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EPIGRAPH

JR.R. Tolkien’s writings have helped to inspire in me a love of nature and an
appreciation for agriculture. We are often reminded of ourselves when we study
behaviors of ants, particularly their aptitude for farming. Below I juxtapose Tolkien’s
favorite protagonists with my own subjects of study using the following illustration and a
quotation from one of his classic works.

“It is clear that Hobbits had, in fact, lived quietly in Middle-earth for many long years
before other folk became even aware of them. And the world being after all full of
strange creatures beyond count, these little people seemed of very little importance.”

—J. R. R. Tolkien, The Fellowship of the Ring

lustration Credit:

Not Your Average Farmer
Tara Michelle Bradley
January 2016
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ABSTRACT

THE MEAT-FARMING ANTS: PREDATORY MUTUALISM BETWEEN
MELISSOTARSUS ANTS (HYMENOPTERA: FORMICIDAE) AND ARMORED
SCALE INSECTS (HEMIPTERA: DIASPIDIDAE)

MAY 2016
SCOTT A. SCHNEIDER, B.S., ROWAN UNIVERSITY
M.S., TOWSON UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Benjamin B. Normark

Ant agricultural mutualisms are common, well studied, and receive attention from
scientific and public spheres due to shared similarities with human agriculture (i.e.
ant/fungus ‘crop farming’ and ant/insect ‘dairy farming’). They also serve as important
model systems for studying many facets of mutualism. This study reveals that the
repertoire of ant agriculture may also include ‘meat farming’. Predatory mutualisms
occur between Melissotarsus ants and various species of armored scale insects. This
dissertation employs a multi-disciplinary approach to investigate the evolutionary history
and nature of ant/diaspidid mutualisms. Chapter 1 reviews the current state of knowledge
regarding species composition of these associations and includes descriptions of three
new diaspidid species. Also included is a discussion on new observations of foraging
behaviors gathered from multiple colonies of Melissotarsus emeryi in South Africa.
Chapter 2 reconstructs the phylogeny of the Aspidiotini tribe of armored scale insects
from molecular data for 127 species from 31 genera. Nearly all known ant-associated
diaspidids belong to the tribe Aspidiotini. The majority of aspidiotine genera are found to
be paraphyletic as currently defined and recommendations to increase taxonomic stability
for this tribe are provided. Myrmecophily among diaspidids has evolved no fewer than
six times independently, four times within the Aspidiotini and two additional origins
recorded from the Diaspidini. Relationships between ants/diaspidids are labile at the
species level and partnerships can shift. However, several clades of ant-specialized
diaspidids have evolved indicating that some relationships can be stable on an
evolutionary timescale. Chapter 3 investigates the diet and relative trophic éposition of
Melissotarsus ants by analyzing stable isotopic enrichment of 8'°N and 8"°C, and by
assaying ant gut contents for diaspidid COI mtDNA fragments. Diaspidid DNA is
consistently amplified from gut contents of worker ants. Isotopic analyses indicate a
strong positive relationship between 8'°N and §'"°C isotopes of worker ants and associated
diaspidids; most variation in worker isotopes can be explained by variation in diaspidid
isotopes. Worker ants are calculated to be approximately one trophic level above
associated diaspidids. These dietary studies indicate that Melissotarsus ants are predators
of mutualistically associated diaspidids. Predation plays a central role in the
establishment and maintenance of ant/diaspidid mutualisms.
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CHAPTER 1
MUTUALISM BETWEEN ARMORED SCALE INSECTS AND ANTS: NEW
SPECIES AND OBSERVATIONS ON A UNIQUE TROPHOBIOSIS
(HEMIPTERA: DIASPIDIDAE; HYMENOPTERA: FORMICIDAE:
MELISSOTARSUS EMERY)

1.1 Abstract

The association between African armored scale insects (Hemiptera: Coccoidea:
Diaspididae) and ants belonging to Melissotarsus Emery (Hymenoptera: Formicidae:
Myrmicinae) is the only trophobiosis known in which ants do not receive honeydew or
nectar in exchange for protection and other services. Food reward for the ants in this
mutualism remains unknown, despite repeated suggestions that diaspidids are consumed
by the associated ants, thus serving as ‘domestic cattle’. I describe new observations on
interactions between Melissotarsus emeryi Santschi and the diaspidid Morganella
conspicua (Brain) from South Africa. Worker ants exhibited previously undescribed
tending behaviors, most notably a ‘squeezing and licking’ performed on an adult female
diaspidid and ‘culling’, in which a worker removed an adult female armored scale from
the host plant. These could represent the gathering of secretory products and the
cultivation of an individual for consumption, respectively. An ant exclusion study over 12
days of isolation showed that adult female diaspidids and second-instar nymphs secreted
no wax or exudates that attending ants would ordinarily collect. Workers of M. emeryi
did not defend their nest against invading colonies of Crematogaster and other
unidentified ants: I hypothesize that the primary mode of defense is maintenance of
isolation within galleries. I describe three new ant-associated diaspidid species:

Affirmaspis cederbergensis Schneider sp.n. from South Africa, Diaspis doumtsopi



Schneider sp.n. from Cameroon, and Melissoaspis incola Schneider sp.n. from
Madagascar. Melissoaspis formicaria (Ben-Dov) comb.n. is transferred from Morganella
(Brain). Diagnostic characteristics for Melissoaspis Ben-Dov are revised, and additional
taxonomic information defining this genus allows ease of identification. An updated

identification key to the species of ant-associated diaspidids is provided.

1.2 Introduction

The association of ants with honeydew-producing Hemiptera (aphids, scale
insects, membracids, etc.), or with nectar-producing larvae of lycaenid butterflies, is a
well-studied phenomenon termed trophobiosis. Trophobioses are complex, typically
mutualistic, relationships in which ants provide protection and other benefits to a partner
species and procure a reliable food reward from this partner in exchange for their
attendance (reviewed by (Way 1963, Holldobler and Wilson 1990, Gullan 1997, Gullan
and Kosztarab 1997, Delabie 2001, Pierce et al. 2002). The only ant-hemipteran
trophobiotic relationship in which honeydew appears not to be a ‘currency’ of exchange
involves ants of the genus Melissotarsus Emery (Hymenoptera: Formicidae: Myrmicinae:
Melissotarsini) and certain armored scale insects (Hemiptera: Diaspididae). The
Diaspididae are one of a few families of scale insects that do not produce honeydew
(Beardsley Jr and Gonzalez 1975, Foldi 1990, Foldi and Rosen 1990). Armored scale
insects feed on the parenchyma tissues of host plants rather than on phloem or xylem
fluids, which obviates the need to expel excess water and sugars as honeydew. It is
uncertain what food source Melissotarsus ants procure from diaspidids and how stable

mutualisms are maintained between such unlikely partners. However, Melissotarsus



workers actively tend diaspidid populations within their nests to the benefit of both
parties and the association is obligate for the ants and potentially for the diaspidids as
well (Mony et al. 2007, Ben-Dov and Fisher 2010).

A detailed review on the trophobiosis between Melissotarsus ants and diaspidids
by Ben-Dov and Fisher (2010) is summarized briefly later on. Here, I describe new
observations on associations between the ant Melissotarsus emeryi Santschi and the
diaspidid Morganella conspicua (Brain) in South Africa. I describe three new species of
ant-associated diaspidids and expand our understanding of the taxonomy and distribution
of the trophobiosis.

1.2.1 Melissotarsus ants and Diaspididae: natural history and associations

The relationship between Melissotarsus ants and armored scale insects was first
discovered in the 1970s in Cote d’Ivoire (Delage-Darchen 1972, Delage-Darchen et al.
1972) and shortly thereafter in South Africa (Prins et al. 1975, Ben-Dov 1978). The
association occurs throughout continental Africa as well as Madagascar and Saudi Arabia
(Ben-Dov and Matile-Ferrero 1984, Collingwood 1985, Dejean and Mony 1991, Mony et
al. 2002). Little is known about Melissotarsus ants, due to their cryptic habits. These are
gallery-forming ants with large polygynous colonies ranging from several thousand to
over 1.5 million individuals (Mony et al. 2002). Worker ants birthed from multiple
queens operate as a single unified colony within one host tree; there is little intercolony
aggression (Mony et al. 2007). Workers excavate a network of tunnels in the bark of live
trees and diaspidid populations are housed within the nest chambers along with ant brood.
Melissotarsus workers enclose their galleries against the surrounding environment by

forming a mortar from silk, sawdust and frass used to seal the entrances (Prins et al.



1975, Fisher and Robertson 1999). They are the only adult ants that produce silk. When a
segment of the gallery roof is removed, workers immediately divert their attention to
repairing and enclosing the nest chambers. It is difficult to observe normal behaviors and
interactions between ants and diaspidids directly, due to this cloistered habit, but workers
have been observed frequently to tend diaspidids (Delage-Darchen et al. 1972, Prins et al.
1975, Ben-Dov 1990, Mony et al. 2007). Melissotarsus workers do not forage outside of
their galleries due to an unusual configuration of their middle pair of legs, which are
tilted at an angle of nearly 180° to the front legs. This configuration allows workers to
anchor themselves on the sides or roof of the tunnel, but renders them incapable of
walking effectively on flat surfaces (Delage-Darchen 1972, Mony et al. 2007). Workers
will stagger and flail about when placed on a flat surface.

Within the galleries of Melissotarsus, various insect inhabitants have been found,
including putative predators and parasitoids (Encyrtidae, Reduviidae, and Bethylidae)
and social parasites (Thysanura, Anthochoridae, and Aradidae) (Prins et al. 1975), but
these are rare. Diaspidids are the only other abundant and consistent nest inhabitants, and
it is likely that the nutritive demands of these massive ant colonies are derived in some
form from diaspidids.

All life stages of diaspidids are found within Melissotarsus galleries, including
first- and second-instar nymphs, adult females and adult males in biparental species (Ben-
Dov and Matile-Ferrero 1984). Diaspidids are abundant within ant nests. One census
found the diaspidid Morganella pseudospinigera Balachowsky to outnumber ants
(Melissotarsus beccarii Emery) approximately three to one from randomly selected twigs

(Ben-Dov and Matile-Ferrero 1984). Mony et al. (2002) estimated colonies of



Melissotarsus weissi Santschi and M. beccarii in mango (Mangifera indica L.) and safou
(Dacryodes edulis Lam), respectively, to contain from 330 000 to 556 000 diaspidids.
These staggering numbers suggest that diaspidids benefit from the association, and Ben-
Dov & Matile-Ferrero (1984) proposed that the primary benefit received by diaspidids is
protection within the enclosed galleries of ant nests. Aided dispersal is another potential
benefit that may be received by diaspidid partners, but it remains unknown as to how ant
colonies acquire diaspidids and if they are transported actively or recruited during colony
foundation. Possibly ants participate actively in the introduction of diaspidids as crawlers
(mobile first-instar nymphs) to the galleries (Ben-Dov and Fisher 2010).

All populations of ant-associated diaspidids are scale-less; they lack the
characteristic scale covering for which the ‘armored’ scales have been named. The
majority of ant-associated diaspidid species are known only from scale-less populations
living with ants; however, M. conspicua, M. pseudospinigera and Melanaspis
madagascariensis Mamet were originally described from free-living populations with
normal scale covers (Brain 1919, Mamet 1951, Balachowsky 1956, Ben-Dov and Fisher
2010). In free-living populations the scale cover provides mechanical protection
throughout most of the life stages (Foldi 1990) and provides effective protection even
against predatory Pseudomyrmex ants associated with Acacia (Janzen 1966, Kosztarab
1987). For ant-associated populations, sequestration within galleries is apparently an
effective substitute for this mode of protection.

It is unclear why ant-associated diaspidids lack scale covers. If diaspidids attempt
to produce wax in galleries then ants either collect that wax or prevent its production,

perhaps through chemical manipulation (Ben-Dov 1978). An exception apparently occurs



for male diaspidids; the prepupal and pupal instars of M. conspicua possess scale covers
from which adult males emerge (Prins et al. 1975) S. A. Schneider, personal observation).
If ants are responsible for the absence of scale covers, this suggests that Melissotarsus
workers differentiate between the sexes and only interfere with females producing wax.
Female diaspidids possibly cease wax production in the presence of Melissotarsus ants:
wax production may be costly and it may be advantageous for diaspidids to invest in
growth or reproduction instead. One symbiotic species of Aspidiotus completely lacks
dorsal macroducts, the major secretory glands that are responsible for producing the scale
cover (Delage-Darchen et al. 1972). Several other ant-associated diaspidids have few
dorsal macroducts as well (Ben-Dov 2010). Currently we cannot know if the macroducts
are functional in these species, because all known populations are ant-associated.

Authors have speculated about the potential food rewards that Melissotarsus
could receive from diaspidids. Waxy glandular secretions from the macroducts have been
suggested to serve as the primary food source for Melissotarsus (Ben-Dov and Matile-
Ferrero 1984). Worker ants frequently probe the dorsum and pygidium of diaspidids with
their mandibles; it is possible that they are collecting secretions in this way. This
hypothesis is not supported by the observation that several ant-associated diaspidids
either lack macroducts or possess only a few on the dorsal pygidium. However, both
scale-covered and scale-less populations of M. conspicua have been found on the same
tree in free-living and ant-associated populations, respectively (Prins et al. 1975), and so
this possibility has not been ruled out. It has also been suggested that ants are maintaining
armored scale insects as ‘domesticated cattle’ that are consumed as a source of ‘meat’

(Ben-Dov 1978). Trophobiotic ants occasionally consume mutualist partners in addition



to harvesting honeydew, but the degree to which this occurs is largely unknown (Stadler
and Dixon 2008). This would be the first trophobiosis in which meat is the primary (and
perhaps only) food reward for ant attendance. Meat farming would make for more than
just an interesting case of natural history, as it would suggest that the relationships
between Melissotarsus ants and diaspidids are simultaneously mutualistic and predatory.
Further dietary studies of Melissotarsus ants are required to fully understand the nature

and dynamics of this unusual form of mutualism.

1.3 Interactions between M. emeryi and M. conspicua from South Africa

1.3.1 Methods

I made several new observations on live populations of the ant species M. emeryi and the
diaspidid M. conspicua in the Western Cape province of South Africa. In January 2012.
S.A.S. and J.H.G. revisited Nardouwsberg, the locality from which Prins et al. (1975)
first discovered this association within host trees of the species Leucospermum
praemorsum (Meisn.) Phillips (Fabaceae). Ant colonies were discovered in 10 trees of L.
praemorsum from several farms located between Nardouwsberg and Vanrhynsdorp in the
Clanwilliam district (localities are listed under the heading for M. conspicua in ‘Material
examined’ below). Infested trees were identified easily by vein-like markings on the
smooth bark, indicating the presence of galleries under the surface. I haphazardly selected
branches from infested trees, sawed them off and brought them back to Stellenbosch
University for observation in the laboratory. I removed the bark to expose galleries and
then observed the interactions between ants and diaspidids through a Leica Wild M8

dissecting microscope. Any evidence of ant-feeding behaviors was of particular interest.



1.1. Ant Exclusion — A segment of exposed galleries from the ant-exclusion study with
adult females and second-instar nymphs of Morganella conspicua. (A) This photograph
was taken at the beginning of the ant exclusion study on 7 January 2012. The white arrow
indicates an ant larva that is also visible at the far left of the second pane. (B) This
photograph was taken 20 days later on January 27, 2012. Daily observations were made
for the period of January 7th through January 18th. During this time no armored scale
insects were observed secreting wax from the macroducts or exudate from the anus.
Individual diaspidids that died during this interval appear darkened and shriveled.
(Photograph: Anton Jordaan, Stellenbosch Centre for Photographic Services.)

I exposed ant galleries on two segments of branch, each approximately 17 cm in
length, cut from a tree at Duikerfontein farm in Nardouwsberg (locality: 32°1°55.56” S,
18°51°54.30” E). All worker ants were removed from these branch segments, such that
the resident diaspidids (both adult females and second-instar nymphs) remained isolated
from ant attendance for a total of 12 days. The goal of this ant exclusion was to determine
whether or not armored scale insects would produce filaments of wax from their dorsal
macroducts or droplets of exudate from the anus that ants would ordinarily collect.
Armored scale insects were observed daily for any such evidence. One branch segment
was left uncovered and exposed (Fig. 1.1); the other was wrapped in a piece of black
plastic in an attempt to simulate an intact gallery roof. This latter attempt proved
unsuccessful, due to accumulating condensation resulting in the growth of mold in the

galleries. The mold grew over rapidly and killed most of the armored scale insects on this

branch. I report observations for the uncovered branch only.



1.3.2 Ant behaviors observed
1.3.2.1 Tending

Consistent with previous reports, worker ants generally divert their attention to
repairing exposed galleries with a combination of silk, sawdust and frass (Fisher and
Robertson 1999). A few workers did focus attention on tending to brood and to armored
scale insects. These workers were often busy using silk to coat the gallery walls and also
sometimes placing strands of silk on larvae, pupae and diaspidids. The silk may be
effective at reducing the build-up of moisture within galleries, as the tunnels appear to be
considerably drier than the surrounding wood. Workers also used silk to bundle larvae
together for transport to new locations.

I observed two curious tending behaviors that have not been reported previously
in the literature. On one occasion I saw a worker ant tending an adult female armored
scale that had a first-instar nymph partially breaching from the vulva. The worker ant
repeatedly grabbed the adult female diaspidid around the thoracic/anterior abdominal
margin with its mandibles and gently squeezed the body. The worker then grazed its
mouthparts along the mid-dorsum of the diaspidid in what appeared to be a ‘licking’
behavior. This sequence of behaviors, ‘squeezing and licking’, was repeated multiple
times for the duration of only a few minutes. The worker then ceased this behavior and
walked away. The first-instar nymph took several hours to fully emerge from the female.
It is possible that the ‘squeezing and licking’ was a form of foraging behavior, but
without further information this remains purely speculative. If fluid or wax was secreted
during this process, the amounts were too minute to see under the microscope at full

magnification. On a separate occasion, a worker ant antennated an adult female diaspidid



and then seized the scale insect with its mandibles and pulled it away from the gallery
wall. The worker drew the armored scale out until its mouthparts were mostly removed
from the wood and then placed it down and walked away. The armored scale was marked
to see if workers would come back to claim it later; however, all workers within this
branch were killed soon after by an invading colony of unidentified ants that were present
in the laboratory. The adult female diaspidid died within 24 h after being removed from
the tree. It remains unclear whether this diaspidid was being harvested for consumption
or if there is an alternative explanation for this behavior. There were no direct
observations of ants consuming armored scales.
1.3.2.2 Defense

The invasion of Crematogaster workers and another unidentified ant species into
the galleries of one branch presented an unexpected opportunity to observe the defensive
behaviors of M. emeryi workers. Melissotarsus workers did not aggressively defend their
galleries; when faced with an intruder, workers would pause or tuck themselves into
small crevices. Invading workers of the unidentified ant species stung and killed
Melissotarsus workers with little to no resistance. Invading Crematogaster workers were
also observed pinching workers of M. emeryi with their mandibles, eliciting the same
retreat response from Melissotarsus. This suggests that Melissotarsus colonies primarily
defend themselves by maintaining enclosed galleries and avoiding interaction with
competitors and/or predators. Invading workers took Melissotarsus larvae and pupae but

did not pay any attention to the diaspidids.
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1.3.3 Diaspidid products
1.3.3.1 Free-living M. conspicua

One sampled tree (at coordinates 31°59°33.30” S, 18°49°14.97” E) had a free-
living population of M. conspicua with white scale covers on the exterior bark next to
what appeared to be a tunnel leading into the branch. All diaspidids within the ant
galleries lacked scale covers with the exception of males. This corresponds to a similar
observation of free-living individuals of M. conspicua on trees containing ants and
diaspidids made by Prins et al. (1975). All individuals from this population were dead
upon discovery. The bodies of adult females from the free-living population were
generally larger than those from within the galleries, but otherwise were similar in
appearance.
1.3.3.2 Ant-exclusion study

For the duration of the ant exclusion, no diaspidids produced wax filaments from
their macroducts or exuded any waste products from the anal opening. A more rigorous
ant-exclusion experiment would certainly be necessary in order to draw any significant
conclusions, but this observation at least indicates that, under the given conditions, adult
female diaspidids and second-instar nymphs were not regularly producing secretory or

excretory products (Fig. 1.1).

1.4 Taxonomy and distribution of species
Delimitation of new species was based upon discrete gaps in morphological
character sets of adult females, primarily involving features of the pygidium. Such gaps

are inferred to indicate long-standing reproductive isolation and divergence among
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lineages under the biological species concept. Diaspidid specimens were slide-mounted
following the techniques of the Systematic Entomology Laboratory (ARS, USDA,
Beltsville, MD; http://www.ars.usda.gov/Main/docs.htm?docid=9832). Morphological
terminology follows that of Miller and Davidson (2005). The abbreviations for type
depositories are as follows: BMNH, The Natural History Museum, London, U.K.; CASC,
The California Academy of Sciences Collection, San Francisco, CA, U.S.A.; UMEC,
University of Massachusetts, Amherst Entomology Collection, Amherst, MA, U.S.A_;
USNM, United States National Entomological Collection, U.S. National Museum of
Natural History, Washington, D.C., U.S.A., housed at the U.S. Department of
Agriculture, Beltsville, MD, U.S.A.

1.4.1 Affirmaspis cederbergensis Schneider sp.n.

(Fig. 1.2)
http://zoobank.org/urn:1sid:zoobank.org:act: 785258 DB-7A20-445B-8F12-5B17B63741E3
1.4.1.1 Description of adult female. Features of scale covering unknown, all specimens
of type series scale-less. Mounted on a microscope slide, body turbinate, 0.62—0.7Imm
long, widest at metathorax, 0.5-0.54mm wide. Pygidium with pair of well-developed
median lobes; second and third lobes represented by membranous points; third lobes
sometimes absent. Median lobes each with one medial and one lateral notch, large
paraphysis-like sclerotizations along medial margins of lobes, smaller sclerotizations at
the base of lateral margins; second and third lobes triangular, poorly developed and about
one-third the length of median lobes. Segmental setae of pygidium stout flagellate, those
delineating abdominal segment VIII shortest, 13—14 pm; all others similar in length, 18—
21 um long. Plates present between median lobes and in first and second spaces, highly

variable in type and shape; those between median lobes in pairs, either simple or
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Fig. 1.2. Affirmaspis cederbergensis sp.n. adult female. Variable plates are illustrated
below.

trifurcating; two fringed plates present in first space, variable in shape; second space with
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two to three plates in various combinations of type and shape; simple, bifurcating, and
fringed plates all represented in second space. Pair of large clavate paraphyses on VIII,
lateral to median lobes. Dorsal pygidial macroducts of one-barred type, positioned along
margin and with two submarginal rows running anteroposteriorly, length greater than five
times the width of the opening, longest 36 um. Shorter macroducts, 14-21 um, present in
groups of four to five on submargin of abdominal segment IV, three to four on submargin
of abdominal segment III, and in pairs or triplets at margins of mesothorax through
abdominal segment III. Long, thin ventral microducts in group of six on submargin of
abdominal segment IV, 16 um long; singular or in pairs along submargin of metathorax
through abdominal segment III, 14 um long; a few microducts also distributed medially
on the head and thorax, 12 um long. Intersegmental line between abdominal segments IV
and III with sclerotized bands, one medial and two lateral. Anal opening 8§ um wide at
longest axis, located about two times the width of anal opening from pygidial apex.
Vulva located about four times further from the pygidial apex than the anal opening.
Cicatrices present on dorsal submargin of prothorax and abdominal segment I, diameter 5
um. Eye represented by small spur or dome near margin of mesothorax and level with
middle of clypeolabral shield. Without perivulvar pores. Antennal tubercles each with
one stout seta.

1.4.1.2 Material examined. Holotype: Adult Y, SOUTH AFRICA, Cederberg Mts, 8
km NE Clanwilliam, Western Cape, 32°7°59.8794” S, 18°58°0.1194” E, found in nest
galleries of M. emeryi from a branch of Maytenus oleoides Loes., ID# D1876D,
19.v.2002 (D.O. Burge) (CASC). Paratypes: SOUTH AFRICA, same data as holotype,

one adult @ (D1876F) (USNM), one adult @ and one second-instar nymph (D1876A,
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D1876E) (UMEC), one adult @ (D1876C) (BMNH).

1.4.1.3 Etymology. The epithet is a Latin adjective, formed from Cederberg (referring to
the Cederberg Mountains of the Western Cape, South Africa) +-ensis, meaning ‘of or
from a place’. The Cederberg Mountains are currently the only locality from which this
species has been collected.

1.4.1.4 Comments. Using Balachowsky’s (1958) key to the genera of African
Aspidiotina, this species keys out as Diclavaspis, which Balachowsky (1956) erected for
three species: Diclavaspis ehretiae (Brain), Diclavaspis socotrana (Lindinger), and
Diclavaspis mashonae (Hall). Two of these species, D. ehretiae and D. socotrana, had
previously constituted the genus Affirmaspis MacGillivray (MacGillivray 1921). D.
socotrana 1is the type species of Affirmaspis and D. ehretiae is the type species of
Diclavaspis. Thus, under either MacGillivray’s or Balachowsky’s generic concepts,
Affirmaspis and Diclavaspis are synonyms and Affirmaspis is the senior synonym and
thus the valid name (Ben-Dov et al. 2013).

Adult females of A. cederbergensis are most similar to Affirmaspis ehretiae but
may be distinguished by the following suite of characteristics. The second lobes are
triangular and are not notched as in A. ehretiae. There are no plates anterior to the third
lobes. Pairs of cicatrices are present on the dorsal submargins of the prothorax and
abdominal segment I. The dorsal pygidial macroducts have wider openings and the ducts
are not as long and thin as those in A. ehretiae. The dorsal macroducts are also more
numerous on the pygidium and have a distinctive patterning, with clusters of four to five
on the dorsal submargin of abdominal segment IV and three to four on the submargin of

I1I.
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This is the first species of Affirmaspis found associated with Melissotarsus ants.
Affirmaspis cederbergensis was discovered within the galleries of M. emeryi from a host
tree of M. oleoides. Whether free-living populations of A. cederbergensis exist, and
whether these populations would produce a scale cover in the absence of ant attendance
remains unknown.

1.4.2 Andaspis formicarum Ben-Dov, 1978: 316 — 319

This species was discovered originally in 1976 from East London in Eastern Cape
Province, South Africa. It has now been discovered for the second time in association
with M. emeryi from East London. Adult females lacked scale covers.
1.4.2.1 Material examined. SOUTH AFRICA, Eastern Cape, East London (Ficus sp.)
26.1i1.2012 (K. Cole), one adult @ (D3660A) (UMEC).

1.4.3 Diaspis doumtsopi Schneider sp. n.

(Fig. 1.3)
http://zoobank.org/urn:lsid:zoobank.org:act:0A98FE3D-0E53-4CC1-9FC4-BEEOSEB1ES0OB
1.4.3.1 Description of adult female. Features of scale covering unknown; all specimens
of type series lacking scale. Mounted on a microscope slide, body oval, 0.63—0.7mm
long, widest at metathorax, 0.53—0.56mm wide. Median lobes appear serrate with one
medial notch and two lateral notches, well developed and sclerotized with large
paraphysis-like sclerotizations along the medial edge and smaller sclerotizations at the
lateral base, medial edges parallel or only slightly divergent, with one short pair of simple
setae between median lobes; second and third lobes poorly developed and membranous,
each with one notch near the center; position of fourth lobes occupied by a sclerotized
spur on margin of abdominal segment V, triangular with blunted apex, more conspicuous

than second and third lobes; with a sclerotized spur on margin of abdominal segment IV,
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Fig. 1.3. Diaspis doumtsopi sp.n. adult female.
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resembling a fifth pair of lobes. One pair of large turbinate paraphyses close to the notch
of second lobes and intersegmental setae of segment VII, one pair of elongated comma-
shaped paraphyses near medial base of fourth lobes. Segmental setae stout, flagellate,
those of abdominal segment VIII projecting about as far as median lobes, 12—13 um long;
remaining pygidial segmental setae 15-20 um long. Gland spines following formula (0,
1, 1, 3, 5-8, 2); gland spines of third and fourth spaces bifurcate, each apex subtended by
a long, thin microduct, 40—45 um long; remaining gland spines usually simple, with only
one microduct. Dorsal pygidial macroducts of two-barred type present in two forms:
large barrel-shaped macroducts with oval slit-like openings 9-10 um wide at opening,
13—-17 pm long, one present between proximal base of median lobes, two pairs present on
submargin of abdominal segments VI and V, one pair at margin of VII, two pairs on
margin of VI, two pairs on margin of V, one pair at margin of IV; thin, elongate
macroducts with circular openings 4-5 um wide at opening, 12—-16 um long, one pair
present on submedian of abdominal segment VI with one pair of short setae always
located posterior to them, 10—12 present on submedian/submargin of abdominal segments
IV and III, in pairs on margins of III. Few ventral microducts present on submedian and
submargin of pygidial segments, 9-14 um long; present in bands running
anteroposteriorly along the submargin of abdominal segment [V-mesothorax, 6—13 pm
long. Perivulvar pores present in five clusters surrounding vulva, anterior-most group
with six to eight pores, middle groups with 10—14 pores, posterior-most group with 12—
15 pores, distribution of pores often asymmetrical but posteriormost clusters always
containing more pores than others. Two sets of intersegmental sclerotizations present at

median and lateral positions between abdominal segments IV and III. Anal opening
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round, 7-10 um wide, separated from pygidial apex about nine times the width of anal
opening. Vulva approximately 50 pum wide, level with position of anal opening.
Cicatrices sometimes present on dorsal submargins of abdominal segment III and
prothorax, 612 pm in diameter, often absent or inconspicuous. Two to four pores present
next to anterior spiracles. Dorsum of each segment from prothorax through abdominal
segment III with large submarginal and submedial dorsal protuberances on each side,
largest at prothorax and growing progressively smaller posteriorly, giving dorsum a
coarsely hedgehog-like appearance. Eyes present and indicated by small dome-like
projections at submargin of head. Antennal tubercles each with one stout seta.

1.4.3.2 Material examined. Holotype: Adult ¢, CAMEROON, Nkolbisson, 1°42°9.83”
N, 11°42°9.83” E, elevation 602 m, found in nest galleries of M. weissi from Mangifera
sp., ID# D3670A, 22.iv.2012 (A. Doumtsop) (UMEC). Paratypes: Same data as
holotype, one adult @ (D3670E) (USNM); CAMEROON, Evodoula, found in nest
galleries of M. weissi from Dacryodes sp., 28.iv.2012 (A. Doumtsop), one adult ¢
(D3669A) (UMEC), one adult @ (D3669C) (USNM), one adult Q(D3669E) (BMNH);
CAMEROON, Nkolbisson, 1°9°44.57 N, 11°42°9.83” E, elevation 602 m, found in nest
galleries of M. emeryi from Dacryodes sp., 7.v.2012 (A. Doumtsop), one adult ¢
(D3674A) (USNM).

1.4.3.3 Etymology. This species is named in honor of a colleague, Armand Rodrigue
Pascal Doumtsop Fotio, of the University of Maroua, Cameroon, who collected all
known specimens, and who graciously provided samples of ants and armored scale
insects from several infested mango and safou trees.

1.4.3.4 Comments. In Hall’s (1946) key to African Diaspidini (Diaspidinae sensu
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(Takagi 2002)), adult females of D. doumtsopi key to genus Epidiaspis. They resemble
adult females of the only African species of Epidiaspis, Epidiaspis ficifoliae Hall, of
Zimbabwe, but differ from E. ficifoliae in having perivulvar pores and furcate gland
spines with multiple microducts.

Characters that distinguish Diaspis from Epidiaspis relate to the pygidial lobes.
Epidiaspis has prominent median lobes, whereas those of Diaspis are sunken into the
apex of the pygidium. The second and third lobes are well developed in Diaspis and
reduced or obsolete in Epidiaspis. These are the same characters that distinguish the bark
versus leaf phenotypes in polyphenic species of Chionaspis and Diasipidiotus, in which
bark phenotypes have prominent median lobes and reduced second and third lobes, while
the leaf phenotypes have recessed median lobes and more prominent second and third
lobes (Liu et al. 1989, Miller and Davidson 2005). They are thus somewhat suspect as
genus-defining characters. I place the species in Diaspis on the basis of DNA evidence
indicating that D. doumtsopi is more closely related to the type species of Diaspis than to
the type species of Epidiaspis (B.B. Normark et al., unpublished data).

Dejean and Mony (1991) collected an unidentified Diaspis sp. in Cameroon inside
galleries of M. beccarii from D. edulis. It is possible (yet remains to be confirmed) that
these were also collections of D. doumtsopi. It is unknown whether free-living
populations of D. doumtsopi exist and if these populations would produce a scale cover in
the absence of ants.

1.4.4 Melissoaspis Ben-Dov 2010: 50 (type species: Melissoaspis reticulata Ben-Dov)
Melissoaspis fisheri Ben-Dov, 2010: 51

Melissoaspis formicaria (Ben-Dov, 2010: 54) comb.n.
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Melissoaspis incola sp.n.

Melissoaspis reticulata Ben-Dov, 2010: 52

1.4.4.1 Diagnosis. Body of adult female circular to oval in shape with pygidium heavily
constricted near abdominal segment V; pygidial segments often compressed and forming
roughly triangular projection at posterior end. Pygidium comprising segments V, VI, VII,
and VIII, with two to four pairs of lobes. Median lobes simple and poorly developed,
appearing continuous with abdominal segment VIII, without paraphysis-like
sclerotizations or other features defining basal boundaries. Setae of abdominal segment
VIII short, lanceolate. Dorsal macroducts and ventral microducts long and thin, present in
small numbers on pygidium and other body segments. Paraphyses present or absent;
when present, only occurring in pairs between abdominal segments VIII and VII, VI and
V. Two pairs of cicatrices present on dorsum of prothorax and abdominal segment I or II.
Antennal tubercle submarginal with one seta. Spiracles without perispiracular pores.
Plates absent, sometimes possessing pygidial marginal microducts with protruding
orifices that resemble simple plates. Without perivulvar pores.

1.4.4.2 Comments. [ gathered new information regarding Melissoaspis through
inspection of additional specimens. Two diagnostic characteristics are modified herein
from the original generic description, regarding the absence of paraphyses and the
presence of distinctive patterning on the pygidium. I have noted that paraphyses are
sometimes present on adult female specimens of M. fisheri and are always present on M.
formicaria and M. incola. The presence of distinctive light and dark patterning on the
dorsal pygidium of M. fisheri and M. reticulata may be a synapomorphy linking these

two as sister species; however, it is not characteristic of the genus as a whole. I describe
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multiple traits that help to link species and further characterize Melissoaspis, especially
regarding the constriction and shape of the pygidium, the development of the median
lobes, the presence and distribution of cicatrices, and the description of the posterior-most
pair of segmental setae. Characterizing these traits has allowed me to reassign M.
formicaria and to place the new species, M. incola. Phylogenetic analyses of DNA
sequence data recover Melissoaspis as a monophyletic clade (Chapter 2).
1.4.5 Melissoaspis fisheri Ben-Dov, 2010: 51-52

Additional collections of this species have been made from the nests of
Melissotarsus insularis Santschi in Madagascar (nine specimens, eight from two new
localities). Adult females lack scale covers. Identity of specimens confirmed by Y. Ben-
Dov.
1.4.5.1 Material examined. MADAGASCAR, Toliara, Berenty, Forét de Bealoka, 14.6
km 329° NNW Amboasary, 24°57°24.84” S, 46°16°17.4” E, elevation 35m, 3-8.11.2002
(B.L. Fisher), six adult @ (D1885B,C,D,E.,F, D2733C) (UMEC); MADAGASCAR,
Toliara, Forét de Mite, 20.7 km 29° WNW Tongobory, 23°31°27.12” S, 44°07°16.6794”
E, elevation 75m, 27.ii.2002-2003.iii.2002 (B.L. Fisher), one adult @ (D1895A) (CASC);
MADAGASCAR, Toliara, Andohahela National Park, Manantalinjo Forest, 33.6 km 63°
ENE Amboasary, 7.6 km 99° E Hazofotsy, 24°49°0.84” S, 46°36°35.9994” E, elevation
150 m, 12.i.2002 (B.L. Fisher), two adult @ (D1897A,C) (CASC).
1.4.6 Melissoaspis formicaria (Ben-Dov) comb. n.
Morganella formicaria Ben-Dov, 2010: 54-56

Prior to Takagi’s (2007) revision of Morganella, five African species were placed

in the genus: M. acaciae Munting, M. conspicua (Brain), M. pseudospinigera
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Balachowsky, M. spinigera (Lindinger), and M. vuilleti (Marchal). Takagi excluded all
five of these species from Morganella, and remarked that they were not particularly
closely related to Morganella, but did not indicate to what genus they ought to belong.
When Ben-Dov (2010) described M. formicaria and placed it in Morganella, he did not
cite Takagi (2007) or propose an alternative to Takagi’s restricted definition of
Morganella.

The transfer of this species to Melissoaspis was based upon the poor development
of median lobes that appear continuous with abdominal segment VIII, distinctive
lanceolate setae on abdominal segment VIII, and a pygidium that is compressed and
triangular in shape. These combined characteristics are unique to Melissoaspis.

Additional collections of this species have been made from the nests of M.
insularis in Madagascar (six specimens, two from a new locality). Adult females lack
scale covers.
1.4.6.1 Material examined. MADAGASCAR, Toliara, Forét de Beroboka, 5.9 km 131°
SE Ankidranoka, 22°13°59.16” S, 43°21°58.68” E, elevation 80m, 12—-16.111.2002 (B.L.
Fisher), three adult @ (D1880A, D1883B,C) (UMEC); MADAGASCAR, Toliara,
Berenty, Forét de Bealoka, 14.6 km 329° NNW Amboasary, 24°57°24.84” S,
46°16°17.4” E, elevation 35m, 3-8.ii.2002 (B.L. Fisher), one adult ¢ (D1882A) (CASC);
MADAGASCAR, Toliara, Forét de Mite, 20.7 km 29° WNW Tongobory, 23°31°27.12”
S, 44°07°16.6794” E, elevation 75m, 27.ii.2002 (B.L. Fisher), two adult ¢ (D1890A,B)
(CASCQ).

1.4.7 Melissoaspis incola Schneider sp. n.
(Fig. 1.4)

http://zoobank.org/urn:1sid:zoobank.org:act: 7866 FBCDE4A9-47AC-AB6C-ASC3FD709BD1
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1.4.7.1 Description of adult female. Scale cover unknown; all specimens of type series
lack scales. Mounted on microscope slide, body circular to ovoid, 0.44-0.6mm long,
widest at metathorax, 0.37-0.46mm wide. Median and second lobes present, simple and
poorly developed. Median lobes with lateral notch, apex of each lobe rounded, medial
edges either parallel or slightly converging. Second lobes about one-half length of
median lobes and narrowly triangular coming to sharp pointed apex without notch,
pressed closely to lateral edge of median lobes. Pygidium strongly constricted between
abdominal segments V and VI, segments VI, VII, and VIII forming roughly triangular
projection at posterior apex. Intersegmental space between segments IV and III with
sclerotized bands, one medial and two lateral. Comma-shaped paraphyses in pairs
between median and second lobes and at pygidial constriction between abdominal
segments V and VI, medial paraphysis larger than lateral. Pair of segmental setae
delineating abdominal segment VIII distinctively stout, lanceolate, extending slightly
beyond apex of median lobes, 6-8 pum long; remaining pygidial segmental setae stout,
flagellate, 2028 pum long. Plates absent. Few long, thin dorsal macroducts of one-barred
type present primarily at pygidial margin, one or two sometimes present at submargin,
one situated between median lobes; shortest at anterior 16-28 pm, longest at posterior
apex 32-44 pm, diameter of each macroduct opening approximately 1 pum. Pygidium
with pair of microducts with protruding orifices that extend beyond body margin,
resembling simple plates; position variable but falling between abdominal segments [V—
VI. Few submarginal and submedial ventral microducts present on head, thorax, and
abdominal segments I-III, 9-18 pm long. Anal opening10-14 pm wide at longest axis,

located 0.5—1.5 times the width of anal opening from the pygidial apex. Opening of vulva
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Fig. 1.4. Melissoaspis incola sp.n. adult female.

25



approximately 16-22 pm wide, situated 2.5-5 times further from the pygidial apex than
the anal opening. Pairs of cicatrices present on prothorax and abdominal segment I,
diameter 8-10 pum. Eyes present and indicated by small dome-like projections at
submargin of head. Without perivulvar pores. Antennal tubercles each with one stout
seta.

1.4.7.2 Material examined. Holotype: Adult Y, MADAGASCAR, Toliara 6 km 146°
SSE Belo sur Mer, 20°46°18.1194” S, 44°02°48.12” E, elevation 15m, found in nest
galleries of M. insularis from Euphorbia sp., ID# D1875D, 10.x1i.2001 (B.L. Fisher)
(CASC). Paratypes: Same data as holotype, one adult @(DI1875A) (UMEC);
MADAGASCAR, Toliara, 6 km 131° SE Lavanono, Soamanitra, elevation 150 m,
25°26°44.1594” S, 44°59°44.88” E, found in nest galleries of Melissotarsus insularis
from Euphorbiaceae sp. undet., 17.ii.2002 (B.L. Fisher), one adult @ (D1877A) (USNM);
MADAGASCAR, Toliara airport, 23°22°59.8794” S, 43°43°0.12” E, elevation 40m,
found in nest galleries of M. insularis from Euphorbiaceae sp. undet., 7..2001 (B.L.
Fisher), one adult @ (D1896A) (BMNH), one adult 9(D1896B) (UMEC), one adult ¢
(D1896C) (USNM).

1.4.7.3 Etymology. The Latin noun ‘incola’ means ‘resident’ and is used here in
reference to the symbiotic relationship that exists between this species and Melissotarsus
ants. Like its congeners, M. incola is unknown outside the nest galleries of M. insularis.
1.4.7.4 Comments. Adult females of M. incola are most similar in appearance to M.
formicaria, particularly in that both species lack the distinctive reticulated light and dark
patterning that is found on the dorsal pygidium of M. fisheri and M. reticulata. The

following suite of characteristics distinguishes M. incola from its congeners. The median
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lobes in adult females of this species possess a lateral notch and the second lobes are
without notches. By contrast, none of the lobes are notched in M. fisheri and M.
reticulata, and in M. formicaria this trait is reversed, i.e., the second lobes possess a
notch rather than the median lobes. The adult female of M. incola is further distinguished
from M. formicaria by the absence of ventral microducts on the pygidial submargin and
the presence along the pygidial margin of protruding microduct orifices resembling
simple plates or gland spines.

1.4.8 Morganella conspicua (Brain)

Diaspis (Epidiaspis) conspicua Brain, 1919: 228.

Morganella conspicua (Brain); Balachowsky, 1956: 124.

Additional collections of this species were made from Madagascar in association
with M. insularis, from South Africa in association with M. emeryi, and from Cameroon
in association with M. weissi (35 new specimens, 32 from 12 new localities). Male
prepupal and pupal instars from ant-associated populations form normal scale covers, but
adult females and second-instar nymphs lack scale coverings. Collections from South
Africa also represented free-living diaspidids with scale covers found on the exterior bark
of Leucospermum praemorsum containing ant and armored scale insect populations
lacking scale covers (identified as D3610B,C,D, D3611B). M. conspicua is apparently
the most geographically widespread of the ant-associated diaspidids.

Following Takagi (2007), this species clearly does not belong in Morganella, but
lacking allocation to another genus, for the present it remains in Morganella.
1.4.8.1 Material examined. MADAGASCAR, Toliara, Libanona, Tolganaro,

25°2°13.9194” S, 46°59°53.88” E, elevation 35 m, 10.i.2001 (D.O. Burge), one adult ¢
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(D1881A) (CASC); MADAGASCAR, Toliara, Réserve Privé Berenty, Forest Bealoka,
Mandraré River, 14.6 km 329° NNW Amboasary, 24°57°24.84” S, 46°16°17.4” E,
elevation 35m, 3-8.ii.2002 (B.L. Fisher), one adult ¢ (D1892B) (CASC);
MADAGASCAR, Toliara, Andohahela National Park, Manantalinjo, 33.6 km 63° ENE
Amboasary, 7.6 km 99° E Hazofotsy, 24°49°0.84” S, 46°36°35.9994” E, elevation 150 m,
12-16.1.2002 (B.L. Fisher), two adult @ (D1898A,B) (UMEC); SOUTH AFRICA,
Western Cape, Clanwilliam, Nardouw farm, 32°0°4.26” S, 18°50°20.40” E, elevation 358
m, 5.i.2012 (S.A. Schneider), four adult @ (D3559A,C, D3579A, D3582A) (UMEC);
SOUTH AFRICA, Western Cape, Clanwilliam, Duikerfontein farm, 32°1°55.56” S,
18°51°54.30” E, elevation 439 m, 4.i.2012 (S.A. Schneider), one adult @ (D3567A)
(UMEC); SOUTH AFRICA, Western Cape, Clanwilliam, Duikerfontein farm,
32°2°3.78” S, 18°52°2.82” E, elevation 443 m, 5.i.2012 (S.A. Schneider), two adult ¢
(D3570A, D3572A) (UMEC); SOUTH AFRICA, Western Cape, Clanwilliam,
Duikerfontein farm, 32°1°55.80” S, 18°51°52.86” E, elevation 437 m, 5.1.2012 (S.A.
Schneider), four adult @ (D3573A, D3575A, D3576A, D3577A) (UMEC); SOUTH
AFRICA, Western Cape, Clanwilliam, Brakfontein farm, 31°54°58.14” S, 18°46°15.66”
E, 5..2012 (S.A. Schneider), two adult @ (D3588A, D3589A) (UMEC); SOUTH
AFRICA, Western Cape, Gifberg near Vanrhynsdorp, 31°48°36.48” S, 18°46°24.78” E,
elevation 400 m, 5.i.2012 (S.A. Schneider), two adult @ (D3599A, D3600A) (UMEC);
SOUTH AFRICA, Western Cape, Clanwilliam, Brakfontein farm, 31°54°32.34” S,
18°45°49.14” E, elevation 349 m, 5.i.2012 (S.A. Schneider), three adult @ (D3606A,
D3607A, D3608A) (UMEC); SOUTH AFRICA, Western Cape, Clanwilliam, Nardouw

farm, 31°59°33.30” S, 18°49°14.76” E, elevation 386 m, 6.1.2012 (S.A. Schneider), eight
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adult @ (D3610B,C,D, D3611B, D3613A, D3614A, D3615A, D3616A) (UMEC);
SOUTH AFRICA, Western Cape, Clanwilliam, Nardouw farm, 31°59°33.00” S,
18°49°16.86” E, elevation 389 m, 6.i.2012 (S.A. Schneider), two adult @ (D3620A,
D3621A) (UMEC); SOUTH AFRICA, Western Cape, Clanwilliam, Nardouw farm,
31°59°32.04” S, 18°49°15.60” E, elevation 389 m, 6.1.2012 (S.A. Schneider), one adult ¢
(D3631A) (UMEC); CAMEROON, Nkolbisson, 1°9°44.57” N, 11°42°9.83” E, elevation

602 m, 22.iv.2012 (A. Doumtsop), two adult @ (D3668A, D3672A) (UMEC).

1.5 Key to the species of ant-associated armored scale insects (adapted from Ben-

Dov, 2010)

1. Pores present near anterior and/or posterior spiracles; macroducts and microducts of

tWO-barred tyPe . . . .ot 2

— Pores absent from areas adjacent to spiracles; macroducts and microducts of one-barred

3. Fringed plates present in first and second spaces; macroducts with large round
openings occurring in pairs or triplets along margin of thorax through abdominal segment
L. Affirmaspis cederbergensis Schneider sp.n.
— Plates present or absent; if present, never fringed; macroducts of this type absent from

margin of metathorax through abdominal segment IIT . . ......................... 4
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4. Body strongly constricted near proximal base of pygidium at abdominal segment V;
pygidium compressed and roughly triangular; stout spine-like setae on abdominal

segment VIII; plates absent; median lobes simple and poorly developed . . (Melissoaspis)

— Body gently tapering toward posterior end without a strong constriction near proximal
base of pygidium; pygidium may be flat, rounded, or triangular in shape; stout flagellate
setae on abdominal segment VIII; plates present or absent; median lobes well developed
and sclerotized . . . . ... L 8
5. Pygidial dorsum with a reticulated pattern of bright and dark lines disposed
perpendicular to margin; paraphyses typicallyabsent .. ............ ... ... ... ... 6

— Pygidial dorsum without such a reticulated pattern; paraphyses always present in pairs .

....................................................................... 7
6. Median lobes distinctly projecting from margin . . .. ... Melissoaspis fisheri Ben-Dov
— Median lobes not projecting from margin . ......... Melissoaspis reticulata Ben-Dov

7. Pygidium with submarginal microducts present on venter; median lobes without notch,
second lobes with one lateral notch . . . .. .. Melissoaspis formicaria (Ben-Dov) comb.n.
— Pygidium lacking submarginal microducts on venter, only present along margin;
median lobes with one lateral notch, second lobes withoutnotch . ...................
........................................... Melissoaspis incola Schneider sp.n.
8. With ten pairs of paraphyses on pygidium . . . .. Melanaspis madagascariensis Mamet

— With two pairs of paraphyses on pygidium . . ........ ... ... i 9
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9. All pygidial plates simple with pointed apices . .. ... .. Morganella conspicua (Brain)
— Some pygidial plates with bi- or trifurcating apices . .. .......... ... .. . ...

..................................... Morganella pseudospinigera Balachowsky

1.6 Summary

The unique trophobiosis between Melissotarsus ants and Diaspididae remains
poorly understood: any observations of foraging behaviors and interactions between
species provide useful information regarding the nature of the association and merit
attention. Future studies should focus on determining the diet of Melissotarsus ants and
the nature of interactions between these unlikely partners. There are now ten described
species of ant-associated armored scale insects (Ben-Dov and Fisher 2010 and the new
species described herein) and it is likely that more new species await discovery within the

galleries of Melissotarsus ants.
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CHAPTER 2
MOLECULAR PHYLOGENETICS OF ASPIDIOTINI ARMORED SCALE
INSECTS (HEMIPTERA: DIASPIDIDAE) REVEALS RAMPANT PARAPHYLY
AND MULTIPLE ORIGINS OF ASSOCIATION WITH MELISSOTARSUS ANTS
(HYMENOPTERA: FORMICIDAE)

2.1 Abstract

Ant agricultural interactions are important model systems for studying mutualism.
Our ability to study the evolution and ecology of mutualisms between ants and
commonly associating scale insects is restricted by a limited understanding of scale insect
systematics. The armored scale insects (Hemiptera: Diaspididae), a relatively well-
studied family in this regard, provide a rare opportunity to study the evolution of
myrmecophily across an entire scale insect family. Relationships between armored scales
and Melissotarsus Emery ants are unique and could provide valuable insights regarding
the interplay between predation and mutualism. In this article I reconstruct a molecular
phylogeny for the Aspidiotini tribe of armored scale insects that expands greatly upon
taxonomic and character representation from previous studies. Our dataset includes 127
species (356 terminal taxa) and four gene regions: 28S, EF-1a, COI-COII, and the newly
included protein-coding gene CAD. Phylogenetic data were analyzed in a Bayesian
framework using the MC? algorithm as implemented in MrBayes 3.2.6. I find that the
majority of aspidiotine genera are paraphyletic as currently defined and provide
recommendations that would increase taxonomic stability for this tribe. Myrmecophily
among diaspidids has evolved no fewer than six times independently, four times within
the Aspidiotini and two additional origins recorded from the Diaspidini. Relationships are

labile at the species level and partnerships can shift. However, several clades of ant-

33



specialized armored scales have evolved, indicating that these relationships can be stable

on an evolutionary timescale.

2.2 Introduction

Relationships between ants and partner species are important model systems for
studying facets of mutualism, including interaction stability, symbiont fidelity, multi-
trophic interactions, diversification rates and patterns, and lability vs. constraint (see
Currie 2001, Pierce et al. 2002, Mueller et al. 2005, Stadler and Dixon 2005, Ivens 2014
for reviews). Most research efforts have focused on ant associations with fungal cultivars,
lycaenid caterpillars, or aphids (Mueller et al. 2001, Stadler and Dixon 2008). Ants also
frequently engage in relationships with scale insects (Hemiptera: Coccoidea), an
important group of myrmecophiles that have largely been overlooked in studies of
mutualism (Delabie 2001).

Scale insects are among the most commonly ant-tended taxa yet we know very
little about the evolutionary history of myrmecophily for this clade. The families
Pseudococcidae (mealybugs), Rhizoecidae (root mealybugs), Coccidae (soft-scales), and
Stictococcidae contain the majority of ant-associated species. To date, few studies have
used phylogeny of scale insects to examine the evolution of ant/scale associations (Ueda
et al. 2008, Ueda et al. 2010, Schneider and LaPolla 2011).

Deficiencies in our understanding of scale insect systematics are partially
responsible for our knowledge gap regarding the history of ant/scale symbioses.
Coccoidea have great potential to serve as important evolutionary and ecological model

systems but are seldom used due to an incomplete systematic framework (Hardy 2013).
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Scale insects often are poorly sampled, have cryptic life histories, and pose various
challenges for molecular study (Gullan and Cook 2007). The largest scale insect families
comprise the majority of myrmecophilic species. Addressing these challenges requires
conducting in-depth studies of scale insect phylogeny in concert with taxonomic revision.
These efforts would enable a more comprehensive understanding of how myrmecophily
has evolved within particular groups of interest and, more broadly, across families of
Coccoidea.

Relationships between armored scale insects (Hemiptera: Coccoidea:
Diaspididae) and Melissotarsus ants (Hymenoptera: Formicidae) provide an opportunity
to investigate origins of myrmecophily across a relatively well-studied family of scale
insects. The phylogeny of Diaspididae has been more closely studied using molecular
data than most scale insect families (Hardy 2013). However, Andersen et al.’s (2010)
recent phylogeny of Diaspididae emphasized the need for more thorough taxonomic and
character sampling, particularly for the tribe Aspidiotini. Many nodes within this group
remain unresolved and monophyly for most aspidiotine genera is questionable. Most of
the myrmecophilous armored scale species fall within Aspidiotini and thus the challenge
of systematic uncertainty applies in this situation, making it difficult to confidently
ascertain the identities and relationships of ant-associated lineages. Increasing our
taxonomic representation and improving phylogenetic estimations among aspidiotine
species is necessary before drawing any meaningful conclusions about the origins of
myrmecophily in this clade.

Aspidiotini contains a large number of pest species and is an especially important

group of scale insects, both in terms of economic importance and ecological significance
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(Miller and Davidson 2005, Normark et al. 2014). Nearly 30% of the aspidiotine species
included in this study are identified as extremely polyphagous pests, known to feed on at
least 20 different families of host plants (Miller and Davidson 2005, Normark and
Johnson 2011).

This study addresses the challenges in scale insect systematics in order to evaluate
the evolutionary history of diaspidid symbiosis with Melissotarsus ants. This study is the
first of its kind in evaluating the evolution of myrmecophily across a family of scale
insects. Furthermore, Melissotarsus/diaspidid mutualisms are particularly interesting
because they represent unique ant symbioses in which neither honeydew nor secretory
byproducts seem to play a role in the establishment and maintenance of interactions
(Schneider et al. 2013). Thus this system may prove valuable in future studies on the
intersection between predation and mutualism. I significantly expand upon Andersen et
al.’s dataset (2010) by increasing both taxonomic representations across Aspidiotini,
including newly sampled myrmecophilous species, and incorporating an additional
nuclear protein-coding locus to the character set. I include a discussion of the current
status of aspidiotine genera and suggestions for improving taxonomic stability in this
clade. Finally, I map myrmecophily onto the resulting phylogeny and discuss the history

of ant-association among the Diaspididae.

2.3 Methods
2.3.1 Taxonomic Sampling
For the purposes of this study I define the Aspidiotini as the monophyletic core

aspidiotines identified as “Clade F” in Andersen et al. (2010). Characters defining this
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clade within Aspidiotinae include early paternal genome elimination and a lack of pores
near the anterior spiracles. Several genera that were traditionally recognized as belonging
to Aspidiotini have been found to lie outside of it and are not considered here. One
hundred twenty-eight species are represented from 31 out of a total of 89 aspidiotine
genera, a nearly 4-fold increase in representation of aspidiotine species from the
Andersen et al. study. Aonidia, Parlatoria, and Prodigiaspis serve as outgroups for core
aspidiotines; eleven species from these genera comprise outgroups for our analyses.
Amplification was attempted for all aspidiotine species that were available to the
Normark lab group for molecular work as of January 2015; I aimed at sequencing three
individuals per species, representing geographic variation when possible. Some species
are represented by fewer than three specimens because of a lack of material or failure to
amplify or sequence the target gene fragments. Unsuccessfully amplified taxa were
attempted twice before being excluded from the dataset. For all ant-associated species, [
attempted to sequence four or more specimens. The ant-associated species represented in
our analyses include: Affirmaspis cederbergensis, Melanaspis madagascariensis,
Melanaspis undescribed sp., Melissoaspis fisheri, M. formicaria, M. incola, M.
undescribed sp., and Morganella conspicua. 1 also sequenced more than three specimens
for particular taxa if there was reason to suspect patterns of cryptic species diversity,
peripatric speciation, or other potentially interesting patterns of species diversity. The
final full dataset comprised 356 specimens. Specimens are stored at the University of
Massachusetts Ambherst; dry material is frozen at -80 °C; preserved specimens are in
100% ethanol and stored at -20 °C. Sequence data were also downloaded from GenBank

for six of the taxa included in our analyses.
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2.3.2 Character Sampling

DNA extractions were completed using the Qiagen DNeasy Blood & Tissue Kit
(Qiagen, Valencia, California) following the standard methods with modifications as
outlined in Andersen et al. (2010), except that the two elution steps were each completed
using 100ul AE buffer. The cuticle from each specimen was slide-mounted following the
protocol of the Systematic Entomology Laboratory (SEL, ARS, USDA) at Beltsville,
Maryland (http://www.ars.usda.gov/Main/docs.htm?docid=9832). Vouchers are kept at
the University of Massachusetts Insect Collection.

Four gene fragments were used for molecular phylogenetic analysis: the D2
expansion segment of the large subunit ribosomal RNA gene (28S), 606 bp; a segment of
the nuclear protein-coding gene Elongation Factor-1a (EF-1a), 952 bp; a segment of the
nuclear protein-coding gene Carbamoyl-phosphate synthetase (CAD), 464 bp; and a
region of mitochondrial DNA encompassing the 30 portion of cytochrome oxidase I
(COJ) and the 50 portion of cytochrome oxidase II (COII), 787 bp. The four gene regions
add up to 2809 bp combined. Primer sets and standard PCR protocols are listed in Table
2.1. The forward amplification and sequencing primers for CAD (CAD_s2100dryr and
CAD s2103rdr respectively) were developed by SAS by first using the 787F primer from
Moulton and Wiegmann (2004) and developing a new internal forward primer that
amplified more successfully for aspidiotines. Sequencing of CAD amplicons was more
successful when using the internal sequencing primer (Table 2.1). I used either GoTaq®
Green or GoTaq® G2 hot-start polymerase (Promega Corporation, Madison, Wisconsin)
for standard PCR amplification. PCR products were visualized using 1.5% agarose gel

electrophoresis with SYBR® Safe (Life Technologies, Carlsbad, California) ultraviolet
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Gene Region Forward Primer Reverse Primer Annealing temperature profile

28s_s3660 28s_a335 ° o o
288 5 GAG AGT TMAASA GTA CGT GAAAC -3'|5' TCG GAR GGAACC AGC TACTA-3  |28-48°C, -1°C/3 cycles + 11 cycles @ 48°C
EF-1a(a) EF2rod
EF-1a 5. GAT GCT CCG GGA CAY AGA G -3' g-- ATG TGA GCG GTG TGG CAATCC AA -|58-42°C, -2°C/3 cycles + 11 cycles @ 42°C
CAD_s2100dryr (amplification)
5'- CDARAG TYAGCACRAAGG T-3  |CAD R2564 o g0 .
CAD CAD s2103rdr (internal/sequencing) 5- CAATTT GCT TAT CCG AAAAAC -3 |2040°C, -1°C/3 cycles + 5 cycles @ 40°C
5'. GTT AGC ACR AAG GTD RG -3'
C1-j-2753ywr C2-n-3362
COI-COll 5' GTAAAC CTAACA TTT TTY CCW CAR 35 cycles of 47°C for 1 minute

CA -3 5' CCACAAATT TCT GAACATTGACC -3'

Table 2.1: PCR protocols — This table outlines the primers and standard PCR protocols
used to amplify/sequence each of the four gene regions. The forward primers for CAD
are newly designed for use on aspidiotine taxa. Their utility for other scale insect taxa has
not yet been determined.
stain. PCR products were purified by treating with Exonuclease I and Shrimp Alkaline
Phosphatase (Exo-SAP) (Affymetrix, Santa Clara, California) at 37°C for 25 minutes,
followed by 80°C for 15 minutes to denature the proteins. Purified products were then
sent to the UMass Genomics Resource Lab (Ambherst, Massachusetts) for Sanger
sequencing using an ABI Model 3130XL sequencer (Life Technologies, Carlsbad,
California).

I used Sequencher 4.2 (Gene Codes Corporation, Ann Arbor, Michigan) to edit
DNA sequence data. Sequence alignments for each locus were made by importing
sequences to Mesquite 2.75 (Maddison and Maddison 2015) and conducting a MUSCLE
alignment (Edgar 2004). These alignments were further refined in PASTA 1.6.0 (Mirarab
et al. 2014). I kept the default settings in PASTA using MAFFT as the aligner tool,
OPAL as the merger, FASTTREE as the tree estimator, and specified the model as
GTR+G20. These settings were applied to all four gene sets for three iterations of tree
estimation and re-alignment with the maximum subproblem set to 50% and

decomposition set to centroid. I visually inspected the resulting alignments and decided

that no further adjustments were required.
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2.3.3 Phylogenetic analysis

Two concatenated datasets were generated for phylogenetic analyses, the full
dataset containing all 356 taxa (127 species) and a restricted dataset with 330 taxa (120
species). The restricted dataset includes a taxon if data are available for at least 28S or for
any combination of two from EF-1a, CAD, or COI-COII; 26 taxa were excluded after
failing to meet these criteria. Each gene region was also analyzed independently. I
calculated the fit of available evolutionary models to each data partition (i.e. gene
fragment) in jModelTest 2.1.7 (Darriba et al. 2012) and compared models using the
Bayesian Information Criterion (BIC). For each data partition the model of best fit was
determined as follows: for 28S, the generalized time reversible model (Tavaré 1986) with
invariant sites and gamma-distributed rates (GTR+I+G); for EF-1a, the three-parameter
model (Kimura 1981) with unequal frequencies, invariant sites and gamma-distributed
rates (TPM3uf+I+G); for CAD, the Hasegawa-Kishino-Yano model (Hasegawa et al.
1985) with invariant sites and gamma-distributed rates (HKY+I+G); and for COI-COII,
the transversional model (Posada 2003) with invariant sites and gamma-distributed rates
(TVM+I+G). The best fitting models were implemented in all subsequent analyses; the
nexus-formatted data file is provided as supplementary material, including the
concatenated taxon-by-character nucleotide matrix and MrBayes block detailing the
parameter settings.

Bayesian inference using Metropolis-coupled Markov chain Monte Carlo (MC?)
methods were employed in MrBayes 3.2.6 (Ronquist and Huelsenbeck 2003) to
reconstruct a phylogeny of the Aspidiotini based upon DNA sequence data. These

analyses were completed with support from the Cyberinfrastructure for Phylogenetic
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Research (CIPRES) Science Gateway 3.3 and Extreme Science and Engineering
Discovery Environment (XSEDE) computational resources (Miller et al. 2010, Towns et
al. 2014). For each concatenated dataset, 2 independent analyses were conducted
concurrently with 4 chains each (3 hot, 1 cold); each analysis was allowed to run for 20
million generations, sampling parameters every 1000 generations. Stationarity was
reached by 1 million generations as determined by visualizing the likelihood-by-
generation plot, the potential scale reduction factor (PSRF [] 1.0), and the standard
deviation of split frequencies (< 0.02). The first 5 million generations were discarded as
the burn-in, leaving a total of 15,001 trees from each run available for reconstruction of a
majority-rule consensus tree. A consensus tree was generated using the sum¢ command in
MrBayes, providing branch lengths as substitutions per site and branch support values as
posterior probabilities. FigTree 1.4.2 was used to format the majority-rule consensus trees
(http://tree.bio.ed.ac.uk/software/figtree/). For independent genealogical analyses, the
same methods as above were followed except that analyses were allowed to run for 10
million generations, the burn-in was set to 5 million, leaving 5000 trees per gene region
available for constructing each consensus tree. Genealogies were used to assess
congruence of nodes on the concatenated majority-rule tree for the restricted dataset via

visual inspection (included as Supplementary Fig. 1—4; Appendix).

2.4 Results
2.4.1 Phylogenetic Results
The majority-rule consensus tree resulting from analysis of our restricted dataset

reveals four independent origins of ant association among the Aspidiotini and confirms
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Figure 2.1: Phylogeny of the tribe Aspidiotini highlighting myrmecophilous clades
— restricted taxon set — The majority-rule consensus tree resulting from Bayesian
analysis of the concatenated dataset for four gene regions (28S, EF-1a, CAD, COI-COII)
and a restricted taxon set of 120 species, 330 total taxa. Taxa are listed as: Identification #
(e.g. DO001C) Species name Locality Identifier. Specimens designated as “query”
indicates uncertainty regarding their species designation. Those designated as “undescr”
are undescribed new species. “Undet” specimens are unidentified. Congruency of nodes
for each individual genealogy is indicated by colored bars: 28S = green, EF-1a = red,
CAD = blue, COI-COII = pink). Congruency is only reported up to the level of species
and “no bars” indicates that none of the individual genealogies recovered that particular
grouping of species. Branch support is indicated as posterior probabilities. Clades A—J
highlight various monophyletic groupings discussed in the text: Clade A depicts the
Palearctic Aspidiotus, Clade B the Afrotropical Aspidiotus, Clade C the genus
Selenaspidus, Clade D the Australasian Aspidiotus, Clade E the Melanaspis Clade, Clade
F the Diaspidiotus Clade, and then the monophyletic genera Davidsonaspis (G),
Affirmaspis (H), Melissoaspis (1), Clavaspis (J) and Hemiberlesia sensu stricto (K). Type
species for genera (when available) are indicated in bold text. Alternating black and gray
bars running along the right-hand side of the figure designate the major monophyletic
divisions of the phylogeny. Myrmecophilous clades are outlined in a light gray box with
a Melissotarsus worker depicted next to them.
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that most of the aspidiotine genera included are paraphyletic (Fig. 2.1). Results from the
full dataset consensus tree (Fig. SS5) are generally consistent with those from the
restricted set. The greatest difference is in the placement of Rugaspidiotus arizonicus as
either sister to the Diaspidiotus clade (full dataset) with weak support (posterior

probability = 0.62) or as sister to the Selenaspidus clade (restricted dataset) with strong
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support (pp = 0.99). The nodes separating R. arizonicus from Selenaspidus in the full
dataset phylogeny are all weakly supported. The predominantly Afrotropical Aspidiotus
clade (B in Fig. 2.1) also differs in position between analyses; however, the nodes
responsible for this distinction are weakly supported in both consensus trees. The sister to
the Afrotropical Aspidiotus clade remains indeterminate.

As expected, the majority of aspidiotine genera are non-monophyletic. For ease of
discussion I identify six clades below, named for the genus that dominates each clade and
describe both the phylogenetic patterns and status of genera within each clade (gray
shading Fig 2.1). I also describe revisionary changes based upon our findings that would
remedy various non-monophyletic designations and increase taxonomic stability within
Aspidiotini. Following consideration of aspidiotine systematics, I report on the
evolutionary origins of association between armored scale insects and Melissotarsus ants.
2.4.1.1 The Palearctic, Afrotropical, and Australasian Aspidiotus Clades

Aspidiotus is a polyphyletic genus with three distinct origins recovered in this
analysis. Aspidiotus hedericola (Palearctic, Clade A) was recovered as the sister to the
rest of Aspidiotini. This is interesting because many species across the Aspidiotini have
at one point been described as belonging to Aspidiotus. The Afrotropical Aspidiotus clade
(B) 1s sister to clades C, D, and E as indicated on the phylogeny (Fig. 2.1). The remaining
Aspidiotus species are found within the strongly supported Australasian Aspidiotus clade
(D), which encompasses several other genera: Aspidiella, Chentraspis, Chortinaspis,
Monaonidiella, Morganella, Oceanaspidiotus, Octaspidiotus, and Rhizaspidiotus. The
geographic divisions of these clades refer to the species’ regions of origin, not necessarily

to their current distributions. Many of these species have expanded distributions due to
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anthropogenic interference, primarily transportation on fruit and vegetable exports
(Miller and Davidson 2005).

The majority of “Aspidiotus” clades require revision to establish monophyletic
genera that are well supported by molecular data (Fig. 2.1). Clade D contains the type
species Aspidiotus nerii, indicated in bold text (Fig. 2.1), and thus should remain
Aspidiotus. This clade is strongly supported (pp = 0.99) and is recovered by 3 of 4 genes;
28S generally provides limited resolution to the interior nodes (S1). The results suggest
that the genera listed above are synonymous with Aspidiotus (Clade D). Two new genera
may need to be established to describe Clades A and B. Both clades are strongly
supported (pp = 1) and recovered by EF-1a and CAD.
2.4.1.2 The Selenaspidus Clade

Selenaspidus (Clade C) is one of the few genera confirmed to be monophyletic
with strong support (pp = 1; Fig. 2.1). This topology is recovered by 3 of 4 genealogies;
28S cannot resolve the relationship between S. albus and the remaining species. I
consider Rugaspidiotus to belong within the Selenaspidus Clade rather than assigning it’s
own separate clade. The monophyly of Rugaspidiotus is questionable because the dataset
only includes one specimen that is recovered as the sister to Selenaspidus. It is possible
the inclusion of additional Rugaspidiotus and/or Selenaspidus species would indicate the
two genera are Synonymous.
2.4.1.3 The Melanaspis Clade

The Melanaspis Clade (E) is strongly supported (pp = 1) but revision of several
genera would be necessary to achieve monophyly (Fig. 2.1). Our results indicate that

Acutaspis, Mycetaspis, and Pseudischnaspis are junior synonyms of Melanaspis. Whether
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or not Lindingaspis is also a junior synonym depends upon the positioning of the two ant-
associated Melanaspis species, which are currently positioned as sister to the rest of
Clade E but with weak support (pp = 0.74) deriving mainly from EF-1a. Both 28S and
CAD cannot resolve the relationship and COI-COII recovers the two ant-associated
species as nested within the rest of Melanaspis. Lindingaspis is monophyletic and should
remain valid until these relationships are better resolved. The Melanaspis Clade is
equivalent to the Melanaspidina described by Deitz and Davidson (1986).
2.4.1.4 The Diaspidiotus Clade

The large Diaspidiotus Clade (Clade F) is also strongly supported (pp = 1) and is
recovered by all genes except 28S (Fig. S1). Within this clade there are four well-
supported, monophyletic genera that require no taxonomic revision: Davidsonaspis
(Clade G), Affirmaspis (Clade H), and Melissoaspis (Clade 1), and Clavaspis (Clade J).
The primary Hemiberlesia clade (Clade K) would also fall under this category were it not
for Hemiberlesia oxycoccus being excluded, as indicated in the full dataset consensus tree
(Fig. S5). The remaining genera require extensive revisionary work. The genera
Diaspidiotus and Dynaspidiotus are polyphyletic with respect to Clade F. Aspidaspis,
Chortinaspis, Cupressaspis, Morganella, Palinaspis, and Targionia are among the list of
genera that require further taxonomic consideration. The available molecular data do a
poor job at resolving relationships among this clade. Short branches, like the one uniting
Hemiberlesia (Clade K), are commonplace and likely reflect a history of rapid
diversification in this clade.

Our analyses do identify particular clades within the Diaspidiotus Clade that

would form monophyletic genera following revision. The genera Aonidiella,
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Chrysomphalus, Clavaspidiotus, and Comstockaspis form a strongly supported
monophyletic clade (pp = 1), as recovered by EF-la and COI-COII, which could be
synonymized as Chrysomphalus. However, this clade excludes Aonidiella lauretorum so
some further revision of this species would be necessary. The true Dynaspidiotus can be
identified as the clade containing the type species, D. britannicus (in bold Fig. S5), as
well as Diaspidiotus sulci and Diaspidiotus zonatus. The clade is strongly supported (pp
= 1) and recovered by all four genes. The remaining Dynaspidiotus species are distributed
in three different locales across Clade F. The true Diaspidiotus remains a mystery
because the type species, Diaspidiotus ostreaeformis (Curtis), is not included.
Unfortunately this leaves several demonstrably paraphyletic genera with equivocal
taxonomic designations for the present: Cupressaspis (Aonidia), Aspidaspis,
Chortinaspis, the remaining Dynaspidiotus, Morganella, and Targionia.
2.4.2 Origins of ant association

My analyses recover four independent origins of ant association in Aspidiotini:
Affirmaspis cederbergensis, the Melanaspis clade (2 species), the Melissoaspis clade (5
species), and Morganella conspicua. Associated species or clades are outlined on the
phylogeny with a gray shaded box and an image of a Melissotarsus worker next to them
(Fig. 2.1). Affirmaspis cederbergensis was found to be sister to Melissoaspis but it may
be appropriate to treat each as representing an independent origin because the node
linking them is weakly supported (pp = 0.94) and only recovered by EF-la. Our
taxonomic sampling may bias the result as well; there are several species of Affirmaspis
not represented in our dataset and their inclusion could definitively separate A.

cederbergensis from Melissoaspis. The origins of association for the Melanaspis clade
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and M. conspicua are unequivocally independent of the others. Two additional origins of
ant association are known from the tribe Diaspidini (unpublished data) involving
Andaspis formicarum from South Africa (Ben-Dov 1978) and Diaspis doumtsopi from
Cameroon (Schneider et al. 2013). A newly discovered species of Diaspis from Uganda,
determined by SAS to be sister to D. doumtsopi based upon morphological traits of adult
females (unpublished data), has also been discovered in association with Melissotarsus
weissi.

Our analyses reveal that there are two or three clades of strictly myrmecophilous
armored scale insect species. The best example of this is the Melissoaspis clade from
Madagascar, with five species all known exclusively from populations associated with
Melissotarsus insularis. One of the five members of Melissoaspis is a new species that
has not yet been described but is genetically distinct from the others in our analyses. The
Diaspis clade, consisting of two species from Diaspidini, is another example of species
known only from Melissotarsus galleries. Northern African colonies have been sparsely
sampled and it is possible that more Diaspis species may be discovered from M. weissi
galleries. Melanaspis madagascariensis and a new sister species revealed in this study
are both associated with Melissotarsus insularis. Melanaspis madagascariensis was
originally described from a free-living population with normal scale covers (Mamet
1951). Yair Ben-Dov identified specimens as Melanaspis madagascariensis but
molecular data from both free-living and ant-associated populations should be used to
confirm that they are the same species. It is possible that ant-associated populations
resemble M. madagascariensis but are actually a separate, obligately associated species.

Morganella conspicua associates with all four Melissotarsus species but the relationship
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is apparently facultative. This species was originally described from free-living
populations and has also been found living on the exterior bark of trees colonized by

Melissotarsus (Prins et al. 1975, Schneider et al. 2013).

2.5 Discussion

The phylogeny of the Aspidiotini confirms that this tribe requires extensive
taxonomic revision and helps lay the groundwork for future endeavors (Fig. 2.1). Only 7
of the 31 genera included in our analyses (~23%) require no revisionary changes to be
considered monophyletic:  Affirmaspis, Clavaspis, Davidsonaspis, Lindingaspis,
Melissoaspis, Rugaspidiotus, and Selenaspidus (Figs. 2.1, S5). Providing the means for
reliable and stable taxonomic identification of damaging pest species is of paramount
importance to agricultural research. The taxonomic revisions suggested herein would
establish monophyly for 25 of the 31 genera included in these analyses (80%) leaving six
genera in need of further consideration.

A few aspidiotine species may also require taxonomic revision (Fig. S5). One
example is the extremely polyphagous pest Diaspidiotus ancylus, which shows up in
three separate locations on our phylogeny. In this case, specimens might be misclassified,
there might be multiple cryptic species described as Diaspidiotus ancylus, or the species
is extremely diverse and has given rise to several specialists. Interestingly, several nodes
on the tree might illustrate peripatric speciation events in which a more recently diverged
species appears nested within the parental species. This could explain why Hemiberlesia

candidula and H. popularum are nested within a more widespread polyphagous pest
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species, H. lataniae. Alternatively, these nodes may comprise multiple synonymous
species that require revision or they may represent host morphs.

Our analyses were unable to fully resolve relationships within the Diaspidiotus
Clade likely due to a history of rapid radiation. Morphological traits from immature
instars and adult males might prove more useful in reconciling these relationships, where
traits from adult females and molecular data have failed to do so (Hodgson and Hardy
2013).
2.5.1 Patterns of Myrmecophily Across Diaspididae

Armored scale insects have evolved to engage in mutualisms with Melissotarsus
ants at least six times independently. This observed pattern of association conforms to
expectations drawn from other ant mutualisms. Some agricultural ant taxa will readily
associate with various myrmecophilic species rather than demonstrate patterns of strict
partner fidelity (Maschwitz and Hénel 1985, Bliithgen et al. 2006, Schneider and LaPolla
2011). Often an ant taxon will associate with a particular clade or clades of specialized
mutualists in which relationships are labile at the species level and frequently shift, as
demonstrated among the attine ants (Schultz et al. 2015). Species-level relationships shift
among Melissotarsus colonies; each of the four ant species has been found to associate
with different diaspidid species across colonies. Likewise, some diaspidid species
associate with more than one ant species. These patterns stand in contrast to typical host-
endosymbiont or host-parasite patterns of association that often demonstrate a higher
degree of partner fidelity, and sometimes result in cophylogenesis (Hafner and Page

1995, Page 2003, Vienne et al. 2013).
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The aspidiotine phylogeny (Fig. 2.1) shows that several diaspidid clades have
associated with Melissotarsus ants for extended periods of time; long enough for
speciation and diversification to have occurred after their ancestors first engaged in
myrmecophily. These long-lasting relationships demonstrate stable association between
lineages on an evolutionary timescale. Melissoaspis is a prime example for specialization
on myrmecophily; all five species are known exclusively from Melissotarsus galleries.
Both Diaspis (not shown) and Melanaspis have also been ant-associated long enough for
speciation events to occur.

One distinct characteristic of ant/diaspidid mutualisms is that it is difficult to
identify a specific clade of primary associates among the Diaspididae. Agricultural ants
often have a long history of association with one particular “primary” group of
mutualists, with fewer numbers of colonies acquiring novel “secondary” associates from
outside of this group. For example, Acropyga ants primarily associate with root
mealybugs from the subfamily Xenococcinae but a subset of colonies associate with scale
insects from outside of this clade (LaPolla 2004, Smith et al. 2007, LaPolla et al. 2008,
Schneider and LaPolla 2011). The Xenococcinae have a long history of association with
Acropyga (Johnson et al. 2001) and it is clear that associations evolved between the
common ancestors of both clades ~40 MYA. It is not apparent which diaspidids first
evolved associations with the ancestor of extant Melissotarsus species. It is possible that
none of the myrmecophilous species represented herein are descendants of the original
ant-associated armored scales. This suggests that there is a certain degree of fluidity in
ant/diaspidid relationships. Ant colonies are apparently opportunistic in their choice of

partners and species have acquired novel diaspidid associates repeatedly throughout their
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history. Perhaps the potential for myrmecophily is commonplace among the Diaspididae,
requiring only the opportunity for the association to arise.

Myrmecophily is not restricted to any particular group of armored scales,
although it does occur most frequently among aspidiotine species. It might be the case
that any armored scale species that can successfully invade Melissotarsus galleries and
tolerate association with ants could benefit from these interactions. This remains to be
confirmed as no researchers have yet attempted to introduce new partners to
Melissotarsus galleries. It would be interesting to see how readily colonies may adopt
novel mutualists. It is worth noting that none of the known myrmecophilous armored
scales belong to common pest species. One might think that commonly occurring species
have a high likelihood of encountering Melissotarsus colonies and engaging in
interactions with them. Apparently ant/diaspidid relationships face selective barriers in
the early phases of establishment, but once a diaspidid species has adapted to
myrmecophily it can readily associate with multiple Melissotarsus species.

Some diaspidid populations also appear to shift back and forth between free-
living and myrmecophilous life histories. While association is always obligatory for
Melissotarsus ants, there are examples both of facultative and obligate associates among
the armored scales. Most myrmecophilic diaspidids are putatively obligate associates,
known only from populations living in ant galleries. However, the most commonly
encountered and widely distributed myrmecophile is a facultative associate, described
from both free-living and ant-associated populations (Schneider et al. 2013). Morganella
conspicua is an especially successful nest associate found in galleries from all four

species of ants across the African continent and Madagascar. Why has a facultative
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myrmecophile experienced greater success relative to other, obligately associating
species? Facultative relationships might exist as a precursor to more derived obligate
associations. It is also possible that sampling error has misled us and all armored scales
are actually facultative associates. Facultative association could lend a competitive edge
to the mutualism if the maintenance of free-living populations on the exterior of trees

increases the likelihood for offspring to disperse to neighboring ant colonies.

2.6 Summary

Relationships between ants and scale insects are an important class of ant
agricultural interactions that can provide key insights into the evolution of mutualisms.
They are a key feature in the success of arboreal ants (Bliithgen et al. 2006) and can
indirectly benefit host plants in ant/plant mutualisms (Pringle et al. 2011). Future research
efforts should focus on continuing to improve the systematic framework for diverse scale
insect families that frequently engage in myrmecophily, making them more accessible for

studies of this kind.
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CHAPTER 3
FARMING AT SMALL SCALES: MELISSOTARSUS ANTS ARE PREDATORY
MUTUALISTS OF ARMORED SCALE INSECTS

3.1 Abstract

Ants are commonly suspected of preying upon mutualist hemipterans, but very
few studies have investigated the extent to which this actually occurs. Research suggests
that ants prey on associates in a context-dependent manner, when associates are abundant
and honeydew is readily available. Atypical associations between Melissotarsus ants and
armored scale insects present the opportunity to study ant/hemipteran mutualisms in the
absence of honeydew. A dietary study of Melissotarsus emeryi worker ants was
conducted to determine if ants are predators of mutualist diaspidids. Stable isotope
analyses were used to evaluate the relative trophic position of worker ants and determine
if diaspidids serve as a significant source of dietary nitrogen and carbon for colonies. In
addition, a molecular assay of ant gut contents was conducted to determine the presence
of diaspidid DNA inside the gut of ants. The relative trophic position of worker ants was
recovered as 1.1 + 04 trophic levels above diaspidids. Elemental analyses indicate that
diaspidids are a major contributing source of nitrogen and carbon for ant colonies.
Diaspidid DNA is consistently amplified from the gut contents of associated ants. The
combined results from these dietary studies strongly indicate that Melissotarsus ants are

predators of their mutualist partners, diaspidids.
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3.2 Introduction

Ants are generally considered to be opportunistic predators and yet a remarkable
number of ant species engage in stable mutualisms with populations that are potential
prey. The most common associations occur between ants and species of Hemiptera
(Delabie 2001). Many ant-attended hemipteran populations are largely sessile or
otherwise vulnerable to attack. Attendant ants are often suspected of exploiting
relationships by consuming mutualist hemipterans, but the actual frequency of attack and
impact of exploitative predation in ant/hemipteran mutualisms remains poorly understood
(Bronstein 2001, Stadler and Dixon 2008). Relationships are stable despite the
expectation that mild to moderate predation on mutualists occurs regularly.

Predation can play a multitude of roles in mutualistic interactions and
substantially impact their dynamics. Although predation is typically considered to be
antagonistic (Berryman 1992, Abrams 2000), under certain circumstances it can serve to
stabilize mutualisms. This has been documented in three-species models involving two
mutualist populations and a third-party predator; moderate levels of predation on one
mutualist population can prevent the growth of both populations from escalating toward
instability (Heithaus et al. 1980). In two-species models, the influence of predation on
mutualisms is not as straightforward. Some research suggests that predation is tolerable
between mutualist partners to a point but that exploited species might evolve mechanisms
to exclude their exploiters (Bronstein 2001). For instance, some yucca plants selectively
abort fruits that are infested with too many seed-eating pollinator larvae (Pellmyr and
Huth 1994). Others have argued that ant/aphid interactions (and presumably other

ant/insect associations) alternate between mutualism and predation (Cushman and
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Addicott 1991). This implies that predation substantively disrupts mutualism dynamics in
these systems. Stable mutualisms are more likely to evolve in symbioses where costs of
association remain relatively low and benefits high; mortality is an inherently high cost to
associates (Bronstein 2001, Leigh 2010).

In ant/hemipteran mutualisms, predation is thought to occur between partners in a
context-dependent manner. The general expectation is that ants are most likely to
consume mutualist partners when population densities of mutualists are high and
honeydew is readily available (Sakata 1995). The need for honeydew as a reliable food
source is a critical component of interactions; it may prevent attendant ants from feeding
too heavily on mutualist hemipteran populations, which could result in negative feedback
on their own success (Bull and Rice 1991). Under these circumstances, it is in the ants’
best interest to limit predation on their insect partners and seek out other protein sources
when honeydew is limiting. Empirical studies investigating these dynamics have been
sparse (Pontin 1958, Sakata 1995, Ivens et al. 2012).

Predation might play a central role in symbioses between Melissotarsus ants and
an unusual group of mutualists, the armored scale insects. Melissotarsus is an African ant
genus that associates exclusively with insects belonging to the family Diaspididae (Ben-
Dov and Fisher 2010, Schneider et al. 2013). Their relationships are unconventional
compared to other ant/insect mutualisms. Diaspidids are unique among ant-associates
because they are incapable of producing honeydew and do not exude any other known
by-products as a food reward for ant attendance (Beardsley Jr and Gonzalez 1975).
Researchers have speculated for decades as to how ants benefit from these obligatory

relationships (Prins et al. 1975, Ben-Dov 1990, Mony et al. 2002, Ben-Dov and Fisher
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2010). The prevailing hypothesis is that Melissotarsus ants farm armored scale insects as
a source of ‘meat’ (Ben-Dov 1978, Schneider et al. 2013). If this is true then ant/diaspidid
relationships are simultaneously predatory and mutualistic, implying that diaspidids
experience a net benefit from ant association in spite of incurring high costs from
mortality. Several armored scale clades have a long history of association with ants
(Chapter 2) but the stability of associations cannot be attributed to any obvious third-
party predators/competitors outside of the mutualism (Chapter 1) or to selective
preferences for typical food rewards (i.e. honeydew). Predation of ants on diaspidids
could stabilize the associations (Heithaus et al. 1980). Indeed, predation is likely to have
an appreciable impact on the stability of ant/diaspidid mutualisms if the fundamental
basis of their association is predatory in nature.

The reclusive nature of Melissotarsus colonies makes it difficult to study their
foraging behaviors and diet. Colonies reside within a network of galleries excavated by
workers in the bark of live trees. Melissotarsus workers enclose their galleries against the
surrounding environment by forming a mortar from silk, sawdust and frass used to seal
the entrances (Prins et al. 1975, Fisher and Robertson 1999). When a segment of the
gallery roof is removed, most workers immediately divert their attention to repairing their
enclosure, which serves as the primary defense for colonies (Schneider et al. 2013).
Direct observations of foraging behavior are hindered by this cloistered habit, requiring
more innovative approaches to study Melissotarsus diet.

One such approach takes advantage of the utility of naturally occurring stable
isotopes to reconstruct relative trophic relationships. Stable isotope techniques are

commonly used to untangle complex trophic webs (Post 2002, Layman et al. 2012). With
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one trophic exchange (e.g. between a primary producer and primary consumer) the
heavier nitrogen isotope, "N, is preferentially incorporated into the tissues of the
consumer, becoming enriched relative to the concentration of the lighter, more abundant
isotope, '*N. The expected mean differences in the ratios of these isotopes (5'°N) have
been estimated from a wealth of studies on trophic webs from terrestrial, aquatic, and
marine systems (see Post 2002, Bliithgen et al. 2003, McCutchan et al. 2003, Fiedler et
al. 2007 for representative examples). This allows for the estimation of the relative
trophic position of Melissotarsus ants by calculating 8'°N among host plants, diaspidids,
and ants in this study system. The same principle applies to carbon enrichment except
that 8'°C is more useful in tracking carbohydrate sources than distinguishing trophic level
(Post 2002). In this study, I used stable isotopic ratios for nitrogen and carbon from
Melissotarsus ant ecosystems (involving host plants, associated diaspidids, and worker
ants) to assess ant trophic level. I focused on associations between populations of the ant,
Melissotarsus emeryi, and diaspidids, Morganella conspicua, from South Africa. Data for
the trophic enrichment of "N and ">C isotopes were tested for consistency with the
hypothesis that armored scales are a contributing source of dietary nitrogen and carbon
for ants.

I studied worker ant diet more directly by employing a molecular analysis of ant
gut contents targeting armored scale mtDNA from preparations of worker ants. Sets of
diaspidid-specific primers were used to test worker ants for the presence of armored scale

DNA from gut contents in contrast to amplification results from their legs.
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3.3 Methods
3.3.1 Trophic position and resource tracking — Study design

In January 2012 I collected specimens of host plants (Leucospermum
praemorsum), resident ants (Melissotarsus emeryi), and associated diaspidids
(Morganella conspicua) from 9 sites located in the Clanwilliam district of Western Cape,
South Africa. Locality data for sampled colonies are recorded in Table 3.1. Specimens
were stored in 100% ethanol prior to analysis. Samples of host plants, adult worker ants,
and diaspidids were prepared for stable isotopic analysis first by drying specimens at
55°C for a minimum of 72 hours. All dried samples for each tissue type were finely
ground with a mortar and pestle. Ant samples consisted only of the head and alitrunk; the
gaster of worker ants was removed so that gut contents did not skew the calculation of
8"°N (Tillberg et al. 2006). Plant samples consisted of wood collected from areas adjacent
to galleries where diaspidids feed. Samples of diaspidids consisted of second instar
nymphs and adult females. Wood samples, ants and diaspidids were drawn from various
segments of the galleries to better represent isotopic signatures across the colony. For
each of 9 sites, 3"°C and 8'°N were calculated for 7 samples of pooled ground tissue per
tissue type to provide accurate estimation of means and standard deviations for 8'°N and
8"°C at each site (with the exception of diaspidids for Sites 2 and 3 for which there were
only enough specimens to make 3 and 6 pooled samples, respectively). Elemental
analyses of nitrogen and carbon were conducted at the Department of Geosciences Stable
Isotope Laboratory, University of Massachusetts, Amherst using a Finnigan Delta XL+
ratio mass spectrometer (Thermo Fisher Scientific, Waltham, MA) and a Costech

Elemental Analyzer (Costech Analytical Technologies, Inc., Valencia, CA).
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Site Locality Elevation (m) Included?
Latitude Longitude Trophic study [ Gut content study

1 32°01.926 S | 18°51.905 E 439 v v
2 32°02.063 S | 18°52.047 E 443 v v
3 32°00.071 S | 18°50.340 E 358 v v
4 31°54.969 S | 18°46.261 E 357 v v
5 31°48.608 S | 18°46.413 E 400 v v
6 31°54.539S | 18°45.819E 349 v 4
7 31°59.555S | 18°49.246 E 386 v 4
8 31°59.550 S | 18°49.281 E 389 v 4
9 31°59.534 S | 18°49.260 E 389 v 4
10 | 32°01.930S | 18°51.881 E 437 v

Table 3.1: Locality Data — This table summarizes locality data for the ten sites in
Western Cape, South Africa from which Melissotarsus emeryi colonies were collected.

Relative trophic position can be calculated for a consumer of interest from a
particular food web when data are available for both: (a) 8"°N (expressed as %o) for the
source (i.e. primary producer/consumer) and the consumer of interest, and (b) expected
8"°N enrichment per trophic exchange. Post (2002) developed this simple model for
calculating relative trophic position: trophic level = A + (E‘)ISNSQCOMary consumer — 815Nbase) /
An, where A is the trophic position of the organism used to calculate 8" Npase and A, is the
expected 5"°N enrichment per trophic level. Studies of terrestrial consumers raised on
invertebrate diets have established that the average 8'°N enrichment is 1.4 + 0.2 %o per
trophic exchange (Scrimgeour et al. 1995, Ostrom et al. 1996, Pinnegar et al. 2001,
Oelbermann and Scheu 2002, reviewed in McCutchan et al. 2003).

Isotope data can also be used to track resources from a source to a potential
consumer. Baseline isotopic values vary widely from place to place; even plants within a
few meters apart can have very different isotopic values. Natural variations in nitrogen

and carbon isotope ratios across landscapes can be useful in determining which sources

contribute to the diet of a consumer. If Melissotarsus ants are dependent upon diaspidids
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as a primary food source both nitrogen and carbon isotopic enrichment should indicate a
strong positive relationship between ants and diaspidids. If ants consume host plants (as
suggested by Mony et al. 2013) ant isotopic signatures for carbon and nitrogen should
track most closely to the plant. If the hypothesis that Melissotarsus ants are dependent
upon either the host plant or diaspidids as a food source were wrong (e.g. if they regularly
forage outside the galleries for other food sources) there should be at most a weak to
moderate relationship between worker ant and diaspidid or worker ant and host plant
isotopic values. Strong relationships between worker ant isotopes and host plant or
diaspidid isotopes should only exist if the ants are dependent upon them as a primary
food source.

3.3.2 Trophic position and resource tracking — Statistical analysis

Relative trophic position of worker ants was calculated using the model described
above with data for 8'°N enrichment from ants and diaspidids at each of 9 sites. Relative
trophic position was calculated for each site using corresponding diaspidid isotopic
values as 8'°Nyp.s and worker ant values as 8 Neonsumer. The trophic position of diaspidids
is 1 (. =1) and the expected 8'"°N enrichment per trophic level is 1.4%o (An= 1.4). The
mean relative trophic position for worker ants from all sampled colonies was then
calculated by averaging across results from all 9 sites.

Stable isotopic data for 8'"°N and 8" °C were analyzed using linear regression to
determine if either plant or diaspidid isotopic values are significant predictors of a
relationship with worker ant isotopic enrichment, indicative of resource tracking. Model
selection, testing of assumptions, and linear regression analyses were conducted in R

statistical software. The response variable for nitrogen enrichment models was 8"°N of
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worker ants (615Nworker). Predictor variables considered for these models included §°N
for diaspidids (815Ndiaspidid) and plants (615Np1am), magnitude of change between mean
diaspidid and worker isotopic values for each site (Mpxw, calculated as the Euclidean
distance between points in a 5"°C/5"°N biplot, Fig. 3.1), magnitude of change between
mean plant and worker isotopic coordinates for each site (Mpxw, plot not shown), the
direction of change between mean diaspidid and worker isotopic coordinates for each site
(Spxw, calculated as the slope of the line connecting two points in a 3°C/3"°N biplot, Fig.
3.1), and the direction of change between mean plant and worker isotopic coordinates for
each site (Spxw, calculated in the same manner). Melville and Connolly (2003) found
correlation of magnitude and direction in 3"°C/3"°N biplots to be an important indicator
of resource tracking between a producer and consumer. The direction of change indicates
how isotopic values differ between source and consumer; the magnitude is a measure of
how much they change. The response variable for carbon enrichment models was 8"°C of
worker ants (613Cworker). Predictor variables considered included diaspidid and plant s13¢C
(613Cdiaspidid and 813Cp13m), magnitude of change (Mpxw and Mpxw), and direction of
change (Spxw and Spxw) as described above.

Model selection was conducted by calculating stepwise AIC for the full model
using the “stepAIC” command from the MASS package in R, adding variables both
forwards and backwards for comparison. This procedure was followed for both the
nitrogen and carbon linear regression models. The model with the lowest AIC score was

regarded as the model of best fit for each linear regression.
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Fig. 3.1. $"C/ "N boxplot for diaspidids and workers — A biplot of 5"°C and 5"°N
with lines connecting the mean value for diaspidids (circles) and worker ants (diamonds)
from each site (Treel — Tree9). The magnitude of difference between diaspidid and
worker values, calculated as the Euclidean distance between each diaspidid and worker
per site, was included in the linear regression models for nitrogen and carbon. The slope
of each connecting line was also included to indicate direction of change. Lines are
colored by site.

Major assumptions of linear regression models were tested in R. Normality of
residuals was assessed by visualizing QQ plots, histograms, and with Shapiro-Wilk tests
normality when necessary. Potential outliers were evaluated using Cook’s D statistic to
determine if they had undue influence on the model; no significant outliers were detected.
Non-constant Variance Score tests were used to evaluate residuals for homoscedasticity.
Risk of autocorrelation among of predictor variables was assessed using a Durbin-

Watson test for multicollinearity. All statistical tests were evaluated against a Type I error

threshold of 0.05 (a = 0.05).
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3.3.3 Molecular assay of ant gut contents — Study design

Melissotarsus worker diet may also be assessed more directly by analyzing their
gut contents. To accomplish this, I designed 3 diaspidid-specific primer pairs of varying
product length for the COI barcoding region of the mitochondrial genome. First, the COI
barcoding region was amplified for ants and diaspidids using primer pairs from Park et al.
(2010). Polymerase chain reaction (PCR) protocols were as follows: an initial melting
step at 95°C for 2 minutes; 5 cycles of melting at 95°C for 30 seconds, annealing at 50°C
for 1 minute, and elongation at 72°C for 2 minutes; 30 cycles of melting at 95°C for 30
seconds, annealing at 55°C for 1 minute, and elongation at 72°C for 2 minutes; followed
by a final elongation step at 72°C for 5 minutes. PCR products were purified by treating
with Exonuclease I and Shrimp Alkaline Phosphatase (Exo-SAP) (Affymetrix, Santa
Clara, California) at 37°C for 25 minutes, followed by 80°C for 15 minutes to denature
proteins.

Purified products were then sent to the UMass Genomics Resource Lab (Ambherst,
Massachusetts) for Sanger sequencing using an ABI Model 3130XL sequencer (Life
Technologies, Carlsbad, California). DNA sequences were aligned in Mesquite 2.75
(Maddison and Maddison 2015) using the MUSCLE alignment tool (Edgar 2004) and
then used as a guide for primer design. To prevent annealing with DNA strands from
ants, diaspidid-specific primer pairs coincide with regions where ants possess an insertion
or deletion in the sequence. Three primer pairs were designed to represent relatively
short-length (~150 bp), intermediate-length (~400 bp), and long (~600 bp) amplification
products. The primer sets are as follows: COIbcF150 -

CATTACCTGTGCTAGCAAGAAG (150bp forward primer); COIbcF400 -
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ATACAGGATGAACATTATACCC (400bp forward primer); COIbcF600: ATAGAA
CTATTACAATTCATGCTT (600bp forward primer); and COIbcR1: TAATTGGGTTA
CCATTACCTCTTGG (reverse primer for all fragments). By chance, short fragments of
DNA have a higher probability than longer fragments of remaining intact during
digestion. If diaspidid DNA is present and being digested in the gut contents of ants,
there should be an inverse relationship between amplicon length and amplification
success.

Worker ant specimens from 10 sites (see Table 3.1) were prepared for gut content
assay in the following way. Four worker ants were selected at random from each of the
10 sites. For each site, 3 ants were initially washed in 500 pL of DNA Away™ Surface
Decontaminant (Thermo Fisher Scientific, Waltham, MA) for 10 minutes to degrade any
contaminant diaspidid DNA on the exterior surface, and one ant specimen was washed in
500uL of sterile deionized water (ddH,O). Specimens were randomly assigned to initial
wash protocols. The two wash protocols were used to test whether any failure to amplify
PCR products was due to the DNA Away™ wash working too effectively and destroying
DNA in the gut contents. All specimens were then transferred to 500uL ddH,O and
washed for an additional 10 minutes. Specimens were dissected with clean forceps into
two separate DNA extractions, one for the gaster segment and another for the legs. The
gaster contains most of the digestive tract of ants, including the crop where partially
digested food material is stored. Diaspidid DNA will only amplify from DNA extractions
of ant legs if the initial wash steps fail to remove all contaminant DNA from the exterior
surface. DNA extractions were completed using the Qiagen DNeasy Blood & Tissue Kit

(Qiagen, Valencia, California) following standard protocols with two elution steps each

69



completed using 100ul AE buffer (as in Chapter 2). Two controls were also prepared, a
diaspidid specimen collected from the 6th site served as the positive control (specimen
ID# D3595A) and an unrelated ant (Crematogaster sp.; specimen ID# F0026A) that did
not live in close contact with diaspidids was included to confirm that diaspidid-specific
primers do not amplify ant DNA.

PCRs were performed on all DNA extractions (gaster preps, leg preps, diaspidid -
positive control, Crematogaster ant - negative control) for each of the three COI
barcoding fragments. PCR products were visualized using 1.5% agarose gel
electrophoresis with SYBR® Safe (Life Technologies, Carlsbad, California) ultraviolet
stain. PCR products were purified following the same protocols as stated above.

The concentration of amplified diaspidid dsDNA from worker ant tissues and
controls was quantified using the Quant-iT™ PicoGreen® dsDNA assay (Life
Technologies, Carlsbad, California) following the kit’s standard protocols. A standard
curve was produced by mixing a series of dilutions ranging from 0.0—50 ng/ml of
purified Lambda DNA using TE (10 mM Tris, 1 mM EDTA, pH 7.5) as the solvent.
Working PicoGreen reagent was prepared by diluting the provided PicoGreen stock
solution 1:200 with TE according to the kit instructions. Equal volumes of DNA samples
and PicoGreen reagent were combined and incubated for 5 minutes; aliquots were
transferred to a 96-well microplate. Fluorescence was measured at the UMass Genomics
Research Laboratory using an MX3000p real-time PCR machine (Stratagene, La Jolla,
CA) with the plate reader set for excitation at 485nm and emission at 530nm.
Fluorescence was compared against the standard curve to calculate dsSDNA concentration

(ng/ml) for unknown samples. Products with high dsDNA concentration were successful
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in amplifying diaspidid DNA and those with low products failed to amplify. I interpret
failure to amplify as a true negative, i.e. no intact diaspidid DNA present for a particular
fragment (short, intermediate, or long).

3.3.4 Molecular assay of ant gut contents — Statistical analysis

Molecular assay data were analyzed using two-way ANOVA with fixed effects;
fragment size (short, intermediate, long) and tissue type (gaster, leg, diaspidid, ant) are
the dependent variables and DNA concentration is the independent response variable.
PicoGreen assays of PCR products can be influenced by the presence of PCR reagents,
which tend to depress fluorescence measurements. To correct for this effect and make all
DNA concentration measurements positive numbers, the value of the lowest
measurement was corrected to equal 1 ng/ml and all other DNA concentration
measurements were corrected accordingly. The relative concentration of DNA from
samples is of greater importance to these analyses than measurements of actual DNA
concentration.

Analyses were conducted in R. For gaster and leg tissue types, each DNA
fragment had 40 replicates. Fewer replicates were conducted for the positive and negative
controls (3 each for diaspidids and ants) to conserve costs and because they are included
mainly as a comparison to determine if DNA from gaster and leg tissues amplified as
expected. Type III sums of squares were calculated to accommodate this unbalanced
design. Type II sums of squares would be more powerful but only appropriate if the
interaction were not significant. Controls were included for pairwise comparisons of
gaster to diaspidid and ant to leg for each fragment since the gaster is assumed to contain

diaspidid DNA and the legs are not. Pairwise comparisons were also conducted for the
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short to intermediate and intermediate to long fragments for gaster tissues to determine if
amplification is inversely related to amplicon length. All pairwise comparisons were
achieved using Tukey’s HSD.

Assumptions for ANOVA were evaluated in R as well. One potential outlier was
identified but the Cook’s D statistic indicated no undue influence of this data point on the
model so it was kept in all subsequent analyses. Inspection of QQ plots and treatment-by-
residual plots indicated that the assumptions of normality and homoscedasticity of
residuals might be violated. A log transformation of DNA concentration data was used to

correct this.

3.4 Results
3.4.1 Trophic position and resource tracking

The relative trophic position of Melissotarsus workers is 1.1 + 0.4 trophic levels
above associated diaspidids. This result is consistent with the hypothesis that ants are
predators of diaspidids but is not sufficient to draw this conclusion.
The model of best fit for nitrogen linear regression was: S Nyorker = 62 Niaspidid T Mpxw +
Spxw. Linear regression analyses indicate that both 615Ndiaspidid and Mpyw are significant
predictors of a strong positive relationship with 8 Nyorker (F35 = 1681, Adjusted R® =
0.9984, p = 6.286 x 10'8, regression equation: E‘)ISNworker = 1.01(615Ndiaspidid) +
0.831(Mpxw) + 0.022(Spxw) — 0.067; 8" Niiaspiaiap = 1.88 x 107; Mpew p = 3.52 x 10
Fig. 3.2). Spxw was not a significant term in the model (p = 0.157). 815Nplam was not
found to be a significant predictor of 8" Nyorker when included in the model (p =0.611).

Nearly all variation in worker ant nitrogen isotopic ratios can be explained by variation
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Fig. 3.2: Relationship between worker and diaspidid nitrogen isotopic values — A
plot of the linear regression of 8"°N for diaspidids vs. workers showing the strong
positive relationship between nitrogen enrichment in worker and diaspidid tissues. Much
of the variation in worker nitrogen values across colonies can be explained by diaspidid
nitrogen values, indicating that diaspidids are a significant source of nitrogen for ants.
from diaspidid nitrogen ratios. Ant nitrogen isotopes track strongly to diaspidids as the
source. The host plant is not a significant source of nitrogen for ants.

For linear regression of carbon isotope data, the full model was determined to be
the best ﬁttlng model: 613Cworker = 613Cplant+ 613Cdiaspidid + MDXW+ MPXW + SDxW+ SPXW-
Analyses indicate that 813Cplant (p =0.006), Mpyw (p = 0.008), and Spxw (p = 0.017) are all
significant predictors of a strong positive relationship with 313cworker (Fe2 = 929.2,
adjusted R? = 0.998, p = 0.0011, regression equation: 513cworker = 1.048(613Cp1am) -
0.053(8" Caiaspicia) — 0.278(Mpyw) + 1.05(Mpxw) + 0.011(Spxw) — 1.99(Spaw) + 0.453).

813Cdiaspidid was not found to contribute significantly to the model (p = 0.579). A separate
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linear regression analysis for carbon was conducted considering only 613Cdiaspidid and
813Cp1am as predictor variables; 813Cdiaspidid was found to be a significant predictor of
variation in 813Cworker (p = 0.0018) but 813Cplam was not (p = 0.2423). The ultimate source
of carbon for both diaspidids and ants is likely to be the host plant; thus it is not
surprising that ants share a significant relationship to plants as the carbon source.
Melissotarsus can apparently digest various plant polysaccharides and the host plant may
actually serve as an important source of dietary carbon (Mony et al. 2013). This might
explain why regression analyses conflict on the contributions of diaspidids as a carbon
source; both host plants and diaspidids are contributors of carbon.
3.4.2 Molecular assay of ant gut contents

Diaspidid DNA was successfully amplified from gaster preps of worker ants for
the shortest and intermediate sized DNA fragments but not for the longest fragment (Fig.
3.3). For the 150bp fragment, 40/40 gaster preps (100%) contained intact diaspidid DNA.
A lower proportion of samples amplified diaspidid DNA for the 400bp fragment, 30/40
gaster preps (75%). The 600bp fragment did not successfully amplify for any gaster
preps, possibly indicating that intact DNA of that length was rare or absent. However, the
600bp fragment also failed to amplify for the majority of diaspidid samples suggesting
that the primer set anneals poorly to the target region. For this reason, I only report on
pairwise comparisons for the shorter two fragments. Low levels of contamination were
present in leg preps, indicating that the wash protocols did not destroy all contaminant
DNA on the exterior of worker ants. Still, significant differences were found between
gaster and leg preps for the 150bp fragment (Tukey’s HSD: p < 0.001) and the 400bp

fragment (Tukey’s HSD: p < 0.001). DNA concentration for gaster and diaspidid preps
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Fig. 3.3: Worker ant gut content assay — A boxplot illustrating comparisons made in

the two-way ANOVA for log(DNA concentration) with the dependent variables: tissue
type [diaspidid, gaster preps, leg preps, and ants (not shown)] and fragment length [150bp
(white), 400bp (light gray), and 600bp (dark gray)]. Mean values of diaspidid and gaster
preps for the 150bp and 400 bp fragments are significantly different from the remaining
treatment combinations.

does not differ significantly for the 150bp and 400bp fragments (Tukey’s HSD: p =
0.999, p = 0.998 respectively). The same is true for comparisons of legs and
Crematogaster ants (Tukey’s HSD: 150bp p = 0.912; 400bp p = 0.999). Diaspidid DNA
is amplified equivalently from diaspidid preps and from gaster preps of worker ants for
the short and intermediate length fragments. There is no statistical support for an inverse
relationship between fragment length and amplification success (Tukey's HSD: gaster

150bp:400bp p = 0.977). No significant amount of diaspidid DNA was amplified from

leg preps of worker ants or from unrelated ants that I assume have had no contact with
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diaspidids. Results of two-way ANOVA indicate that a significant interaction exists
between tissue type and fragment length. The effects of tissue type and fragment length

are related and cannot be discriminated in this study.

3.5 Discussion

The combined analyses of relative trophic position, resource tracking, and
molecular assay of gut contents for focal ant colonies all strongly support the prevailing
hypothesis that Melissotarsus are predators of diaspidids. Melissotarsus emeryi cultivates
populations of armored scale insects as a source of meat, an arrangement that apparently
works to the mutual benefit of both parties. Based upon these results and a study on the
evolutionary history of ant association among diaspidids (Chapter 2), I assert that
ant/diaspidid relationships are simultaneously mutualistic and predatory, a condition that
I refer to here as predatory mutualism. Myrmecophilous diaspidid populations do well in
association with ants (Chapter 1) and several lineages have experienced a long legacy of
association with Melissotarsus species (Chapter 2).

The rewards received by diaspidid populations from such an unusual mutualism
remain up for debate. Protection from predation or parasitism is usually assumed to be a
primary benefit to engaging in mutualism with ants. Although the ants are predators of
armored scales the rate at which associated populations are preyed upon may be lower
than that experienced by free-living populations. One important benefit that has not yet
been explored, but could prove to be a significant reward for myrmecophilous
populations, is the maintenance of microclimates within galleries that are suitable to the

growth and reproduction of diaspidids (Ivens 2014). Being able to reinvest resources into
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reproductive output rather than using those resources to develop defensive structures
could also contribute to the success of myrmecophilous diaspidids. For “armored” scale
insects, waxy scale coverings are the primary mode of defense and ant-associated
populations do not produce them. Melissotarsus galleries serve as a proxy for waxy scale
covers and the loss or reduction of wax producing structures in myrmecophilous
populations might be selectively favored (Schneider et al. 2013).

Diaspidid cultivation by Melissotarsus ants is in some ways analogous to
relationships between humans and livestock. Humans live in close association with many
of their prey (livestock), and these prey species have experienced a substantial fitness
benefit from associating with their predators (Diamond 2002). The main benefits received
by domesticated animals are food, shelter, assisted dispersal, and protection from natural
enemies (Rindos 1984, Budiansky 1992, Zeder 2006). Diaspidids benefit from access to
food and shelter inside ant galleries and they might gain assistance in dispersal as well,
but this remains to be discovered.

The prevalence of predatory mutualisms is a subject for future study. Yucca
plants associate with pollinators that also act as seed predators (Pellmyr and Huth 1994),
Dictyostelium slime molds practice bacterial husbandry (Boomsma 2011), and other ants
besides Melissotarsus consume mutualist partners (Cushman and Addicott 1991, Sakata
1995, Ivens et al. 2012). We run the risk of underappreciating potential contributions of
predation to mutualisms if we assume that predation only serves to “cheat” the system.
My work on associations between Melissotarsus ants and armored scale insects suggests
that predation can play a more fundamental role in the establishment and maintenance of

mutualisms.
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3.6 Summary

The objective of this study was to investigate the potential occurrence of
mutualistic interactions between predator and prey populations, which I refer to herein as
predatory mutualisms. Diaspidids are clearly an important food source for associated
Melissotarsus ants. Diaspidids also appear to benefit greatly from associating with their
primary predators. More in-depth comparative studies of trophobiotic ant diets are needed

to fully understand how predation can influence ant/insect relationships.
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S1: 28S genealogy — The majority-rule consensus tree resulting from Bayesian analysis
of the D2 expansion segment of the large subunit ribosomal RNA gene (28S). Branch
support is indicated as posterior probabilities.
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S2: EF-lo genealogy — The majority-rule consensus tree resulting from Bayesian
analysis of the nuclear protein-coding gene Elongation Factor-la (EF-1a). Branch
support is indicated as posterior probabilities.
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S3: CAD genealogy — The majority-rule consensus tree resulting from Bayesian analysis
of a segment of the nuclear protein-coding gene Carbamoyl-phosphate synthetase (CAD).
Branch support is indicated as posterior probabilities.
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S4: COI-COII genealogy — The majority-rule consensus tree resulting from Bayesian
analysis of a region of mitochondrial DNA encompassing the 3’ portion of cytochrome
oxidase I (COI) and the 5' portion of cytochrome oxidase II (COII). Branch support is
indicated as posterior probabilities.
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SS: Phylogeny of the tribe Aspidiotini — full taxon set — The majority-rule consensus

tree resulting from Bayesian analysis of the concatenated dataset for four gene regions
(28S, EF-1a, CAD, COI-COII) and the full taxon set of 127 species, 356 total taxa.
Branch support is indicated as posterior probabilities.
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D2921A_Aonidiella_aurantii_Greece_BBN
D2953A_Aonidiella_aurantii_Argentina_BBN
D5047A_Clavaspidiotus_apicalis_Indonesia_BBN
D5047B_Clavaspidiotus_apicalis_Indonesia_BBN
D1181B_Chrysomphalus_pinnulifer_Malaysia_BBN
D3544A_Chrysomphalus_nepenthivora_Thailand_lotID_GAE
D0300C_Chrysomphalus_aonidum_USA_BBN
D1021A_Chrysomphalus_aonidum_Mexico_BBN
D2809A_Chrysomphalus_aonidum_Mexico_BBN
D3275A_Chrysomphalus_pinnulifer_Malaysia_BBN
D3022B_Chrysomphalus_dictyospermi_Panama_BBN
D3061F_Chrysomphalus_dictyospermi_Panama_BBN
D4003A_Chrysomphalus_dictyospermi_Panama_BBN
D2912A7Aonidiel|a7lauretorumfPortu%aLBBquuery
D2445C_Chortinaspis_subchortina_USA_DRM
D0288C_Diaspidiotus_sp_1_Argentina
DO0265E_Chortinaspis_near_fabianae_Argentina_BBN
D0265F _Chortinaspis_near_fabianae_Argentina_BBN
D0273D_Targionia_fabianae_Argentina_BBN
D0277C_Targionia_fabianae_Argentina_DRM
D0277D_Targionia_fabianae_Argentina_BBN
D4102A_Palinaspis_sordidata_Panama_DRM_query
D0555A_Hemiberlesia_mendax_Argentina_BB
D0555B_Hemiberlesia_mendax_Argentina_BBN
D4069A_Hemiberlesia_musae_Panama_BBN
D4149A_Hemiberlesia_musae_Panama_BBN
D3088A_Hemiberlesia_near_palmae_Panama
D0893A_Hemiberlesia_cyanophylli_USA_BBN
D1016A_Hemiberlesia_cyanophylli_Mexico_DRM

1 D0947A_Hemiberlesia_palmae_Mexico_DRM
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D2499A_Hemiberlesia_palmae_Fiji_BBN
D3058A_Hemiberlesia_palmae_Panama_DRM
D3035A_Hemiberlesia_cyanophylli_Panama_DRM_query
D4001B_Hemiberlesia_cyanophylli_Panama_BBN_query
D4151A_Hemiberlesia_cyanophylli_Panama_BBN_query
D4153A_Hemiberlesia_cyanophylli_Panama_BBN_query
D0268B_Hemiberlesia_near_rapax_Argentina_BBN
D2142A_Hemiberlesia_rapax_Portugal_BBN
D2143C_Hemiberlesia_rapax_Portugal_BBN
D2793A_Hemiberlesia_rapax_New_Zealand_BBN
D1731B_Hemiberlesia_flabellata_Mexico_BBN
D1714B_Hemiberlesia_flabellata_Mexico_DRM
D1717A_Hemiberlesia_flabellata_Mexico_BBN
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D1731B_Hemiberlesia_flabellata_Mexico_BBN
D1714B_Hemiberlesia_flabellata_Mexico_DRM
D1717A_Hemiberlesia_flabellata_Mexico_BBN
D4061A_Hemiberlesia_ignobilis_Panama_BBN
D3069D_Hemiberlesia_andradae_Panama_BBN
D3069E_Hemiberlesia_andradae_Panama_BBN
D3069F_Hemiberlesia_andradae_Panama_BBN
D0461A_Hemiberlesia_lataniae_ USA_BBN

—— MDO004A_Hemiberlesia_candidula_USA_DRM

D0801A_Hemiberlesia_popularum_USA_DRM
D2724A_Hemiberlesia_popularum_USA_BBN
D4377A_Hemiberlesia_lataniae_Mexico_BBN
D0766B_Hemiberlesia_lataniae_Australia_BBN
D2760A_Hemiberlesia_lataniae_Mexico_BBN
gi204324162_Hemiberlesia_lataniae
%i204324163_Hemiberlesia_lataniae
2673A_Dynaspidiotus_abietis_Greece_BBN
D2673B_Dynaspidiotus_abietis_Greece_BBN
D2674A_Dynaspidiotus_abietis_Greece_BBN
D2674B_Dynaspidiotus_abietis_Greece_lotID_Stathas
D2725A_Aspidaspis_densiflorae_USA_BBN
D2727A_Aspidaspis_densiflorae_ USA_BBN
D3256B_Aspidaspis_arctostaphyli_USA_BBN
D1188A_Aspidaspis_arctostaphyli_ USA_DRM
D3550A_Aspidaspis_densiflorae_USA_BBN
D0688B_Diaspidiotus_gigas_Russia_BBN
D0979A_Dynaspidiotus_sp_USA
D2408A_Dynaspidiotus_apacheca_Mexico_BBN
D1783A_Dynaspidiotus_apacheca_Mexico_BBN
D2404B_Dynaspidiotus_apacheca_Mexico_BBN
D2682B_Dynaspidiotus_californica_USA_BBN
D1105A_Dynaspidiotus_sp_USA_BBN
D2680C_Dynaspidiotus_californica_USA_BBN
D3241A_Dynaspidiotus_californica_USA
D2176A_Diaspidiotus_osborni_USA_BBN
D2176B_Diaspidiotus_osborni_USA_DRM
D3189A_Aspidaspis_arctostaphyli_ USA_BBN
D0790A_Diaspidiotus_aesculi_USA_BBN
D0808A _Diaspidiotus_fraxini_USA_DRM
D2534A_Diaspidiotus_ancylus_USA_BBN
D2534C_Diaspidiotus_uvae_USA_DRM
DO0836A_Diaspidiotus_uvae_USA_BBN_query
D1 844E7DiaspidiotusﬁuvaerSAfBBNfguery
D3238B_Cupressaspis_shastae_USA_BBN
DO0809A_Cupressaspis_shastae_USA_DRM
D2526B_Cupressaspis_shastae_USA_DRM_query
D3552A_Hemiberlesia_oxycoccus_USA_BBN
D1944A_Diaspidiotus_ancylus_USA_GWW
D1100A_Diaspidiotus_ancylus_USA_DRM_query
D1100B_Diaspidiotus_ancylus_USA_DRM
D1935A_Diaspidiotus_ancylus_USA_DRM
D2449A_Diaspidiotus_ancylus_USA_BBN
D2706A_Diaspidiotus_aesculi_USA_BBN
D1784C_Aspidaspis_florenciae_Mexico
D2400B_Aspidaspis_florenciae_USA_BBN
D1079A_Diaspidiotus_liquidambaris_USA_GWW
D1106E_Diaspidiotus_liquidambaris_USA_BBN
D1916A_Diaspidiotus_mccombi_USA_DRM
DO0035A_Diaspidiotus_hunteri_USA_DRM
D0036A_Diaspidiotus_hunteri_USA_DRM
D1855A_Diaspidiotus_ancylus_USA_DRM
D1856A_Diaspidiotus_ancylus_USA_BBN
D1856B_Diaspidiotus_ancylus_USA_BBN
D1866C_Diaspidiotus_ancylus_USA_BBN

D1076A_Diaspidiotus_ancylus_USA_BBN

D1076B_Diaspidiotus_ancylus_USA_BBN
D1108F_Diaspidiotus_ancylus_USA_BBN_query

D1108G_Diaspidiotus_ancylus_USA_BBN
D1108H_Diaspidiotus_ancylus_USA_BBN
D1108K_Diaspidiotus_ancylus_USA

D1108L_Diaspidiotus_ancylus_USA_BBN

D2501A_Diaspidiotus_ancylus_USA_GWW
D2501B_Diaspidiotus_ancylus_USA_BBN

D2502A_Diaspidiotus_ancylus_USA_DRM

D2502B_Diaspidiotus_ancylus_USA_GWW
D2502C_Diaspidiotus_ancylus_USA_GWW
D2505A_Diaspidiotus_ancylus_USA_GWW
D2505B_Diaspidiotus_ancylus_USA_GWW
D2510A_Diaspidiotus_ancylus_USA_GWW

D2510B_Diaspidiotus_ancylus_USA_BBN
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