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ABSTRACT 

NOVEL ANALYTICAL METHODS COMBINING NON-DENATURING CHROMATOGRAPHY 
AND MASS SPECTROMETRY TO STUDY BIOPOLYMER STRUCTURE AND INTERACTIONS  

 

MAY 2016 

 

KHAJA MUNEERUDDIN, B. Pharm., JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Igor A. Kaltashov 

 

Biotherapeutics, an emerging class of medicines containing biopolymers (e.g., 

proteins, peptide, and polysaccharides) have been developed for a variety of indications 

including cancer, autoimmune, genetic, and blood diseases. Among these biopolymers 

protein therapeutics have been the rapidly growing segment in the pharmaceutical 

industry. This trend combined with the complexity of proteins has necessitated the 

development of powerful and robust analytical methods to study their structure and 

interactions with physiological partners. 

Mass spectrometry (MS) has become an indispensable tool to analyze various 

attributes of protein drugs such as profiling of intact mass, amino acid sequencing, and 

post translational modifications (PTMs).  In this work novel analytical methods have 

been developed by combining non-denaturing chromatographic separations (such as 



 

viii 

size exclusion chromatography and ion exchange chromatography) with native ESI MS. 

In addition to providing information of mass and non-covalent assemblies, native ESI MS 

has an advantage of probing conformational integrity of proteins by analyzing ionic 

charge state distributions in the mass spectrum.  

Size exclusion chromatography with online native ESI MS detection method 

developed in this work allowed characterization of higher order structure of proteins 

and probe aggregation propensity. Using the same SEC/native ESI MS workflow a 

method to find kinetics and equilibrium binding constant of transient protein 

interactions have also been developed. Combination of ion exchange chromatography 

(IXC) with native ESI MS and MS/MS detection was developed and shown to be effective 

in characterization of positional isomers of protein conjugates and PTMs of a 

biotherapeutic recombinant human interferon beta 1a. To characterize highly 

heterogeneous PEGylated glycoprotein (conjugated with a 20kDa PEG) analytical 

methods using IXC/native ESI MS combined with limited charge reduction and collisional 

activation were developed. 
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CHAPTER 1 

INTRODUCTION 

1.1. Biopolymers as pharmaceuticals 

Biotherapeutics, also known as biologics are a class of medicines containing 

biopolymers (e.g., proteins, peptides, polysaccharides, and nucleic acids) either 

extracted from biological sources or derived by recombinant DNA technology.1-4 Among 

the many biopolymers, protein based therapeutics represent the majority of 

biotherapeutics, and in the past few years has seen a rapid growth with now over 212 

products approved for the treatment of a variety of chronic and life-threatening 

disorders ranging from cancer, metabolic, autoimmune to genetic diseases.5, 6  The main 

advantage of biotherapeutics over small molecule drugs is their ability to bind their 

physiological target in vivo with high specificity resulting in high potency with fewer side 

effects.1 However, owing to large size and complexity of biotherapeutics compared to 

small molecule drugs; biotherapeutics tend to be highly heterogeneous due to various 

modifications that can happen during expression or upon storage or stress. These 

modifications inevitably affect the activity and safety profile of biotherapeutics thus 

validating the need of strong and robust analytical methods to characterize them.  

1.1.1. Protein based therapeutics 

Protein therapeutics constitute a broad type of biological products, which 

include recombinant enzymes, monoclonal antibodies, hormones, growth factors, fusion 

proteins, cytokines, and blood factors.1 This class of therapeutics usually works by 
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controlling immune system, decreasing the inflammatory response, or modulating 

various metabolic processes.  

To enhance the existing pharmacokinetic profile of protein therapeutics and to 

expand the therapeutic activity many strategies have been incorporated resulting in the 

development of the so-called second generation protein therapeutics. The notable 

strategies among these are genetically engineering the glycosylation pattern7 or fusing 

proteins with Fc region of antibody to increase serum half-life8, covalent surface 

attachment of polyethylene glycols (PEG) to decrease renal clearance,9 and chemical 

modification of protein with drug payload for site specific activity.10  

1.1.2. Peptide based therapeutics 

Peptide therapeutics are relatively smaller molecules containing fewer than 50 

amino acids.  Generally peptide molecules act selectively on various cell surface 

receptors such as G protein-coupled receptors.11 Though many peptide drugs have been 

approved, the development of peptide therapeutic is more often hindered due to poor 

chemical and physical stability, and lack of adequate plasma half-life.2 To overcome 

these limitations various chemical strategies such as incorporating specific amino acids, 

introducing salt bridges or disulfide bonds to increase solubility and stability are being 

researched.12, 13 

1.1.3. Polysaccharide based therapeutics (heparin based medicines) 

Heparin is a negatively charge linear polysaccharide belonging to the family of 

molecules known as glycosaminoglycans.14 Due to involvement of heparin in modulating 

proteins of coagulation cascade, heparin has been used as an anticoagulant since 1935 
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for renal dialysis and cardiac surgery. Currently heparin is obtained from porcine 

mucosa. Owing to safer and effective profile of bovine heparin, it is being re-evaluated 

to be introduced in market.15 

1.2.  Structural attributes and heterogeneity of polypeptide based drugs 

1.2.1. Sequence variants 

Sequence variants of polypeptide based drugs (protein and peptide therapeutics) 

refer to unintentional addition or substitution of amino acids during bio-manufacturing 

step. This heterogeneity at the primary structure level could be due to DNA mutations, 

misincorporation of amino acids during translation step, and mis-cleavage during post-

translational processing.16, 17 It is important to analyze the presence of sequence 

variants as it can have an overall effect on specificity, stability, and immunogenicity of 

polypeptide drugs.18 In case the amino acid occurs in the functional domain, any 

variation of this amino acid can also have an impact on the functional activity. 

1.2.2. Enzymatic and non-enzymatic post translational modifications 

Post translational modifications (PTMs) add to heterogeneity of primary 

structure by enzyme mediated covalent attachment of chemical groups to specific 

amino acids (the so-called enzymatic PTMs). Around 300 of these PTMs have been 

discovered, some which include phosphorylation, glycosylation, acetylation, 

methylation, and ubiquitination. These PTMs play an important role in modulating 

localization, stability, and interaction of proteins. For example it is known that 

phosphorylation of proteins affects their role in cell cycle, growth, apoptosis and signal 

transduction pathways. From the context of protein therapeutics glycosylation; 
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attachment of carbohydrates N-linked  to asparagine or O-linked to serine/threonine 

residues have been shown and indeed used to enhance their stability.19 

PTMs (e.g., deamidation, oxidation, glycation) can also have adverse effects on 

proteins and peptides.20, 21 These types of modifications are known as non-enzymatic 

PTMs, which occur post-production as a result of storage or stress. 

1.2.3. Higher order structure 

Correct folding of the polypeptide chain into secondary (alpha helix and beta 

sheets) and tertiary structures give rise to a unique three dimensional conformation of 

proteins. This higher order structure is not only important for the functional activity, but 

also for the stability of protein therapeutics. Unfolding or partial destabilization of the 

protein conformation (due to storage, stress or non-enzymatic PTMs) can make them 

prone to aggregation, which has an adverse effect on the safety profile of protein drugs 

by eliciting immunogenic response in patients. In the case of multimeric proteins, 

quaternary structures produced by association with identical monomeric units (homo-

oligomerization) or with non-identical units (hetero-oligomerization) play a role in 

function, localization, and stability of protein in vivo by protecting it from proteolytic 

degradation.22 

1.2.4. Second-generation protein therapeutics 

The extent of heterogeneity is enhanced in the second-generation protein 

therapeutics especially for products formed by chemical conjugation of drugs (protein – 

drug conjugates) or PEG chains on proteins post expression. Although the conjugation 

procedure is optimized carefully; it is very difficult to control the occurrence of 
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structural heterogeneity (e.g., number of drug molecules attached or presence of 

isomers due to modification at chemically similar sites), and maintain higher order 

structure. These heterogeneities affect the properties of such protein therapeutics, and 

also present great difficulty in their analytical characterization. 

1.2.5. Protein-protein interactions 

Protein-protein interactions (PPI) can be classified based on various factos.23 

Homo- or hetero-oligomers if interaction occurs between identical or non-identical 

protein chains. PPI can be distinguished if the complex formed is obligate or non-

obilgate. An obligated complex is formed between two proteins that cannot exist as 

stable structures on their own in vivo, and a non-obligate complex is formed between 

independently stable proteins. PPI can also be grouped based on binding affinity into 

permanent and transient interactions. Understanding protein-protein interactions is 

crucial as they are involved with wide range of biological processes including cell-cell 

interactions, metabolic, and developmental control. It also plays a key role in drug 

development. 

Traditionally in drug development strong interactions with the equilibrium 

dissociation constant (KD) of low nM were favored (e.g., to develop drug molecules 

binding irreversibly with the target enzyme for complete inhibition). Recently, there has 

been a shift towards exploiting lower affinity interactions (the so-called transient 

protein interactions) with KD in high nM – low µM range, due to their significance in 

cellular functions24 and also for the development of targeted drug delivery systems.25 
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1.3. Structural attributes and heterogeneity of polysaccharides (heparin-based 
medicines) 

Heparin is a mixture of linear polysaccharide chains with molecular weight 

ranging from 5000 – 25000 Da. It contains repeating disaccharide units of N-acetyl D-

glucosamine and D-glucuronic acid. The heterogeneity of heparin polysaccharide chain 

is increased by the presence of a mixture of unsubstituted forms and variable non-

template driven sulfated forms (N-and O- sulfation of glucosamine and O-sulfation of 

glucuronic acid).26 This heterogeneity has made analytical characterization of this class 

of medicine very challenging.27 The structural complexity of heparin-based medicines is 

reduced in low molecular weight heparins (LMWHs), which are produced from chemical 

or enzymatic depolymerization of unfractionated heparin. These LMWHs (e.g., tinzaprin, 

dalteparin, enoxaparin) have a mean molecular weight of 5000 Da and have been 

demonstrated to have similar anticoagulant activity as heparin.28 Arixtra is a chemically 

synthesized anticoagulant containing a fixed length pentasaccharide. 

1.4.      Commonly used analytical methods to characterize structural heterogeneity 

1.4.1. Liquid chromatography methods 

Liquid chromatography (LC) is the first line of methods to characterize structural 

heterogeneity of protein therapeutics by separating protein species using different LC 

modes. The most common LC techniques for analytical characterization are reverse 

phase liquid chromatography, size exclusion chromatography, and ion exchange 

chromatography. 
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Reverse phase liquid chromatography 

Separation in reverse phase liquid chromatography (RPLC) occurs due to 

interaction of analytes with bonded ligands of the stationary phase.29 Analytes are 

eluted in the increasing order of their hydrophobicity using organic solvent gradient. 

This type of chromatography provides excellent resolution and reproducibility, and is 

the most common technique used in combination with mass spectrometry detection 

due to ease of evaporation of the volatile solvent used for elution. RPLC/MS is an 

excellent choice for characterization of peptides; however for proteins its use is limited 

to intact mass analysis and to analyze reduced fragments of antibody. Due to the nature 

of eluent it cannot be used to analyze intact higher order structure of proteins. 

Size exclusion chromatography 

Size exclusion chromatography (SEC) is the most common technique used in 

biotechnology industry to analyze the presence of higher molecular weight species or 

aggregates in protein therapeutics. SEC separates proteins based on their hydrodynamic 

radius as they diffuse through porous particles of the stationary phase.30 Isocratic 

elution conditions (ionic strength: 100 - 150 mM) using physiological buffers in SEC 

separation maintains higher order structure of proteins, which allows it to analyze non-

covalent protein interactions. Though SEC is advantageous due to its simplicity and ease 

of use, certain limitations do exist such as non-ideality of separation due to interaction 

with stationary phase and inaccuracy of molecular weight determination from 

calibration curve due to non-globular shape of certain proteins. 
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Ion exchange chromatography 

Ion exchange chromatography (IXC) is another separation technique in which 

protein is in its intact state due to non-denaturing conditions employed for separation. 

IXC works by electrostatic interaction of charged groups on the proteins with the ionic 

groups of the IXC resin. The pH of the eluent is decided based on the isoelectric point 

(pI) of protein being analyzed and mode of ion exchange chromatography: for cation 

exchange chromatography pH of eluent is lower than pI such that acidic groups of cation 

exchange resin can interact with net positively charged proteins and vice versa for anion 

exchange chromatography.31 Elution is carried out using linear salt or pH gradient. Ion 

exchange chromatography is extremely powerful for characterization of charge 

heterogeneity of proteins.  

1.4.2. Mass spectrometry  

Since the advent of soft ionization techniques, electrospray ionization (ESI) and 

matrix assisted laser desorption ionization (MALDI), mass spectrometry based 

techniques have developed at a very fast pace compared to any other analytical 

technique. Mass spectrometry has now become a powerful and robust tool for 

characterization of various aspects of proteins including intact mass, amino acid 

sequencing, PTM profiling, non-covalent complexes, aggregation propensity, and 

conformational integrity.32, 33 

In a typical ESI MS experiments proteins are buffer exchanged into a solution 

containing 1:1 mixture of water and organic solvent. Under these conditions proteins 

are unfolded and the multiply charged gas phase ions generated by ESI can be used to 
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measure mass accurately. High throughput hyphenated techniques (RPLC/MS or 

RPLC/MS/MS) are now being routinely used for detection of intact mass and peptide 

sequencing. Intact mass analysis with high accuracy allows identification of proteins and 

the presence of any modification. Peptide sequencing of proteins is carried out by using 

either bottom-up or top-down approach. In classical bottom-up method protein is 

digested using a protease, and the proteolytic peptides generated are analyzed by 

LC/MS or tandem MS/MS. In top-down method protein digestion step is completely 

eliminated, and the ions for sequencing are produced by fragmenting the intact multiply 

charged protein ions in gas phase. Both of these techniques (bottom-up and top-down 

MS) have been successfully applied for sequencing, localization and quantitation of 

PTMs in protein therapeutics. 

Native electrospray mass spectrometry (ESI MS) 

Unlike classical scheme native ESI MS can analyze native-like quaternary protein 

structure and non-covalent protein/receptor complexes by using near native solvents 

such as ammonium acetate.34 It has been an emerging technique and has been recently 

shown to characterize protein assemblies extending to sub-million daltons.35 

In addition to profiling mass, native ESI MS can also be used to probe large-scale 

conformational changes in protein by monitoring ionic charge state distribution in mass 

spectrum. Native proteins are compactly folded and therefore gas phase ions generated 

by ESI carry relatively fewer charges and show a narrow ionic distribution at high m/z 

region. However, unlike folded species ions generated from unfolded protein carry a 

larger number of charges and populate at lower m/z region with a broad ionic charge 



 

10 

state distribution.36 A bimodal ionic distribution will be detected under conditions when 

both compact state (highly structured native-like) and non-native states are present in 

equilibrium. 

Hydrogen deuterium exchange mass spectrometry 

Hydrogen deuterium exchange mass spectrometry (HDX) is a labelling technique 

for characterization of structure, dynamics, and the presence of multiple protein 

conformers in solution. This technique works by monitoring the exchange of backbone 

amide hydrogen with deuterium when exposed to deuterated water (D2O).37 Amide 

hydrogens of unstructured regions will show a rapid exchange compared to structured 

region, which are protected from HDX resulting in slow exchange. Mass shifts from this 

deuterium labelling can be easily measured using MS-based peptide mapping. HDX 

experiments have been used for mapping epitopes in antigen-antibody interactions,38 to 

map protein-receptor interactions,32, 39 and to compare batch-to-batch variation in 

protein therapeutics.40 

1.4.3. Light scattering based methods  

Dynamic light scattering (DLS)41 and multiangle laser light scattering (MALLS)42 

are the two light scattering techniques used for detection of higher molecular weight 

species/aggregates in protein therapeutics. Hydrodynamic radius is obtained from DLS, 

which is directly correlated with the measured diffusion coefficient.  

MALLS determines weight-average molecular weight (Mw) and radius of gyration 

(Rg) of proteins from the angular dependence of scattered light. This technique is used 

over static light scattering, when Rg is larger than angle of incident light. A typical MALLS 
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instrument consists of multiple detectors placed around the flow cell at different angles 

with respect to incident beam. Rayleigh ratio (Rθ) measured from the scattered light 

intensity at different scattering angles (θ) can be used to extrapolate Mw and Rg using 

Zimm’s equation. MALLS is usually used in combination with SEC separation, and can 

detect protein aggregates even at very low concentration.43 

1.4.4. Circular dichroism 

Circular dichroism (CD) spectroscopy of proteins is based on differential 

absorption of left- and right- polarized light in 190 – 350 nm range, which is based on 

structural asymmetry. CD measurements in far UV region 190 – 250 nm are used for 

analysis of secondary structure of proteins, and measurements in near UV region 250 – 

300 nm gives information about arrangement of the aromatic side chains and/or 

disulfide bridges within the protein. CD experiments are simple to perform, but give low 

resolution information.44 

1.4.5. Field flow fractionation 

Field flow fractionation (FFF) is a separation based technology with application in 

characterization of protein aggregates (0.01 - 50µm in size). In this method an external 

field applied perpendicular to the channel flow control retention of analytes, and 

separation occurs based on diffusion coefficients.45 Smaller molecules elute earlier than 

larger molecules. This technique is advantageous as analysis can be carried out directly 

in the formulation buffer, but the complexity of instrumentation and data handling have 

limited the widespread use of this technique. 
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1.5. Commonly used methods to analyze protein interactions 

1.5.1. Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) is a label free, solution based method to 

get equilibrium dissociation constant (KD), stoichiometry, enthalpy, entropy, and Gibbs 

free energy of protein interactions.46 It is based on measurement of heat evolved or 

absorbed upon complex formation, when ligand is titrated gradually. Slope and 

inflection point of the binding isotherm obtained from ITC can be used to derive KD and 

stoichiometry. Even though interactions with KD values of 10-9 to 10-6 M can usually be 

analyzed using ITC experiments, concentration of the protein concentration used in 

titration needs to be optimized to get the sigmoidal curve. For low affinity interactions 

high concentration of proteins needed for ITC can lead to aggregation. Another 

limitation of ITC is that it not a high throughput technique. 

1.5.2. Surface plasmon resonance 

Surface plasmon resonance (SPR) is a widely used technique for qualitative and 

quantitative characterization of protein interactions.47 In this technique one of the 

binding partners is immobilized on the sensor and the binding information is obtained 

by changes in the refractive index of the solvent near the sensor surface upon 

association or dissociation of protein complexes. SPR is advantageous as it requires 

lesser amount of proteins than ITC to measure interactions in the similar KD range. 

However, immobilization of protein can lead to structural changes ultimately affecting 

binding data. 
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1.5.3. Analytical ultra centrifugation 

Analytical ultra centrifugation (AUC) is a powerful technique to characterize 

protein solution structure and to determine binding constants of protein association.48 It 

is based on real-time measurement of sedimentation of protein under centrifugal force 

along the radial position using either absorbance or interference optical systems. AUC 

experiments are operated either in sedimentation velocity (higher centrifugal field and 

completes in 1-2 hours) or sedimentation equilibrium mode (lower centrifugal field and 

takes 12 – 24 hours to complete). It can be used to derive molecular weight, oligomeric 

state, presence of aggregates, and equilibrium dissociation constant for protein 

association. Equilibrium dissociation constants in the range of 10-4 – 10-8 M can be 

detected using AUC; however aggregation of sample at higher concentration and loss of 

sample from sticking to sample chamber has to be carefully monitored. AUC data 

analysis for single species is straight forward, but complex data handling tools are 

required to analyze multi component species.45 

1.5.4. Hummel-Dreyer method 

Hummel Dreyer method is commonly used to study protein/small ligand binding, 

but can also be used for protein/protein interactions. In this method protein is dissolved 

in the buffer solution containing the same concentration of ligand used for equilibrating 

the SEC column. If there is binding between the protein and ligand a trough will be 

detected, and using the area of this trough unbound ligand concentration can be 

obtained to get equilibrium binding constant.49 The limitations of this method include 
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requirement of large amount of sample, inability to obtain kinetic data, and non-

applicability to study systems with slower binding kinetics.50 

1.5.5. Frontal analysis continuous capillary electrophoresis 

Capillary electrophoresis can be used to characterize binding of weak affinity (KD 

above 10-6 M) as long as protein/ligand complex has different electrophoretic mobility 

compared to unbound protein. Frontal analysis continuous capillary electrophoresis 

(FACCE) involves continuous sampling and electrophoretic separation. The 

electropherogram obtained from FAACE analysis shows multiple plateaus depending on 

the components in the system, and the height of the first plateau is used to determine 

the concentration of free protein to plot binding isotherms. FAACE have been applied to 

deduce stoichiometry and binding constants of protein/polyelectrolyte interactions.50, 51 

1.5.6. Affinity chromatography 

Two methods based on affinity chromatography exist for qualitative analysis of 

protein interactions.  The first method involved use of affinity purification and mass 

spectrometry for mapping protein interactions. This method involves tagging of a 

protein followed by affinity purification of tagged-proteins and identification of the 

eluted complexes using LC/MS/MS. This scheme failed to detect transient protein 

complexes unless additional crosslinking is utilized.52 

The second affinity chromatography based method was able to detect transient 

protein complex. In this elution profiles were used to confirm binding (transient binding 

of protein to the immobilized binding partner resulted in asymmetric elution profile). 
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This technique was able to detect transfer of retinoic acid to retinoic acid receptor as it 

formed a transient complex with immobilized holo CRABP II.53 

1.5.7. Fluorescence based methods 

The two most common fluorescence based techniques to quantitate protein 

interactions in vivo include fluorescence resonance energy transfer (FRET) and 

bimolecular fluorescence complementation. FRET is a non-radiative energy transfer 

between an excited fluorophore (donor) and another fluorophore (acceptor), which 

have overlapping emission/absorption spectra.54 For interacting proteins FRET occurs 

when one protein labelled with an acceptor chromophore is in close proximity (10-80 Å) 

with other protein labelled with donor chromophore. Bimolecular fluorescence 

complementation is based on association of complementary protein fragments fused to 

interacting domains of two proteins and give out a measurable fluorescence signal.55 A 

major limitation of both of these techniques is it requires attachment of reporter 

molecule to proteins, which could affect the structure of protein leading to inaccurate 

binding data. 

1.6. Objectives 

Biotherapeutics containing biopolymers have emerged to be very successful for 

the treatment of chronic diseases. However, the increased heterogeneity of 

biotherapeutics compared to small molecule drugs requires powerful and robust 

analytical tools to characterize biotherapeutics at various levels. This work reports 

multiple novel analytical methods that utilize synergy of non-denaturing 

chromatography separation (IXC, SEC) and native ESI MS detection to characterize 
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biopolymer structure and interactions. Specifically the objectives include: (i) develop 

SEC with online native ESI MS detection to characterize higher order structure of 

proteins (oligomeric states and aggregates), and probe conformational integrity 

(chapter 2); (ii) develop a label free method to measure kinetics and binding affinity of 

transient protein interactions using SEC/native ESI MS (chapter 3); (iii) develop IXC with 

online native ESI MS detection to characterize conformational integrity and positional 

isomers of protein conjugates, and glycoforms of a biotherapeutic. Implement top-down 

MS/MS in this online scheme for modifications wherein MS1 analysis could not provide 

unequivocal confirmation (chapter 4); (iv) develop a IXC/ESI MS method to characterize 

highly heterogeneous PEGylated glycoprotein (chapter 5). 
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CHAPTER 2 

CHARACTERIZATION OF SMALL PROTEIN AGGREGATES AND OLIGOMERS USING SIZE 
EXCLUSION CHROMATOGRAPHY WITH ONLINE DETECTION BY NATIVE ELECTROSPRAY 

IONIZATION MASS SPECTROMETRY 

Peer-reviewed article published: Muneeruddin, K.; Thomas, J. J.; Salinas, P. A.; Kaltashov, I.A.; 
Characterization of Small Protein Aggregates and Oligomers Using Size Exclusion 
Chromatography with Online Detection by Native Electrospray Ionization Mass Spectrometry 
Analytical Chemistry, 2014, 86, 10692 - 10699 

2.1. Overview 

Protein self-association is a key process in a variety of diverse phenomena 

ranging from the highly ordered assembly of multiunit proteins into their functional 

states to mostly chaotic aggregation. The latter gained considerable notoriety in the 

past several decades due to its obvious role in the etiology of the so-called 

conformational diseases, such as Alzheimer’s and Parkinson’s.56-58 Renewed interest in 

protein aggregation in the biotechnology area is caused by the advent of protein 

therapeutics, where aggregation affects not only the economy of the production 

process but is also a cause of grave concerns vis-à-vis safety of biopharmaceutical 

products.59, 60 The attention in this field has been traditionally focused on relatively large 

subvisible aggregates, while small soluble oligomers were typically considered as 

transient precursors to catastrophic aggregation. However, recent studies point out that 

even reversible formation of very small oligomers (such as noncovalent dimers of 

monoclonal antibodies) may have very negative consequences by interfering with the 

drug delivery, which is triggered by increased formulation viscosity.61 The importance of 

protein aggregation places a premium on developing robust analytical methods capable 



 

18 

of detecting and characterizing protein oligomers across the entire aggregation 

spectrum. Size exclusion chromatography (SEC) and, to a lesser extent, analytical 

ultracentrifugation (AUC) are the most popular analytical tools capable of detecting 

lower molecular weight oligomers, although their utility is often limited by inadequate 

resolution.62 Light scattering42, 43, 63 and, more recently, small-angle X-ray scattering 

(SAXS)64 are also enjoying popularity in this field, although data interpretation is 

frequently model-sensitive, which limits their applicability to complex heterogeneous 

systems. 

Native electrospray ionization mass spectrometry (ESI MS) is another technique 

that enjoyed rapid growth of popularity in the studies of protein associations in the past 

two decades,34, 65, 66 with several recent examples highlighting its utility for the analysis 

of small molecular weight aggregates of therapeutic proteins. In addition to providing 

information on the stoichiometry of noncovalent protein complexes in solution, native 

ESI MS allows the structural heterogeneity of protein therapeutics to be evaluated (by 

analyzing mass profiles) and conformational integrity to be assessed (by analyzing ionic 

charge state distributions).32 However, using native ESI MS to detect and especially 

quantify noncovalent associations is not always straightforward, as artifacts are known 

to be frequently produced during the ESI process, e.g., due to forced protein self-

association during the final stages of charged droplets life when solvent evaporation 

may result in a dramatic increase of the protein concentration.67 Other factors (e.g., 

nonlinear dependence of the response factors on solution composition) may also 

complicate the quantitation efforts.68 Finally, presence of multiple oligomers in solution 
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usually results in crowded mass spectra, where overlapping peaks representing different 

oligomers can complicate the data interpretation and make it nearly impossible to 

distinguish contributions from different species. 

The ESI MS analysis of protein oligomers can be aided by SEC separation of small 

aggregates based on their physical size. Such analyses can be carried out off-line by 

collecting SEC fractions prior to their analysis,69, 70 but the results of such measurements 

can be compromised due to the possibility of the composition changes of collected 

fractions prior to MS analyses. For example, Heck and co-workers demonstrated that 

the transient nature of the small aggregates of monoclonal antibodies may result in 

their dissociation following fractionation by SEC;69 the opposite process where 

additional protein oligomerization in collected fractions is triggered by desalting and 

preconcentration is also possible.71 These problems can be circumvented by using online 

MS detection for ESI MS, but because native ESI MS is typically less sensitive compared 

to conventional ESI MS, acquisition of meaningful data on the chromatographic time 

scale remained problematic until recently. As a result, the online SEC/ESI MS detection 

scheme was only used for measuring the mass distribution of heterogeneous single-

chain macromolecules, such as synthetic polymers,72, 73 antibodies74 and antibody-drug 

conjugates,75 while the unique ability of native ESI MS to detect noncovalent biopolymer 

complexes (such as an antibody–antigen complex) has not been utilized in such 

analyses. However, the continuous improvement in ESI MS hardware has made it 

possible to carry out measurements under near-native conditions using only minute 

quantities of the analyte and relatively short acquisition time windows. We are taking 
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advantage of these expanded capabilities of native ESI MS to use it as an online 

detection tool for the analysis of noncovalent protein complexes (including both small 

soluble aggregates and highly organized self-assemblies). This combination of two 

powerful analytical techniques not only allows complex and heterogeneous protein 

mixtures to be profiled vis-à-vis the presence of protein oligomers (based on both 

retention time and mass information), but also enables assessment of protein 

conformational integrity (based on ionic charge state distributions in ESI mass spectra). 

Online detection with native ESI MS also allows meaningful information to be extracted 

from SEC chromatograms for protein assemblies that undergo rapid 

dissociation/reassociation on the chromatographic time scale. 

2.2. Materials and Methods 

Bovine serum albumin (BSA) and human transferrin (Tf) were purchased from 

Calbiochem (La Jolla, CA) and Sigma-Aldrich Chemical Co. (St. Louis, MO), respectively. A 

recombinant form of human arylsulfatase A (rhASA) was provided by Shire (Lexington, 

MA). All other chemicals used in this work were of analytical grade or higher. BSA and Tf 

solutions for online SEC/MS analysis were prepared by dissolving the protein powder 

directly in 100 mM ammonium acetate without any desalting step. Analysis of rhASA 

was carried out by diluting the drug substance sample in 100 mM ammonium acetate to 

a required concentration (0.29 to 2.3 mg/mL), and pH adjusted to a desired level using 

formic acid. 

SEC separations were carried out using Agilent 1100 HPLC (Agilent Technologies, 

Santa Clara, CA) equipped with a Waters (Milford, MA) Biosuite Ultra high resolution 
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column (4.6 × 300 mm). Typically, 100 μL of a 1 mg/mL protein solution was injected 

unless stated otherwise, and a 100 mM ammonium acetate solution (pH adjusted to a 

desired level using either formic acid or ammonium hydroxide) was used as the mobile 

phase in all separations at a flow rate of 0.1 mL/min. Upon exiting the column, the 

eluate was directed to a UV absorption detector (operated at 280 nm) followed by 

QStar-XL (ABI-Sciex, Toronto, Canada) hybrid quadrupole/time-of-flight mass 

spectrometer equipped with a standard ESI source. The ESI source conditions were 

optimized to provide a stable spray and optimal ion desolvation: drying gas, 30 L/min; 

nebulizing gas, 39 L/min; curtain gas, 22 L/min; declustering potential on the skimmer, 

290 V; declustering potential on the orifice, 160 V. The source temperature was 

maintained in the 200–250 °C interval. Collisional cooling in the ion guide region (a gas 

flow restricting sleeve in Q0) was used to enhance focusing and stability of noncovalent 

complexes. 

2.3. Results and Discussion 

2.3.1. Conformational stability and aggregation propensity of a commercial protein  

The ESI mass spectrum of bovine serum albumin (BSA) acquired under near-

native conditions (Figure 2.1) features a convoluted charge state distribution for ions 

whose masses are consistent with BSA monomer (instead of a single mass, a distribution 

of masses is observed, consistent with extensive nonenzymatic post-translational 

modifications of the protein). A bimodal character of the charge state distribution of the 

monomeric ions clearly suggests that conformational integrity of BSA is compromised: 

either a fraction of the protein molecules is partially unfolded, or all BSA molecules 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig1
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undergo transient partial unfolding (native ESI MS alone cannot distinguish between 

these two possibilities). The presence of partially unfolded protein molecules in the BSA 

sample is not surprising, given the extent of nonenzymatic post-translational 

modification of this protein (see the convoluted shapes of peaks of BSA ions in the mass 

spectrum acquired under denaturing conditions, inset in Figure 2.1), which are known to 

change the physical properties of proteins effecting the energy barrier between folded 

and unfolded states (a detailed analysis of various forms of BSA from the commercial 

sample reveals the occurrence of several nonenzymatic post-translational modifications, 

such as cysteinylation, glycation, formation of pyridoxyl phosphate adducts, and several 

others, as shown in Figure S1 in the Supporting Information). Furthermore, production 

of commercial BSA was likely to include a thermal serum pretreatment process, which is 

usually carried out to remove any bacterial or viral contamination in the sample. 

Alternatively, the presence of partially unfolded BSA molecules in the native ESI 

mass spectrum can be explained by invoking the notion of gas phase dissociation of 

larger oligomeric ions. Should dissociation of metastable protein aggregates occur in the 

gas phase, asymmetric charge partitioning is likely to generate highly charged 

monomeric ions, a phenomenon reported in the past for other aggregation-prone 

proteins. Ionic peaks corresponding to protein dimers and higher oligomers are indeed 

observed in the higher m/z range (above 5000 u) of the BSA mass spectrum, and they 

are also present at lower m/z range (below 3500 u). It is not clear, however, if these 

ionic species represent dimers and higher oligomers existing in the protein solution at 

equilibrium with monomers, or if their presence in the mass spectrum is an artifact 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig1
http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
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related to forced association of proteins in rapidly shrinking electrosprayed droplets 

documented by Klassen and co-workers. The size exclusion chromatogram of BSA (gray 

trace in Figure 2.2) contains three peaks whose retention times are consistent with 

monomeric (31.5 min), dimeric (27.6 min) and trimeric (25.7 min) forms of BSA, 

although the earlier-eluting peaks could also be interpreted as partially unfolded protein 

monomers. Therefore, neither native ESI MS nor SEC alone can provide unequivocal 

characterization of the protein sample which is prone to both partial unfolding and 

oligomerization. 

The uncertainties regarding the data interpretation are readily resolved by 

combining SEC separation with online native ESI MS detection. The appearance of the 

total ion chromatogram (TIC) is consistent with the shape of the UV trace in that three 

partially resolved peaks can be identified (Figure 2.2); however, the ability of MS to 

identify ionic species giving rise to each TIC peak allows this chromatogram to be readily 

interpreted. For example, only trimeric protein species are present in the earliest eluting 

peak, allowing it to be assigned as a BSA trimer. Importantly, both high- and low-charge 

density trimer ions are observed in the mass spectrum averaged across this peak (see 

inset in Figure 2.2), indicating that BSA trimers undergo reversible and rapid (on the SEC 

time scale) loss of compactness. A very similar behavior is exhibited by the protein 

dimers, where both low-charge density ions (m/z > 5000 u) and high-charge density 

ones (m/z < 3000 u) are prominent in the mass spectrum averaged across the second 

SEC peak. No BSA monomers can be observed in either of the spectra averaged across 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig2
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig2
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig2
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the early eluting peaks, clearly indicating that the transient loss of higher order structure 

within both dimers and trimers does not result in their dissociation. 

The most prominent ionic species in the mass spectrum averaged across the 

latest eluting SEC peak corresponds to BSA monomers. The charge state distribution is 

bimodal, indicating presence of both compact and partially unfolded proteins. 

Importantly, the extracted ion chromatograms for both high- and low-charge density 

monomeric ions exhibit virtually indistinguishable elution profiles (right inset in Figure 

2.2), which unequivocally demonstrates that the two forms of the protein are in rapid 

equilibrium with each other, and their separation cannot be achieved by SEC alone. In 

addition to the BSA monomers, the mass spectrum averaged across the latest eluting 

peak contains contributions from oligomers. Because the extracted ion chromatogram 

for these ions closely follows that of the monomeric ions in the 30–35 min time window, 

these oligomers represent nonspecific association of proteins in rapidly shrinking 

electrosprayed droplets in the ESI interface, a well-known artifact of ESI MS.76 Thus, SEC 

with online native ESI MS detection not only provides a convenient way for detecting 

and characterizing all protein species present in solution but also allows the ESI MS 

artifact to be readily identified and eliminated from the analysis. 

A very intriguing question that arises in connection with the analysis of BSA 

oligomers is the nature of the protein/protein association that leads to their formation. 

Although it is frequently assumed that these species are formed through noncovalent 

interactions, the possibility of covalent interactions being involved in the early stages of 

BSA aggregation cannot be excluded. Indeed, BSA has one free cysteine residue, which 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig2
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might participate in formation of external disulfide bonds (unless protected by 

cysteinylation, as seen in at least some BSA molecules, see Figure S1 in the Supporting 

Information). One can also argue that formation of higher oligomers may proceed 

through disulfide scrambling leading to formation of multiple external disulfide bonds. 

However, the ESI mass spectrum of BSA acquired under denaturing conditions does not 

contain signals corresponding to protein dimers and tetramers, indicating the reversible 

nature of the association process. Furthermore, dissociation under nonreducing 

conditions is also evident in SEC chromatograms of oligomeric fractions of BSA (see 

Figure S2 in the Supporting Information). 

It is interesting to note that albumin in fresh human plasma does not exhibit 

many features that are prominent in the mass spectra of commercial BSA. For example, 

we note that the high-charge density peaks are absent from the ESI mass spectrum 

acquired under near-native conditions, and the protein mass profile does not exhibit the 

same high level of heterogeneity as BSA (see Figure 2.3). The two major forms 

correspond to intact protein and cysteinylated protein,77 with all other forms being 

relatively minor contributors. The mass difference between these two forms of albumin 

is sufficient enough to allow extracted ion chromatograms for each of them to be 

plotted separately, without the interference from the other form. The overlaid plots of 

the two extracted ion chromatograms (for intact and cysteinylated human serum 

albumin) display identical elution profiles, indicating that cysteinylation of the only free 

cysteine residue in albumin does not compromise its conformational integrity (Figure 

2.3). Unfortunately, the multiplicity of nonenzymatic PTMs observed in the commercial 

http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig3
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig3
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BSA sample does not allow adequate resolution to be achieved under the native 

conditions to afford selective monitoring of these species in SEC/MS. 

We note that the online analysis of BSA aggregates carried out in this work using 

native ESI MS as a detection tool can also be accomplished using other tools, such as 

multiangle light scattering (MALLS).63 However, as can be seen from the following 

sections, SEC with online detection by native ESI MS has a unique advantage of being 

able to provide meaningful information when analyzing coeluting proteins of different 

masses, a task that remains very challenging for MALLS. One potential concern related 

to the analysis of protein aggregates by SEC/MS is the use of volatile electrolytes (such 

as ammonium acetate) as solvent systems. Although long-term exposure of proteins to 

ammonium acetate or similar solvent systems may have the potential to affect their 

aggregation propensity, the short time required for a single SEC/MS experiment makes 

such changes unlikely. Indeed, comparison of aggregation profiles extracted from SEC 

chromatograms acquired with ammonium acetate and a conventional phosphate buffer 

as mobile phases revealed no differences outside of the experimental error (see Figure 

S3 in the Supporting Information). The distribution of protein aggregates also appears to 

be insensitive to the SEC flow rate (see Figure S4 in the Supporting Information), giving 

indication that the measurements are unlikely to be affected by the shear flow around 

the stationary phase particles.  

2.3.2. Analysis of coeluting proteins  

Analysis of protein mixtures where the difference in molecular weight (or, more 

correctly, hydrodynamic radii) does not allow adequate chromatographic resolution to 

http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
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be achieved is a frequently encountered problem in SEC. The ability of online SEC/native 

ESI MS to provide meaningful information for such systems was illustrated by analyzing 

the equimolar mixture of BSA and human serum transferrin (Tf). The molecular weights 

of these two proteins (66 and 80 kDa, respectively) are too close to each other to allow 

satisfactory separation to be achieved using SEC. Indeed, the SEC chromatogram (UV 

trace) shows a large peak with a convoluted shape consistent with the presence of two 

abundant proteins having very close elution times (Figure 2.4, left panel). Although the 

SEC alone fails to provide a clear distinction between BSA and Tf, online detection with 

native ESI MS allows the elution profiles of both proteins to be determined (see the 

extracted ion chromatograms for the +16 charge state of Tf and the +14 charge state of 

BSA in Figure 2.4). The data presented in Figure 2.4 are also notable for another reason: 

unlike BSA, ionic charge state distribution of Tf does not exhibit bimodal character, with 

only low-charge density ion peaks present in the mass spectra (e.g., see the lower trace 

in the right panel of Figure 2.4). This suggests that partially unfolded Tf molecules are 

not present in the sample; incidentally, the SEC/MS data also fails to reveal the presence 

of oligomeric forms of Tf (only BSA dimers and trimers could be observed, as shown in 

Figure 2.4, right panel). 

Another important observation from the analysis of extracted ion 

chromatograms of BSA and Tf is that the elution order is not the same as the molecular 

weight order (Tf is larger). Furthermore, Tf has a bilobal structure,78 whereas albumin 

has a globular fold,79 which should make the difference in hydrodynamic radii even 

larger. Nevertheless, the extracted ion chromatograms for BSA and Tf monomers clearly 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig4
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig4
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig4
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig4
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig4
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show shorter elution time for the former. Although it is possible that the longer 

retention time of Tf molecules may be related to their interactions with the column 

packing material beyond purely mechanical interactions (filtration), a more likely cause 

for this anomalous behavior is the increase of the average hydrodynamic radius of BSA 

monomers due to their transient unfolding during the separation process. 

2.3.3. Characterization of protein self-association: arylsulfatase A  

Both proteins considered in the previous sections (BSA and Tf) are monomeric, 

and formation of oligomeric species is a clear sign of degradation. However, ordered 

noncovalent association of several polypeptide chains is frequently required in order to 

endow proteins with specific properties. Formation of the requisite quaternary structure 

is frequently reversible, as is the case with arylsulfatase A, a critical lysosomal enzyme 

that exits as a homodimer at neutral pH, but must assemble into octamers at mildly 

acidic pH to avoid degradation by lysosomal proteases.22, 80 Recently, we demonstrated 

that SEC correctly identifies homodimeric and homo-octameric arrangements as 

quaternary structures of the recombinant form of human aryl sulfatase A (rhASA) at pH 

7.0 and 5.0, respectively.81 However, SEC analysis of rhASA at intermediate pH (between 

6.1 and 6.9) failed to provide conclusive results, yielding only broad unresolved peaks 

whose profiles were both pH- and concentration-dependent, and the average elution 

time did not match that of either dimers or octamers. At the same time, native ESI MS 

analysis carried out within this intermediate pH region revealed the presence of only 

dimeric and octameric species of rhASA,81 suggesting that the two forms of the protein 

coexist at a dynamic equilibrium, and their interconversion (dissociation/reassociation) 
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is very fast on the chromatographic scale, which does not allow these species to be 

distinguished from one another by SEC. 

Online SEC/ESI MS analysis of rhASA at the two terminal pH points (5.0 and 7.0) 

confirms that the protein exists as an octamer and a dimer, respectively (Figures 2.5 and 

2.6). Interestingly, the single peak in SEC chromatogram acquired at pH 7.0 (elution time 

30 min) contains contributions from both dimeric and octameric ions, although their 

elution profiles are indistinguishable (compare the extracted ion chromatograms for the 

two groups of ions in Figure 2.6). This strongly indicates that the octameric ions of 

rhASA observed at neutral pH do not reflect protein association in solution, but rather 

represent the artifacts related to the forced association in the ESI interface, similar to 

what had been observed for BSA (vide supra). 

SEC/ESI MS analysis of rhASA carried out at intermediate pH 6.4 yields a total ion 

chromatogram that also contains contributions from both octameric and dimeric ions 

(Figure 2.7), although their respective extracted ion chromatograms differ from each 

other in a very dramatic way. The elution profile of the octameric protein species is very 

close to that recorded under the mildly acidic conditions (Figure 2.5). In contrast, the 

elution profile of the dimers has a convoluted form with the elution front coinciding 

with that of the octameric species, and tailing all the way to the elution window 

observed for rhASA dimers at neutral pH (Figure 2.6). This significant dissimilarity of the 

elution profiles of rhASA dimers and octamers observed at intermediate pH indicates 

that the octameric species dissociate as they move through the column. Indeed, if we 

denote the linear velocity of stable octamers and dimers as u8 and u2 (u8 > u2), which 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig5
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig6
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig6
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig7
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig5
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig6
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relate to the column length L and the observed elution times T8 and T2 (e.g., those seen 

in Figures 2.5 and 2.6) as uk = L/Tk, then the elution time of the dimer t2 produced upon 

dissociation of the octamer at time τdiss (τdiss < T8) can be calculated as 

𝑡2 = 𝜏𝑑𝑑𝑑𝑑 + 𝐿−𝜏diss∙𝑢8
𝑢2

= 𝑇2 − 𝜏𝑑𝑑𝑑𝑑 ∙ �
𝑇2
𝑇8
− 1�                                                            (1)                                                                    

In other words, the elution times of the dimers formed on the column will spread 

between T8 and T2. The shape of this distribution can be used to determine the kinetics 

of the octamer dissociation (e.g., to establish the distribution of τdiss), although no such 

calculations were performed in this work due to insufficient chromatographic 

resolution. 

Dissociation processes alone do not account for all of the chromatographic features 

observed in Figure 2.7: even though the extracted ion chromatogram of the octameric 

species has a sharp frontal edge (similar top that seen in Figure 2.5), there is a small (but 

measurable) delay in the elution. Furthermore, the shape of this chromatogram is 

asymmetric, as a slight tailing toward longer elution times is observed (a feature that 

was absent in the octamer elution profile in Figure 2.5). These two phenomena cannot 

be explained without invoking the notion of reassociation of the products of dissociation 

(dimers generated during the chromatographic run) to yield octamers. A simplified 

mathematical treatment of the reassociation process can be carried out by assuming 

that a new octamer is formed via association of four dimers, all of which were produced 

at a single time point τdiss (i.e., by ignoring the possibility of multiple 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig5
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig6
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig7
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig5
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig5
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dissociation/reassociation events throughout a single chromatographic run). In this 

case, the elution time of the newly formed octamer can be estimated as 

𝑡8∗ = 𝜏𝑑𝑑𝑑𝑑 + 𝜏𝑟𝑟𝑟𝑑𝑑 + 𝐿−𝜏diss∙𝑢8−𝜏reass∙𝑢2
𝑢8

= 𝑇8 − 𝜏𝑟𝑟𝑟𝑑𝑑 ∙ �1 − 𝑇8
𝑇2
�                                          (2) 

where τreass is the time interval between formation of the dimers and their reassociation 

back to an octamer. Of course, a more rigorous mathematical treatment should take 

into account the possibility of multiple dissociation/reassociation events, which would 

require numerical simulations. Nevertheless, the simple algebraic expression 2 is useful 

and informative as a way to rationalize the tailing of the elution profile of rhASA 

octamer in Figure 2.7, and might be used to obtain a first-order approximation of the 

distribution of τreass, especially under conditions when the extent of the dissociation 

during the chromatographic run is limited. 

Because the kinetics of the reassociation process should be concentration dependent, 

one would expect to observe a shift in the elution front of the octameric species 

following the decrease of protein concentration. Decrease in rhASA concentration from 

2.3 to 1.1, 0.55 and 0.29 mg/mL (while keeping the acidity constant at pH 6.4) resulted 

in a progressive decrease of the relative abundance of the octameric species and also 

led to a noticeable change of their elution profiles (shift of the elution front to longer 

times and enhanced peak tailing, see Figure 2.8), consistent with the expected 

equilibrium shift toward the dissociation products when the overall protein 

concentration goes down. A similar trend was observed under more acidic conditions 

(pH 6.1), where total protein concentration reduction from 1.1 mg/mL to 0.29 mg/mL 

http://pubs.acs.org/doi/full/10.1021/ac502590h#eq2
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig7
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig8
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resulted in a monotonic decrease of the relative ionic signal of octameric species and a 

shift of the octamer elution front (see Figure S5 in the Supporting Information). 

It is important to note that even though the partial dissociation of rhASA octamers at pH 

6.4 might be inferred from SEC alone by observing the trailing of the UV trace of SEC 

chromatograms to longer elution times (e.g., see the brown trace in Figure 2.7), it is the 

ability of MS to make a clear distinction between the dimeric and octameric ions that 

allows the underlying cause of this peak broadening to be readily established. We also 

note that the extent of peak broadening of the TIC is much more significant compared 

to the UV trace, as dissociation of an octamer to four dimers does not change the UV 

absorbance (as the total number of aromatic residues remains unchanged), while the 

ionic signal increases (as the number of molecules capable of producing ions increases 

4-fold). 

Online detection with native ESI MS also allows another interesting phenomenon to be 

observed, which relates to the uneven concentration profiles across chromatographic 

peaks and is very important vis-à-vis establishing the realistic limits for the accuracy of 

the SEC-based measurements. As has been already mentioned, kinetics of the 

reassociation process are concentration-dependent (unlike octamer dissociation, which 

is a unimolecular process). Therefore, it seems plausible that the octamer/dimer 

equilibrium will be shifted toward the latter not only at the “far end” of the 

chromatographic peak (as can be seen by comparing the elution profiles of octamers 

and dimers in Figure 2.7), but also at the “front end” of the chromatographic peak. 

Indeed, a careful analysis of the elution profiles of the two oligomeric species at the 

http://pubs.acs.org/doi/full/10.1021/ac502590h#notes-1
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig7
http://pubs.acs.org/doi/full/10.1021/ac502590h#fig7
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elution front provides unequivocal evidence that the dissociation process is strongly 

favored during a very short time interval at the elution front (Figure 2.9). Indeed, while 

the extracted ion chromatogram of the octameric species displays a monotonic 

increase, reaches an apex and begins to decrease monotonically, the elution front of 

dimers has a very sharp edge followed by a rapid drop in intensity (with the minimum 

intensity for M2 coinciding with the apex of the M8 peak) before the “normal” behavior 

is observed. The width of the aberrant peak at the front of the elution profile of dimeric 

species defines the lower resolution limit for kinetic measurements that can be carried 

with the SEC/native ESI MS. 

2.4. Conclusions 

The SEC/native ESI MS analysis of proteins and their assemblies presented in this work 

provides an elegant way to characterize complex mixtures of proteins that include both 

monomeric species, their low molecular weight soluble aggregates and larger 

assemblies. A distinction can be readily made among the incompletely resolved proteins 

based on their mass differences, and the analysis of protein ion charge state distribution 

allows the conformational integrity to be assessed. The ability to resolve different 

protein assemblies based on their masses allows a meaningful analysis to be carried out 

when such species cannot be separated from one another by means of SEC alone due to 

their rapid interconversion on the chromatographic time scale. Importantly, the new 

technique does not require the protein samples to be purified/desalted prior to the 

analyses, which makes it very appealing as a robust and powerful tool for the analysis of 

biopharmaceutical products. 

http://pubs.acs.org/doi/full/10.1021/ac502590h#fig9
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FIGURES  

 

 

 

 

 

 

 

Figure 2.1 ESI mass spectrum of BSA acquired under near-native conditions without SEC 
separation of protein monomers and oligomers. The mass spectrum acquired under denaturing 
conditions is shown in the inset (only 1000–2000 m/z range is shown, as no protein ions were 
detected outside of this range). 
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Figure 2.2 Online SEC/MS analysis of BSA: UV chromatogram (gray); TIC (black); extracted ion 
chromatograms of the BSA monomers (blue, +14 charge state), dimers (magenta, a sum of +20 
and +21 charge states) and trimers (brown, a sum of +25 and +26 charge states). Inset on the 
left shows mass spectra averaged across the three SEC peaks (acquisition times are indicated 
on each trace). Inset on the right shows extracted ion chromatograms of compact and partially 
unstructured monomers (represented by low- and high-charge density ions). 
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Figure 2.3 Extracted ion chromatograms for two forms of human serum albumin (intact, blue; 
cysteinylated, red) in blood plasma. The inset shows the spectrum of the protein averaged 
across the SEC peak and the zoomed view of the ion peak corresponding to +14 charge state 
showing the protein mass distribution. 
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Figure 2.4 Online SEC/MS characterization of an equimolar mixture of BSA and Tf: UV 
chromatogram (black); TIC (gray); extracted ion chromatograms of the BSA monomers (blue, +14 
charge state), BSA dimers (charge state +20, magenta) and Tf monomers (charge state +16, red). 
Inset shows mass spectra averaged across the three SEC peaks (acquisition times are indicated 
on each trace).  
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Figure 2.5 Online SEC/MS of rhASA (1.1 mg/mL) at pH 5.0: UV chromatogram (brown), TIC 
(black) and the cumulative extracted ion chromatogram of the octameric species (red). Inset 
shows a mass spectrum averaged across the SEC peak. 
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Figure 2.6 Online SEC/MS of rhASA (1.1 mg/mL) at pH 7.0: UV chromatogram (brown), TIC 
(black) and the cumulative extracted ion chromatograms of the dimeric (blue) and octameric 
(red) species. Inset shows a mass spectrum averaged across the SEC peak. 
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Figure 2.7 Online SEC/MS of rhASA (2.3 mg/mL) at pH 6.4: UV chromatogram (brown), TIC 
(black) and the cumulative extracted ion chromatograms of the dimeric (blue) and octameric 
(red) species. Inset shows a mass spectrum averaged across the SEC peak. 



 

41 

 

 

Figure 2.8 Elution profiles of the octameric species of rhASA acquired with online SEC/ESI MS at 
pH 5.0, protein concentration 1.1 mg/mL (red trace) and pH 6.4, protein concentrations (from 
top to bottom) 2.3, 1.1 and 0.55 mg/mL. 
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Figure 2.9 Zoomed views of the elution profiles of octameric (red) and dimeric (blue) species of 
rhASA acquired with online SEC/ESI MS at pH 6.4, protein concentration 2.3 mg/mL. 
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Figure S1. Mass profile of BSA from a commercial source deconvoluted from a mass spectrum 
acquired under denaturing conditions. 
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Figure S2. Elution profiles of unfractionated BSA (black trace) and re-injected fractions of 
trimers (blue), dimer (red) and monomers (brown) showing dynamic character of low molecular 
weight protein aggregates. 
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Figure S3. Size distribution of BSA low molecular weight aggregates from SEC 
chromatograms (UV detection only) acquired with ammonium acetate (left) and 
phosphate buffer (right) as mobile phases. The colored bars represent monomers (brown), 
dimers (red) and trimers (blue). 
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Figure S4. Size distribution of BSA low molecular weight aggregates (top) and representative 
SEC chromatograms (UV detection only) acquired at different flow rates. 
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Figure S5. Elution profiles (extracted ion chromatograms) of the octameric species of rhASA 
acquired with on-line SEC/ESI MS at pH 5.0, protein concentration 1.1 mg/mL (red trace) and 
pH 6.1, protein concentrations (from top to bottom) 1.1 mg/mL, 0.55 mg/mL, 0.29 mg/mL 
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CHAPTER 3 

MEASURING KINETICS AND AFFINITY OF TRANSIENT PROTEIN-RECEPTOR 
INTERACTIONS USING SIZE EXCLUSION CHROMATOGRAPHY WITH ONLINE NATIVE ESI-

MS DETECTION 

3.1. Overview 

Protein-protein interactions play an important role in diverse areas of life science 

research including evaluation of cellular functions and also to aid in the development of 

therapeutics. Due to this there has always been a tremendous need of analytical 

methods to characterize and provide accurate information on kinetics and 

thermodynamics of protein interactions.  

Traditionally, strong interactions with the equilibrium dissociation constant (KD) 

of low nM were favored (e.g., to develop drug molecules binding irreversibly with the 

target enzyme for complete inhibition). Recently, there has been a shift towards 

exploiting lower affinity interactions (the so-called transient protein interactions) with 

KD in high nM – low µM range, due to their significance in proper functioning of living 

cells and also for the development of targeted drug delivery systems.24, 25, 82 In the case 

of drug delivery systems transient protein interactions help not only in efficient binding 

of carrier protein to extracellular receptor, but also in its release after transporting 

inside the cells. A strong binding in this case will have unfavorable consequences by 

impeding the release of drug carrier from the protein receptor. Design of efficient 

targeted drug delivery strategies also critically depends on the availability of the kinetic 
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data, as the timing of the drug dissociation from its carrier is important for successful 

delivery. 

A wide variety of analytical methods have been developed to characterize 

protein interactions, however owing to weak binding of transient protein interactions it 

is technically difficult to detect them compared to stronger interactions. Some of the 

most commonly used methods include surface plasmon resonance (SPR),83 analytical 

ultracentrifugation (AUC),84 isothermal calorimetry (ITC),85 and tandem affinity 

purification-mass spectrometry (TAP-MS).52 Majority of these methods have 

disadvantages that invariably affect the binding characteristics such as requirement of 

protein immobilization in SPR could alter structural properties of proteins, inability to 

detect transient complexes in TAP-MS without any additional crosslinking, and large 

concentration of proteins required for ITC and AUC. In vivo analysis of protein 

interactions can be carried out using fluorescence based assays (e.g., fluorescence 

resonance energy transfer (FRET) and bimolecular fluorescence complementation 

(BiFC), however these methods require labeling of proteins with fluorophores, which 

could again lead to a change in structure of protein.86 A limitation common to all of 

these techniques is their inability to deal with highly heterogeneous systems frequently 

encountered in the field of biotherapeutics. 

In the past two decades native electrospray ionization mass spectrometry (ESI 

MS) has enjoyed growing popularity to characterize structure of non-covalent protein 

assemblies.34 In chapter 2, the advantages of combining separation by size exclusion 

chromatography with native ESI MS detection to characterize aggregation, 
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conformation, and rapidly equilibrating protein oligomers were presented.87 Although 

relating ionic abundance of protein species with fractional concentration in solution is 

not straightforward due to differences in their ionization and transmission efficiencies, 

there have also been reports of using native ESI MS to quantify binding affinities.88 

In this chapter a new label-free analytical method to measure kinetics and 

binding affinity of transient protein interactions is reported. This method is based on the 

SEC/native ESI MS method developed in chapter 2. Here we have developed a 

mathematical model to explain the transfer of dynamic protein species through the 

column, and by fitting the profile generated from this mathematical solution with the 

extracted ion chromatograms (XICs) of SEC/MS binding and kinetic parameters of 

transient protein interactions can be extracted. In this chapter first an explanation for 

the elution behavior of recombinant arylsufatase A (rhASA) detected in chapter 2 is 

given and then this is extended to protein/receptor interactions to obtain kinetics and 

binding information. We have validated this method using known binding of transferrin 

variants with soluble form of transferrin receptor.89, 90 

3.2. Materials and Methods 

Holo human transferrin (hTf) and holo bovine transferrin (bTf) were purchased 

from Sigma-Aldrich Chemical Co. (St. Louis, MO). Soluble ectodomain transferrin 

receptor (TfR), C-lobe and N-lobe of transferrin were generously provided by Prof. Anne 

B. Mason (University of Vermont College of Medicine, Burlington, VT). Iron-free forms 

(Apo) of transferrin were prepared by acid-denaturing the protein in the presence of 

EDTA followed by centrifugal ultrafiltration (30k molecular-weight-cutoff vivaspin filters) 



 

51 

to 100 mM ammonium acetate. All other chemicals used in this work were of analytical 

grade or higher. Tf/TfR solutions were mixed in 2:1 molar ratio by diluting from stock 

solution, and after equilibration were analyzed by SEC/ESI MS without any desalting 

step. 

SEC separations were carried out using Agilent 1100 HPLC (Agilent Technologies, 

Santa Clara, CA) equipped with a Tosoh (Tokyo, Japan) TSKgel G3000 SWxl column (7.8 × 

300 mm) and a 100 μL injection loop. Ammonium acetate solution (100 mM, pH 7) was 

used as the mobile phase in all separations at a flow rate of 0.5 mL/min. After exiting 

the UV detector (operated at 280 nm), using a 1:1 flow splitter the flow rate of eluate 

directed to ESI MS was set at 0.25 ml/min. 

ESI MS detection was carried out using QStar-XL (ABI-Sciex, Toronto, Canada) 

hybrid quadrupole/time-of- flight mass spectrometer equipped with a standard ESI 

source. The ESI source conditions were optimized to provide a stable spray and optimal 

ion desolvation: drying gas, 30 L/min; nebulizing gas, 39 L/min; curtain gas, 22 L/min; 

declustering potential on the skimmer, 290 V; declustering potential on the orifice, 160 

V. The source temperature was maintained in the 200 − 250°C interval. Collisional 

cooling in the ion guide region (a gas flow restricting sleeve in Q0) was used to enhance 

focusing and stability of noncovalent complexes. 

3.3. Theory 

In chapter 2 SEC/ESI MS analysis of recombinant arylsulfatase A (rhASA) at pH 

6.4 yielded asymmetric peak shape for XICs of ocatmers (M8) and diffused pattern for 

dimers (M2). This observation can explained by taking into account multiple dissociation 
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events of octamers to dimers followed by re-association of newly formed dimers to 

octamers over the fixed column length (L). This behavior is illustrated in figure 3.1 using 

a 2-dimensional plot (distance traveled inside the column vs. the travel time). Taking 

into consideration these dynamic reactions along with diffusion and mass transfer of 

analytes a mathematical solution can be constructed for transfer of octamers and 

dimers through the column as shown in equation 1. This system is a one-dimensional 

version of the so-called advection-diffusion-reaction (ADR) equation,91 which is 

frequently encountered in chemical engineering, the two significant differences being 

unequal mass transfer coefficients uM8 and uM2 (the flow velocity is the same for all 

reagents in a flow reactor), and non-linear reaction terms. 

⎩
⎪
⎨

⎪
⎧𝜕𝐶𝑀8

𝜕𝑡
= −𝑢𝑀8 ∙
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2

                                                (1) 

(assuming a short lived intermediate tetramer (M4) during M2 ⇌ M8 transition of 

rhASA)80 

uM8, uM2: Linear velocity of octamers and dimers, respectively. 

DM8, DM2: Diffusion coefficient of octamers and dimers, respectively. 

Varying k2 and k-4 will generate a family of solutions for equation 1, from which 

the best match with the experimental data will be selected, followed by generating 

another family of solutions by varying the parameters k2 and k-4 within a narrower 

range, etc. This optimization routine will eventually produce kinetic parameters that are 

best fits for the experimentally measured XIC profiles of M8 and M2. 



 

53 

In this chapter the approach presented above to study homo-oligomerization of protein 

have been applied to protein/receptor interaction systems. 

For protein and receptor that interacts to form a 1:1 complex (equation 2). 

𝑃 · 𝑅 ⇌𝑘1
𝑘−1⇌ 𝑃 + 𝑅                                                                                                                        (2)                                                                                                                     

The interacting partners (P, R, and P·R) have different size, and therefore would 

travel with different linear velocities during trajectory inside the column. Due to this 

difference the dissociation products generated in a single dissociation event will not be 

able to re-associate (as shown in figure for a hypothetical protein receptor system).  

However, physical interaction leading to reassociation of P and R will be possible if their 

trajectories intercept as they are formed in two different dissociation events (grey 

circles in figure 3.2). The partial derivative equations describing dynamic P·R complex is 

a simple extension of equation 1: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜕𝐶𝑃𝑃

𝜕𝑡
= −𝑢𝑃𝑃 ∙

𝜕𝐶𝑃𝑃
𝜕𝜕

+ 𝐷𝑃𝑃 ∙
𝜕2𝐶𝑃𝑃
𝜕𝜕2

− 𝑘−1𝐶𝑃𝑃 + 𝑘1𝐶𝑃𝐶𝑃

𝜕𝐶𝑃
𝜕𝑡 = −𝑢𝑃 ∙

𝜕𝐶𝑃
𝜕𝜕 +𝐷𝑃 ∙

𝜕2𝐶𝑃
𝜕𝜕2 + 𝑘−1𝐶𝑃𝑅 − 𝑘1𝐶𝑃𝐶𝑅

𝜕𝐶𝑅
𝜕𝑡 = −𝑢𝑅 ∙

𝜕𝐶𝑅
𝜕𝜕 +𝐷𝑅 ∙

𝜕2𝐶𝑅
𝜕𝜕2 + 𝑘−1𝐶𝑃𝑅 − 𝑘1𝐶𝑃𝐶𝑅

                                                           (3) 

 
  
Partial derivative equations 5 are a straight forward modification of equation 3 for 
bivalent system in which the receptor (R) can bind to two protein molecules 

𝑃2𝑅 ⇌𝑘2
𝑘−2 𝑃 + 𝑃 · 𝑅;    𝑃 · 𝑅 ⇌𝑘1

𝑘−1 𝑃 + 𝑅                                                                               (4)                                                    
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝜕𝐶𝑃
𝜕𝑡

= −𝑢𝑃 ∙
𝜕𝐶𝑃
𝜕𝜕

+ 𝐷𝑃 ∙
𝜕2𝐶𝑃
𝜕𝜕2 + 𝑘−1𝐶𝑃𝑅 + 𝑘−2𝐶𝑃2𝑅 − 𝑘1𝐶𝑃𝐶𝑅 − 𝑘2𝐶𝑃𝐶𝑃𝑅           

𝜕𝐶𝑃𝑅
𝜕𝑡

= −𝑢𝑃𝑅 ∙
𝜕𝐶𝑃𝑅
𝜕𝜕

+ 𝐷𝑃𝑅 ∙
𝜕2𝐶𝑃𝑅
𝜕𝜕2 + 𝑘−2𝐶𝑃2𝑅 + 𝑘1𝐶𝑃𝐶𝑅 − 𝑘−1𝐶𝑃𝑅 − 𝑘2𝐶𝑃𝐶𝑃𝑅

𝜕𝐶𝑃2𝑅

𝜕𝑡
= −𝑢𝑃2𝑅 ∙

𝜕𝐶𝑃2𝑅

𝜕𝜕
+ 𝐷𝑃2𝑅 ∙

𝜕2𝐶𝑃2𝑅

𝜕𝜕2 + 𝑘2𝐶𝑃𝐶𝑃𝑅 − 𝑘−2𝐶𝑃2𝑅                                 

𝜕𝐶𝑅
𝜕𝑡

= −𝑢𝑅 ∙
𝜕𝐶𝑅
𝜕𝜕

+ 𝐷𝑅 ∙
𝜕2𝐶𝑅
𝜕𝜕2 + 𝑘−1𝐶𝑃𝑅 − 𝑘1𝐶𝑃𝐶𝑅                                                     

            (5) 

3.4. Results and Discussion 

SEC/ESI MS analysis of non-covalent protein assemblies stable in solution on the 

chromatographic time scale give rise to well-defined peaks whose elution time is 

consistent with the hydrodynamic size (also controlling the linear velocity) of each 

species. An example is shown in figure 3.3, where incubation of the metalloprotein 

transferrin (Fe2Tf) with the soluble ectodomain of transferrin receptor (TfR) resulted in 

formation of a stable 2:1 complex, detected as an earlier eluting peak. In this case online 

detection with native ESI MS provides confirmation based on their masses (i.e., an early-

eluting 322 kDa (Fe2Tf)2·TfR complex, and a late-eluting 79 kDa Fe2Tf, which was present 

in the mixture in molar excess). A failure to form a protein/receptor complex would be 

confirmed by the absence of the early-eluting species in the chromatogram, as 

illustrated in Figure 3.3 for the mixture of TfR and Tf N-lobe (Tf loses its receptor-binding 

competence upon removal of the C-lobe).89  

3.4.1. Protein-receptor complex interacting with 1:1 stoichiometry 

A model system of 1:1 complex was made by mixing molar excess of C-lobe form 

of human transferrin (FeTfC) with transferrin receptor (TfR), which has already been 
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shown using orthogonal approaches to have a weak affinity.89, 90 As shown in figure 3.4 

the XICs obtained from the SEC/ESI MS analysis of this mixture is convoluted. The XIC 

behavior of free FeTfC and 1:1 complex (FeTfC·TfR) follows the pattern shown in figure 

3.2; FeTfC·TfR complex peak (purple trace in figure 3.4) is asymmetrical with significant 

tailing and the dissociation products that fail to re-associate appear in chromatograms 

as early eluting free FeTfC molecules (16.1 – 17.5 min interval). 

Figure 3.5 illustrates a family of solutions generated for each of the interacting 

species (blue - FeTfC, red - TfR, and purple - FeTfC·TfR complex) using equation 3. 

Symmetrical peaks shapes with elution time characteristic of their linear velocity were 

generated, when dissociation channels were turned off. Opening only the dissociation 

path for the complex (k-1 = 0.015) shows distinct features that include decrease in 

abundance FeTfC·TfR complex peak, increase in abundance and broadening of TfR peak, 

and monotonic trailing of FeTfC to early elution time interval. Opening both dissociation 

and association of complexes (k1 = 1.3.104 and k-1 = 0.020) led to tailing and shift of 

FeTfC·TfR complex to later elution time as these complexes are formed as a result of 

reassociation of interacting partners on the column, and a bimodal trailing of FeTfC was 

also seen.  

Based on these observations a family of solutions were generated to get a close 

match fit with experimental chromatograms (figure 3.6). In our optimization steps a 

solution was considered a match if its peak shape and elution time aligned with the 

experimental chromatograms. As TfR signal was not recorded, we have used 

chromatograms of FeTfC and FeTfC·TfR complex to get a match. By not taking absolute 



 

56 

abundance of each of these species into consideration, any artifacts generated due to 

differences in ionization and transmission efficiency are avoided. Following this 

optimization routine for FeTfC and TfR interaction, we detected kinetic rates of k1 = 3.3 x 

107 M-1 min-1and k-1 = 3.0 min-1. This gives an equilibrium dissociation constant of 90nM. 

3.4.2. Protein-receptor complex interacting with 2:1 stoichiometry 

Validation of this method to characterize binding of a 2:1 protein/receptor 

complex was carried out using transferrin variants. The affinity of these transferrin 

variants to human TfR has already been reported to cover a broad range using 

orthogonal approaches.89 Figure 3.7 illustrates experimental data for binding of three 

transferrin variants; apo human transferrin (hTf), holo bovine transferrin (Fe2 bTf), and 

apo bovine transferrin (bTf) interacting with TfR. These chromatograms are highly 

convoluted and differ significantly from those detected for Fe2hTf/TfR interaction (figure 

3.3). First, Tf·TfR complexes of both 2:1 and 1:1 stoichiometries are observed despite 

excess of the protein over the receptor in the injection mixture. Second, the elution 

profiles of the 2:1 complexes (Tf2·TfR) are asymmetrical and are shifted compared to the 

elution time of the (Fe2hTf)2·TfR complex (shown in Figure 3.7 with a dotted line). This is 

consistent with the notion of the vast majority of 2:1 complexes not surviving the 

chromatographic run and dissociating prior to elution from the column; the observed 

complexes are formed within the column as a result of re-association processes. The 

second, third… generation of dissociation products that fail to re-associate appear in 

chromatograms in Figure 3.7 as early eluting free Tf molecules (14.5 – 17.5 min interval) 

and 1:1 complexes. 
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Generating a family of solutions for (Tf)2·TfR, Tf·TfR, and Tf species using equation 5 and 

optimizing them by varying kinetic rate constants (k1, k-1, k2, and k-2) yielded a close 

match profile as shown in figure 3.8. Based on these kinetic rates, equilibrium 

dissociation constants were obtained for transferrin variants used in this validation 

study. As expected the equilibrium dissociation constants (KD1 and KD2) for hTf and Fe2 

bTf were in higher nano molar range, and very weak binding with KD1 in micro molar and 

KD2 in higher micro molar for interaction of bTf with human TfR was detected.  

3.5. Conclusions 

A label-free method using SEC with online ESI MS to obtain kinetic and thermodynamic 

parameters of transient protein interactions has been presented. Strong protein 

complexes that do not dissociate on the chromatographic timescale will be outside of 

reach of this method. In this study we have validated this new method for transient 

protein interactions (protein/receptor complexes) with both 1:1 and 2:1 

stoichiometries. In a similar way this method can also be extended to transient protein 

interactions with higher stoichiometries as long as each of the interacting species have 

distinct linear velocities in chromatography. 
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Figure 3.1 Schematic 2-D diagram illustrating behavior of M8 and M2 species during the SEC 
analysis of metastable rhASA octamers. Stable species would travel only along the trajectories 
on the far left (M8) and far right (M2), but the actual trajectories branch out as a result of M8 
dissociation (white circles) and M2 re-association (gray circles). Red and blue circles show 
elution of M8 and M2, respectively. 
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Figure 3.2 Illustration of behavior of two interacting species (P, protein, and R, receptor) during 
the SEC run. All three species are present at the time of injection. Products of P·R dissociation 
(white-filled circles) can re-associate with finite probability only if their trajectories intercept 
(gray circles). 
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Figure 3.3 SEC and SEC/ESI MS characterization of transferrin binding to its receptor with high 
affinity (full-length, iron-saturated human Tf, top) and failing to form a complex with the 
receptor (N-terminal half of human Tf, bottom). The three traces show UV chromatograms of Tf, 
TfR and their mixtures. Extracted ion chromatograms of the protein/receptor complex (purple) 
and the protein alone (blue) are also shown. 
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Figure 3.4 SEC/ESI MS characterization of C-lobe form of transferrin (FeTfC) binding to 
transferrin receptor (TfR). The three traces show UV chromatogram (grey), and extracted ion 
chromatograms of FeTfC (blue) and FeTfC·TfR complex (purple). 
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Figure 3.5 Family of solutions generated using initial set of rate constants as shown in 
each panel. The three traces show extracted ion chromatograms of FeTfC (blue), TfR 
(red), and FeTfC·TfR complex (purple). Filled blue and red traces (extracted ion 
chromatograms of FeTfC and TfR, respectively at k1, k-1 = 0) are overlaid in middle and 
bottom panel to illustrate change in peaks under different rate constants. 
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Figure 3.6 Extraction of rate constants for FeTfC/TfR binding and dissociating using experimental 
SEC/ESI MS data. The calculated elution profiles are overlaid to get the best match. Calculated 
profile using rate constants of k1= 3.3 x 107 M-1 min-1and k-1 = 3.0 min-1 (green) was considered 
to be the best match with the experimental SEC/MS data. 
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Figure 3.7 SEC/ESI MS analysis of transient Tf/TfR complexes. Tf elution profiles are shown with 
blue curves, and elution profiles of Tf·TfR complexes are shown with orange (1:1 stoichiometry) 
and purple (2:1) curves. The receptor affinity order is apo-human Tf > holo-bovine Tf >> apo-
bovine Tf. 
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Figure 3.8 Extraction of rate constants for Tf/TfR binding and dissociating using 
experimental SEC/ESI MS data. The calculated elution profiles that were good match with 
experimental data are shown. Calculated elution profile of Tf (solid black trace), Tf·TfR 
complexes with 2:1 stoichiometry (solid purple trace), and 1:1 stoichiometry (solid orange 
trace) for each experiment are shown. Rates constants; k1 and k-1 are expressed in M-1 
min-1 and min-1, respectively. 
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CHAPTER 4 

CHARACTERIZATION OF INTACT PROTEIN CONJUGATES AND BIOPHARMACEUTICALS 
USING ION-EXCHANGE CHROMATOGRAPHY WITH ONLINE DETECTION BY NATIVE 

ELECTROSPRAY IONIZATION MASS SPECTROMETRY AND TOP-DOWN TANDEM MASS 
SPECTROMETRY 

Peer-reviewed article published: Muneeruddin, K.; Nazzaro, M; Kaltashov, I.A.; Characterization 
of Intact Protein Conjugates and Biopharmaceuticals Using Ion-Exchange Chromatography with 
Online Detection by Native Electrospray Ionization Mass Spectrometry and Top-Down Tandem 
Mass Spectrometry Analytical Chemistry, 2015, 87, 10138 – 10145 

4.1. Overview 

Protein therapeutics remain the fastest growing segment in the pharmaceutical 

industry,5 and as the number of both approved biopharmaceutical products and those 

still in various development stages continue to grow, so does the demand for powerful 

and robust analytical technologies capable of comprehensive characterization of these 

complex molecules. Protein therapeutics are inherently less stable compared to 

traditional small-molecule medicines, as their large size (and, consequently, a large 

number of chemically labile sites) makes them prone to a variety of nonenzymatic post-

translational modifications (PTMs), many of which impact both therapeutic and safety 

profiles of the protein drugs. This is usually a result of conformational changes triggered 

by chemical modifications, although a loss or alteration of the higher order structure 

may also be precipitated by environmental factors, such as temperature variations and 

exposure to solvent–air interface. Therefore, complete structural characterization of 

biopharmaceutical products cannot focus solely on their covalent (primary) structure 

but must also address the higher order structure, including conformational integrity and 
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in the case of multiunit proteins correct noncovalent assembly. Demanding and 

challenging as they are, these tasks are further complicated by structural heterogeneity 

inherent to many protein-based therapeutics (e.g., due to extensive glycosylation). 

Lastly, a large number of the second-generation biopharmaceuticals contain “designer” 

modifications (such as protein–drug or protein–polymer conjugates), which increase the 

extent of heterogeneity even further due to variation in the extent of conjugation 

(loading) and the presence of multiple positional isomers within the population of 

conjugates with fixed stoichiometry. 

Obviously, comprehensive characterization of such complex systems is a very tall 

order, and analytical techniques capable of not only detecting and quantitating 

nonenzymatic PTMs within highly heterogeneous protein therapeutics but also 

assessing the impact of these modifications on conformational integrity are at premium. 

Mass spectrometry (MS) has recently emerged as a very powerful and robust tool to 

characterize biopharmaceutical products at a variety of levels ranging from mass 

profiling,92 amino acid sequencing,93, 94 and PTM mapping95-97 to conformational 

integrity20, 21, 98 and aggregation propensity.70, 99, 100 While the benefits of MS for 

comprehensive characterization of biopharmaceutical products have been well-

documented,32, 33, 101 the growing demands of characterizing ever more complex 

protein-based therapeutics continue to stimulate development of new analytical 

methodologies. Use of hyphenated techniques, such as liquid chromatography/mass 

spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry 

(LC/MS/MS), has proved particularly useful for characterization of complex protein 
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samples both in the field of biopharmaceuticals and beyond;102-104 however, the vast 

majority of applications make use of reversed-phase chromatography as the separation 

step. While the versatility of reversed-phase LC allows it to be applied for separations of 

both small peptides and large intact proteins, the nature of the mobile phase causes the 

proteins to be unfolded during the separation step. As a result, any information on the 

higher order structure (polypeptide chain folding and/or noncovalent assembly of 

multiunit protein complexes) is lost, and the MS analysis is focused exclusively on 

covalent structure. 

In contrast to reversed-phase LC, ion-exchange chromatography (IXC) and size 

exclusion chromatography (SEC) can employ nondenaturing conditions during the 

separation process, and in fact SEC is frequently used in the biopharmaceutical sector 

for assessment of the higher order structure.105, 106 IXC has also proved to be a very 

useful tool for characterization of complex biopharmaceuticals;107 however, neither of 

these two techniques is used routinely in combination with online electrospray 

ionization (ESI) MS detection. As pointed in a recent review, “while the simplicity 

associated with size exclusion and cation-exchange chromatography make them ideally 

suited for routine use, the inherent complexity of mass spectrometry restricts its use to 

characterization, this despite its richness in information.”102 Recently, we demonstrated 

that SEC/MS can in fact be used for characterization of complex biopharmaceutical 

products, yielding not only mass profiles, but also information on conformational 

integrity, aggregation propensity, and quaternary structure;87 the benefits of using 

SEC/MS for mass profiling of heterogeneous protein therapeutics have also been 
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documented.75, 108 The use of IXC with online MS detection has also been demonstrated 

recently,109 although the spray conditions in the ESI interface resulted in protein 

unfolding prior to entering MS. Consequently, all information on protein conformation 

was inferred from the chromatographic elution time,109 rather than from ESI mass 

spectra. 

In this work we present an online IXC/ESI MS in which the ESI source is operated 

under nondenaturing conditions (the so-called native ESI). Using native ESI MS as a 

detection tool allows the capability of the detector to be expanded beyond mere mass 

profiling by allowing the conformational integrity of various species to be assessed 

based on the analysis of protein ion charge state distributions in the mass spectra.110 

Furthermore, incorporation of top-down fragmentation in the experimental workflow 

(LC/MS/MS of whole proteins) allows nonenzymatic PTMs to be identified in situations 

when the mass measurement alone is not sufficient for an unequivocal conclusion to be 

reached. Although this initial report focuses on proteins of relatively modest size (not 

exceeding 25 kDa), this technique appears to be ideally suited for the analysis of large 

systems as well, including antibody–drug conjugates (ADCs) and multiunit protein 

assemblies. 

4.2. Materials and Methods 

Chicken egg white lysozyme (Lz), dithiothreitol (DTT), and iodoacetic acid (IAA) 

were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO), and N-succinimidyl-S-

acetylthioacetate (SATA) was purchased from Pierce Biotechnology (Rockford, IL). Lz 

was conjugated with SATA using a previously described procedure.111 Briefly, SATA 
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(prepared in DMSO) was added to Lz in phosphate buffer (pH 7.0) such that the ratio of 

SATA to number of primary amine sites in lysozyme was 1:1. The mixture was incubated 

at 37 °C for 90 min to allow for conjugation reaction to occur and stored at −20 °C prior 

to characterization. Complete reduction of Lz (all four disulfide bonds) was carried out 

by following a previously described procedure112, 113 that was modified to avoid 

precipitation of the (partially) reduced forms. Lz (1 mg/mL) was incubated in the 

presence of 50 mM ammonium bicarbonate (pH 8.0), 30% acetonitrile, and 20 mM DTT 

(freshly prepared in water) at 30 °C for 20 min. Following reduction, free cysteine 

residues were alkylated by adding IAA to a final concentration of 40 mM and incubating 

at room temperature for 30 min. Prior to the analyses, the pH of both freshly reduced 

and alkylated Lz solutions was adjusted to 7.0. Selective reduction and alkylation with 

IAA of a single disulfide bond, Cys6–Cys127, was carried by following the published 

protocol113 using lower DTT content (the so-called CM-lysozyme113). A stressed sample 

of raw interferon-β was provided by Biogen (Cambridge, MA). All other chemicals used 

in this work were of analytical grade or higher. 

Ion-exchange chromatography was performed on an Agilent 1100 HPLC (Agilent 

Technologies, Santa Clara, CA) equipped with a 2.1 mm × 250 mm weak cation-exchange 

column PolyCAT A (PolyLC Inc., Columbia, MD), particle size of 5 μm and pore size of 

1000 Å. Ammonium acetate at pH 7.0 was used for MS-compatible gradient elution (100 

mM in mobile phase A and 1 M mobile phase B). The total flow rate was maintained at 

0.1 mL/min (SATA-conjugated Lz and CM-lysozyme) or 0.2 mL/min (fully reduced Lz and 

stressed interferon-β1a). The specific linear gradient depended on the sample analyzed 
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(vide infra), but never exceeded 60% mobile phase B. Upon exiting the column, the 

eluate was directed to a UV absorbance detector (operated at 280 nm) followed by 

online detection by native ESI MS without any solvent modification or flow splitting 

using a QStar-XL (ABI-Sciex, Toronto, Canada) hybrid quadrupole/time-of-flight mass 

spectrometer (for the analysis of SATA-conjugated and reduced Lz) or Synapt G2Si 

(Waters, Milford, MA) hybrid quadrupole/time-of-flight mass spectrometer (for the 

analysis of stressed interferon-β). The ESI source conditions were optimized to get a 

stable spray and efficient desolvation of analyte ions. For Qstar XL the conditions were 

as follows: drying gas, 37 L/min; nebulizing gas, 30 L/min; curtain gas, 22 L/min; 

declustering potential on the skimmer, 290 V; declustering potential on the orifice, 160 

V. The source temperature was maintained in the 200–250 °C interval. For Synapt G2Si 

the conditions were optimized as follows: sampling cone, 40 V; source offset, 80 V; 

desolvation temperature, 400 °C; cone gas flow, 45 L/h; desolvation gas flow, 600 L/h. 

Online top-down fragmentation of protein ions was carried out with Synapt G2Si using 

both electron-transfer dissociation (ETD) in the trap cell and collision-induced 

dissociation (CID) in the transfer cell. For ETD the trap wave height was set at 1.0 V, and 

trap wave velocity was 300 m/s. CID was carried out by setting collision energy in the 

transfer cell to 100 and transfer gas flow rate to 4.3 mL/min. Postacquisition processing 

was carried out with the Origin data analysis software (Origin Lab Corp., Northampton, 

MA). 
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4.3. Results and Discussion 

4.3.1. Initial evaluation of online IXC/ESI MS: characterization of complex protein 
conjugate samples  

The utility of IXC/ESI MS for characterization of heterogeneous protein samples 

was initially evaluated using SATA-activated Lz. SATA is a short-chain reagent targeting 

primary amines, which is used to introduce a sulfhydryl group to proteins. While SATA is 

frequently used in the studies of protein higher order structure as a cross-linking 

reagent,114 our own interest in this reagent stems from its use as a coupling agent to 

produce transport protein/payload protein conjugates to enable targeted delivery.111 

Since SATA is an amine-targeting reagent, and most proteins contain at least several 

such groups (i.e., α-amine at the N-terminus and ε-amines of lysine side chains), we 

frequently observe formation of multiple conjugates, which differ in the extent of 

conjugation. Low conjugation yields result in poor efficiency of protein cross-linking, 

while extensive conjugation (placing of multiple sulfhydryls on the protein surface) leads 

to protein polymerization; hence, controlling the extent of conjugation becomes 

important, which can be readily achieved by measuring the masses of the conjugation 

products.111 However, mass measurements alone fail to characterize another dimension 

of protein conjugate heterogeneity, namely, the presence of positional isomers within 

the ensemble of protein species having identical conjugation stoichiometry. Ideally, one 

aims at producing relatively homogeneous population of conjugates (e.g., by taking 

advantage of pKa difference between α- and ε-amines and carrying out the reactions 

within the pH range where a difference in their reactivity exits), and the ability to 
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monitor protein heterogeneity due to the presence of positional isomers would 

obviously be very valuable for optimizing the conjugation protocol. 

Previously we used straightforward ESI MS to evaluate the extent of modification 

of Lz with SATA,111 while assessing the distribution of conjugation sites among seven 

possible candidates within this protein required the use of a time-consuming and labor-

intensive procedure that involves proteolytic digest and 18O labeling of fragment 

peptides followed by LC/MS and LC/MS/MS analyses (S. Nguyen et al., in preparation). 

IXC/ESI MS analysis of SATA-activated Lz at the whole-protein level (Figure 4.1) provides 

an elegant alternative by allowing both the extent of conjugation and the presence of 

positional isomers to be determined in a single experiment. While in this particular 

sample (prepared by using a 1:8 protein/SATA ratio) the extent of conjugation varies 

from 0 (intact, unmodified Lz) to 4 (SATA4·Lz), only these two species have extracted ion 

chromatograms with single peaks (52 and 30 min, respectively). The extracted ion 

chromatogram of SATA·Lz displays two major and two minor peaks (teal-filled curve in 

Figure 4.1), consistent with the notion that at least four out of seven possible amines 

participate in conjugation. The numbers of peaks in extracted ion chromatograms of 

SATA2·Lz and SATA3·Lz (six and four, respectively) are also consistent with the notion of 

four amines targeted by SATA. This relatively straightforward analysis allows a 

conclusion to be made that, while the conjugation reaction does not occur at a single 

site within the protein, the number of participating amines is limited (four out of seven). 

Importantly, this conclusion could not be made based on either chromatographic or MS 

data alone. Using ESI MS as a detection tool also allows a distinction to be readily made 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
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among coeluting species with different conjugation stoichiometries (e.g., SATA·Lz and 

SATA2·Lz at 39.5 min, and SATA2·Lz and SATA3·Lz at 37 min). 

While it may be tempting to use the peak heights of various species detected in 

IXC/ESI MS analysis of the SATA/Lz conjugates for their quantitation, it should be 

remembered that the intensity of the ionic signal in ESI MS depends on a variety of 

parameters, including solvent composition115 (which is a function of time, since a 

gradual elution is used) and the presence of other coeluting species.116 Nevertheless, 

examination of the UV trace and individual extracted ion chromatograms presented in 

Figure 4.1 suggests that a reasonably good agreement exists between the UV 

absorbance and the ionic signal throughout the entire chromatogram (based on peaks 

resolved in the UV chromatogram, the deviation of relative UV and extracted ion 

chromatogram (XIC) peak intensities does not exceed 15%; see the Supporting 

Information for more information). Therefore, extracted ion chromatograms appear to 

be well-suited for at least semiquantitative assessments of relative abundances of 

various protein species present in the sample. 

4.3.2. Online IXC/ESI MS provides information on protein conformational integrity  

Above and beyond providing mass information on various protein conjugates, 

ESI MS detection allows large-scale conformational changes to be detected based on the 

analysis of protein ion charge state distributions. Mass spectra of all SATAn·Lz species 

detected in the experiment shown in Figure 4.1 are similar to each other in that only low 

charge density ions are present in the spectra (charge states ranging from +5 to +8 

populating the high m/z regions of the mass spectra). These narrow charge state 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
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http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5b02982/suppl_file/ac5b02982_si_001.pdf
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
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distributions are nearly identical to that of the intact (unconjugated) Lz (blue trace in 

Figure 4.1), suggesting that even multiply conjugated protein molecules maintain 

compact structure in solution.110  

In order to prove that large-scale unfolding can in fact be detected by IXC with 

online detection by native ESI MS, this technique was applied to characterize a mixture 

of intact Lz and fully reduced and alkylated Lz (Figure 4.2). The mixture contains only 

two species that can be readily identified based on their masses: reduction of all four 

disulfide bonds followed by alkylation of free sulfhydryls leads to a mass increase of 464 

Da (this species eluted at 15 min); no partially reduced Lz species (expected masses 

14 421, 14 537, and 14 653 Da) were observed. An important distinction between the 

two mass spectra averaged across the peaks representing fully reduced (15 min) and 

intact (43 min) Lz is the appearance of the ionic charge state distributions (inset in 

Figure 4.2): the low m/z region of the mass spectrum collected at 15 min clearly 

contains abundant ions suggesting that the protein eluted at this time undergoes 

(partial) unfolding in solution. This, of course, is not surprising, as complete reduction of 

disulfide bonds in Lz is known to compromise its higher order structure,112 which is 

reflected in the ionic charge state distribution in native ESI MS. 

In contrast to the completely reduced Lz species, removal of a single disulfide 

bond Cys6–Cys127 (which can be selectively reduced) has little effect on the structure and 

activity of native Lz.113 We used this three disulfide containing derivative of Lz (CM-

lysozyme) to demonstrate that the ionic charge state distributions do reflect protein 

conformation in solution, rather than diminished stability in the gas phase due to a loss 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig1
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig2
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig2
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig2
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig2
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of an internal cross-link, and that IXC/ESI MS does not generate false positives regarding 

loss of protein conformational integrity. The CM-lysozyme sample in which the Cys6–

Cys127 disulfide bond was selectively reduced based on existing protocols113 was 

analyzed by IXC/ESI MS, revealing three components (Figure 4.3). These species were 

readily identified based on their masses: CM-lysozyme eluting at 36 min (mass 14 421 

Da), intact Lz eluting at 52 min (mass 14 305 Da), and a minor component eluting at 40 

min whose mass (14 363 Da) is consistent with a single alkylation event (most likely 

representing a product of a side reaction, where a fully oxidized Lz species is alkylated at 

a histidine side chain, which is known to be marginally reactive with IAA)117. Importantly, 

the ionic charge state distributions for all three detected Lz species are essentially 

identical, and no ionic signal is observed in the low m/z regions of the mass spectra (see 

inset in Figure 4.3). This is in excellent agreement with the notion of the Cys6–Cys127 

disulfide bond not being critical for the conformational stability of this protein,118 

providing additional evidence that IXC/ESI MS can be used not only for identification of 

various protein forms in complex mixtures based on their masses, but also for assessing 

their conformational integrity based on their ionic charge state distributions. 

4.3.3. Characterization of heterogeneous protein therapeutics with IXC/ESI MS and 
online protein ion top-down fragmentation: identification of stress-induced 
modifications in Interferon-β 

Evaluation of IXC/ESI MS for the analysis of complex biopharmaceutical samples 

was carried out using a stressed sample of interferon-β, a protein drug that is used for 

treatment of multiple sclerosis.119 While historically the first form of interferon-β that 

became available for clinical use was homogeneous, as it was expressed in bacteria and 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig3
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig3
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig3
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig3
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was carbohydrate-free,120 the presence of carbohydrates is known to improve the 

activity of this protein therapeutic significantly by enhancing its stability.121, 122 Not 

surprisingly, just like many other glycoproteins, interferon-β expressed in mammalian 

cells exhibits a significant extent of heterogeneity due to the presence of multiple 

glycoforms.123 While more homogeneous preparations of this protein can be achieved 

using either extensive fractionation/purification or methods of molecular biology,124 in 

this work we intentionally used raw protein material to have the highest degree of 

heterogeneity in the analytical sample. Furthermore, the sample was stressed to induce 

nonenzymatic PTMs (deamidation) on the background of extensive enzymatic PTMs 

(glycosylation). Mass profiling of this sample carried out by ESI MS reveals the presence 

of six major glycoforms that can be distinguished from one another based on their 

masses (see inset in Figure 4.4). This number appears to agree with the number of 

partially resolved peaks observed in both UV and TIC chromatograms of the interferon-β 

sample analyzed by IXC (Figure 4.4), although the signal intensity distribution of 

chromatographic peaks does not match that of the ionic signals of different glycoforms 

in the mass spectrum of the sample prior to separation. 

The reason for this discrepancy becomes obvious when XICs are plotted for each 

of the six major glycoforms (color-fitted curves in Figure 4.4) and overlaid with the TIC. 

Intriguingly, each glycoform identified by ESI MS gives rise to two peaks in the 

chromatogram of the protein sample (e.g., the protein species whose mass is consistent 

with interferon-β bearing a BiNA2 carbohydrate chain elutes at both 17.5 and 19 min, 

and analogous behavior is exhibited by all other glycoforms). Although there must be a 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig4
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significant difference between the two species to cause the elution time change, the 

mass measurement alone in this case is not sufficient for this difference to be identified. 

There are three nonenzymatic PTMs causing only minimal mass difference that could 

conceivably occur as a result of protein stress: disulfide reduction (mass difference 

between the intact and the modified protein 2 Da), deamidation (1 Da), and disulfide 

scrambling (0 Da). The protein mass changes caused by these PTMs are very small 

(<0.01% of the total mass) and can easily evade MS detection, while the underlying 

chemical changes might be sufficient to afford a notable change in IXC elution time. 

Since the disulfide bridge in interferon-β is important for maintaining its tertiary 

fold, its complete reduction would be expected to cause partial unfolding; a putative 

scrambling event (formation of a non-native disulfide bridge involving free cysteine 

residue at position 17) would also be expected to alter the protein conformation. At the 

same time, deamidation events125 frequently do not induce large-scale conformational 

changes.126 The charge state distributions for BiNA2 species of interferon-β eluting at 

17.5 and 19 min were nearly identical to each other, both featuring only low charge 

density ions (in the high m/z region of the mass spectra). Therefore, a conclusion was 

made that both forms of the protein maintained compact structure in solution, and the 

stress-induced nonenzymatic PTMs failed to result in large-scale conformational 

changes. While this seems to suggest that the modification in question is in fact 

deamidation, a more definitive proof was needed to unequivocally confirm the presence 

of the deamidated species in the stressed interferon-β sample. 
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In order to establish the specific nature of the stress-induced nonenzymatic PTM 

of interferon-β, an online IXC/ESI MS/MS experiment was carried out by selecting 

precursor ions within a 2480–2490 m/z window followed by ETD in the trap cell and 

collisional activation of the products in the transfer cell (see the Experimental Section 

for more detail). The ETD process was supplemented with collisional activation in order 

to facilitate physical separation of protein ion fragments in the gas phase: since the 

protein ions were generated under near-native conditions, they were expected to retain 

some higher order structure in the gas phase. This phenomenon is known to prevent 

fragment dissociation (following cleavage of a chemical bond connecting them) in many 

cases due to the presence of residual noncovalent bonds (e.g., hydrogen bonds) holding 

the two fragments together.127 Collisional heating eliminates these residual bonds and 

facilitates the dissociation process.127 The fragmentation patterns obtained for both 

species of interferon-β (see the Supporting Information) are nearly identical to each 

other and feature abundant fragments within the Met1–Tyr30 and Ala142–Asn156 

segments of the protein. The near absence of fragments due to backbone cleavages in 

the protein segment flanked by Cys31 and Cys141 suggests that the disulfide bond 

connecting them is intact in both forms of the protein and rules out both disulfide 

scrambling and complete reduction as stress outcomes. 

There is only one additional ion that is present in the fragmentation spectrum 

averaged across the earlier-eluting peak of the BiNA2 species of interferon-β, namely, 

b25
2+; the only other difference between the two sets of fragment ions is the 1 Da mass 

shift for the c30
2+ ion recorded at earlier elution time (see insets in Figure 4.5). The 

http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#sec2
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5b02982/suppl_file/ac5b02982_si_001.pdf
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig5
http://pubs.acs.org/doi/10.1021/acs.analchem.5b02982#fig5
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protein segment covered by the latter fragment incorporates an asparagine residue 

(Asn25), and deamidation at that position would indeed result in a mass increase of 1 Da, 

which is reflected in the mass shift of c30
2+. Furthermore, deamidation at this position 

would create a proximal acid–basic residue pair (Asp25Gly26Arg27), a motif known to 

facilitate a direct bond cleavage of the amide bond adjacent to the aspartic acid 

residue,128 hence the appearance of the b25
2+ fragment in the spectrum averaged across 

the earlier-eluting peak. We also note that the monoisotopic mass of the b25
2+ fragment 

is 1 Da higher compared to the theoretical mass of this fragment calculated based on 

the sequence of intact interferon-β (and, therefore, consistent with a single 

deamidation event occurring within the N-terminal segment of the protein). Taken 

together, these observations not only provide unequivocal evidence that the 

nonenzymatic PTM triggered by stress is indeed deamidation, but also allow the 

affected site to be localized within the protein sequence. While there is a variety of 

mass spectrometry-based methods to detect protein deamidation and localize the 

affected sites,129, 130 a top-down approach to this task offers multiple advantages, such 

as elimination of additional sample preparation steps (enzymatic digestion and 

separation of peptide fragments).130 In addition to decreasing the analysis time to less 

than 1 h, it also eliminates artifacts that could occur during sample preparation required 

for bottom-up analysis.129 However, until recently the top-down approach was applied 

only to small carbohydrate-free proteins. Combining top-down fragmentation with IXC 

and online native ESI MS expands the capability of this technique dramatically by 

enabling its application to significantly larger and more complex (glyco)protein samples. 
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4.4. Conclusions 

Online LC/MS and LC/MS/MS analysis of proteins and related macromolecules 

has long been a workhorse in many fields of bioanalysis, including the 

biopharmaceutical sector. Although the majority of applications make use of reversed-

phase chromatography, other modes of separation are also actively evaluated. Of 

particular interest are methods that do not trigger protein denaturation during the 

separation step, as they enable analysis of not only covalent (primary) structure, but 

also higher order structure (including conformation and quaternary assembly). IXC is 

shown in this work to be a very attractive candidate for these analyses, as it can be 

applied to a wide range of challenging targets of interest to biopharmaceutical and 

biotechnology sectors, can be operated under conditions that do not disrupt protein 

higher order structure, and can be interfaced with native ESI MS. The latter provides 

information on both identity of components of protein-based products (by measuring 

masses) and their conformational integrity (via analysis of ionic charge state 

distributions), while the former allows isomers (as well as isoforms with nearly 

indistinguishable masses) to be separated. Incorporation of the top-down fragmentation 

step in the IXC/ESI MS workflow allows stress-induced nonenzymatic PTMs to be 

detected and localized in very complex and heterogeneous samples on the background 

of extensive enzymatic PTMs, such as glycosylation. Although the size of the largest 

protein therapeutic interrogated using the new IXC/ESI MS method in this work is 

relatively modest (23 kDa), a work is currently underway in our laboratory to expand the 
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reach of this new methodology to significantly larger and more heterogeneous targets, 

including PEGylated glycoproteins. 
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FIGURES 

 

 

 

 

 

 

 

 

Figure 4.1 IXC/ESI MS analysis of a mixture of SATA-conjugated Lz: a UV chromatogram, a total 
ion chromatogram, and extracted ion chromatograms for unmodified Lz and conjugates with 
different loadings (left panel) and ESI mass spectra (right panel) averaged across 
chromatographic peaks as indicated with colored dots on the chromatogram. The inset shows 
zoomed views of charge states +7 (note that the top spectrum contains ionic contributions from 
both SATA2·Lz and SATA3·Lz). The total amount of injected protein was 0.1 mg. The arrow 
indicates a point in time when the eluate was directed to the ESI source. 
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Figure 4.2 IXC/ESI MS analysis of a mixture of intact (fully oxidized) Lz and a fully reduced and 
alkylated Lz: a UV chromatogram (gray trace), a TIC chromatogram (black trace), and extracted 
ion chromatograms for ions representing the fully reduced (red) and intact Lz (blue). The inset 
shows mass spectra averaged across the two chromatographic peaks.  
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Figure 4.3 IXC/ESI MS analysis of Lz following selective reduction of a single disulfide bond: a UV 
chromatogram (gray trace), a TIC chromatogram (black trace), and extracted ion 
chromatograms for ions representing the species with three disulfide bonds (red), oxidized 
intact (blue), and oxidized singly alkylated Lz (purple). The inset shows mass spectra averaged 
across the three chromatographic peaks. 
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Figure 4.4 IXC/ESI MS analysis of stressed interferon-β sample: TIC chromatogram and extracted 
ion chromatograms of seven different glycoforms identified in the mass spectrum of the protein 
sample not subjected to separation (shown in inset). The carbohydrate chain structures were 
assigned based on measured mass and are also shown in the inset (structure key: squares, 
GlcNac residues; triangles, fucose residues; open circles, mannose residues; filled circles, 
galactose residues; diamonds, sialic acid residues). The total amount of protein injected was 4 
μg. 
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Figure 4.5 Identification and localization of a stress-induced nonenzymatic PTM within the BiNA2 
species of interferon-β by IXC/ESI MS/MS: TIC for all fragment ions produced by ETD and 
collisional activation of precursor ions corresponding to the +9 charge state of the BiNA2 species 
(black trace) and extracted ion chromatograms corresponding to two different isotopic peaks 
within the c30

2+ fragment ion (blue, m/z 1826.9; red, m/z 1825.4). The insets on the left show 
isotopic distributions of fragment ions that are observed in both chromatographic peaks (c30

2+ 
and y17

2+) and unique to the earlier-eluting species (b25
2+). The inset on the right shows overall 

fragmentation patterns for the two chromatographic peaks.  
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Supporting information 

 

Table S.1.Relative signal intensities of SATAnLz conjugates from UV chromatogram and XIC’s 
using the heights of peaks resolved in the UV chromatogram 

Elution time 
of peaks 
(min.) 

Relative abundances, % 

UV 
chromatogram 

Extracted ion 
chromatogram (XIC) 

52.0 100 100 

50.1 99.7 88.2 

48.1 28.6 29.4 

46.9 23.1 23.5 

45.1 15.3 17.6 

42.1 73.0 63.5 

 

 

Figure S6. Top-down fragmentation patterns observed for interferon-β species eluting at 
17.5 min (peak 1) and 19 min (peak 2) in the chromatogram shown in Figure 4.5. 
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CHAPTER 5 

CHARACTERIZATION OF PEGYLATED-PROTEIN CONJUGATES BY WEAK CATION 
EXCHANGE CHROMATOGRAPHY WITH ONLINE DETECTION BY NATIVE ESI MS 

SUPPLEMENTED WITH GAS PHASE REACTIONS 

5.1. Overview 

Covalent attachment of poly ethylene glycol (PEG) to proteins has demonstrated 

to be the most successful approach to improve pharmacokinetic and pharmacodynamics 

profile of protein drugs.131 PEGylation increases the efficacy of protein drugs by 

improving solubility, stability over wide pH and temperature range, decreasing renal 

clearance, and limiting toxicity and immunogenicity.132 All of these eventually contribute 

to less frequent administration of PEGylated protein drug to achieve the same 

therapeutic outcome as its non-PEGylated form. However, due to polydispersity of PEG 

molecule, PEGylation of protein increases complexity of the sample making its analytical 

characterization very challenging. 

Structural heterogeneity of PEGylated proteins occurs due to the presence of 

complex species differing in the number of PEG chains conjugated, sites of conjugation, 

and lengths of PEG chains. Many analytical methods have been reported to analyze the 

presence of positional isomers in PEGylated proteins, some of these involved enzymatic 

treatment to leave behind chemical tags to identify site of conjugation,133 use of new 

PEG derivatives,134 and using chromatographic separation followed by top-down MS 

analysis.135 Strategies have also been reported for site specific conjugation of proteins 

with PEG.9, 136 Apart from heterogeneity due to PEG chain, an additional level of 
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complexity could arise in PEGylated proteins due to the presence of enzymatic post 

translational modifications (e.g., glycosylation) or non-enzymatic post translational 

modifications (e.g., oxidation, deamidation). 

Electrospray ionization mass spectrometry (ESI MS) has demonstrated to be very 

useful for structural characterization of biopharmaceutical products.32 While native ESI 

MS has been particularly useful as a tool of providing information on mass, 

conformational integrity and interactions of protein drugs, it often fails for highly 

heterogeneous samples (e.g., PEGylated proteins for reasons mentioned in the 

preceding paragraphs). To analyze such samples ESI MS supplemented with limited 

charge reduction introduced by our lab has shown a lot of potential, and has indeed 

been applied to analyze highly glycosylated proteins and their complexes, and soluble 

protein aggregates.70, 137 In chapters 2 and 4 native ESI MS based methods have also 

been presented in which chromatographic separation of various protein species by size 

exclusion chromatography or ion exchange chromatography (IXC) helped in the analysis 

of protein heterogeneity. 

IXC is also helpful in the analysis of PEGylated proteins; a method was reported 

from our lab by combining separation capabilities of IXC and top-down tandem MS to 

monitor positional isomers and map PEGylation sites on a 8.6 kDa ubiquitin protein 

conjugated with 5kDa PEG chain.135 It also presented important fundamental aspects to 

reduce the complexity of mass spectrum (related to polydispersity of PEG) using 

collisional activated dissociation (CAD). In this work a new analytical strategy by 

combining ion exchange chromatography with online native ESI MS detection is 
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presented to analyze proteins conjugated with larger PEG chain. Limited charge 

reduction (LCR) or CAD is implemented in online LC/MS mode for characterization of 

PEGylation stoichiometry and different post translational modifications. This strategy 

have been applied to a complex mixture containing 22 kDa glycoprotein conjugated with 

a 20kDa PEG chain. 

5.2. Materials and Methods 

Stressed (partially deamidated) sample of PEGylated glycoprotein was provided 

by Biogen (Cambridge, MA). All other chemicals used in this work were of analytical 

grade or higher. Online IXC/MS analysis of stressed PEGylated glycoprotein was carried 

out directly by diluting the sample in 100 mM ammonium acetate, pH 5.5 to a required 

concentration. 

Ion-exchange chromatography was performed on an Agilent 1100 HPLC (Agilent 

Technologies, Santa Clara, CA) equipped with a 2 mm × 250 mm weak cation-exchange 

column ProPac WCX-10 (Thermo Scientific Waltham, MA). Ammonium acetate at pH 5.5 

was used for MS-compatible gradient elution (100 mM in mobile phase A and 1 M 

mobile phase B). The total flow rate was maintained at 0.2 mL/minute. Linear gradient 

reaching 25% B over 50 minutes after equilibration with mobile phase A for 3 minutes 

was used. Concentration of PEGylated glycoprotein used was 1mg/ml and was injected 

using a 20 µl sample loop. Upon exiting the column, the eluate was directed to online 

detection by native ESI MS without any solvent modification or flow splitting using 

Synapt G2Si (Waters, Milford, MA) hybrid quadrupole/time-of-flight mass spectrometer. 

LCR was carried using electron transfer dissociation (ETD) on narrow population of ions 
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isolated at m/z 1150 with 10 m/z isolation window. The conditions were optimized as 

follows: capillary voltage, 2.5 kV, sampling cone, 5.0 V; source offset, 80 V; desolvation 

temperature, 400 °C; source temperature, 120 °C, cone gas flow, 45 L/h; desolvation gas 

flow, 600 L/h; make up gas flow, 35L/h; trap gas, 33.0 ml/min; transfer gas, 0.8 ml/min; 

trap wave height, 0.08 V. CAD was carried out on ions isolated at m/z 1050 using 10 m/z 

window in transfer cell by setting the collision energy at 25.0V and transfer gas to 2.0 

ml/min. 

5.3. Results and Discussion 

Separation of this stressed PEGylated glycoprotein by WCX yielded four partially 

resolved peaks along with an inflection point at 27-28 minutes interval (figure 5.1). The 

species resolved by WCX could represent positional isomers and species with different 

number of PEG chains conjugated to protein. In the case of this protein the presence of 

positional isomers can be ruled out as PEGylation chemistry was optimized to conjugate 

specifically at N terminal. However extensive heterogeneity due to the presence of 

various glycoforms and deamidated forms could also lead to occurrence of different 

PEGylated species. All these factors contributing to heterogeneity along with multiple 

ESI MS charge states resulted in completely unresolved mass spectra detected for all of 

the WCX peaks as shown in the upper right panel of figure 5.1. These mass spectra imply 

occurrence of ion at each m/z in 800 – 1400 m/z range. 

To analyze this sample LCR using ETD in the online WCX/ESI MS mode was 

implemented. For the entire duration of LC, LCR was carried out on a narrow population 

of ions isolated at m/z 1150. Charge state ladder resulting from this experiment enabled 
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detection of the mass of isolated ions. In the bottom right panel of figure 5.1, a mass 

spectrum obtained by averaging ESI MS LCR scans for ions (m/z 1150) eluting at 30 – 32 

minutes is shown. Deconvolution of this mass spectrum gave a mass of ~45 kDa, which 

is in agreement with 1:1 PEGylation of glycoprotein taking into account molecular 

weight distribution of 20kDa PEG chain and molecular weight of this glycoprotein 

(22kDa). ESI MS LCR data of m/z 1150 ions detected from other WCX peaks also gave 

identical charge ladder deconvoluting to a mass consistent with 1:1 PEGylation 

stoichiometry. This way by using LCR in conjunction with WCX/ESI MS, detection of 

PEGylation stoichiometry was made possible, and all the stressed PEGylated 

glycoprotein species resolved partially by WCX (figure 5.1) were found to be conjugated 

with one chain of PEG. Unfortunately due to continuum of mass and broad LCR peaks 

we were not able to differentiate various glycoforms. 

For further analysis of this sample, a WCX/online ESI MS method was developed 

in which CAD was applied to a narrow population of ions at m/z 1050 (isolated over 

entire LC timescale). As seen in figure 5.2 the complexity of mass spectrum is decreased 

significantly leading to detection of clusters of distinguishable ionic peaks. Charge state 

assignment for each of these ionic clusters was carried out easily by dividing the 

adjacent peak spacing with the repeating mass of PEG unit (44 u). The mass of these 

ions correspond to cleavage of PEG chains following the route that produces B and C 

ions as proposed by Lattimer and his colleagues.138 Similar ions were also produced, 

when insource CAD was applied to PEGylated Ubiquitin as reported in the work carried 

out previously in our lab.135 CAD conditions were optimized to cleave most of the PEG 
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chain keeping the polypeptide backbone of the glycoprotein intact (figure 5.2).  Multiply 

charged ion clusters corresponding to six PEG molecules bound to intact glycoprotein 

(B6
+14 - B6

+10 ions) were detected. These features led to simplified mass spectra enabling 

identification of different stressed PEGylated glycoforms present in the sample as they 

are separated by WCX (see right panel of figure 5.2). 

Careful analysis of this data revealed the presence of PEGylated species bearing 

BiNA2, TriNA3, BiNA1, and TriLACNA3 carbohydrates (see figures 5.3 and 5.4). Mass 

spectrum correlating with PEG BiNA2 glycoforms was recorded in two chromatographic 

peaks eluting at 28.2 – 29.3 and 31.9 – 33.5 minutes interval. Similarly based on ESI MS 

mass measurements TriNA3 was found to elute at 25.0 – 28.0 and 30.0 – 31.4 minutes 

interval. Identification of these glycoforms based on mass was further confirmed by 

detection of fragment ions produced from cleavage of terminal carbohydrate chain 

residues (sialic acid). As shown in figure 5.3, in addition to intact BiNA2 ion mass spectra 

detected at 28.2 – 29.3 and 31.9 – 33.5 minutes  also showed ions whose mass was 

consistent with loss of one and two sialic acids. BiNA1 was confirmed to elute in the last 

chromatographic peak based on mass and detection of fragment ions from loss of only 

one sialic acid residue. Similarly TriNA3 glycoform (figure 5.4) showed ions from 

fragmentation of up to 3 sialic acids. Though BiNA1 ion seen in figure 5.4 could be due 

to fragmentation of GlcNAc and galactose units from TriNA2 form, it most likely appears 

in this mass spectrum due to tailing of chromatographic peak (see extracted ion 

chromatogram, XIC in figure 5.5). 
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XIC plotted in a straightforward way using the corresponding ions led to an 

artificial increase in XIC peak signal due to absence of baseline resolved mass spectra 

(see mass spectra in figure 5.2). To eliminate this noise, XICs were produced by 

subtracting ionic intensities of the two most abundant peaks belonging to the same 

cluster of glycoform ions (e.g., XIC of BiNA2 glycoform using the BiNA1 fragment ions 

was made by subtracting XIC’s abundance of 2033.0 and 2037.6 m/z ions). It is not 

surprising to see the presence of two chromatographic peaks for each glycoform (BiNA2 

and TriNA3) of this stressed PEGylated glycoprotein; a similar observation was made in 

chapter 3 when interferon was analyzed by WCX/ESI MS. Therefore the earlier eluting 

chromatographic peaks of each glycoform most likely represent PEGylated deamidated 

fraction of TriNA3 and BiNA2. 

5.4. Conclusions 

Growing trend of heterogeneity in biopharmaceuticals occurring either naturally 

or induced by chemical modification (PEGylation in this work) presents a serious 

challenge to analytical characterization. In this chapter analytical strategy has been 

presented, which combined chromatographic separation along with various gas phase 

chemistry techniques (ETD, CAD) in ESI MS. WCX separation has proved to be very 

powerful in delineating the presence of non-enzymatic PTM (deamidation) on intact 

protein glycoforms, which is not possible using bottom-up MS approach or standard 

RPLC/MS. The feasibility of carrying out these kinds of gas phase measurements in 

online mode helps by decreasing the analysis time, and also illustrates a novel method 

to analyze such highly heterogeneous samples. Interfacing WCX/ESI MS with LCR has 
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been demonstrated to be suitable for characterization of stoichiometry of PEGylated 

sample. This WCX/MS LCR workflow can also be used for characterization of non-

covalent protein complexes involving such PEGylated proteins. For a thorough 

characterization of PEGylated proteins implementing CAD just enough to cleave most of 

the PEG chain has shown to be a promising approach to reduce complexity of mass 

spectrum to identify various PTMs. 
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FIGURES 

 

 

 

 

 

Figure 5.1 IXC/ESI MS analysis of stressed PEGylated glycoprotein: total ion chromatogram (TIC) 
shown in black trace (lower left panel) and the upper right panel shows mass spectra averaged 
across the correspnding chromatographic peaks marked with same colored circles. Lower right 
panel is from IXC ESI MS LCR analysis; charge state ladder detected for the isolated ions (m/z 
1150) of chromatographic peak marked with green circle. LCR charge state ladders for the ions 
detected in other chromatographic peaks were similar giving a mass of 45kDa. 
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Figure 5.2 IXC/ESI MS CAD analysis of stressed PEGylated glycoprotein: a total ion 
chromatogram (TIC) obtained from CAD of ions isolated at m/z 1050 is shown in black trace 
(lower left panel) and the right panel shows mass spectra averaged across each 
chromatographic peak. BiNA2 glycoform eluted at 28.2 - 29.3  and 31.9 - 33.5 minutes; TriNA2 
and TriLACNA2 glycoforms at 25.0 - 28.0 and 30 .0 – 31.4 minutes; BiNA1 glycoform at 36.0 - 
37.0 minutes interval. 
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Figure 5.3 Zoom of +11 charge state of the mass spectra detected from IXC/ESI MS CAD of 
stressed PEGylated glycoprotein. The carbohydrate ions were assigned based on measured 
mass after subtraction of 6 PEG units’ mass. (structure key: squares, GlcNac residues; triangles, 
fucose residues; open circles, mannose residues; filled circles, galactose residues; diamonds, 
sialic acid residues). BiNA2 glycoform was detected in peaks eluting at 28.2 – 29.3 and 31.9 – 
33.5 minutes range. BiNA1 eluted at 36.0 – 37.0 minutes interval. 
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Figure 5.4 Zoom of +11 charge state of the mass spectra detected from IXC/ESI MS CAD of 
stressed PEGylated glycoprotein. These mass spectra correspond to ions detected in TriNA3 
glycoform. Ions marked with asterisk correspond to TriLACNA3. BiNA1 and BiNA0 glycoform 
fragment ions are observed due to tailing of BiNA2 glycoform. The carbohydrate ions were 
assigned based on measured mass after subtraction of 6 PEG units’ mass. (structure key: squares, 
GlcNac residues; triangles, fucose residues; open circles, mannose residues; filled circles, 
galactose residues; diamonds, sialic acid residues). 
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Figure 5.5 Extracted ion chromatograms (XICs) of BiNA2 and TriNA3 PEGylated glycoforms 
detected from WCX/ESI MS CAD analysis. XIC of BiNA2 glycoform was made using BiNA1 
fragment ions detected from fragmentation of sialic acid residue from intact BiNA2 form. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE OUTLOOK 

Novel analytical methods combining non-denaturing liquid chromatography 

separation with native ESI MS detection were developed in this work. These methods 

have applications in characterization of biopolymer structure and interaction to help in 

the development and quality control of biotherapeutics. 

SEC with online native ESI MS detection method developed in chapter 2 allowed 

characterization of higher order structure of proteins. It was shown to be useful in 

probing conformational integrity and detection of soluble protein aggregates of a model 

protein (bovine serum albumin), and characterize rapidly interconverting oligomeric 

states of a recombinant glycoprotein human arylsulfatase A.  

Using the same SEC/ESI MS workflow a method to measure kinetics and binding 

affinity of transient protein interactions have also been developed. This method 

involved fitting of experimental XICs with the profile generated using mathematical 

solutions. Validation of this new method for analysis of protein interactions with 1:1 and 

2:1 binding stoichiometry was carried out using the known binding of C-lobe of human 

transferrin and transferrin variants, respectively with human transferrin receptor. 

Further validation of this method will be carried out by changing the concentration of 

interacting proteins, which will change binding kinetics, but should give the same 

equilibrium dissociation constant. This method has significant potential as it does not 
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require immobilization or labelling of proteins, works with small amount of sample, and 

could be applied for complexes interacting with higher stoichiometries.  

 

Combination of IXC with online native ESI MS detection was developed and 

shown to be effective in characterization of conformational integrity and positional 

isomers of protein conjugates (using chemically modified lysozyme as a model) and 

PTMs of a biotherapeutic recombinant human interferon beta 1a. Top-down 

fragmentation in this workflow (IXC/MS/MS of whole proteins) allowed non-enzymatic 

PTMs to be identified in situations when the mass measurement alone was not 

sufficient for an unequivocal conclusion to be reached. To characterize highly 

heterogeneous PEGylated glycoprotein IXC/online ESI MS methods supplemented with 

gas phase reactions (limited charge reduction and collisional activation) were 

developed. These methods allowed detection of PEGylation stoichiometry and 

glycoform distribution of intact PEGylated protein. A prerequisite for methods 

developed in chapter 2 – 4 is that separation needs to be carried out in MS friendly 

volatile mobile phase. 

Separation by SEC applies for systems containing globular proteins, however it is 

most likely to fail for complexes containing non-globular biopolymers (e.g., 

protein/DNA, protein/glycosaminoglycans), where differences in hydrodynamic radii is 

not significant to allow separation based on size. To characterize transient complexes 

containing such species, other modes of non-denaturing chromatography will be 

implemented. IXC with online ESI MS detection will be particularly useful in this 
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situation. Fitting XICs detected in IXC/ESI MS with the ADR equations similar to those 

developed in chapter 3, kinetics and binding affinity of the complexes can be measured. 

Unlike size filtration in SEC, linear velocities in IXC will depend on the interaction of the 

species with the charged resin. This method will be applied for characterization of 

protein/DNA complexes, which plays an important role in gene regulation. 

The feasibility of carrying out limited charge reduction in online LC/MS opens 

exciting opportunities. Implementing this feature in the SEC/ESI MS method developed 

in chapter 3 and in IXC/ESI MS will enable qualitative analysis of interaction of highly 

heterogeneous biopolymers and to measure kinetics and binding affinity. Transient 

complexes that will be characterized using these methods include highly glycosylated 

proteins (e.g., hemoglobin-drug conjugate binding to haptoglobin), protein-polymer 

conjugates, and linear polysaccharides. 
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APPENDIX 

APPENDIX TO CHAPTER 3 

Derivation of partial derivative equation for rhASA (chapter 3) 

Assuming a short lived intermediate tetramer (M4); M2 ⇌ M8 transition of rhASA can 

be understood by the following rate equation80 

2𝑀2 ⇌𝑘−2 (𝑓𝑟𝑑𝑓)
𝑘2 (𝑑𝑠𝑠𝑠) 𝑀4;  2𝑀4 ⇌𝑘−4 (𝑑𝑠𝑠𝑠)

𝑘4 (𝑓𝑟𝑑𝑓) 𝑀8                                                                                (1)               

The cumulative rates of octamer production and loss under steady state condition will 

be  

𝑅𝑑𝑑𝑑𝑑𝑠𝑑= 𝑘−4𝐶𝑀8; 𝑅𝑟𝑑𝑑𝑠𝑑= 1
2
𝑘2𝐶𝑀22                                                                                               (2)                                    

Concentration of M8 at any point x across the column length (0 < x < L) will also be 

affected by longitudinal transfer and diffusion. 

 
Mass transfer will be characterized by hydrodynamic flux through column cross-section 

S. Hydrodynamic flux (JM8) of M8 depends on the linear velocity (uM8) and concentration 

gradient (CM8) 

𝐽𝑀8(𝜕, 𝑡) =  𝑢𝑀8· 𝐶𝑀8(x, t)              (3)                                                    

Diffusion is determined by diffusion coefficient (DM8) and concentration gradient for M8 

𝐽𝑀8(𝜕, 𝑡) =  −𝐷𝑀8  ·  𝜕 𝐶𝑀8(𝑥,𝑓)
𝜕𝑥

                                                                                                 (4)                                           

Total change of the number of M8 molecules within the infinitely small slice of the 

column volume (S.δx) over an infinitely small period of time δt will reflect a difference 
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between the rates of association and dissociation, as well as the difference between the 

incoming flux of M8 and the outgoing flux  

𝛿𝐶𝑀8 · 𝑆𝛿𝜕 = −𝑆 · 𝑢𝑀8 · 𝛿𝐶𝑀8 · 𝛿𝑡 + 𝑆 · 𝐷𝑀8 · 𝛿 �
𝜕𝐶𝑀8(𝜕, 𝑡)

𝜕𝜕
� · 𝛿𝑡 − 𝑆𝛿𝜕 · 𝑅𝑑𝑑𝑑𝑑𝑠𝑑 · 𝛿𝑡 + 𝑆𝛿𝜕

· 𝑅𝑟𝑑𝑑𝑠𝑑 · 𝛿𝑡                                                                                                                          (5) 

Association and dissociation terms are defined by eq.2. Since x and t are independent 

variables, eq. 5 can be re-written in the form of a partial differential equation, and a 

similar equation can be constructed for the dimer concentration. 

⎩
⎪
⎨

⎪
⎧𝜕𝐶𝑀8

𝜕𝑡
= −𝑢𝑀8 ∙

𝜕𝐶𝑀8

𝜕𝜕
+ 𝐷𝑀8 ∙

𝜕2𝐶𝑀8

𝜕𝜕2 − 𝑘−4𝐶𝑀8 +
1
2
𝑘

2
𝐶𝑀2

2

𝜕𝐶𝑀2

𝜕𝑡
= −𝑢𝑀2 ∙

𝜕𝐶𝑀2

𝜕𝜕
+ 𝐷𝑀2 ∙

𝜕2𝐶𝑀2

𝜕𝜕2 + 4𝑘−4𝐶𝑀8 − 2𝑘2𝐶𝑀2
2

                                                (6) 

List of parameters used in the calculations of partial differential equations for FeTfC 
and TfR interaction 

uP = 1.465 cm/min 

uR = 1.740 cm/min 

uPR = 1.845 cm/min 

DP = 0.0027cm2/min 

DR = 0.0134 cm2/min 

DPR = 0.0122cm2/min 

List of parameters used in the calculations of partial differential equations for hTf and 
TfR interaction 

uP = 1.71 cm/min 

uR = 1.74 cm/min 



 

107 

uPR = 1.87 cm/min 

uP2R = 2.08 cm/min 

DP = 0.0026 cm2/min 

DR = 0.0134 cm2/min 

DPR = 0.0110 cm2/min 

DP2R = 0.0090 cm2/min 

List of parameters used in the calculations of partial differential equations for Fe2 bTf 
and TfR interaction 

uP = 1.67 cm/min 

uR = 1.74 cm/min 

uPR = 1.80 cm/min 

uP2R = 2.00 cm/min 

DP = 0.0026 cm2/min 

DR = 0.0134 cm2/min 

DPR = 0.0110 cm2/min 

DP2R = 0.0090 cm2/min 

List of parameters used in the calculations of partial differential equations for bTf and 
TfR interaction 

uP = 1.70 cm/min 

uR = 1.74 cm/min 

uPR = 1.87 cm/min 

uP2R = 2.08 cm/min 

DP = 0.0026 cm2/min 
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DR = 0.0134 cm2/min 

DPR = 0.0110 cm2/min 

DP2R = 0.0090 cm2/min 

Initial (injection) concentrations of all the components were represented as boxcar 
functions with a width σ =  0.21 cm 
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