA1B FGFR1 LHX6 PLEC1 SYPL2 
 

CACNA1C FGFRL1 LHX8 PLEKHA2 SYT1 
 

CACNA1G FJX1 LHX9 PLEKHH2 SYT17 
 

CACNA1H FKBP10 LIMD2 PLEKHH3 SYT2 
 

CACNA2D3 FLI1 LIMS2 PLK1S1 SYT6 
 

CACNG6 FLJ16779 LINGO3 PLK5P SYT7 
 

CACNG8 FLJ37307 LMO1 PLLP T 
 

CALR3 FLJ39739 LMO2 PLOD2 TACC2 
 

CALY FLJ40330 LMX1A PLSCR1 TAF7 
 

CAMK1D FLJ41350 LOC100128811 PLTP TAGLN3 
 

CAMK2B FLJ42709 LOC100128977 PLXDC1 TAL1 
 

CAMK2D FLJ43663 LOC100130015 PLXNA4 TARSL2 
 

CAMKV FLNC LOC100130148 PLXNC1 TBC1D1 
 

CAMTA1 FLRT2 LOC100130691 PM20D2 TBR1 
 

CAND2 FMNL1 LOC100130987 PNMA1 TBX1 
 

CANX FMNL2 LOC100133985 PNMA2 TBX2 
 

CAPN2 FMOD LOC100192426 PNMAL2 TBX20 
 

CAPZB FNDC4 LOC100286793 PNPLA3 TBX21 
 

CASP2 FOXA2 LOC113230 PODN TBXA2R 
 

CAT FOXC2 LOC145663 POM121L2 TCEAL2 
 

CBLN1 FOXD1 LOC151534 POMGNT1 TCEAL3 
 

CBLN4 FOXD2 LOC200726 POPDC3 TCERG1L 
 

CBS FOXF1 LOC202181 POU3F1 TCF15 
 

CCBE1 FOXF2 LOC220930 POU3F2 TCF19 
 

CCDC108 FOXI3 LOC222699 POU4F1 TCF7L1 
 

CCDC136 FOXL2 LOC255512 POU4F3 TCP1 
 

CCDC140 FOXN4 LOC283856 POU6F2 TESC 
 

CCDC3 FOXO1 LOC285696 PPAPDC1A TFAP2B 
 

CCDC46 FOXP1 LOC285780 PPARG TFPI2 
 

CCDC48 FOXP4 LOC285830 PPFIA3 TFPT 
 

CCDC63 FOXQ1 LOC285954 PPIE TGFB1I1 
 

CCDC68 FREM2 LOC348840 PPM1E TICAM2 
 

CCHCR1 FREM3 LOC387763 PPP1R14A TIGD5 
 

CCK FRMPD4 LOC399815 PPP1R14C TLE4 
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CCKBR FRZB LOC399959 PPP1R16B TLL1 
 

CCNA1 FSCN1 LOC400043 PPP1R1B TLX1NB 
 

CCND2 FSTL5 LOC400940 PPP1R3G TLX3 
 

CCNJL FTO LOC402778 PPP2R1B TM6SF1 
 

CCR6 FUZ LOC441177 PPP2R2B TMBIM6 
 

CD248 FXYD7 LOC645323 PPP2R2C TMED7-TICAM2 

CD34 FYN 
LOC729991-

MEF2B 
PPYR1 TMEFF2 

 

CD40 FZD1 LOC84856 PRDM1 TMEM130 
 

CD7 FZD10 LOX PRDM13 TMEM132B 
 

CD8A FZD2 LOXL2 PRDM14 TMEM132E 
 

CD97 FZD7 LPAR3 PRDM16 TMEM151B 
 

CDC10L FZD8 LPPR5 PRDM8 TMEM154 
 

CDC14B G0S2 LRAT PREX2 TMEM163 
 

CDC42EP5 
GABARAPL

2 
LRFN2 PRHOXNB TMEM17 

 

CDCA7 GABRA4 LRFN5 PRICKLE1 TMEM171 
 

CDCA7L GABRA5 LRIT1 PRKAG2 TMEM176A 
 

CDH13 GABRB2 LRP11 PRKAR1B TMEM176B 
 

CDH18 GAD1 LRRC10B PRKCG TMEM178 
 

CDH22 GAD2 LRRC20 PRKCH TMEM179 
 

CDH23 GAL3ST2 LRRC32 PRKCI TMEM196 
 

CDH6 GALNT12 LRRC33 PRKCQ TMEM20 
 

CDH7 GALNT14 LRRC36 PRMT8 TMEM200B 
 

CDK5R2 GALNT9 LRRC3B PRNP TMEM229A 
 

CDK6 GALNTL1 LRRC4C PROC TMEM45B 
 

CDX2 GALR1 LRRC8D PROK2 TMEM55A 
 

CDYL GALR2 LRRIQ1 PROM1 TMEM57 
 

CEBPA GAP43 LRRTM1 PROX1 TMEM90A 
 

CELSR3 GAS7 LSAMP PRPF31 TMEM90B 
 

CEND1 GATA4 LSM5 PRR18 TMIE 
 

CENPT GATA5 LTBP2 PRR5 TMTC1 
 

CENPV GATM LTBP4 
PRR5-

ARHGAP8 
TNFAIP8 

 

CERK GDF6 LY75 PRSS12 TNS3 
 

CERKL GDNF MACF1 PRSS27 TNXB 
 

CETP GDPD5 MAD1L1 PRTFDC1 TOLLIP 
 

CH25H GEFT MAL PRUNE2 TOX2 
 

CHAT GEMIN4 MAN1C1 PSD TP73 
 

CHD5 GFI1 MAP1B PSMA1 TPK1 
 

CHD7 GFRA1 MAP1LC3B2 PSMA7 TPM1 
 

CHGA GFRA2 MAP2K6 PTCH1 TPM4 
 

CHGB GGN MAP3K3 PTF1A TPST1 
 

CHODL GIMAP2 MAP4K4 PTGER1 TRAF6 
 

CHP GIMAP7 MAP6 PTGFR TRAIP 
 

CHPF GIPC3 MAPK15 PTH1R TRAK1 
 

CHRM2 GIYD1 MAPK4 PTH2 TRANK1 
 

CHRNA3 GIYD2 MAPKAP1 PTPN21 TRIB2 
 

CHRNA4 GJB2 MAPT PTPRE TRIL 
 

CHRNA7 GJB6 MARCKS PTPRK TRIM15 
 

CHRNB2 GJC1 MAST3 PTPRM TRIM17 
 

CHRNB4 GLB1L2 MAT2B PTPRN2 TRIM26 
 

CHST11 GLDN MATK PTPRS TRIM58 
 

CHST12 GLIS3 MATN2 PTPRT TRIM65 
 

CHST13 GLP1R MATN4 PTRF TRIM7 
 

CHST6 GMEB1 MCC PTTG1IP TRIM9 
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CHST8 GNA15 MCF2L PTX3 TRNP1 
 

CIB2 GNAL MCF2L2 PURG TRPA1 
 

CIDEA GNAO1 ME1 PYY TRPC3 
 

CITED4 GNAS ME3 QSOX1 TRPC6 
 

CKB GNG11 MECOM QTRT1 TSC22D3 
 

CLCF1 GNG4 MECP2 RAB1B TSC22D4 
 

CLCNKB GOLSYN MEF2B RAB34 TSHZ2 
 

CLDN10 GPATCH4 MEGF10 RAB39 TSNAX-DISC1 

CLEC2L GPC6 MEGF11 RAB3B TSPAN19 
 

CLEC4G GPM6A MEOX1 RAB3C TSPY4 
 

CLIC5 GPM6B MEX3B RAB9B TTBK1 
 

CLIP4 GPR12 MFSD1 RAD21L1 TTC15 
 

CLSTN2 GPR120 MFSD2B RAD51AP2 TTC21B 
 

CLTC GPR123 MFSD4 RADIL TTC39C 
 

CLTCL1 GPR139 MGAT3 RAI14 TTC9B 
 

CLU GPR150 MGAT4C RAP1GAP TTYH1 
 

CLYBL GPR158 MGAT5B RAPGEFL1 TUB 
 

CMPK2 GPR177 MGC45800 RARRES1 TUBB2B 
 

CMTM3 GPRC5B MGC87042 RASA3 TUBB8 
 

CMTM7 GPRIN2 MGMT RASAL1 TULP1 
 

CNGA3 GPRIN3 MIAT RASAL2 TUSC3 
 

CNGB1 GREB1 MIR1253 RASD1 TWIST1 
 

CNIH2 GREM2 MIR1256 RASD2 TXNRD1 
 

CNR1 GRIA2 MIR1258 RASGRF1 UBASH3B 
 

CNR2 GRID1 MIR375 RASGRP1 UCP1 
 

CNRIP1 GRID2 MIR548G RASGRP2 ULBP3 
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APPENDIX O 

PATHWAYS SHARED BY A1, C1, AND NR GROUPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypermethylated 

In both A1 vs. NR and C1 vs. NR 

cell fate commitment (GO:0045165) 

cell-cell adhesion via plasma-membrane adhesion molecules (GO:0098742) 

central nervous system neuron differentiation (GO:0021953) 

homophilic cell adhesion via plasma membrane adhesion molecules 

(GO:0007156) 

neuron fate commitment (GO:0048663) 

In both C1 vs. NR and C1 vs. A1 

cell differentiation in spinal cord (GO:0021515) 

cell fate determination (GO:0001709) 

dorsal spinal cord development (GO:0021516) 

forebrain neuron differentiation (GO:0021879) 

neural retina development (GO:0003407) 

Hypomethylated 

In both A1 vs. NR and C1 vs. N1 

autonomic nervous system development (GO:0048483) 

cell differentiation in spinal cord (GO:0021515) 

embryonic eye morphogenesis (GO:0048048) 

forebrain regionalization (GO:0021871) 

neuron fate commitment (GO:0048663) 

neuron fate specification (GO:0048665) 

regulation of cardiac muscle cell proliferation (GO:0060043) 

regulation of heart growth (GO:0060420) 

ventral spinal cord development (GO:0021517) 

In both C1 vs. NR and C1 vs. A1 

neuron fate commitment (GO:0048663) 

positive regulation of cardiac muscle tissue development (GO:0055025) 

regulation of cardiac muscle cell differentiation (GO:2000725) 

regulation of cardiac muscle tissue development (GO:0055024) 

In both A1 vs. NR and C1 vs. A1 

ear morphogenesis (GO:0042471) 

inner ear morphogenesis (GO:0042472) 

neuron fate commitment (GO:0048663) 

In all 3 

neuron fate commitment (GO:0048663) 
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