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ABSTRACT

MODELING HETEROGENEITY OF USER PREFERENCES IN CHOICE 

PROBLEMS IN THE TRANSPORTATION NETWORK 

MAY 2016 

MAHYAR AMIRGHOLY, 

B.S., AMIRKABIR UNIVERSITY OF TECHNOLOGY, TEHRAN

M.S., SHARIF UNIVERSITY OF TECHNOLOGY, TEHRAN

M.S., RUTGERS, THE STATE UNIVERISY OF NEW JERSEY, NEW BRUNSWICK

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Eric J. Gonzales 

Users of transportation systems need to make a variety of different decisions for their trips 

in the network, while their objective is to keep the generalized costs of their own trips 

minimized. In the transportation network, there is a diversity of different factors that can 

influence the decisions of the users, while the relative importance of these factors varies 

among the heterogeneous users with different trip purposes. Nonetheless, the cumulative 

result of the individual decisions of the users seeking to minimize their costs according to 

their own preferences leads to the user equilibrium condition in which no one can reduce 

his/her cost by changing his/her decision. In this research, we adapt the concept of the 

efficient frontier from portfolio theory (Markowitz, 1952) in finance in order to model the 

bicriterion choice behavior of users with heterogeneous preferences in transportation 

networks. We show that the efficient frontier has a set of primary properties that remains 

general in different problems. Thus, the primary properties of the efficient frontier can be 
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employed to analytically model and solve different bicriterion choice problems in 

transportation.  

For the first application, we use these properties to propose an analytical model for the 

morning commute problem when there is a heterogeneity associated with preferences of 

the users (Vickrey, 1969; Daganzo, 1985). A dynamic pricing strategy is also proposed to 

optimize the bottleneck by minimizing the total cost for users. In addition to the morning 

commute problem, Vickrey’s congestion theory is also shown to have applications in 

modeling and optimizing the operation of the demand responsive transit (DRT) system 

with time-dependent demand and state-dependent capacity as queueing systems. The 

efficiency of the DRT system can be improved by implementing a dynamic pricing 

strategy.  The analytical solution of the morning commute problem can be also extended 

for modeling and pricing the DRT system when there is a heterogeneity associated with 

the preferences of the DRT service users. 

For another application of the efficient frontier in modeling choice problems in 

transportation, we propose a traffic assignment model to account for the heterogeneity in 

sensitivity of the users to travel time reliability in a network under travel time variability.  

However, the proposed model can have wide applications in modeling the equilibrium 

condition of different multicriterion choice problems in transportation.
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“People take different roads seeking fulfilment and 

happiness. Just because they’re not on your road 

doesn’t mean they’ve gotten lost.” 

 

                                                                      -  Dalai Lama 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Research Problem  

Rapid growth in the demand for transportation systems in the urban networks has given 

rise to the critical need for the conscious plans and policies that can make efficient use of 

available resources to maintain and improve the quality of service in the transportation 

networks. In this respect, designing successful network plans and management policies 

crucially depends on deep understanding of travel behavior of users in transportation 

networks. To demonstrate the behaviors of the users of the transportation system, it can be 

generally considered that rational users tend to follow their own interests by making the 

decisions that maximize their utilities in the network. Nevertheless, the discrepancy in the 

decisions that users make in comparable situations in the network can be attributed to the 

heterogeneity in their preferences due to the dissimilarities in the socioeconomic 

backgrounds and conditions in which they make these decisions. As a result, it is of great 

importance to recognize the heterogeneity in preferences of the users as an aspect of their 

decision-making procedure that should be taken into account in modeling and optimizing 

the transportation systems. 

Transportation system users need to make different decisions regarding the starting 

time, destination, mode and route of their trip in a network. For each of these decisions, 

users consider a variety of different factors in their decision-making procedures, while the 
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relative importance of these factors varies among the heterogeneous users with different 

trip purposes. Rational users tend to make choices that minimize the cost of their trips 

according to their own preferences. The cumulative result of the individual decisions of the 

heterogeneous users is the user equilibrium condition in which no one can reduce his/her 

cost by changing his/her decisions. In this respect, the focus of this research is to account 

for heterogeneity in the preferences of users on their cumulative choice behavior in the 

equilibrium condition of the network. For this purpose, we adapt the concept of the efficient 

frontier from portfolio theory (Markowitz, 1952) in finance to represent the equilibrium 

condition when there is heterogeneity associated with the preferences of users. The efficient 

frontier can be shown to have primary properties that remain general in different problems. 

Thus, we make uses of the primary properties of the efficient frontier to model the 

equilibrium condition of different bicriterion choice problems with heterogeneous user 

preferences in the transportation network.  

The concept of the efficient frontier was introduced for the first time by Markowitz 

(1952) as a part of portfolio theory in order to formulate the modern investment theory that 

accounts for the heterogeneity in risk sensitivity of the investors in maximizing the 

expected return and minimizing the associated risk of their investments in a free market. 

The investment problem in finance can be shown to have many parallels with bicriterion 

choice problems in transportation. On this basis, the concept of the efficient frontier can be 

adapted to develop a bicriterion equilibrium model for different choice problems in 

transportation.  
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As the first step, we show that when the generalized cost of the choices can be 

approximated as a linear combination of the components weighted by their relative 

importance factors among the heterogeneous users, the efficient frontier of equilibrium 

choices has primary properties that remain general in different problems. It can be shown 

that the efficient frontier is the convex hull of the equilibrium choices of the heterogeneous 

users that remains non-increasing all the time. Moreover, the efficient frontier is shown to 

have a specific geometric property that is determined by the probability distribution of the 

preferences of the heterogeneous users. Thus, the primary properties of the efficient frontier 

are used to model the equilibrium condition of different bicriterion choice problems in a 

transportation network.  

One important decision that users make in the network is what time to start traveling. 

Vickrey (1969) introduced a model of congestion dynamics based on a first-in, first-out 

single bottleneck with time-dependent demand and a fixed capacity. Insufficient capacity 

of bottleneck to meet the demand results in the formation of a queue, which causes users 

to experience a combination of delay and schedule deviation in their commutes. Rational 

users tend to minimize the combination of these costs in their own trip by adjusting their 

arrival times to the bottleneck. However, the relative importance of the components of the 

cost may vary among the heterogeneous commuters with different trip purposes. Such 

heterogeneity in preferences of the commuters can be represented by a set of independent 

probability distributions over the population of the users. Competition between the users in 
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minimizing their own cost eventually leads to the user equilibrium condition in which no 

one can reduce his/her cost by changing his/her own arrival time to the bottleneck. 

In the first part of this research, we use the concept of the efficient frontier to propose 

an analytical solution to this bicriterion choice problem when there is heterogeneity 

associated with preferences of the commuters. On this basis, we analytically approximate 

the equilibrium arrivals of the heterogeneous commuters to the bottleneck. We also use the 

results to propose a dynamic pricing pattern to optimize the system by avoiding the 

formation of a queue, which can also be adapted for designing dynamic pricing for an urban 

network. The proposed model is also employed to derive a closed form solution for the 

morning commute problem when the probability distributions of the preferences are 

uniform. We also use the proposed model to solve a numerical example for different 

distributions of the schedule penalty preferences. In addition, we provide an explanation 

for retrieving independent probability distributions of the schedule penalty factors from a 

joint distribution. We also demonstrate the approximation procedure of the schedule 

penalty factors of the heterogeneous commuters using empirical data from observing 

arrival time of the users at the bottleneck. 

The congestion theory proposed by Vickrey (1969) can also have applications in 

analyzing other transportation systems with fixed capacity and time-dependent demand that 

can be modeled as a queueing system. In this respect, we show that a demand responsive 

transit (DRT) service can be modeled as a queueing system with limited capacity and time-

dependent demand. Accordingly, Vickrey’s congestion model can be employed to analyze 
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and optimize the operation of the DRT system, while the analytical solution derived for the 

morning commute problem can be extended to account for the heterogeneity in preferences 

of the DRT service users. The operating cost of a DRT system strictly depends on the 

quality of service that it offers to its users. The agency seeks to minimize the operating 

costs, meanwhile keeping the quality of service high for the users. In this research, an 

analytical model is employed to approximate the agency’s operating cost for running a 

DRT system with dynamic demand and the total generalized cost that users experience as 

a result of the operating decisions. The approach makes use of Vickrey’s (1969) congestion 

theory to model the dynamics of the DRT system in the equilibrium condition and 

approximate the generalized cost for users when the operating capacity is inadequate to 

serve the time-dependent demand over the peak period without excess delay. The efficiency 

of the DRT system can be improved by optimizing one of three parameters that define the 

agency’s operating decision: 1) the operating capacity of the system, 2) the number of 

passengers that have requested a pick-up and are awaiting service, and 3) the distribution 

of requested times for service from the DRT system. Schedule management strategy and 

dynamic pricing strategies are presented that can be implemented to manage demand and 

to reduce the total cost of the DRT system by keeping the number of waiting requests 

optimized over the peak period. Results of different optimization scenarios are also 

compared in a numerical example. 

Another important decision that users make in the network is to choose routes of their 

trips. Rational users tend to minimize the cost of their trips by choosing the routes with the 
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shortest travel times; however, they are unable to predict the exact travel times in the 

network. Instead, they consider the average duration and the reliability of travel time in 

their route choice decision-making procedure according to the estimations from their 

previous experiences in the network. However, the relative importance of these factors not 

only depends on the purpose of the trip, but also varies from one person to another. The 

cumulative result of the individual route choice decisions of the heterogeneous users 

eventually leads to an equilibrium condition in which no one has incentive to switch to 

another route. Accordingly, route choice decision-making of the travelers can be considers 

as a choice problem with heterogeneous user preferences. In this research, we use the 

concept of the efficient frontier to model the route choice behavior of the users under travel 

time variability in the network when there is a heterogeneity associated with preferences 

of the users regarding risk. The efficient frontier of route choice (EFRC) has specific 

properties which are employed in a mathematical formulation of the problem. A solution 

method is also proposed, which employs the analytical properties of the EFRC to provide 

an efficient numerical solution to the traffic assignment problem. We use the proposed 

method to solve a numerical example for this problem. 

 

1.2  Literature Review 

There are a variety different of decisions that transportation system users make in the 

network to keep their costs minimized. In their decision-making procedures, users account 

for different factors in the network; however, the relative importance of these factors may 
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vary among the heterogeneous users with different trip purposes. In this research, we adapt 

the concept of the efficient frontier from portfolio theory (Markowitz, 1952), in finance to 

consider the effect of heterogeneity in preference of the users in the decision-making 

procedure of transportation network users.  

One of these decisions that travelers need to make ahead of their travel is what time to 

start their trips. This problem is addressed in the congestion theory of the bottlenecks 

(Vickerey, 1969), while its different aspects have been widely studied in the literature. In 

this research, we use the primary properties of the efficient frontier to propose an analytical 

solution to the morning commute problem when there is a heterogeneity associated with 

preferences of the users. Interestingly enough, the congestion theory can be shown to have 

applications in modeling systems with limited capacity and time-dependent demand that 

can be compared to a queueing system. Demand Responsive Transit (DRT) service is one 

of these systems. In this respect, we make use of the congestion theory to model and 

optimize the operation of the DRT system. 

Route choice is another important decision that users make in the network according to 

their own preferences. There is a large body of research on a variety of different traffic 

assignment models that provide more realistic approximations of the route choice behavior 

of the users in the transportation network. We also employ the concept of the efficient 

frontier to account for the heterogeneity in risk sensitivity of the users in modeling the route 

choice behavior of the users in network under travel time variability.  
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In the following section, we review the literature on the efficient frontier in modern 

finance theory, the morning commute problem, demand responsive transit systems, the 

route choice problem. 

 

1.2.1 Efficient Frontier in Modern Finance Theory 

Modern finance theory refers to a set of innovations occurred in finance starting in the 

1950s for pricing the financial instruments, largely stocks and bonds. The primary 

components of modern finance theory are portfolio theory, the capital assets pricing model, 

and options pricing theory (Boucher, 2014).  

In formulating a theory of investments that accounts for the trade-off that investors 

consider between maximizing expected return and minimizing risk, Markowitz (1952) 

introduced the concept of an efficient frontier of investment choices as part of Portfolio 

Theory. According to Portfolio Theory, individuals in a free market with diverse levels of 

sensitivity to risk may choose different assets depending on the relative levels of risk and 

return, while no one will invest in assets that have both higher levels of risk and lower 

levels of return than other assets. The cumulative result of these individual decisions is a 

set of dominant assets that make up the efficient frontier of the investment choice. The 

characteristics of efficient frontiers were later discussed and verified in Merton (1972). The 

concept of the efficient frontier can be adapted for the purpose of modeling bicriterion 

choice problems in transportation.  
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A second element of modern finance theory is the Capital Asset Pricing Model 

(CAPM), introduced by Sharpe (1964) to address the risk-return tradeoff for an individual 

asset in the free market. This theory defines a relative measure of dependency of the asset 

to the market to determine the appropriate rate of return of the asset. Westin (1973) also 

employs the CAPM to explain how this measure can be used for evaluating the industrial 

investment projects under risk. This model is less relevant to transportation networks, 

because the mechanism for pricing assets in a market is not the same as the mechanism of 

traffic congestion on a link. We will make use of more realistic network performance 

measures based on the transportation literature. 

A third component of modern finance theory is option theory, which addresses option 

contracts under risk (Black and Scholes, 1973; Merton, 1973). Real option theory was 

introduced by Myers (1977) to apply concepts from option theory to evaluate the alternative 

courses of action in real investment projects. This application to real decision-making has 

a strong potential application in modeling transportation systems, because travelers may 

consider their options to change their decisions in response to real traffic conditions in the 

network.  The applications of the real option theory in analyzing transportation systems is 

beyond the concept of this research, but it can be good extension for future research in this 

area. 

In this research, we first adapt the concept of the efficient frontier as the equilibrium 

solution of the bicriterion choice problem with a linear cost function where there is 

heterogeneity associated with the relative importance of its components. The efficient 
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frontier can be proven to have specific characteristics that can be generally employed in 

modeling the bicriterion choice problems in transportation. 

 

1.2.2 Morning Commute Problem 

Heterogeneity of preferences among people is an important aspect of choice problems, 

which should not be overlooked in modeling the decision-making procedure of the users 

in the transportation network.  In reality, heterogeneous users may consider different 

weights for different factors, which results in a variety of different choices by users facing 

the same conditions. In this respect, models that take the heterogeneity of user preferences 

into account can provide a more accurate approximation of the solution of a choice 

problem. 

One important decision that users in a network make is what time to start traveling. 

Vickrey (1969) introduced a model of congestion dynamics based on a first-in, first-out 

single bottleneck problem with fixed capacity. Commuters are assumed to have identical 

preferences for deviating from their preferred scheduled arrival at their destination; i.e. the 

difference between wished and actual departure times from the bottleneck. When the 

demand exceeds the capacity of the system it is not physically possible for everyone to be 

on time. Commuters seek to minimize the combined cost of travel time, queueing delay, 

and schedule penalty by choosing when to start their trip. Accordingly, the result would be 

a user equilibrium condition in which no traveler can reduce the travel cost by changing 
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the start time of his/her own trip. The underlying assumption here is that commuters wish 

to arrive to their destination punctually, so there is a schedule penalty associated they 

experience in their commutes with arriving early or late. Hendrickson and Kocur (1981) 

elaborated the model by considering a cumulative distribution of wished bottleneck 

departure times for the commuters. Smith (1984) proved the existence of the equilibrium 

condition in which no commuter has incentive to unilaterally change his/her arrival time 

when the cumulative wished curve is S-shaped and schedule penalty function is smooth 

and convex. Daganzo (1985) also shows that such an equilibrium is unique.  

In addition to the heterogeneity associated with the schedule preferences of the 

commuters, the penalty factor that they consider for arriving early or late to their destination 

also varies with the purpose of the trips among the population of the commuters. The reality 

that commuters do not all have identical schedule penalty preferences has been empirically 

shown in the literature (Ott et al, 1980; Small, 1982). In this respect, Henderson (1974, 

1977, 1981) first accounted for the heterogeneity in schedule penalty preferences of the 

travelers in a dynamic congestion model by considering two demand groups with different 

penalty factors. Newell (1987) considers different schedule penalty factors for non-

identical travelers with a continuous distribution of wished departure times in the morning 

commute problem and concludes that the commuters subject to higher schedule penalty 

choose their travel time closer to their preferred departure time, while more flexible 

commuters tend to travel at the edge of the rush. Arnott et al. (1988) derives a similar set 

of equilibrium results for a finite number of user groups with different schedule penalty 
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factors, but the same wished departure time. In another study, these authors investigated 

the effect of the heterogeneity of user preferences on their route choice decisions based on 

a reduced form of Vickrey’s bottleneck model (Arnott et al., 1992). The existence and 

uniqueness of the equilibrium solution of the single bottleneck problem with multiclass 

users, who have heterogeneous schedule penalty preferences, is also proved in Lindsey 

(2004). Nagurney and Zhang (2012) also develops the projected dynamical system which 

is capable of accounting for the constraints in variational inequality problem. Recent 

studies have proposed solutions to the heterogeneous problem based on a linear 

complementary formulation for the single bottleneck problem (Ramadurani et al., 2010) 

and taking steps to generalize the solution for a discrete set of schedule preferences to an 

infinitely large number of preference groups (Qian and Zhang, 2011). Liu and Nie (2013) 

also proposes a semi-analytical solution to the single bottleneck problem with general 

heterogeneous commuters. Their proposed method employs the analytical solution of the 

bottleneck problem to present an equivalent assignment model that can include the closed-

form cost functions, and they formulate and solve the problem in form of a variatinal 

inequality problem (VIP). The effect of heterogeneity on equilibrium travel patterns has 

been shown to affect demand patterns based on observations (Gonzales and Christofa, 

2013).  In this research, we adapt the concept of the efficient frontier from portfolio theory 

to propose a general analytical solution for the single bottleneck problem with 

heterogeneous commuters.  
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The concept of the efficient frontier was first time introduced as a part of portfolio 

theory in Markowitz (1952) in order to formulate a theory of investment decisions that 

accounts for the trade-off that investors consider between maximizing return and 

minimizing risk. The concept of the efficient frontier can be easily adapted for the purpose 

of modeling bicriterion problems in transportation where users account for a trade-off 

between components of the costs in the equilibrium condition. On this basis, Dial (1996) 

employs the concept of the efficient frontier to propose a bicriterion route choice model 

with heterogeneous travel demand. In this research, we employ the concept of efficient 

frontier to account for the heterogeneity of schedule penalty among users to analytically 

model equilibrium arrival of commuter to the bottleneck.  Then, we use this model to 

propose a dynamic toll strategy that optimizes the system by minimizing the total cost for 

the commuters. 

Pricing policies have been widely studied as an effective demand management strategy 

for optimizing the arrival of the commuters to the single bottleneck. Arnott et al. (1990) 

proposes a dynamic pricing pattern that minimizes the total cost for the users by charging 

a toll equal in value to the difference between the user equilibrium and system optimum 

costs at each point in time to entirely eliminate the delay. The transition procedure from a 

flat toll to optimal dynamic toll strategy has also been studied in the literature (Deakin et 

al., 2011; Barnes et al., 2012). Heterogeneity in value of time (VOT) of the commuters is 

a key factor in pricing the bottleneck that has been widely explored in the literature. Cohen 

(1987) first accounted for such heterogeneity in dynamic pricing the bottleneck by 
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considering two demand groups with different values for time and schedule deviations. 

This analysis has been elaborated by allowing for heterogeneity in wished departure times 

as well as the relative importance of the early and late departures (Arnott et al., 1994). Van 

den Berg and Verhoef (2011) also extends these studies by considering a continuous 

distribution for the value of time of the users and also a price sensitive demand function. 

Xiao et al. (2011) studies the effect of the single-step peak toll on the equilibrium solution 

of the single bottleneck problem, and characterizes the optimum solution of the problem 

when the value-of-time has a distribution over the population of the commuters.  

The morning commute problem has been extensively studied as well for a single 

bottleneck with a transit mode (Tabuchi, 1993; Braid, 1996; Huang, 2000; Danielis and 

Marcucci, 2002; Kraus, 2003). Gonzales and Daganzo (2012) presents the user equilibrium 

solution of the morning commute problem with competing modes, and proposes dynamic 

toll and fare strategies that can optimize the system by avoiding delay in the bottleneck.  

In this part of the research, we employ the concept of the efficient frontier to propose 

an analytical model for the equilibrium arrival of the users to the bottleneck, where the 

heterogeneity in preferences of the users are represented by independent probability 

distributions of the schedule penalty factors over the population of the commuters. The 

proposed analytical solution can be also used to approximate the equilibrium condition and 

optimal pricing strategy of the bottleneck for a general S-shaped wished departure curve 

and any independent distributions of the schedule penalty factors. We employ the proposed 

model to derive a closed form solution for the equilibrium arrival of the commuters to the 
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bottleneck assuming the uniform distributions of the schedule penalty preferences are 

given. A numerical example is also provided as an application of the proposed model for 

different probability distribution of user preferences. We also propose a method to retrieve 

independent distributions of preferences of the users from a given joint distribution. The 

proposed solution of the problem can be also inversely employed to approximate the 

distribution of preferences from observed arrival time of the users to the bottleneck. In 

general, solving the morning commute problem analytically provides us intuitions about 

travel behavior of the heterogeneous commuters, which can be crucial in predicting the 

change in the overall condition of the bottleneck in case of prospective alteration in the 

characteristics of the demand or the properties of the bottleneck. 

The results of the research can also have applications in modeling and optimizing the 

network or any other system that can be modeled as a queueing system on an aggregated 

level.  

 

1.2.3 Demand Responsive Transit Systems 

Vickrey’s (1969) congestion theory also have applications in modeling transportation 

systems with limited capacity and time-dependent demand as queueing systems. Demand 

responsive transit (DRT) service is a type of such systems that can be modeled and 

optimized by adapting the congestion theory. Thus, the analytical model proposed for the 

morning commute problem with heterogeneous user preferences can be also adapted for 
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modeling a DRT system with a state-variable capacity and heterogeneous time-dependent 

demand. 

DRT systems are a class of transit services in which a fleet of vehicles dynamically 

changes routes and schedules in order to accommodate demand within a service area. A 

DRT system naturally has flexibility in providing service, which allows it to adapt to 

variations in the demand. This property of DRT makes it possible to eliminate the access 

distance for transit users by providing a curb-to-curb trip. The trade-off is that each user of 

the system must wait for a vehicle to pick them up and spend time in the system while the 

transit vehicles divert to pick up and drop off other passengers. The quality of service that 

DRT provides its users can be improved by reducing the waiting and in-service times of 

the users, as well as earliness and lateness that they experience in arriving to their 

destinations.  

Improvements in the quality of service also tend to raise the operating cost of the 

service. From the agency’s point of view, however, the high operating cost should be 

justified by the benefits for users; otherwise, the agency’s operating cost will be reduced at 

the expense of a decline in the quality of the service. The resulting inconvenience to the 

users due to inadequacy of the service quality (e.g., delay in both pickup and service, and 

lack of punctuality reflected in the earliness or lateness of arrival) contributes to the total 

costs that users experience in order to use the service. The inherent tradeoff between the 

quality of the DRT service and its associated operating cost suggests that costs to the 

agency and users should be balanced through the design and management of the system. 
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As a result, the optimal balance can be introduced as a condition of the system in which the 

total cost of the agency and users is minimized. 

There are many variables that have a direct or indirect influence on the performance of 

DRT services. These factors can be classified in three groups: network, operation, and 

demand characteristics. A large body of research uses different approaches to study the 

effects of these factors on the performance of the service. These approaches can be 

classified generally into two groups: simulations and approximate mathematical methods.  

Simulation is the appropriate method when the goal is to achieve a high level of 

precision in results by including all the specific details of the DRT system in the model. 

This method has been widely used to assess the effects of different operating factors, such 

as zoning strategies and time windows, on the productivity of the DRT service. Dessouky 

et al. (2005) employs the simulation method to evaluate the effect of these factors on the 

total trip miles, deadhead miles, and fleet size of paratransit service in Los Angeles, 

California. A similar method is also adopted for Houston, Texas, to compare the impacts 

of centralizing and decentralizing the operations (Quadrifoglio and Shen, 2010) and using 

transfers for inter-zonal communication (Shen and Quadrifoglio, 2011, 2012). Other 

simulation studies have addressed schedule reliability (Fu, 1999) and the effect of travel 

time variations on optimal routing (Fu and Teply, 1999). Although the precision of the 

model is the main promise of the simulation method, it can be only fulfilled under the 

condition that detailed data is available as input.  
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Often, detailed data are not available, and precise vehicle routing solutions may not be 

particularly useful since there are stochastic variations in the specific locations and times 

of requested trips. For many types of systematic analysis, it is possible to formulate the 

problem analytically by replacing detailed data with concise summaries. Although such 

simplification in the problem can decrease the precision of the results, the ability to obtain 

an exact analytical solution of the problem can reveal properties of the system by 

identifying the relationships between involved variables. Having a clear understanding of 

the tradeoffs at work enables us to quickly obtain insights about the effects of variations in 

different factors on performance of the system (Daganzo et al., 2012). 

There is a large body of research on analytical models of DRT systems. Daganzo (1978) 

presents an analytical model to approximate the capacity of a DRT system for three 

different pickup and drop-off strategies. This model accounts for the effect of the order that 

the operator serves the requests in approximating the capacity of service as a function of 

demand, operation, and network variables. Rahimi et al. (2014) adapts this analytical model 

to approximate the fleet size, VHT, and VMT of the DRT system, and calibrates this model 

for the ADA paratransit service in New Jersey. The study also shows that the operating 

cost of the service is represented well by a linear combination of these components. Many 

studies in recent years have used analytical approaches to model the relationships between 

the parameters and the performance of DRT systems. Nagurney et al. (2002) models the 

general equilibrium condition in a competitive supply chain network. Fu (2003) extends 

Daganzo’s (1978) model to include additional variables, and uses the model to optimize 
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total time and fleet size subject to a service quality constraint.  Diana et al. (2006) proposes 

a stochastic model to account for uncertainty in demand.  Other models have been 

developed to estimate the length of near-optimal tours (Daganzo, 1984; Figliozzi, 2008) 

and to include constraints on tour duration and pickup time windows (Figliozzi, 2009).  

These models consider demand as exogenous, and seek to optimize the supply of DRT 

service that at least meets that capacity of the system. There remains a need to identify 

ways to manage demand that are appropriate for the dynamics of DRT operations. 

In real systems, peaks in demand occur during certain times of the day when the rate of 

requests exceeds the operating capacity. As a result, users of the system can choose to adapt 

the times when they travel in order reduce the time spent waiting or riding in vehicles, but 

early or late arrival at their destination may be associated with costs of schedule deviation. 

In this research, we describe the dynamic equilibrium that is associated with oversaturated 

conditions in which the demand rate exceeds the operating capacity of the DRT system. 

The oversaturated DRT system has commonalities with the fixed-capacity bottleneck 

problem. Vickrey’s (1969) congestion model provides a useful structure for analyzing the 

dynamic equilibrium and approximating the users’ costs in DRT systems. As a result, the 

efficiency of the service can be enhanced by minimizing the total cost for the agency and 

users by optimizing the operating capacity of the service as well as number of waiting 

requests. 

Conventional paratransit services, such as those in compliance with the Americans with 

Disabilities Act (ADA) of 1990, provide complementary transit service for people with 
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disability, typically schedule trips for users in the order that they are requested. By limiting 

the number of requests per time that can be booked, the operator limits the scheduled 

demand for trips to the capacity of the system. There are two problems with the current 

operating strategy. First, service preference is given to users who know their schedule well 

enough in advance that they can reserve a booking early, while later requests may be forced 

to incur greater deviations from their preferred schedule due to lack of availability in peak 

periods. Second, ADA requires that complementary paratransit for people with disabilities 

schedule a pick up within one hour of the initial requested pick-up time, so very large peaks 

in demand give operators no choice but to run more vehicles and employ more drivers. 

The objective of this part of the research is to present a model and optimization 

approach for DRT service that is used to minimize the total cost to the agency and users 

combined. An analytical model for DRT systems based on Rahimi et al. (2014) and 

Daganzo (1978) is employed to approximate the components of the operating cost of the 

DRT system: fleet size, total vehicle hours traveled (VHT), and total vehicle miles traveled 

(VMT) in the network. Given the service area of the DRT system, these components of the 

agency cost can be approximated as functions of the number of waiting passengers that 

have requested service and the maximum rate that operators can serve passengers per time 

(i.e., operating capacity). The total operating cost for the agency can be estimated as a linear 

combination of these components (Rahimi et al., 2014). 

In addition to the expenses to the agency for running the service, it is also necessary to 

account for the costs that users endure to use the service. To this end, Vickrey’s (1969) 
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congestion theory is adapted to approximate the costs that the DRT users experience for 

the service when the operating capacity of the system is inadequate to meet the demand. In 

this case, the user equilibrium can be conceived as the result of competition between DRT 

users who are each minimizing their own travel costs, which include the waiting time to be 

picked up, the traveling time in the vehicle, and the cost for arriving earlier or later than 

preferred. In an equilibrium condition, no one has an incentive to change his/her own travel 

time. However, it is still possible to reduce the total costs of the system by optimizing the 

DRT operations and managing the temporal distribution of demand. The capacity of the 

service and the number of passengers awaiting pick-up are decision variables that can be 

maintained at optimal levels over time to minimize the total cost of the system. Since 

demand tends to peak during certain times of the day, an effective demand management 

strategy that can spread the demand uniformly over time has a key role in optimizing the 

operations of a DRT system. 

In this part of the research, we model the dynamics of DRT system scheduling and 

operations and identify a management strategy to incentivize users to adapt their request 

times to be more uniform over time. The system optimum problem is formulated to 

minimize the total cost of the agency and users in three possible scenarios: optimizing the 

operating capacity of the service, optimizing the number of waiting requests, and 

optimizing both together. In these scenarios, the system optimum problem also has an 

analytical solution when the distribution of the wished request time is known. A dynamic 

pricing policy can be implemented as an effective strategy to improve the efficiency of the 
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DRT system by forming a uniform distribution of the demand and avoiding the 

underutilization of the optimal capacity during off-peak times. As a result, the total cost of 

the agency and users can be minimized by choosing optimal values for the system capacity 

and the number of waiting requests. Meanwhile an appropriate demand management 

strategy that can make the demand uniform is required to keep the system optimized over 

time. We also provide a numerical example of a DRT system and an optimal pricing 

strategy as well as a sensitivity analysis on the results.  

 

1.2.4 Route Choice Problem 

The route choice decision-making procedure can be considered to have two separate stages. 

In the first stage, travelers need to observe different routes to collect information regarding 

performance of different choices. In the second stage, this information is used to evaluate 

the available route choices. We seek to identify the equilibrium when a heterogeneous 

population of travelers simultaneously chooses routes based on travel time and reliability. 

Conventional traffic assignment models simply presume that the trip duration is the only 

important measure in the assessment of route performance. With perfect information, users 

are assumed to able to anticipate the exact trip durations for each route. As a result, the 

interaction between users that choose the route with the shortest travel time will lead to the 

classic user equilibrium (UE) in which no one can improve his/her travel time by changing 

his/her own route. In the user equilibrium condition, all the used routes between the origin 
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and destination have identical travel times while routes with longer travel times remain 

unused (Wardop, 1952). In spite of the simplicity of the theory, the accuracy of the 

equilibrium model can be improved by elaborating the underlying assumptions. 

First of all, there are aspects other than the duration of the trip that travelers also take 

into account in their choice evaluation. The importance of such aspects to travelers not only 

depends on the purpose of the trip, but also varies with the taste or preference of the 

traveler, from one person to another (Beckmann et al., 1956; Dafermos, 1983). 

Accordingly, different people may choose different routes to travel from the origin to the 

destination. Jan et al. (2000) explores a comprehensive GPS dataset from households in 

Lexington, Kentucky, to demonstrate the consistency of the choices made by the same 

driver over time, even though these route choices vary among different drivers traveling 

between very similar origins and destinations. Interestingly enough, it is also concluded 

that these choices are often quite different from the shortest path.  Furthermore, the future 

cannot be anticipated with certainty, because the travel time is a stochastic process in 

nature. Travel time variability is due to two main factors: 1) variability of the capacity and 

2) variability of demand flows (Lo and Tung, 2003; Jia et al., 2011).  

According to the anchoring phenomenon, introduced in Tversky and Kahneman (1974), 

travelers will be unable to predict the exact travel times that they will experience. Instead, 

they start making their choices according to their presumptions regarding the route travel 

times and adjust their estimations by experiencing different choices over time. However, 

Fujii and Kitamura (2000) shows how gaining information and experience can improve 
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such estimation. Laboratory experiments conducted to study the learning effect and 

dynamic adjustment indicate that passing time can diminish the influence of prior 

experiences on travelers. In other words, more recent experiences have a deeper influence 

on the travelers (Iida et al., 1992; Polak and Oladeinde, 2000). The day-to-day learning and 

adjustment process based on real-time information can be modeled in framework of the 

stochastic assignment procedure (Polak and Hazelton, 1998; Tian et al., 2012; Lu et al., 

2014; Ding et al., 2013; Ding and Gao, 2013). In this respect, impacts of real-time 

information on route choice behavior of users as well as cost of the system are also studied 

in stochastic time-dependent networks under generalized user equilibrium condition (Gao 

et al., 2010; Gao, 2012; Gao and Huang, 2012).  

 Mahmassani and Chang (1987) uses simulation to study the day-to-day adjustments in 

the route choice and departure time of travelers in response to their most recent experiences. 

Accordingly, it suggests that such adjustments finally lead to the boundedly rational user 

equilibrium (BRUE), in which all the travelers are satisfied with their route choices. 

Although these routes may be different from the shortest path, the travelers are still not 

incentivized to change their routes to improve their travel times (Lou et al., 2010). Fact that 

the BRUE problem may not have a unique solution can be interpreted as the variability of 

the equilibrium flows. As a result, a stochastic traffic assignment model, which treats the 

travel time as variable, and recognizes taste variation among the users, can improve the 

consistency of the route choice with the reality of individual travel behaviors. 
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There is a large body of research on stochastic traffic assignment models that analyzes 

the route choice behavior of the users from different perspectives. The stochastic user 

equilibrium model (SUE), presented in Daganzo and Sheffi (1977) is one of the first models 

that proposes an extension to the user equilibrium by adding a random component to the 

travel cost functions. Such randomness can represent both errors in system performance 

and user perceptions. As a result, the probability of the route choice is evaluated by the 

probability that the route is the shortest path. De Palma et al. (1983) also proposed a 

stochastic extension to the dynamic user equilibrium model (DUE) for a single bottleneck.  

Dafermos (1980) accounts for the interaction between different links by formulating the 

equilibrium route choice problem as set of variational inequalities. The proposed model is 

also extended by considering the demand elastic in a multimodal network (Dafermos, 

1982). Dafermos and Nagurney (1984b) shows that the equilibrium condition continuously 

depends on the travel demand as well as the route cost functions. Ben-Akiva et al. (1986) 

used it as the base model to expand the results for a network with multiple bottlenecks 

located in parallel and series patterns. Ben-Akiva et al. (2012) also proposes a dynamic 

traffic assignment model to account for effects of long queues and spillbacks according to 

the real traffic conditions in congested networks.  Although some of these models include 

the inherent randomness associated with travel time, the ability of experienced users to 

estimate travel time variability is still not explicitly recognized. 

In another study, Mirchandani and Soroush (1987) suggests that not only is there 

uncertainty with route travel times, but travelers are also unable to predict such travel times 
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accurately. In this framework, the study proposes a generalized traffic equilibrium model 

(GSTEP), which includes the randomness both in route travel times and perception of the 

users. To take these effects into account, the route travel time is presumed to have a 

probability distribution and to vary among different users. Nagurney and Zhang (1997) also 

proposes a route choice adjustment model formulated as a dynamic system. Nevertheless, 

none of these models recognizes the risk of arriving late associated with the travel time 

uncertainty in different routes. Watling (2006) proposes the late arrival penalized user 

equilibrium (LAPUE) as a general equilibrium model that also takes the schedule delay 

into account in the route choice problem. However, users are able to minimize the 

associated risk by choosing from a portfolio of routes. Tian and Gao (2013) develops a 

probabilistic version of the priority heuristic process to model the route choice behavior of 

the users under risk in travel times. Levinson and Zho (2013) suggests that users tend to 

reduce the combination of their journey time and lateness. On this basis, it presents a 

stochastic traffic assignment model in which users are assumed to choose multiple routes 

for the same trip on different days, to keep their general trip costs minimized. This model 

is also supported by GPS data collected in metropolitan Minneapolis–St. Paul, Minnesota.  

However, the majority of research on traffic assignment problems has been based on the 

assumption of similarity of taste among the network users, in spite of inherent diversity of 

preferences among the travelers. Including the effect of heterogeneity in sensitivity of the 

users to different factors can reveal the unseen motivation of different drivers for taking 

different routes. 
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Multi-objective choice models have a variety of applications in the transportation field.  

In this regard, Dafermos (1972) considers individuals with different cost functions in 

proposing a multiclass traffic assignment model. On this basis, a multiclass toll pattern is 

also designed to optimize the network (Dafermos, 1973). In another paper, the same author 

proposes a multicriteria model that accounts for the effect of heterogeneity in preference 

of users on their route choice in the equilibrium condition of the transportation network, 

and shows the existence and uniqueness of the solution (Dafermos, 1983).  Dial (1996) 

proposes a bicriterion traffic assignment model to take both the durations and the costs of 

the trips into account in forecasting travelers’ route choices. It adapts the concept of the 

efficient frontier to account for heterogeneity of users’ values of time, and it generalizes 

the Frank-Wolfe (1956) algorithm to solve this problem. Recent studies have proposed 

generalized cost functions that are nonlinear combinations of travel time and tolls (Chen et 

al., 2010) and use probit-based bicriterion dynamic stochastic user equilibrium models to 

account for heterogeneity of value of time (Zhang et al., 2013). Nagurney (2000) shows 

that objectives that decision makers follow in the network might also be in contrast with 

each other, and rise in one may result in drop in others. Nagurney and Dong (2002) also 

considers a combination of the travel time and travel cost as the generalized cost of the 

routes in developing a multiclass multicriteria network equilibrium model. Wang, Jia et al. 

(2014) assumes that travelers choose their routes among the first several choices with the 

lowest general disutility (travel time and cost), so it proposes a rank-dependent bicriterion 
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equilibrium model for the route choice problem when there is stochasticity associated with 

both the criteria measurements and the subjective preferences, simultaneously. 

Route choice modeling with travel time risk is another application of bicriterion traffic 

assignment models. In this respect, different approaches are proposed in the literature to 

include the effect of the risk in the travel time in route choice modeling of users. Lo and 

Tung (2003) assumes the degradation in capacity of the links due to incidents as the primary 

cause of travel time variations in the network. On this basis, it proposes probabilistic user 

equilibrium model to account for such uncertainty on long-term route choice behavior of 

the users in the network. In addition to uncertainty of capacity, the stochastic nature of the 

route choice decision of individual users, on an aggregate level, causes variations in travel 

times in the network. In this regard, Chen and Zhou (2010) develops a mean-excess traffic 

equilibrium model that takes both reliability and uncertainty associated with travel time 

into account in route choice modeling. Wu and Nie (2011) also considers the heterogeneous 

sensitivity of users to risk for traffic assignment by linking the first-, second-, and third 

order stochastic dominance to concepts of insatiability, risk-aversion, and ruin-aversion 

within the framework of utility maximization. In another study, Nie (2011) considers 

travelers that choose routes to minimize the travel time budget required to guarantee their 

on-time arrivals with a certain level of confidence, and proposes a multiclass percentile 

user equilibrium traffic assignment model. Chen et al. (2011) proposes a solution algorithm 

for the multiclass reliability-based user equilibrium problem. Xiao and Lo (2013) studies 

route choice behavior of adaptive drivers in a stochastic network, and the proposed model 
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optimizes the expected prospect of the choices with acceptable travel time and arrival time. 

Pothering and Gao (2013) accounts for the heterogeneity in risk attitudes of the users by 

calibrating a multiclass user equilibrium model using laboratory data. Wang, Ehrgott, and 

Chen (2014) proposes a general travel time reliability bi-objective user equilibrium model 

(TTR-BUE), which simultaneously incorporates the travel time budget model (Lo et al., 

2006) and late arrival penalty model (Watling, 2006). This model has the advantage that it 

can identify a range of possible solutions based on the rational behavior of the users, 

regardless of the distribution of their preferences. Recent work has characterized 

equilibrium route choices when routes have variability of travel time performances but 

users are identical.  Tan et al. (2014) assumes the link travel times are random variable 

functions of the link flows under assumption that the variation in travel times are the result 

of certain exogenous factors. So, route choice behavior of the users has been studied for 

different types of generalized cost functions under travel time risk. As a result, the Pareto-

efficient route flow pattern is introduced as the equilibrium assignment of the users to the 

non-dominated routes in terms of the mean and standard deviation of travel time. On this 

basis, the general geometric properties of the mean-standard deviation (ES) indifference 

curve has been related to the definition of the generalized cost function as a combination 

of the mean and standard deviation of the travel time.  This body of work addresses the 

need to account for heterogeneity in networks with travel time variability, but there remains 

a need for an analytical approach to determine the assignment of traffic across routes in a 
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network when travelers have heterogeneous preferences and the travel times on individual 

routes exhibit variability.  

In this part of the research, we propose a traffic assignment model that includes the 

effect of travel time reliability on the user’s route choice. In the proposed model, we 

consider a statistical distribution for route travel times. Research shows that travelers 

consider a generalized cost for their trips in the network that can be approximated as a 

linear combination of its mean and standard deviation, regardless of the shape of the 

distribution (Fosgerau and Karlström, 2010; Fosgerau and Engelson, 2011). Both mean and 

standard deviation of the travel times are assumed to be functions of traffic flows in the 

network, while there is also a relationship between the mean and standard deviation of the 

travel time (Fosgerau, 2010; Mahmassani et al., 2013; Noland et al., 1998). Network users 

are also assumed capable of estimating mean and standard deviation of travel times, while 

the relative importance of these variables varies among the heterogeneous travelers with 

different trip purposes.  

In this problem, network users are assumed to seek the route that best matches their 

preferences while the heterogeneity of such preferences among the users is captured in 

form of a probability distribution of their risk sensitivity. The cumulative result of 

individual decisions leads to an equilibrium condition in which users have no incentive to 

change their choices. Such equilibrium can be represented by the concept of the efficient 

frontier.  
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The problem of investment decision-making in a financial market has many parallels 

with the travelers’ decision-making in a transportation network. Thus, we use the concept 

of the efficient frontier to accounts for the fundamental heterogeneity of preferences among 

traveler in their route choice decision-making procedure. As a result, the concept of the 

efficient frontier of the route choice (EFRC) is defined based on the distribution of 

preferences and physically accurate link performance models. In the definition of the 

EFRC, each user can just choose a single route from a discrete set of choices for his/her 

trip, as opposed to the portfolio set of different choices in the investment problem. As a 

result, we define the EFRC as the convex hull that connects the discrete set of the 

cumulative route choices result in an increasing order of their equilibrium travel time 

standard deviations in the standard deviation-expected travel time plane. Thus, the concept 

of the EFRC can be employed to develop a bi-objective traffic assignment model under 

travel time variability with heterogeneous travelers’ sensitivity to risk. The EFRC has 

specific characteristics, which makes it possible to propose a new formulation and solution 

algorithm for this problem. A numerical example of a sample network is also included, 

which compare the result of proposed traffic assignment method with that of conventional 

approaches.  

The proposed model benefits from a basis on the analytical results directly derived from 

the concept of the efficient frontier. So, the proposed model can provide intuition about the 

primary characteristics of the solution in the equilibrium condition. In addition, the 

proposed model can reveal the route choice ranking of the heterogeneous users according 
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to their own preferences, which makes it possible to predict the consequences of 

prospective changes in the network on the route choice behavior of the users. The main 

advantage of the proposed solution algorithm also is that using the known properties of the 

EFRC as the equilibrium solution of the problem eliminates the need to explicitly find the 

cheapest path for each user with different sensitivities to travel time risk. As a result, the 

proposed algorithm can be very efficient for solving the route choice problem under travel 

time variability when the heterogeneity in the demand is extensive. Although in this part 

of the research, the focus is on the problem with a single origin-destination network, the 

solution method can be employed in the existing equilibration algorithms to solve the multi 

origin-destination problems (Nagurney, 1999). 

 

1.3  Research Contribution 

Heterogeneity in preferences of the users is an aspect of the choice problems in 

transportation that has been mostly overlooked in formulating the transportation choice 

problems in the literature. In this research, we adapt the concept of the efficient frontier 

from portfolio theory (Markowitz, 1952) in finance, and introduce the result as an 

appropriate tool for modeling the choice problems in transportation. In the equilibrium 

condition of a bicriterion choice problem, it is known that no one can reduce one of the 

components of his/her costs by changing his/her choice without a rise in the other 

component. As a result, the population of the heterogeneous users will be distributed along 
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the efficient frontier of dominant choices. In this respect, we employ the concept of the 

efficient frontier to represent the equilibrium condition of the choice problems with 

objectives linearly combined in a generalized cost function, when there is heterogeneity 

associated with the relative importance of these objectives. We show that the efficient 

frontier in the equilibrium condition has primary properties that remain general in different 

problems in transportation.  

We first use the concept of the efficient frontier to derive an analytical solution for the 

morning commute problem with a general S-shaped wished departure curve when the 

schedule penalty preferences of the users have a probability distribution over the 

population of the commuters. On this basis, an optimal pricing strategy is proposed that 

can eliminate the total delay by avoiding the formation of the queue in the bottleneck. We 

also propose a method to retrieve independent distributions of user preferences from a 

given joint distribution. The proposed analytical solution of the problem can be inversely 

used to approximate the distribution of preferences from the empirical data of observed 

arrival time of the commuters to the bottleneck. The results can also have applications in 

modeling and optimizing the network or any other transportation system that can be 

modeled as a queueing system on an aggregated level. In this respect, we show that the 

DRT system with state-variable capacity and time-dependent demand can be modeled as a 

queueing system. Thus the analytical solution of the morning commute problem can be 

extended for analyzing the DRT system when there is a heterogeneity associated with the 

preference of users. Considering the heterogeneity in preferences of the users not only 
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allow us to draw a more accurate picture of the system in the equilibrium condition, but 

also enable us to propose a more effective dynamic pricing pattern for optimizing the 

system. Moreover, deriving analytical solutions for these problems can provide intuitions 

about the role of different factors and the interaction between them in the equilibrium 

condition of the system. 

In addition, we use the concept of the efficient frontier to propose a traffic assignment 

model for route choice behavior of the heterogeneous users in a network under travel time 

variability. The analytical basis of the proposed model can provide intuitions about the 

primary characteristic of the equilibrium solution of the problem. Moreover, it can reveal 

the route choice ranking of users with different sensitivity to reliability of travel time, which 

can be critical for assessing consequences of any prospective changes in the network or 

preferences of the users.  

 

1.4 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 adapts the concept of the efficient 

frontier from portfolio theory, and demonstrates its specific properties for a linear cost 

function. Chapter 3 uses these specific properties to propose an analytical model for the 

equilibrium arrival of the commuters to the bottleneck when there is a heterogeneity 

associated with their preferences regarding schedule deviations and penalty factors. On this 

basis, we propose a dynamic optimal pricing strategy to minimize the total cost of the 
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traveler by avoiding formation of the queue in the bottleneck. Chapter 4 shows that a 

demand responsive transit (DRT) system with a state-variable capacity and time-dependent 

demand can be modeled as a queueing system. Hence, the analytical solution of the 

morning commute problem can be also adapted to optimize the operation of the DRT 

system by implementing the proposed pricing strategy. Chapter 5 employs the concept of 

the efficient frontier to model the route choice behavior of the users with heterogeneous 

sensitivity to reliability of travel time in a network under travel time variability. Finally, 

Chapter 6 includes a summary of contributions, conclusions, and proposal of the future 

extension. 
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CHAPTER 2 

EFFICIENT FRONTIER OF BICRITERION CHOICE PROBLEM WITH 

HETEROGENEOUS USER PREFERENCES 

Decision-making is a multi-criterion optimization process by nature in which individuals 

tend to minimize their costs or maximize their benefits according to their own preferences. 

However, the heterogeneity of preferences among users makes the problem complicated. 

In this section, we adapt the concept of the efficient frontier to represent the equilibrium 

solution of bicriterion choice problems with linear cost functions in transportation. In the 

equilibrium condition, no one can reduce both components of the generalized cost by 

changing his/her choice as drop in one component of the cost corresponds to rise in another 

one and vice versa. Thus, the population of the users with heterogeneous preferences 

regarding the relative importance of components of the generalized cost will be distributed 

along the efficient frontier of dominant choices in the equilibrium condition. Here, we show 

that this efficient frontier has three specific characteristics that remain general for all of the 

problems. In the next chapters, we use these characteristics of the efficient frontier to model 

different bicriterion choice problems with heterogeneous user preferences in the 

transportation network. 

In a decision-making procedure in which different choices come with different costs, 

users tend to minimize their own disutilities by making choices with lowest possible cost. 

However, in the equilibrium condition that there is a trade-off between components of the 
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generalized cost, a drop in one of them will result in a rise in another. In this trade-off, the 

relative importance between these costs plays an important role in optimizing the balance 

between these costs. On this basis, the generalized cost function of the choice problem can 

be defined as the linear combination of these costs, weighted by their relative importance, 

which varies among the individuals as follows: 

𝐶𝑝,𝑖 = 𝐶𝑖
1 + 𝛼𝑝𝐶𝑖

2
 (2.1) 

where, 𝐶𝑖
1
 and 𝐶𝑖

2
 represent the components of the cost associated with the choice 𝑖, which 

can represent different costs in different bicriterion problems. The coefficient 𝛼𝑝 denotes 

the relative importance of these costs for users in the preference group 𝑝. To include the 

heterogeneity of the preferences among the users, we may presume a discrete (green) or 

continuous (blue) probability distribution over the demand, as illustrated in the Fig 1. As a 

result, 𝐶𝑝,𝑖 is the generalized cost of choice 𝑖 for the users in group 𝑝. With this definition 

of the generalized cost function, users with higher values for 𝛼𝑝 give more importance to 

the second component of the cost, while their sensitivity to the second component 

diminishes with decrease in 𝛼𝑝.  
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Figure 2.1. Hypothetical probability distribution of the user preferences 

 

In this case, heterogeneous users with different values for 𝛼𝑝  find different choices 

minimizing their generalized costs according to their own preferences. As a result, the 

concept of the efficient frontier can be employed to represent the set of dominant choices 

for non-identical users with heterogeneous values for 𝛼𝑝. 

 

2.1 The Efficient Frontier of Choices 

The concept of the efficient frontier was introduced in Portfolio Theory by Markowitz 

(1952) to represent the cumulative result of individual bicriterion decisions of the 

heterogeneous investors in a free market. The market offers the investor a variety of assets 

with different levels of return; nonetheless, there is always a risk associated with the 

investment in the market. So, heterogeneous investors who tend to optimize the balance 

between risk and return of their investments may find different assets to maximize their 

benefits according to their own preferences. In this respect, more conservative investors 
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will prefer assets with a lower level of risk in spite of their lower returns. In contrast, risk-

takers will invest in assets with higher levels of return, although their investments might be 

subject to higher levels of risk as well. However, no one will invest in assets with higher 

level of risk and lower level of return dominated by an alternative asset with a lower level 

of risk and higher level of return.  As illustrated in Figure 2.2a, the heterogeneity of 

preferences among the individuals causes them to invest in different assets along the 

efficient frontier (green points), while no one is inclined to invest in the assets dominated 

by the efficient frontier (pink points). 

(a)               (b)      

Figure 2.2. The efficient frontier of (a) the dominant assets in a free market (b) the choices with 

heterogeneous preferences  

The analogy between the bicriterion problems in finance and transportation disciplines 

makes it possible to adapt the theory by substituting the concepts of the risk and return by 

the components of the users’ generalized cost for modeling the bicriterion decision making 

problems in transportation.  
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Definition (Efficient frontier of choices).  The efficient frontier of choices is the convex 

hull of the equilibrium choice set in the 𝐶2- 𝐶1 plane that have the minimum generalized 

cost according to (2.1) for the users with heterogeneous preferences regarding the relative 

importance of the components of the cost (𝛼).   

 

Recognizing that the rational users tend to minimize their costs by seeking for the 

choice with the lowest cost, they may make variety of different - but dominant - choices 

due to heterogeneity in their presences.  In the other words, each user is looking for a 

specific optimal balance between these costs that can minimize his/her generalized cost 

according to his/her preferences regarding relative importance of these criteria. However, 

as illustrated in Figure 2.2b, there might be choices (pink points) that are always dominated 

by their alternatives (green points) with lower associated costs in all the components, which 

no one with any preferences would not choose them.  Accordingly, the cumulative result 

of individual decisions with heterogeneous preferences regarding the relative importance 

of the criteria can be well presented by the efficient frontier of the choices.  

When the generalized cost of the heterogeneous users can be approximated as a linear 

combination of components of the costs as presented in (2.1), the efficient frontier of the 

choices can be proven to have a set of primary characteristics that remains general for the 

solution of the different bicriterion problems. Once these characteristics are identified, they 

can reveal the key properties of the solutions of the bicriterion problems.  
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2.1.1 Differentiable Efficient Frontier of Choices 

In cases that the choice set of the users has a continuous nature, e.g., arrival time to the 

bottleneck, and user preferences have a continuous distribution, then the efficient frontier, 

𝐶1(𝐶2), is a continuous and differentiable function as illustrated in Figure 2.3a, with 

following characteristics: 

               (a) Differentiable efficient frontier                   (b) Piecewise linear efficient frontier 

            Figure 2.3. Efficient frontier of continuous set of choices 

 

Proposition 2.1 (monotonicity). The efficient frontier, 𝐶1(𝐶2) , is a non-increasing 

function of 𝐶2. 

 

Proof. The proof is made by contradiction. Let 𝐶1(∙)  represent the continuous 

differentiable efficient frontier function. According to the definition of decreasing 

monotonicity, the efficient frontier will not be a decreasing monotone function if and only 

if there exist at least two points on the efficient frontier satisfying the following conditions 

(see Figure 2.4a):  
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     𝐶1
2 < 𝐶2

2       (2.2) 

𝐶1(𝐶1
2) < 𝐶1(𝐶2

2)          (2.3) 

Multiplying both sides of the inequality (2.2) by any nonnegative  𝛼𝑝 and adding the result 

to the inequality (2.3), we get the following inequality: 

𝐶1(𝐶1
2) + 𝛼𝑝 𝐶1

2 < 𝐶1(𝐶2
2) + 𝛼𝑝 𝐶2

2 ,    ∀𝛼𝑝 ≥ 0         (2.4) 

According to the definition of (2.1), left and right sides of the inequality (2.4) represent 

generalized costs of the points 1 and 2, respectively. 

𝐶𝑝,1 < 𝐶𝑝,2,    ∀𝛼𝑝 ≥ 0                   (2.5) 

Inequality (2.5) indicates that point 2 is always dominated by point 1, for any nonnegative 

value of 𝛼𝑝. This is in direct contradiction with the definition of the efficient frontier as set 

of dominant choices, so point 2 cannot be on the efficient frontier. Therefore, if (2.2) holds, 

then 𝐶1(𝐶1
2) ≥ 𝐶1(𝐶2

2)  on the efficient frontier; thus, decreasing monotonicity of the 

efficient frontier is guaranteed.  ∎ 

 

Proposition 2.2 (convexity). The efficient frontier, 𝐶1(𝐶2),  is a convex function of 𝐶2. 

 

Proof. The proof is made by contradiction as well. By definition, a convex function must 

satisfy the following: 
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𝜃𝐶1(𝐶1
2) + (1 − 𝜃)𝐶1(𝐶2

2) ≥ 𝑡(𝜃𝐶1
2 + (1 − 𝜃)𝐶2

2),    ∀𝐶1
2, 𝐶2

2, ∀𝜃 ∈ [0,1].         

(2.6)  

Therefore, the efficient frontier will not be convex if and only if ∃𝐶1
2, 𝐶2

2, and ∃𝜃 ∈ [0,1] 

such that  

𝜃𝐶1(𝐶1
2) + (1 − 𝜃)𝐶1(𝐶2

2) < 𝑡(𝜃𝐶1
2 + (1 − 𝜃)𝐶2

2),                      (2.7)  

In other words, if there exist at least at one point on the efficient frontier that lies above 

a linear combination of these two points, the convexity condition is violated (see Figure 

2.4b). 

To derive the generalized costs of points 1 and 2, we can use the following algebraic 

equality: 

𝛼𝑝𝜃𝐶1
2 + 𝛼𝑝(1 − 𝜃)𝐶2

2 = 𝛼𝑝(𝜃𝐶1
2 + (1 − 𝜃)𝐶2

2) ,    ∀𝐶1
2, 𝐶2

2, 𝜃, 𝛼𝑝           (2.8)  

We hold the inequality (2.7) by adding the left and right sides of (2.8) to the left and right 

sides of (2.7), respectively. According to the definition of the generalized cost in (2.1), the 

left side of this inequality is a weighted sum of the generalized cost of points 1 and point 

2.  The right side is also the generalized cost of a third point associated with 𝐶3
2 = 𝐶1

2 +

(1 − θ)𝐶2
2, which we denote simply as 𝐶𝑝,3. Following from the conditions of (2.7) and 

(2.8) that ∀𝛼𝑝, ∃𝐶1
2, 𝐶2

2 , and ∃𝜃 ∈ [0,1] , we have:  

𝜃𝐶𝑝,1 + (1 − 𝜃)𝐶𝑝,2 < 𝐶𝑝,3    (2.9)  
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According to the definition of the efficient frontier, a rational user with preference 𝛼𝑝 

who chooses between points 1 and 2 in the absence of better alternatives will choose the 

route with the lower generalized cost of 𝐶𝑝,min = min {𝐶𝑝,1, 𝐶𝑝,2} . Using the 

identity, 𝐶𝑝,min = 𝜃𝐶𝑝,min + (1 − 𝜃)𝐶𝑝,min, we can see that 

𝐶𝑝,𝑚𝑖𝑛 = 𝜃𝐶𝑝,𝑚𝑖𝑛 + (1 − 𝜃)𝐶𝑝,𝑚𝑖𝑛 ≤ 𝐶𝑝,1 + (1 − 𝜃)𝐶𝑝,2 < 𝐶𝑝,3     (2.10)  

because 𝐶𝑝,min ≤ 𝐶𝑝,1 and 𝐶𝑝,min ≤ 𝐶𝑝,2. So, existence of a 𝜃 for which condition (2.7) 

holds means that there exist at least a point on the efficient frontier with a generalized cost 

lower than point 3, for any value of 𝛼𝑝. This contradicts the inherent dominancy of the 

efficient frontier, thus the efficient frontier must be convex everywhere.  ∎ 

 

(a)                                                                                        (b) 

Figure 2.4. (a) monotonicity of the efficient frontier; (b) convexity of the efficient frontier 
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Proposition 2.3 (geometric property). The slope of the differentiable efficient frontier at 

each point is 𝑚𝑖 = −𝛼𝑝 of the users choosing that point (see Figure 2.3a) 

 

Proof. According to the definition of the efficient frontier as a set of dominant choices, 

users pick the choices that minimize their generalized cost according to their own 

preferences. Since the efficient frontier is defined continuous and differentiable, the first 

derivative of the generalized cost of each choice i on the efficient frontier for demand group 

𝑝  with respect to 𝐶𝑖
2  should be equal to zero. By substituting the definition of the 

generalized cost from equation (2.1), we can rewrite the first order condition as follows: 

𝜕𝐶𝑝,𝑖

𝜕𝐶𝑖
2 =

𝜕𝐶𝑖
1

𝜕𝐶𝑖
2 + 𝛼𝑝 = 0    (2.11)  

As a result, the slope of the efficient frontier at choice 𝑖, 𝑚𝑖, picked by group 𝑝, can be 

determined as below: 

 𝑚𝑖 =
𝜕𝐶𝑖

1

𝜕𝐶𝑖
2 = −𝛼𝑝        (2.12)  

∎ 

Corollary 2.1 (assignment order). Labeling the choices in an increasing order of their 𝐶2, 

the heterogeneous users pick these choices in a decreasing order of their α𝑝. According to 

the monotonicity property (Proposition 2.1), 𝐶1 will be a decreasing function of 𝐶2. In the 

meantime, the convexity property (Proposition 2.2) ensures that the negative slope is 
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increasing (i.e., becoming less steep). Then, the geometric property (Proposition 2.3) 

implies that the assignment starts with the greatest 𝛼, where the negative slope is steepest, 

and progresses sequentially to the lowest 𝛼, where the slope is flattest (See Figure 2.3a). 

Now that the general properties of the efficient frontier are revealed, we extend the 

results for a discrete distribution of 𝛼. 

 

2.1.2 Piecewise Linear Efficient Frontier of Choices  

In the case that the distribution of the user preferences is discrete, according to the 

Proposition 2.3, the efficient frontier,𝐶1(𝐶2), turns out to be a piecewise linear function, 

as illustrated in Figure 2.3b, with very similar characteristics as the differentiable function. 

For one thing, the efficient frontier is still monotonically deceasing exactly as demonstrated 

in Proposition 2.1. For another, the piecewise linear efficient frontier is also a convex 

function as showed in Proposition 2.2. Finally, the pricewise efficient linear efficient 

frontier has the same geometric property presented in Proposition 2.3. However, since  𝛼 

has a discrete distribution, the slope of the segment (i,j) of efficient frontier (𝑚𝑖,𝑗), which 

includes a range of choices from i to j, will be equal to −α𝑝 of the group of users picking 

these choices, as depicted in the Figure 2.3b.  

𝑚𝑖,𝑗 = −𝛼𝑝                                        (2.13)  
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Accordingly, the assignment order that explained in Corollary 2.1 also holds for a 

discrete distribution of 𝛼, and the heterogeneous users pick these choices in a decreasing 

order of their α𝑝. 

Now that these specific characteristics of the efficient frontier are known, they can be 

employed to analytically model the single bottleneck problem with distributions in the 

schedule penalty factors of the commuters as a bicriterion choice problem with 

heterogeneous user preferences.  
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CHAPTER 3 

MORNING COMMUTE PROBLEM WITH HETEROGENEOUS USER 

PREFERENCES 

Choosing the starting time of a trip is one of the important decisions that users need to 

make ahead of their trips according to their own preferences. Rational users of a bottleneck 

tend to minimize the generalized cost of their trips by adjusting their arrival times to the 

bottleneck. Thus, the cumulative result of the individual decisions of the users leads to the 

user equilibrium condition in which no one can reduce his/her cost anymore by changing 

the starting time of his/her trip. This problem is first introduced in Vickrey’s (1969) 

congestion theory based on a first-in, first-out single bottleneck model with fixed capacity, 

and elaborated in the literature by considering heterogeneity in schedule preferences of the 

users (Hendrickson and Kocur ,1981; Smith, 1984; Daganzo, 1985).  In this section, we 

employ the concept of the efficient frontier to propose an extension to the user equilibrium 

and optimum pricing models of the bottleneck by accounting for the heterogeneity in 

schedule penalty preferences of the users in modeling the travel behavior of the commuters. 

In addition, the proposed analytical solution for the morning commute problem can have 

applications in modeling and optimizing the aggregated networks that can be modeled as  

queueing systems (Daganzo, 2007; Geroliminis and Daganzo, 2008; Gonzales and 
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Daganzo, 2012). An applicable method is also proposed to retrieve independent 

distributions of preferences of the users from a given joint distribution. The proposed 

analytical solution of the problem can also be inversely used to approximate the distribution 

of user preferences from the empirical data from observations. 

 

3.1 Trip Scheduling Problem with Heterogeneous Traveler Preferences 

The trip scheduling problem for a single bottleneck was introduced in Vickrey (1969), 

which explains how users adjust the timing of their travel to minimize their own costs when 

time-dependent demand exceeds a bottleneck’s fixed capacity, 𝜇. As a result of queuing, a 

commuter who arrives at the bottleneck will experience a combination of queueing delay 

and schedule penalty, depending on whether the departure time from the bottleneck is 

before or after their preferred schedules, in addition to the free flow travel time of the 

bottleneck. Thus, the total cost for the commuter 𝑁, with earliness penalty factor 𝑒𝑝 and 

lateness penalty factor 𝑙𝑝,  can be expressed as a linear combination of the free flow travel 

time (𝜏𝐹), delay (𝜏𝐷), and earliness (𝜏𝐸) or lateness (𝜏𝐿) that this commute experiences: 

 

𝐶𝑝(𝑁) = 𝜏𝐹 + 𝜏𝐷(𝑁) + 𝑒𝑝 𝜏𝐸(𝑁) + 𝑙𝑝 𝜏𝐿(𝑁)            (3.1) 
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Here, the schedule penalty factors 𝑒𝑝  and 𝑙𝑝  recognize the weights of the schedule 

deviation relative to queueing delay depending on the preferences of the heterogeneous 

commuters commuter denoted by 𝑝. 

The pattern of arrivals and departures from the bottleneck may be represented by 

cumulative counts of the number of passengers to arrive by time 𝑡, 𝐴(𝑡), and the number 

to depart by time 𝑡 , 𝐷(𝑡). So the delay can be represented as the horizontal distance 

between arrival and departure curves. As illustrated in the Figure 3.1a and 5b, such delay 

increases from zero at start of the peak period, 𝑡𝑠, to its maximum value, 𝜏𝑐, at time 𝑡̂, then 

it decreases back to zero at the end of end of the peak, 𝑡𝐸. The schedule deviation is the 

difference between the time that a commuter wishes to have departed the bottleneck as 

described by a cumulative wished curve, 𝑊(𝑡) , and the actual departure.  Thus, the 

earliness and lateness are a consequence the cumulative arrivals and resulting queues. If 

commuters choose when to start their trips to arrive at the bottleneck at a time 𝑡, the user 

equilibrium is defined by the 𝐴(𝑡)  that allows no commuter to reduce his/her own 

generalized cost by changing his/her own arrival time. Daganzo (1985) proves that a unique 

user equilibrium exists when 𝑊(𝑡) is S-shaped, with slope that exceeds bottleneck capacity 

between two time points and is less outside. Assuming that demand is homogenous with 

identical earliness (e) and lateness (l) penalty factors,  Fig 4a, b illustrate queueing diagrams 

of the well-known conventional user equilibrium respectively for a stepwise and an S-

shaped wished and departure curve.  
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           (a) Stepwise wished curve    (b) S-shaped wished curve 

Figure 3.1. Queueing diagram of bottleneck user equilibrium  

 

Two conditions describe the user equilibrium when commuters have homogeneous 

schedule penalties. First, the arrival curve is piecewise linear with specific slopes in the 

user equilibrium condition. 

 

𝑑𝐴(𝑡)

𝑑𝑡
= {
𝜇/(1 − 𝑒), for commuters who depart early

𝜇/(1 + 𝑙), for commuters who depart late
        (3.2) 

 

Second, the proportion of the commuters who experience earliness, 𝑁𝑒, to those who 

are late, 𝑁𝑙, equals the proportion of lateness penalty to earliness penalty. 
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𝑁𝑒

𝑁𝑙
=
𝑙

𝑒
          (3.3) 

 

In the equilibrium condition, no one can reduce his/her generalized cost by changing 

his/her arrival time to the bottleneck. The underlying assumption of the congestion theory 

is that all commuters have identical schedule penalties for departing early and late from the 

bottleneck. However, empirical evidence shows that in reality there is a heterogeneity 

associated with the schedule penalty factors that commuters account for them in their trips 

(Small, 1982; Gonzales and Christofa, 2013). To include such heterogeneity of the users’ 

preferences, we employ the concept of the efficient frontier of choices, to propose an 

analytical solution to the morning commute problem with heterogeneous users. First, in 

section 3.1.1, we explain the methodology under the simplifying assumption that 

commuters have a stepwise wished curve as depicted in Figure 3.1a. Then, in section 3.1.2, 

we show that a same approach can be followed in case that the departure curve has a general 

smooth S-shape as illustrated in Figure 3.1b. On this basis, we propose a general 

formulation of the model when there is heterogeneity associated with both schedule and 

schedule penalty preferences of the bottleneck commuters. 

 

3.1.1 Stepwise Wished Curve 

In a simplified case of the morning commute problem of Figure 3.1a for users with an 

identical wished departure time (𝑡̂) and the same schedule penalty factors as in Arnott et al. 
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(1990), the generalized cost of the trips remains equal among the homogenous commuters 

in the equilibrium condition, as depicted in Figure 3.2a. It is worth pointing out that the 

delay that commuters experience decreases linearly with their earliness and lateness with 

slopes −𝑒 and −𝑙, respectively, as depicted in the Figure 3.2b and 6c. In addition, it can be 

shown that earliness and lateness of the users vary linearly with their departure order from 

bottleneck with slope 1/µ (See Figure 3.1a). The result is depicted in Figure 3.2a with delay 

increasing linearly with slope e/µ for early commuters to its maximum value 𝜏𝑐 and then 

decreasing with slope -l/µ to zero for late commuters. Meanwhile, the generalized cost of 

travel remains constant for all the commuters. 

 

(a) Variation of commuters’ 

generalized cost  

  (b) Delay-earliness relationship       (c)   Delay-lateness relationship 

Figure 3.2. Variation of the components of the generalized cost for homogenous commuters in user 

equilibrium 
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To account for the heterogeneity of the user preferences, we may consider a probability 

distribution for the schedule penalties of the commuters like the one plotted in Figure 2.1. 

In this case, the morning scheduling problem can be viewed as a choice problem with 

heterogeneous user preferences. The heterogeneous commuters seek to minimize the 

generalized cost of their trips according to their own preferences by adjusting their arrival 

time to the bottleneck. In this problem, the commute cost of equation (3.1) can be compared 

to the generalized cost function (1), where the associated delay and schedule deviation are 

the components of the generalized cost that users experience to commute through the 

bottleneck. In this respect, each commuter chooses the arrival time to the bottleneck that 

minimizes the combined delay and schedule deviation that he or she experiences according 

to his/her own schedule penalty factors.  

The cumulative result of the individual bicriterion decisions in the equilibrium 

condition can be well represented by the efficient frontier of choices. Accordingly, the 

population of the heterogeneous commuters will be distributed along the efficient frontier 

of arrival times in the equilibrium condition. As a result, the concept of the efficient frontier 

can be employed to demonstrate the relationships of delay with earliness and lateness of 

the equilibrium arrival of the users as illustrated in Figure 3.3b and 7c.  In these figures, 

each point on the efficient frontier corresponds to a specific arrival time, which is 

represented by its associated delay and schedule deviation. So, the slope of the efficient 

frontier, 𝜏𝐷(∙)  as function of 𝜏𝐸 or 𝜏𝐿, at each point equals to the negative value of the 

schedule penalty of the user who chooses the corresponding arrival time (𝑡𝐴) of this point, 
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−𝑒𝑡𝐴  or −𝑙𝑡𝐴  for earliness and lateness periods, respectively. In the other words, 

commuters with lower schedule penalty factors tend to arrive to the bottleneck closer to the 

beginning (𝑡𝑆) and the end (𝑡𝐸) of the peak period, where they will experience a lower delay 

although they may significantly deviate from their schedule. In contrast, commuters with 

higher schedule penalty factors prefer to arrive to the bottleneck in the middle of the peak 

period to arrive to their destinations with a lower deviation from their schedules in spite of 

higher delays that they experience in the bottleneck. Ignoring the free flow travel time of 

the users, the variations in generalized cost of equation (3.1) for heterogeneous commuters 

can be illustrated as in Figure 3.3a. 

 

     (a) Variation of commuters’ 

generalized cost  

  (b) Delay-earliness relationship      (c) Delay-lateness relationship 

Figure 3.3. Variation of the components of the generalized cost for heterogeneous commuters in user 

equilibrium 
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As shown in the Chapter 2, the efficient frontier of choices has specific properties that are 

general for all problems. In the next section, we use these properties to propose an 

analytical solution to the morning commute problem with an S-shaped wished curve and 

heterogeneous user schedule penalty factors.  

 

3.1.2 S-Shaped Wished Curve 

To account for the heterogeneity in the schedule preferences of the users, we may assume 

a smooth S-shaped wished curve for the commuters. Meanwhile, we account for the 

heterogeneity of the schedule penalty factors of the users by considering probability 

distributions for earliness and lateness penalty factors. Heterogeneous users choose 

arriving times to the bottleneck that make the combination of the delay and schedule 

deviation of their commutes minimized according to their own preferences. The cumulative 

result of the individual decisions will be an equilibrium condition in which no commuter 

will have an incentive to change his/her arrival time to the bottleneck to be earlier or later. 

Accordingly, the concept of the efficient frontier can be employed to represent the 

equilibrium condition of the bottleneck with heterogeneous commuters. Thus, we use 

specific properties of the efficient frontier, 𝜏𝐷(∙)  as function of 𝜏𝐸 or 𝜏𝐿, to demonstrate 

the relationship of arrival times of the commuters to the bottleneck with their schedule 

deviation penalty factors. On this basis, we can derive the arrival distribution of the 

heterogeneous commuters over time in the equilibrium condition.   
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In Section 3.1.2.1, we first use the main properties of the efficient frontier, presented in 

Chapter 2, to specify the properties of the equilibrium arrival of the heterogeneous 

commuters to the bottleneck. On this basis, in Section 3.1.2.2, we derive an analytical 

solution for the equilibrium arrival of the commuter to the bottleneck given the PDFs of 

the schedule deviation penalty factors. In section 3.1.2.3, we show that the proposed 

analytical solution derived based on the properties of the efficient frontier is necessary and 

sufficient for the equilibrium conditions of the bottleneck derived according to Daganzo 

(1985).   

 

3.1.2.1 Efficient Frontier of Arrival Choices 

The main objective of this part of the research is to derive the arrival distribution of the 

heterogeneous users over time who find different arrival times minimizing the generalized 

cost of their commutes according to their own schedule deviation penalty preferences. In 

this respect, commuters can be tagged with their arrival times to the bottleneck as well as 

their earliness or lateness penalty factors. Once we figure out the relationship between 

arrival times of the commuters with their schedule deviation penalty factors, we can derive 

the equilibrium solution for the arrival of the commuters to the bottleneck. For this to 

happen, let variable 𝑡𝐴  denotes the arrival time of the commuters to the bottleneck. So 

𝑁𝑡𝐴 = 𝐴(𝑡𝐴) is the cumulative arrivals of the commuters by time 𝑡𝐴 while the earliness (or 

lateness) penalty factor of the commuter who arrived to the bottleneck at time 𝑡𝐴  is 



 

 

 

 

58 
 

 

 

represented by 𝑒𝑡𝐴  (or 𝑙𝑡𝐴). On this basis, we can derive the relationship between these 

variables in the equilibrium condition using the concept of the efficient frontier. 

In this section, we use the main properties of the efficient frontier, 𝜏𝐷(∙) , according to 

Chapter 2, to demonstrate the properties of the equilibrium arrivals of the heterogeneous 

commuters to the bottleneck. According to the Propositions 2.1 and 2.2, the efficient 

frontier is a monotonically decreasing convex function. However, we need to specify the 

geometric property of the efficient frontier in Proposition 2.3 for the morning commute 

problem to identify the differential relationship between the delay and schedule deviation 

that users experience in the equilibrium condition, as demonstrated in Proposition 3.1. 

Knowing the relationship between schedule deviation for the users and their departure 

times from the bottleneck in the equilibrium condition, we derive the differential 

relationship between delay that users experience and their departure times as an equivalent 

for the geometric property of Proposition 3.1, as presented in Corollary 3.1.  Moreover, we 

use the result of the Corollary 3.1 to adapt the assignment order rule of the Corollary 2.1 

specifically for the morning commute problem in Corollary 3.2. In Section 3.1.2.2, we use 

the results of the Corollaries 3.1 and 3.2 to derive the analytical solution for the morning 

commute problem given the PDFs of the schedule deviation penalty factors. 

   

Proposition 3.1 (geometric property). Each point on the efficient frontier, 𝜏𝐷(𝜏𝐸) (or 

𝜏𝐷(𝜏𝐿)), represents the combinations of delay and earliness (or lateness) with minimum 
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costs, which directly corresponds to choosing an arrival time (𝑡𝐴) to the bottleneck. On this 

basis, the slope of the efficient frontier at each point equals to −𝑒𝑡𝐴 (or −𝑙𝑡𝐴) for the early 

(or late) commuter 𝑁𝑡𝐴  who chooses arrival time 𝑡𝐴. 

𝑚𝑡𝐴 =

{
 
 

 
 
∂τ𝐷,𝑁𝑡𝐴
∂τ𝐸,𝑁𝑡𝐴

= −𝑒𝑡𝐴 , for commuters who depart early  

∂τ𝐷,𝑁𝑡𝐴
∂τ𝐿,𝑁𝑡𝐴

= −𝑙𝑡𝐴 ,   for commuters who depart late

     (3.4) 

Proof. Rational users tend minimize their generalized cost according to their own 

preferences. In the equilibrium condition, heterogeneous users arrive to the bottleneck in 

an order in time that each of them experiences the minimum possible generalized cost 

according to his/her preference. So, the first derivative of the generalized cost for 

commuters at each arrival point in time, 𝑡𝐴, and earliness penalty factor 𝑒𝑡𝐴, with respect 

to N should be equal to zero.  

 
𝜕𝐶𝑡𝐴(𝑁𝑡𝐴)

𝜕𝑁
=
𝜕𝐶𝑡𝐴(𝑁𝑡𝐴)

𝜕𝜏𝐸,𝑁𝑡𝐴

∙
𝜕𝜏𝐸,𝑁𝑡𝐴
𝜕𝑁

= 0     (3.5)  

According to the definition of the schedule deviation, the earliness of commuter N can be 

approximated as the difference between the wished and actual departure times:  

𝜏𝐸,𝑁 = 𝑊
−1(𝑁) − 𝐷−1(𝑁) = 𝑡𝑤,𝑁 −

𝑁

𝜇
 ,  for the commuter who departs early (3.6) 
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In this relation, 𝑊−1(. ) and 𝐷−1(. ) are the inversed cumulative wished curves, which 

denote the time corresponding to commuter 𝑁, respectively. Here, 𝑊−1(𝑁) has a fixed 

value for the commuter N, 𝑡𝑤,𝑁 . Moreover, since bottleneck has a fixed capacity, the 

departure time of the commuter N can be derived as 𝐷−1(𝑁) = 𝑁/𝜇. As a result the first 

derivative of the earliness of the commuter N with respect to N can be derived as bellow: 

𝜕𝜏𝐸,𝑁𝑡𝐴
𝜕𝑁

= −
1

𝜇
                              (3.7) 

By substituting the definition of the generalized cost from equation (3.1), we can rewrite 

the first order condition (3.5) as follow:  

−
1

𝜇
(
𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝜏𝐸,𝑁𝑡𝐴

+ 𝑒𝑡𝐴) = 0                                    (3.8)  

As a result, the slope of the efficient frontier at each arrival point in time, 𝑚𝑡𝐴 =

𝜕𝜏𝐷,𝑁𝑡𝐴
/𝜕𝜏𝐸,𝑁𝑡𝐴

, is negatively proportional to the earliness penalty factor of the commuters 

who choose that arrival time in the equilibrium condition, 𝑒𝑡𝐴. A very similar conclusion 

also can be drawn for the commuters who depart the bottleneck later than they wished as 

generalized in condition (3.4).∎ 

 

Corollary 3.1 (equivalent geometric property). As it is illustrated in Figure 3.4, in the 

equilibrium condition, the first derivative of the delay that a commuter experiences with 
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respect to his departure time, 𝐷−1(𝑁) = 𝑡𝐷, equals to 𝑒𝑡𝐴 (or −𝑙𝑡𝐴) of that commuter in the 

earliness (or lateness) period. 

 
𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐷

= {
+𝑒𝑡𝐴 , for commuters who depart early  

−𝑙𝑡𝐴 ,   for commuters who depart late
          

(3.9) 

 

Figure 3.4.  Variation of components of the generalized cost over time for heterogeneous commuters in 

user equilibrium 

 

Proof. According to the differentiation chain rule we have: 

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐷

=
𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝜏𝐸,𝑁𝑡𝐴

∙
𝜕𝜏𝐸,𝑁𝑡𝐴
𝜕𝑡𝐷

                                        (3.10) 

For one thing, we have the value of first term (𝜕𝜏𝐷,𝑁𝑡𝐴
/ 𝜕𝜏𝐸,𝑁𝑡𝐴

) from equation (3.4) of 

Proposition 3.1. For another we need to determine the value of the second term 
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( 𝜕𝜏𝐸,𝑁𝑡𝐴
/𝜕𝑡𝐷 ). By substituting 𝑊−1(𝑁)  with 𝑡𝑤,𝑁  and also D−1(𝑁)  with 𝑡𝐷  in the 

definition of earliness in equation (3.6), the first derivative of the earliness with respect to 

𝑡𝐷 can be derived as below: 

𝜕𝜏𝐸,𝑁𝑡𝐴
𝜕𝑡𝐷

= −1                                     (3.11) 

Thus, the condition (3.9) for the early commuters can be derived by substituting the 

equations (3.4) and (3.11) in the equation (3.10). A similar result also can be derived 

following the same approach for late commuters. ∎ 

 

Corollary 3.2 (assignment order). As it can be inferred from Figure 3.4, early commuters 

arrive to the bottleneck in an increasing order of their earliness penalty factor from time 𝑡𝑆 

to 𝑡̂. In contrast, late commuters arrive to the bottleneck in a decreasing order of their 

lateness penalty factor from time  𝑡̂ to 𝑡𝐸. In other words, commuters with lower schedule 

penalty factors are more sensitive to delay and tend to minimize their generalized costs by 

adjusting their arrival times closer to the beginning (𝑡𝑆) and end (𝑡𝐸) of the peak period. On 

the contrary, commuters with higher schedule penalty factors have less sensitivity to delay 

and prefer the arrival times closer to the rush of the peak period (𝑡̂).  

According to Propositions 2.1 and 2.2, the efficient frontier of arrival choices is a 

monotonically decreasing convex function. Thus, it can be concluded from comparing 

Proposition 3.1 with Corollary 3.1 that the delay first monotonically increases to its 



 

 

 

 

63 
 

 

 

maximum value, 𝜏𝑐 , from time 𝑡𝑆 to 𝑡̂, and then monotonically decreases back to zero from  

time  𝑡̂ to 𝑡𝐸. However, this function remains convex in the earliness part as well as the 

lateness part, which means that the slope of delay curve is monotonically increasing and 

decreasing in earliness and lateness parts, respectively. According to the Corollary 3.1, this 

slope at each arrival time, 𝑡𝐴, equals to the e𝑡A or −l𝑡𝐴 of the early or the late commuter(s) 

who chooses that arrival time, respectively. As a result, it can be concluded that commuters 

arrive to the bottleneck in an increasing and a decreasing order of their schedule penalty 

factors in the earliness and lateness periods, respectively.  

As it is mentioned Daganzo (1985), the earliness penalty factor of the users can vary 

between 0 and 1, and the lateness penalty factor is nonnegative. Accordingly, as illustrated 

in Figure 3.4, the slope of delay curve monotonically increases from zero at time 𝑡𝑆 to unity 

at time 𝑡̂. At this point, the slope of the delay drops to negative infinity, then it again 

monotonically increases back to zero to time 𝑡𝐸. 

 

3.1.2.2 Equilibrium Arrival of the Heterogeneous Commuters 

Rational users minimize their own generalized costs by adjusting their arrival times to the 

bottleneck in order to balance delay and schedule deviation that they experience during 

their commutes through the bottleneck.  The cumulative result of these individual decisions 

is the user equilibrium condition in which the population of the commuters will be 

distributed along the efficient frontier of the arrival choices. Here, we use the concept of 



 

 

 

 

64 
 

 

 

the efficient frontier to derive an analytical solution for the morning commute problem 

given the PDFs of the schedule deviation penalty factors of the users. To this end, we first 

we use the introduced properties of the efficient frontier, presented in Section 3.2.1, to 

determine the relationship of the arrival times of the commuters to the bottleneck with their 

schedule deviation penalty factors. On this basis, we derive the cumulative arrival of the 

heterogeneous commuter to the bottleneck as well as their generalized cost of commute 

according to their own preferences in the equilibrium condition. 

In this respect, we combine the equivalent geometric property of the Corollary 3.1 with 

the assignment order rule of the Corollary 3.2 to determine the equilibrium arrival times of 

the heterogeneous commuters to the bottleneck given the PDFs of their schedule deviation 

penalty factors. Corollary 3.1 relates the variations of delay at each point in (departure) 

time to the schedule deviation penalty factor of the user that experiences that delay in the 

equilibrium condition.  

According to condition (3.9), the first derivative of the delay for each early user with 

respect to his/her departure time equals to his/her earliness penalty factor, etA . By 

employing the differentiation chain rule we can rewrite the condition (3.9) for an early 

commuter, 𝑁𝑡𝐴, as below: 

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐷

=

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐴
𝜕𝑡𝐷
𝜕𝑡𝐴

= 𝑒𝑡𝐴                                       (3.12) 
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For one thing, we need to derive 𝜕𝜏𝐷,𝑁𝑡𝐴
/𝜕𝑡𝐷  to substitute it back into equation 

(3.12).In this respect, the delay of this early commuter can be approximated as the 

horizontal distance between the cumulative arrival and departure curves, as illustrated in 

the Figure 3.5a: 

𝜏𝐷,𝑁𝑡𝐴
= 𝐷−1(𝑁𝑡𝐴) − 𝐴𝑒

−1(𝑁𝑡𝐴) =
𝑁𝑡𝐴
𝜇
− 𝑡𝐴                         (3.13) 

              

(a) Variation of delay in the queueing diagram  (b) Probability distribution of earliness penalty factor 

Figure 3.5. Relation between the equilibrium arrivals of the early commuters with the distribution of the 

earliness penalty factor 

In the equation (3.13), we need to approximate the value of the cumulative arrival of 

heterogeneous commuters at time 𝑡𝐴, 𝑁𝑡𝐴 = 𝐴(𝑡𝐴). According to the Corollary 3.2, early 

commuters arrive to the bottleneck in an increasing order of their earliness penalty factor 
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in the equilibrium condition. So, arrival of a commuter with earliness penalty factor 𝑒𝑡𝐴 to 

the bottleneck at time 𝑡𝐴 can be interpreted as arrival of the all commuters with earliness 

penalty factors less than 𝑒𝑡𝐴  ahead of this user. Given the probability density function 

(PDF) of the earliness penalty factor of the early commuters, 𝑓𝑒(𝑒)  , the cumulative 

proportion of the early commuters who arrive before time 𝑡𝐴 , 𝑁𝑡𝐴/𝑁𝑒 , is approximated as 

the cumulative probability density function (CDF) of the earliness penalty factor at 𝑒𝑡𝐴, 

𝐹𝑒(𝑒𝑡𝐴), which represents the area under the 𝑓𝑒(𝑒) up to 𝑒𝑡𝐴, as illustrated in Figure 3.5b. 

As a result, the cumulative number of the arrivals at time 𝑡𝐴  can be approximated as 

cumulative probability distribution of the earliness penalty factor at 𝑒𝑡𝐴  times the total 

number of early commuters: 

𝑁𝑡𝐴 = 𝑁𝑒𝐹𝑒(𝑒𝑡𝐴) = 𝑁𝑒 ∫ 𝑓𝑒(𝑒)𝑑𝑒
𝑒𝑡𝐴
0

            (3.14) 

 

By substituting 𝑁𝑡𝐴 from equation (3.14) in equation (3.13), delay of the commuter can be 

approximated as below: 

 

𝜏𝐷,𝑁𝑡𝐴
=
𝑁𝑒 ∫ 𝑓𝑒(𝑒)𝑑𝑒

𝑒𝑡𝐴
0

𝜇
− 𝑡𝐴                          (3.15) 

 

Accordingly, the first derivative of the delay to the arrival time can be derived as follows: 

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐴

=
𝑁𝑒

𝜇
𝑒̇𝑡𝐴𝑓𝑒(𝑒𝑡𝐴) − 1                                       (3.16) 
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where, 𝑒̇𝑡𝐴 = 𝑑𝑒𝑡𝐴/𝑑𝑡𝐴. 

For another, we need to derive 𝜕𝑡𝐷/𝜕𝑡𝐴  to substitute it back into equation (3.12). 

According the definition of delay from equation (3.13), we can relate 𝑡𝐷 and 𝑡𝐴 as follows 

(See Figure 3.5a): 

𝑡𝐷 = 𝑡𝐴 + 𝜏𝐷,𝑁𝑡𝐴
                           (3.17) 

 

By taking the first derivative of the equation (3.17) with respect to 𝑡𝐴 we will have: 

 

𝜕𝑡𝐷

𝜕𝑡𝐴
= 1 +

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐴

                           (3.18) 

 

By substituting 𝜕𝑡𝐷/𝜕𝑡𝐴  from equation (3.18) in equation (3.12), it can be rewritten as 

below: 

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐴

1+
𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐴

= 𝑒𝑡𝐴                                    (3.19) 

Now, we plug 𝜕𝜏𝐷,𝑁𝑡𝐴
/𝜕𝑡𝐷 from equation (3.16) into equation (3.19):   

 

𝑁𝑒
𝜇
𝑒̇𝑡𝐴𝑓𝑒(𝑒𝑡𝐴)−1

𝑁𝑒
𝜇
𝑒̇𝑡𝐴𝑓𝑒(𝑒𝑡𝐴)

= 𝑒𝑡𝐴                              (3.20) 
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By substituting ė𝑡𝐴 with its equivalent term 𝑑𝑒𝑡𝐴/𝑑𝑡𝐴 and a little algebraic manipulation 

equation (3.20) can be rewritten as below: 

 

𝑑𝑡𝐴 =
𝑁𝑒

𝜇
(1 − 𝑒𝑡𝐴)𝑓𝑒(𝑒𝑡𝐴)𝑑𝑒𝑡𝐴                          (3.21) 

 

Taking the integral of both sides of the equation (3.21), the analytical solution of the 

morning commute problem with heterogeneous user preferences is given by the following: 

 

𝑡𝐴 =
𝑁𝑒

𝜇
∫ (1 − 𝑒)𝑓𝑒(𝑒)𝑑𝑒
𝑒𝑡𝐴
0

                              (3.22) 

 

Accordingly, the equilibrium arrival of the heterogeneous users to the bottleneck can be 

determined based on their own penalty preferences for the early departure from the 

bottleneck. 

Numerical methods can be employed here to estimate the arrival of the heterogeneous 

commuters using this relation specifically when it is not analytically simple to take the 

integral of the probability density function of the earliness factors analytically. However, 

the cumulative arrival of the heterogeneous commuters also can be analytically derived 

using relation (3.22), when the integral has a definite solution. In this case, we simply need 

to solve equation (3.22) for  e𝑡𝐴 and substitute the result in equation (3.14). As a result, the 



 

 

 

 

69 
 

 

 

cumulative arrival of heterogeneous early commuters in the equilibrium condition can be 

approximated as below: 

 

 𝐴𝑒(𝑡𝐴) = 𝑁𝑒𝐹𝑒(𝑒̂𝑡𝐴)        (3.23) 

 

where, 𝑒̂𝑡𝐴 denotes the solution of equation (3.22) as a function of 𝑡𝐴. 

On this basis, we also can derive the distribution of the earliness factor of the equilibrium 

arrivals by inverting the function (3.23): 

 

𝑒𝑡𝐴= 𝐹𝑒
−1 (

𝑁𝑡𝐴
𝑁𝑒
)               (3.24) 

 

By substituting the equations (3.6), (3.13), and (3.24) in the generalized cost function (3.1), 

we can rewrite the generalized cost function of early commuters as below: 

 

C𝑡𝐴(N𝑡𝐴) = 𝜏𝐹 + (
𝑁𝑡𝐴
𝜇
− 𝐴𝑒

−1(𝑁𝑡𝐴)) + 𝐹𝑒
−1 (

𝑁𝑡𝐴
𝑁𝑒
) ∙ (𝑡𝑤,𝑁𝑡𝐴 

−
𝑁𝑡𝐴
𝜇
) , 𝑁𝑡𝐴 ∈ [0, 𝑁𝑒] (3.25) 

 

Similar results also can be derived for the equilibrium arrival of the heterogeneous 

commuters who depart the bottleneck later than they wished. In this respect, having an 

auxiliary coordination system for the queueing diagram with origin at (𝑡𝐸 , 𝑁𝑄) and both 
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axes in the opposite directions with the original system as depicted in Figure 3.6a, can 

significantly simplify the solution of the problem. Thus, we define the new axes as 𝑡̃ =

𝑇𝑙 − 𝑡  and 𝑁̃ = 𝑁𝑙 − 𝑁 , where the length of the lateness period is denoted by 𝑇𝑙 =

𝐴−1(𝑁𝑙). In this system, 𝐴̃𝑒(𝑡̃) and 𝐷̃(𝑡̃) also denote cumulative arrival and departure 

curves of late commuters, respectively. Notice as well that the slopes of the curves remain 

exactly the same in the auxiliary coordinate system due to inversion of the both axes in this 

system. So, here, we first employ the auxiliary coordination system to derive the 

equilibrium arrival of the late commuters, and then rewrite the solution in the original 

coordination system.  

              

(a) Variation of delay in the queueing diagram  (b) Probability distribution of lateness penalty factor 

Figure 3.6. Relation between the equilibrium arrivals of the late commuters with the distribution of the 

earliness penalty factor 
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The equilibrium arrival of the late commuters in the auxiliary coordinate system is very 

similar to the early commuter problem. So, with same line of reasoning for the relation 

(3.22), the arrival time of the late commuters in the auxiliary coordinate can be formulated 

as below: 

 

𝑡̃𝐴 =
𝑁𝑙

𝜇
∫ (1 + 𝑙)𝑓𝑙(𝑙)𝑑𝑙
𝑙𝑡̃𝐴
0

                                     (3.26) 

 

where, l𝑡̃𝐴 denotes the lateness penalty factor of the commuter who arrives to the bottleneck 

at time 𝑡̃𝐴  in the auxiliary coordination system, corresponding to 𝑡𝐴 in the original system. 

f𝑙(𝑙) and F𝑙(𝑙) also represents PDF and CDF of the lateness penalty factor and  of the late 

commuters, respectively, as illustrated in the Figure 3.6b.  

Accordingly, the cumulative arrival of heterogeneous late commuters in the equilibrium 

condition can be approximated as below: 

 

 𝐴̃𝑙(𝑡̃𝐴) = 𝑁𝑙𝐹𝑙(𝑙𝑡̃𝐴)           (3.27) 

 

where, 𝑙𝑡̃𝐴 denotes the solution of equation (3.26) as a function of 𝑡̃𝐴. 

As a result, we can rewrite the equation (3.27) in the original coordination system as 

below: 
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𝐴𝑙(𝑡𝐴) = 𝑁𝑙 − 𝐴̃𝑙(𝑇𝑙 − 𝑡𝐴) = 𝑁𝑙 (1 − 𝐹𝑙(𝑙𝑡𝐴))             (3.28) 

 

Here, 𝑙𝑡𝐴 represents the solution of the equation (3.26) by plugging 𝑡̃𝐴 = 𝑇𝑙 − 𝑡𝐴.  

Moreover, we can derive the distribution of the lateness factor of the equilibrium 

arrivals following similar approach as for the earliness factor as below: 

 

 𝑙𝑡𝐴 = 𝐹𝑙
−1 (

𝑁̃𝑡𝐴
𝑁𝑙
)            (3.29) 

 

The generalized cost of the late commuters can be approximated similar to generalized 

cost of early commuters, presented in equation (3.25), as follows: 

 

C𝑡̃𝐴(Ñ𝑡̃𝐴) = 𝜏𝐹 + (𝐴̃𝑙
−1(Ñ𝑡̃𝐴) −

𝑁̃𝑡𝐴
𝜇
) + 𝐹𝑙

−1 (
Ñ𝑡̃𝐴
𝑁𝑙
) ∙ (𝑡𝑤,Ñ𝑡̃𝐴

−
Ñ𝑡̃𝐴
𝜇
) , Ñ𝑡̃𝐴 ∈ [0, 𝑁𝑙]  (3.30) 

 

3.1.2.3 Equilibrium Condition of the Efficient Frontier 

Previously, we derived an analytical solution for the morning commute problem given the 

PDFs of the schedule deviation penalty factors of the heterogeneous users. In this section, 

we show that the proposed analytical solution of the problem is necessary and sufficient 

for satisfying the equilibrium conditions of the bottleneck derived according to Daganzo 

(1985). 
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In the equilibrium condition, no commuter should have an incentive to change his/her 

arrival time to the bottleneck to be earlier or later. To generalize the first equilibrium 

condition, we consider the effect of changing arrival time for a single commuter with arrival 

time 𝑡𝐴, which is earlier than his/her wished time 𝑡𝑤,1, as illustrated in Figure 3.7a. So, we 

denote the earliness penalty factor of this commuter with 𝑒𝑡𝐴. The effect of a small shift in 

the arrival time by ∆𝑡 earlier will result in departing the bottleneck 𝐴𝑒̇(𝑡𝐴)∆𝑡/𝜇 earlier in 

time, where 𝐴𝑒̇(𝑡𝐴)  denotes the slope of the arrival curve at time 𝑡𝐴 ∈ (𝑡𝑠, 𝑡̂) . In 

equilibrium, earliness must increase in the same amount as the reduction in delay for the 

commuter. Accordingly, the resulting change in delay and earliness of the commuter can 

be calculated as follows: 

 

∆𝜏𝐷 = 𝜏𝐷,2 − 𝜏𝐷,1 = +∆𝑡 −
𝐴̇𝑒(𝑡𝐴)∆𝑡

𝜇
     (3.31) 

∆𝜏𝐸 = 𝜏𝐸,2 − 𝜏𝐸,1 = +𝑒𝑡𝐴
𝐴̇𝑒(𝑡𝐴)∆𝑡

𝜇
                            (3.32) 

 

In the equilibrium condition, users should not be able to reduce their generalized cost 

by changing their arrival times. Thus, a marginal shift in arrival time by ∆𝑡 should not 

affect the generalized cost for the user. So, the following condition must hold:  

 

∆𝜏𝐷 + ∆𝜏𝐸 = 0                                                          (3.33) 
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By substituting (3.31) and (3.32) into (3.33), 𝐴̇𝑒(𝑡𝐴) can be solved in terms of 𝑒𝑡𝐴  as 

illustrated in the Figure 3.7b: 

𝐴̇𝑒(𝑡𝐴) =
𝜇

1−𝑒𝑡𝐴
 , ∀𝑡𝐴 ∈ (𝑡𝑠, 𝑡̂), 𝑒𝑡𝐴 ∈ [0,1)   (3.34) 

 

 The same approach can also be followed to derive the slope of the second part of the 

equilibrium arrival curve 𝐴̇𝑙(𝑡𝐴) in terms of the lateness penalty factor of the commuter 

who arrives to the bottleneck at time 𝑡𝐴, 𝑙𝑡𝐴, and departs the bottleneck later than wished, 

as illustrated in Figure 3.7b: 

 𝐴̇𝑙(𝑡𝐴) =
𝜇

1+𝑙𝑡𝐴
  , ∀𝑡𝐴 ∈ (𝑡̂, 𝑡𝐸), 𝑙𝑡𝐴 ∈ [0,∞)      (3.35) 

 

(a) Variation of delay and earliness for a user 

resulting from a shift of ∆𝑡 in the arrival time. 

 (b) Queueing diagram of 

bottleneck user equilibrium 

 

Figure 3.7.  Bottleneck user equilibrium of heterogeneous commuters with an S-shaped wished curve 
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The schedule penalty factors are inherently defined as nonnegative, while the earliness 

penalty factor also needs to be less than one to remain within its domain in equation (3.34). 

On the basis of assignment order rule in Corollary 3.2, the slope of the arrival curve 

generally starts increasing monotonically from 𝜇  when 𝑒𝑡𝐴 = 0 at point 𝑆, and goes to 

infinity as 𝑒𝑡𝐴 → 1 when delay is at the maximum possible value, 𝜏𝑐. Then, this slope drops 

to near zero at the beginning of the lateness period where  𝑙𝑡𝐴is greatest. The slope of arrival 

curve monotonically increases towards 𝜇 at point 𝐸 as 𝑙𝑡𝐴 → 0.  

In the Proposition 3.2, we show that the first equilibrium condition of (3.34) and (3.35) 

hold if and only if the arrival time choices of the commuters are along an efficient frontier 

with the specific properties discussed in Section 3.1.2.2.  

 

Proposition 3.2 (equilibrium condition). The first equilibrium condition of equations 

(3.34) and (3.35) holds if and only if the heterogeneous commuters are distributed along 

the efficient frontier of arrival choices according to the property (3.9). 

 

Proof.  

Part 1: Equations (3.34) and (3.35) hold if property (3.9) governs.  

We first prove this argument for the early commuters and then extend the proof for the late 

commuters. 
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According to the relation (3.17), we can take the first derivative of delay with respect 

to the departure time using the differentiation chain rule, where 𝑡𝐴 = 𝐴
−1(𝑁) :  

𝜕𝜏𝐷,𝑁𝑡𝐴
𝜕𝑡𝐷

= 1 −
𝜕𝐴𝑒

−1(𝑁𝑡𝐴)

𝜕𝑁
∙
𝜕𝑁

𝜕𝑡𝐷
                                 (3.36) 

For one thing, with a little algebraic manipulation in equation (3.34) we have: 

𝜕𝐴𝑒
−1(𝑁𝑡𝐴)

𝜕𝑁
=

1

𝐴̇𝑒(𝑡𝐴)
=
1−𝑒𝑡𝐴
𝜇

                                (3.37) 

For another, the slope of the cumulative departure curve equals to the fixed capacity of the 

bottleneck: 

𝜕𝑁

𝜕𝑡𝐷
=
𝜕𝐷(𝑡𝐷)

𝜕𝑡𝐷
= 𝜇                      (3.38) 

By substituting the equations (3.37) and (3.38) in (3.36), we can derive the property (3.9) 

for the early commuters. With same line of reasoning we can derive the property (3.9) for 

the late commuters as well. 

 

Part 2: Property (3.9) holds if equations (3.34) and (3.35) govern.  

Equation (3.23) is directly concluded from condition (3.9).So, following from equation 

(3.23), we can take the first derivative of the arrival curve with respect to time using the 

differentiation chain rule: 
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𝐴̇𝑒(𝑡𝐴) = 𝑁𝑒
∂Fe(𝑒𝑡𝐴)

𝜕𝑒𝑡𝐴
∙
𝜕𝑒𝑡𝐴
𝜕𝑡𝐴

= 𝑁𝑒fe(𝑒𝑡𝐴)𝑒̇𝑡𝐴                     (3.39) 

By solving the equation (3.21) for fe(𝑒𝑡𝐴) and substituting the result in the equation (3.39), 

we can conclude the equation (3.34) for the early commuters. Likewise, equation (3.35) 

can be derived following a similar approach for the late commuters.∎ 

 

The second equilibrium condition (3.3) also can be generalized for heterogeneous 

commuters. In this respect, the peak period demand of the bottleneck, 𝑁𝑄, should split 

between the earliness and lateness periods such that the maximum delay of the both periods 

is the same, 𝜏𝑐. The delay of the commuters 𝑁𝑒 and 𝑁𝑙, is horizontal the difference between 

the arrival and departure curves in the earliness and lateness periods (See Figure 3.5a and 

6a), respectively, which equals: 

𝜏𝑐 =
𝑁𝑒

𝜇
− 𝐴𝑒

−1(𝑁𝑒) = 𝐴̃𝑙
−1(𝑁𝑙) −

𝑁𝑙

𝜇
            (3.40) 

With a little manipulation, we can conclude from (3.40) that in the equilibrium condition 

the combined duration of the earliness and lateness periods equals the time it takes for the 

queue to disappear from the bottleneck: 

𝐴𝑒
−1(𝑁𝑒) + 𝐴̃𝑙

−1(𝑁𝑙) =
𝑁𝑞

𝜇
                (3.41) 
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As a result, the second condition (3.41) sheds light on the relation between 𝑁𝑒 and 𝑁𝑙 in 

the equilibrium condition, where the schedule penalty factors have probability distributions 

over the population of the users.  

 

The generalized first and second equilibrium conditions proposed in this research can 

determine the equilibrium arrival of the heterogeneous users to the single bottleneck. Given 

the PDFs of the schedule penalty factors, f𝑒(𝑒) and f𝑙(𝑙), the arrival time of the early and 

late commuters can be numerically estimated in terms of 𝑁𝑒 and 𝑁𝑙  using the relations 

(3.22) and (3.26), respectively. Knowing the distribution of the arrivals, it is possible to 

estimate the values of 𝐴𝑒
−1(𝑁𝑒)  and 𝐴̃𝑙

−1(𝑁𝑙) in terms of of 𝑁𝑒 and 𝑁𝑙, respectively. Thus 

the relation between 𝑁𝑒 and 𝑁𝑙 in the equilibrium condition can be determined by plugging 

the results into the equation (3.41). Although this problem can be solved numerically for 

any given distribution of schedule penalty factors, it has a closed form solution when that 

the integrals of relations (3.22) and (3.26) have definite solutions.  In the following section, 

we use these results to propose a dynamic pricing pattern that can optimize the system by 

avoiding the delay. In section 3.3, a closed form solution of the morning commute problem 

is derived when the probability distributions of schedule penalty factors are assumed to be 

uniform over the population of the users. 
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3.2 System Optimum and Pricing 

Rational users tend to minimize the generalized cost of their own commutes by adjusting 

their arrival time to the bottleneck. The cumulative result of the individual decisions leads 

to the user equilibrium condition in which no one can improve his/her cost by shifting 

his/her own arrival time individually.  In the user equilibrium condition, each commuter 

experiences a combination of delay and schedule penalty, in addition to the free flow travel 

time, for travelling through the bottleneck. Nonetheless, the total generalized cost for the 

commuters can be minimized by avoiding unnecessary delay in the bottleneck. As a result, 

such a system can be optimized by dynamically charging the users as much as the delay 

they expect in the user equilibrium condition in order to eliminate the delay entirely (Arnott 

et al., 1990; Gonzales and Daganzo, 2012).  

In the general case that schedule penalty factors of the users have a probability 

distribution over the population of the commuters, equation (3.9) can demonstrate the 

variation of delay over time in equilibrium as illustrated in Figure 3.4. By plugging the 

values of 𝑁 = 𝜇𝑡 and 𝑁̃ = 𝑁𝑄 − 𝜇𝑡 in equations (3.24) and (3.29), and substituting the 

results in equation (3.9), we can derive the dynamic pricing pattern that can optimize the 

system by avoiding delay, as illustrated in Figure 3.8: 

$̇(𝑡) = {
𝐹𝑒
−1 (

𝜇𝑡

𝑁𝑒
) ,           t ∈ (𝑡𝑠, 𝑡̂)

−𝐹𝑙
−1 (

𝑁𝑄−𝜇𝑡

𝑁𝑙
) ,  t ∈ (𝑡̂, 𝑡𝐸)

          (3.42) 
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where, $̇(𝑡) denotes the variation rate of the optimal price unit of time over the peak period.  

 

Figure 3.8. The system optimal dynamic pricing of the bottleneck with heterogeneous demand 

 

As explained in the Corollary 3.1, such slope monotonically increases from zero at time 

𝑡𝑆 to unity at time 𝑡̂, then it drops to negative infinity but monotonically increases back to 

zero at time 𝑡𝐸. 

As explained in Geroliminis and Levinson (2009) and Gonzales and Daganzo (2012), 

system optimum prices for single bottlenecks also apply to pricing networks. A bottleneck 

is typically assumed to have a constant or nearly constant capacity that is independent of 

the length of the queue that forms. The dynamics of congestion in networks differ from 

queueing at bottlenecks, because the capacity of a network to serve vehicle trips is a 

function of the accumulation vehicles (or the vehicle density) in the network.  When queues 

in the network are long enough to spill back and block upstream intersections, the result is 

a reduction in network-wide flows as represented by the characteristic downward sloping 
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branch of the macroscopic fundamental diagram (Daganzo, 2007; Daganzo and 

Geroliminis, 2008).  In this respect, Zheng et al. (2012) combines the macroscopic 

congestion theory with an agent-based simulator to propose a dynamic cordon pricing 

scheme that accounts for the complexity in the travel behavior of the users in an urban 

network. Zheng et al. (2015) also presents a more efficient and equitable area-based pricing 

scheme for a bi-model network based on macroscopic fundamental diagram by considering 

the heterogeneity in income level and value of time of the travelers. Moreover, the 

macroscopic model of the traffic congestion has applications in dynamic pricing the limited 

parking in a multimodal urban networks (Zheng and Geroliminis ,2014). System optimum 

prices for bottlenecks eliminate queues by incentivizing users to travel when there is 

bottleneck capacity available to accommodate their trip.  The same holds for networks.  By 

incentivizing users to spread their travel over time, optimal bottleneck prices can be applied 

to networks in order to prevent vehicle accumulations from reaching the congested 

conditions associated with queue spillbacks.  In this way, flows on the network can be 

maintained at efficient uncongested traffic states so that the network behaves like a single 

bottleneck with fixed capacity. In this respect, Zheng et al. (2012) com 

 

3.3 Closed Form Solution for Uniformly Distributed Schedule Penalty Factors 

In this section, we use the proposed equilibrium model to derive the closed form solution 

for a special case of the morning commute problem at a single bottleneck with 
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heterogeneous travel demand. In this case, both schedule penalty factors of the commuters 

are assumed to have uniform PDF functions, distributed from zero to their maximum values 

𝑒𝑚  and 𝑙𝑚 , while 𝑒𝑚  also needs to be less than one, as illustrated in Figure 3.9a,b. 

However, it is worth pointing out that the proposed analytical approach remains general for 

the distributions of schedule penalty factors for which the integrals of the relations (3.22) 

and  (3.26) are well defined functions. 

 

                           (a) Earliness penalty factor         (b) Lateness penalty factor 

Figure 3.9. Uniform probability distributions of the schedule penalty factors 

In this case that distributions of the schedule penalty factors are defined by uniform 

PDF functions, the result of the first equilibrium condition in relations (3.22) and (3.26) 

can be further simplified to approximate the arrival time of early and late commuters, 

respectively:  

𝑡𝐴 =
𝑁𝑒

𝜇𝑒𝑚
(𝑒𝑡𝐴 −

𝑒𝑡𝐴
2

2
) , 0 ≤ 𝑒𝑡𝐴 ≤ 𝑒𝑚                (3.43) 



 

 

 

 

83 
 

 

 

𝑡̃𝐴 =
𝑁𝑙

𝜇𝑙𝑚
(𝑙𝑡𝐴 +

𝑙𝑡𝐴
2

2
) , 0 ≤ 𝑙𝑡𝐴 ≤ 𝑙𝑚                  (3.44) 

On this basis, the cumulative arrival of the early and late commuters in the equilibrium 

condition can be derived according to the relations (3.23), (3.27), and (3.28) as follows: 

 

𝐴𝑒(𝑡𝐴) =
𝑁𝑒

𝑒𝑚
(1 − √1 −

2𝜇𝑡𝐴𝑒𝑚

𝑁𝑒
)       (3.45) 

𝐴̃𝑙(𝑡̃𝐴) =
𝑁𝑙

𝑙𝑚
(−1 + √1 +

2𝜇𝑡̃𝐴𝑙𝑚

𝑁𝑙
)           (3.46) 

 𝐴𝑙(𝑡𝐴) = 𝑁𝑙 −
𝑁𝑙

𝑙𝑚
(−1 + √1 +

2𝜇(𝑇𝑙−𝑡𝐴)𝑙𝑚

𝑁𝑙
)                            (3.47) 

where, the length of the lateness period, 𝑇𝑙, can be derived in this problem as below: 

𝑇𝑙 = 𝐴
−1(𝑁𝑙) =

𝑁𝑙

𝜇
(1 +

𝑙𝑚

2
)       (3.48) 

The generalized cost for early and late commuter also can be approximated by substituting 

the inverse cumulative arrival functions derived from relations (3.45) and (3.46) and 

inverse CDF of the uniform schedule factor according to the Figure 3.9a,b in relations 

(3.25) and (3.30):   
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C𝑡𝐴(N𝑡𝐴) = 𝜏𝐹 + (
𝑒𝑚𝑁𝑡𝐴

2

2𝑁𝑒𝜇
) +

𝑒𝑚𝑁𝑡𝐴
𝑁𝑒

∙ (𝑡𝑤,𝑁𝑡𝐴 
−
𝑁𝑡𝐴
𝜇
) , 𝑁𝑡𝐴 ∈ [0, 𝑁𝑒]    (3.49) 

C𝑡̃𝐴(Ñ𝑡̃𝐴) = 𝜏𝐹 + (
𝑙𝑚𝑁̃𝑡𝐴

2

2𝑁𝑙𝜇
) +

𝑙𝑚𝑁̃𝑡𝐴
𝑁𝑙

∙ (𝑡𝑤,Ñ𝑡̃𝐴
−
Ñ𝑡̃𝐴
𝜇
) , Ñ𝑡̃𝐴 ∈ [0, 𝑁𝑙]   (3.50) 

In addition, the relation between 𝑁𝑒 and 𝑁𝑙 can be revealed through the second equilibrium 

condition by substituting the inverse cumulative arrival functions derived from (3.45) and 

(3.46) in equation (3.41): 

𝑁𝑒

𝑁𝑙
=
𝑙𝑚

𝑒𝑚
        (3.51) 

Following from above, the maximum delay that commuters experience in the equilibrium 

condition can be approximated according to the equation (3.40):  

𝜏𝑐 =
𝑒𝑚𝑁𝑒

2𝜇
=
𝑙𝑚𝑁𝑙

2𝜇
             (3.52) 

As explained in Section 3.2, such delay can be entirely avoided in the system optimum by 

charging the commuters a dynamic price equal to the cost of the delay they expect in the 

user equilibrium condition, according to the equation (3.42): 

$̇(𝑡) = {

𝑒𝑚𝜇𝑡

𝑁𝑒
,             t ∈ (𝑡𝑠, 𝑡̂)

−
𝑙𝑚(𝑁𝑄−𝜇𝑡)

𝑁𝑙
,  t ∈ (𝑡̂, 𝑡𝐸)

          (3.53) 
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As it can be inferred from equation (3.53), the time-variant price monotonically rises 

from zero, at time 𝑡𝑆, to its maximum value 𝜏𝑐, at time 𝑡̂, meanwhile its rate also increases 

from zero to 𝑒𝑚. At this point, it rapidly decreases with slope of negative infinity back to 

zero, where its slope goes to zero as well, at time 𝑡𝐸. 

 

3.4 Numerical Example 

To provide a numerical example, we employ the proposed model to solve the morning 

commute problem for a single bottleneck with a fixed capacity of 100 vehicles per minute. 

This bottleneck is assumed to have a peak period demand of 10,000 vehicles over 100 

minutes with a smooth s-shaped wished curve as illustrated in Figure 3.10. To observe the 

effect of heterogeneity in the preferences of the commuters, the equilibrium arrival of the 

users is plotted for three different distribution scenarios of the schedule penalty factors in 

Figure 3.10. 
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Figure 3.10. Queueing diagram of bottleneck user equilibrium in three different heterogeneity scenarios 

 

In the first scenario, commuters are assumed to have homogeneous schedule penalty factors 

𝑒 = 0.5 and 𝑙 = 1. In this case, the equilibrium arrival of the homogenous users (purple 

curve), 𝐴𝐻(𝑡), turns to a piecewise curve with the slopes of 200 veh/min and 50 veh/min 

in the earliness and lateness periods, respectively. So, the total delay that users experience 

during their commutes can be approximated as the area between the arrival and departure 

curves, which in the first scenario equals to 2777.5 hours. In the second scenario, we 

assume the distributions of the schedule penalty factors uniform over time as illustrated in 

Figure 3.9a,b where 𝑒𝑚 = 1 and 𝑙𝑚 = 2. In this scenario, the equilibrium arrival of the 

commuter with uniform distribution of schedule penalty factors (pink curve), 𝐴𝑈(𝑡), can 

be analytically approximates according to (3.45) and (3.47). Finally, in the third scenario, 

the schedule penalty factors of the users are assumed to have truncated normal distributions 

with average values 𝑒̅ = 0.5 and 𝑙 ̅ = 1, standard deviations 𝜎𝑒 = 𝜎𝑙 = 0.12, and the same 
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upper and lower bounds as the aforementioned uniform distributions in the second scenario. 

In this case, the equilibrium arrival of the users with both normally distributed schedule 

penalty factors (red curve) , 𝐴𝑁(𝑡), can be estimated using the relations (3.22) and (3.26). 

As illustrated in Figure 3.10, the arrival curve of the users with normal distributions of the 

schedule penalty factors falls between the arrival curves of the users with homogenous and 

uniform distributions of schedule penalty factors all the points over time. Accordingly, the 

total delay of the commuters reduces by 33% and 9% in the second and third scenarios, 

respectively; however, the maximum delay remains exactly the same, 𝜏𝑐 = 33.3 min, in 

all scenarios.  

 

3.5 Probability Distributions of the Schedule Penalty Factors 

In this research, we proposed an analytical solution to the morning commute problem when 

there is a heterogeneity associated with the schedule penalty factors of the users. The 

underlying assumption here is that the probability distributions of the earliness and lateness 

penalty factors are known independently for early and late commuters, respectively. 

Nevertheless, it may be more realistic to assume a joint probability distribution function 

for the schedule penalty factors that defines the proportion of (𝑒, 𝑙) pairs among the 

population of the commuters. In this section, we propose a method to retrieve the 

independent probability distributions of earliness and lateness penalty factors from a given 

joint distribution. 
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Rational users tend to minimize their own cost by adjusting their arrival time to the 

bottleneck. Assuming that values of the both schedule penalty factors vary over the 

population of the heterogeneous commuters, they choose their arrival time to the bottleneck 

by comparing the minimum possible costs of the earliness and lateness periods according 

to their own schedule preferences. In this respect, we define the equivalent schedule penalty 

factor curve as a set of penalty factor pairs and each point represents an equivalent earliness 

and lateness penalty factors with equal generalized cost in the earliness and lateness 

periods, respectively. This relation between the equivalent schedule penalty factors can be 

determined by equalizing the generalized cost functions (3.25) and (3.30), and expressing 

𝑁 = 𝑁𝑒𝐹𝑒(𝑒) and 𝑁̃ = 𝑁𝑙𝐹𝑙(𝑙) in the result in terms of 𝑒 and 𝑙. Since we are writing this 

equation in terms of schedule penalty factors, it is now possible to denote the generalized 

cost for commuters with 𝐶(∙) for the purpose of simplification: 

 

𝐶(𝑁𝑒𝐹𝑒(𝑒)) = C(𝑁𝑙𝐹𝑙(𝑙) )    (3.54) 

 

This equation reveals the relationship between the equivalent schedule penalty factors in 

the equilibrium condition. For example, in case that schedule penalty factors have uniform 

probability distributions as assumed in Section 3.3, equation (3.54) can be simplified to a 

linear relation between the equivalent schedule penalties factors as below: 
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𝑙𝑒𝑞(𝑒) =
𝑙𝑚

𝑒𝑚
𝑒     (3.55) 

where, 𝑙𝑒𝑞(𝑒) represents the equivalent lateness penalty factor of a earliness penalty factor. 

As a result, for a given value of 𝑒𝑜, commuters with 𝑙 > 𝑙𝑒𝑞(𝑒𝑜) will depart earlier than 

they wished to minimize their generalized cost. In contrast, commuters with 𝑙 < 𝑙𝑒𝑞(𝑒𝑜) 

prefer late departures in order to keep their generalized costs minimized in the equilibrium 

condition.  Assuming the joint PDF of the schedule penalty factors given, 𝑝𝑒,𝑙(𝑒, 𝑙), we can 

derive 𝑓𝑒(𝑒) and 𝑓𝑙(𝑙)  by projecting the area under 𝑝𝑒,𝑙(𝑒, 𝑙) for early and late commuters, 

as illustrated in the Figure 3.11.  

 

Figure 3.11. Joint probability distribution of the schedule penalty factors 

 

On this basis, the value of the 𝑓𝑒(𝑒𝑜) is proportional to the area under 𝑝𝑒,𝑙(𝑒𝑜, 𝑙) for 𝑙 >

𝑙𝑒𝑞(𝑒𝑜), which represents the early commuters. Likewise, 𝑓𝑙(𝑙𝑜) is also proportional to the 
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area under 𝑝𝑒,𝑙(𝑒, 𝑙𝑜) for 𝑒 > 𝑙𝑒𝑞
−1(𝑙𝑜), which represents the late commuters. Notice as well 

that we are splitting a joint distribution function 𝑝𝑒,𝑙(𝑒, 𝑙)  into two parts. Thus it is 

necessary to divide each of these areas by the total volume under 𝑝𝑒,𝑙(𝑒, 𝑙) for both early 

and late commuters, to convert these numbers back to probabilities to derive the 

independent PDFs, 𝑓𝑒(𝑒) and 𝑓𝑙(𝑙): 

𝑓𝑒(𝑒) =
∫ 𝑃𝑒,𝑙(𝑒,𝑙)𝑑𝑙
𝑙𝑚
𝑙𝑒𝑞(𝑒)

∫ ∫ 𝑃𝑒,𝑙(𝑒,𝑙)𝑑𝑙𝑑𝑒
𝑙𝑚
𝑙𝑒𝑞(𝑒)

𝑒𝑚
0

          (3.56) 

𝑓𝑙(𝑙) =
∫ 𝑃𝑒,𝑙(𝑒,𝑙)𝑑𝑒
𝑒𝑚
𝑙𝑒𝑞
−1(𝑙)

∫ ∫ 𝑃𝑒,𝑙(𝑒,𝑙)𝑑𝑒
𝑒𝑚
𝑙𝑒𝑞
−1(𝑙)

𝑑𝑙
𝑙𝑚
0

                                        (3.57) 

 

As a result, we can use these relations to retrieve the probability distributions of 

earliness and lateness factors independently for the commuters who depart the bottleneck 

early and late, respectively. Having the PDFs 𝑓𝑒(𝑒)  and 𝑓𝑙(𝑙) , it becomes possible to 

employ the proposed model to analytically solve the morning commute problem with 

heterogonous user preferences.  

The proposed analytical solution of the morning commute problem can be also 

inversely used to approximate the distribution of schedule penalty factors of the 

heterogeneous users from empirical data of users’ cumulative arrivals to the bottleneck. 

Having the cumulative arrival curve of the heterogeneous users to the bottleneck in the 
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equilibrium condition,  𝐴(𝑡) , we can employ the proposed equilibrium model to 

approximate the actual PDFs of the independent schedule penalty factors, 𝑓𝑒(𝑒) and 𝑓𝑙(𝑙), 

using the empirical data from the bottleneck. Observations of traffic approaching the San 

Francisco-Oakland Bay Bridge show that queues regularly develop for traffic heading 

westbound across the bridge into San Francisco each morning. An empirical analysis of 

these queueing patterns has been presented in Gonzales and Christofa (2013).  Analysis of 

traffic flows across a series of loop detectors shows that the queue and corresponding 

queueing delay increases in a convex way at the beginning of each rush and decreases in a 

convex way at the end of each rush in a pattern similar to the shape in Fig. 7. Such data can 

be used to estimate the distribution of earliness and lateness penalty factors.  

In this respect, we use equation (3.14) to relate the CDF of the earliness penalty factor 

of the heterogeneous users to their cumulative arrivals to the bottleneck. Relation (3.34) 

also determines the earliness penalty factor of a commuter as function of his/her arrival 

time to the bottleneck. As a result, the CDF, and subsequently PDF, of the earliness penalty 

factor of the users can be approximated using the empirical data from equilibrium arrival 

of the heterogeneous users to the bottleneck by combing the relations (3.14) and (3.34). 

Distribution of the lateness penalty factors of the users also can be estimated using the 

empirical data in a very similar way.  
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As the first step, we replace 𝑁𝑡𝐴 = 𝐴𝑒(𝑡𝐴) in the equation (3.14) to derive the CDF of the 

earliness penalty factors of the heterogeneous commuters in term of the cumulative arrival 

function of the users to the bottleneck as follows: 

𝐹𝑒(𝑒𝑡𝐴) =
𝐴𝑒(𝑡𝐴)

𝑁𝑒
              (3.58) 

Then, we relate the arrival time of the heterogeneous users to their schedule preferences by 

solving equation (3.34) for  𝑡𝐴 as below: 

𝑡𝐴 = 𝐴̇𝑒
−1 (

𝜇

1−𝑒𝑡𝐴
)              (3.59) 

where, 𝐴̇𝑒
−1(∙) denotes the inverse arrival function for the early arrivals. In case that the 

cumulative arrival of the heterogeneous commuters can be estimated using the empirical 

data as a differentiable function 𝐴𝑒(∙), CDF of earliness penalty preferences of the early 

commuters can be approximated by plugging 𝑡𝐴 from equation (3.59) into relation (3.58) 

as below:𝐹𝑒(𝑒𝑡𝐴) =
𝐴𝑒(𝐴̇𝑒

−1(
𝜇

1−𝑒𝑡𝐴
))

𝑁𝑒
              (3.60) 

Alternatively, when the cumulative arrival of commuters is a discrete dataset that cannot 

be estimated with a differentiable function, the arrival time 𝑡𝐴 corresponding to 𝑒𝑡𝐴 can be 

numerically calculated at each point using the empirical arrival time data of the 
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heterogeneous commuters to the bottleneck according to the equation (3.59). Subsequently, 

𝐹𝑒(𝑒𝑡𝐴) can be estimated for previously determined 𝑡𝐴 based on the relation (3.58).   

Similar steps can be also followed to derive a same set of results for the distribution of 

the lateness penalty preferences of the users. In this respect, equation (3.60) can be adapted 

to approximate the CDF of the lateness penalty factor of the late commuters as follows: 

𝐹𝑙(𝑙𝑡𝐴) = 1 −
𝐴𝑙(𝐴̇𝑙

−1(
𝜇

1+𝑙𝑡𝐴
))

𝑁𝑙
              (3.61) 

where, 𝐴̇𝑙
−1(∙) denotes the inverse arrival function for the late arrivals. 

As a result, the PDF of the schedule penalty factors can be derived by taking the first 

derivation of their CDFs. Approximating PDF of the heterogeneous users quantifies the 

heterogeneity in the preferences of users, which can be useful for modeling systems with 

similar characteristics of demand. Thus, the approximated PDFs can be used in analyzing 

the effects of alteration in characteristics of demand and system on the equilibrium 

condition. Moreover, designing a dynamic pricing strategy that can optimize the system by 

minimizing the total costs strictly depends on accurate approximation of PDF of the 

schedule penalty preferences of the commuter. Hence, it is of great importance to have an 

accurate approximation of the heterogeneity in preferences of the users based on the 

empirical data from the network. 
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3.6 Summary 

This paper adapts the concept of the efficient frontier from Portfolio Theory to propose an 

analytical solution for the equilibrium condition of the linear bicriterion choice problem 

when there is a heterogeneity associated with relative importance of such criteria among 

the users. More specifically, we study the morning commute problem of a single bottleneck 

with a fixed capacity and time-dependent demand when there is heterogeneity associated 

with the schedule penalty factors of the users. When the bottleneck capacity is insufficient 

to fulfill the time-dependent demand, users experience a combination of delay and schedule 

deviation in their commutes, while the relative importance of these factors varies among 

the heterogeneous users. The rational tendency of users to minimize their own generalized 

cost by adjusting their arrival times to the bottleneck eventually leads to the user 

equilibrium condition in which no one can improve his/her generalized cost by individually 

shifting his/her arrival time. This bicriterion choice problem has strong similarities with the 

investment problem in the free market, which makes it possible to adapt the concept of the 

efficient frontier from finance to propose an analytical solution to the morning commute 

problem with heterogeneous users’ preferences. 

In this research, we first showed that the efficient frontier of the choices has specific 

properties that remain general for different problems. Given the independent PDFs of the 

schedule penalty factors, we employed such properties to analytically derive the 

equilibrium arrival of the heterogeneous commuters with a general s-shaped wished 
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departure curve to the bottleneck. On this basis, a dynamic pricing pattern is also presented 

for the bottleneck with heterogeneous demand that can optimize the system by avoiding 

delay. The proposed dynamic pricing strategy is also adapted to improve the performance 

of the network. Deriving an analytical solution for the morning commute problem with 

heterogeneous user preferences also provides intuition regarding the effect of different 

factors on the travel behavior of the user in the equilibrium condition. The intuition 

obtained from the analytical solution of the problem can be crucial for predicting the change 

in the equilibrium condition in case of alternations in characteristics of the demand or 

system.  To provide an example of the proposed model, we derived a closed form solution 

of equilibrium arrivals of commuters as well as an optimal dynamic pricing for the 

bottleneck assuming that schedule penalty factors have uniform probability distributions. 

However, the proposed model can be employed to solve the morning commute problem for 

any given probability distributions of the schedule penalty factors and a general s-shaped 

wished departure curve. Finally, we provide an explanation on how independent PDFs of 

the schedule penalty factors can be retrieved from their general joint PDF. It is also shown 

that the analytical results can be inversely employed to approximate the distributions of the 

schedule penalty factors from the empirical data on arrival time of the heterogeneous users 

to the bottleneck. Such information can be vital in analyzing the equilibrium condition and 

designing a dynamic pricing strategy that can effectively optimize the system. 

The result of this research can be extended for other transportation systems with limited 

capacity and time-dependent demand that can be modeled as queueing systems. For 
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example, Vickrey’s theory has been used to propose an analytical model for a demand 

responsive transit (DRT) service that provides a door-to-door service for users with time-

dependent demand (Amirgholy and Gonzales, 2015b). As a result, the analytical solution 

proposed in this paper for the morning commute problem can be also employed to include 

the heterogeneity in user preferences of a DRT system. Accordingly, the dynamic pricing 

strategy presented in Section 4 can be also implemented to optimize the DRT system by 

minimizing the total cost of the operator and DRT service users. Furthermore, in this 

research we adapted the concept the efficient frontier to include heterogeneity in schedule 

penalty factors of the users in the analytical model we propose for the morning commute 

problem with a general distribution of the wished departure times. Nonetheless, 

heterogeneity of the users’ value of time is another key factor that can be included in model 

to improve the effectiveness of the dynamic pricing policy. In this respect, the reality that 

non-identical users consider different values for the time should be taken into account to 

propose an optimal pricing strategy that can entirely eliminate the delay and minimize the 

total generalized cost for the commuters. 

As the next step, we propose an extension to this model to also account for the 

heterogeneity in value of time of the commuters. In this way, we can determine the optimal 

pricing of the bottleneck by considering heterogeneities in relative importance of the 

deviation from the schedule as well as the value of the time to the users in the analytical 

model. In general, the concept of the efficient frontier has been identified an appropriate 
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tool for modeling the equilibrium condition of multi-criterion choice problems with 

heterogeneous preferences regarding the relative importance of the conflicting criteria.  
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CHAPTER 4 

DEMAND RESPONSIVE TRANSIT SYSTEMS WITH TIME-DEPENDENT 

DEMAND 

Demand responsive transit (DRT) systems are a class of transit services in which a fleet of 

vehicles dynamically changes routes and schedules in order to accommodate demand 

within a service area. A DRT system naturally has flexibility in providing service, which 

allows it to adapt to variations in the demand. This property of DRT makes it possible to 

eliminate the access distance for transit users by providing a curb-to-curb trip. Nonetheless, 

the quality of the service depends on the operating capacity of the DRT system as well as 

spatiotemporal characteristics of the demand. The operating capacity of the DRT system 

can be defined as the maximum number of requests that can be served in unit of time. In 

this part of the research, we show that the DRT system with limited operating capacity and 

time-dependent demand can be modeled as a queueing system. On this basis, we propose 

a model and optimization approach for DRT service that is used to minimize the total cost 

to the agency and users combined. 

An analytical model for DRT systems based on Rahimi et al. (2014) and Daganzo 

(1978) is employed to approximate the components of the operating cost of the DRT 

system: fleet size, total vehicle hours traveled (VHT), and total vehicle miles traveled 

(VMT) in the network. Given the service area of the DRT system, these components of the 

agency cost can be approximated as functions of the number of waiting passengers that 
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have requested service and the maximum rate that operators can serve passengers per time 

(i.e., operating capacity). The total operating cost for the agency can be estimated as a 

linear combination of these components (Rahimi et al., 2014). 

In addition to the expenses to the agency for running the service, it is also necessary to 

account for the costs that users endure to use the service. To this end, Vickrey’s (1969) 

congestion theory is adapted to approximate the costs that the DRT users experience for 

the service when the operating capacity of the system is inadequate to meet the demand. In 

this case, the user equilibrium can be conceived as the result of competition between DRT 

users who are each minimizing their own travel costs, which include the waiting time to 

be picked up, the traveling time in the vehicle, and the cost for arriving earlier or later than 

preferred. In an equilibrium condition, no one has an incentive to change his/her own travel 

time. However, it is still possible to reduce the total costs of the system by optimizing the 

DRT operations and managing the temporal distribution of demand. The capacity of the 

service and the number of passengers awaiting pick-up are decision variables that can be 

maintained at optimal levels over time to minimize the total cost of the system. Since 

demand tends to peak during certain times of the day, an effective demand management 

strategy that can spread the demand uniformly over time has a key role in optimizing the 

operations of a DRT system. 

The objective of this Chapter is to model the dynamics of DRT system scheduling and 

operations and to identify a management strategy to incentivize users to adapt their request 

times to be more uniform over time. A dynamic pricing policy can be implemented as an 
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effective strategy to improve the efficiency of the DRT system by forming a uniform 

distribution of the demand and avoiding the underutilization of the optimal capacity during 

off-peak times. As a result, the total cost of the agency and users can be minimized by 

choosing optimal values for the system capacity and the number of waiting requests. 

Meanwhile an appropriate demand management strategy that can make the demand 

uniform is required to keep the system optimized over time.  

The analytical solution of the morning commute problem presented in Chapter 3 can 

be used with the proposed model for the operation of DRT system in this chapter to account 

for the heterogeneity in schedule penalty preferences of the users. Accordingly, the 

dynamic pricing strategy proposed for the DRT system will be adapted as well. 

  

4.1 Modeling Tools 

Agencies possess limited equipment, crews, and facilities with which to operate DRT 

services, and the costs of acquiring additional resources can be very expensive so agencies 

have an incentive to use their resources as efficiently as possible. On the other hand, when 

the demand rate exceeds the operating capacity of the system, users must to tolerate higher 

delay, in-service travel time, earliness, and lateness due to lack of adequate capacity in the 

system. To improve the quality of the service, an agency needs to increase its operating 

capacity, which may raise its operating cost as well. Therefore, it is of great importance for 
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the decision makers to have an accurate approximation of the potential operating cost and 

users’ cost in order to optimize the balance between them.  

 

4.1.1 Agency Operating Cost Model 

The expenses that the operator incurs to run a DRT service can be categorized into three 

parts: costs attributed to fleet size, VHT, and VMT.  Rahimi et al. (2014) adopts a 

continuum analytical model based on Daganzo (1978) to approximate these components 

for three prevalent loading-unloading operating strategies: 

 Strategy 1: The operator aims to minimize the total distance traveled by finding the 

next closest pickup or drop-off point from each stop. 

 Strategy 2: The operator alternates between pickup and drop-off phases in order to 

minimize the variance of the riding time. To achieve this, each vehicle starts by 

collecting 𝑛𝑣  requests in the pickup phase and then delivers them to their 

destinations in the drop-off phase.  

 Strategy 3: Each pickup is followed by the closest drop-off point and vice versa. In 

this operating strategy the vehicle first picks up 𝑛𝑣 requests and then continues to 

alternate between the closest pickup and the closest drop-off.   

On this basis, the total operating cost of the different strategies can be estimated as a 

summation of aforementioned components. In this part of the research we employ this 

analytical model to estimate the total agency operating cost as a function of operating 
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capacity of the system, 𝜇, as well as number of pickup requests awaiting service, 𝑛𝑤. The 

maximum rate that requests can be served depends on the fleet size and other characteristics 

of the system, so we call this rate the capacity for the given operating conditions.  

The required fleet acquisition and its associated expenses are the key capital component 

of agency cost for running the service. Given the fixed and variable costs per vehicle, the 

fleet cost can be estimated as a linear function of the fleet size. In this regard, the following 

analytical model is used to approximate the required fleet size for each of the operating 

strategies: 

 

𝑀𝑖(𝜇, 𝑛𝑤) = 𝜇 (𝑏 +
1

2𝑣
𝑘𝑖𝑟√𝐴)                                                     (4.1) 

 

where 𝑀𝑖 is the fleet size (number of vehicles) that the agency needs to operate to provide 

the operating capacity 𝜇 (number of requests served per unit of time) in the service area of 

size 𝐴 (units of area) in each operating strategy 𝑖. Here, 𝑏 represents the boarding-alighting 

time (unit of time), which represents the total time that it takes the operator to load and 

unload a passenger at the start and in the end of a single requested passenger trip, 

respectively. The average moving speed in the network of vehicles traveling between the 

loading/unloading stops is represented by 𝑣 (distance per unit of time), which depends on 

a variety of factors like characteristics of the network, properties of the vehicles, and even 

the type of service they are providing to the users. All other network and operation 
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characteristics that remain fixed in the short run, like the geometry of the network and 

routing of the vehicles, are reflected in a unitless network travel parameter, 𝑟. The value of 

this parameter can be estimated through calibration of the model using available data from 

the same (or similar) service operation. To keep the structure of the model general for all 

three operating strategies, we define the parameter 𝑘𝑖 in terms of 𝑛𝑤 and 𝑛𝑣 for each of the 

different strategies as below: 

𝑘𝑖 =

{
 
 

 
 

1

√2𝑛𝑤
𝑖 = 1

1

√𝑛𝑤
+
√2+4𝑛𝑣−1.45

𝑛𝑣
𝑖 = 2

1

√𝑛𝑤
+

1

√𝑛𝑣
𝑖 = 3

                                              (4.2) 

 

Given the values of its parameters, this model demonstrates the relationship between 

the operating capacity of the system, the number of awaiting requests, and the fleet size as 

the main decision variables of the system. Having two variables out of three, this model 

can be employed to approximate the third. For simplicity, we consider here that the required 

fleet size for running the service can be approximated as a function of the operating 

capacity that it needs to provide and the number of awaiting requests. In Section 4.2.3, we 

use the same model to approximate the operating capacity of the system based on available 

fleet size and number of requests waiting for the service. 
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The total hours of driving time are associated with costs like driver wages and benefits. 

Thus, the analytical model can be used to approximate the VHT operated to serve a total 

demand 𝑁𝑄 within a time period using each of the different strategies as follows: 

 

𝑉𝐻𝑇𝑖(𝑛𝑤) =  𝑀𝑖
𝑁𝑄

𝜇
= 𝑁𝑄 (𝑏 +

1

2𝑣
𝑘𝑖𝑟√𝐴)                                    (4.3) 

 

Note that VHT is independent of the operating capacity of the system and depends only 

on the number of waiting requests. 

Expenses like fuel cost, maintenance, and vehicle depreciation costs directly depend on 

the total distance that vehicles travel in the network. The VMT of the service can be 

approximated for the different loading-unloading strategies as below: 

 

𝑉𝑀𝑇𝑖(𝑛𝑤) =
1

2
𝑁𝑄𝑘𝑖𝑟√𝐴                                                   (4.4) 

This expression shows that VMT also depends only on the number of waiting requests. 

To sum up, the total operating cost of the agency in strategy 𝑖, 𝐴𝐶𝑖, can be represented 

as a linear function of these components minus the total fare that all users pay for the 

service.  The total fare for all customers in scenario i is represented by 𝑃𝑖. This expression 

can be also interpreted as the minimum budget that the agency needs to run such a service. 

It is worth pointing out that the parameters of the model, 𝛼𝑗  and 𝛽𝑗 , can be estimated 
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through calibration. In principle, these parameters are interpreted as the fixed and variable 

unit costs of providing each component, indexed by 𝑗. 

 

𝐴𝐶𝑖(𝜇, 𝑛𝑤) = [𝛼1 + 𝛽1𝑀𝑖(𝜇, 𝑛𝑤)] + [𝛼2 + 𝛽2𝑉𝐻𝑇𝑖(𝑛𝑤)] + [𝛼3 + 𝛽3𝑉𝑀𝑇𝑖(𝑛𝑤)] − 𝑃𝑖   

(4.5) 

 

Note that the agency operating cost turns out to be an increasing function of the 

operating capacity (𝜇) and a decreasing function of the number of waiting requests (𝑛𝑤) 

when the total demand (𝑁𝑄) is fixed. Consequently, cuts in operating capacity are one way 

to reduce costs, but changing the number of waiting requests also has an effect on the 

agency’s costs. 

 

4.1.2 User Cost Model 

In an undersaturated system, the demand rate always remains below the capacity of the 

system, so customers can be served at their desired times without delay. However, this may 

not always be the case in reality due to the high cost of providing adequate capacity. In 

fact, the incentives for agencies to reduce operating costs as much as possible will tend to 

affect the quality of the service making oversaturated conditions an expected outcome. In 

this case, users will experience delay in pickup, longer in-service times, and earliness or 
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lateness in delivery as unpleasant consequences of excessive requests for the operating 

capacity of the system. 

This problem is comparable to the morning commute problem in traffic flow theory in 

many ways. In both problems, the system has a limited capacity to serve users, where the 

delay, earliness, and lateness are undesirable consequences of a demand rate that is higher 

than the capacity of the system. Users may be expected to account for the delay and in-

service time as well as the earliness or lateness that they experience relative to their 

preferred travel schedule when making travel decisions. Accordingly, rational users will 

attempt to reduce their costs by adjusting the times they request to travel. The cumulative 

result of individual decisions will eventually lead to an equilibrium condition in which no 

one has incentive to change his/her request time. Due to these similarities, Vickrey’s (1969) 

congestion theory is adopted as a basis for modeling the equilibrium in the oversaturated 

condition.  

Users of a DRT service have different desired service times, which can be represented 

as a distribution of demand over time. However, this demand rate may exceed the capacity 

of the system at some points making delays inevitable. Assuming that experienced users 

have perfect information regarding the generalized cost associated with the service at each 

point in time, they will adapt their request times by advancing or postponing their requests 

to keep their costs minimized. This generalized cost has different components that users 

experience when served by the DRT system.  In the oversaturated condition, it is 

impossible to serve all users at their requested time due to inadequacy of the operating 
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capacity of the system, so users will experience some delay for pickups at their origins. 

After the passengers are picked up, in-service time is experienced until the DRT system 

delivers the passengers to their destinations.  

While in-service time for the users depends on the operating strategy that the agency 

follows for processing the requests, it is worth noting that the variations of in-service time 

in each strategy are small enough to be neglected. We use the average time that users spend 

onboard the vehicles (i.e., in-service) to calculate the total time in-service. Therefore, the 

in-service time of the users can be treated as a fixed part of the cost that they pay for service 

and does not impact their scheduling decisions. Finally, requests may be delivered to their 

destinations earlier or later than their desired times, and have to accept the penalty for such 

deviation from the preferred schedule. Accordingly, the generalized cost for all users in 

each strategy, 𝑈𝐶𝑖, can be formulated as below: 

 

    𝑈𝐶𝑖(𝜇, 𝑛𝑤) = 𝑉𝑂𝑇 (𝑇𝐷(𝜇)+𝑇𝑆,𝑖(𝜇, 𝑛𝑤) + 𝑒𝑇𝐸(𝜇) + 𝑙𝑇𝐿(𝜇)) + 𝑃𝑖 (4.6) 

 

where 𝑉𝑂𝑇 denotes the value of time for users, 𝑇𝐷(𝜇) is the delay, 𝑇𝑆,𝑖 is the in-service 

time for operating strategy 𝑖, 𝑇𝐸 is the earliness, 𝑇𝐿 is the lateness, and 𝑒 and 𝑙 represent 

the relative cost of earliness and lateness times in equivalent units of travel time. The 

interaction between users will eventually result in an equilibrium condition in which no 

one will be able to reduce his/her own costs by unilaterally changing his/her requested 
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time. Note that a flat fare will have no effect on the request times that users choose to 

minimize their costs. 

Figure 4.1 illustrates the cumulative counts of passengers using the DRT system in the 

equilibrium condition. The S-shaped curve, 𝑊(𝑡), depicts the cumulative distribution of 

wished request times. The slope of this curve at each point in time represents the wished 

demand rate of the users. Here, we assume that the wished demand rate continuously 

increases such that it exceeds the operating capacity of the service at time 𝑡1. It continues 

to increase to its maximum value, which exceeds 𝜇, then starts decreasing such that it drops 

below the operating capacity after time 𝑡2. The performance of the system, with operating 

capacity of 𝜇, is also illustrated by the cumulative service curve, 𝑆(𝑡), which describes the 

times when passengers are picked up by DRT vehicles.  

For operations, the agency is assumed to collect users’ requests and add them to the 

pool of 𝑛𝑤 requests waiting to be picked up. Nonetheless, the available capacity may be 

insufficient to serve the users at the rate their requests for pickup are made, and delays will 

ensue. On the flip side, users are assumed to be able to predict the delay and delivery times 

so that they can consider the inevitable earliness or lateness when choosing a request time. 

The request curve,  𝑅(𝑡) , represents the cumulative distribution of the individual user 

requests when each minimizes their own travel cost. The user equilibrium condition exists 

when no one has an incentive to alter his/her own requested time. In this condition, the 

number of waiting requests at each point in time can be approximated as the vertical 
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distance between the request curve and the service curve. As indicated in Figure 4.1, the 

number of requests awaiting service does not remain constant in the equilibrium condition; 

in contrast, it varies with the rise in demand over time. 

 

 

Figure 4.1. User equilibrium queueing diagram for the S-shaped wished curve 

 

When the wish-curve has a smooth S-shape, Daganzo (1985) proves that a unique user 

equilibrium is associated with two conditions. First, the proportion of the users who 

experience earliness, 𝑁𝑒, to users who are late, 𝑁𝑙, equals the proportion of lateness penalty 

to that of earliness. 

𝑁𝑒

𝑁𝑙
=
𝑙

𝑒
                                                                 (4.7) 
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Second, the request curve is piecewise linear with specific slopes in user equilibrium 

condition. The first 𝑁𝑒 users make their requests early, and next 𝑁𝑙  requests are made late. 

 

𝑑𝑅(𝑡)

𝑑𝑡
= {

𝜇

1+𝑒
, for users who are served early

𝜇

1−𝑙
, for users who are served late.

                                (4.8) 

 

In the equilibrium condition, components of the user cost can be approximated 

according to the queueing diagram. The delay that each user experiences for the service is 

the difference between his/her requested and actual pickup times, 𝜏 (i.e., the horizontal 

distance between the request and service curves in Figure 4.1. Delay in the service starts 

at time 𝑡𝐴  and increases linearly to its maximum value, 𝜏𝑐 , at time 𝑡̃. Then it linearly 

decreases back to zero at time 𝑡𝐹. Accordingly, the total delay that all the users experience 

waiting for the service can be approximated as the area between 𝑅(𝑡) and 𝑆(𝑡) in Figure 

4.1.  

 

𝑇𝐷(𝜇) =
𝑁𝑄
2𝑒𝑙

2𝜇(𝑒+𝑙)
                                                          (4.9) 

 

Earliness and lateness are defined as the time gap between actual and wished delivery 

of users to their destinations. So, if a request delivers a user to his/her destination before 

or after the wished time, an early or late schedule penalty will be included as part of the 
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user cost. The total earliness for all users is approximated by the area between 𝑆(𝑡) and 

𝑊(𝑡) from 𝑡𝐴 to 𝑡̃, and the total lateness is approximated by the area between 𝑆(𝑡) and 

𝑊(𝑡) from 𝑡̃ to 𝑡𝐹 as shown in Figure 4.1. In the simplified case that the wished curve has 

an inverse Z-shape with slope 𝜔, as depicted in Figure 4.2, the total earliness and lateness 

that users experience can be approximated as below: 

 

𝑇𝐸(𝜇) =
1

2
𝑁𝑄
2 (

𝑙

𝑒+𝑙
)
2

(
1

𝜇
−
1

𝜔
)                                                (4.10) 

 

𝑇𝐿(𝜇)  =
1

2
𝑁𝑄
2 (

𝑒

𝑒+𝑙
)
2

(
1

𝜇
−
1

𝜔
)                                                (4.11) 

 

 

Figure 4.2.  User equilibrium queueing diagram for the Z-shaped wished curve 
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Daganzo’s (1978) analytical model can be generally employed to approximate the total 

time that users spend in service for each of the three operating strategies as below: 

 

 𝑇𝑆,𝑖(𝜇, 𝑛𝑤) =

{
 
 

 
 𝑁𝑄

𝑛𝑤𝑀

𝜇
𝑖 = 1

𝑁𝑄
𝑛𝑣𝑀

2𝜇
𝑖 = 2

𝑁𝑄
𝑀(𝑛𝑣−0.5)

𝜇
𝑖 = 3

                                       (4.12) 

 

Note that the components of the total cost for users are decreasing functions of the 

operating capacity of the DRT service, 𝜇. In other words, any increase in the operating 

capacity improves the quality of the service for the users by reducing their costs. The 

distribution of the requests over time is another key factor that affects the total cost for the 

users, because increases in 𝑁𝑄 or 𝜔 lead to increased user cost. The next section addresses 

the problem of minimizing the total cost for the agency and users in order to obtain an 

optimal balance between the expense of operation and quality of the DRT service. 

 

4.2 System Optimum 

The inherent tradeoff between the cost and quality of the DRT service necessitates holding 

a balance between the agency and user costs. The optimal balance between the operation 

cost and quality of the service can be determined by minimizing the total cost for the 

agency and users. In this respect, the operating capacity of the service can be considered 
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as the decision variable of the system because it implies both the operating cost and the 

user cost. Moreover, the efficiency of the system can be further improved by having a 

uniform distribution of requests with an optimal number of requests awaiting service. To 

this end, we first optimize the operating capacity of the system to minimize the total costs 

for the users and the agency in the equilibrium condition. Next, we show how a uniform 

distribution of demand with the optimal number of waiting requests can further reduce the 

total cost. Lastly, we consider a special case in which the agency has no plan to change its 

fleet size (a realistic constraint) and can improve the efficiency of the service only by 

incentivizing an optimal demand pattern. Then, in Section 4.3, we present demand 

management strategies that can be implemented to achieve the optimal distribution of 

demand over time. 

 

4.2.1 Scenario I: Optimal Operating Capacity 

In the equilibrium condition illustrated in Figure 4.1, increasing the operating capacity of 

the service can reduce the total delay, earliness, and lateness of the users. Equation (4.6) 

shows that the user cost is a decreasing function of 𝜇, and equation (4.5) shows that the 

agency cost is an increasing function of 𝜇. As a result, the efficiency of the system can be 

enhanced by optimizing the capacity of the service in order to keep the sum of the agency 

and user cost minimized: 
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                    𝜇𝑖
∗ = argmin

𝜇
𝑇𝐶𝑖(𝜇, 𝑛̅𝑤  ) = argmin

𝜇
(𝐴𝐶𝑖(𝜇, 𝑛̅𝑤 ) + 𝑈𝐶𝑖(𝜇, 𝑛̅𝑤  ))        (4.13) 

 

where  𝑇𝐶𝑖  denotes the total cost of the system in different strategies, which can be 

approximated by substituting the values of agency cost from (4.5) and user cost from (4.6). 

The fare that users pay and that the agency collects is cancelled out of (4.13) because this 

is a transfer from users to the agency and does not affect the total combined cost to both. 

Here, 𝑛̅𝑤 is the average number of requests awaiting service over time. In the equilibrium 

condition, the number of waiting requests varies over time. Since both the agency and user 

costs are functions of 𝑛𝑤, the exact number of waiting requests is replaced with its average 

value in equation (4.13) to simplify the problem. It will later be shown that for the optimal 

control 𝑛𝑤 should be held constant. The average number of requests awaiting service can 

be approximated using Little’s (1961) formula to multiply the average waiting time by the 

rate that requests are picked up: 

𝑛̅𝑤  =
𝜏𝑐

2
𝜇 =

𝑁𝑄𝑒𝑙

2(𝑒+𝑙)
      (4.14) 

This problem has a closed-form solution when the wished curve has a specific shape 

like an inverse Z-shape as illustrated in Figure 4.2. In this case, the components of the 

agency cost, (4.1), (4.3), and (4.4), and components of the users cost, (4.9), (4.10), and 

(4.11), can be substituted into the objective function of problem (4.13). As a result, the 

optimization problem can be expressed as below: 
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𝜇𝑖
∗ = argmin 

𝜇
(𝐶𝑖,1𝜇 +

𝐶𝑖,2

𝜇
+ 𝐶𝑖,3)                          (4.15) 

 

where 𝐶𝑖,1 and 𝐶𝑖,2 represent the combined coefficients of 𝜇 and 1/𝜇, respectively, in the 

objective function for strategy 𝑖  after combining terms. 𝐶𝑖,3  denotes the terms in the 

objective function that are independent of 𝜇. The objective function is a convex function 

of the operating capacity of the service, 𝜇 . According to the first order condition, the 

optimal operating capacity in each scenario, 𝜇𝑖
∗, can be approximated as follows: 

 

                                 𝜇𝑖
∗ = √

𝐶𝑖,2

𝐶𝑖,1
                                              (4.16) 

 

By substituting the optimal capacity back into the objective function of the problem, the 

minimum total cost of the system in each strategy, 𝑇𝐶𝑖
𝑚𝑖𝑛, can be approximated as below. 

 

                                  𝑇𝐶𝑖
𝑚𝑖𝑛 = 𝑇𝐶𝑖(𝜇𝑖

∗, 𝑛̅𝑤 ) = 2√𝐶𝑖,1𝐶𝑖,2 + 𝐶𝑖,3                        (4.17) 

 

From a practical point of view, the optimal operating capacity can be used to approximate 

the optimal fleet size for running the system efficiently in each strategy. 

 

                                                     𝑀𝑖
∗ =  𝑀𝑖(𝜇𝑖

∗, 𝑛̅𝑤  )                                                           (4.18) 
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Optimizing the operating capacity of the system can improve the efficiency of the system 

by minimizing its total cost. However, the efficiency of the system can be further improved 

by optimizing the distribution of the requests as well as number of requests awaiting 

service.  

 

4.2.2 Scenario II: Optimal Operating Capacity and Number of Waiting Requests 

In the oversaturated condition, the operating capacity of the service is insufficient to cover 

the demand in the peak period, so users may adjust their request times to reduce the cost 

of their trip. The cumulative result of individual decisions leads to an equilibrium condition 

in which no one has an incentive to change his/her request time. According to condition 

(4.8), in the equilibrium condition the rate of requested trips will have a stepwise 

distribution in the peak period. As illustrated in Figures 1 and 2, the slope of the first part 

of the equilibrium request curve exceeds the capacity of the system (𝜇/(1 − 𝑒) > 𝜇), while 

in the second part of this slope drops below the operating capacity of the system (𝜇/(1 +

𝑙) < 𝜇). Although the average demand rate through the congested period is equal to the 

average service rate, the uneven distribution of request times causes avoidable delay. The 

same number of travelers could be served without excess delay if 𝑅(𝑡) were linear with 

constant slope 𝜇. We now consider the total cost for the agency and users by assuming that 

it is possible to make the distribution of demand uniform over time. In the next section, 
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demand management strategies that achieve this constant distribution of requested times 

through the rush will be presented. 

Consider the same case of a general S-shaped cumulative curve of wished pick-up 

times, 𝑊(𝑡), with maximum demand rate exceeding 𝜇, as shown in Figure 4.3. If the 

distribution of actual requests is forced to follow a constant rate 𝜆, the cumulative request 

curve, 𝑅(𝑡), is linear. If 𝑅(𝑡) has slope 𝜆 = 𝜇, as shown by the dashed line in Figure 4.3, 

then the system will operate at capacity throughout the rush while maintaining a steady 

number of waiting requests. The resulting performance of the DRT system is depicted by 

𝑆(𝑡) (the solid line in Figure 4.3), which allows the number of requests to accumulate up 

to 𝑛𝑤, and then starts to serve trips at the capacity 𝜇. 

 

 

Figure 4.3.  Queueing diagram for a uniform distribution of demand 



 

 

 

 

118 
 

 

 

 

In this system, all of the users experience the same delay, 𝜏, in the peak period. So, the 

total delay of the users in this condition is the area between the request and service curves, 

and can be approximated as follows: 

 

𝑇𝐷(𝜇, 𝑛𝑤) = 𝑁𝑄
𝑛𝑤

𝜇
                                                     (4.19) 

 

The total delay is a decreasing function of 𝜇 and an increasing function of 𝑛𝑤. The total 

earliness of the system is still represented by the area between the service curve and the 

wished curve from 𝑡𝐴 to 𝑡̃, and the total lateness by the area between the curves from 𝑡̃ to 

𝑡𝐹 in Figure 4.3.  Note as well that total earliness and lateness are decreasing functions of 

the operating capacity of the system, just as they are for the user equilibrium. For a system 

with fixed capacity, the total earliness and lateness in system optimum is the same as in the 

user equilibrium (Daganzo, 1985). The earliness and lateness for the DRT system are 

independent of the number of the waiting requests, and the total in-service time is still 

approximated by (4.12). 

A uniform distribution of demand with a request rate equal to the capacity of the system 

makes it possible to limit the number of users awaiting service. The goal is not to drive 𝑛𝑤 

to 0, however, because low values of 𝑛𝑤 are associated with high agency costs, based on 

(4.5), and high in-service times for Strategy 1, based on (4.12).  This is phenomenon is due 
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to the fact that having a high number of waiting requests, 𝑛𝑤, allows flexibility for each 

vehicle to travel a shorter distance and spend less time to make its next pick-up. Passengers 

on-board experience less in-service time because there is less distance traveled out of the 

way to pick up other passengers in the DRT vehicle. In selecting the optimal value of 𝑛𝑤, 

an inherent tradeoff exists with total delay balanced against the operating cost for the 

agency and the in-service time for the users.  

A tradeoff also exists between the costs for the agency and users. This should be taken 

into account to determine the optimal operating capacity of the service. The fleet expenses 

and operating cost of the agency is an increasing function of operating capacity of the 

service, while the total delay, earliness, and lateness of the system decrease with a rise in 

the operating capacity of the service. Accordingly, the total costs for the agency and the 

users in each strategy can be minimized by optimizing the operating capacity of the service 

and number of waiting requests as below: 

 

(𝜇𝑖
∗, 𝑛𝑤

𝑖∗) = argmin
𝜇,𝑛𝑤

𝑇𝐶𝑖(𝜇, 𝑛𝑤) = argmin
𝜇,𝑛𝑤

(𝐴𝐶𝑖(𝜇, 𝑛𝑤) + 𝑈𝐶𝑖(𝜇, 𝑛𝑤))           (4.20) 

 

where the costs for the agency and users can be approximated according to the equations 

(4.5) and (4.6), respectively. As before, the components of the agency cost can be 

approximated using equations (4.1), (4.3), and (4.4). In this scenario, the total delay for the 

users can be approximated by substituting (4.19) into (4.6). When the wished curve has a 



 

 

 

 

120 
 

 

 

specific inverse Z-shape with slope 𝜔, the total cost of the system in the problem (4.20) 

can be formulated as a function of 𝜇 and 𝑛𝑤. The total earliness and lateness of the system 

also can be approximated according to equations (4.10) and (4.11), respectively.  

 To solve this problem, we start by treating 𝑛𝑤 as a parameter in the objective function 

to derive the optimal 𝜇 as a function of 𝑛𝑤. 

 

𝜇𝑖
∗ = argmin 

𝜇
𝑇𝐶𝑖(𝜇, 𝑛𝑤) = (𝐷𝑖,1(𝑛𝑤)𝜇 +

𝐷𝑖,2(𝑛𝑤)

𝜇
+𝐷𝑖,3(𝑛𝑤))                    (4.21) 

 

where 𝐷𝑖,1(𝑛𝑤) and 𝐷𝑖,2(𝑛𝑤) denote the coefficients of 𝜇 and 1/𝜇 in the total cost of the 

system as functions of 𝑛𝑤 using strategy 𝑖. 𝐷𝑖,3(𝑛𝑤) represents the part of this cost that is 

a function of 𝑛𝑤 but independent of 𝜇. 

Since the total cost of the system is a convex function of the operating capacity of the 

service, the optimal value of 𝜇 can be approximated according to the first order condition 

as below: 

                                                              𝜇𝑖
∗ = √

𝐷𝑖,2(𝑛𝑤)

𝐷𝑖,1(𝑛𝑤)
                                                 (4.22) 

 

By substituting the optimal operating capacity of the service from (4.22) into (4.20), the 

total cost of the system can be formulated solely as a function  𝑛𝑤 . Accordingly, the 

optimization problem can be reformulated as follows: 
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𝑛𝑤
𝑖∗ = argmin 

𝑛𝑤
𝑇𝐶𝑖(𝜇𝑖

∗, 𝑛𝑤) = 

argmin 
𝑛𝑤

2√𝐷𝑖,4𝑛𝑤 + 𝐷𝑖,5√𝑛𝑤 +
𝐷𝑖,6

√𝑛𝑤
+ 𝐷𝑖,7 + 𝐷𝑖,8𝑛𝑤 + 𝐷𝑖,9√𝑛𝑤 +

𝐷𝑖,10

√𝑛𝑤
+ 𝐷𝑖,11   (4.23)   

           

where terms 𝐷𝑖,4  through 𝐷𝑖,11  denote the parameters of the objective function of the 

problem for each strategy 𝑖.  

The total cost of the system is a convex function of the number of waiting requests. As 

a result, the objective function can be minimized by finding the optimal number of requests 

awaiting service. Since the objective function of this problem is both continuous and 

differentiable over 𝑛𝑤 , the global optimum solution of this problem can be calculated 

quickly and precisely with the help of simple numerical methods like Newton’s method. 

Since the number of the requests awaiting service remains fixed over time, the average time 

that users spend in the vehicles, as calculated by (4.12), remains constant over time as well. 

It is worth pointing out that this conclusion is consistent with our initial assumption that 

the in-service time is fixed over time.  

The minimum total cost of the system in each strategy can be estimated by plugging in 

𝜇𝑖
∗ and 𝑛𝑤

𝑖∗ back into (4.20): 

                                                  𝑇𝐶𝑖
𝑚𝑖𝑛 = 𝑇𝐶𝑖(𝜇𝑖

∗, 𝑛𝑤
𝑖∗  )                                              (4.24) 
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The optimal fleet size of the operator also be approximated by plugging 𝜇𝑖
∗ and 𝑛𝑤

𝑖∗ into 

(4.1): 

 

𝑀𝑖
∗ =  𝑀𝑖(𝜇𝑖

∗, 𝑛𝑤
𝑖∗)                                                    (4.25) 

 

4.2.3 Scenario III: Optimal Number of Waiting Requests with a Fixed Fleet Size 

Many agencies face constrained budgets and facilities that can make it difficult to change 

the fleet size for the DRT service. Thus, it is useful to consider the efficiency improvement 

that can be achieved if the distribution of demand and operation of the service are optimized 

while holding the fleet size fixed. In this case, the fleet size (𝑀) and its associated cost 

remains fixed, and the operating capacity of the system in each strategy, 𝜇𝑖, becomes a 

function of the number of waiting requests.  This function can be approximated by solving 

equation (4.1) for 𝜇. 

 

𝜇𝑖(𝑛𝑤) = 𝑀 (𝑏 +
1

2𝑣
𝑘𝑖𝑟√𝐴)

−1

                                               (4.26) 

 

The total delay that users experience in this scenario can be approximated by substituting 

(4.26) into (4.19): 

     𝑇𝐷(𝑛𝑤) = 𝑁𝑄
𝑛𝑤

𝑀
 (𝑏 +

1

2𝑣
𝑘𝑖𝑟√𝐴)                                            (4.27) 
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Like the first and second scenarios, the total earliness and lateness can be approximated as 

the area between 𝑅(𝑡) and 𝑆(𝑡). As before, the total in-service time for the users can also 

be approximated using (4.12), and the total cost for the users can be approximated by 

substituting these components into (4.6). The operating cost for the agency expressed by 

equation (4.5), with the components of this cost are approximated by equations (4.1), (4.3), 

and (4.4). 

As a result, the number of requests awaiting service can be optimized to improve the 

efficiency of the service by minimizing the total costs of the agency and the users as below: 

 

𝑛𝑤
𝑖∗ = argmin

𝑛𝑤
𝑇𝐶𝑖(𝑛𝑤) = argmin

𝑛𝑤
(𝐴𝐶𝑖(𝑛𝑤) + 𝑈𝐶𝑖(𝑛𝑤))                   (4.28) 

 

Under the simplifying assumption that the wished curve has an inverse Z-shape with 

slope 𝜔, the total earliness and lateness of the system can be approximated by substituting 

(4.26) into (4.10) and (4.11), respectively. 

 

𝑇𝐸(𝜇) =
1

2
𝑁𝑄
2 (

𝑙

𝑒+𝑙
)
2

(
1

𝑀
(𝑏 +

1

2𝑣
𝑘𝑖𝑟√𝐴) −

1

𝜔
)                              (4.29) 

𝑇𝐿(𝜇)  =
1

2
𝑁𝑄
2 (

𝑒

𝑒+𝑙
)
2

(
1

𝑀
(𝑏 +

1

2𝑣
𝑘𝑖𝑟√𝐴) −

1

𝜔
)                              (4.30) 
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In this case, the problem expressed in (4.28) can be simplified by substituting the 

components of the agency and users’ costs into its objective function as follows: 

 

𝑛𝑤
𝑖∗ = argmin

𝑛𝑤
𝑇𝐶𝑖(𝑛𝑤) = (𝐸1,𝑖𝑛𝑤 + 𝐸2,𝑖√𝑛𝑤 +

𝐸3,𝑖

√𝑛𝑤
+ 𝐸4,𝑖)                         (4.31) 

 

where 𝐸1,𝑖 , 𝐸2,𝑖 , and 𝐸3,𝑖  represent the coefficients of 𝑛𝑤 ,  √𝑛𝑤 , and 1/√𝑛𝑤  in the 

objective function, respectively. 𝐸4,𝑖  denotes the part of the objective function that is 

independent of 𝑛𝑤. The total cost of the system is a convex function of the number of 

waiting requests, so the first order condition can be used to identify the value of 𝑛𝑤
𝑖∗ that 

minimizes the total cost in (4.31). 

 

𝑑𝑇𝐶𝑖(𝑛𝑤)

𝑑𝑛𝑤
= 2𝐸1,𝑖 +

𝐸2,𝑖

2√𝑛𝑤
𝑖∗
−

𝐸3,𝑖

2√𝑛𝑤
𝑖∗3
= 0                                           (4.32) 

 

By multiplying this equation by √𝑛𝑤
𝑖∗3, it can be expressed as a cubic function of √𝑛𝑤 

that can be solved analytically using Carano’s Method. The function can also be solved 

quickly and precisely with numerical methods.  

Like the second scenario, the number of waiting requests and the average in-service 

time for the users remains constant over the peak period, which is consistent with our initial 

assumption regarding the average in-service times. As a result, the optimal operating 
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capacity of the service can be approximated by substituting 𝑛𝑤
𝑖∗  into (4.26). The minimum 

total cost of the system can be estimated by substituting the optimum number of waiting 

requests into the objective function in (4.28). 

 

                                                  𝑇𝐶𝑖
𝑚𝑖𝑛 = 𝑇𝐶𝑖(𝑛𝑤

𝑖∗)                                                    (4.33) 

 

Up to this point, it has been assumed that it is possible to have a uniform distribution 

of demand instead of an equilibrium stepwise distribution. However, this cannot happen 

without implementing an effective demand management strategy. In the following section, 

two different strategies are presented that can be implemented to make the demand uniform 

over time. 

 

4.3 Demand Management Strategies 

As explained in the previous section, the underlying assumption in optimizing the number 

of requests awaiting service in the peak period is that demand can be distributed uniformly 

across the period. However, the distribution of the demand in the equilibrium condition 

will naturally tend to be stepwise in the peak period, which is the cumulative result of the 

rational behavior of the individual users minimizing their own costs. Accordingly, demand 

management strategies that can make the demand uniform over time can fulfill the key role 

in enhancing the efficiency of the DRT system.  
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4.3.1 Schedule Management Strategy 

A simple strategy to make the schedule of requests uniform over time is to simply stop 

accepting requests once the capacity has been reached.  This strategy has been widely used 

in DRT systems such as ADA paratransit services to form a uniform demand. In this 

strategy, the operator accepts requests in a first-in, first-served order, and puts them in a 

reservation list. To keep the distribution of requests uniform over time, the number of 

requests per time added to the reservation list should not exceed the operating capacity of 

the service. If a user’s requested time is not available they will have to book travel at an 

earlier or later time.  The problem is that this strategy incurs schedule penalties on users 

who are not able to book their trips well in advance.  Furthermore, regulations require that 

rescheduling not exceed one hour difference from the initial request, so the operator can 

still be stuck having to invest in additional resources to serve the peak demand. 

Alternatively, it is possible to implement a dynamic pricing strategy to make the 

distribution of demand uniform over the peak period, while users maintain freedom in 

choosing their own requested times. 

 

4.3.2 Dynamic Pricing Strategy 

Dynamic pricing is another strategy that can be implemented to achieve a uniform 

distribution of requests by incentivizing the users to adjust their request times. In general, 
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pricing is known to be an effective strategy for managing the demand for optimized systems 

although technical issues have often limited its implementation. However, this may not be 

the case for DRT systems where the technical infrastructure already exists, but agencies 

are choosing to charge flat fares. Alternatively, a dynamic fare pattern can be charged to 

make the distribution of the requests uniform over time. 

In the equilibrium condition, demand has a stepwise distribution over the peak period. 

As illustrated in the Figures 2 and 3, the equilibrium demand rate of the first part of the 

peak period is higher than the operating capacity of the service. On the contrary, this rate 

drops below the capacity of the system in the second part, while the average weighted 

demand rate of the whole peak period equals the operating capacity of the system. 

Accordingly, a dynamic pricing strategy that decreases the demand rate of the first part of 

the peak period and increases that of the second part to fill the gap between these demand 

rates and make the distribution of the requests uniform over the peak period. Dynamic 

pricing strategies have been widely studied as an effective tool for optimizing traffic flow 

at bottlenecks in transportation networks. Here, we adapt the theory to draw similar 

conclusions for pricing DRT systems during the peak period. 

 

4.3.2.1 Optimum Pricing Strategy 

In Vickrey’s (1969) congestion theory, the delay that users experience during their travels 

is an unnecessary consequence of the congestion at a bottleneck that can be avoided. A 
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dynamic price that charges users the equivalent monetary cost of the delay that users 

tolerate in the equilibrium condition (see Figure 4.1) can eliminate the delay by making the 

distribution of the demand uniform over the peak period. The optimum price for using the 

bottleneck should first arise from the minimum off-peak price, 𝑝𝑜 , at time  𝑡𝐴 with rate 𝑒 

up to the maximum value, 𝑇𝑐, at time 𝑡̃. Then the price should fall with slope – 𝑙 to the same 

minimum value in the end of peak period, at time 𝑡𝐵. Gonzales and Daganzo (2012) show 

that such a pricing strategy is optimal even when the capacity of the bottleneck is not fixed.   

In transportation networks, tolls can be charged at bottleneck locations, when users are 

served, so the theory of the dynamic pricing of bottlenecks has been developed under the 

assumption that users are charged at bottlenecks. In contrast, users in DRT systems are 

typically charged a fare when they are picked up. This difference makes it necessary to 

adapt the theory of dynamic pricing for the DRT system. As a result, it can be shown that 

a dynamic pricing pattern, as described above can make the distribution of demand of the 

DRT system uniform over the peak period. 

The dynamic prices for the DRT service must be set so that no user has any incentive 

to change their requested time to be earlier or later.  It is useful to consider a single request 

and the effect of changing the request time on the delay and earliness.  An example of a 

user who makes a request at time 𝑡, which is earlier than their wished time 𝑡𝑤, is illustrated 

in Figure 4.4.  This user pays a price 𝑝(𝑡) based on when they request service, then they 

spend some time waiting to be picked up and transported to their destination. The effect of 
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a small shift in requested time by ∆𝑡 earlier will result in being served 𝑅̇𝑒(𝑡)∆𝑡/𝜇 earlier 

in time, where 𝑅̇𝑒(𝑡) denotes the slope of the request curve for all 𝑡 ∈ (𝑡𝐴, 𝑡̃).  The resulting 

changes in the individual’s experienced delay (𝜏𝐷) and earliness (𝜏𝐸) can be calculated as 

follows: 

∆𝜏𝐷 = 𝜏𝐷,2 − 𝜏𝐷,1 = +∆𝑡 −
𝑅̇𝑒(𝑡)∆𝑡

𝜇
                                       (4.34) 

∆𝜏𝐸 = 𝜏𝐸,2 − 𝜏𝐸,1 = +𝑒
𝑅̇𝑒(𝑡)∆𝑡

𝜇
       (4.35)   

 

Figure 4.4.  Variation of delay and earliness for a user resulting from a shift of ∆𝑡 in the request time 

 

There will be also a change in the price of the service (𝑝) associated with this shift in 

request time. Assuming that price of the service varies smoothly over time, this change can 

be expressed as:  
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∆𝑝 = 𝑝2 − 𝑝1 = −𝑝̇𝑒(𝑡)∆𝑡    (4.36) 

where 𝑝̇𝑒(𝑡) is the rate of price increase per unit time at time 𝑡 for the 𝑁𝑒 requests that are 

earlier than wished. 

In the equilibrium condition, a marginal shift in request time by should not affect the 

generalized cost for the user, so the following condition must hold:  

 

∆𝑈𝐶 = ∆𝜏𝐷 + ∆𝜏𝐸 + ∆𝑝 = 0                                       (4.37) 

 

otherwise the user can achieve a lower cost by changing his/her request. By substituting 

(4.34), (4.35), and (4.36) into (4.37), 𝑅̇𝑒(𝑡) can be solved in terms of 𝑝̇𝑒(𝑡): 

 

𝑅̇𝑒(𝑡) =
(1−𝑝̇𝑒(𝑡))𝜇

1−𝑒
                                                         (4.38) 

 

A similar line of reasoning can be used to show that that the slope of the second part of 

the request curve, 𝑅̇𝑙(𝑡) is: 

𝑅̇𝑙(𝑡) =
(1−𝑝̇𝑙(𝑡))𝜇

1+𝑙
                                                         (4.39) 

 

where 𝑝̇𝑙(𝑡) denotes the rate of price increase per unit time at time 𝑡 for the 𝑁𝑙 requests that 

are later than wished. Note that (4.38) and (4.39) are not the same as the equilibrium arrival 
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curve in bottleneck model, because prices are charged at the requested time instead of the 

service time. 

Following from (4.38) and (4.39), the dynamic price that increases from the base off-

peak price, 𝑝𝑜, with rate 𝑒 from time 𝑡𝐴
′  to 𝑡̃′, and then decreases with slope – 𝑙 back to 𝑝𝑜 

at time 𝑡𝐹
′  can make the distribution of the requests uniform and equal to the operating 

capacity of the service. 

𝑝̇𝑒(𝑡) = 𝑒          for        𝑡 ∈ (𝑡𝐴
′  , 𝑡̃′)                                            (4.40) 

 𝑝̇𝑙(𝑡) = −𝑙         for       𝑡 ∈ (𝑡̃′, 𝑡𝐹
′ )                                             (4.41) 

 

These prices are illustrated in Figure 4.5(a). Although 𝑅̇𝑒(𝑡) and 𝑅̇𝑙(𝑡) differ from the 

conventional bottleneck model, the effective dynamic prices follow the same pattern just 

shifted from the service times to the request times. In general, the total price that users pay 

to the agency to use the service in each scenario can also be approximated as a function of 

the area under its pricing graph (Φ𝑖): 

 

𝑃𝑖 = 𝑉𝑂𝑇 ∙ Φ𝑖 𝜇𝑖
∗      (4.42) 

 

Implementing an effective dynamic pricing strategy motivates users to distribute their 

requests uniformly over the peak period, which helps the agency reduce the cost of 

operating the system and reduces the waiting time for users of the system. To keep the 
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optimum number of requests awaiting service at 𝑛𝑤
𝑖∗, the agency needs to operate by waiting 

for the optimum number of requests to accumulate and then serve the requests at its 

optimum capacity. 

                      

(a) Optimum Pricing Strategy                (b) Constrained Pricing Strategy 

Figure 4.5.  Comparison of dynamic pricing strategies over the peak period 

 

4.3.2.2 Constrained Pricing Strategy 

In practice, an operator may have not have complete flexibility to charge any prices they 

want.  For example, regulations may restrict the price by an upper bound. ADA paratransit 

services are intended to provide comparable transit service for people with disabilities, so 

charging fares that exceed fares on conventional public transit would undermine the role 

of the service.  There is usually no lower limit on the price that can be charged, so prices 

may still be varied within the bounds to improve the efficiency of the system. An external 

constraint can be included in the optimization problem to keep the optimal price within the 
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allowable range, and the result would be the most effective dynamic pricing strategy that 

is feasible. 

As depicted in Figure 4.5(b), the constrained pricing strategy can be derived by 

restricting the most effective pricing pattern to the upper limit. Accordingly, the dynamic 

price rises from time 𝑡 = 0 to 𝑡𝐴
′  with constant rate 𝑒 up to the maximum allowable limit, 

𝑝𝑚. Then, it stays fixed until it can decrease with rate – 𝑙, such that the price returns to zero 

at time 𝑡𝐹
′ . Adding a new constraint to an optimization problem can never lead to an 

improvement in the objective function. In view of that, although implementing such a 

pricing strategy can help enhance the efficiency of the system, it will not achieve a uniform 

distribution of the requests. As a result having a non-uniform distribution of the requests 

causes at least some users to experience more delay in comparison to a system with a 

uniform distribution of the demand.  

 

4.4  Numerical Example 

To provide a numerical illustration of this problem, in this section we employ the proposed 

analytical model to optimize different operating strategies for a DRT service in different 

optimization scenarios. This DRT system is assumed to provide a curb-to-curb service for 

its users in an area of 𝐴 = 500 mi2 with a network travel parameter of 𝑟 = 1, and a fixed 

peak demand of 𝑁𝑄 = 150 requests. It is assumed that the fixed demand is uniformly 

distributed over 3 hours of the peak period with a fixed demand rate of 𝜔 = 50 requests 
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per hour. The value of time of the users is assumed to be $20 per hour with an earliness 

penalty factor of 𝑒 = 0.5, and a lateness penalty factor of 𝑙 = 1.5. Here, the total boarding 

and alighting time is 𝑏 = 15 minutes per request, and the average moving speed of the 

vehicles in the network is assumed be to 𝑣 = 40 mph, while each vehicle has 𝑛𝑣 = 4 

requests onboard on average in each point in time. 

In this case, the agency and users’ cost of the DRT system for different strategies can 

be approximated following from the equations (4.5) and (4.6), as below: 

 

𝐴𝐶𝑖(𝜇, 𝑛𝑤) = 1000 + 500𝑀𝑖(𝜇, 𝑛𝑤) + 1.5𝑉𝐻𝑇𝑖(𝑛𝑤) + 0.5𝑉𝑀𝑇𝑖(𝑛𝑤) − 𝑃𝑖      (4.43) 

  𝑈𝐶𝑖(𝜇, 𝑛𝑤) = 20 (𝑇𝐷(𝜇)+𝑇𝑆,𝑖(𝜇, 𝑛𝑤) + 0.5𝑇𝐸(𝜇) + 1.5𝑇𝐿(𝜇)) + 𝑃𝑖 (4.44) 

 

On this basis, we first optimize this DRT system under different scenarios, then we propose 

an optimal pricing strategy to keep the system optimized over peak period, according to 

Section 5.2.1. Next, we perform a sensitivity analysis on the results of different operating 

strategies under different scenarios to show how these results may change with the 

variations in the level of demand, value of time for the users, and the fleet size (in Scenario 

III). 
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4.4.1 System Optimum and Dynamic Pricing Strategy 

As explained in the Section 4.3.2, the total cost for the agency and users of a DRT 

service in different operating strategies can be minimized by optimizing the capacity of 

system as well as number of awaiting requests. In Scenario I, we optimize the operating 

capacity of the system by solving problem (4.15) for this numerical example. The optimal 

values of the operating capacity and waiting requests in Scenario II can also be 

approximated by solving problems (4.21) and (4.23).  Finally, in Scenario III, we assume 

that the agency only has 𝑀 = 5 vehicles available for running the DRT service, so we 

optimize the number of waiting requests by solving problem (4.31). Given the optimal vales 

of these decision variables, it becomes possible to approximate the optimal fleet size, the 

agency and users’ costs, and the minimum total costs in each of the different strategies. 

Table 4.1 summarizes the results for the different DRT operating strategies under the three 

different optimization scenarios. 

In Scenario I, with optimal operating capacity but variable number of awaiting requests, 

the second operating strategy with the largest fleet size, highest agency cost, and the lowest 

users’ cost (excluding the price) has the lowest total cost among the operating strategies 

under the first optimization scenario. Since Scenario I optimizes the operating capacity 

while allowing users to make requests in an unrestricted user equilibrium, the number of 

awaiting request varies over the peak period. As explained in Section 4.2.1, we approximate 
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the number of waiting requests in the first scenario with its average value using equation 

(4.14).  

To further simplify the problem, we can set a flat price to zero, which indeed has no 

effect on the optimized solution or the total cost of the DRT system. In fact, the price, 

whether it is flat or dynamic, is a portion of the cost that will be canceled out in summing 

up the agency and users’ costs in the total cost function. A pricing strategy will be effective 

in changing the system performance only if it can make the distribution of the demand more 

uniform over the peak period by incentivizing the users to adjust their request times. 

Otherwise, a flat price is an endogenous component of the costs that is transferred from the 

users to the agency. 

It is also worth pointing out that the users’ cost and the total cost of Strategy 1 in 

Scenario I is significantly higher than those of all other strategies in these three scenarios. 

The reason for this surprisingly high users’ cost in this case is the inefficiency of the 

operations. In Strategy 1, vehicles always choose the nearest point as their next stop, 

regardless whether it is an origin or destination. Without an effective demand management 

strategy, this causes a rise in number of requests waiting for the service during the peak 

period. Such an accumulation of requests simply increases the chance of pickups relative 

to drop-offs, and consequently the in-service time is elongated. It can be generally 

concluded that Strategy 1 is not very efficient in Scenario I, although its agency cost might 

be relatively low.  
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In Scenario II, both the operating capacity and the number of waiting requests are 

optimized, and the total cost of each operating strategy is reduced to its lowest possible 

value. Interestingly, Strategy 1, which has the highest total cost in Scenario I, has the lowest 

total costs among all of the scenarios and strategies in this scenario. This strategy provides 

the most optimal service quality with the lowest delay, in-service time, and the cost for the 

users (excluding the price) using the smallest fleet size and the lowest number of waiting 

requests among all of the other cases, which explicitly demonstrates the concept system 

optimization.    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

138 
 

 

 

Table 4.1. System optimization results of the numerical example 
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 In Scenario III, the objective is to reduce the total cost of the DRT system by 

optimizing the number of waiting requests for a given fleet size. In this example, we assume 

that the agency possesses 5 vehicles to serve the demand. In this case, Strategy 1 is the 

most efficient, with the lowest agency and users’ costs (excluding the price). Notice as well 

that all of the components of the agency and users’ cost for Strategy 1 are at their minimum 

possible values, which emphasizes the dominance of Strategy 1 for this scenario.  

As explained in Section 4.3, implementation of Scenarios II and III inevitably requires 

an effective demand management strategy that can make the distribution of requests 

uniform over the peak period. To this end we propose a dynamic pricing strategy that can 

keep the number of waiting requests in Scenarios II and III optimized over time. Such 

optimal pricing strategies can be designed by charging each of the users a price equal to 

the cost of the delay they experience in the user equilibrium condition, according to criteria 

(4.40) and (4.41).  

With the absence of a dynamic pricing strategy in Scenario I, there will be a time-

variant delay associated with service as illustrated for different operating strategies in 

Figure 4.6(a). As indicated in this figure, the length of the peak period varies among the 

different strategies based on their optimal operating capacities. In view of that, Strategy 1 

has the highest operating capacity and the shortest peak period, while the Strategy 2 has 

the lowest operating capacity and the longest peak period in Scenario 1. However, in all 

strategies, this delay first rises with slope 𝑒 = 0.5 at start of the peak period at time 𝑡′𝐴𝑖, up 
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to its maximum value, 𝜏𝑐, at time 𝑡̃′. Then it falls with a negative slope of 𝑙 = −1.5 until 

the end of the peak period at time 𝑡′𝐹𝑖.  

 

 

 

          (a) Scenario I                  (b) Scenario II                                    (c) Scenario III 

Figure 4.6. Time-variant delay (a) and optimal pricing (b and c) for different operating strategies 

 

Like Scenario I, the lengths of the peak periods in Scenarios II and III directly depend 

on the operating capacity of the strategies. On this basis, Strategies 1 and 3 of Scenario II 

turn out to have the shortest and longest peak periods in Figure 4.6(b), although the lengths 

of these peak periods are relatively close across the different strategies. In Scenario III, as 

illustrated in Figure 4.6(c), Strategy 1 still has the longest peak period due to its lowest 

operation capacity, while Strategy 2 has the shortest peak period. In all of these pricing 

strategies, the optimal price in the first part of the peak period linearly increases from zero, 
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at time 𝑡′𝐴𝑖 , with slope 𝑒 = 0.5 up its maximum value, 𝜏𝑐 , at time 𝑡̃′. Then it linearly 

decreases back to zero with a negative slope of 𝑙 = −1.5, at time 𝑡′𝐹𝑖 . 

 

4.4.2 Sensitivity Analysis 

In the previous section, we minimized the total cost of the DRT system for the numerical 

example by optimizing the decision variables of different operating strategies under 

different optimization scenarios. However, it is useful to see how the minimum total cost 

of the service changes with variations in the demand and the value of time of its users. We 

summarize here the results of the sensitivity analysis on the numerical example optimized 

in the previous section.  

Thanks to the analytical solution of the problem, variations in the total cost of the 

system can be accurately approximated for wide ranges of input parameters, as plotted in 

Figure 4.7. Figure 4.7(a) depicts the total cost with variations in the total number of the 

waiting requests during the peak period. It can be inferred from this Figure 4.that the total 

costs of the different strategies in the different scenarios are relatively close when demand 

is low. However, as the demand starts growing, the total costs of the some of the cases, in 

particular I.1, rises relatively faster than the others. This rise is relatively slow for some 

other cases, in particular II.1.  
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 (a) Demand              (b) Value of time                         (c) Fleet size 

Figure 4.7. Variations of the total cost with (a) demand (b) value of time, and (c) fleet size 

A similar pattern appears for the variation of the total cost with users’ value of time. As 

shown in Figure 4.7(b), the total costs of all cases are relatively close for the lower values 

of VOT. However, some of them rise faster, such as I.1, while some others rise slower, such 

as II.1. Finally, Figure 4.7(c) plots the total costs of different strategies with variations in 

the fleet size in the Scenario III, in which the agency is assumed to possess a fixed number 

of vehicles. In this case, the total cost of Strategy 1 (III.1) always remains lower than that 

of the other strategies.  

Figure 4.7(c) also reveals the importance of the fleet size optimization by indicating 

that, even for a given number of waiting requests, the total cost of all operating strategies 

can be minimized by choosing the optimal fleet size. 
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4.5  DRT System with a Heterogamous Demand    

In this chapter, we proposed a model and an optimization method for the operation of 

the DRT systems. In this respect, the generalized cost of the users and the operation cost of 

the agency are approximated using analytical models. On this basis, the operation of the 

DRT system is optimized by minimizing the total cost of the users and agency using the 

proposed schedule management strategies. To approximate the agency cost, we employed 

an analytical model to formulate the operation cost of the DRT system. To approximate the 

users’ cost, we first showed that a DRT system with a state-dependent capacity and a time-

dependent demand can be modeled as queueing system. In the sense of that, we adapted 

the Vickrey’s (1969) congestion theory to approximate the components of the cost that 

users experience in the system. For the purpose of simplicity, we assumed that the relative 

importance of schedule deviation remains constant among the homogenous users. 

However, the reality is that the preferences of the users varies among the heterogeneous 

users. To relax such simplifying assumption, we may account for the heterogeneity in 

preferences of the users by adapting the concept of the efficient frontier for modeling such 

queueing system.  

On this basis, the approximation of the components of the users’ cost can be generalized 

by plugging the analytical solution of the morning commute problem proposed in Section 

3.1.2.2 into the user cost model presented in Section 4.1.2 to account for the heterogeneity 

in schedule penalty preferences of the users. Subsequently, the solution of the optimization 
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problems of Scenarios I, II, and III will be updated as well, although the general 

formulations of optimization problems (equations (4.13), (4.20), and (4.28)) remain 

untouched. Having the analytical solution of the morning commute problem with 

heterogeneous user preferences, it becomes possible to generalize the variation of the 

waiting time that users experience over time in the equilibrium condition, according to 

Figure 3.4. In this respect, the effeteness of dynamic pricing strategies of Figure 4.5a, b 

will be improved by considering the heterogeneity in schedule penalty preferences of the 

user according to the Figure 3.8. In this respect, the proposed optimal and constrained 

pricing strategies for the DRT system can be generalized as illustrated in Figure 4.8a, b.  

 

        

(a)  Optimum Pricing Strategy                 (b) Constrained Pricing Strategy 

Figure 4.8.  Dynamic pricing strategies with heterogeneous user preferences. 
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4.6  Summary  

The inherent trade-off between the operating cost and the quality of service of a DRT 

system necessitates optimizing the operations to balance them. In this part of the research, 

an analytical model based on Daganzo (1978) is employed to approximate fleet size, VHT, 

and VMT of the DRT system. Accordingly, the operating cost for the agency is estimated 

as a linear combination of these components. The users are also subjected to costs of using 

the service. When the operating capacity of the system is inadequate to cover the demand, 

users of the system incur costs of delay, earliness, and lateness. 

In response to the costs associated with excessive demand, rational users adjust their 

request times to keep their own generalized cost minimized. The cumulative result of the 

individual decisions of each user leads to an equilibrium condition in which no one has an 

incentive to change his/her own requested time. In this respect, we adapt Vickrey’s (1969) 

congestion theory to model the DRT system, and approximate the delay, earliness, and 

lateness of the users in the equilibrium condition. In addition, the total time that users spend 

in service can be approximated using the analytical model from Daganzo (1978). As a 

result, the efficiency of the DRT system can be optimized by minimizing the total cost for 

the agency and users, where the operating capacity of the system or the number of waiting 

requests or both can be considered as the decision variable(s) of the problem. This part of 

the research presents optimizations for three scenarios: allowing only the operating 

capacity to change, allowing both to change, or holding the fleet size fixed. In each 
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scenario, the general problem with an S-shaped wished curve is formulated mathematically. 

The analytical solution is presented for the simplified case with an inverse Z-shaped wished 

curve. 

In order to achieve optimal efficient operations of the DRT system, the demand should 

be spread as uniformly as possible over the rush period. Two demand management 

strategies are presented to spread the requests uniformly over the peak period in order to 

maintain an optimal number of waiting requests. In the schedule management strategy, the 

operator keeps the demand within the operating capacity of the service by only allowing a 

limited number of requests to be scheduled per time. A dynamic pricing strategy is 

proposed that incentivizes users to change their requested travel times without other 

restrictions from the operator. The most effective pricing strategy can make the distribution 

of the requests uniform over the peak period when the price is unbounded. A constrained 

dynamic pricing strategy is also proposed, which distributes the demand as uniformly as 

possible by changing the prices only within an allowable range. DRT systems that serve 

peaked demand can be optimized to balance the costs for the agency and users.  

Although these models have been developed based on the operation of demand 

responsive transit systems, the principles can apply to other demand responsive systems 

(such as movement of goods) in which the cost of operations must be balanced against the 

quality of service for customers. The key to addressing dynamics of demand is to use 

management strategies that are also dynamic. Prices that vary by the time of day can play 

a key role in achieving efficient system performance. 
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CHAPTER 5 

ROUTE CHOICE PROBLEM UNDER TRAVEL TIME VARIABILITY WITH 

HETEROGENEOUS USER PREFERENCES 

Route choice is another important decision that users make for their trips in a network. 

Rational users tend to reduce the costs of their trips by choosing the routes with the 

minimum travel cost. Thus, the cumulative result of the individual decisions is the user 

equilibrium condition in which no one can reduce his/her cost by switching to another 

route. The duration of the trip is one of the important components of the travel cost, which 

is also correlated with number of other components of the cost like fuel consumption. 

Conventional traffic assignment models simplify the route choice problem by making the 

assumption that travel time is the only influential factor in route choice behavior of the 

users, which can be precisely predicted by travelers in the network. However, research 

shows that travelers can estimate the average travel time as well as its variations for 

different routes based on their previous experiences in the network. In this part of the 

research, we study the route choice behavior of the users in the network under travel time 

variability, while there is a heterogeneity associated with risk sensitivity of the users. The 

concept of the efficient frontier is used to represent the equilibrium solution of the route 

choice problem. On the basis of the specific properties of the efficient frontier, we propose 

a mathematical formulation of the route choice problem under travel time variability. A 
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solution algorithm is also designed that uses the primary characteristics of the equilibrium 

condition to assign the heterogeneous demand to the network.  The efficiency of the 

proposed solution method is also comparted with a classic smoothing assignment method 

in a numerical example. The proposed model can also have broader applications in 

modeling decision making procedure of the travelers in the transportation network.  

 

5.1 Generalized Cost Function 

Route choice is a multi-criterion decision-making process by nature in which individuals 

tend to minimize their costs or maximize their benefits according to their own preferences. 

However, it is the heterogeneity of preferences among users that makes the equilibrium 

problem complicated. The generalized cost associated with the trip encompasses different 

components of the cost that users experience to get to the destination. In addition, a risk 

always comes along with this cost, which should be taken into account as well. Beckmann 

et al. (1956) describes how the uncertainty in the travel cost gives rise to the risk that should 

be taken into account in travel cost estimation: 

 

 “…the cost of transportation on a road includes not only the operating cost of a vehicle 

over the length of the road, but also such things as the travel time and the risks incurred. … 

Under Risk Cost we shall include the losses from accidents in terms of life, health, and 



 

 

 

 

149 
 

 

 

property, as well as the irritation from the threat of such accidents, which is particularly 

manifest under conditions of road congestion.” (Beckmann et al., 1956). 

 

However, the uncertainty in cost estimation is not restricted to the monetary costs. As 

explained in the previous section, the variation in the trip duration is another source of risk 

involved in the decision making procedure. Travel time is a primary component of the 

travel cost, and it is also correlated with fuel consumption and other costs that are incurred 

as part of their travel. Nevertheless, it is not possible for users to predict the exact route 

travel times that they will experience, because they can only estimate average trip durations 

according to their previous experiences. Hence, the variation in the trip durations is another 

unpleasant factor that travelers consider in route choice (Abdel-Aty et al., 1995; Noland, 

1999). The variation in travel time poses a risk of schedule delay to the users who desire to 

arrive to their destinations punctually and can freely choose when to start their trips and 

their route.  Based on Vickery (1969), these users account for the earliness or lateness 

penalty cost that they may experience due to arrival at their destinations ahead of or behind 

schedule. From a statistical perspective, the variation of route travel time can be measured 

by its standard deviation, regardless of the shape of the distribution (Fosgerau and 

Engelson, 2011). However, the cost of deviation from the schedule is not always 

symmetric, since it may change with the purpose of the trip and vary among the people.  

 The value of travel time reliability represents the level of sensitivity of the user to risk. 

In this regard, more conservative users place higher importance on the travel time variation; 
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in contrast, risk takers show less consideration of it. The variation in the trip duration 

determines the reliability of the route choice, so it should be included in the generalized 

cost function. As a result, the linear combination of the expected travel time and its standard 

deviation is employed as the generalized cost function to measure the disutility of a chosen 

route, based on Small’s (1982) scheduling model, regardless of the form of the travel time 

distribution (Fosgerau and Karlström, 2010; Shahabi et al., 2013). The disutility 

experienced by a member of risk group 𝑝 traveling on route 𝑖 is given by: 

 

𝐷𝑈𝑖
𝑝 = 𝑡𝑖 + 𝛾𝑝 𝑠𝑖                                                        (5.1) 

  

where, 𝑡𝑖  represents the expected travel time on route 𝑖 , and its standard deviation is 

denoted by 𝑠𝑖. Here, we keep the simplifying assumption that the travel time of the links 

are independent of each other, so 𝑡𝑖  and 𝑠𝑖
2 can be calculated as the summation of link 

expected travel times and associated variances, respectively (Lo et al., 2006; Watling 2006; 

Tan et al, 2014). Moreover, in this cost function, 𝛾𝑝 is the risk sensitivity parameter which 

reflects the relative importance of the travel time variability for the users in group 𝑝 who 

share the same risk sensitivity. In other words, the risk sensitivity can be interpreted as the 

equivalent delay that the user is willing to tolerate to reduce one unit of time in the variation 

of his/her trip duration.   
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According to Fosgerau and Karlström (2010), the value of the risk sensitivity parameter 

can be determined based on the marginal utilities of earliness and lateness for any given 

distribution of the trip duration. However, this value does not apply equally to all travelers 

due to the heterogeneity of user preferences. To include such heterogeneity, 𝛾 can have a 

discrete or continuous probability distribution over the travel demand. Figure 5.1 illustrates 

a hypothetical probability distribution of the risk sensitivity of users. 

 

 

Figure 5.1. Probability distribution of the risk sensitivity parameter 

 Statistically speaking, the expectation and standard deviation of the route travel 

time can be defined as a function of these variables in the constituting links. Of special 

interest here is that the expected travel time and its standard deviation are not independent 

of each other; in contrast, there appears to be a relationship between them, especially for 

travel time in networks (Herman and Lam, 1974; Richardson and Taylor, 1978; Fosgerau, 

2010; Mahmassani et al., 2013). Both of these variables can be defined as functions of the 
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traffic flows (Noland et al., 1998). On this basis, in this part of the research we consider 

the standard deviation of travel time as a function of the traffic flow. Therefore, we can use 

a change of variables to express travel time as a function of the standard deviation based 

on the relationship implied by the traffic flow. Here, we consider a general relationship 

between these variables in which the expected travel time is an increasing function of the 

standard deviation of the travel time, and standard deviation of travel time in an increasing 

function of the flows in the network. By using the linear cost function (5.1) from the 

literature, the EFRC can be shown to be decreasing convex function with a specific 

geometric property as explained in the following section.  

 

5.2 Representing Equilibrium with the Efficient Frontier of Route Choice  

In this section, we first demonstrate the route choice problem under travel time variability 

with heterogeneous user preferences to risk using a set of complementary conditions. Then, 

we explain how the concept of the efficient frontier can be adapted from portfolio theory 

(Markowitz, 1952) in finance to model the equilibrium of the route choice problem. For 

that purpose, we first consider the simplified case of the continuous differentiable efficient 

frontier to demonstrate the specific characteristics of the EFRC. Then, we extend the results 

to the realistic case of the piecewise efficient frontier by relaxing the simplifying 

assumptions. The identified properties of the EFRC are used in upcoming sections for 

modeling and solving the route choice problem with heterogeneous user preferences.  
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In the route choice decision making process, the rational user tends to minimize his/her 

general travel cost by making choices to reduce both the average trip duration and reliability 

of the routes according to his/her previous experiences. Due to variation of the taste among 

people, different users may find that different routes best match with their preferences. The 

aggregate results would be an equilibrium condition in which all users have specific route 

choices in accordance with their sensitivity to the risk, which leave them no incentive to 

switch to another route. In this section, we first present the equilibrium conditions for a set 

of heterogeneous travelers choosing among diverse routes. Then the equilibrium conditions 

are used to introduce the concept of the efficient frontier as the representation of 

equilibrium route choices.  

In the equilibrium condition, users who share the same value for the reliability 

experience the same general travel costs, but this cost may vary over groups with different 

preferences. The traffic assignment problem for a single origin-destination network can be 

formulated as a set of Karush-Kuhn-Tucker complementary conditions, the solution of 

which represents the equilibrium route flows. 

 

𝑥𝑖
𝑝(𝐷𝑈𝑖

𝑝 − 𝜆𝑝) = 0            ∀𝑖, 𝑝                                   (5.2) 

       𝐷𝑈𝑖
𝑝 − 𝜆𝑝   ≥ 0            ∀𝑖, 𝑝                                   (5.3) 

               ∑ 𝑥𝑖
𝑝

𝑖   = 𝑑𝑝          ∀𝑝                                      (5.4) 

                      𝑥𝑖
𝑝 ≥ 0             ∀𝑖, 𝑝                                  (5.5) 
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In this formulation, 𝑥𝑖
𝑝
 denotes the flow of the sensitivity group 𝑝 in route 𝑖, while 𝑑𝑝 is 

the number of travelers in group 𝑝 . 𝜆𝑝  is the dual variable for the flow conservation 

constraint for the group 𝑝 . In the equilibrium condition,  𝜆𝑝  represents the minimum 

disutility associated with traveling in the network for group 𝑝, which is identical for the 

people in the same demand group.  

Heterogeneity of the user preferences regarding travel time reliability leads to 

asymmetric route choice of the users. So, in a similar condition, different travelers with 

different sensitivities to risk may choose different routes, which might be different from 

the shortest path as defined by the expected travel time. In this regard, more conservative 

users (higher 𝛾) prefer the routes with lower standard deviation in travel time and tolerate 

higher expected travel time. In contrast, risk-takers (lower 𝛾) choose the routes with lower 

expected travel time and accept a higher level of variation in their trip durations. However, 

no one take routes with higher expected travel time and higher level of risk as long as there 

exists at least one alternative route that dominates these routes by offering better expected 

travel time, reliability, or both. 

 

Definition (EFRC). The efficient frontier of route choices (EFRC) is the convex hull 

of the equilibrium route choice set in the 𝑠 − 𝑡 plane that have the minimum generalized 

cost according to (5.1) for the users with heterogeneous preferences regarding the relative 

importance travel time variability.   
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On the s-t plane (See Figure 5.2), each fixed point represents the expected travel time 

and its standard deviation for a route, which in this illustration are independent of the route 

flows. A line with slope −𝛾𝑝  represents a set of points in the s-t space with constant 

disutility for a person in group p. Disutility increases moving away from the origin as travel 

time and variability increase. At equilibrium, the travelers in group p will choose the 

point(s) where the disutility is lowest, and this disutility is 𝜆𝑝. No user in group p will 

choose a route with greater disutility than 𝜆𝑝, as constrainted by (5.2) and (5.3). The upper 

envelope of the constant disutility lines across all p defines a convex curve called the 

efficient frontier of route choices (EFRC), which is shown by the dashed curve. Only the 

portfolio of dominant routes, which are along this frontier, will be used in the equilibrium 

condition, and users will be distributed among these routes based on their preferences for 

risk. Figure 5.2 illustrates the concept the EFRC for the single origin-destination problem. 
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Figure 5. 2. Route choice efficient frontier concept shown by dashed line 

 In this framework, the conventional user equilibrium can be interpreted as a special 

case of the EFRC when all users are absolutely risk seekers and seek the route with the 

shortest expected travel time, regardless of the associated risk. In this case that travelers 

have no sensitivity to the risk (𝛾𝑝 = 0), the EFRC turns out to be a horizontal line in the s-

t plane. As the risk sensitivity of the users goes to infinity (𝛾𝑝 = ∞), the solution of the 

problem tends to be a vertical line on the s-t plane. In realistic cases, there is heterogeneity 

among users in their sensitivity to risk, which results in the general shape of the EFRC. The 

EFRC is the solution of this bi-objective route choice problem, which not only provides 

intuitions about the route choice behavior of the users in the equilibrium condition, but also 

ranks the route choice of the users according to their sensitivity to risk. This information is 

crucial for updating the traffic assignment of the users in case a change occurs in structure 

or performance of the network, with no need to solve the whole problem again. The EFRC 
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has specific properties that can shed light on the equilibrium route choice of the users. To 

identify these properties, we can simplify the problem to a differentiable efficient frontier 

by assuming infinitely many routes in the s-t plane and a continuous distribution for the 

risk sensitivity of the users. These simplifying assumption can help demonstrating the 

properties of the efficient frontier. Then, we relax the simplifying assumptions to extend 

the results to the realistic case of the piecewise linear efficient frontier. 

 

5.2.1 Differentiable Efficient Frontier of the Route Choice 

For the first step, we consider a couple of simplifying assumptions to keep the EFRC 

continuous and differentiable in order to demonstrate the specific properties of the EFRC. 

For one thing, we assume that there is an infinite number of routes connecting the single 

origin-destination pair in the network with known s-t relationships that cover the entire s-t 

plane. For another, we assume that the risk sensitivity parameter γ  has a continuous 

probability distribution over the population of the heterogeneous users. In this case, the 

EFRC turns to a differentiable curve as illustrated in Figure 5.3. In this figure, 𝑡 of the 

routes are depicted as increasing leaner function of their 𝑠  just for the purpose of 

simplifying the illustration.  However, this is not a general assumption in this problem, and 

the results remain general for any relationship for t as an increasing function of s for the 

routes of the network.  
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Figure 5. 3. Differentiable EFRC for infinite number of routes and continuous distribution of 𝛾 

In Figure 5.3, straight dashed lines represent the performance of the routes and, in 

general, characteristics of the network. The equilibrium travel time expectation and 

standard deviation of the routes can be determined as the intersection of the route 

performance curves with the EFRC which is depicted by continuous line. The shape and 

the location of the EFRC in the s-t plane depends on the characteristics of the routes in the 

network, the total demand, and the distribution of the risk sensitivity parameter. 

Nonetheless, the EFRC always has certain properties that are general for all problems. 

Furthermore, it can be shown that there is a relation between the shape of the EFRC and 

the distribution of 𝛾, which can shed light on the solution of the equilibrium route choice 

problem. 
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Proposition 5.1 (monotonicity). The EFRC, 𝑡(𝑠), is a non-increasing function of 𝑠 (See 

Proposition 2.1 for proof). 

 

Proposition 5.2 (convexity). The EFRC, 𝑡(𝑠), is a convex function of 𝑠 (See Proposition 

2.2 for proof). 

 

Proposition 5.3 (geometric constraint). When there are an infinite number of routes and a 

continuous distribution of 𝛾 , the slope of the EFRC at its intersection with route 𝑖  is 

𝑚𝑖 = 𝜕𝑡(𝑠𝑖)/ ∂si = −𝛾𝑝 for the users choosing this route as illustrated in Figure 5.3  

 

Proof. In the equilibrium condition all the users choose the route with least disutility.  If 

there are an infinite number of routes so that the disutility is continuous and differentiable 

across all 𝑠𝑖, the first derivative of the disutility for demand group 𝑝 with respect to 𝑥𝑖
𝑝
 

should be equal to zero. 

𝜕𝐷𝑈𝑖
𝑝

𝜕𝑥
𝑖
𝑝 =

𝜕𝐷𝑈𝑖
𝑝

𝜕𝑠𝑖
∙
𝜕𝑠𝑖

𝜕𝑥
𝑖
𝑝 = 0                                               (5.6)  

By substituting the definition of the disutility (5.1) into the equation (5.6), we may rewrite 

this equation as below: 
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𝜕𝑠𝑖

𝜕𝑥
𝑖
𝑝 (
𝜕𝑡(𝑠𝑖)

𝜕𝑠𝑖
+ 𝛾𝑝) = 0                                               (5.7)  

Knowing that 𝑠𝑖 strictly increases with 𝑥𝑖
𝑝
, the slope of the EFRC at its intersection with 

route 𝑖, 𝑚𝑖, chosen by group 𝑝, can be determined as follows: 

𝑚𝑖 =
𝜕𝑡(𝑠𝑖)

𝜕𝑠𝑖
= −𝛾𝑝                                              (5.8)  

∎ 

Corollary 5.1 (assignment order). If routes are labeled in an increasing order of their 

equilibrium standard deviation of travel times, the demand fills the routes in a decreasing 

order of the risk sensitivity. The decreasing monotonicity property (Proposition 5.1) 

preserves the order of 𝑠𝑖 and 𝑡𝑖, so the expected travel time will be in decreasing order 

because the slope is always non-positive. The convexity property (Proposition 5.2) ensures 

that the negative slope is increasing (i.e., becoming less steep). Then, the geometric 

constraint (Proposition 5.3) implies that the assignment starts with the greatest 𝛾, where 

the negative slope is steepest, and progresses sequentially to the lowest 𝛾, where the slope 

is flattest. 

Now that the general properties of the EFRC is demonstrated using the differentiable 

efficient frontier, we may relax the simplifying assumptions to extend the results to the 

realistic case of the piecewise linear efficient frontier. 
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5.2.2 Piecewise Linear Efficient Frontier of the Route Choice 

In urban transportation networks, there are a finite number of routes, n, connecting the 

origin-destination pairs for the travel demand with either a discrete or continuous 

distribution of 𝛾 values. In this case, EFRC, as the convex hull of the equilibrium route 

choice sets of the heterogeneous users in the 𝑠 − 𝑡 plane, becomes a piecewise linear curve 

with similar properties to the differentiable case, as illustrated in the Figure 5.4, the 

performance of the routes is plotted by the straight dashed lines, which are simplified for 

the illustration, and the results hold for general relationships between 𝑡𝑖  and 𝑠𝑖 . The 

piecewise linear EFRC is depicted by the continuous curve. Proposition 5.1 and 

Proposition 5.2 still hold as stated in Section 5.2, while Proposition 5.3 must be adapted 

for discrete and continuous distribution of 𝛾 in the following sections. 
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Figure 5.4. Piecewise linear EFRC for finite number of routes and discrete distribution of 𝛾 

Proposition 5.4 (geometric constraint). For 𝑛 routes that are labeled sequentially in order 

of increasing order of standard deviation of equilibrium travel time 𝑠𝑖 , route 𝑖  has the 

lowest disutility for the user with risk sensitivity 𝛾𝑝 if and only if −𝛾𝑝 falls between the 

slopes of the EFRC at its intersection with route 𝑖. The first and the last routes are just 

bounded from one side. 

𝑝 ∈ 𝑃𝑖
             
↔   {

𝑚𝑖,𝑖+1 ≥ −𝛾𝑝                  , 𝑖 = 1

𝑚𝑖−1,𝑖 ≤ −𝛾𝑝 ≤ 𝑚𝑖,𝑖+1 , 1 < 𝑖 < 𝑛

𝑚𝑖−1,𝑖 ≤ −𝛾𝑝                  , 𝑖 = 𝑛
                                (5.9) 

where, mi,j denotes the slope the piece of the equilibrium EFRC between routes 𝑖 and 𝑗, and 

𝑃𝑖 denotes the set of sensitivity groups that choose route 𝑖. 
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Proof. Since the piecewise EFRC is not differentiable, we make use the fundamental 

concept of the minimum disutility in route choice. It follows from the complementary 

conditions (5.2) and (5.3) that a traveler with risk sensitivity 𝛾𝑝 chooses route 𝑖, if and only 

if, route 𝑖 offers a lower generalized cost than any other route 𝑗.  

 

𝑝 ∈ 𝑃𝑖
             
↔    𝐷𝑈𝑖

𝑝 ≤ 𝐷𝑈𝑗
𝑝    ,    1 ≤ 𝑗 ≤ 𝑛                                 (5.10)  

 

The disutility of route 𝑖 and route 𝑗 for users with the sensitivity 𝛾𝑝 can be substituted with 

the definition from (5.1), to obtain the condition below: 

 

𝑝 ∈ 𝑃𝑖
             
↔    𝑡(𝑠𝑖) + 𝛾𝑝 𝑠𝑖 ≤ 𝑡(𝑠𝑗) + 𝛾𝑝 𝑠𝑗     ,     1 < 𝑗 < 𝑛                   (5.11)  

 

By the solving the inequality for 𝛾𝑝, we get two cases, depending on whether 𝑗 is greater 

than or less than 𝑖: 

−𝛾𝑝 ≤
𝑡(𝑠𝑗)−𝑡(𝑠𝑖)

𝑠𝑗−𝑠𝑖
    ,     𝑗 > 𝑖                                         (5.12)  

−𝛾𝑝 ≥
𝑡(𝑠𝑖)−𝑡(𝑠𝑗)

𝑠𝑖−𝑠𝑗
    ,     𝑗 < 𝑖                                         (5.13)  
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The right side of (5.12) and (5.13) represent the slope connecting points 𝑖 and 𝑗. For the 

route 𝑖 − 1 and route 𝑖 + 1, expression (5.11) can be rewritten using (5.12) and (5.13) as 

follows: 

 

𝑝 ∈ 𝑃𝑖
             
↔    

𝑡(𝑠𝑖)−𝑡(𝑠𝑖−1)

𝑠𝑖−𝑠𝑖−1
≤ −𝛾𝑝  ≤

𝑡(𝑠𝑖+1)− 𝑡(𝑠𝑖)

𝑠𝑖+1−𝑠𝑖
    ,     1 < 𝑖 < 𝑛           (5.14)  

 

According to the definition of the slope of the piecewise EFRC, the following result can be 

concluded. 

𝑝 ∈ 𝑃𝑖
             
↔    𝑚𝑖−1,𝑖 ≤ −𝛾𝑝  ≤ 𝑚𝑖,𝑖+1    ,     1 < 𝑖 < 𝑛          (5.15)  

 

For the first and the last route, condition (5.13) can be modified as below: 

 

𝑝 ∈ 𝑃𝑖
             
↔    {

𝑚𝑖,𝑖+1 ≥ −𝛾𝑝   ,   𝑖 = 1

𝑚𝑖−1,𝑖 ≤ −𝛾𝑝   ,   𝑖 = 𝑛
                          (5.16) 

 

because the slopes at the edge are bounded from only one side.  ∎ 

 

Corollary 5.2 (general geometric constraint). Considering the convexity property of the 

EFRC, condition (5.25) can be generalized as below: 

𝑝 ∈ 𝑃𝑖
             
↔    𝑚1,2 ≤ 𝑚2,3 ≤ ⋯ ≤ 𝑚𝑖−1,𝑖 ≤ −𝛾𝑝  ≤ 𝑚𝑖,𝑖+1 ≤ ⋯ ≤ 𝑚𝑛−2,𝑛−1 ≤ 𝑚𝑛−1,𝑛   
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(5.17)  

Corollary 5.3 (assignment order). Similar to Corollary 5.1 for the differentiable EFRC, by 

keeping the routes in order of increasing standard deviation at the equilibrium condition, 

and combining Propositions 5.1, 5.2, and 5.4, demand groups should be assigned to the 

routes in a decreasing order of their sensitivity to the risk at equilibrium. 

 

Corollary 5.4a (dual geometric constraint discrete case). Constraint (5.9) holds for all the 

groups choosing 2 consecutive routes, if the slope of the piece of the EFRC between these 

routes will be higher than −γp of all groups choosing the first route and also lower than all 

−γp of the of the groups choosing the second route, and vice versa. Accordingly, condition 

(5.9) holds for all routes and groups if and only if the condition (5.18) holds for all the 

routes. 

𝑠𝑢𝑝𝑝𝜖𝑃𝑖{−𝛾𝑝} ≤ 𝑚𝑖,𝑖+1 ≤ 𝑖𝑛𝑓𝑝𝜖𝑃𝑖+1{−𝛾𝑝}                             (5.18)  

In the case that the travel demand of the users is considered to have a continuous 

distribution of 𝛾  values, the piecewise linear EFRC will hold the same characteristics 

presented in Proposition 5.4 as well as Corollaries 2 and 3. Corollary 5.4a, however, can 

be simplified owing to the continuous nature of the 𝛾 distribution.  
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Corollary 5.4b (dual geometric constraint continuous case). Constraint (5.9) holds for the 

𝛾-range of the travelers choosing 2 consecutive routes, if the slope of the piece of the EFRC 

between these routes will be higher than −𝛾𝑝 of all users choosing the first route and also 

lower than all −𝛾𝑝 of the of the users choosing the second route, and vice versa. As it is 

illustrated in the Figure 5.5a for a hypothetical continuous distribution of the 𝛾 values, the 

upper and lower bounds of 𝑚𝑖,i+1 in condition (5.18) will be equal to the same value, we 

name −𝛾𝑖,𝑖+1  . Accordingly, condition (5.9) holds for all routes and users if and only if 

condition (5.19) holds for all the routes as illustrated in Figure 5.5b. 

𝑚𝑖,𝑖+1 = 𝑠𝑢𝑝𝑝𝜖𝑃𝑖{−𝛾𝑝} = 𝑖𝑛𝑓𝑝𝜖𝑃𝑖+1{−𝛾𝑝} =  −𝛾𝑖,𝑖+1              (5.19)  

           

 

Figure 5.5. The EFRC of a continuous distribution of 𝛾 

 

(a) Route choice of a traffic demand with 

continuous distribution of 𝛾 

(b) Piecewise linear EFRC for the continuous 

distribution of 𝛾 
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In Figure 5.5a, the continuous curve illustrates a hypothetical probability distribution of 𝛾 

values, and the vertical straight lines split this distribution between the routes in a 

decreasing order of the risk sensitivity, according to the Corollary 5.3. As a result, the share 

of each route from the total demand can be represented by the area bounded between these 

lines, under the distribution curve. In the equilibrium condition, such assignment of 

demand results in a monotonically decreasing and convex EFRC, with the segment slope 

between each two consecutive routes i and i+1 equal to −𝛾𝑖,𝑖+1 , as indicated in the Figure 

5.5b. 

 

Corollary 5.5. As a direct result of Corollary 5.4a, the demand of group 𝑝 splits between 

two or more routes if and only if the slope of the EFRC between these routes is −𝛾𝑝. It can 

be equivalently interpreted as the same generalized cost for these users. 

 𝑚𝑖,𝑖+1 = ⋯ = 𝑚𝑗−1,𝑗 = 𝑚𝑖,𝑗 = −𝛾𝑝   
             
↔     

⋂ 𝑃𝑘
𝑗
𝑘=𝑖 = {𝑝}  𝐴𝑁𝐷 𝑝 ∉ (⋃ 𝑃𝑘 𝑘<𝑖 )⋃  (⋃ 𝑃𝑘𝑘>𝑗 )                          (5.20) 

Corollary 5.6. Following from Corollary 5.5, each subset of routes can have at most one 

group in common which splits between those routes such that condition (5.20) holds, 

because the split group must have a 𝛾𝑝 = −𝑚𝑖,𝑖+1 for each consecutive pair of routes. 
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The piecewise EFRC represents the equilibrium solution of the proposed traffic 

assignment problem. Thus, its primary properties can be employed in a mathematical 

formulation of the problem. 

 

5.3 Mathematical Formulation 

The traffic assignment model proposed in this part of the research considers the 

heterogeneity of risk sensitivity among users while there is an inherent variation associated 

with route travel times. The tendency of users to minimize their own general travel costs 

eventually end in an equilibrium condition, which can be represented by the EFRC. The 

EFRC has specific properties that can be employed to formulate the traffic assignment 

problem, and the equilibrium solution of the problem can be derived as a feasible solution 

that satisfies these properties. These properties can be included as a set of constraints in 

the mathematical formulation. It is also worth noting that all of the properties of the EFRC 

are directly derived from the Karush-Kuhn-Tucker complementary conditions (5.2) and 

(5.3). Accordingly, the existence and uniqueness of the solution of the proposed problem 

can be verified. 
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5.3.1 General Mathematical Problem 

Keeping the assumption that demand groups are labeled in decreasing order of their 

sensitivity to risk, the results of the Corollaries 3, 4a, and 5 can be adapted to formulate the 

traffic assignment problem with a discrete distribution of demand as below:  

𝑥𝑖
𝑝𝑥𝑗
𝑝+1(𝑚𝑖,𝑗 + 𝛾𝑝) ≥ 0                  ,           ∀𝑖, 𝑗, 𝑝                            (5.21)  

𝑥𝑖
𝑝𝑥𝑗
𝑝+1(𝑚𝑖,𝑗 + 𝛾𝑝+1) ≤ 0             ,            ∀𝑖, 𝑗, 𝑝                           (5.22) 

𝑥𝑖
𝑝𝑥𝑗
𝑝(𝑚𝑖,𝑗 + 𝛾𝑝) = 0                      ,            ∀𝑖, 𝑗, 𝑝                           (5.23) 

𝑥𝑖
𝑝𝑥𝑗
𝑝+1(𝑠𝑖 − 𝑠𝑗) ≤ 0                       ,            ∀𝑖, 𝑗, 𝑝                           (5.24) 

∑ 𝑥𝑖
𝑝

𝑖   = 𝑑𝑝                                       ,            ∀𝑝                                (5.25) 

∑ 𝑥𝑖
𝑝

𝑝𝜖𝑃𝑖
  = 𝑥𝑖                                   ,            ∀𝑖                                 (5.26) 

𝑚𝑖,𝑗 =
𝑡(𝑠𝑖)−𝑡(𝑠𝑗)

𝑠𝑖−𝑠𝑗
                               ,            ∀𝑖, 𝑗                              (5.27) 

 𝑥𝑖
𝑝 ≥ 0                                               ,            ∀𝑖, 𝑝                             (5.28) 

In this mathematical problem, constraints (5.21) and (5.22) restrict the slopes of each 

segment of the EFRC to its upper and lower bounds in accordance with Corollary 5.4a. 

These constraints allow 𝑥𝑖
𝑝, 𝑥𝑗

𝑝+1 > 0 if and only if the slope of the slope of segment 

(𝑖, 𝑗) of the EFRC falls between negative values of risk sensitivity of groups 𝑝 and +1, 

−𝛾𝑝 ≤ 𝑚𝑖,𝑗 ≤ −𝛾𝑝+1. Equation (5.23) also determines the slope of the EFRC when the 

demand of one group splits between two or more routes, on the basis of Corollary 5.5. 
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Corollary 5.3 is also included by the constraint (5.24) which ensures that demand groups 

fill the routes in a decreasing order. The set of constraints (5.21) through (5.24) guarantees 

the primary properties of the EFRC in the equilibrium condition (see Propositions 5.1, 5.2, 

and 5.4). Moreover, equation (5.25) also assures the conservation of flow in the network. 

In addition to these constraints, which reflect the properties of the solution, there are a 

couple of definitions included in the model. Equation (5.26) defines the route flow as the 

summation of flows of different groups in that route. The geometric slope of each segment 

of the EFRC is also defined by equation (5.27). Lastly, a non-negativity constraint is 

included by inequality (5.28). 

For a continuous distribution of 𝛾 values, a similar traffic assignment problem can be 

formulated by adapting Corollaries 3 and 4b to split the continuous distribution of the 

demand between the routes as follows: 

𝛿𝑖,𝑗(𝑚𝑖,𝑗 + 𝛾𝑖
𝑈) = 0                         ,           ∀𝑖, 𝑗                             (5.29)  

𝛿𝑖,𝑗(𝛾𝑖
𝑈 − 𝛾𝑗

𝐿) = 0                            ,           ∀𝑖, 𝑗                             (5.30) 

∑ 𝛿𝑖,𝑗 = 𝑛 − 1𝑖,𝑗                                                                             (5.31) 

(𝑠𝑖 − 𝑠𝑗)(𝛾𝑖
𝑈 − 𝛾𝑗

𝑈) ≤ 0                 ,            ∀𝑖, 𝑗                            (5.32) 

∑ (𝐹𝛾(𝛾𝑖
𝑈) − 𝐹𝛾(𝛾𝑖

𝐿))𝑖 = 1              ,            ∀𝑖                               (5.33) 

(𝛾𝑖
𝑈 − 𝛾𝑗

𝑈)(𝛾𝑖
𝐿 − 𝛾𝑗

𝐿) ≥ 0               ,            ∀𝑖, 𝑗                            (5.34) 

(𝐹𝛾(𝛾𝑖
𝑈) − 𝐹𝛾(𝛾𝑖

𝐿)) 𝐷  = 𝑥𝑖            ,            ∀𝑖                               (5.35) 
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𝛿𝑖,𝑗 ∈ {0,1}                                         ,           ∀𝑖, 𝑗                             (5.36) 

𝛾𝑖
𝑈 ≥ 𝛾𝑗

𝐿 ≥ 0                                     ,            ∀𝑖                               (5.37) 

 

In this formulation of the problem, constraints (5.29), (5.30), and (5.31) determine the 

slopes of the EFRC segments according to the Corollary 5.4b, where 𝛾𝑖
𝐿 and 𝛾𝑖

𝑈 are the 

decision variables of the problem and respectively represent the lower and upper bounds 

of the share of route i from the continuous distribution of 𝛾. In this set of constraints, 

equation (5.29) makes sure that if routes i and j are next to each other in the s-t plane, the 

slope of the EFRC segment between them, mi,j, is exactly equal to the upper and lower 

bounds of  the shares for routes i and j, which are equal in the equilibrium condition as 

illustrated in the Figure 5.5a. Constraints (5.30) and (5.31) also define the value of the 

dummy variable 𝛿𝑖,𝑗 by setting its value equal to 1 if routes i and j are right next to each 

other such that  𝛾𝑖
𝑈 = 𝛾𝑗

𝐿 = 𝛾𝑖,𝑗 ; otherwise, 𝛿𝑖,𝑗  remains zero (See condition (5.19)). 

Constraint (5.32) also assures that the travel demand of the heterogeneous users fill the 

routes in a decreasing order of 𝛾 to reflect the Corollary 5.3. As a result, the primary 

characteristics of the EFRC in the equilibrium condition (See Propositions (5.1), (5.2), and 

(5.4)) are covered by constraints (5.29) through (5.32). In addition, constraint (5.33) 

guarantees the flow conservation of the demand by restricting the summation of route 

shares to 1, while constraint (5.34) makes sure that their shares will not overlap (See Fig 6 

where, 𝐹𝛾(∙) denotes the cumulative distribution function of 𝛾. Equation (5.35) also defines 
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the route flows, in which D is the tot      al travel demand of the users. Finally, 𝛿𝑖,𝑗 is defined 

as dummy variable in the constraint (5.36), while the non-negativity constraint (5.37) sets 

the upper bound of the share of each route higher than its lower bound. In this problem, 

definition of the slopes of the EFRC segments is the same as the equation (5.27). 

 

5.3.2 Two-Stage Formulation 

The mathematical formulation of the problem presented in Section 5.3.1 can be simplified 

in the case that the order of the routes is known. Accordingly, the problem can be 

formulated as a two-stage model for which the upper stage problem is to put the routes in 

an increasing order of their standard deviation of the travel times, in a 

ccordance with the Corollary 5.3. Given the order of the routes for a discrete distribution 

of 𝛾, the lower stage problem splits the distribution of the demand between the routes such 

that the equilibrium solution meets the primary properties of the EFRC as below. 

 

𝑥𝑖
𝑝(𝑚𝑖−1,𝑖 + 𝛾𝑝) ≤ 0                  ,           ∀𝑖, 𝑝                                (5.38)  

𝑥𝑖
𝑝(𝑚𝑖,𝑖+1 + 𝛾𝑝) ≥ 0                  ,           ∀𝑖, 𝑝                                (5.39)  

𝑚𝑖−1,𝑖 ≤ 𝑚𝑖,𝑖+1                              ,             ∀𝑖                                  (5.40)  

∑ 𝑥𝑖
𝑝

𝑝𝜖𝑃𝑖
  = 𝑥𝑖                             ,             ∀𝑖                                  (5.41) 

∑ 𝑥𝑖
𝑝

𝑖   = 𝑑𝑝                                 ,             ∀𝑝                                 (5.42) 

𝑥𝑖
𝑝 ≥ 0                                          ,            ∀𝑖, 𝑝                               (5.43) 
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Constraints (5.38) and (5.39) again determine the boundaries of the slope of each 

segment of the EFRC on the basis of Corollary 5.4a. It is worth pointing out that there is 

no need to add a separate constraint to include Corollary 5.5 in this formulation of the 

problem, because it is redundant to the first two constraints. Constraint (5.24) also can be 

replaced by constraint (5.40) which directly represents the Proposition 5.2. The 

conservation of demand constraint is guaranteed by the equation (5.41). Constraint (5.42) 

also defines the route flows. Finally, inequality (5.43) represents the non-negativity 

constraint. In this problem, the slope of the segments of the EFRC, 𝑚𝑖,𝑖+1, is defined 

according to equation (5.26), where j=i+1. 

The lower stage problem can be significantly simplified by considering a continuous 

distribution for 𝛾 values over the travel demand of the users as follows: 

 

𝑚𝑖,𝑖+1 + 𝛾𝑖,𝑖+1 = 0                           ,           ∀𝑖                               (5.44)  

𝛾𝑖−1,𝑖 ≥ 𝛾𝑖,𝑖+1 ≥ 0                            ,            ∀𝑖                              (5.45) 

(𝐹𝛾(𝛾𝑖−1,𝑖) − 𝐹𝛾(𝛾𝑖,𝑖+1)) 𝐷  = 𝑥𝑖 ,            ∀𝑖                              (5.46) 

 

Here, constraint (5.44) reflects Corollary 5.4b by determining the slopes of the EFRC 

segments according to condition (5.19) as illustrated in Fig 6. Here, routes are presumed to 

be labeled in an increasing order of their travel time standard deviations, so the non-

negativity constraint (5.45) assures that the continuous distribution of demand fills these 
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routes in a decreasing order of 𝛾 according to the Corollary 5.3. As a result, we may 

substitute 𝛾𝑖+1
𝑈  and 𝛾𝑖

𝐿  with their equivalent value 𝛾𝑖−1,𝑖  as the decision variable of the 

problem, according to the condition (5.19), where 𝛾𝑖+1
𝑈 = 𝛾𝑖

𝐿 = 𝛾𝑖,𝑖+1. In this formulation 

of the problem, constraints (5.44) and (5.45) fulfill all the primary properties of the 

piecewise linear EFRC demonstrated in Propositions (5.1), (5.2), and (5.4). Additionally, 

equation (5.46) assigns the routes their shares of the total demand (See Fig 6).  

This formulation of the problem is of great importance for proposing a solution 

algorithm for this problem, since there exists a variety of different algorithms that can 

efficiently relabel the routes in an increasing order of the standard deviation of their travel 

times. In practice, we just need to solve this simplified version of the problem. On this 

basis, the next section proposes an efficient solution algorithm for this bi-objective route 

choice problem.  

 

5.4 Solution Algorithm 

The convex combination method that can be used for solving the multi-objective problems 

typically involves finding the best “movement directions” and optimizing the “movement 

steps” in each iteration, for each demand group separately (Dial, 1996). Consequently, the 

efficiency of the method clearly declines as the number of the sensitivity groups increases 

up to the point the distribution of 𝛾 can be considered continuous over the population of 

the travelers. However, the specific properties of the EFRC can be employed to design a 
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more efficient solution algorithm to solve this bi-objective traffic assignment problem 

when γ is continuously distributed.  

We now propose a bi-stage algorithm which can solve the route choice problem by 

building the EFRC for both continuous and discrete distribution of demand. The upper 

stage algorithm labels the routes in increasing order of the standard deviations of their travel 

times, while the lower stage algorithm iterates to build the EFRC using its known 

characteristics, given the order of the routes. Whenever building the EFRC requires an 

alteration in the order of the routes, the algorithm returns back to the upper stage algorithm 

for label rearrangement, then the lower stage algorithm starts constructing the EFRC for 

the updated order of the routes. In this way, the proposed algorithm simply iterates over 

the paths to modify the assignment of the heterogeneous demand according to the insights 

from the properties of the EFRC until all of the equilibrium conditions are met. 

Consequently, more extensive heterogeneity of the demand may require a higher number 

of iterations over the paths before equilibrium is achieved. However, the heterogeneity of 

the demand does not complicate the assignment modification procedure of the algorithm 

as its steps remain the same for any number of demand sensitivity groups. This property of 

the proposed algorithm can be viewed as an advantage over other solution methods, like 

convex combination, that require finding the best directions and optimal movement step 

sizes for all the demand sensitivity groups one by one. Notice as well that there exists only 

one feasible order of the routes in which the unique EFRC can be rebuilt by the solution 

algorithm, so the equilibrium is identified when conditions (5.38) through (5.43) or (5.44) 
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through (5.46) are met for discrete or continuous distribution of 𝛾, respectively. It is also 

worth pointing out here that whether the 𝛾  values follow a discrete or continuous 

distribution does not change the general procedure of the solution algorithm; however, the 

steps of the lower stage algorithm should be adapted accordingly. The main steps of this 

solution algorithm for both discrete and continuous distributions of 𝛾 are summarized in 

the flowchart of Figure 5.6. 

 This method starts with a feasible initial solution for the problem. Then it alternates 

between the upper stage and lower stage algorithms until the convergence criterion is met. 

 

5.4.1 Initialization 

The initial solution to the route choice can be any feasible distribution of the demand 

between the routes. However, the properties of the EFRC shed light on the general form of 

the solution which can be used to define an appropriate initial condition to reduce the 

number of iterations needed to converge. In this case, the algorithm starts with a 

monotonically decreasing and convex EFRC in which the groups are assigned to the routes 

in a decreasing order of their risk sensitivity. In this respect, the steps of the proposed 

initialization method are listed as below: 

 

Step 0. For a discrete distribution of 𝛾, label the demand groups in decreasing order by 

their sensitivity to risk. For a continuous distribution of 𝛾 demand is in decreasing order by 
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definition. In addition, label the routes in an increasing order of standard deviations of their 

travel times when there is no flow in the routes. 

 

Step 1. Assign an initial feasible assignment of demand to each route. Although any 

feasible assignment of traffic flows may be used, a good starting point is to identify the 

equilibrium for a homogeneous population in which all users’ risk sensitivity is equal to 

the population average ( 𝛾𝑎𝑣𝑔 ). By making the population homogeneous, the traffic 

assignment problem becomes a conventional user equilibrium problem, which can be 

solved using any available method. As a result, the initial EFRC can be depicted as a 

straight line with a negative slope in the s-t plane which meets both monotonicity and 

convexity constraints (see the Propositions 5.1 and 5.2). 

 

Step 2. Split the demand between the routes in a decreasing order, as explained in Corollary 

5.3, such that the aggregate flows become equal to the initial flows derived in Step 1.  

 

The result can be used as an initial condition for the upper stage problem. 
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5.4.2 The Upper Stage Algorithm 

The upper stage algorithm is designed to heuristically label the routes according to the re-

ordering of the routes by increasing standard deviation of travel time after updates in route 

flows. The algorithm steps are summarized as follows: 

 

Step 0. Label the routes in an increasing order of their updated standard deviations. To 

keep the new labels in order, it is necessary that the total flow on each route remains 

constant. So, the demand should be reassigned to the routes in accordance with the 

Corollary 5.3 such that the new assignment results in same total flows on each route but 

with the new order of the routes. 

 

Step 1. Update the expected travel time and the standard deviation of the routes.  

 

As a result of the upper stage algorithm, the monotonicity condition is met (Proposition 

5.1), while the demand groups are assigned in a decreasing order (Corollary 5.3). Since 

routes are labeled based on a new order, their travel time expectations and standard 

deviations should be updated accordingly.  The lower stage algorithm also uses this travel 

time information to check and analytically modify the assignment to satisfy the geometric 

constraint (Corollary 5.4a or 4b).  
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Figure 5.6. Flowchart representation of the heuristic algorithm for discrete (D) and continuous (C) 

distributions of 𝛾 
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5.4.3 The Lower Stage Algorithm 

The lower stage problem first checks that the current traffic assignment satisfies the 

geometric condition, route by route.  If not, it iterates to analytically modify the assignment 

by systematically shifting the splits of the demand between the routes according to the 

properties of the EFRC.  If such a change causes a swap in the route orders because 

standard deviation of two routes swap order, the algorithm diverts the iteration to the upper 

stage algorithm. The fundamental procedure of the lower stage algorithm is similar for 

both discrete and continuous distributions of the 𝛾  values; however, some minor 

adaptations on the details of the algorithm should be made accordingly. The steps of the 

lower stage algorithm for both discrete (D) and continuous (C) distributions are listed 

below: 

 

Step 0. Put the routes in a queue in order of their current labels, then select the first route 

in the queue to evaluate the slope of the corresponding segment of the EFRC. 

 

Step 1. Compare the slope of the selected segment of the EFRC with: 

(D) the lower and upper bounds defined by condition (5.18). 

(C) the split point that routes 𝑖 and 𝑖 + 1 share on a continuous 𝛾  distribution, 𝛾𝑖,𝑖+1 , 

defined by condition (5.19). 

Three cases are possible:  
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Case I.  

(D) The selected slope falls between its lower and upper bounds,  

(C) The selected slope equals to 𝛾𝑖,𝑖+1, 

which means the current assignment in this route needs no further modification in this 

iteration. Go to Step 3. 

 

It is also worth pointing out that Case I  also includes the condition route 𝑖 + 1 drops 

exactly on top of point 𝑖 in the 𝑠 − 𝑡 plane, which indeed  cause the segment (𝑖, 𝑖 + 1) get 

eliminated from EFRC , and obviously 𝑚𝑖,𝑖+1 becomes indeterminate.  

 

Case II.  

(D) The slope is higher than the upper bound.  

(C) The slope is higher than 𝛾𝑖,𝑖+1. 

In this case, the assignment should be modified to reduce the slope up to the point that it 

comes to the Case I. Go to Step 2. 

 

Case III. 

(D) The slope is less than the lower bound.  

(C) The slope is less than 𝛾𝑖,𝑖+1. 
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 So the slope should be increased by modifying the assignment such that the Case I occurs. 

Go to Step 2. 

 

Step 2. Start with modifying the assignment of the demand in Cases II and III as below: 

(D) In Case II (Case III), shift the entire demand of the group with highest (lowest) 

sensitivity to risk in route i+1 (route i) from this route to route i (route i+1) to decrease 

(increase) the slope of the segment. Next, check if the slope of the segment exceeds its 

new upper bound (drops below its new lower bound) and goes to the Case III (Case II). 

In this condition, the demand of the last shifted group, q, should split between routes i and 

i+1 such that 𝑚𝑖,𝑖+1 = 𝛾𝑞, and then check the order of the routes. Otherwise, just check 

the order of the routes. The mechanism of shifting demand insightfully with the help of 

the identified properties of the EFRC and with no need to incremental adjustments can 

significantly improve the efficiency of the method in comparison to convex combination 

methods that need to make the adjustments incrementally. Details of procedure of 

modifying the assignment of the discrete demand are summarized in the flowchart of the 

Figure 5.7a. 

 

(C) In Case II (Case III), decrease (increase) 𝛾𝑖,𝑖+1 up to the point that one of the following 

conditions occurs: (5.1) 𝑚𝑖,𝑖+1 = −𝛾𝑖,𝑖+1; (5.2)  𝛾𝑖+1,𝑖+2 = 𝛾𝑖,𝑖+1 (𝛾𝑖,𝑖+1 = 𝛾𝑖−1,𝑖), which 

means that there is no flow left in the route i+1 (i) to transfer to route i (i+1). Given the 
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cumulative distribution of 𝛾, 𝛾𝑖,𝑖+1 can be approximated for each couple of consecutive 

routes in Case III  by solving equation (5.19) for this sub-problem using available 

analytical or numerical methods. Figure 5.7b graphically demonstrates the procedure of 

modifying the assignment for a continuous distribution of demand. 

 

The adjustment procedure for both discrete and continuous distributions of 𝛾  will be 

terminated whenever the order of routes changes, in which case the algorithm returns to 

the upper stage algorithm. However, if the adjustment procedure is accomplished with no 

need to change in the order of the routes, check that one of the following conditions is met: 

i)  Condition of the Case I (See Step 1 of the lower stage algorithm). 

ii) 𝑥𝑖+1 = 0 (𝑥𝑖 = 0) in the Case II (Case III). 

If at least one of these conditions is met, the algorithm continues to the next step by 

updating the expected travel times and standard deviations. Otherwise, it repeats the Step 

2 again.  

Step 3. Move the selected route to the end of the queue. 
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(a) 

 

 

(b) 

Figure 5.7. Flowchart representation of procedure of modifying the traffic assignment for a (a) discrete (b) 

continuous distributions of 𝛾 
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5.4.4 Convergence  

In the equilibrium condition, no one will be able to reduce the generalized cost of the 

trip by switching his/her route. In case of homogeneity in preferences of the users, all the 

used routes should have the same generalized cost, while the more expensive routes remain 

unused. Nonetheless, when there is a heterogeneity associated with preferences of the 

users, different routes will have different cost for different users even in the equilibrium 

condition, which makes it impossible to use this criterion for measuring the convergence 

of the algorithm. Instead, we may consider the summation of the relative differences in the 

generalized cost for users in different groups between two consecutive iterations as the 

convergence measure of the algorithm. This procedure can be summarized in the following 

steps: 

 

Step 0. Calculate the total generalized cost for the distribution of demand. 

 

Step 1. If the relative change in the total generalized cost of the last iteration in comparison 

to the previous one meets the convergence criterion, then the equilibrium solution is 

considered to be achieved. Otherwise, the next iteration will start from the lower stage 

algorithm. 
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5.5 Numerical Example 

To provide a numerical example of the proposed solution method, we employ this 

algorithm to solve a sample problem and compare its results with that of the convex 

combination method. In this problem, the single origin-destination network is assumed to 

be connected with 4 routes that have different travel time characteristics. The travel 

demand is also classified into 4 sensitivity groups. Thus, both the high stage and low stage 

algorithms are employed to estimate the equilibrium solution of the traffic assignment 

problem for this single origin-destination network. 

The communicating routes are assumed to provide a variety of different choices for the 

users. For simplicity of presentation, we assume a linear relationship between the expected 

travel time and its standard deviation for all the routes. We also assume that the standard 

deviation of travel time increases linearly with the average flow (𝑥̅𝑖) in the route. Although 

these linear relationships help simplify the presentation of this example, the proposed 

algorithm is applicable for any increasing function. The following equations represent 

these relationships for route i in this sample problem: 

𝑡(𝑠𝑖) = 𝑎𝑖 + 𝑏𝑖 . 𝑠𝑖            , 1 < 𝑖 < 4                                                      (5.47) 

𝑠𝑖(𝑥̅𝑖) = 𝑐𝑖 . 𝑥̅𝑖             , 1 < 𝑖 < 4                                                      (5.48) 
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where the values of the parameters of these relations for this numerical example are 

provided in Table 5.1. Travel demand is also assumed to have a discrete distribution of the 

risk sensitivity parameter (𝛾) as presented in Table 5.2. 

Table 5.1. Parameters of the route travel time functions 

Routes, 𝑖 Parameters 

𝑎𝑖 𝑏𝑖 𝑐𝑖 

1 1 2 1 

2 2 1 1 

3 4 3 1 

4 3 4 1 

 

 

Table 5.2. Distribution of demand 

Group, 𝑝 Demand, 𝑥𝑝 𝛾𝑝 

1 3 7 

2 2 5 

3 2 3 

4 3.5 1 

 

The proposed solution algorithm can solve the sample problem very fast. To initialize 

the problem, it would be more efficient to use the solution of the equivalent user 

equilibrium problem as the initial condition of the algorithm as explained in the Section 

5.4.1. Nonetheless, in this example, we skip this optional step to show the efficiency of the 
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method in solving such problems. So, here we start with the initial condition of demand 

groups 1, 2, 3, and 4 each using the routes 1, 2, 4, and 3, respectively. The initial solution 

can be wisely chosen based on the general properties of the equilibrium solution instead of 

a random solution. Then, the proposed algorithm modifies the assignment iteratively using 

the insights directly derived from general properties of the EFRC, and with no need to find 

the cheapest paths for each sensitivity group. As a result, the proposed method can 

approach to the convergence measure of 0.003% and estimate the equilibrium flows with 

precision of 0.01 in just 24 iterations, while the comparable solution with the same level of 

precision requires at least 2636 iterations of an iterative assignment method with variable 

smoothing factor (See Fisk, 1980; Patriksson, 1994). Figure 5.8a, b compares variations of 

the route flows in the first 24 iterations of these algorithms to indicate the efficiency of the 

proposed method in solving this traffic assignment problem.                                                                                          

The route choice equilibrium for the numerical example is illustrated by the EFRC in 

Figure 5.9. The increasing straight dashed lines represent the performance of the routes in 

the sample network. The equilibrium expected travel times and the standard deviations are 

also provided in Figure 5.9. The monotone decreasing and convex EFRC is depicted by the 

continuous line segments which have slopes as labeled in the legend. The equilibrium route 

flows and the associated generalized cost for different groups are presented in Tables 5.3 

and 5.4, respectively. 



 

 

 

 

189 
 

 

 

 

         (a) 

 

       (b) 

Figure 5.8. Variations of route flows in the first 24 iterations of (a) the proposed solution algorithm (b) 

iterative method with variable smoothing factor 
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Figure 5.9 . The EFRC of the sample problem 

 

Table 5.3. Equilibrium route flows, 𝑥𝑖
𝑝
, of different groups in the sample network 

Group, 𝑝 Route, 𝑖 Total, 𝑥𝑝 

1 2 3 4 

1   0.98 2.02 3.00 

2 0.86  1.14  2.00 

3 2.00    2.00 

4   3.50     3.50 

Total, 𝑥𝑖 2.86 3.50 2.12 2.02 10.50 
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Table 5.4. Equilibrium route disutilities for different groups, 𝐷𝑈𝑖
𝑝
, in the sample network 

Group, 𝑝 Route, 𝑖 Minimum, 

𝜆𝑝 1 2 3 4 

1 26.7 30.0 25.2 25.2 25.2 

2 21.0 23.0 21.0 21.2 21.0 

3 15.3 16.0 16.7 17.1 15.3 

4 9.6 9.0 12.5 13.1 9.0 

 

In this example, route 4 is the least risky route in the equilibrium condition. Routes 4 

and 3 both offers the same lowest travel cost to the users in group 1, who are the most 

conservative demand group with risk sensitivity of 𝛾1 = 7. Consequently, the demand of 

group 1 splits between routes 4 and 3, and the slope of this segment of the EFRC is  𝑚4,3 =

−7. Indeed, this slope coincides with the result of Corollary 5.5. Similarly, routes 3 and 1 

have the lowest generalized cost for the users in the group 2 with 𝛾2 = 5, so the demand of 

this group is split between routes 3 and 1 resulting in slope 𝑚3,1 = −5 for this segment of 

the EFRC. However, more risk seeking users of groups 3 and 4 choose routes 1 and 2 with 

lower expected travel times, in spite of higher associated variability. Thus, the slope of 

EFRC between routes 1 and 2, meets the lower bound of −3 and the upper bound of −1, 

in accordance with constraint (5.18). It is worth pointing out that in the equilibrium 

condition, the demand groups fill the routes in a decreasing order of their risk sensitivity 

as explained in Corollary 5.3, while no subset of routes shares more than one group, as 

claimed in Corollary 5.6.  
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5.6 Extensions 

5.6.1 Network with Multiple Origin-Destination Pairs 

The solution method proposed in this research is designed to solve the route choice problem 

for a single origin-destination network. Nonetheless, it can be adapted to solve the multiple 

origin-destination network as well. Nagurney (2013) presents two general equilibration 

algorithms which employ single origin-destination algorithms to solve multiple origin-

destination problems. The equilibration algorithms are developed based on the relaxation 

method by reformulating the multiple origin-destination network into the series of single 

origin-destination pairs. Accordingly, these equilibration algorithms can be modified to use 

the proposed solution method to solve its single origin-destination sub-problems. In this 

framework, the equilibration algorithms iterate over the origin-destination pairs one by one 

to achieve the equilibrium. The first equilibration algorithm proceeds to the next origin-

destination pair by accomplishing a single iteration of the proposed method, and so on, 

until the equilibration algorithm converges. In each iteration of this equilibration algorithm, 

it considers one of the single origin-destination pairs as a sub-problem and executes just a 

single iteration of the proposed solution method for this sub-problem. Although the 

equilibrium may not be achieved yet for this origin-destination pair, it will pick the next 

pairs over and over again until the convergence criteria are met for the origin-destination 

pairs. In this case, the EFRCs of the origin-destination pairs will be convex and 
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decreasingly monotone, while the geometric constraints are also met. In contrast, the 

second equilibration algorithm continues the iterations on the same origin-destination pair 

until the sub-problem equilibrium is achieved before proceeding to the next origin-

destination pair. After the convergence criterion of the sub-problem is met, it will pick the 

next origin-destination pair to reassign its demand, and this procedure repeats for all the 

origin-destination pairs, until the equilibrium is achieved for all of them. In spite of the 

capability of both the equilibration algorithms in solving the multiple origin-destination 

problem, the first algorithm may solve the multiple origin-destination problem faster using 

the proposed method, since it recognizes the dependency of the solution of the origin-

destination pairs to each other. 

 

5.6.2 Mode Choice Problem 

In addition to route choice, users may also be able to travel by another mode of transport. 

Travelers may consider the same aspects of the travel costs in comparing modes. In this 

respect, using a transit system is associated with an expected travel time and some variation 

of waiting time or in-vehicle travel time. Users with heterogeneous preferences regarding 

travel time risk assess the available modes and routes together in their decision making 

process. As a result, the share of demand that select alternative modes can be determined 

by including the mode choice in the proposed traffic assignment model. Figure 5.10 

provides an illustration of a transit mode that operates independently of the traffic network 
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and is represented by a fixed point in the in the s-t plane. Alternatively, the proposed model 

and solution method remain applicable for any given relationship representing the transit 

mode. 

In the Figure 5.10, the transit mode is assumed to have a fixed expected travel time 

while there is risk associated with the waiting time. Therefore, the transit mode will remain 

unused if it can be dominated by alternative routes. Otherwise, the efficient frontier of the 

mode and route choices will include the transit mode, which determines its share from the 

travel demand in the equilibrium condition. 

 

 

Figure 5.10. The efficient frontier of the mode and route choices 
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5.6.3 General Efficient Frontier of Choices 

The concept of the efficient frontier can be extended to include multiple factors in the 

disutility function in modeling the general decision making process for heterogeneous 

users. Considering the relationships between the properties of each known choice, the 

general efficient frontier, as the equilibrium solution of the choice problem, can be defined 

as the set of dominant choices in a multidimensional coordinate system. The general 

efficient frontier is expected to have the equivalent properties which can be used in 

modeling and solving the multi-objective optimization problems. However, 

multidimensionality of the problem naturally complicates the problem as well.  

 

 5.7 Summary 

In a transportation network, users seek the route with the lowest generalized cost for their 

travel. In this respect, the route disutility can be presumed to be a linear combination of the 

expected travel time and its standard deviation, which can be estimated by users based on 

their previous experiences. The importance of the travel time variability for users can be 

described by how much they value travel time reliability relative to expected travel time. 

To include the effect of heterogeneity of user preferences, the risk sensitivity can be 

considered to have a probability distribution over the traveling population. 

In this part of the research, our objective is to employ the concept of the efficient frontier 

as a tool for solving a bi-objective route choice problem with heterogeneous user 
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preferences. The analogy between the decision making procedures in a free market and a 

transportation network makes it possible to borrow this concept from portfolio theory in 

finance and adapt it for modeling the bi-objective traffic assignment problem in 

transportation. In this framework, the equilibrium solution of the traffic assignment 

problem is presented by the concept of the efficient frontier of route choice (EFRC).  

The EFRC also demonstrates the route choice rank of the users with different sensitivities 

to risk, which can be critical for predicting the effect of any prospective changes in network 

on route choice behavior of the travelers. The specific properties of the EFRC can provide 

intuitions regarding the characteristics of the equilibrium solution of the traffic assignment 

problem. For one thing, it is shown that the EFRC is always monotonically decreasing and 

convex. For another, there is a relationship between the distribution of the risk sensitivity 

and shape of the EFRC. As a result, these properties are used to propose a mathematical 

formulation of the route choice problem. On this basis, a two-stage solution algorithm is 

also designed to solve the traffic assignment problem under travel time variability. The 

proposed solution algorithm modifies the traffic assignment of the heterogeneous users 

using the insights from the general characteristics of the EFRC with no need to incremental 

modification of the traffic assignment. Thus, with a large number of sensitivity groups or 

even a continuous distribution of sensitivity to travel time reliability among users does not 

complicate the assignment modification procedure of the algorithm. As a result, the 

proposed algorithm can efficiently solve the route choice problem under travel time 

variability with heterogeneous demand.  
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The result of a numerical example shows that the proposed solution algorithm can solve 

the problem more efficiently than conventional methods. Although the numerical example 

employs the solution method to solve a single origin-destination problem, it can be adapted 

to solve a multiple origin-destination network as well. Furthermore, the efficient frontier 

can also be used to model the joint modal split-route choice problem. The general concept 

of the efficient frontier is an appropriate tool to model the general decision making 

procedure when there is heterogeneity associated with the relative importance of the 

parameters in the generalized cost function, such as the case when travelers face travel time 

variability in addition to expected travel time when making route choice decisions.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE EXTENSIONS 

6.1 Conclusions 

There are variety of different decisions that a traveler needs to make for each of his/her 

trips in the network, e.g. choosing starting time, destination, mode, and route of the trips. 

In this respect, rational users seek choices that minimize the generalized cost of their trips. 

Research shows that transportation network users consider different factors in their 

decision-making procedure, while the relative importance of these factors may vary among 

the heterogeneous travelers with different trip purposes. Under the realistic assumption that 

the components of the cost associated with choices are increasing functions of the demand 

for those choices, the cumulative result of the individual decisions of the rational users 

eventually leads to the user equilibrium condition in which no one can reduce his/her cost 

by changing his/her decision. In this research, we adapted the concept of the efficient 

frontier from portfolio theory (Markowitz, 1952) in finance to represent the equilibrium 

solution of the bicriterion choice problems. The efficient frontier is shown to always be a 

non-increasing convex hull with a specific geometric property, determined by the 

probability distribution of the preferences. Then, we employ the identified properties of the 

efficient frontier to model the equilibrium condition of different choice problems in 

transportation with heterogeneous user preferences. 
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One of the important decisions that travelers need to make in the network is what time 

to start their trips to keep their generalized costs minimized. This problem is first introduced 

in Vickrey’s congestion theory, which addresses the commute problem of a single 

bottleneck with a time-dependent demand and fixed capacity. Insufficient capacity of the 

bottleneck to meet the time-dependent results in the formation of a queue, which causes 

users to experience a combination of delay and schedule deviation in their commutes.  

Rational users tend to minimize their own combination of cost by adjusting their arrival 

times to the bottleneck. The cumulative result of the individual decisions of the commuters 

would be the user equilibrium condition in the bottleneck in which no one can reduce 

his/her cost by switching his/her arrival time to the bottleneck. In this part of the research, 

we use the concept of the efficient frontier to propose an extension to the user equilibrium 

model by accounting for the heterogeneity in the schedule penalty preferences of the 

commuters. For that purpose, we make a use of properties of the efficient frontier to 

propose an analytical model for the equilibrium arrival of the heterogeneous commuters to 

the bottleneck, given the PDFs of their schedule penalty factors. On this basis, we propose 

a dynamic pricing pattern that can optimize the system by avoiding the formation of the 

queue in the bottleneck. In addition, we provide a demonstration on extracting the 

independent probability distributions of the schedule penalty factors from a given joint 

distribution. We also demonstrate how the proposed model can be inversely used to 

approximate the schedule penalty preferences of the heterogeneous commuters from 

empirical data derived by observing the arrival time of the users to the bottleneck. 
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Although the proposed analytical solution is derived for a single bottleneck, the results 

still can be extended for analyzing other transportation systems with limited capacity and 

time-dependent demand. For one thing, we briefly explained that the proposed analytical 

solution of the morning commute problem can be combined with the macroscopic network 

model (Daganzo, 2007; Gonzales and Daganzo, 2012; Geroliminis and Daganzo, 2008) in 

order to account for the heterogeneity of preferences of the users in modeling and 

optimizing the network on an aggregate level.  For another, we showed that a demand 

responsive transit (DRT) service can be modeled as a queueing system, and then used the 

proposed analytical solution of the morning commute problem to account for the 

heterogeneity in preferences of the users in optimizing the operation of the DRT system.  

DRT systems are a class of transit services in which a fleet of vehicles dynamically 

changes routes and schedules in order to accommodate demand within a service area. A 

DRT system naturally has flexibility in providing service, which allows it to adapt to 

variations in the demand. This property of DRT makes it possible to eliminate the access 

distance for transit users by providing a curb-to-curb trip. The inherent trade-off between 

the operating cost and the quality of service of a DRT system necessitates optimizing the 

operations to balance them. In this research, an analytical model based on Daganzo (1978) 

is employed to approximate fleet size, VHT, and VMT of the DRT system. Accordingly, 

the operating cost for the agency is estimated as a linear combination of these components. 

The users are also subjected to costs of using the service. When the operating capacity of 

the system is inadequate to cover the demand, users of the system incur costs of delay, 
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earliness, and lateness. In this respect, we adapt Vickrey’s (1969) congestion theory to 

model the DRT system, and approximate the delay, earliness, and lateness of the users in 

the equilibrium condition. In addition, the total time that users spend in service can be 

approximated using the analytical model from Daganzo (1978). As a result, the efficiency 

of the DRT system can be optimized by minimizing the total cost for the agency and users, 

where the operating capacity of the system or the number of waiting requests or both can 

be considered as the decision variable(s) of the problem. This part of the research presents 

optimizations for three scenarios: allowing only the operating capacity to change, allowing 

both to change, or holding the fleet size fixed. In each scenario, the general problem with 

an S-shaped wished curve is formulated mathematically. The analytical solution is 

presented for the simplified case with an inverse Z-shaped wished curve. Two demand 

management strategies are also presented to spread the requests uniformly over the peak 

period in order to maintain an optimal number of waiting requests: (i) schedule 

management strategy, and (ii) dynamic pricing strategy. The proposed analytical solution 

of the morning commute problem is also employed to generalize the optimization method 

and dynamic pricing strategy of the DRT system by accounting for the heterogeneity in the 

schedule penalty preferences of the users.  

Route choice is another important decision that users need to make in the network in 

order to minimize the generalized cost of their trips. Conventional traffic assignment 

models mostly simplify the generalized cost function to the travel time of the routes in the 

network. However, the underlying assumption of homogenous travelers who can predict 
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the exact travel times in the network has been also discussed in the literature. Research 

shows that travelers are just able to estimate the average travel times and its associated 

variations according to their previous experiences in the network. On this basis, a linear 

combination of the expected and standard deviation of travel time is used to approximate 

the travel cost of the users in a network under travel time variability. To account for the 

heterogeneity in preferences of the travelers, we considered a probability distribution for 

sensitivity of the user to risk in travel times. On this basis, we employed the concept of the 

efficient frontier to model the route choice behavior of the heterogeneous users in a 

network under travel time variability. The efficient frontier has specific characteristics that 

can be used in formulating the traffic assignment problem as set of complementary 

constraints. Under assumption that routes are labeled in an increasing order of the standard 

deviation of their travel times in the equilibrium condition, the formulation of the problem 

can be significantly simplified. Accordingly, we proposed a two-stage mathematical model 

for this problem in which the upper stage model reorders the routes according to their travel 

time standard deviation, while the lower stage model assigns the heterogeneous demand to 

the routes using insights attained through studying the properties of the efficient frontier. 

On the basis of the two-stage formulation of the problem, we also designed a solution 

algorithm to assign the traffic to the network iteratively. The proposed model can be also 

generalized to be used as a joint mode-route choice model.  

 



 

 

 

 

203 
 

 

 

6.2 Future Extensions 

The objective of this research is to account for the heterogeneity in preferences of the users 

in modeling multi-criterion choice problems in transportation. For that purpose, we adapted 

the concept of the efficient frontier from portfolio theory (Markowitz, 1952) in finance to 

represent the cumulative results of the individual decisions in the user equilibrium 

condition. The efficient frontier is shown to have specific properties that can be employed 

to model different choice problem in transportation. In this respect, morning commute 

problem is one of the multi-criterion choice problems in which heterogeneous commuters 

tend to minimize the cost of their trips according to their own preferences by adjusting their 

arrival times to the bottleneck. In this research, we accounted for the heterogeneity in the 

schedule preferences and also schedule penalty preferences of the commuters in 

formulation of an analytical model for the morning commute problem. On this basis, we 

proposed a dynamic pricing strategy that can optimize the system by avoiding formation 

of the queue in the bottleneck. In formulating the optimal pricing strategy for the 

bottleneck, we simplified the problem by overlooking the heterogeneity in value of time 

(VOT) of the commuters. However, VOT can be considered as another aspect of the 

heterogeneity in preferences of the users that should be taken into account to improve the 

effectiveness of dynamic pricing strategy in optimizing the system. In this respect, the 

proposed analytical model for the morning commute problem can be extended to account 

for the heterogeneity in the VOT of the commuters. To include such heterogeneity in VOT 
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of users, VOT can be considered to have a probability distribution over the population if 

the commuters as illustrated in Figure 2.1. Although such heterogeneity in VOT of the 

users has no influence on the arrival of the commuters to the bottleneck in the user 

equilibrium condition, it still can affect the effectiveness of the proposed dynamic pricing 

strategy formulated under assumption of an identical VOT for the commuters. On this 

basis, considering the heterogeneity in VOT of the commuters can enhance the 

effectiveness of the dynamic pricing strategy in optimizing the system. In this respect, the 

concept of the efficient frontier can be used to generalize the optimal pricing strategy of 

the bottleneck by accounting for the heterogeneity in VOT of commuters in formulation of 

the problem. Subsequently, the dynamic pricing strategy of the DRT system can be updated 

as well.  
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