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ABSTRACT 

SYNTHESIS AND APPLICATIONS OF  

NON-MIGRATORY METAL CHELATING ACTIVE PACKAGING  

MAY 2016 

MAXINE J. ROMAN  

B.S., UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

M.S., UNIVERSITY OF CALIFORNIA, DAVIS 

PH.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

Directed by: Professor Julie M. Goddard 

Many packaged foods use synthetic chelators (e.g. ethylenediaminetetraacetic acid, 

EDTA) to inhibit metal promoted oxidation and/or microbial growth that may cause food 

spoilage. Consumer demand for foods without synthetic additives has prompted growing 

interest in alternative preservation methods. Our research group has previously developed 

non-migratory metal chelating active packaging materials by surface immobilization of 

polymeric chelators and demonstrated their ability to inhibit lipid oxidation in model food 

emulsions. The work presented in this dissertation investigates the synthesis, performance 

stability, and practical application of metal chelating surface modifications to optimize 

design of non-migratory metal chelating active packaging materials. 

Metal chelating active packaging materials were synthesized by grafting of metal 

chelating polymers from the surface of polypropylene (PP). Three metal chelating ligand 

chemistries were investigated for their known affinity for iron: carboxylic acids, 

hydroxamic acids, and catechols. Iron was chosen a target metal ion because it is a strong 

prooxidant and essential nutrient for spoilage bacteria. When utilizing photoinitiated graft 

polymerization to surface graft poly(acrylic acid) that contained carboxylic acid ligands, it 
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was demonstrated metal chelating polymer chain length and density may be manipulated 

to tailor both overall material iron chelating capacity (chain length) and ligand to metal 

binding ratio (chain density on food contact surface). Carboxylic acid functionalized PP 

(PP-g-PAA) enhanced the antimicrobial activity of lysozyme against Listeria 

monocytogenes under conditions that minimized protein fouling onto the charged food 

contact surface (PP-g-PAA, pKabulk 6.45). Compared to PP-g-PAA, hydroxamic acid 

functionalized PP (PP-g-PHA) was hypothesized to have a higher performance stability 

due to its low effective charge (pKabulk 9.65) and high specific affinity for iron. PP-g-PHA 

retained iron chelating capacity over a wide range of pH (3.0-5.0) and viscosity (~1 to 105 

mPa·s) conditions as well as in presence of competing ions (Na+, Mg2+, Ca2+) and 

hydrocolloids typically found in foods.  

In order to investigate the efficacy of catechol based surface modifications, a metal 

chelating material inspired by polyphenol chemistry was developed. Polyphenol coatings 

were fabricated by oxidative polymerization of catechol and catechin from the surface of 

PP. Application of coating onto chitosan functionalized PP prevented coating delamination 

in food simulants under standard migration test conditions. Polyphenol coated PP exhibited 

both iron chelating and radical scavenging capacity for dual antioxidant functionality. In 

accelerated storage studies, polyphenol coated PP extended the lag phase of lipid oxidation 

and inhibited lycopene degradation in oil-in-water emulsions (pH 4.0). This work 

demonstrates the synthesis of non-migratory metal chelating active packaging materials 

and their antimicrobial and antioxidant applications. Such technology may allow for the 

removal of synthetic additives from product formulations, while maintaining food safety, 

quality, and shelf life.    
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Metal chelators are used throughout product formulations in the packaged food 

industry to maintain overall food quality and safety in order to extend shelf life and 

minimize food waste.1 The most effective and most commonly used metal chelator is the 

synthetic food additive, ethylenediaminetetraacetic acid (EDTA). Recently, the use of 

synthetic additives in food products has been overwhelmingly criticized by consumers. In 

fact, a 2013 Gallup Study of Clean Food & Beverage Labels found that 23% of U.S. adults 

are clean label advocates.2 Major retail chains, such as Whole Foods and Panera Bread, 

have responded by banning synthetic additives from their product formulations.3, 4 In order 

to maintain food quality and enable removal of synthetic additives (e.g. EDTA) from 

product formulations, it is imperative to develop effective alternative preservation 

strategies. For this work, metal chelating surface modifications for the development of non-

migratory metal chelating active packaging materials are explored for application in 

packaged food preservation.  

1.2 Role of Metal Chelators in Food Industry 

Trace amounts of transition metals, especially iron, accelerate chemical and 

microbial degradation reactions that reduce food quality and safety.5 Since metal 

contaminants are ubiquitous in food ingredients as well as the food processing and 

packaging environment, the most effective means of inhibiting such degradation is the use 

of metal chelators. Metal chelators bind free metals to hinder their reactivity. Extensive 

research has demonstrated that metal chelators can contribute to food preservation by 
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inhibiting oxidative degradation (ie: lipid rancidity, color loss, vitamin degradation) and 

improving antimicrobial efficacy.  

1.2.1 Inhibiting Oxidative Degradation 

Many food products undergo quality deterioration during transport and storage due 

to oxidative reactions that cause lipid rancidity, color loss, and vitamin degradation. In the 

food industry, lipids are considered one of the most chemically unstable ingredients due to 

their susceptibility to oxidative degradation. Typically, unsaturated lipids, which contain 

conjugated dienes, are the most chemically unstable. Lipid oxidation proceeds via a free 

radical chain reaction wherein radicals (e.g. alkyl radicals (L·), peroxyl radicals  (LOO·), 

alkoxyl radicals  (LO·)) react with unsaturated lipids (LH) to propagate the production of 

lipid hydroperoxides (LOOH) (Figure 1.1).5 Lipid hydroperoxides are known as primary 

oxidation products. Although they have little impact on overall food quality, they are an 

important marker to indicate the early stages of lipid oxidation and play a key role in metal-

promoted oxidation. Transition metals (Mn), especially ferrous iron, primarily catalyze 

lipid oxidation by promoting the decomposition of lipid hydroperoxides to propagate free 

radicals. The decomposition of lipid hydroperoxides may result in β-scission reaction that 

promote the formation of secondary oxidation products (e.g. aldehydes, ketones, alcohols, 

hydrocarbons, organic acids, epoxy compounds), which are responsible for sensory 

characteristics associated with lipid rancidity.6, 7  
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Figure 1.1. Mechanism of metal-promoted lipid oxidation. Adapted from Decker and McClements 8 

Metal-promoted oxidation may also contribute to degradation of colors, especially 

naturally occurring colors. Common natural food colors, such as carotenoids, chlorophyll, 

and betanins, contain conjugated dienes that, similar to unsaturated lipids, are prone to 

oxidation degradation via free radical chain reaction that causes color loss.9-11 Similar to 

natural colors, vitamins that contain conjugated dienes are degraded by oxidation reactions. 

These include vitamin C (ascorbic acid), vitamin E (tocopherols and tocotrienol), vitamin 

A and its precursors (carotenoids), vitamin D, and vitamin B (e.g. riboflavin, thiamin).12  

The influence of transition metal reactivity on the acceleration of oxidative 

degradation is often evaluated by screening the efficacy of different types of antioxidants 

in a particular food system. The major types of antioxidant ingredients used in food systems 

are as follows: free radical scavengers (e.g. BHT, BHA), singlet oxygen quenchers (e.g. 

carotenoids), and metal chelators (e.g. EDTA, citric acid, polyphosphates).13, 14 Many 

research groups have demonstrated that metal chelators have the highest efficacy in 

inhibiting metal-promoted oxidation in aqueous systems, such as food emulsions.15-17 It is 

hypothesized transition metals are most reactive in food emulsions due to the high surface 

β 
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area of the interfacial layer between oil phase and aqueous phase that favors the 

accessibility of metal prooxidants to react with lipids.6, 7 For this reason, metal chelators 

are most effective as antioxidants in food emulsions such as beverages, salad dressings, 

mayonnaise, sauces, and spreads.18 

1.2.2 Improving Antimicrobial Efficacy 

 

Figure 1.2. Possible mechanisms of chelator antimicrobial activity. Adapted from Rufian-Henares et al.19 

Metal chelators, typically EDTA, play a key role in food product formulations by 

enhancing the efficacy of food grade antimicrobials. Metal chelators may acts as 

antimicrobials by chelating metal ions that stabilize the outer membrane of a bacterial cell 

(e.g. calcium and magnesium) and/or sequestering essential bacterial nutrients (e.g. iron) 

(Figure 1.2).19 Although the chelator concentration necessary for antimicrobial efficacy 

exceeds the limit of use in foods (e.g. FDA limit for beverages 33 ppm EDTA20; minimum 

inhibitory concentration for Listeria monocytogenes Scott A 250 ppm EDTA21), lower 

concentrations of chelators have demonstrated potent synergy with food grade 

antimicrobials. Branen and Davidson 22 reported that 31.3 μg ml-1 EDTA reduced the 

minimum inhibitory concentration (MIC) of lysozyme against Listeria monocytogenes 

Scott A by ten-fold, from 250 μg ml-1  to 25 μg ml-1. Antimicrobial synergy of chelators 

and membrane-disrupting antimicrobials (ie: lysozyme, nisin, monolaurin) was also 
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observed against E. coli O157:H7.22-24 Therefore, removal of metal chelators from a food 

system may have a significant impact on antimicrobial performance and subsequent 

product shelf life.  

1.3 Strategies to Prevent Metal-Promoted Degradation 

Metal-promoted degradation in packaged foods is most widely inhibited by the 

addition of EDTA. EDTA is a potent synthetic metal chelator that requires only small 

amounts to be effective and therefore has minimal impact on sensory qualities of food. The 

efficacy of EDTA is most likely due to its high binding affinity for reactive metals, such 

as iron (log βFe(III) 25.725). Natural metal chelators, such as citric acid, may also be used to 

inhibit metal-promoted oxidation. The structures of EDTA and citric acid are shown in 

Figure 1.3. A challenge of replacing EDTA with natural chelators is that they are not nearly 

as effective due to their lower affinity for reactive metals like iron (e.g. citric acid log βFe(III) 

11.8525), and therefore may need to be added in larger amounts that may alter the flavor, 

color, viscosity, and cost of a food.26 Also, in some cases, natural chelators may act as 

prooxidants by solubilizing transition metals without occupying all of the coordination 

sites to prevent reactivity.27  

 

Figure 1.3. Chemical structures of FDA approved metal chelators (a) EDTA and (b) citric acid.  
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An alternative preservation strategy for packaged foods is active packaging. Active 

packaging is a packaging material wherein an active compound has been deliberately 

incorporated to improve performance,28  in this case food preservation. Active compounds 

may be incorporated into packaging materials in many ways including coating, extrusion, 

and surface immobilization.29, 30 The majority of research on the synthesis of active 

packaging materials that contain metal chelators has focused on coating and extrusion,31-34 

which may rely on migration of the active compound to the food products to function. 

These approaches pose many limitations including possible alteration of material bulk 

properties and/or necessity to label active compounds as direct additives due to migration.  

Surface immobilization is an emerging field of active packaging research that 

investigates direct attachment or tethering of active compounds to the surface of a 

packaging material.35, 36 This type of active packaging material is designed to be non-

migratory so that it would require food contact notification rather than direct additive 

approval,37, 38 which precludes a label claim and may allow for application with all natural 

and organic foods. In addition, such modifications techniques have minimal impact on bulk 

material properties.39 Although active packaging synthesized by surface immobilization is 

theoretically possible,40-42 research on the synthesis and application of such materials has 

thus far been limited. Our research group has developed non-migratory metal chelating 

active packaging materials by surface immobilization of polymeric chelators to enable 

removal of EDTA from food product formulations and demonstrated their ability to inhibit 

lipid oxidation.43, 44 However, there is further research to be done to optimize the surface 

chemistry of such materials and to demonstrate their ability to function in a wide variety 

of applications. 
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1.4 Research Objectives 

The overall objective for this work is to explore the synthesis and applications of non-

migratory metal chelating active packaging materials, along with these specific objectives: 

1. Synthesize and characterize non-migratory metal chelating active packaging 

materials. 

2. Determine the performance stability of non-migratory metal chelating active 

packaging materials under conditions typically found in packaged food products 

(ie: pH, competing ions, competitive chelating ingredients, viscosity). 

3. Demonstrate antimicrobial and antioxidant application of non-migratory metal 

chelating active packaging materials. 
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CHAPTER 2 

IRON CHELATING POLYPROPYLENE FILMS: MANIPULATING 
PHOTOINITIATED GRAFT POLYMERIZATION TO TAILOR CHELATING 

ACTIVITY1  

2.1 Abstract 

Transition metals, especially iron, enhance the oxidative degradation of lipids. 

Non-migratory metal chelating active packaging can inhibit lipid oxidation and meet 

consumer demand for ‘cleaner’ labels. Recently, the development of iron chelating films 

prepared by photoinitiated graft polymerization of acrylic acid on polypropylene (PP-g-

PAA) was reported. The objective of this study was to tailor the chelating activity of PP-

g-PAA by manipulating graft conditions. Carboxylic acids graft density and PAA graft 

thickness increased with graft time and acrylic acid concentration, with carboxylic acids 

density of up to 143 ± 32 nmol cm-2, PAA graft thickness of ~6-18 μm, and ligand 

(carboxylic acid) to metal (Fe2+) binding ratio of ~4-5. Reducing photoinitiator graft 

density decreased this ratio to ~2-2.5, suggesting that graft chain density influences 

chelating activity. This work demonstrates the ability to tailor chelating activity of PP-g-

PAA with potential applications in active packaging, chelation therapy, and water 

purification. 

2.2 Introduction 

The presence of trace amounts of transition metals, especially iron, promotes 

deterioration of food quality via lipid oxidation. Metal-promoted lipid oxidation is 

                                                 
1 The contents of this chapter have been published: Roman, M. J.; Tian, F.; Decker, E. A.; Goddard, J. M. 
Iron chelating polypropylene films: Manipulating photoinitiated graft polymerization to tailor chelating 
activity. Journal of Applied Polymer Science 2014, 131, 39948. 
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primarily initiated by the reduced state of iron, ferrous iron (Fe2+),  which reacts with 

hydroperoxides to create radicals that propagate oxidation and contribute to the formation 

of off flavors, loss of nutrients, and degradation of color.45 Since it is difficult to completely 

remove trace amounts of iron from foods and the processing environment, the principal 

method of inhibiting metal-promoted lipid oxidation is the addition of metal chelators that 

bind iron to hinder its reactivity.7 The most effective (and most widely used) metal chelator 

is a synthetic compound ethylenediaminetetraacetic acid (EDTA). In an effort to produce 

products with less synthetic additives, there has been increasing interest in alternative 

methods of inhibiting metal-promoted lipid oxidation. These methods include the 

replacement of synthetic additives with natural antioxidants and/or active packaging. 

Natural antioxidants tend to be less potent than their synthetic counterparts and therefore 

must be added to food products in excessive quantities that have yet to be evaluated for 

safety and may have adverse impacts on sensory perception.26 Active packaging is a 

promising area of research that investigates the incorporation of active compounds, such 

as antioxidants, into the food packaging rather than directly into the food product.30 

However, most of the research in this area has been dedicated to the development of active 

packaging where functionality relies on the migration of active compounds from the 

packaging into the food, thus requiring labeling as an additive. Recently, non-migratory 

iron chelating active packaging was developed with the intended use of inhibiting lipid 

oxidation in liquid and semi-liquid foods.43, 46 Compared with traditional active packaging, 

in which the active agent would require approval as a direct additive, the active agent in 

non-migratory active packaging would require food contact notification.37 
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Non-migratory active packaging can be synthesized by direct covalent binding or 

tethering of active compounds to the surface of common packaging materials.35, 36 This 

concept has been used to modify surfaces for immobilization of enzymes and inhibition of 

microbial growth.40, 47, 48 In order to bind active compounds to packaging, their inert 

surfaces must be pretreated to create active sites. Some techniques for surface activation 

include wet chemical, silanization, ionized gas treatments (i.e. plasma, corona discharge, 

flame treatment), and UV irradiation.36, 49-52 UV radiation is a low cost and easy to control 

method that yields uniform, high density surface modifications with minimal damage to 

bulk material properties, which makes it advantageous compared to other surface 

modification techniques.51 

The current generation of iron chelating active packaging relies on the chelating 

activity of polymers covalently bound to the surface of films by photoinitiated living graft 

polymerization.43 The basic principle of photoinitiated living graft polymerization relies 

on using a photoinitiator in the presence of UV light to abstract a hydrogen to create surface 

radicals that can bind the photoinitiator to the film’s surface.53, 54 Then, a vinyl or acrylic 

monomer in the presence of UV light replaces the photoinitiator and polymerizes onto the 

surface to form polymer chains. Extensive research on photoinitiated graft polymerization 

of acrylic acid has been conducted in the field of membrane technology for the purpose of 

reducing protein fouling and tailoring membrane permeability. Successful grafting of 

poly(acrylic acid) to polypropylene,53, 55-59 polyamide,59, 60 polyethersulfone,61, 62 cellulose 

acetate,58 and polyvinylidene fluoride58 membranes by photoinitiated graft polymerization 

has been previously reported. Poly(acrylic acid) surface grafts onto polyolefin films, such 

as polyethylene63 and polypropylene,64, 65 have been shown to reduce gas permeability.  
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The iron chelating capacity of poly(acrylic acid) chains bound to polypropylene 

films (PP-g-PAA) by photoinitiated graft polymerization has been demonstrated.43 A basic 

schematic of this surface modification method is shown in Figure 2.1. This surface 

modification utilizes a sequential surface application of the photoinitiator and the monomer, 

which allows for controlled grafting of polymer chains with minimal homopolymer and 

cross-linking reactions.53 The active functional group on acrylic acid that binds metal ions 

is carboxylic acid. Carboxylic acids are found in many common food grade chelators, 

including EDTA and citric acid.30 The theoretical ligand (carboxylic acid) to metal (Fe2+) 

binding ratio of poly(acrylic acid) chains is 2 as depicted in Figure 2.2. This ratio may be 

observed to be different experimentally due to steric restriction of polymer grafting and/or 

environmental conditions (i.e. pH, ionic strength). It was previously reported that PP-g-

PAA extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion from 2 

to 9 days compared with native polypropylene (PP).43 

 

Figure 2.1. Two step photoinitiated graft polymerization of acrylic acid onto polypropylene – PP-g-PAA 
(a) and the chemical structures of (b) photoinitiator, (c) monomer, and (d) grafted polymer. 
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Figure 2.2. Theoretical binding of ferrous iron by PP-g-PAA. Adapted from Tian, et al. 43  

Inhibiting metal-promoted oxidative degradation by such non-migratory iron 

chelating films has application in an array of food, beverage, and consumer products 

applications, however individual applications may have different chelation needs as 

determined by factors such as iron concentration, pH and ionic strength.  As such, it is 

important to optimize photoinitiated graft polymerization in order to tailor its iron chelating 

activity. The objective of this study was therefore to optimize the production of PP-g-PAA 

non-migratory metal chelating active packaging films by manipulating graft conditions of 

photoinitiator (benzophenone) and acrylic acid. Increasing acrylic acid concentration 

resulted in an exponential increase in iron chelating activity and manipulating the graft of 

benzophenone altered the ligand to metal binding ratio. These data suggest that the length 

of the polymer chains as well as the density of polymer chain graft have a significant impact 

on the chelating activity of iron chelating films. 

2.3 Materials and Methods 

2.3.1 Materials 

Polypropylene (isotactic, pellets) was purchased from Scientific Polymer Products 

(Ontario, NY). Hydroxylamine hydrochloride, ferrous sulfate heptahydrate (99+%), 

imidazole (99%), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p’-disulfonic acid disodium 
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salt hydrate (ferrozine, 98+%), toluidine blue O (TBO), and ethanol (99.5+%) were 

purchased from Acros Organics (Morris Plains, NJ). Acrylic acid (anhydrous) and 

benzophenone (99%) were purchased from Sigma-Aldrich (St. Louis, MO). All other 

chemicals were purchased from Fisher Scientific (Fair Lawn, NJ). 

2.3.2 Polypropylene Film Preparation  

Polypropylene (PP) films were prepared as previously reported.43 PP pellets were 

cleaned by sequentially sonicating in the following solvents twice for 10 min each rinse: 

isopropanol, acetone, and deionized water, and then dried over anhydrous calcium sulfate. 

Clean PP film was prepared on a Carver Laboratory Press (Carver, Inc., NJ). The press was 

set to 160°C, PP pellets were heated on the press for 1 min, and then 9000 lbs of pressure 

was applied. PP films, average thickness of 387 ± 35 μm, were cut into 2 x 2 cm2 pieces 

and washed using the same method as the PP pellets.  

2.3.3 Photoinitiated Graft Surface Modification of Polypropylene 

Sequential photoinitiated graft polymerization was used to attach poly(acrylic acid) 

(PAA) to the surface of polypropylene (PP). This method is adapted from previously 

reported work.43, 53 For this research, concentration and UV exposure time for both the 

photoinitiator graft and monomer graft and polymerization were examined variables 

(Table 2.1). The photoinitiator tested was benzophenone and the monomer tested was 

acrylic acid. Control parameters refer to the grafting conditions for film previously tested 

for inhibition of lipid oxidation.43 
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Table 2.1. Photoinitiated graft polymerization of acrylic acid on polypropylene (PP-g-PAA) reaction 
parameters tested for study. Asterisks (*) indicate control parameters held constant in optimization 

experiments. 

Role Compound Graft Condition 
Test 
Parameters 

Photoinitiator 
Benzophenone 

 

Benzophenone 
Concentration (w/w) 

5%*, 3%, 1% 

Benzophenone  
Graft Time 

1.5 min*, 1 min, 0.5 min 

Monomer 
Acrylic Acid 

 

Acrylic Acid 
Concentration (w/w) 

30%, 25%*, 20%, 15%, 
10% 

Acrylic Acid 
Graft Time 

6 min*, 4.5 min, 3 min, 
1.5 min 

Thirty μl benzophenone in heptanes was spin coated (WS-400-6NPP, Laurell 

Technologies, North Wales, PA) onto each side of 2 x 2 cm2 polypropylene at 2000 rpm 

for 10 sec. During the spin coating, the spin coater chamber was purged with clean dry air 

and heptanes were evaporated from the film surface leaving a dried thin layer of 

benzophenone. The 2 x 2 cm2  benzophenone coated PP films were cut into 1 x 2 cm2 pieces 

and then each 1 x 2 cm2 piece was placed into a screw top vial and sealed with a septum 

fitted aluminum cap. The vials were flushed with nitrogen for 5 min and then exposed to 

UV light (Dymax 5000-EC Series, Torrington, CT) at 365 nm with an average light 

intensity of 209 ± 4.3 mW cm-2. After benzophenone grafting was completed, the films 

were washed 3 times with acetone to remove unreacted benzophenone and then dried at 

room temperature. 

Benzophenone activated PP (PP-BP) films were placed into a screw top vial and 6 

ml of acrylic acid in ethanol was added before the vials were sealed with septum fitted 

aluminum caps. The acrylic acid in ethanol solution in the sealed vials was flushed with 

nitrogen for 15 min. Nitrogen flushed vials were exposed to UV light to graft and 

polymerize acrylic acid onto PP-BP. PP-g-PAA was rinsed in deionized water for 30 min 
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at room temperature, 60 min at 60°C and then 30 min at room temperature to remove 

unattached monomer and homopolymer. PP-g-PAA was dried overnight over anhydrous 

calcium sulfate.  

2.3.4 Attenuated total reflectance/ Fourier transform infrared spectroscopy (ATR-

FTIR)  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used to confirm the grafting of functional groups on the surface of PP-g-PAA. An 

IRPrestige FTIR Spectrometer (Shimadzu Scientific Instruments, Inc., Kyoto, Japan) with 

a diamond ATR crystal was used to measure the spectrum. Each spectrum was collected 

under the following parameters: Happ-Genzel function, 32 scans, and 4 cm-1 resolution.  

Spectrum analysis was performed on KnowItAll(R) Informatics System 9.5 (Bio-Rad 

Laboratories, Inc., Informatics Division, Philadelphia, PA) and Sigma Plot 12 (Systat 

Software, Inc., San Jose, CA). 

2.3.5 Scanning Electron Microscopy (SEM) 

Surface and cross sectional images of PP-g-PAA were taken with JCM-5000 

NeoScope (JEOL, Japan) at 10 kV. Cross sectional samples were prepared by freeze 

fracturing films under liquid nitrogen. Prior to imaging, samples were mounted on a small 

aluminum platform with double sided carbon tape and then sputter coated with gold under 

nitrogen for 3 min. For each treatment, measurements were collected from images taken of 

two independently prepared replicates. 

2.3.6 Contact Angle 

Water (HPLC grade deionized water, Fisher Scientific, Fair Lawn, NJ) contact 

angles of PP-g-PAA were measured using a Kruss DSA100 (Hamburg, Germany) 
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equipped with a software controlled direct dosing system (DO3210, Hamburg, Germany) 

to determine film surface hydrophilicity. Advancing and receding angles were recorded 

every 0.10 sec and calculated using tangent method 2 on DSA software (Hamburg, 

Germany). 

2.3.7 Available Carboxylic Acids Density 

Toluidine blue O (TBO) dye assay, in which each molecule of dye reversibly binds 

with carboxylic acids at a 1:1 stoichiometric ratio, was used to quantify surface carboxylic 

acids as previously described.46, 66, 67 Each 1 x 2 cm2 film was submerged in 5 ml TBO 

(0.5mM TBO, pH 10), incubated while shaking at room temperature for 2 h and then rinsed 

3 times in pH 10 deionized water. TBO dye was desorbed from each film in 8 ml 50% 

acetic acid while shaking at room temperature for 15 min. The absorbance of TBO dye in 

50% acetic acid was measured at 633 nm to quantify surface carboxylic acids by 

comparison to a standard curve of TBO in 50% acetic acid. 

2.3.8 Ferrous Iron Chelating Activity 

Iron chelating activity of PP-g-PAA was determined by measuring the density of 

ferrous iron bound to PP-g-PAA at pH 5.0 (pH value at which PP-g-PAA was previously 

shown to exhibit optimal ferrous iron chelation).43, 46 In this method, the amount of chelated 

ferrous iron is released from the film and quantified by colorimetric reaction with ferrozine 

reagent. Each treatment was submerged in 20 ml of ferrous iron solution (1 mM ferrous 

sulfate heptahydrate in 0.05 M sodium acetate/imidazole, pH 5.0) and rotated at room 

temperature for 30 min to attach iron to films and then rinsed 3 times in deionized water. 

Ferrous iron was released from the films by incubating each 1 x 2 cm2 film with 3 ml of 

releasing agent (0.1 g ml-1 hydroxylamine hydrochloride and 0.05 g mL-1 trichloroacetic 
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acid) while shaking for 2.5 h. After ferrous iron was released from the film, 0.5 ml releasing 

agent (containing released ferrous iron) was added to 0.5 ml ferrozine solution (9.0 mM 

ferrozine in 50 mM HEPES, pH 7.0) and incubated while shaking for 1 h at room 

temperature. The absorbance of ferrozine reacted releasing agent was measured at 562 nm 

to quantify ferrous iron chelating activity by comparison to a standard curve of ferrous iron 

in releasing agent.  

2.3.9 Statistical Analysis 

All measurements were conducted in at least quadruplicate. Results are expressed 

at mean ± standard deviation.  For each graft condition examined, a one way ANOVA and 

Pearson correlation coefficient were calculated using GraphPad Prism 6.0 (La Jolla, CA). 

Means were separated using a Tukey’s post hoc test (p<0.05).   

2.4 Results and Discussion 

2.4.1 Surface Chemistry 

The ATR-FTIR spectra of native PP and PP-g-PAA films as affected by acrylic 

acid concentration, acrylic acid graft time, benzophenone concentration, and 

benzophenone graft time are shown in Figure 2.3. ATR-FTIR is a rapid technique for 

surface chemistry characterization that quantifies specific bonds within a few microns of a 

substrates surface.68 In the spectra shown, the narrow absorbance at 1700-1725 cm-1 and 

the broad absorbance at 1211-1320 cm-1 illustrate the C=O bond and the C-O bond, 
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respectively, of the carboxylic acids in the PAA graft. Absorbance characteristics of 

carboxylic acids are not present in the spectra of native PP.  

 

Figure 2.3. ATR-FTIR of PP-g-PAA as affected by (a) acrylic acid concentration, (b) acrylic acid graft 
time, (c) benzophenone concentration and (d) benzophenone graft time. 

As the acrylic acid concentration and acrylic acid graft time increases, the intensity 

of absorbance characteristics of carboxylic acid, 1211-1320 cm-1 and 1700-1725 cm-1, 

increases (Figure 2.3a and 2.3b). The acrylic acid graft times of 4.5 and 6 min have similar 

absorbance intensities, indicating that the graft of PAA may not significantly increase at 

graft times higher than 4.5 min. As the benzophenone concentration and benzophenone 

graft time increases, the intensity of carboxylic acid absorbance increases as well (Figure 

2.3c and 2.3d). However, it is important to note that contrary to the acrylic acid 

concentration and graft time treatments, this increase in carboxylic acid absorbance 

intensity does not correlate with the available carboxylic acids surface density (see 2.4.4. 
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Ligand to Metal Binding). None of the treatments contained significantly less available 

carboxylic acids than the highest benzophenone concentration and graft time tested. Given 

that ATR-FTIR only measures the first few microns of a substrate’s surface and the 

thickness of the graft layer is >6 μm as measured by SEM (see 2.4.2. Surface and Cross 

Section Morphology), the decrease peak intensity at lower benzophenone concentrations 

and graft times suggests a decreased PAA chain graft density. Since PAA chains may only 

polymerize from benzophenone grafted on PP, lower benzophenone graft would 

theoretically yield a lower PAA chain graft density.  

2.4.2 Surface and Cross Section Morphology 

In order to determine the effect of PAA graft on the morphology of PP films, surface 

and cross section SEM images of the following representative treatments were taken: 

native PP, 10% acrylic acid (low PAA graft), 25% acrylic acid (control parameters), and 

30% acrylic acid (high PAA graft) (Figure 2.4). Native PP exhibited a relatively smooth 

surface with a uniform cross section. Under low PAA graft conditions (10% acrylic acid), 

there were no noticeable changes in the surface morphology compared with native PP, 

however a small layer of PAA (6.23 ± 0.94 μm) was present in the cross section image. 

Control (25% acrylic acid) and high PAA graft (30% acrylic acid) films exhibited surface 

cracking and thicker PAA graft layers of 11.2 ± 0.83 μm and 17.6 ± 2.3 μm, respectively. 

Grafting of poly(acrylic acid) to polypropylene has been previously reported to increase 

surface cracking and roughness and may be caused by shrinkage of grafted PAA chains 

under dry conditions.43, 65 Although the interface between the PAA graft layer and 

polypropylene is not well defined, it is clear that an increase in PAA graft yielded an 

increased thickness of the PAA graft layer. 
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Figure 2.4. SEM analysis of surface of (a) native PP, (b) PP-g-PAA (10% AA), (c) PP-g-PAA (control 
parameters), (d) PP-g-PAA (30% AA) and cross section of (e) native PP, (f) PP-g-PAA (10% AA), (g) PP-

g-PAA (control parameters), (h) PP-g-PAA (30% AA). 

2.4.3 Surface Hydrophilicity 

Surface hydrophilicity of native PP and PP-g-PAA films was determined by 

measuring advancing and receding angles via water contact angle analysis. Grafting of 

benzophenone alone (no subsequent PAA grafting) had no significant impact on the 

advancing and receding angles of native PP. It has been previously reported that surface 

modification of polypropylene with poly(acrylic acid) improved its surface wettability due 

to the introduction of hydrophilic carboxylic acids functional groups.65 All of the PP-g-

PAA modified films were hydrophilic (advancing and receding contact angle < 80°) (see 

Table B.1. in Appendix B). Although decreasing the graft of acrylic acid and 

benzophenone resulted in decreased surface wettability (ie: higher advancing water contact 

angle) of PP-g-PAA when compared to control parameters (25% acrylic acid, 6 min acrylic 

acid graft, 5% benzophenone, 1.5 min benzophenone graft), PP-g-PAA films remained 

hydrophilic compared with native PP films.  
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2.4.4 Ligand to Metal Binding 

The influence of manipulating grafting parameters on the functional properties of 

the resulting PP-g-PAA films was quantified by measuring the number of available 

carboxylic acids on the films surface using the TBO dye assay and the ferrous iron 

chelating activity as quantified by the ferrozine assay, described above. The ratio of 

available carboxylic acids density to iron chelating activity was calculated as the ligand to 

metal binding ratio. The influence of acrylic acid and benzophenone graft conditions on 

ligand to metal binding ratio are described below. 

 

Figure 2.5. Effect of AA concentration on (a) available carboxylic acids density and (b) ferrous iron 
chelating activity. Values are means ± standard deviations (n=4). Letters denote significant differences 

(p<0.05). 

Acrylic Acid Graft Conditions. The effect of acrylic acid concentration on available 

carboxylic acids density and iron chelating activity is reported in Figure 2.5. Standard 

deviations for acrylic acid concentrations ranging from 10 to 25% were less than ± 3.5 and 

therefore are not visible on Figure 2.5a. Increasing acrylic acid concentration produced an 

exponential-like increase in available carboxylic acids on PP-g-PAA surface. This increase 

in carboxylic acids was proportional to the increase in iron chelating activity, with a 

maximum carboxylic acids density of 143 ± 32 nmol cm-2 and iron chelating activity of 

35.8 ± 2.8 nmol Fe2+ cm-2 at 30% AA. For every 5% increase in acrylic acid concentration, 



22 
 

the available carboxylic acids and iron chelating capacity roughly doubled. However, at 

acrylic acid concentrations above 25%, limited solubility and increases in solution 

polymerization impacted the consistency of graft polymerization, as noted by the larger 

standard deviation at 30% acrylic acid; therefore, concentrations higher than 30% were not 

investigated.  

 

Figure 2.6. Effect of AA graft time on (a) available carboxylic acids density and (b) ferrous iron chelating 
activity. Values are means ± standard deviations (n=4). Letters denote significant differences (p<0.05). 

Figure 2.6 shows the effect of acrylic acid graft time on available carboxylic acids 

density and iron chelating activity. As the acrylic acid graft time increased, the available 

carboxylic acids density increased, approaching a plateau of 77.7 ± 3.5 nmol cm-2 at 6 min. 

Acrylic acid graft times longer than 6 min caused acrylic acid in ethanol solution to leak 

out of vials due to pressure build up, therefore longer graft times were not investigated. In 

agreement with the acrylic acid concentration data, the increase in carboxylic acids was 

proportional to the increase in iron chelating activity. The Pearson correlation coefficient 

of available carboxylic acids and iron chelating activity for all acrylic acid graft conditions 

was 0.996 (p<0.05), suggesting that these two measurements are highly correlated. The 4.5 

and 6 min graft times did not have significantly different iron chelating activities,16.4 ± 

1.8 nmol Fe2+ cm-2 at 4.5 min and 18.1 ± 2.2 nmol Fe2+ cm-2 at 6 min. This observation 



23 
 

corresponds with the similarities in the ATR-FTIR spectra of 4.5 and 6 min graft time 

(Figure 2.3b).  

 

 

dsfa 

 

Figure 2.7. Effect of BP concentration on (a) available carboxylic acids density and (b) ferrous iron 
chelating activity. Values are means ± standard deviations (n=4). Letters denote significant differences 

(p<0.05). 

Benzophenone Graft Conditions. The effect of benzophenone concentration on 

available carboxylic acids density and iron chelating activity is shown in Figure 2.7. There 

is no distinct trend that correlates benzophenone concentration with available carboxylic 

acids, but rather it appears that an optimum amount of carboxylic acids, 84.0 ± 15 nmol 

cm-2, was grafted at 3% benzophenone. The control parameter (5% benzophenone) 

exhibited the lowest iron chelating capacity, while decreasing the benzophenone 

concentration to 3% more than doubled the iron chelating capacity (45.4 ± 5.9 nmol Fe2+ 

cm-2 at 3% benzophenone). Figure 2.8 shows the effect of benzophenone graft time on 

available carboxylic acids density and iron chelating activity. Again, there was no clear 

trend that correlates benzophenone concentration with available carboxylic acids, but 

rather that an optimum carboxylic acids density of 103 ± 11 nmol cm-2 was grafted at 1.0 

min benzophenone graft. The control parameter (1.5 min benzophenone graft) exhibited 

the lowest iron chelating capacity, while lower benzophenone graft times exhibited up to 

almost double of the iron chelating capacity,  41.6 ± 2.9 nmol Fe2+ cm-2 at 1.0 min and 29.1 
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± 4.7 nmol Fe2+ cm-2 at 0.5 min. Unlike changes to the acrylic acid graft parameters, 

adjusting the benzophenone graft parameters did not yield proportional increases in the 

available carboxylic acids and iron chelating capacity. The Pearson correlation coefficient 

of available carboxylic acids and iron chelating activity for all benzophenone graft 

conditions was 0.625 (p = 0.185), suggesting that these two measurements are not highly 

correlated. 

 

Figure 2.8. Effect of BP graft time on (a) available carboxylic acids density and (b) ferrous iron chelating 
activity. Values are means ± standard deviations (n=4). Letters denote significant differences (p<0.05). 

In order to demonstrate the effect of benzophenone graft conditions on iron 

chelating capacity, the ligand to metal binding ratio for all treatments was calculated and 

reported in Table 2.2. Reducing benzophenone graft density below control parameter (5% 

benzophenone and 1.5 min graft time) decreased ligand (carboxylic acid) to metal (Fe2+) 

ratio from approximately 4 – 5 to approximately 2- 2.5. Given that acrylic acid will only 

polymerize from benzophenone grafted on PP, these data suggest that the density of PAA 

grafted chains may impact the ligand to metal binding ratio of PP-g-PAA. It is hypothesized 

that higher density PAA grafted chains may exhibit increased apparent ligand to metal 

binding ratio due to reduced chain flexibility caused by chain cross-linking. PAA chain 

cross-linking may be initiated by chain transfer reactions or tertiary carbon radicals induced 
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by UV light exposure.64 More closely packed PAA chains may be more susceptible to these 

types of reactions.  

Table 2.2. Ligand (COOH) to metal (Fe2+) binding ratio for all experimental treatments. Letters denote 
significant differences (p<0.05). 

Graft 
Condition 

Test 
Parameters

Ligand to Metal  
Binding Ratio 

Control Parameters 4.30 ± 0.56a,b 

Benzophenone 
Concentration 

3% 1.85 ± 0.42b 

1% 2.30 ± 0.68b 

Benzophenone 
Graft Time 

1 min 2.48 ± 0.32a,b 

0.5 min 2.63 ± 0.63a,b 

Acrylic Acid 
Concentration 

30% 3.98 ± 0.94a,b  

20% 3.93 ± 1.4a,b 

15% 4.38 ± 0.81a,b 

10% 5.42 ± 1.6a 

Acrylic Acid 
Graft Time 

4.5 min 3.99 ± 0.95a,b 

3 min 5.12 ± 2.3a,b 

1.5 min 3.65 ± 1.8a,b 

 

2.4.5 Optimization of PP-g-PAA  

The preceding data on the effect of PP-g-PAA graft parameters suggest that 

adjusting control parameters to increase acrylic acid concentration and decreasing graft of 

benzophenone should yield PP-g-PAA with high iron chelating capacity. In order to test 

this hypothesis, PP-g-PAA films were produced under the following parameters 5% 

benzophenone, 1.0 min benzophenone graft , 30% acrylic acid, and 6.0 min acrylic acid 

graft. The concentration of BP in solution was not adjusted to optimum conditions (3% BP) 

because of the effect of reduced solution viscosity of the homogeneity of spin coating.  This 
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set of parameters yielded a PP-g-PAA film with a carboxylic acids density of 167 ± 31 

nmol cm-2 and iron chelating activity of 76.8 ± 10 nmol Fe2+ cm-2. As predicted by grafting 

trends, increasing the acrylic acid concentration of the 1.0 min benzophenone graft 

parameter by 5% roughly doubled available carboxylic acids density and iron chelating 

activity.  

2.5 Conclusions 

Herein, we report the effect of adjusting photoinitiated graft polymerization 

conditions on the surface chemistry and iron chelating activity of PP-g-PAA films that have 

previously demonstrated inhibition of lipid oxidation in an oil-in-water emulsion.43 Graft 

chain length and density, manipulated by changing acrylic acid and benzophenone graft 

conditions, significantly influenced the chelating activity of PP-g-PAA both in terms of 

overall iron binding capacity as well as ligand to metal binding ratio. High chelating 

capacity may be obtained with longer graft chain length (higher acrylic acid graft) and 

lower graft chain density (lower benzophenone graft) to ensure high amounts of available 

carboxylic acids and adequate chain flexibility. Such ability to tailor the iron chelating 

capacity of PP-g-PAA enables the ability to adapt functional characteristics of chelating 

polymer materials for specific applications in active packaging for food and consumer 

products as well as water purification.    
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CHAPTER 3 

METAL CHELATING ACTIVE PACKAGING FILM ENHANCES LYSOZYME 
INHIBITION OF LISTERIA MONOCYTOGENES2 

3.1 Abstract 

Several studies have demonstrated that metal chelators enhance the antimicrobial 

activity of lysozyme. This study examined the effect of metal chelating active packaging 

film on the antimicrobial activity of lysozyme against Listeria monocytogenes. 

Polypropylene films were surface modified by photoinitiated graft polymerization of 

acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating 

activity based on charge interactions. PP-g-PAA exhibited a carboxylic acid density of 113 

± 5.4 nmol cm-2 and an iron chelating activity of 53.7 ± 9.8 nmol cm-2. The antimicrobial 

interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-

PAA hindered lysozyme activity at low ionic strength (2.48 log increase at 64.4 mM total 

ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22 log 

reduction at 120 mM total ionic strength). These data support the hypothesis that, at neutral 

pH, synergy between carboxylate metal chelating films (pKabulk  6.45) and lysozyme (pI 

11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable 

charge interactions, such as lysozyme absorption onto film. These findings suggest that 

active packaging that chelates metal ions based on ligand-specific interactions, in contrast 

to electrostatic interactions, may improve antimicrobial synergy.  This work demonstrates 

                                                 
2 The contents of this chapter have been published: Roman, M. J.; Decker, E. A.; Goddard, J. M. Metal-
Chelating Active Packaging Film Enhances Lysozyme Inhibition of Listeria monocytogenes. Journal of 
Food Protection® 2014, 77, 1153-1160. 
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the potential application of metal chelating active packaging films to enhance the 

antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme. 

3.2 Introduction 

Food antimicrobials are important to prevent the growth of microorganisms that 

decrease food shelf life and threaten food safety. Most traditional food antimicrobials, such 

as organic acids and nitrites, are produced by synthetic means.69 Increasing consumer 

demand for foods without synthetic additives has given rise to increasing interest in food 

antimicrobials that are derived from natural sources. Egg white lysozyme (E.C. 3.2.1.17) 

is an antimicrobial enzyme approved for use in organic foods that hydrolyzes 1,4 glycosidic 

bonds to damage the peptidoglycan layer of bacteria.70, 71 The application of lysozyme in 

foods has been limited by the high concentrations needed for antimicrobial activity and the 

resistance of gram negative bacteria to its antimicrobial action.72 

Ethylenediaminetetraacetic acid (EDTA) is a synthetic metal chelator that is often 

added to food to inhibit oxidative degradation and to enhance the efficacy of food 

antimicrobials, such as lysozyme.22-24, 73-75 Metal chelators may enhance food antimicrobial 

activity by sequestering essential nutrients (e.g. iron) and/or removing membrane 

stabilizing cations (e.g. magnesium, calcium).19 Branen et al. reported that 31.3 μg/ml 

EDTA reduced the minimum inhibitory concentration (MIC) of lysozyme against Listeria 

monocytogenes Scott A by ten-fold, from 250 μg ml-1 to 25 μg ml-1.22 Synergy between 

lysozyme and EDTA against Escherichia coli 0157:H7 was reported at lysozyme 

concentration of 200-600 μg ml-1 and EDTA concentrations of 300-1500 μg ml-1.24 In a 

study examining the effect of cations on lysozyme synergy with EDTA, it was proposed 

that chelation of multivalent cations by EDTA was inherent to antimicrobial synergy.23  
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Recently, non-migratory metal chelating active packaging was developed as a 

promising alternative to synthetic metal chelators.43, 46, 76 Since the chelator is covalently 

attached to the packaging, this type of packaging would require food contact notification 

rather than direct additive approval, which may make it suitable for use with natural and 

organic foods.37 Metal chelating polypropylene films were synthesized by photoinitiated 

graft polymerization of acrylic acid onto polypropylene (PP-g-PAA).43 Tian et al.43 

reported that metal chelating film with a ferrous iron chelating activity of 71.07 ± 12.95 

nmol cm-2 extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion 

from 2 to 9 days (using accelerated storage conditions). There has yet to be any 

investigation of the antimicrobial activity of such non-migratory metal chelating active 

packaging films. 

The objective of this study was to evaluate the antimicrobial activity of metal 

chelating active packaging films when used in combination with lysozyme. We further 

examined the influence of ionic strength on the synergy between metal chelating films and 

lysozyme. Listeria monocytogenes Scott A was chosen as the test food pathogen because 

of its importance in food safety, and because it does not produce siderophores (microbial 

produced iron chelators that, if produced, may compete with the metal chelating film and 

may complicate the interpretation of our results).   

3.3 Materials and Methods 

3.3.1 Materials 

Polypropylene (isotactic pellets, catalog number 130) was purchased from 

Scientific Polymer Products (Ontario, NY). Hydroxylamine hydrochloride, ferrous sulfate 

heptahydrate (99+%), imidazole (99%), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p’-
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disulfonic acid disodium salt hydrate (ferrozine, 98+%), toluidine blue O (TBO), and 

ethanol (99.5+%) were purchased from Acros Organics (Morris Plains, NJ). Acrylic acid 

(anhydrous), benzophenone (99%), and lysozyme from chicken egg white (lyophilized 

powder, protein ≥98 %, ≥40,000 units mg-1 protein) were purchased from Sigma-Aldrich 

(St. Louis, MO). Bicinchoninic acid (BCA) protein assay kit was purchased from Thermo 

Scientific (Rockford, IL). All other chemicals were purchased from Fisher Scientific (Fair 

Lawn, NJ). Listeria monocytogenes Scott A (FSL-J1-225) was obtained from M. 

Weidmann, Cornell University. EDTA solutions were autoclaved and lysozyme solutions 

were filter sterilized prior to use in antimicrobial assays. 

3.3.2 Preparation of Metal Chelating Film 

Metal chelating polypropylene films were prepared using a modification of 

previously reported work.43, 76 Polypropylene (PP) pellets were cleaned by sequentially 

sonicating in isopropanol, acetone, and deionized water (each solvent twice for 10 min 

each rinse), and then dried over anhydrous calcium sulfate. Clean PP film was prepared 

from PP pellets on a Carver Laboratory Press (Carver, Inc., NJ) set to 160°C. PP films, 

average thickness of 387 ± 35 μm, were cut into 7.5 x 7.5 cm2 pieces and washed using the 

same method as the PP pellets.  

Benzophenone in heptanes (5% w/w) was spin coated (WS-400-6NPP, Laurell 

Technologies, North Wales, PA) onto each side of 7.5 x 7.5 cm2 polypropylene at 500 rpm 

for 5 sec and then, 2000 rpm for 30 sec. Each 7.5 x 7.5 cm2  benzophenone coated PP film 

was cut into 2.5 x 7.5 cm2 pieces and then each 2.5 x 7.5 cm2 piece was placed into a screw 

top 250 ml square borosilicate glass bottle and sealed with a polytetraflouroethylene faced 

silicon septum fitted polybutylene terephthalate cap (Corning Inc., Corning, NY). The vials 
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were flushed with nitrogen for 5 min and then exposed to UV light (Dymax 5000-EC Series, 

Torrington, CT) at 365 nm with an average light intensity of 209 ± 4.3 mW cm-2 for 60 sec. 

Films were washed three times with acetone after benzophenone-surface activation to 

remove unreacted benzophenone and then dried at room temperature. 

Benzophenone-activated PP (PP-BP) films were placed into a screw top 250 ml 

square borosilicate glass bottle and 56.25 ml of acrylic acid in ethanol (30% w/w) was 

added before the bottles were sealed with polytetraflouroethylene faced silicon septum 

fitted polybutylene terephthalate cap and then flushed with nitrogen for 20 min. Nitrogen 

flushed vials were exposed to UV light for 6 min to graft and polymerize acrylic acid. PP 

films with grafted poly(acrylic acid) (PP-g-PAA) were rinsed in deionized water for 30 

min at room temperature, 60 min at 60°C and then 30 min at room temperature to remove 

unattached monomer and homopolymer. PP-g-PAA was dried overnight over anhydrous 

calcium sulfate.  

3.3.3 Scanning Electron Microscopy (SEM) of Metal Chelating Film 

Cross sectional images of PP-g-PAA were taken with JCM-5000 NeoScope (JEOL, 

Japan) at 10 kV. Cross sectional samples were prepared by freeze fracturing films under 

liquid nitrogen. Prior to imaging, samples were mounted on a small aluminum platform 

with double sided carbon tape and then sputter coated with gold under nitrogen for 3 min. 

3.3.4 Attenuated total reflectance/ Fourier transform infrared spectroscopy (ATR-

FTIR) of Metal Chelating Film  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used to confirm the grafting of functional groups on the surface of PP-g-PAA. An 
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IRPrestige FTIR Spectrometer (Shimadzu Scientific Instruments, Inc., Kyoto, Japan) with 

a diamond ATR crystal was used to measure the spectrum. Each spectrum was collected 

under the following parameters: Happ-Genzel function, 32 scans, and 4 cm-1 resolution.  

Spectrum analysis was performed on KnowItAll(R) Informatics System 9.5 (Bio-Rad 

Laboratories, Inc., Informatics Division, Philadelphia, PA) and Sigma Plot 12 (Systat 

Software, Inc., San Jose, CA). 

3.3.5 Available Carboxylic Acids Density of Metal Chelating Film 

Toluidine blue O (TBO) dye assay, in which each molecule of dye reversibly binds 

with carboxylic acids at a 1:1 stoichiometric ratio, was used to quantify surface carboxylic 

acids as previously described.46, 66, 67 Each 2.5 x 7.5 cm2 film was cut into 1 x 2.5 cm2 pieces 

for the assay. Each piece of film was incubated in 5 ml TBO (0.5mM TBO, pH 10) while 

shaking at room temperature for 2 h and then rinsed three times in deionized water, adjusted 

to pH 10 by sodium hydroxide. TBO dye was desorbed from each piece of film in 8 ml 50% 

acetic acid while shaking at room temperature for 15 min. The absorbance of TBO dye in 

50% acetic acid was measured at 633 nm to quantify surface carboxylic acids by 

comparison to a standard curve of TBO in 50% acetic acid. 

3.3.6 Ferrous Iron Chelating Activity of Metal Chelating Film  

Iron chelating activity of PP-g-PAA was determined by measuring the density of 

ferrous iron bound to PP-g-PAA at pH 5.0 (pH value at which PP-g-PAA was previously 

shown to exhibit optimal ferrous iron chelation and have good iron solubility).43, 46 In this 

method, the amount of chelated ferrous iron is released from the film and quantified by 

colorimetric reaction with ferrozine reagent. Each 2.5 x 7.5 cm2 film was cut into 1 x 2.5 

cm2 pieces for the assay. Films were submerged in 20 ml ferrous iron solution (1mM 
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ferrous sulfate heptahydrate in 0.05M sodium acetate/imidazole, pH 5.0) and rotated at 

room temperature for 30 min followed by rinsing 3 times in deionized water to remove 

loosely adsorbed iron. Each 1 x 2.5 cm2 film was incubated with 3 ml releasing agent (0.1 

g ml-1 hydroxylamine hydrochloride and 0.05 g ml-1 trichloroacetic acid) while shaking for 

2.5 h to release ferrous iron. After ferrous iron was released from the film, 0.5 ml releasing 

agent (containing released ferrous iron) was added to 0.5 ml ferrozine solution (9.0 mM 

ferrozine in 50mM HEPES, pH 7.0) and incubated while shaking for 1 h at room 

temperature. The absorbance of ferrozine reacted releasing agent was measured at 562 nm 

to quantify ferrous iron chelating activity by comparison to a standard curve of ferrous iron 

in releasing agent.  

3.3.7 Microtiter Plate Assay of Antimicrobial Activity of Lysozyme and EDTA 

L. monocytogenes Scott A was chosen as a model gram positive microorganism to 

test the synergistic antimicrobial activity of PP-g-PAA and lysozyme. PP-g-PAA was 

designed to mimic the chelating mechanism of EDTA, therefore EDTA was chosen as the 

positive control for antimicrobial experiments. A checkerboard microtiter plate assay was 

used as a rapid screening test for the antimicrobial activity of lysozyme, EDTA, and 

combinations of lysozyme and EDTA against L. monocytogenes in tryptic soy broth (TSB). 

All treatments were tested in triplicates. Concentrations tested were as follows (in μg ml-

1): EDTA, 500, 250, 125, 62.5, 31.3, 15.6; lysozyme, 2000, 1000, 500, 250, 125, 62.5, 31.3. 

Ninety-six well microtiter plates with a well capacity of 300 μl were used for this 

experiment. For each well, 100 μl of lysozyme or EDTA (or 50 μl of each lysozyme and 

EDTA) and 100 μl of inoculum diluted in TSB (~105 cfu/ml) were added. Microtiter plates 

were incubated at 37°C for 24 h. Minimum inhibitory concentrations (MIC) of lysozyme 
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or EDTA were defined at the lowest concentrations for which growth was inhibited after 

overnight incubation. Antimicrobial inhibition was confirmed by plating onto tryptic soy 

agar (TSA) with an automated spiral plater Autoplater 4000 (Spiral Biotech Inc., Norwood, 

MA). Colonies were counted with a plate reader Scan 500 (Interscience, Saint-Non-la-

Brèteche, France) in a range of 30–300 colonies using the instrument’s software. 

3.3.8 Microarray Microtiter Plate Assay of Antimicrobial Activity of Metal Chelating 

Film and Lysozyme 

To quantify synergistic antimicrobial activity between lysozyme and metal 

chelating active packaging film, a microtiter assay was developed using a 96-well 

microarray microtiter plate (AHC4x24, ArrayIt Corporation, Sunnyvale, CA), in which 

swatches of film (4 – 2.5 x 7.5 cm2 pieces) are assembled at the bottom of the plate and 

function as the bottom of each well (Figure 3.1). Native PP film was used as a control film. 

Each microarray microtiter plate was placed in a polypropylene box (Sterilite 0.3-Gallon 

(1.2-Quart) Modular Latch Storage Box, Ennis, TX) and autoclaved to sterilize.  

 

Figure 3.1. Microarray plate adapted for use in film microbiological assays. Each plate can hold 4 -2.5 x 
7.5 cm2 films for testing of up to 24 samples per film (96-well plate). Each well exposes 48.75 mm2 of film. 
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In order to increase surface area to volume ratio, the volume in the antimicrobial 

assay was reduced to 100 μl total: 50 μl lysozyme and 50 μl inoculum diluted in TSB (~105 

cfu/ml). Each well exposes samples to a film surface area of 7.5 x 6.5 mm2 for a surface 

area to volume ratio of approximately 5 cm2 ml-1. Microarray microtiter plates were 

covered with sterile SealPlate Film (Excel Scientific, Victorville, CA), incubated at 37°C 

for 24 h and then MIC was quantified by plating on TSA as described in the previous 

section. 

Additional experiments were performed to assess the effect of ionic strength on the 

MIC of lysozyme in the presence of control film and on combinatory effect of metal 

chelating film and lysozyme. To vary the overall ionic strength of the assay, lysozyme was 

prepared in sodium chloride or potassium phosphate buffer, pH 7 (0 mM, 33.3 mM, 66.7 

mM, and 100 mM) instead of TSB.  As in the previous experiment, inocula were prepared 

in TSB to ensure proper nutrient and neutral pH conditions for bacterial growth. Since ionic 

strength had a significant influence on the lysozyme MIC, the lysozyme MIC for each ionic 

strength condition was determined. At the lysozyme MIC for each ionic strength condition, 

combinatory effect of metal chelating film and lysozyme on antimicrobial activity was 

assessed and compared to control film by calculating the log reduction value. Log reduction 

value (LRV) was defined as the log number of microorganisms inactivated after exposure 

to both lysozyme and metal chelating film compared with those inactivated by lysozyme 

and control film and calculated using the following equation:  

log   (1) 
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where NPAA is the number of microorganisms after exposure to lysozyme and metal 

chelating films and NPP is the number of microorganisms after exposure to lysozyme and 

control film. 

3.3.9 Lysozyme Adsorption onto Metal Chelating Films 

Adsorption of lysozyme onto the metal chelating films as a function of ionic 

strength was quantified using native PP as a control film.  Films were fixed to the bottom 

of the microarray microtiter plate as described previously.  Each 7.5 x 6.5 mm2 well was 

exposed to 100 μl of lysozyme (~800 μg ml-1) in phosphate buffer, pH 7.0 (0, 33.3, 66.7, 

100, 200 mM) for 24 h at 37°C. Lysozyme binding was quantified by comparing the protein 

content of lysozyme solutions before and after incubation with metal chelating film. Protein 

content was measured by BCA Protein Assay Kit (Thermo Scientific, Rockford, IL) using 

the standard test tube protocol. Briefly, 0.1 ml lysozyme in phosphate buffer was added to 

2.0 ml BCA working reagent, incubated at 37°C for 30 min, cooled to room temperature.  

Absorbances were measured at 562 nm and protein content was quantified by comparison 

to a standard curve of bovine serum albumin in phosphate buffer.  
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3.4 Results and Discussion  

3.4.1 Characterization of Metal Chelating Active Packaging Films 

 

Figure 3.2. (a) Synthesis of metal chelating films (PP-g-PAA) by photoinitiated graft polymerization, (b) 
theoretical ligand to metal binding structure (ligand:metal binding ratio = 2) adapted from Tian, et al. 43and 

(c) SEM cross sectional image of metal chelating films (arrow indicates approximate thickness of PAA 
graft layer). 

Metal chelating active packaging films were synthesized by two-step photoinitiated 

graft polymerization to graft poly(acrylic acid) from the surface of polypropylene (PP-g-

PAA), imparting carboxylic acid based metal chelating moieties (Figure 3.2a).43, 76 Under 

pH conditions for which the carboxylic acids are deprotonated, the theoretical ligand 

(carboxylic acid) to metal (ferrous iron) binding ratio is 2 (Figure 3.2b). Poly(acrylic acid) 

surface modification yielded a uniform surface grafted polymer layer approximately 20 μm 

thick (Figure 3.2c), in agreement with previously published work.43, 76 

The surface chemistry of native, photoinitiator-activated, and metal chelating PP 

films was characterized by ATR-FTIR (Figure 3.3). Unlike native PP film, the FTIR 
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spectrum of photoinitiator-activated PP (PP-BP) film exhibited absorbance at around 700 

cm-1 that was attributed to the aromatic ring in benzophenone. After acrylic acid 

polymerization on the surface of the film (PP-g-PAA), the absorbance of the aromatic ring 

of benzophenone decreased and new absorbances indicative of carboxylic acid groups at 

1700-1725 cm-1 and 1211-1320 cm-1, representing the C=O bond and the C-O bond, 

respectively, were present in the IR spectrum. Changes in the spectrum suggest that 

benzophenone was partially displaced by acrylic acid, which was subsequently 

polymerized from the film’s surface. This IR spectrum confirmed successful covalent 

grafting of poly(acrylic acid) from the surface of PP.  

 

Figure 3.3. ATR-FTIR of native polypropylene (PP), photoinitiator-activated polypropylene (PP-BP), and 
metal chelating polypropylene (PP-g-PAA). 

The density of available carboxylic acids density and the ferrous iron chelating 

activity of native PP, photoinitiator-activated PP (PP-BP) and metal chelating film (PP-g-

PAA) were further quantified (Figure 3.4). PP and PP-BP exhibited minimal surface 

carboxylic acids and iron chelating activity (<2.5 nmol cm-2, below the value of standard 

deviation). After grafting of poly(acrylic acid), films exhibited a carboxylic acid density of 
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113 ± 5.4 nmol cm-2 and a ferrous iron chelating activity of 53.7 ± 9.8 nmol cm-2 for a 

ligand to metal binding ratio of approximately 2 to 1. The experimental ligand to metal 

binding ratio was very similar to the theoretical ligand to metal binding for deprotonated 

carboxylic acids (Figure 3.2b).  

 

Figure 3.4. Carboxylic acid density and ferrous iron chelating activity of native polypropylene (PP), 
photoinitiator-activated polypropylene (PP-BP), and metal chelating polypropylene (PP-g-PAA). 

Metal chelating activity of poly(acrylic acid) is highly dependent on charge 

interactions that require deprotonation of carboxylic acid chelating moieties In order to 

understand the influence of bulk solution pH on the disassociation behavior of metal 

chelating active packaging film, an FTIR titration was performed to determine the pKabulk 

of surface grafted poly(acrylic acid) (PP-g-PAA), calculated to be 6.45.77 The pKa of 

poly(acrylic acid) in solution has been previously reported to be ~4.7.78 The pKabulk of 

surface-grafted poly(acrylic acid) was higher than the pKa of poly(acrylic acid) in solution 

due to the influence of the surface and surrounding grafted chains on charge distribution 

within the surface modification.79, 80 The antimicrobial studies were conducted at a neutral 

pH (7.0) that was higher than the pKabulk of metal chelating active packaging films, which 

favors deprotonation of metal chelating moieties.  
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3.4.2 Antimicrobial Activity of Metal Chelating Film in Combination with Lysozyme 

in TSB 

The objective of the first antimicrobial study was to demonstrate the antimicrobial 

activity of metal chelating films, from which chelating moieties had been surface-grafted, 

in comparison to the antimicrobial activity of EDTA in solution against L. monocytogenes 

Scott A.  Chelating film and EDTA tested alone and in combination with lysozyme using 

TSB as the media for both the inocula and the antimicrobial stock solutions.  Recently it 

was reported that the MIC of EDTA against L. monocytogenes Scott A in TSB was 250 

μg/ml and that low concentrations of EDTA (≤ 31.3 μg/ml) exhibit potent synergy with 

lysozyme against L. monocytogenes Scott A.22 An approximate EDTA equivalent 

concentration was calculated so that the film chelating activity would be greater than or 

equal to reported EDTA MIC. In each well of the microarray microtiter plates (surface 

area= 48.75 mm2), at a total volume of 50 μl, metal chelating film yielded an approximate 

EDTA equivalent concentration of 305 μg ml-1.  For assays in which the total volume was 

100 μl, metal chelating film yielded an approximate EDTA equivalent concentration of 153 

μg ml-1. These calculations do not take into account possible differences in the binding 

affinity of the metal chelating films as compared to EDTA.   

Table 3.1. Minimum inhibitory concentrations (MIC) against L. monocytogenes Scott A in tryptic soy 
broth (TSB). 

Antimicrobial MIC (μg/ml) 
Lysozyme 2000 
EDTA 250 
 Lysozyme EDTA 

31.3 62.5 
Lysozyme + EDTA 125 31.3 

250 15.6 
Lysozyme + PP-g-PAA 1000 ~153 (equivalence) 
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The MICs for lysozyme, EDTA, lysozyme + EDTA, and lysozyme + metal 

chelating films in TSB are reported in Table 3.1. Metal chelating films alone (EDTA 

equivalent ~ 305 μg ml-1) were unable to inhibit the growth of L. monocytogenes. The MICs 

of the lysozyme, EDTA, and lysozyme + EDTA in TSB against L. monocytogenes were in 

agreement with previously published research.22, 81  In the presence of metal chelating films 

(EDTA equivalent ~ 153 μg ml-1), the MIC of lysozyme decreased from 2000 to 1000 μg 

ml-1. Although metal chelating films demonstrated synergy with lysozyme against L. 

monocytogenes, the synergy was not as potent as the synergy between EDTA and lysozyme, 

wherein as little as 31.25 μg ml-1 EDTA decreased the lysozyme MIC by greater than ten-

fold. EDTA has a known affinity for binding of multivalent cations, especially Fe2+ and 

Fe3+.23 Since the metal chelating activity of surface poly(acrylic acid) chains is by 

electrostatic interactions rather than ligand-specific binding of high affinity metals, it was 

hypothesized that the decreased synergistic impact of lysozyme with metal chelating films 

may be due to competitive binding of positively charged large molecules, such as proteins 

present in TSB or the lysozyme itself, by the negatively charged metal chelating films. 

Since protein-polyelectrolyte interactions can be influenced by ionic strength, additional 

antimicrobial activity assays were performed in which ionic strength of the growth media 

was varied to assess the influence of electrostatic screening on protein-material interactions 

and subsequent antimicrobial activity.  

3.4.3 Antimicrobial Activity of Metal Chelating Film in Combination with Lysozyme 

in Solutions of Varying Ionic Strength 

As in the previous antimicrobial activity assays, ionic strength experiments were 

performed by blending lysozyme stock solution with inocula prepared in TSB, and 
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exposing the resulting inocula to control or chelator modified films in the modified 

microarray plate.  Ionic strength of antimicrobial assays was controlled by changing the 

composition of the lysozyme stock solution. Lysozyme was prepared in potassium 

phosphate buffer, pH 7 or sodium chloride of concentrations ranging from 0 to 100 mM. 

Ionic strength was calculated for each antimicrobial assay using the following equation: 

	 ∑  (2) 

in which  I is ionic strength, c is ion concentration, and z is the ion charge number 

(Table 3.2).  TSB, which contains 5 g l-1 sodium chloride and 2.5 g l-1 dipotassium 

hydrogen phosphate, contributed 64.4 mM ionic strength to each antimicrobial assay.  

Table 3.2. Influence of ionic strength on lysozyme MIC (in contact with native PP). Total ionic strength of 
each antimicrobial assay with contribution from TSB and lysozyme stock solution (sodium chloride or 

phosphate buffer) is reported in adjacent columns. 

Salt or Buffer 
Concentration of 
Lysozyme Stock 
Solution (mM) 

Sodium Chloride Phosphate Buffer 

Lysozyme MIC  
(μg/ml) 

Total Ionic  
Strength (mM) 

Lysozyme MIC 
 (μg/ml) 

Total Ionic 
Strength (mM) 

0 31.3 64.4 31.3 64.4 

33.3 62.5 81.1 125 92.3 

66.7 250 97.7 250 120 

 100 500 114 1000 176 

 

Preliminary antimicrobial activity assays demonstrated that the MIC of lysozyme 

alone (in the presence of control film) was affected by ionic strength.  Table 3.2 shows the 

effect of ion concentration on lysozyme MIC. Ionic strength had a significant impact on 

lysozyme MIC, with lysozyme MIC for L. monocytogenes increasing from 31.3 to 1000 
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μg ml-1 with increasing ionic strength. These data suggest that high ion concentration may 

have reduced the antimicrobial effectiveness of lysozyme against L. monocytogenes when 

in contact with control film. Kihm, et al. 82  conducted a study where they investigated the 

impact of Ca and Mg ions on resistance of L. monocytogenes against egg white lysozyme 

in whole milk and MES buffer. They found that removal of Ca and Mg ions improved the 

antimicrobial efficacy of lysozyme against L. monocytogenes and suggested that the 

mineral content of media can significantly influence the sensitivity of L. monocytogenes to 

lysozyme.  Ion-induced resistance of L. monocytogenes to lysozyme is possibly due to the 

ability of excess cations to stabilize the peptidoglycan layer of the cell membrane against 

hydrolysis by lysozyme as well as electrostatic screening of lysozyme-microbial membrane 

interactions. 

 

Figure 3.5. Effect of salt or buffer concentration of lysozyme stock solution on log reduction value of 
lysozyme in the presence of PP-g-PAA compared with native PP. Bacteriocidal treatments are marked with 

an asterisk (*). 

In order to assess the influence of ionic strength on the synergistic antimicrobial 

activity of lysozyme + metal chelating film, the effect of metal chelating films on lysozyme 
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activity for each ionic strength condition was quantified at their respective lysozyme MIC 

by log reduction value (Figure 3.5). Data are reported as log reduction values (LRV), in 

which lysozyme with metal chelating film was the test and lysozyme with control film 

(native PP) was the control. Positive values represent antagonistic interactions between 

lysozyme and metal chelating films and negative values represent synergistic interactions 

between lysozyme and metal chelating films. Under conditions of low ionic strength (0 

mM ion in lysozyme stock solution), lysozyme and metal chelating film worked 

antagonistically compared with the control film, exhibiting an increase in microbial 

populations of ~4 log. As ionic strength increased (≥33.3 mM sodium chloride or 

phosphate buffer), the interactions between lysozyme and metal chelating film shifted from 

antagonistic to synergistic. An increasing presence of divalent ions (phosphate buffer) 

appeared to have a greater influence on antimicrobial synergy than monovalent ions alone 

(sodium chloride), possibly due the greater contribution of divalent ions to ionic strength. 

When lysozyme was prepared in 66.7 and 100 mM phosphate buffer, lysozyme and metal 

chelating films exhibited a bactericidal effect (~3-5 log reduction).  These data indicate 

that, at neutral pH, synergy between lysozyme and metal chelating films may only be 

observed under conditions of moderate to high ionic strength.  

At the neutral pH conditions of the antimicrobial assay, poly(acrylic acid) grafted 

from metal chelating films (pKabulk 6.45) have a net negative charge and lysozyme (pI 

11.35) has a net positive charge. It was hypothesized that under conditions of low ionic 

strength, surface-grafted poly(acrylic acid) may bind lysozyme or other media proteins and 

reduce the antimicrobial activity of the enzyme. In order to test this hypothesis, the binding 

of lysozyme was examined in phosphate buffers of varying ion concentrations under the 
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same conditions as the antimicrobial assay (Figure 3.6). As hypothesized, the maximum 

adsorption of lysozyme onto PP-g-PAA films occurred under conditions of low ion 

concentration (33.3 mM phosphate buffer), exhibiting up to 41.7 μg cm-2 of bound protein. 

As buffer concentration increased, the amount of lysozyme bound by the film decreased 

and at 200 mM phosphate buffer, there was no observable lysozyme bound to the film. The 

observed relationship between ion concentration and lysozyme binding onto PP-g-PAA 

supports that of other published data for lysozyme-polyelectrolyte interactions, in which 

maximum protein binding is observed in solutions of low ionic strength (~5-60 mM).83 

 
Figure 3.6. Adsorption of lysozyme onto PP-g-PAA at different concentrations of phosphate buffer, pH 7. 

Lysozyme binding to PP-g-PAA is hypothesized to be mediated by electrostatic 

screening (Figure 3.7). Under low ionic strength conditions, electrostatic screening is 

minimal and the adsorption of lysozyme onto poly(acrylic acid) grafts may be favored. 

Binding of lysozyme as well as other proteins under low ionic strength conditions may also 

hinder synergy by compressing poly(acrylic acid) chains to interfere with metal chelation. 

Halperin 84 previously reported that that large proteins may only approach polymer chain 

modified surfaces by compressing the surface grafted polymer chains. Under moderate to 

high ionic strength conditions, there may be sufficient electrostatic screening to hinder 
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lysozyme – poly(acrylic acid) interactions and favor metal chelation. The presented data 

demonstrate the importance of solution conditions (e.g. pH and ionic strength) on metal 

chelating films antimicrobial activity and synergy with lysozyme as well as other charged 

antimicrobials. 

 

Figure 3.7. Proposed metal chelating film-lysozyme interactions under conditions of low and high 
electrostatic screening. 

3.5 Conclusions 

In this work, metal chelating active packaging films were prepared by grafting 

metal chelating poly(acrylic acid) grafts from the surface of polypropylene films.  The 

resulting metal chelating films enhanced antimicrobial activity of lysozyme to inhibit 

growth of L. monocytogenes under condition of moderate to high ionic strengths, enabling 

up to 5.22 log reductions in microbial growth under optimal conditions. The charged nature 

of the chelating material evaluated herein resulted in protein adsorption onto the material 

surface under low ionic strength.  Our ongoing research in metal chelating active packaging 

materials that are net neutral and chelate metal ions based on specific ligand-metal 
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interactions rather than charge may be more effective as synergistic antimicrobials across 

a wider range of pH values and ionic strength.44, 85  Finally, understanding the potential 

interactions between food matrix components (e.g. ions, proteins, bioactive molecules, 

antimicrobials) and packaging materials (active or traditional) is critical when considering 

commercial application. This work demonstrates the potential application of metal 

chelating active packaging to enhance the efficacy of lysozyme, a natural food 

antimicrobial, and possibly enable removal of synthetic chelators from product 

formulations.  
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CHAPTER 4 

FOURIER TRANSFORMED INFRARED STUDIES ON THE DISSOCIATION 
BEHAVIOR OF METAL CHELATING POLYELECTROLYTE BRUSHES3 

4.1 Abstract 

The dissociation behavior of surface-grafted polyelectrolytes is of interest for the 

development of stimuli-responsive materials. Metal chelating polyelectrolyte brushes 

containing acrylic acid (PAA) or hydroxamic acid (PHA) chelating moieties were grafted 

from the surface of polypropylene (PP). Fourier transformed infrared spectroscopy (FTIR) 

was used to determine the effective bulk pKa of the polyelectrolyte brushes (pKabulk) and 

to characterize metal chelating behavior. The pKabulk of PP-g-PAA and PP-g-PHA were 

6.45 and 9.65, respectively. Both PP-g-PAA and PP-g-PHA exhibited bridging bidentate 

and chelating bidentate iron chelation complexes. This is the first reported determination 

of pKabulk of surface-grafted poly(hydroxamic) acid.  

4.2 Introduction 

The attachment of polyelectrolytes onto solid supports enables synthesis of stimuli-

responsive functional surfaces that have numerous applications in water treatment,60 

colloidal stabilization,86 protein immobilization,87 drug delivery,88 and biosensors.89, 90 The 

functionality of these surfaces, which often relies on charge and ligand-specific interactions, 

depends on the microenvironment at the interface. The microenvironment of surface-

grafted polyelectrolytes is not only influenced by solvent conditions, such as pH and ionic 

strength, as is the case with their solution-based analogs, but is also influenced by the 

                                                 
3 The contents of this chapter have been published: Roman, M. J.; Decker, E. A.; Goddard, J. M. Fourier 
Transform Infrared studies on the dissociation behavior of metal-chelating polyelectrolyte brushes. ACS 
Applied Materials & Interfaces 2014, 6, 5383-5387. 
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properties of the surface and surrounding grafted polymers. Due to the steric restrictions 

associated with attachment of polyelectrolytes to a surface, the dissociation behavior of 

surface-grafted polyelectrolytes may be very different from that corresponding to 

polyelectrolytes in solution.36 For example, Dong et al. reported a pKabulk, which 

characterizes the dissociation behavior of the surface-grafted polyelectrolytes, of 

poly(acrylic acid) (PAA) brushes that was two units higher than previously reported pKa 

values of PAA in solution.78, 80  

Dissociation behavior of polyelectrolytes in solution as a function of pH, salt 

concentration or metal chelation is quantifiable by well-established titration techniques. 

However, these methods are not applicable to polymers grafted onto a solid support due to 

the inability of the equipment used to collect data, such as pH meters and isothermal 

titration calorimeters, to directly monitor charge fraction within the surface-grafted 

polyelectrolyte layer. There have been studies that generate titration curves of surface-

grafted polyelectrolytes, mainly carboxylate-containing polymers such as PAA and 

poly(methacrylic acid) (PMAA),  from data collected by contact angle,80, 91 reflectometry,92, 

93 ellipsometry,90, 91, 94, 95 and Fourier transformed infrared spectroscopy (FTIR)80, 90, 96, 97 

techniques. Titration curves generated by contact angle measurements reflect the ionization 

properties of only the top few nanometers of surface grafted polyelectrolytes (pKasurface), 

while titration curves generated by reflectometry, ellipsometry, and FTIR measurements 

can be used to examine dissociation behavior of the entire surface-grafted polyelectrolyte 

layer (pKabulk).80  Of the techniques that characterize pKabulk, FTIR is the only technique 

which enables direct quantification of the charged fraction to characterize dissociation 

behavior by measuring absorbance bands of specific bonds. FTIR may also be used to 



50 
 

characterize the absorption of charged species, such as proteins and metal ions, to 

polyelectrolyte-modified surfaces. 

We recently developed metal chelating polymer films for antioxidant packaging 

applications, wherein either PAA or poly(hydroxamic acid) (PHA) brushes were grafted 

from the surface of polypropylene (PP) via photoinitiated graft polymerization.43 Herein, 

we report the characterization of the dissociation and iron chelation behavior of these 

surface-grafted polyelectrolytes brushes using FTIR-based characterization techniques. 

Particularly, pKabulk and possible metal coordination complexes were determined. This is 

the first reported determination of pKabulk of surface-grafted PHA.  

4.3 Materials and Methods 

4.3.1 Materials 

Polypropylene (isotactic, pellets) was purchased from Scientific Polymer Products 

(Ontario, NY). Hydroxylamine hydrochloride, imidazole (99%), 3-(2-pyridyl)-5,6-

diphenyl-1,2,4-triazine-p,p’-disulfonic acid disodium salt hydrate (ferrozine, 98+%), and 

ethanol (99.5+%) were purchased from Acros Organics (Morris Plains, NJ). Acrylic acid 

(anhydrous), methyl acrylate (99%), and benzophenone (99%) were purchased from 

Sigma-Aldrich (St. Louis, MO). All other chemicals were purchased from Fisher Scientific 

(Fair Lawn, NJ). 

4.3.2 Photoinitiated Graft Polymerization of Poly(acrylic acid) and Poly(methyl 

acrylate) onto Polypropylene  

Poly(acrylic acid) grafted onto polypropylene (PP-g-PAA) and poly(methyl 

acrylate) onto polypropylene (PP-g-PMA) were prepared using a modification of 

previously reported work .43, 44, 76 Polypropylene (PP) pellets were cleaned by sequentially 
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sonicating in isopropanol, acetone, and deionized water (each solvent twice for 10 min 

each rinse), and then dried over anhydrous calcium sulfate. Clean PP film was prepared 

from PP pellets on a Carver Laboratory Press (Carver, Inc., NJ) set to 160°C. PP films, 

average thickness of 387 ± 35 μm, were cut into 8 x 8 cm2 pieces and washed using the 

same method as the PP pellets.  

Benzophenone in heptanes (5% w/w) was spin coated (WS-400-6NPP, Laurell 

Technologies, North Wales, PA) onto each side of 8 x 8 cm2 polypropylene at 500 rpm for 

5 sec and then, 2000 rpm for 30 sec. Each 8 x 8 cm2 benzophenone coated PP film was cut 

into 2 x 8 cm2 pieces and then each 2 x 8 cm2 piece was placed into a screw top 250 ml 

square borosilicate glass bottle and sealed with a polytetraflouroethylene faced silicon 

septum fitted polybutylene terephthalate cap (Corning Inc., Corning, NY). The vials were 

flushed with nitrogen for 5 min and then exposed to UV light (Dymax 5000-EC Series, 

Torrington, CT) at 365 nm for 90 sec. For PP-g-PAA, a low brush density film was 

synthesized by decreasing the benzophenone graft time to 60 sec.76 Films were washed 

with acetone after benzophenone-surface activation to remove unreacted benzophenone 

and then dried at room temperature. 

For the preparation of PP-g-PAA, benzophenone-activated PP (PP-BP) films were 

placed into a screw top 250 ml square borosilicate glass bottle and acrylic acid in ethanol 

(25% w/w) was added before the bottles were sealed and then flushed with nitrogen for 20 

min. Nitrogen flushed bottles were exposed to UV light for 6 min to graft and polymerize 

acrylic acid. PP films with grafted poly(acrylic acid) (PP-g-PAA) were rinsed in deionized 

water for 30 min at room temperature, 60 min at 60°C and then 30 min at room temperature 
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to remove unattached monomer and homopolymer. PP-g-PAA was dried overnight over 

anhydrous calcium sulfate.  

For the preparation of PP-g-PMA, benzophenone-activated PP (PP-BP) films were 

cut into 1 x 2 cm2 pieces, placed into a screw top vial, methyl acrylate in acetone (70% 

w/w) was added before the vials were sealed with septum fitted aluminum caps and flushed 

with nitrogen for 5 min. Nitrogen flushed vials were exposed to UV light for 3 min to graft 

and polymerize methyl acrylate onto PP-BP. Overnight Soxhlet extraction was performed 

to remove any unattached monomer and homopolymers from the surface of poly(methyl 

acrylate)-grafted PP (PP-g-PMA) films. 

4.3.4 Conversion of Surface Grafted Poly(methyl acrylate) to Poly(hydroxamic acid) 

Ester groups on the surface of PP-g-PMA were converted to hydroxamic acid by 

reaction with hydroxylamine, as previously described.85, 98, 99 A basic hydroxylamine 

solution was prepared by dissolving hydroxylamine hydrochloride (0.1 g ml-1) in 

methanol/water (5:1) solution (0.1 g ml-1), adjusting the pH of the solution to 13 by sodium 

hydroxide, and finally removing sodium chloride precipitate by filtration for a final 

methanol/water ratio of 4:1. PP-g-PMA films were submerged in the basic hydroxylamine 

solution, and the conversion reaction was conducted under reflux while stirring at 73 °C 

for 4 h to produce poly(hydroxamic acid) grafted onto polypropylene (PP-g-PHA). Then, 

films were washed methanol/water (5:1) solution, treated with acidic (0.2 M HCl) 

methanol/water (5:1) solution, rinsed in methanol/water (5:1) solution, and finally rinsed 

in deionized water. PP-g-PHA films were dried and stored over anhydrous calcium sulfate 

until further use. 
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4.3.5 FTIR Titration of PAA and PHA Brushes 

An ATR-FTIR titration of PP-g-PAA was adapted from previously reported work 

to determine pKabulk of carboxylate and hydroxamate ligands of PP-g-PAA and PP-g-PHA, 

respectively.80 A 1 M sodium hydroxide solution and 1 M hydrochloric acid solution was 

used to adjust the pH of buffer solutions. PP-g-PAA was incubated in 0.1M MES buffers 

of different pH, ranging from 3 to 10, for 1 h shaking, rinsed with anhydrous ethanol, and 

then dried with nitrogen gas. PP-g-PHA was incubated in buffers of different pH values: 

0.1M MES buffer ranging from pH values 5 to 7 and 0.1M sodium carbonate buffer ranging 

from pH values 8 to 13, for 1 h shaking, rinsed with anhydrous ethanol, and then dried with 

nitrogen gas. A FTIR spectrum of each sample was collected on an IRPrestige FTIR 

Spectrometer (Shimadzu Scientific Instruments, Inc., Kyoto, Japan) with a diamond ATR 

crystal. Each spectrum was collected under the following parameters: Happ-Genzel 

function, 32 scans, and 4 cm-1 resolution.  Spectral analysis was performed on KnowItAll(R) 

Informatics System 9.5 (Bio-Rad Laboratories, Inc., Informatics Division, Philadelphia, 

PA).  

4.3.6 Iron Binding of PP-g-PAA and PP-g-PHA Films  

PP-g-PAA and PP-g-PHA films were incubated in 0.08mM ferric chloride in 

0.05M sodium acetate/imidazole, pH 5.0 for 24 h and then rinsed with copious amounts of 

deionized water. Iron binding was confirmed by ferrozine assay and ICP-MS. The FTIR 

spectrum of each sample was measured as described in 4.3.5. FTIR titration of PAA and 

PHA brushes.  The FTIR spectra before and after iron binding were compared and 

interpreted based on previously published research on metal binding by polyelectrolyte 

brushes.100 
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4.4 Results and Discussion 

The synthesis of poly(acrylic acid) grafted from PP (PP-g-PAA) and 

poly(hydroxamic acid) grafted from PP (PP-g-PHA) by the described techniques for iron 

chelation applications has been confirmed by FTIR, contact angle, SEM, AFM, and 

colorimetric assays.43, 44 For this study, ATR-FTIR spectra of PP-g-PAA and PP-g-PHA 

films were used to characterize chemistry of surface-grafted polyelectrolytes. Spectra were 

collected at wavenumbers ranging from 4000-600 cm-1. At wavenumbers above 1800, the 

only absorbance bands attributed the surface-grafted poly(acrylic acid) and 

poly(hydroxamic acid) brushes were broad absorbance bands corresponding to O-H and 

N-H bonds that were easily influenced by the presence of water. Therefore, the FTIR 

analysis was restricted to absorbance bands present in the range of 1800-600 cm-1. 

Absorbance bands were assigned based on analysis by KnowItAll(R) Informatics System 

9.5 (Bio-Rad Laboratories, Inc., Informatics Division, Philadelphia, PA) and comparison 

to previously published research.43, 44, 80, 100-105 Tables C.1 and C.2 show the absorbance 

band assignments for PP-g-PAA and PP-g-PHA, respectively (see Appendix C).  

FTIR studies on the dissociation behavior of surface-grafted polymers with 

carboxylate ligands, such as PAA and PMAA, have been previously conducted by 

monitoring the C=O absorbance band.80, 90, 96, 97 Deprotonated and protonated carboxylate 

ligands absorb at different wavelengths. Representative FTIR spectra of PP-g-PAA after 

incubation in buffers of different pH values are shown in Figure 4.1a. C=O absorbance 

bands at ~1710 cm-1 and ~1564 cm-1 corresponded to protonated carboxylic acid  and 

deprotonated carboxylic acid, respectively. As pH increased, the intensity of the 

deprotonated C=O band increased and the intensity of the protonated C=O band decreased, 
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which illustrated the dissociation of carboxylate groups as a function of solution pH. 

Degree of dissociation, α, was calculated using the following equation:  

	 	 ∗
  (1) 

where [COO-] and [COOH] correspond to the integrated area  of deprotonated and 

protonated carboxylic acid absorbance bands and ε(COO-) and ε(COOH) are the extinction 

coefficients of deprotonated and protonated carboxylic acid.80 A previously determined 

	 value of 1.8 was used in the calculations.100   

Degree of dissociation and their corresponding pH values were fitted to a sigmoid 

dose-response function (GraphPad Prism 6.0, La Jolla, CA) to generate a titration curve 

that was used to determine pKabulk (Figure 4.1b). The pKabulk was defined as the solution 

pH value corresponding to the midpoint of the titration curve and calculated to be 6.45 for 

PP-g-PAA. This value is in agreement with a previous FTIR study of dissociation behavior 

of poly(acrylic acid)  brushes on gold substrates.80 The pKa of poly(acrylic acid) in solution 

has been reported to be ~4.7, which is approximately 2 units lower than the pKabulk of 

poly(acrylic acid) brushes.78 The pKabulk values of poly(acrylic acid) brushes is 

hypothesized to be greater than the pKa values of poly(acrylic acid) in solution due to the 

influence of the surface and surrounding grafted poly(acrylic acid) on charge distribution 

within the modified surface.79, 80 Electrostatic interactions between surface-grafted 

carboxylate ligands dictate the distribution of charges within the grafted layer, wherein it 

is energetically unfavorable to ionize ligands closer to the surface due to the energy cost of 

repulsion between surface-grafted poly(acrylic acid) that occurs upon deionization.80, 97 

Therefore, it is hypothesized that the solution pH may be higher than the local pH within 

the grafted poly(acrylic acid) layer as the surface is approached. This phenomenon would 
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have brought about the increase in the pKabulk of the surface-grafted poly(acrylic acid) 

compared to poly(acrylic acid) in solution. This shift of the pKabulk of surface-grafted 

carboxylate polyelectrolytes approximately 2 pH units higher has been reported many 

times in literature.79, 80, 94, 97 The pKabulk of polyelectrolyte brushes as a function of solution 

pH are important when determining applications of such surface-modified materials.   

 

Figure 4.1. (a) ATR-FTIR spectra of PP-g-PAA treated with buffer solutions of varying pH. Protonated 
and deprotonated IR bands are marked at 1710 and 1566 cm-1, respectively. (b) FTIR titration curve for PP-

g-PAA. The pKabulk calculated at the midpoint of the titration curve is 6.45. 
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FTIR spectroscopy investigations on the dissociation behavior of hydroxamate-

containing compounds in solution have demonstrated that deprotonation of hydroxamic 

acids most notably results in a downshift of the C=O absorbance band that is likely 

attributed to the weakened C=O bond strength of deprotonated hydroxamic acids due to 

the delocalization of π electrons to C-N and N-O bonds.101-103 Therefore, for this study, 

deprotonation of the hydroxyl group of poly(hydroxamic acid) brushes grafted from PP 

was monitored by quantifying the shift in the C=O absorbance band from ~1650 

(protonated) to ~1612 cm-1 (deprotonated) as dependent on pH (Figure 4.2a).The shift of 

the C=O absorbance band as a function of solution pH was fitted to a sigmoid function to 

generate a titration curve from which the pKabulk could be estimated (Figure 4.2b). As with 

PP-g-PAA, the pKabulk was defined as the solution pH value corresponding to the midpoint 

of the titration curve. The pKabulk of poly(hydroxamic acid) brushes grafted from PP 

estimated from the titration curve, 9.65, was in the range for pKa of hydroxamic acids in 

solution. Deferoxamine B, a chelator that contains three hydroxamate ligands, has three 

pKa’s ranging from 8.35 to 9.71.106 Unlike PAA brushes, the pKabulk of hydroxamate 

ligands of PHA brushes was not strongly affected by attachment to a solid support. It is 

hypothesized that since hydroxamate ligands are much weaker acids than carboxylates, as 

indicated by their high pKa values, electrostatic interactions between grafted PHA chains 

may not be strong enough to have a significant effect on the charge distribution of the 

microenvironment close to the surface. Therefore, the PHA grafted layer, especially closer 

to the surface, may not greatly influence local pH as was suggested in the case with 

carboxylate ligands. However, further investigations on the effect of polyelectrolyte acidity 

on pKa shifts caused by solid support attachment are necessary to confirm the proposed 
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hypothesis. For the case of surface-grafted PHA, the reduced impact of the surface 

microenvironment on the dissociation behavior of hydroxamate ligands as well as the 

specificity of its reactivity with certain metals, such as iron, may be useful for broadening 

the working pH range of stimuli-responsive surface applications. 

 

Figure 4.2. (a)ATR-FTIR spectra of PP-g-PHA treated with buffer solutions of varying pH. Absorbance 
band C=O shift caused by deprotonation, from 1649 and 1612 cm-1, is marked. (b) FTIR titration curve for 

PP-g-PHA. The pKabulk calculated at the midpoint of the titration curve is 9.65. 

Previous studies of metal chelation by polyelectrolyte brushes with carboxylate 

binding groups have demonstrated that the nature of the coordination complex influences 
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the wavelength at which the binding groups absorb.100, 105 The two primary coordination 

complexes observed from carboxylate ligands are bridging bidentate and the chelating 

bidentate (Figure 4.3b). The C=O absorbance bands of bridging bidentate and chelating 

complexes have been previously observed at 1610 and 1552 cm-1, respectively, for PMAA 

brushes.100 Figure 4.3a shows the FTIR spectra of high and low brush density PP-g-PAA 

before and after iron chelation. A low graft density brush was synthesized by adjusting the 

parameters for attachment of the photoinitiator (see 4.3.2). The FTIR spectra of the high 

and low brush density PP-g-PAA before chelation show C=O absorbance bands were 

present at 1710 cm-1, the characteristic absorbance band for protonated carboxylate groups. 

After iron chelation at pH 5, the intensity of the absorbance band at 1710 cm-1 decreased 

and new bands were present at 1589 and 1547 cm-1. It was hypothesized that these new 

bands corresponded to the bridging bidentate and chelating bidentate, respectively. 

Futhermore, the relative intensity of these absorbance bands may be indicative of which 

chelating coordination complex was favored under the given conditions. At low brush 

density, the absorbance band at 1589 cm-1 had a higher intensity than the absorbance band 

at 1547 cm-1, which suggested that the bridging bidentate was favored. At high brush 

density, the absorbance band at 1589 cm-1 had a similar intensity as the absorbance band at 

1547 cm-1, which suggested that both bridging bidentate and chelating bidentate were 

equally favored. The lower brush density graft may have allowed for improved chain 

flexibility by minimizing cross-linking reactions during surface-initiated polymerization 

that allowed for more bridging bidentate coordination complexes.64 Although the chelating 

and bridging complexes are both bidentate structures, the bridging complex may be 

thermodynamically favorable through additional stabilization that results from interaction 
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between metals in the complex. Konradi et al.100 analyzed FTIR spectra of PMAA brushes 

of varying graft densities after incubation with 0.1M solutions of Ca(NO3)2, Cu(NO3)2, or 

Al(NO3)3 and noted that complex geometries can be influenced by brush density as well as 

the chelated metal ion. In order to corroborate the proposed hypothesis on the relationship 

between poly(acrylic acid) brush density and ferric iron coordination complex geometry, 

the study of coordination complex as a function of graft density may be the subject of future 

work.  Additionally, a new absorbance band was observed at 631 cm-1 after the chelation 

of iron that was attributed to Fe-O stretching vibrations based on previous analysis of IR 

spectra of iron oxides.107   

 

Figure 4.3. (a) ATR-FTIR spectra of PP-g-PAA before and after iron chelation performed at pH 5 at low 
and high brush density. Marked absorbance peaks were affected by iron chelation. Absorbance bands at 
1589 and 1547 cm-1 correspond to bridging bidentate and chelating bidentate coordination complexes, 

respectively. (b) Known coordination complexes for carboxylate and metal ions.  
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Changes in the FTIR spectra of PHA grafted from PP before and after chelation 

resembled those observed in PP-g-PAA (Figure 4.4a). As with PP-g-PAA, an Fe-O 

absorbance band was observed at 631 cm-1 after chelation. The C-NH absorbance band 

split to 1587 and 1531 cm-1. In addition, the C=O absorbance band split to 1720 and 1678 

cm-1, N-O absorbance band shifted to 1049 cm-1, and a C-NH absorbance band shifted to 

1207 cm-1. FTIR spectra of deferoxamine B, a solution-based analog of poly(hydroxamic 

acid), have exhibited shifts of C=O and N-H absorbance bands after iron chelation and 

these band shifts were attributed to the formation of a chelating tridentate coordination 

complex (Figure 4.4b).101, 108 The FTIR spectra collected in this study exhibited a 

combined shifting and splitting of the C=O and C-NH absorbances into two bands. Based 

on similarities between the absorbance band splitting observed in the FTIR spectra of PP-

g-PAA and PP-g-PHA, it is suggested that after chelation of ferric iron at pH 5, two 

coordination complexes of the hydroxamate ligands may be present when PHA brushes 

chelate iron due to the steric restrictions of surface-grafted PHA.  Further studies that 

examine the effect of graft density on the intensity of these bands could possibly clarify 

these findings. 
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Figure 4.4. (a)  ATR-FTIR spectra of PP-g-PHA before and after iron chelation performed at pH 5. 
Marked absorbance bands were affected by iron chelation.(b) Known coordination complex of 

hydroxamate and metal ions. 

4.5 Conclusions 

In summary, dissociation and metal chelating behavior of surface-grafted PAA and 

PHA brushes were characterized by simple and rapid FTIR-based analysis that directly 

monitored changes in absorbance bands of carboxylate and hydroxamate ligands 

responsible for metal chelation. This investigation of polyelectrolyte brushes has 

demonstrated the underlying importance of the steric restrictions of surface-grafted 

polyelectrolytes on electrostatic interactions that dictate local pH at the surface and its 
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impact on pKabulk as a function of solution pH. The effect of steric restrictions on the 

microenvironment within a grafted layer may be influenced by the chemical nature of the 

ionizable ligands as a weaker acid, poly(hydroxamic acid), did not exhibit significant 

differences between pKabulk and pKa of solution-based analogs as observed for poly(acrylic 

acid). Additional research to create a more complete understanding of the effect of pH, salt 

concentration and metal chelation on the dissociation behavior of surface-grafted 

polyelectrolytes may be useful in optimizing of the applications of these stimuli-responsive 

materials.  
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CHAPTER 5 

PERFORMANCE OF NON-MIGRATORY IRON CHELATING ACTIVE 
PACKAGING MATERIALS IN VISCOUS MODEL FOOD SYSTEMS4 

5.1 Abstract 

Many packaged food products undergo quality deterioration due to iron promoted 

oxidative reactions. Recently, we have developed a non-migratory iron chelating active 

packaging material that represents a novel approach to inhibit oxidation of foods while 

addressing consumer demands for ‘clean’ labels. A challenge to the field of non-migratory 

active packaging is ensuring that surface-immobilized active agents retain activity in a true 

food system despite diffusional limitations.  Yet, the relationship between food viscosity 

and non-migratory active packaging activity retention has never been characterized. The 

objective of this study was to investigate the influence of food viscosity on iron chelation 

by a non-migratory iron chelating active packaging material. Methyl cellulose was added 

to aqueous buffered iron solutions to yield model systems with viscosities ranging from ~1 

to ~105 mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron 

chelation was quantified by material-bound iron content using colorimetry and inductively 

coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was 

reached in solutions up to viscosity ~102 mPa·s. In more viscous solutions (up to 

~104 mPa·s), there was a significant decrease in iron chelating activity (p<0.05). However, 

materials still retained at least 76% iron chelating activity. Additionally, the effect of 

different food hydrocolloids on the performance of non-migratory iron chelating active 

                                                 
4 The contents of this chapter have been published: Roman, M. J.; Decker, E. A.; Goddard, J. M. 
Performance of non-migratory iron chelating active packaging materials in viscous model food systems. 
Journal of Food Science 2015, 80(9), E1965-E1973. 
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packaging was assessed. Methyl cellulose and carrageenan did not compete with the 

material for specific iron chelation (p>0.05). Materials retained 32-45% chelating activity 

when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, 

and xanthan gum. This work demonstrates the potential application of non-migratory iron 

chelating active packaging in liquid and semi-liquid foods to allow for the removal of 

synthetic chelators, while maintaining food quality. 

5.2 Introduction  

Many food products undergo quality deterioration during transport and storage due 

to oxidative reactions that cause rancid off-flavors, nutrient loss and discoloration. In an 

effort to increase shelf life, it is common practice in the food industry to include synthetic 

additives, such as butylated hydroxytoluene (BHT) and ethylenediaminetetraacetic acid 

(EDTA), in food products. Consumer demand for packaged food products without 

synthetic additives has prompted growing interest in alternative preservation methods. 

Antioxidant active packaging is a promising alternate approach to protect foods against 

oxidative degradation. Several research groups have demonstrated the efficacy of active 

packaging materials with antioxidants incorporated by coating, extrusion, or covalent 

immobilization.29, 30, 109 Garces, et al. 110 patented an antioxidant coating containing 

rosemary extract that improved the stability of fresh beef against discoloration and lipid 

oxidation.111 Lopez de Dicastillo, et al. 112 developed an ethylene vinyl alcohol film 

containing green tea extract prepared by extrusion that demonstrated antioxidant activity 

in a variety of food simulants (i.e. aqueous, acid, alcoholic, fatty food). Arrua, et al. 113 

showed that covalent immobilization of caffeic acid on the surface of polypropylene 

inhibited ascorbic acid degradation in orange juice. Whereas antioxidants of active 
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packaging materials prepared by coating or extrusion may migrate into liquid or semi-

liquid foods during transport and storage, covalent immobilization ensures development of 

a non-migratory active packaging for these food types. Non-migratory active packaging 

presents a potential regulatory advantage, as it may be classified as a ‘food contact material’ 

rather than a ‘direct additive.’37  

Our research group has developed non-migratory iron chelating active packaging 

that is synthesized by polymerization of metal chelating ligands from the surface of 

packaging materials.43, 76, 85 This active packaging functions by removing iron from a food 

to inhibit its reactivity. Trace amounts of transition metals, especially iron, are ubiquitous 

in the food processing environment (e.g. water, equipment) and promote the decomposition 

of lipid hydroperoxides to form free radicals that propagate oxidative reactions that 

accelerate food degradation.6, 7 Potent iron chelators, such as EDTA, have demonstrated 

high efficacy in inhibiting metal-promoted oxidation in food emulsions.15-17 The most 

recent generation of non-migratory iron chelating active packaging is a polypropylene film 

from which poly(hydroxamic acid) has been grafted (PP-g-PHA).85 Hydroxamate-type 

chelators have high specificity for iron (e.g. deferoxamine B binding constant for ferric 

iron is 30.4) and maintain activity over a wide range of pH values.114 Tian, et al. 44 observed 

that PP-g-PHA iron chelating active packaging materials prevented the formation of 

volatile oxidation products in model food emulsions at pH 3.0, even exceeding the 

antioxidant activity of EDTA. As trace metals, especially iron, are the primary pro-oxidant 

in food emulsions,6 such non-migratory metal chelating active packaging would have 

application in liquid and semi-liquid food emulsions such as beverages, sauces, salad 
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dressings, and mayonnaise that are not a major source of nutritional iron, but for which 

trace iron influences oxidative degradation.  

 

Figure 5.1. Schematic of non-migratory metal chelating active packaging materials in contact with a liquid 
food. Performance of such material is dependent on trace metal diffusion through food matrix. 

The performance of such non-migratory active packaging material relies on the 

retained activity of the chelator following grafting to the packaging material surface, which 

is influenced by the diffusion behavior of iron through a food matrix to the packaging 

surface, where the chelator is immobilized (Figure 5.1). Diffusion behavior of small 

molecules through a food matrix has been extensively researched as it relates to flavor 

release.115-120 Key studies have identified that such diffusion behavior is influenced 

primarily by viscosity and specific binding of small molecules by food matrix constituents 

(e.g. proteins, hydrocolloids). Complex liquid and semi-liquid food matrices may have a 

wide range of viscosities (Table 5.1). Although it is presumed that increasing viscosity of 

a liquid food will decrease the rate of diffusion from the food matrix to a non-migratory 

active packaging material, the relationship between food matrix viscosity and non-

migratory active packaging activity retention has never been characterized. The objective 
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of this study was to investigate the influence of food matrix viscosity on iron chelation by 

non-migratory iron chelating active packaging material. Iron chelation was characterized 

by quantifying material-bound iron content of active packaging materials using colorimetry 

and inductively coupled plasma-optical emission spectrometry (ICP-OES). Additionally, 

the influence of hydrocolloid chemistry on the performance of non-migratory iron 

chelating active packaging was demonstrated.  

Table 5.1. Approximate viscosities of typical liquid and semi-liquid food systems. 

Food Product Temperature 
Shear rate 

(s-1) 

Apparent 
Viscosity 
(mPa·s) Reference 

Raw Milk 20°C 
Newtonian 

Fluid 
84 Daubert and Foegeding 121 

Enchilada 
Sauce 

24°C 5-40 1,960-480 Briggs and Steffe 122 

Catalina Salad 
Dressing 

24°C 5-40 4,220-770 Briggs and Steffe 122 

Tomato 
Catsup 

20°C 2.09-134.04 10,980-520 Daubert and Foegeding 121 

Mayonnaise 25°C 10-100 12,410-1,499 Maruyama, et al. 123 

 

5.3 Materials and Methods 

5.3.1 Materials 

Polypropylene (PP, isotactic, pellets) was purchased from Scientific Polymer 

Products (Ontario, NY); isopropanol, acetone, heptane, methanol, sodium acetate 

trihydrate, ferric chloride hexahydrate, hydrochloric acid, nitric acid (trace metal grade), 

and sodium hydroxide were purchased from Fisher Scientific (Fair Lawn, NJ); 

hydroxylamine hydrochloride and imidazole (99%) were purchased from Acros Organics 

(Morris Plains, NJ); benzophenone (BP, 99%) and methyl acrylate (MA, 99%) were 

purchased from Sigma-Aldrich (St. Louis, MO); all chemicals and solvents were used 
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without further purification. Methylcellulose (TICACEL HV Powder), guar gum (TIC 

Pretested Gum Guar 8/22 Powder), carrageenan (Ticaloid 780 Stabilizer), locust bean gum 

(TIC Pretested Locust Bean Por/A2), and xanthan gum (Pre-Hydrated Ticaxan Rapid-3) 

were kindly donated by TIC Gums (White Marsh, MD). All hydrocolloids were dissolved 

completely according to manufacturer’s recommendations and were kept overnight in 

order to ensure full hydration. 

5.3.2 Preparation of Iron Chelating Active Packaging Material 

Iron chelating active packaging material was synthesized via photoinitiated graft 

polymerization of methyl acrylate onto polypropylene (PP) and conversion of grafted 

poly(methyl acrylate) (PMA) to poly(hydroxamic acid) (PHA) using a method previously 

reported by Tian, et al. 85. A two-step grafting process was used to introduce PMA to the 

surface of PP films. In the first step, the photoinitiator benzophenone (BP; 5 wt% in heptane) 

was spin coated and then covalently grafted to the PP surface by exposure to ultraviolet 

(UV) irradiation (Dymax, Model 5000 flood, 320-395 nm, 200 mW/cm2, Dymax 

Corporation, Torrington, CT) for 90 s under nitrogen. In the second step, the BP-

functionalized PP (PP-BP) were submerged in methyl acrylate (70 wt% in acetone) and 

exposed to UV irradiation for 3 min under nitrogen. Soxhlet extraction (150 ml acetone 

under reflux for12 h) was used to remove any residual monomer and homopolymer from 

the surface of PMA-grafted PP (PP-g-PMA). Ester groups on the surface of PP-g-PMA 

were converted to hydroxamic acids by reaction with hydroxylamine.  PP-g-PMA films 

were reacted with hydroxylamine solution (1.37M in methanol/water (4:1), pH 13) under 

reflux at 73 oC for 4 h with stirring. After reaction, materials were rinsed in methanol/water 

(5:1), treated with hydrochloric acid solution (0.2M in methanol/water (5:1)), rinsed 
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methanol/water (5:1), and washed in deionized water. PHA grafted PP (PP-g-PHA) iron 

chelating active packaging materials were stored in a desiccator (25 oC, 15% RH) until use. 

5.3.3 Attenuated total reflectance/ Fourier transform infrared spectroscopy (ATR-

FTIR) 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used to confirm the grafting of iron chelating hydroxamate ligands on the surface of 

PP-g-PHA. An IRPrestige FTIR Spectrometer (Shimadzu Scientific Instruments, Inc., 

Kyoto, Japan) with a diamond ATR crystal was used to measure the spectrum. Each 

spectrum was collected under the following parameters: Happ-Genzel function, 32 scans, 

and 4 cm-1 resolution.  Spectrum analysis was performed on KnowItAll(R) Informatics 

System 9.5 (Bio-Rad Laboratories, Inc., Informatics Division, Philadelphia, PA) and 

Sigma Plot 12 (Systat Software, Inc., San Jose, CA).  All spectra presented are 

representative of three spectra taken at various points on each of three independently 

prepared materials. 

5.3.4 Rheological Properties 

The apparent shear viscosity of all aqueous buffered iron solutions thickened with 

food hydrocolloids was measured using a dynamic shear rheometer (Kinexus Rheometer, 

Malvern Instruments Ltd., MA, U.S.A.) with a cup-and-bob measurement cell. All 

measurements were performed using shear rates from 0.1 to 100 s−1 at 25 °C. Rheological 

measurements were collected using instrument software (Kinexus rSpace, version 1.30, 

Malvern Instruments Ltd., MA). The apparent shear viscosity data are reported at 10 s−1, 

the approximate shear rate of the iron chelating assay (180 rpm) estimated by 

computational fluid dynamics.124 The approximate shear rate of the iron chelating assay 
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(10 s−1) was selected to be similar to that experienced by a food product during shipping 

(estimated to peak at 4 s-1 (Hz) for truck shipments and between 12-16 Hz for rail 

shipments).125  

5.3.5 Iron Chelating Assay of Active Packaging Material  

The influence of food matrix viscosity on iron chelating activity of PP-g-PHA iron 

chelating active packaging materials was determined by performing an iron chelation assay 

in model iron solutions. Briefly, materials (native PP or PP-g-PHA, 1 x 2 cm2) were 

submerged in aqueous buffered iron solution (10 g of 0.08 mM ferric chloride in 50 mM 

sodium acetate/imidazole buffer, pH 5.0) of varying viscosity (0, 0.25, 0.5%, 1%, 2%, or 

4% methyl cellulose) for up to 7 d to enable iron chelation by PP-g-PHA materials. The 

assay was conducted in the dark (to minimize precipitation of ferric iron) with shaking at 

180 rpm at room temperature. At selected time points (12 h, 1 d, 2 d, 3 d, 5 d, and 7 d), the 

materials were removed from the aqueous buffered iron solution, washed with deionized 

water, and then dried in a desiccator for at least 24 h at room temperature until further 

analysis.  

Additional experiments were conducted to compare activity of PP-g-PHA iron 

chelating materials in the presence of different food hydrocolloids. Preliminary test were 

used to determine the concentration of each food hydrocolloids necessary to match the 

viscosity of 1% methyl cellulose. Materials (native PP or PP-g-PHA, 1 x 2 cm2) were 

reacted in ferric iron solution (10 g of 0.08 mM ferric chloride in 50 mM sodium 

acetate/imidazole buffer, pH 5.0) containing either methyl cellulose (1%), guar (0.5%), 

locust bean (0.5%), xanthan (0.3%), or carrageenan (1%) for 7 d, rinsed in deionized water 

and then dried in a desiccator for at least 24 h at room temperature.   
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Upon iron chelation, PP-g-PHA iron chelating active packaging materials develop 

a characteristic reddish-brown color due to the PHA/Fe3+ complex. Change in color of PP-

g-PHA material was used to monitor iron chelation kinetics. A Hunter colorimeter 

(ColorFlez EZ, HunterLab, Reston, VA) was used to quantify material color by color 

coordinates (L*, a*, and b*). L* value is a measure of the lightness, and its value ranges 

from 0 to 100, corresponding to pure black to pure white. a* refers to the color change 

from green to red, when its value changes from negative to positive. b* value is a measure 

of the color from blue to yellow when it changes from negative to positive. Color difference 

(ΔE*) of the material before (L0*, a0*, and b0*) and after chelating ferric iron (Lt*, at*, and 

bt*) was calculated using the following equation: 

ΔE* = [(L0*-Lt*)2 + (a0*-at*)2+(b0*-bt*)2]1/2  (1) 

 Additionally, selected treatments of PP and PP-g-PHA materials were analyzed for 

iron chelating activity by microwave acid digestion followed by quantification via 

inductively coupled plasma-optical emission spectroscopy (ICP-OES). Treatments were 

chosen as the first ΔE* value that were not statistically different from the ΔE* value at the 

next time point in the range of the plateau, except for native PP and high viscosity PP-g-

PHA (2% MC and 4% MC) materials which did not achieve PP-g-PHA maximum color 

change capacity, therefore the last time point (7 d) was chosen. PP material samples were 

prepared for ICP-OES analysis using a standard method for analysis of lead in non-metal 

children’s products.126 Approximately 150 mg of the PP material (1 x 2 cm2 pieces) were 

weighed directly into microwave digestion vessels (Mars Xpress 75 ml vessels, CEM, 

Matthews, NC) and nitric acid (5 ml) was added to each vessel. Calibration standards were 

prepared with iron solution (1,000 ppm Iron ICP-MS Standard, Ricca Chemical Company, 
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Arlington, TX) and clean PP. The microwave acid digestion was conducted in the Mars 

Xpress (CEM, Matthews, NC) and is as follows: ramp to 210°C for 20 min, hold at 210°C 

for 10 min, and cool for 10 min. Digested samples were transferred to 50 ml centrifuge 

tubes, diluted with deionized water, and held at 4°C until analysis. ICP-OES analysis was 

conducted on a Perkin Elmer Optima 4300 DV (Waltham, MA). 

5.3.6 Statistical Analysis 

All measurements were conducted in quadruplicate. Data are representative of at 

least two independent experiments. Non-linear regressions and one-way ANOVA (p<0.05) 

were calculated using GraphPad Prism 6.0 (La Jolla, CA).  
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5.4 Results and Discussion 

5.4.1 Characterization of Iron Chelating Active Packaging Material 

 

Figure 5.2. (A) Surface chemistry of non-migratory chelating packaging material and (B) theoretical 
tridentate binding of ferric iron by PHA as adapted from Tian, et al. 85 and (C) ATR-FTIR spectra of native 

PP and PP-g-PHA chelating packaging materials. 

Photoinitiated graft polymerization represents a scalable method for covalent 

immobilization of active polymers that can be applied to a variety of surfaces and adapted 

to a continuous process.39 Iron chelating active packaging materials synthesized for this 

study were prepared by photoinitiated graft polymerization of methyl acrylate from the 

surface of polypropylene (PP) materials and then subsequent conversion of poly(methyl 

acrylate) to poly(hydroxamic acid) (PHA), imparting hydroxamate-based metal chelating 

activity (Figure 5.2). The proposed hydroxamate-functionalized antioxidant active 
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packaging material uses low cost, widely available and highly stable polymers. The pKa 

of surface-grafted PHA was previously measured to be ~9.65, which indicates that the 

material may have a low effective charge in complex food systems that may have numerous 

charged ingredients.77 Optimum iron chelation by PP-g-PHA iron chelating materials was 

demonstrated at pH 5.0.85 The theoretical ligand (hydroxamic acid) to metal (ferric iron) 

binding ratio is 3 to 1 (Figure 5.2b). Hydroxamic acid content of the film may be estimated 

as up to 3 times the material-bound iron content in pH 5 buffer (~274 nmol cm-2). The 

surface chemistry of native PP and PP-g-PHA iron chelating materials was confirmed by 

ATR-FTIR spectroscopy (Figure 5.2c). Unlike native PP material, PP-g-PHA exhibited 

spectral bands at 1649 cm-1 and 1554 cm-1, corresponding to C=O and C-NH bonds of the 

grafted hydroxamic acid groups, respectively. This IR spectrum confirmed successful 

grafting of PHA from the surface of PP.  

5.4.2 Influence of Food Matrix Viscosity on Iron Chelating Kinetics of Active 

Packaging Material 

In order to characterize the influence of viscosity on the iron chelating kinetics of 

PP-g-PHA chelating active packaging materials, a common food hydrocolloid, methyl 

cellulose, was used to thicken an aqueous buffered iron solution (0.08 mM ferric chloride 

in 50 mM sodium acetate/imidazole buffer, pH 5.0). Methyl cellulose was chosen as the 

thickening agent because it is non-ionic and is not reported to have affinity for ferric iron,127 

as confirmed by preliminary experiments. It is important to note that for the purposes of 

this study, we sought to create simple models in which viscosity would be the only 

independent variable, and therefore the models do not fully reflect the complexity of real 

food systems. Methyl cellulose was added to aqueous buffered iron solutions at the 
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following concentrations: 0.25%, 0.5%, 1%, 2%, and 4%. All aqueous buffered iron 

solutions exhibited a shear thinning flow behavior (Figure 5.3a), which is the common 

flow behavior for liquid and semi-liquid food emulsion products.128 The apparent viscosity 

of the iron solutions evaluated ranged from ~1 to ~105 mPa·s, which is comparable to 

example liquid and semi-liquid food viscosities listed in Table 5.1. Doubling the 

concentration of methyl cellulose in the aqueous buffered iron solution yielded 

approximately 1 log increase in viscosity (Figure 5.3b). Aqueous buffered iron solutions 

thickened with varying concentrations of methyl cellulose were used as viscous model food 

systems to characterize the influence of viscosity on the iron chelating kinetics of PP-g-

PHA chelating active packaging materials. 

 

Figure 5. 3. (A) Flow profile and (B) apparent viscosity at 10 s-1 of aqueous buffered iron solutions (0.08 
mM ferric iron in 50 mM sodium acetate/imidazole buffer, pH 5) thickened with methyl cellulose (MC). 

Error bars represent standard deviation (n=4) and are smaller than data points. 
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Hydroxamate chelation of ferric iron in an aqueous solution produces a 

characteristic red color complex that was first reported by Hestrin 129. We have previously 

demonstrated that PP-g-PHA chelating active packaging materials develop such reddish-

brown color upon chelation of ferric iron due to the formation of a PHA/Fe3+ complex.85 

The color change of PP-g-PHA iron chelating materials can therefore be quantified using 

colorimetry and correlated with iron chelating activity as characterized by ICP 

spectroscopy (Figure 5.4). Such correlation between iron chelating activity and PP-g-PHA 

color change was previously demonstrated in other work by our group.130 For this study, 

color difference (ΔE*) of PP-g-PHA iron chelating material before and after iron chelation 

was used to monitor iron chelating kinetics in aqueous buffered iron solutions of different 

viscosities during a 7 d storage study (Figure 5.5a). PP materials served as a control for 

this experiment and did not demonstrate significant color change during the course of the 

storage study, which indicates any iron precipitation that occurred during the course of the 

storage study did not significantly affect color change caused by hydroxamate-specific iron 

chelation. Furthermore, control PP materials incubated for 7 d in aqueous buffered iron 

solutions presented negligible iron content that was below the limit of detection of ICP-

OES (< 2.80 nmol/cm2 iron). The reddish-brown color of the PP-g-PHA iron chelating 

materials increased in intensity over the course of the storage study, at a rate dependent on 

the methyl cellulose content of the aqueous buffered iron solution. An example of the 

observed color change over time for the 1% methyl cellulose treatment is shown in Figure 

5.5b. PP-g-PHA iron chelating active packaging materials incubated in aqueous buffered 

iron solutions with increasing methyl cellulose content (and increasing viscosity) exhibited 

a more gradual color change over time.			
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Figure 5.4. Correlation between color difference (ΔE*) measured by colorimetry and iron content 
measured by ICP-OES of PP-g-PHA chelating packaging materials. Data represents iron chelating 

materials incubated under varying experimental conditions (ie: incubation time, viscosity, hydrocolloid 
chemistry). Error bars represent standard deviation (n=4). 

 

 

Figure 5.5. (A) Color change of PP-g-PHA chelating packaging material and control PP incubated in  
aqueous buffered iron solutions (0.08 mM ferric iron in 50 mM sodium acetate/imidazole buffer, pH 5) 

thickened with methyl cellulose (MC) and (B) PP-g-PHA chelating packaging material after incubation in 
iron solution modified with 1% methyl cellulose. Error bars represent standard deviation (n=4) and, in 

some instances, are smaller than data points.  

To compare PP-g-PHA iron chelation kinetics as a function of food viscosity, data 

for each treatment were fitted to a one-phase association exponential model (Figure 5.5a): 
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ΔE* = (ΔE*max)(1-e-kt)  (2) 

where ΔE*  is the change in color, ΔE*max is the maximum color change achieved 

during the storage study, k is the color change rate constant (d-1), and t is the incubation 

time (d). The measured data fit the one-phase association exponential model well 

(R2>0.920), and calculated parameters are reported in Table 5.2. PHA iron chelating 

materials incubated in all of the aqueous buffered iron solutions demonstrated a color 

change half-time of less than 1 d, suggesting that these metal chelating active packaging 

materials would perform at a commercially relevant rate, even at increasing viscosities. A 

maximum color change of ΔE*max >14.9 was reached during the 7 d storage study for 

materials incubated in iron solutions with methyl cellulose concentrations of 0 to 1% 

(viscosity range ~1 to ~102 mPa·s). A semi-log correlation was observed between viscosity 

and color change rate constants for materials incubated under these viscosity conditions 

(R2=0.875), suggesting that viscosity has a similar correlation with iron diffusion rate 

through model food systems. Materials incubated in iron solutions with methyl cellulose 

concentrations of 2% and 4% (viscosity ~103 and~104 mPa·s) reached a plateau in color 

change below the maximum material color change capacity (ΔE*max =12.3), indicating 

inhibition of iron chelation under these viscosity conditions.  ICP-OES was performed on 

select samples from each viscosity treatment after having reached ΔE*max for direct 

characterization of material-bound iron content (Table 5.3).  Results from ICP-OES 

supported those obtained via colorimetry.  ICP-OES characterized iron chelating activity 

of PP-g-PHA chelating materials that reached the material maximum color change capacity 

(ΔE*max) ranged from 88.7-102 nmol/cm2 iron (values found not to be statistically 

different) when incubated in iron solutions of methyl cellulose concentrations at or below 
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1%.  At higher methyl cellulose concentrations (2% and 4%), there was a statistically 

significant drop in iron chelating capacity.  Nevertheless, ICP-OES characterization 

demonstrated that even at high viscosities, at least 76% iron chelating capacity can be 

achieved within 2-3 days.   

Table 5.2. One-phase association model parameters for iron chelating kinetics (measured via colorimetry) 
of chelating packaging materials incubated in aqueous buffered iron solutions thickened with methyl 

cellulose (MC). ΔE*max is the maximum material color change achieved during the storage study, k is the 
material color change rate constant (d-1), and half-time is the incubation time (d) required for the material to 

achieve 50% of its maximum chelating capacity. Values represent means ± standard deviation (n=4). 
Significant differences are denoted with letters (p<0.05). 

Model 
Parameters 

Buffer 
alone 

0.25% MC 0.5% MC 1% MC 2% MC 4% MC 

ΔE*max 14.9 ± 0.28a 15.1 ± 0.25a 15.4 ± 0.26a 15.0 ± 0.25a 12.3 ± 0.22b 12.3 ± 0.35b

k 3.03 ± 0.36  2.46 ± 0.22 1.18 ± 0.075 0.983 ± 0.060 1.64 ± 0.13 1.69 ± 0.22 

Half-life 0.229 0.282 0.590 0.705 0.424 0.411 

R2 0.955 0.968 0.977 0.979 0.967 0.920 

 

Table 5.3. Iron content (nmol cm-2) of chelating packaging materials as characterized by ICP-OES at 
maximum chelating capacity (ΔE*max). Values represent means ± standard deviation (n=4). Significant 

differences are denoted with letters (p<0.05). 

Aqueous Buffered 
Iron Solution 

Material Iron Content at ΔE*max (nmol 
cm-2) 

Buffer alone 91.2 ± 6.5a 

0.25% MC 93.8 ± 0.4a 

0.5% MC 88.7 ± 3.7a 

1% MC 102 ± 4.4a 

2% MC 74.3 ± 2.8b 

4% MC 69.6 ± 15b 
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At the methyl cellulose concentrations necessary to create high viscosity model 

food systems (2 and 4%), there are large fractions of methyl cellulose polymer chains in 

suspension that may result in significant chain overlap. The observed decrease in the 

activity of iron chelating materials incubated in high viscosity solutions (viscosity ~103 

and~104 mPa.s) may be due to (1) iron diffusion limitations at high viscosity due to methyl 

cellulose polymer chain overlap and/or (2) obstruction of the surface-immobilized PHA 

chelator by overlapping methyl cellulose polymer chains. Considering that the half-time of 

metal chelating material color change was relatively short for both high viscosity solutions 

(less than half a day), it is unlikely that iron diffusion from the solution to the surface of 

the active packaging material was the major cause of reduced iron chelating capacity. 

Kaşgöz, et al. 131 suggested that polymers may form dense complexes on the surface of 

metal binding materials to inhibit diffusion of metals to metal chelating ligands and reduce 

observed metal chelating activity. These formation of dense polymer chain complexes on 

the material surface, which may be caused by hydrogen bonding and/or van der Waals 

interactions, could prevent the formation of potential chelating complexes. In the case of 

our study where a color development plateau was reached very quickly during storage, this 

may be the most probable explanation.  

It is important to note that while iron chelating capacity and kinetics were found to 

be dependent on solution viscosities, even at the lowest maximum iron chelating capacity, 

values were well within commercially relevant parameters for EDTA usage. Current FDA 

limits for calcium disodium EDTA are 75 ppm (183 µM) in salad dressing, sauces and 

mayonnaise and 33 ppm (80 µM) in beverages.20 Further research has demonstrated that 

iron bound in a 1:1 molar ratio with EDTA remains prooxidative and that higher molar 
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ratios (e.g. 2:1 EDTA:iron) are necessary to prevent iron from promoting lipid 

oxidation.132, 133  We can therefore calculate a range of approximate EDTA equivalents of 

the non-migratory iron active chelating packaging material by assuming a food contact 

surface area to food volume ratio of 600 cm2 packaging material/L food (as specified by 

current European Union legislation) and an EDTA:iron molar ratio range of 2:1 to 1:1. 134, 

135  At the lowest maximum iron chelating capacity reported in this study (69.6 nmol 

iron/cm2 in ~104 mPa·s model food system), the estimated EDTA equivalent of the iron 

chelating active packaging material is 17 to 35 ppm (42 to 84 µM), which is in the range 

of the legal limit for beverages.  Although this is well below the legal limit for salad 

dressings, sauces and mayonnaise, as little as 16 µM EDTA (equivalent to 13.3 nmol 

iron/cm2 active packaging material) is necessary to delay lipid oxidation in mayonnaise, a 

food that is very susceptible to iron promoted oxidation due to the iron content of egg yolk 

protein phosvitin.136, 137 Therefore, the non-migratory iron chelating active packaging 

material reported here is higher than the minimum concentration necessary to inhibit lipid 

oxidation.  

5.4.3 Influence of Food Hydrocolloid Chemistry on the Activity of Iron Chelating 

Material 

Four representative food grade hydrocolloids were selected to characterize the 

influence of hydrocolloid chemistry on material iron chelation, including carrageenan, 

xanthan, locust bean, and guar gum. These hydrocolloids are commonly used in the food 

industry to thicken foods, such as salad dressings and sauces, that are susceptible to iron 

promoted oxidative degradation.138 Carageenan is an anionic polysaccharide composed of 

sulfated galactans extracted from seaweed. Xanthan is an anionic microbial-produced 
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pyruvated polysaccharide composed of D- glucose, D-mannose, and D-glucuronic acid. 

Locust bean and guar gum are non-ionic galactomannans extracted from seeds. In this 

experiment, 1% methyl cellulose served as the control, since, as previously stated, methyl 

cellulose is non-ionic and has no specific affinity for iron. Hydrocolloids were added to 

aqueous buffered iron solutions at concentrations to yield viscosities similar to that of 1% 

methyl cellulose solution so that the only independent variable in the experiment was 

hydrocolloid chemistry (Table 5.4). PP-g-PHA chelating packaging materials were 

submerged in iron solutions for 7 d to ensure that maximum iron chelation capacity was 

achieved.  

Table 5.4. Influence of hydrocolloid chemistry on iron chelation by chelating packaging materials as 
characterized by colorimetry (ΔE*) and ICP-OES determined iron content (nmol cm-2). Values represent 

means ± standard deviation (n=4). Significant differences are denoted with letters (p<0.05). 

Aqueous 
Buffered Iron 

Solution 

Hydrocolloid 
Chemistry 

Apparent 
Viscosity at 10 s-1 

(mPa·s) 
ΔE* 

Iron Content 
(nmol cm-2) 

1% methyl 
cellulose 

Non-ionic  
methylated cellulose 

181 ± 10 15.7 ± 0.65a 116 ± 5.5a 

1% carrageenan 
Anionic  

sulfated galactans 
173± 3.9 15.3 ± 1.5a 106 ± 19a 

0.3% xanthan 

Anionic  
pyruvated 

polysaccharide of 
glucose, mannose, and 

glucoronic acid 

187 ± 4.1 11.6 ± 1.6b 52.0 ± 11b 

0.5% locust 
bean 

Non-ionic 
galactomannans 

169 ± 18 11.1 ± 0.77b 48.6 ± 4.5b 

0.5% guar 
Non-ionic 

galactomannans 
179 ± 2.9 10.4 ± 0.32b 36.5 ± 3.2b 

As before, colorimetry and direct ICP-OES analysis were performed to quantify 

iron chelation. Iron chelating materials exhibited a color change that correlated well with 

ICP-OES characterized iron content (Table 5.4 and Figure 5.6). Materials incubated in 
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iron solutions thickened by carrageenan achieved similar iron chelation as those incubated 

in solutions thickened by methyl cellulose (Table 5.4). However, materials incubated in 

iron solutions thickened by guar gum, locust bean gum and xanthan achieved only 32-45% 

of the maximum iron chelating capacity of materials incubated in 1% methyl celluose 

(Table 5.4). While xanthan (an anionic hydrocolloid) significantly inhibited iron chelation 

by chelating packaging materials, the other anionic hydrocolloid tested here (carageenan) 

had no influence on chelation. These results suggest that charge of the hydrocolloid alone 

is not an indicator for competitive chelation for hydroxamate-functionalized chelating 

packaging materials, but rather metal-ligand specific interactions. The pyruvate group of 

xanthan gum has been hypothesized as a possible specific metal chelating ligand of xanthan 

gum based on a demonstrated high affinity for ferrous iron.139 Since guar and locust bean 

gum are non-ionic hydrocolloids, competition for iron chelation by these food 

hydrocolloids occurred by metal-ligand specific interactions. Galactomannans may 

complex metals by two cis-hydroxyl groups of each monomeric unit.140 Obstruction of 

surface-bound PHA chelating ligands by these hydrocolloids, as hypothesized for high 

viscosity methyl cellulose solutions, may have also occurred if they have a high affinity 

for the surface (e.g. hydrogen bonds, van der Waals interaction). However, further study is 

necessary to support such hypothesis.    

 

Figure 5.6.Color change of PP-g-PHA chelating packaging material after 7 d incubation in aqueous 
buffered iron reaction solutions modified with different food hydrocolloids. 
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To our knowledge, there has not been a formal study of hydrocolloid affinity for 

ferric iron. However, our observations are in agreement with reports on iron bioavailability 

studies which characterized the binding of ferrous iron by hydrocolloids. Platt and 

Clydesdale 127 examined binding of ferrous iron by guar gum (0.67%) under simulated 

duodenal pH conditions (pH 5) and found that guar gum exhibited specific binding for 

ferrous iron (Keff= 6.27 x 106). Bosscher, et al. 141 determined that locust bean gum (0.42%)  

reduced iron bioavailibility 99.55% when incorporated into infant formula. Shimada, et al. 

139 observed that xanthan (0.05%) had a pH independent affinity for ferrous iron. Despite 

the well established competitive iron chelation by certain hydrocolloids, it is important to 

consider the intended application of non-migratory metal chelating active packaging such 

as that reported here.  As the goal of such active packaging is to inhibit metal-promoted 

oxidative degradation reactions such as lipid oxidation, competitive chelation by food 

hydrocolloids may support the overall antioxidant systems in food products. Previous 

research has demonstrated that food hydrocolloids that chelate iron can inhibit lipid 

oxidation of oil-in-water emulsions.7, 139, 142 

5.5 Conclusion 

Non-migratory active packaging enables a potential regulatory benefit over 

migratory technologies, as the active agent is covalently bound to the material.  Yet, 

questions about activity in solutions of increasing viscosities (and corresponding 

diffusional limitations) have largely been unanswered.  The overall aim of this study was 

to demonstrate the ability of surface-bound active agents to retain activity in liquid and 

semi-liquid food systems of increasing viscosities. Iron chelating active packaging 

materials were used to study the influence of food matrix viscosity on iron chelating 
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kinetics and capacity. A maximum iron chelating capacity of >88 nmol/cm2 iron was 

achieved within  the 7 d storage study for materials incubated in iron solutions up to ~102 

mPa·s. At high viscosity iron solutions (~103 and~104 mPa·s, similar to sauce and 

mayonnaise viscosity), films retained at least 76% of their maximum iron chelating 

capacity.  Under all viscosity conditions tested, PP-g-PHA chelating materials exhibited 

and iron chelating activity equivalent to at least 17 ppm EDTA. In addition, a study was 

performed to determine the influence of hydrocolloid chemistry on chelating capacity of 

the chelating packaging materials.  Compared to the methyl cellulose control, guar, locust 

bean and xanthan gums demonstrated affinity for ferric iron that reduced iron chelation 

capacity of PP-g-PHA, whereas carrageenan did not inhibit iron chelation by PP-g-PHA 

iron chelating materials. Since food hydrocolloids can contribute to antioxidant systems in 

food products, it is unlikely that these interactions would significantly affect the 

performance of non-migratory iron chelating active packaging as an antioxidant. 

Understanding the impact of food matrix physical and chemical properties on the 

performance of non-migratory active packaging is essential to consider for commercial 

applications. This work demonstrates the potential application of non-migratory iron 

chelating active packaging in liquid and semi-liquid foods (viscosity range ~1 to 105 

mPa·s) to allow for the removal of synthetic additives, while maintaining food quality.  
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CHAPTER 6 

BIOMIMETIC POLYPHENOL COATING FOR ANTIOXIDANT ACTIVE 
PACKAGING APPLICATIONS5 

6.1 Abstract 

Oxidative instability of food, pharmaceutical, and consumer products can be 

promoted by trace metals, especially iron and copper, with subsequent propagation of free 

radicals. Plant-derived phenolic compounds that contain catechols are reported to have free 

radical scavenging, metal chelating and surface adhesion properties upon polymerization. 

The objective of this study was to synthesize biomimetic polyphenol coatings for 

development of antioxidant active packaging materials. Two synthetic routes were 

explored to apply polyphenol coatings to the surface of polypropylene by in situ 

polymerization of a mixture of catechol and catechin and oxidative polymerization with 

laccase and in alkaline saline. Both polyphenol coatings demonstrated potent metal 

chelating and radical scavenging capacity, which suggest potential antioxidant capacity. 

Dual functionality of polyphenol coatings as potent antioxidants and anchors makes them 

a promising candidate for active packaging coatings that can inhibit metal-promoted 

oxidative degradation.  

6.2 Introduction 

A major challenge to food, consumer products, and pharmaceutical industries is 

retaining stability of oxidation-sensitive bioactive compounds, such as unsaturated fatty 

acids, carotenoids, flavonoids, vitamins, and drugs. Oxidative stability of such compounds 

                                                 
5 The contents of this chapter have been submitted for publication: Roman, M. J.; Decker, E. A.; Goddard, 
J. M. Biomimetic polyphenol coatings for antioxidant active packaging applications. 2016. Submitted. 
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is determined by the propagation of free radicals. In dispersions containing bioactive 

compounds, trace amounts of metals, especially iron and copper, are key prooxidants that 

contribute to product instability as they promote hydroperoxide decomposition that 

catalyzes free radical chain reactions.6 Since it is difficult to fully remove trace metals from 

raw materials and the processing environment, metal chelators, such as 

ethylenediaminetetraacetic acid (EDTA), and free radical scavengers, such as butylated 

hydroxytoluene (BHT), are often added to formulations as antioxidants to stabilize these 

products. In an effort to reduce use of synthetic additives due to consumer perception of 

toxicity risk, there has been increasing interest in alternative methods of product 

preservation using antioxidants obtained from natural sources. Directly substituting natural 

antioxidants into product formulations is challenging because they tend to be less potent 

than synthetic additives and therefore must be added in larger amounts that may change a 

product’s organoleptic properties (i.e. color, flavor, viscosity). In order to overcome this 

challenge, researchers have explored incorporation of natural antioxidants into active 

packaging coatings. Antioxidant active packaging coatings may be applied to the product 

contact surface of common packaging materials by non-covalent or covalent attachment of 

antioxidants that are applied with or without a carrier polymeric resin.143 These coatings 

are designed to either scavenge prooxidants from the product or slowly release antioxidants 

from the packaging material. 

The majority of research on antioxidant active packaging coatings has been focused 

on application of free radical scavengers on the surface of packaging materials. Contini, et 

al. 144 spray deposited citrus extract on plasma pretreated polyethylene terephthalate trays 

that inhibited oxidative degradation of cooked meats. Garces, et al. 110 patented an 
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antioxidant active varnish for use on packaging materials composed of polymeric resin 

blended with plant extracts that is designed to scavenge free radicals in packaging 

headspace.145 Arrua, et al. 113 covalently attached a polymer containing caffeic acid to the 

surface of polypropylene and demonstrated its ability to scavenge free radicals and inhibit 

degradation of vitamin C in orange juice. Recently, antioxidant active packaging coatings 

by graft polymerization of metal chelating polymers, such as poly(acrylic acid) and 

poly(hydroxamic acid), have been developed that exhibit functionality across a broad range 

of pH values and viscosity conditions and in the presence of competing ions.76, 85, 130, 146, 147 

Metal chelating active packaging coatings extended the lag phase of lipid oxidation in 

soybean oil-in-water emulsions and demonstrated improved performance for metal 

chelating polymers with high iron affinity.43, 44  

Among free radical scavenging antioxidants derived from natural sources, plant-

derived phenolic compounds that contain catechols are reported to have high affinity for 

iron (e.g. catechol log β Fe(III) =43.76, catechin log β Fe(III) =47.4).148 In addition to their 

antioxidant capacity, phenolic compound that contain catechols have been researched as 

biomimetic of mussel adhesive proteins making them ideal candidates for coating 

technologies. With this in mind, the reported work seeks to design biomimetic catechol-

based polyphenol surface coatings for the development of antioxidant active packaging 

materials that provide dual antioxidant functionality, both by scavenging free radicals 

directly and by removing trace transition metals from the system. 

A facile method of coating plant phenols onto material surfaces is through oxidative 

polymerization. Polymerized plant phenols have been noted to have adhesive properties on 

many materials relevant to packaging due to their structural similarities to the widely 
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researched mussel adhesive proteins. Jeon, et al. 149 demonstrated that plant phenols can be 

polymerized onto a variety of material surfaces, including aluminum, glass, polyethylene 

terephthalate, and polypropylene, with the assistance of the oxidase enzyme, laccase. 

Barrett, et al. 150 prepared polyphenol coatings from plant phenols by polymerization in an 

alkaline aqueous buffer, similar to reported methods for the preparation of polydopamine 

coatings.151 However, there has yet to be an investigation of the ability of such polyphenol 

coatings to function as both free radical scavengers and metal chelators for antioxidant 

applications. The objective of this study was to synthesize a biomimetic polyphenol coating 

for development of antioxidant packaging materials with both metal chelating and free 

radical scavenging character. Polyphenol coatings were applied to the surface of 

polypropylene by in situ polymerization of a mixture of catechol and catechin (2.5 mg/ml 

catechol; 2.5 mg/ml catechin) via enzymatic polymerization with laccase (1 mg/ml in 100 

mM sodium acetate buffer, pH 5 and methanol (9:1)) or oxidative polymerization in 

alkaline saline (100 mM bicine, 600 mM sodium chloride, pH 8). Ability of the polyphenol 

coatings to chelate copper and iron ions and scavenge free radicals was demonstrated.  

6.3 Materials and Methods 

6.3.1 Materials 

Polypropylene (isotactic, pellets) was purchased from Scientific Polymer Products 

(Ontario, NY). Hydroxylamine hydrochloride, ferrous sulfate heptahydrate (99+%), 

imidazole (99%), and 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p’-disulfonic acid 

disodium salt hydrate (ferrozine, 98+%) were purchased from Acros Organics (Morris 

Plains, NJ). 1-2-Dihydroxybenzene (catechol, ≥99%), (+)-catechin hydrate (≥98%), zincon 

monosodium salt, 2,2-Azobis(2-methylpropionamidine) dihydrochloride (AAPH, 97%), 
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fluorescein sodium salt, and (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic 

acid (Trolox, 97%) were purchase from Sigma Aldrich (St. Louis, MO). Laccase M120 

(from Trametes versicolor, EC 1.10.3.2, 1.19 x 105 U g-1) was generously donated by 

Amano Enzymes (Nagoya, Japan). All other chemicals were purchased from Fisher 

Scientific (Fair Lawn, NJ). 

6.3.2 Polypropylene Film Preparation 

Polypropylene (PP) films were prepared as previously reported 43. PP pellets were 

cleaned by sequentially sonicating in the following solvents twice for 10 min each rinse: 

isopropanol, acetone, and deionized water, and then dried over anhydrous calcium sulfate. 

Clean PP film was prepared on a Carver Laboratory Press (Carver, Inc., NJ). The press was 

set to 170°C, PP pellets were heated on the press at for 1 min, and then 9000 lbs of pressure 

was applied. PP films, average thickness of 257 ± 25 μm, were cut into 8 x 8 cm2 pieces 

and washed using the same method as the PP pellets.  

6.3.3 Surface Modification 

Polyphenol coatings were applied to the surface of PP by in situ polymerization of 

a mixture of catechol and catechin via enzymatic polymerization with laccase 149 or 

oxidative polymerization in buffered saline.150 Enzymatic polymerization reaction solution 

was as follows: 2.5 mg ml-1 catechol, 2.5 mg ml-1 catechin, and 1 mg ml-1 laccase in 100 

mM sodium acetate buffer, pH 5:methanol (9:1). Alkaline oxidative polymerization 

reaction solution was as follows: 2.5 mg ml-1 catechol and 2.5 mg ml-1 catechin in 100 mM 

bicine, 600 mM sodium chloride, pH 8. All polymerization reactions were conducted at 20 

± 2°C with stirring for 24 h. After application of the coating, PP films were rinsed with DI 
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water, dried overnight over anhydrous calcium sulfate, and the cut into 1 x 2 cm2 pieces 

for analysis. 

6.3.4 Surface Chemistry 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used to confirm the application of polyphenols on the surface of PP. An IRPrestige 

FTIR Spectrometer (Shimadzu Scientific Instruments, Inc., Kyoto, Japan) with a diamond 

ATR crystal was used to measure the spectrum under the following parameters: Happ-

Genzel function, 32 scans, and 4 cm-1 resolution.  Spectrum analysis was performed on 

KnowItAll(R) Informatics System 9.5 (Bio-Rad Laboratories, Inc., Informatics Division, 

Philadelphia, PA). 

Total phenol content was quantified using an adapted Folin-Ciocalteu colorimetric 

assay, in which phenolic groups react with Folin-Ciocalteu reagent and form a blue 

chromaphore under alkaline conditions.152 Each 1 x 2 cm2 film was submerged in 1 ml 

Folin-Ciocalteu (0.2 N Folin-Ciocalteu phenol reagent) and 0.2 ml 0.05 N HCl and 

incubated while shaking at room temperature for 5 min. Then, 0.8 ml 7.5% sodium 

carbonate was added to the reaction and incubated for 2 h shaking in the dark at room 

temperature. The absorbance of the reaction solution was measured at 760 nm to quantify 

total phenol content by comparison to a standard curve of catechol in 0.5 N HCl. 

6.3.5 Surface Morphology 

Surface images of materials were taken with JCM-6000 NeoScope (JEOL, Japan) 

at 10 kV. Prior to imaging, samples was mounted on a small aluminum platform with 

double sided carbon tape and then sputter coated with gold under argon for 30 s. Images 

were taken twice on three independently prepared samples. Coating thickness was 
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determined by surface profilometry (Dektak 150 Stylus Profilometer, Veeco, NY). Prior to 

analysis, portions of coated materials were removed by absolute ethanol to determine 

coating thickness by step height. Measurements were taken on four independently prepared 

samples.  

6.3.6 Iron and Copper Chelating Capacity 

The ferric iron (Fe3+) chelating activity of polyphenol coated films was determined 

using a method adapted from Tian, et al. 85 Each 1 x 2 cm2 film was submerged in buffered 

iron solution (0.08 mM ferric chloride in 0.05M sodium acetate/imidazole buffer, pH 5) 

and allowed to chelate in the dark for 24 h at room temperature with shaking. The Fe3+ 

chelating activity of films was calculated by the difference of the Fe3+ concentration in 

buffered iron solution with films against the control (buffered iron solution without film).  

A modification of the ferrozine assay was performed to quantify the Fe3+ concentration of 

buffered iron solutions, in which a colorimetric complex is formed between Fe2+ and 

ferrozine reagent and read at 562 nm. The ferrous iron (Fe2+) and cupric ion chelating 

activity of polyphenol coated films was determined using the same method as Fe3+ 

chelating activity. Buffered iron solution was made with ferrous sulfate instead of ferric 

chloride and iron was quantified by ferrozine assay. Buffered copper solution was made 

with cupric sulfate instead of ferric chloride and copper was quantified by colorimetric 

reaction with zincon. Additional chelating studies were conducted at different pH values 

(pH 3,4) in order to evaluate the coated material performance stability. 

6.3.7 Radical Scavenging Activity 

Free radical scavenging activity of the polyphenol coated PP films was evaluated 

using the oxygen radical absorbance capacity (ORAC).153 ORAC uses hydrogen atom 
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transfer (HAT) reaction to quantify the antioxidant capacity of water-soluble antioxidants. 

For this method, AAPH is used to generate peroxyl radicals that oxidize fluorescein (probe), 

which results in a loss of fluorescence over time. The efficacy of an antioxidant is 

quantified by its ability to protect fluorescein from oxidative degradation by scavenging 

peroxyl radicals. An ORAC assay method was adapted for use with active packaging 

films.153 To conduct ORAC on polyphenol coated films, a microtiter assay was developed 

using a 96 well microarray microtiter plate (AHC4x24, ArrayIt Corporation, Sunnyvale, 

CA), in which swatches of film are assembled at the bottom of the plate and function as 

the bottom of each well. Working solutions of fluorescein (93.5 nM), AAPH (221mM) and 

Trolox (standard, 100 µM) were prepared fresh daily. To each well, 50 µl of fluorescein 

and 50 µl of phosphate buffer or standard (100 µM Trolox) was added. The microarray 

microtiter plate was preheated for 5 min at 37°C prior to the addition of 50 µl AAPH. 

Immediately after the addition of AAPH, fluorescence was read on a Synergy 2 microplate 

reader (BioTek Instruments, Winooski, VT) at an excitation wavelength of 485/20 nm and 

an emission wavelength of 528/20 nm. The microarray microtiter plate was kept in the 

microplate reader at 37°C under constant shaking with measurements taken every 5 min 

for 2 h to generate a fluorescence decay curve. ORAC values were expressed as Trolox 

equivalents using the following equation: 

	 	 	
	 	

	
 (1) 

Where 	 is the molar amount of Trolox per well in standard (5 nmol), 

AUC is the area under the fluorescence decay curve, and  is the area of the well 

exposed to polyphenol coated film (0.4875 cm2). AUC calculations and all statistical 
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analyses were conducted using GraphPad Prism 6.0 (La Jolla, CA).  Reported results are 

representative of two independent experiments performed in triplicate. 

6.4 Results and Discussion 

Polymerization of the catechol and catechin by laccase (pH 5) and in alkaline saline 

(pH 8) was immediately observed by a change in the color of the reaction solution to a dark 

brown color, characteristic of polyphenol formation. Deposition of the polymerized 

phenolic coating onto the surface of polypropylene was identified by similar generation of 

a dark brown color on the polypropylene film after 24 h in the reaction solution. It is 

important to note, that for the oxidative polymerization reaction conducted at pH 8 without 

laccase, preliminary experiments revealed that a minimum of 200 mM sodium chloride 

was necessary for the polyphenol to be deposited on the surface, with optimum surface 

deposition at 600 mM sodium chloride (data not shown). Salt ions may shield charges on 

polyphenols formed under alkaline conditions to allow for better interactions with the 

hydrophobic polypropylene surface. Previous work in agreement with our findings was 

conducted by Sileika 154 who found that alkaline saline enabled improved surface 

deposition of polymerized phenolic compounds compared to pure water.  

 
Figure 6.1. (a) Representative ATR-FTIR spectra and (b) total phenol content (n=4) of native PP and 

polyphenol coated PP.  
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Surface chemistry of the polyphenol coated materials was characterized by ATR-

FTIR spectroscopy (Figure 6.1). Laccase assisted polyphenol coatings exhibited a strong 

O-H absorbance band (3000-3680 cm-1), two C=C absorbance bands (1590, 1518 cm-1) 

attributed to benzene rings on catechol and catechin, and several C-O absorbance bands 

that may be attributed to crosslinks of catechol and catechin or catechol ligands (1050-

1290 cm-1). These results are in agreement with reported spectra collected from laccase-

assisted polymerization of catechol, catechin, and their combination.149 The polyphenol 

coating produced by alkaline saline polymerization of catechol and catechin exhibited a 

similar ATR-FTIR spectrum, with slight differences in the intensity and number of 

absorbance bands for C=C (1606, 1575, 1537 cm-1) and C-O bonds (1050-1290 cm-1), 

which suggests that this polyphenol coating has a different structure than the polyphenol 

coating formed by laccase assisted polymerization. Oxidation of a phenol by laccase 

typically involves loss of a single electron that results in the formation of a cationic radical, 

whereas alkaline oxidation results in the formation of an anionic radical. Different reactive 

radicals may influence the structure of the polyphenol formed by subsequent 

polymerization reactions. The number of available catechol groups on the surface was 

assessed by Folin Ciocalteu assay (Figure 6.1B). Laccase assisted polyphenol coatings 

contained more than twice the number of available phenolic groups than alkaline saline 

polyphenol coatings (86.7 ± 12 nmol catechol eqv. cm-2 and 33.1 ± 7.3 nmol catechol eqv. 

cm-2, respectively), while uncoated PP contained an insignificant amount of phenol groups 

(0.791 ± 0.14 nmol catechol eqv. cm-2). 
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Figure 6.2. Representative SEM micrographs of (a) native PP, (b) laccase assisted polyphenol coated PP, 
and (c) alkaline saline polyphenol coated PP (10,000x magnification). 

To determine the effect of coating preparation method on surface morphology, 

surface scanning electron microscopy (SEM) images of coated and uncoated materials 

were taken (Figure 6.2). Uncoated PP exhibited a smooth, uniform surface (Figure 6.2A). 

SEM micrographs confirmed the deposition of laccase assisted and alkaline saline 

polyphenol coatings onto the surface of polypropylene films. Laccase assisted polyphenol 

coatings significantly changed the surface morphology of the polypropylene to a rough 

surface with aggregates of polyphenols throughout the coating (Figure 6.2B). The coated 

surface also exhibited cracks throughout most likely caused by dehydration of the 

hydrophilic surface prior to imaging. The alkaline saline polyphenol coating was smoother 

than the laccase assisted polyphenol coating and did not have any visible cracking (Figure 

6.2C). Compared to the uncoated PP material, both polyphenol coated surfaces were 

rougher with presence of polyphenol aggregates. These observations are consistent with 

previous research on in situ polymerization of dopamine on glass and aluminum,155 which 

suggests that the hydrophobic surface properties of polypropylene did not significantly 

affect coating morphology. Changes in the surface morphology of coated PP materials were 

evident across the surface, demonstrating uniform application of the polyphenol coatings. 

Laccase assisted polyphenol coatings were approximately twice the thickness of alkaline 

polyphenol coatings (laccase assisted coating: 1087 ± 45.3 nm, alkaline coating: 506.5 ± 
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32.1 nm).  This disparity between coating thickness corresponds with differences in the 

coatings available phenolic groups (Figure 6.1B).   

The antioxidant efficacy of the polyphenol coated materials was characterized by 

screening both metal chelating and free radical scavenging capacity.  The ability to chelate 

ferrous, ferric, and cupric ions was measured at pH 3-5 to reflect a pH range of relevant 

oxidation prone food and consumer products (Figure 6.3). Polyphenol coatings prepared 

by both synthetic routes exhibited significant ferrous ion chelating capacity that was pH 

dependent. Ferrous chelating capacity decreased with decreasing pH value, with optimum 

ferrous ion chelation at pH 5. In contrast, polyphenol coated materials exhibited optimum 

ferric ion chelating capacity at pH 4. The decline of ferric ion chelating capacity at pH 5 

may be attributed to loss of ferric ion solubility at increasing pH values and/or oxidation 

of catechol hydroxyl groups by ferric ion that would result in the formation of quinones 

that have a low affinity for iron.156 Lack of the ability of ferrous ions to convert hydroxyls 

to quinones could also help explain why chelating capacity of ferrous ions at pH 4 and 5 

were higher than ferric ion chelating capacity. There was no significant difference in ferric 

and ferrous ion chelating capacity at pH 3. Despite significant differences in total phenol 

content (Figure 6.1B) and coating thickness, there was no significant difference in iron 

chelating capacity of the laccase assisted polyphenol coating and alkaline saline polyphenol 

coating. Similarities in iron chelating capacity suggests that chelating ligands of the 

polyphenolic coatings may be most active at the surface. Both polyphenol coated materials 

demonstrated lower copper chelating capacity than iron chelating capacity. Optimum 

copper chelation was demonstrated at pH 5 and decreased with decreasing pH values, with 

no significant difference between uncoated material and polyphenol coated material at pH 
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3. Similar to ferric ion, cupric ion may oxidize the catechol ligands to hinder effective 

chelation of metal ions. Ability to chelate ferrous ion, ferric ion, and cupric ion suggests 

that the reported polyphenol coated films may inhibit oxidative degradation reactions.  

 

Figure 6.3. (a) Ferrous ion, (b) ferric ion, and (c) cupric ion chelating capacity (n=4) of native PP and 
polyphenol coated PP at different pH values (3.0, 4.0, and 5.0). 

 

Figure 6.4. (a) Radical scavenging capacity of polyphenol coated PP (n=4) demonstrated by delayed decay 
of fluorescent probe in oxygen radical scavenging capacity (ORAC) assay. (b) Approximate radical 

scavenging capacity (Trolox eqv.) estimated by area under the curve. 
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Free radical scavenging capacity of polyphenol coated films was assessed by 

oxygen radical absorbance capacity (ORAC, Figure 6.4). For this assay, the efficacy of an 

antioxidant is quantified by its ability to protect fluorescein from oxidative degradation by 

scavenging peroxyl radicals generated by AAPH.157 Polyphenol coated films were able to 

decrease the overall rate of fluorescein degradation, which is indicative of radical 

scavenging capacity. Based on area under the curve, laccase assisted polyphenol coating 

was estimated to have 22.51 nmol Trolox eq cm-2 and alkaline saline polyphenol coating 

was estimated to have 22.62 nmol Trolox eq cm-2. As observed in the metal chelating 

capacity measurements, total phenol content did not appear to influence the free radical 

scavenging capacity of the coated films. Compared to the Trolox positive control, which 

demonstrates free radical scavenging behavior typical of soluble antioxidants, neither 

polyphenol coated materials exhibited a distinct lag phase for the induction of fluorescein 

oxidation (Figure 6.4). The lack of lag phase may be due to diffusion limitations of surface 

immobilized antioxidants to quench peroxyl radicals or possible higher redox potential of 

surface immobilized polyphenols compared to Trolox (E°’ = 480 mV).157 Nevertheless, 

both coatings demonstrated potent free radical scavenging capacity, which may contribute 

to their overall antioxidant capacity when applied to packaging materials.    

6.5 Conclusions 

Phenolic compounds that are derived from plants represent a promising source for 

antioxidants that may be used to hinder degradation of oxidation-sensitive bioactive 

compounds. Application of such phenolic compounds in active packaging coatings may 

prevent their interference with the organoleptic properties of food and consumer products, 

while still delivering antioxidant protection of bioactive compounds. Recent research has 
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demonstrated that compounds that bear structural similarities to mussel adhesive proteins, 

such as catechol-based plant phenols, have functional adhesive properties useful for the 

development of coating technologies. This proof of principle study demonstrated that 

polyphenol coatings can be applied by in situ laccase assisted polymerization or alkaline 

saline polymerization of catechol and catechin possess dual antioxidant capacity, 

exhibiting both metal chelating and radical scavenging properties. These findings warrant 

further investigation for the development of antioxidant polyphenol coatings for active 

packaging applications in food, consumer products, and pharmaceutical industries.  
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CHAPTER 7 

NONMIGRATORY POLYPHENOL COATED ACTIVE PACKAGING 
MATERIAL: CHARACTERIZATION AND ANTIOXIDANT EFFICACY 

7.1 Abstract 

Oxidative degradation causes lipid rancidity, natural color loss, and nutrient 

degradation that decreases quality and shelf life of packaged foods. Synthetic food 

additives are effective inhibitors of oxidation, but are undesirable to consumers who prefer 

‘clean’ label products. The aim of this study was to develop a polyphenol coated active 

packaging material and demonstrate its ability to inhibit lipid oxidation and lycopene 

degradation in oil-in-water emulsions. Polyphenol coatings were applied to chitosan 

functionalized polypropylene by laccase assisted polymerization of catechol and catechin. 

Polyphenol coated packaging material exhibited both metal chelating (39.3 ± 2.5 nmol Fe3+ 

cm-2, pH 4.0) and free radical scavenging (3.51 ± 0.77 nmol Trolox eq. cm-2, ORAC) 

capacity, resulting in dual antioxidant functionality. Lipid oxidation and lycopene 

degradation in oil-in-water emulsions (pH 4.0) were inhibited by polyphenol coated 

materials. This study suggests that polyphenol coatings can be used to prepare antioxidant 

active packaging materials for foods. 

7.2 Introduction 

In order to meet consumer demands for ‘clean’ label products, many food and 

beverage manufacturers have committed to removing synthetic additives from their 

product formulations.158 This commitment is challenging as many synthetic additives play 

a key role in product preservation that is integral to food safety, quality and shelf life. One 

of the key limiting factors in the shelf life of food and beverages is oxidative degradation 
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that can lead to lipid rancidity, natural color loss, and nutrient degradation. Conventionally, 

oxidative degradation is inhibited by addition of synthetic antioxidants, such as 

ethylenediaminetetraacetic acid (EDTA) and butylated hydroxytoluene (BHT), which bind 

pro-oxidant metals and scavenge free radicals, respectively. An alternative preservation 

strategy that is being explored to allow for removal of artificial ingredients from food and 

beverages is antioxidant active packaging.29, 30, 38, 109, 143 Currently, the most widely used 

antioxidant active packaging technologies are oxygen scavenging sachets and labels.28, 159 

Although these oxygen scavengers are effective in low moisture foods, they are not suitable 

for use in liquid and semi-liquid foods.  

 Recently, our group has developed nonmigratory active packaging materials for  

application in liquid and semi-liquid foods.35, 41-44, 47, 76, 85, 160, 161 Such nonmigratory active 

packaging materials are synthesized by direct immobilization or tethering of active 

compounds to the packaging surface to allow for interaction with food to improve safety 

and quality without becoming a direct food additive. Muriel-Galet, et al. 42 developed 

antimicrobial packaging film by immobilization of lysozyme on the surface of ethylene 

vinyl alcohol and demonstrated its efficacy against Listeria monocytogenes.  Wong, et al. 

41 synthesized a nonmigratory lactase active packaging film for in-package processing of 

lactose-free products by layer-by-layer assembly of polyethyleneimine, glutaraldehyde, 

and lactase onto low density polyethylene. Since the active compound of such active 

packaging material is unlikely to migrate to the food, it is less likely to have adverse effects 

on product sensory properties (ie: color, flavor, viscosity) and would be classified as a food 

contact material rather than direct additive, which has a potential ‘clean’ label regulatory 

benefit.38 As the primary prooxidants in liquid and semi-liquid foods are trace transition 
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metals, previous generations of non-migratory antioxidant active packaging materials have 

been designed to chelate prooxidant metals, such as iron. Tian, et al. 43 have demonstrated 

that nonmigratory metal chelating active packaging materials can significantly extend the 

shelf life of oil-in-water emulsions during accelerated lipid oxidation studies. The efficacy 

of such metal chelating active packaging materials was improved for surface modifications 

that contained metal chelating ligands with a high iron affinity, such as hydroxamic acid.44, 

114, 160 Among metal chelators, compounds that contain catechols have the highest affinity 

for iron (e.g. enterobactin log βFe(III)=52)162 and therefore may be good candidates for 

design of such active packaging materials.  

 Catechols are found throughout nature, most notably in siderophores,163 mussel 

adhesive proteins,164 and plant phenols.165 Phenols derived from edible plants have been 

widely researched as direct additives for antioxidant applications in foods due to their metal 

chelating and radical scavenging capacity.166 Depending on the conditions of the oxidation 

study (food type, temperature, pH) and phenol chemistry (hydroxyl group location, 

solubility) that may influence partitioning and thus reactivity, plant phenols have 

demonstrated both prooxidant and antioxidant effects.166-169 Škerget, et al. 166 found that 

quercetin enhanced heat-induced oxidation in bulk oil, but inhibited heat-induced 

oxidation in emulsified oil. Polymeric phenols, such as procyanidins, have demonstrated 

stronger antioxidant activity than their monomeric counterparts in emulsified oil.167 

However, polymeric phenols are not widely used as direct additives due to their undesirable 

sensory properties (astringent flavor, dark color). Herein, we propose the application of 

polymeric phenols in non-migratory active packaging to circumvent the challenges of 

direct addition of polymeric phenols as food antioxidants. We hypothesize that 
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nonmigratory polyphenol coated active packaging could provide dual antioxidant 

functionality by both chelating prooxidant trace metals and directly scavenging free 

radicals.  

 The objective of this study was to develop a nonmigratory catechol-based 

polyphenol active packaging material and demonstrate its antioxidant applications. 

Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase 

assisted oxidative polymerization of catechol and catechin. Polyphenol coated materials 

were characterized for surface chemistry and morphology, iron chelating capacity, and 

radical scavenging capacity. In addition, antioxidant application of polyphenol coated 

materials was demonstrated in emulsified oils to inhibit lipid oxidation and lycopene 

degradation.  

7.3 Materials and Methods 

7.3.1 Materials 

Polypropylene (PP) pellets (isotactic, Scientific Polymer Products, Ontario, NY) 

were pressed under 9000 lbs of pressure at 170°C on a Carver Laboratory Press (Carver 

Inc., NJ) to prepare PP films (average thickness 257 ± 25 μm). N-hydroxysuccinimide 

(NHS), hydroxylamine hydrochloride, ferrous sulfate heptahydrate (99+%), imidazole 

(99%), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p’-disulfonic acid disodium salt 

hydrate (ferrozine, 98+%), citric acid monohydrate, EDTA, and Tween 20 were purchased 

from Acros Organics (Morris Plains, NJ). Chitosan, 1-2-Dihydroxybenzene (catechol, 

≥99%), (+)-catechin hydrate (≥98%), zincon monosodium salt, 2,2-Azobis(2-

methylpropionamidine) dihydrochloride (AAPH, 97%), fluorescein sodium salt, (±)-6-

Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, 97%), deferoxamine 
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mesylate salt (≥92.5%, DFO), nitrilotriacetic acid trisodium salt (≥98%, NTA), barium 

chloride dihydrate, ammonium thiocyanate, cumene hydroperoxide (80%), and hexanal 

(98%) were purchased from Sigma Aldrich (St. Louis, MO). 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) was purchased from 

ProteoChem (Denver, CO) . Medium chain triglycerides (MCT, Miglyol 812N) were 

purchased from Warner Graham Company (Cockeysville, MD). Soybean oil (Wesson, 100% 

natural vegetable oil) was purchased from a local grocery store. Laccase M120 (from 

Trametes versicolor, EC 1.10.3.2, 1.19 x 105 U g-1) was generously donated by Amano 

Enzymes (Nagoya, Japan). Lycopene (11% in corn oil, redvivo) was generously donated 

by DSM Nutritional Products Ltd. (Basel, Switzerland). All other chemicals were 

purchased from Fisher Scientific and used without further purification (Fair Lawn, NJ). 

7.3.2 Preparation of Polyphenol Coatings on PP Films 

PP films were washed by sequential sonication in isopropanol, acetone, and DI 

water and then dried over anhydrous calcium sulfate.  Clean PP films were treated in an 

UV/Ozone cleaner (15 min per side, Model 42, Jelight Company, Inc., Irvine, CA) to create 

active carboxylic acid groups for attachment of chitosan anchor for the polyphenol coating. 

Chitosan was covalently immobilized on the surface of UV/Ozone treated PP films by 

exposure to a conjugation solution (1 mg ml-1 chitosan, 50 mM EDC, 5 mM NHS, 17 mM 

sodium acetate pH 5) with stirring for 1 h, followed by rinsing in DI water for 5 min. 

Polyphenol coatings were immediately applied to the surface of chitosan functionalized PP 

films by in situ polymerization of a mixture of catechol and catechin via enzymatic 

polymerization with laccase as previously described.149, 170 Enzymatic polymerization 

reaction solution was as follows: 2.5 mg ml-1 catechol, 2.5 mg ml-1 catechin, and 1 mg ml-
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1 laccase in 100 mM sodium acetate buffer, pH 5:methanol (9:1). All polymerization 

reactions were conducted at 20±2°C with stirring for 24 h. After application of the coating, 

PP films were washed with DI water (30 min at 20±2°C, 60 min at 60°C, 30 min at 20±2°C) 

and dried overnight over anhydrous calcium sulfate.  

7.3.3 Surface Chemistry  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used to confirm the introduction of polyphenols to the surface of PP. Spectra were 

collected on an IRPrestige FTIR Spectrometer (Shimadzu Scientific Instruments, Inc., 

Kyoto, Japan) with a diamond ATR crystal under the following parameters: Happ-Genzel 

function, 32 scans, and 4 cm-1 resolution.  Spectrum analysis was performed on 

KnowItAll(R) Informatics System 9.5 (Bio-Rad Laboratories, Inc., Informatics Division, 

Philadelphia, PA). 

Surface phenol content was quantified using a Folin-Ciocalteu colorimetric assay 

adapted for active packaging film.170 Each film (1 x 2 cm2) was submerged in 1 ml 0.2 N 

Folin-Ciocalteu phenol reagent and 0.2 ml 0.05 N HCl and incubated with shaking for 5 

min. Then, 0.8 ml 7.5% sodium carbonate was added to the reaction and incubated for 2 h 

shaking in the dark. The absorbance of the reaction solution was measured at 760 nm to 

quantify total phenol content by comparison to a standard curve of gallic acid in 0.5 N HCl 

to calculate gallic acid equivalents (GAE). 

Residual polymer was recovered from the polymerization reaction solution for 

molecular weight characterization.171 Polymer precipitates were collected by 

centrifugation, washed three times with methanol and then dried in vacuo. Polymer 
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molecular weight was measured by gel permeation chromatography (GPC) in DMF with 

0.01 M LiCl at 50 °C and calibrated against poly(methyl methacrylate) (PMMA) standards.  

7.3.4 Surface Morphology 

Electron micrographs of control and coated PP films were acquired with JCM-6000 

NeoScope (JEOL, Japan) at 10 kV. Prior to imaging, samples were mounted on a small 

aluminum platform with double sided carbon tape and then sputter coated with gold under 

argon for 30 s. Optical profilometry was used to quantify surface roughness of materials 

and coating thickness. Root mean square surface roughness (Sq) and step height 

measurements to characterize coating thickness were taken on a Zeta 20 Optimal 

Profilometer (Zeta Instruments, San Jose, CA) using 3D Zdot image analysis software 

(Zeta Instruments, San Jose, CA). 

7.3.5 Coating Stability Study 

The stability of polyphenol coated films was assessed using conditions of total 

immersion migration tests adapted from European Union regulations.172, 173 Current EU 

legislation specifies a surface area to food volume ratio of 600 cm2 packaging material per 

kg food. Therefore, all tests were conducted on 1 x 1 cm2 polyphenol coated films (2 cm2 

surface area) immersed in 3.34 ml food simulants. Polyphenol coated films were incubated 

for 10 d at 40°C in the presence of the following food simulants: DI water (aqueous), 3% 

acetic acid (acidic), 10% ethanol (alcoholic), and MCT (fatty). Integrity of polyphenol 

coatings on PP after migration test was evaluated by ATR-FTIR and SEM to characterize 

the influence of exposure to food simulants on coating chemistry and morphology.  
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7.3.6 Iron Chelating Capacity 

The ferric iron (Fe3+) and ferrous iron (Fe2+) chelating capacity of polyphenol 

coated films were determined using previously described method.85 Each film (1 x 2 cm2) 

was submerged in buffered iron solution (0.08 mM ferric chloride or ferrous sulfate in 

0.05M sodium acetate/imidazole buffer, pH 5) and allowed to chelate in the dark for 24 h 

with shaking and then rinsed with copious amounts of DI water. Iron chelating capacity of 

each film was quantified ICP-MS analysis (PerkinElmer Elan 9000, Waltham, MA). Film 

was prepared for ICP-MS analysis by microwave acid digestion as previously described.130, 

147, 160 In order to evaluate the coated material performance stability and assess iron binding 

affinity, additional iron chelating studies were conducted at different pH values (pH 3, 3.5, 

4, 4.5) and in the presence of competitive chelators at pH 4.0 at the following chelation 

ratios: 2:1 citric acid/Fe, 2:1 NTA/Fe, 1:1 EDTA/Fe, and 1:1 DFO/Fe.44 

7.3.7 Radical Scavenging Capacity 

Free radical scavenging capacity of the polyphenol coated PP films was evaluated 

using the oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant 

capacity (TEAC).153 An ORAC microtiter assay was adapted for use with active packaging 

films, wherein swatches of film are assemble at the bottom of a 96 well microarray 

microtiter plate (AHC4x24, ArrayIt Corporation, Sunnyvale, CA) and function as the 

bottom of each well.21, 170 Native PP film was used for all control and standard treatments 

instead of polyphenol coated PP film. All reagents were prepared in 75 mM phosphate 

buffer, pH 7.0. To each well, 50 µl fluorescein (93.5 nM) and 50 µl phosphate buffer or 

standard (100 µM Trolox) was added. The microarray microtiter plate was preheated for 5 

min at 37°C prior to the addition of 50 µl AAPH (221mM) to initiate the reaction. Loss of 
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fluorescence was measured every 5 min for 2 h on a Synergy 2 microplate reader (BioTek 

Instruments, Winooski, VT) at an excitation wavelength of 485/20 nm and an emission 

wavelength of 528/20 nm to generate a fluorescence decay curve. ORAC values were 

expressed as Trolox equivalents using the following equation: 

	 	 	
	 	

	
 (1) 

Where 	 is the molar amount of Trolox per well in standard (5 nmol), 

AUC is the area under the fluorescence decay curve, and  is the area of the well 

exposed to polyphenol coated film (0.4875 cm2).  

The TEAC assay reported by Zulueta, et al. 153 was modified for use with active 

packaging films. A stock ABTS solution (7 mM ABTS in 2.45 mM potassium persulfate) 

was prepared 16 h prior to the assay and stirred overnight in the dark. Stock ABTS was 

diluted in 75 mM phosphate buffer, pH 7 (hydrophilic antioxidant capacity) or ethanol 

(lipophilic antioxidant capacity) to an absorbance of 0.700 ± 0.05 at 734 nm. Each film (1 

x 1 cm2) was exposed to 5 ml ABTS solution for 1 h with shaking at room temperature. 

Percentage of absorbance inhibition at 734 nm was calculated and compared to a standard 

curve of Trolox to estimate TEAC (nmol Trolox eq. cm-2) with native PP films serving as 

controls 

7.3.8 Lipid Oxidation Study 

Polyphenol coated PP films were characterized for their ability to control lipid 

oxidation in oil-in-water emulsions using an accelerated lipid oxidation study.160 Briefly, 

1 wt % soybean oil was mixed with 0.1 wt % Tween 20 in 50 mM sodium acetate/imidazole 

buffer, pH 4.0. The mixture was emulsified by homogenizing using a hand-held 

homogenizer (Biospec Products, Inc., Bartlesville, OK), followed by passing through a 
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microfluidizer (Microfluidics, Newton, MA) three times at 9000 bar. Polyphenol coated 

PP film (1 x 1 cm2) was stored with 1 ml emulsion at 37oC in a sealed 10 ml gas 

chromatography (GC) vial, with emulsion (no film), emulsion with PP film, 0.08 mM 

catechin, or 0.08 mM EDTA as controls. The emulsions were sampled during storage for 

particle size, zeta potential, lipid hydroperoxides, and hexanal. Particle size and zeta 

potential of the emulsion were monitored using a ZetaSizer Nano (Malvern Instruments, 

Worcestershire, UK). 

Lipid hydroperoxides were quantified using a modification of the method of 

Shantha and Decker.174 Briefly, 0.30 ml emulsion was mixed with 1.5 ml iso-octane/iso-

propanol (3:1 v/v) by vortex and then centrifuged at 3000 rpm for 3 min. An aliquot of 0.2 

ml upper phase (containing the hydroperoxides) was pipetted into 2.8 ml methanol/butanol 

(2:1 v/v) and mixed with 30 µl thiocyanate/ferrous solution, which was made by mixing an 

equal volume of 3.94 M thiocyanate and 0.072 M ferrous chloride. The mixture was 

incubated for 20 min and then absorbances were read at 510 nm. Lipid hydroperoxide 

content was calculated by comparison to a standard curve of cumene hydroperoxide.  

Hexanal formation was determined by headspace gas chromatography (GC-17A, 

Shimadzu, Tokyo, Japan) with a flame ionization detector (FID) and a fused-silica capillary 

column (30 m x 0.32 mm x 1 µm) with poly(dimethylsiloxane) coating (Equity 1, Supelco, 

Bellefonte, PA). Samples were pre-incubated at 55oC for 10 min and then extracted using 

a divinylbenzene/carboxen/polydimethylsiloxane solid-phase microextract (SPME) fiber 

(50/30 µm, Supelco, Bellefonte, PA) for 2 min. The SPME fiber was desorbed in the GC 

injector at 250oC for 3 min at a split ratio of 1:7, to release the absorbed volatile compounds. 

The injector, oven and detector temperatures were set at 250oC, 65oC and 250oC, 
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respectively. The integrated area of the hexanal peak was calculated and the hexanal 

concentration was determined by comparison to a standard curve of hexanal in an EDTA 

emulsion (1 wt % soybean oil, 0.1 wt % Tween 20, 0.08 mM EDTA, 50 mM sodium 

acetate/imidazole, pH 4.0). 

7.3.9 Lycopene Degradation Study 

Polyphenol coated PP films were characterized for their ability to control lycopene 

degradation in oil-in-water emulsions using an accelerated degradation study.175-177 The oil 

phase of the emulsion was prepared immediately before use by dispersing the redvivo 

dispersion (11% lycopene + 1.5% α-tocopherol in corn oil) into medium chain 

triacylglycerols (MCT) at a final concentration of 0.30 mg of lycopene per gram MCT. 

Lycopene emulsions were formed by sonicating 5% w/w oil phase with 30 mM Tween 20 

in 50 mM sodium acetate/imidazole buffer, pH 4.0 for 6 min, using 1 s pulses, at 70% 

amplitude (Fisher Scientific Sonic Dismembrator 500, Fairlawn, NJ) in an ice bath. 

Polyphenol coated PP film (7 cm2) was stored with 7 mL emulsion at 37oC in a capped 23-

G-20 glass fluorometer cells (Starna Cells, Inc., Atascadero, CA), with emulsion (no film), 

emulsion with PP film, 0.08 mM catechin, or 0.08 mM EDTA as controls. Lycopene 

degradation was monitored by measuring absorbance at 470 nm using a Shimadzu UV-

2101 PC UV–Vis scanning spectrophotometer equipped with an ISR integrating sphere 

assembly (Shimadzu, Kyoto, Japan). Lycopene concentration was determined by 

comparison to a standard curve of lycopene emulsion. Particle size and zeta potential of 

the emulsion was monitored by dynamic light scattering on a ZetaSizer Nano (Malvern 

Instruments, Worcestershire, UK).  
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Additional experiments were conducted to determine polyphenol coated film’s 

ability to inhibit radical induced lycopene degradation. All lycopene emulsions were 

prepared as previously described with the addition of 0.08 mM EDTA to minimize ferric 

iron promoted lycopene degradation and treatments were as follows: emulsion (no film), 

emulsion with PP film, emulsion with polyphenol coated PP film, and emulsion with 0.08 

mM catechin. Experiments were conducted at 37°C and a radical initiator, AAPH (10 

mg/ml), was added to induce lycopene degradation.178 Immediately after the addition of 

AAPH, lycopene degradation was monitored every 10 min for 2 h using a spectrophometer 

equipped with an ISR assembly as previously described.  

7.3.10 Statistical Analysis 

All measurements were conducted on samples prepared in at least two separate 

batches. Data are expressed at means ± standard deviation. AUC calculations and one way 

ANOVA with Tukey’s post hoc test (P<0.05) were conducted using GraphPad Prism 6.0 

(La Jolla, CA).   

7.4 Results and Discussion 

7.4.1 Surface Chemistry and Morphology 

Polyphenol coatings were synthesized by laccase assisted oxidative polymerization 

of catechol and catechin. This substrate combination was chosen because of the individual 

substrates’ high affinity for iron (ie: catechol log β Fe(III) =43.76, catechin log β Fe(III) 

=47.4)148 and their reported high coating deposition efficiency.149 The catechol/catechin 

polymers generated in reaction solution by laccase assisted oxidative degradation of 

catechol and catechin were relatively large with a molecular weight of 7.88 x 103 Da and a 

polydispersity index of 1.93. Polymer molecular weight was on the order of magnitude 
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(103 Da) reported for polymers produced by laccase assisted oxidative polymerization of 

catechin.149 In the initial design of the surface modification, catechol and catechin were 

polymerized directly onto the surface of PP films.170 Although the coatings adhered the PP 

film surface, adhesion was not robust enough to prevent delamination in aqueous and 

alcoholic food simulants during migration testing (data not shown). Therefore, the surface 

modification was redesigned to include a chitosan anchor that was applied by carbodiimide 

crosslinker chemistry to a UV/ozone pretreated PP film (Figure 7.1a). Phenolic 

compounds are hypothesized to covalently attach to chitosan via Michael addition or Schiff 

base reaction. After undergoing migration testing in food simulants, aqueous (DI water), 

acidic (3% acetic acid), alcoholic (10% ethanol) and fatty (MCT), as specified by European 

Union regulations, polyphenol coatings applied to chitosan functionalized PP films were 

retained morphology and surface chemistry similar to that of freshly prepared coatings, 

suggesting their resistance to delamination (Figure 7.2, D1 and D2). 
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Figure 7.1. (a) Proposed surface chemistry of polyphenol coated PP and (b) representative ATR-FTIR 
spectra for native PP and polyphenol coated PP. Spectra are representative of a total of eight spectra 

collected on quadruplicate samples. 

Surface chemistry of the polyphenol coated film was characterized by ATR-FTIR 

spectroscopy (Figure 1b). After PP films were coated with catechol/catechin polyphenol, 

there was a strong O-H absorbance band (3000-3680 cm-1), two C=C absorbance bands 

(1590, 1518 cm-1) attributed to benzene rings on catechol and catechin, and several C-O 

absorbance bands that may be attributed to crosslinks of catechol and catechin or catechol 

phenols (1050-1290 cm-1). These spectra are in agreement with spectra collected from 

laccase assisted polymerization of catechol, catechin, and their combination.149 Surface 

phenol content of polyphenol coated PP was 15.7 ± 0.43 nmol GAE cm-2 and significantly 

higher than native PP and chitosan functionalized PP controls (Table 2). 



116 
 

 

Figure 7.2. Representative SEM (10,000x) and optical profilometry images of (a,c) native PP and (b,d) 
polyphenol coated PP films. Average root mean square surface roughness (Sq) is noted on optical 

profilometry images. Images are representative of a total of nine images taken on triplicate samples. 

Changes in the surface morphology of PP after application of the polyphenol 

coating was observed by SEM and optical profilometry (Figure 7.2). Native PP films 

exhibited a relatively smooth surface. Upon application of the polyphenol coating, surface 

exhibited a bumpy morphology with some cracking that resulted in an increase in root 

mean square surface roughness (Sq). Cracking may have occurred due to dehydration of 

the polyphenol coating prior to imaging. Polyphenol coating thickness was measured as 

752 ± 130 nm by optical profilometry. Changes in surface morphology were evenly 

distributed across the surface of polyphenol coated PP.  

7.4.2 Iron Chelating Capacity 

Iron chelating capacity of polyphenol coated PP was characterized using ICP-MS 

from pH 3.0 to 5.0, which is a typical pH range for intended food and beverage applications. 

Native PP and chitosan functionalized PP had negligible iron content after incubation in 
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ferric or ferrous iron solution at all pH values (< 2 nmol iron cm-2). Polyphenol coated PP 

retained chelating capacity for ferrous and ferric iron at all pH values except pH 3.0 (Figure 

7.3). This loss of iron chelating capacity by polyphenol coated PP is in agreement with 

previous research on chelating capacity of phenolic compounds in solution, which 

demonstrated that catechol and phenol ligands are pH sensitive and lose activity at low pH 

values.179 There was a significant difference the ferrous and ferric iron chelating capacity 

of the polyphenol coated PP across tested pH values. Ferric iron chelating capacity 

exhibited an optimum at pH 4.0, while ferrous iron chelating capacity increased 

exponentially with increasing pH value up to pH 5.0. Decline of ferric iron chelating 

capacity at pH > 4.0 may be attributed to autoxidation of the polyphenol coating in the 

presence of excess ferric iron. Previous research on flavonoid iron chelation has reported 

that pH dependent polyphenol autoxidation may occur in ferric iron solutions that have not 

been purged of oxygen.180 Since polyphenol coated PP exhibited similar ferric and ferrous 

iron chelating activity at pH 4.0, this pH value was chosen for further testing in competitive 

chelation and oxidation studies. 

 
Figure 7.3. Iron chelating capacity of polyphenol coated PP at pH values 3.0 to 5.0 quantified by ICP-MS 
(n=2). Native PP and chitosan anchored PP exhibited minimal iron chelating capacity (<2.0 nmol cm-2). 
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Table 7.1. Iron chelating capacity of polyphenol coated PP reacted in pH 4.0 buffered iron solutions with 
metal chelators quantified by ICP-MS (n=2) and the corresponding chelator iron stability constant under 

optimum solution conditions.* Significant differences are denoted with letters (P < 0.05). 

Treatment 
Chelator Complex 
Stability Constant 

(log K1)25 

Material Iron Content 
(nmol cm-2, pH 4.0) 

Fe2+ N/A 39.3 ± 2.5a 

DFO/Fe2+ 7.2 15.8 ± 2.1b 

NTA/Fe2+ 8.84 14.1 ± 1.5b 

Citric acid/Fe2+ 3.2 8.45 ± 2.8c 

EDTA/Fe2+ 14.3 6.09 ± 1.7c 

Fe3+ N/A 39.6 ± 1.9a 

DFO/Fe3+ 30.6 9.56 ± 0.00b 

NTA/Fe3+ 15.87 3.84 ± 0.46c 

Citric acid/Fe3+ 11.85 4.37 ± 0.87b,c 

EDTA/Fe3+ 25.7 0.0817 ± 0.12c 

* Stability constants quantified in solution at 25°C, pH 7.0, 0.1 M ionic strength. 

Competitive chelation studies were conducted to assess the polyphenol coated PP 

film’s affinity for ferric and ferrous iron at pH 4.0. Ferric or ferrous iron was chelated with 

the following chelators prior to exposure to polyphenol coated PP: citric acid, NTA, EDTA, 

and DFO. Iron binding constant of each chelator under optimum solution conditions and 

iron chelating capacity of polyphenol coated PP in the presence of chelate complexes at 

pH 4.0 are shown in Table 7.1. Polyphenol coated PP was able to sequester iron from all 

chelate complexes except in the case of EDTA/Fe3+ at pH 4.0. For both ferric and ferrous 

iron, relative iron chelating capacity of polyphenol coated PP in the presence chelator/iron 

complexes compared to iron alone was not correlated to chelator stability constant. A 

couple of possible explanations for this apparent discrepancy are (1) chelators may exhibit 

different iron affinity at pH 4.0 compared to optimum conditions and/or (2) polyphenol 

coating may form complexes with chelated iron for certain chelator chemistries (e.g. DFO). 
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The polyphenol coated PP film’s ability to sequester iron from chelate complexes suggests 

the polyphenol coating had a specific affinity for both ferrous and ferric iron.  

7.4.3 Radical Scavenging Capacity 

Table 7.2. Surface phenol content (Folin-Ciocalteu) and radical scavenging capacities (ORAC and TEAC) 
of native PP, chitosan functionalized PP, and polyphenol coated PP (n = 4). 

 

In addition to metal chelating properties, polyphenols are known to have radical 

scavenging capacity that contribute to their overall antioxidant capacity. Free radical 

scavenging capacity of the polyphenol coated PP films was evaluated using adaptations of 

the following assays: oxygen radical absorbance capacity (ORAC) and trolox equivalent 

antioxidant capacity (TEAC).153 ORAC quantifies the ability of antioxidants to scavenge 

radicals by hydrogen atom transfer reaction, whereas TEAC quantifies an antioxidant’s 

ability to stabilize radicals by electron transfer. Performing both free radical scavenging 

assays enables us to draw conclusions about which radical scavenging mechanism is 

favored by surface immobilized polyphenols.  Polyphenol coated PP exhibited 

significantly higher radical scavenging capacity for both ORAC and TEAC assays than 

native PP and chitosan functionalized PP (Table 7.2). The radical scavenging capacities of 

polyphenol coated PP under conditions that favor hydrophilic antioxidants (ORAC and 

Sample 

Surface phenol 
content 

(nmol gallic 
acid eq. cm-2) 

ORAC 

(nmol Trolox eq. 
cm-2) 

TEAC in phosphate 
buffer, pH 7 

(nmol Trolox eq. 
cm-2) 

TEAC in ethanol 

(nmol Trolox eq 
cm-2) 

PP 0.0788 ± 0.085 0.000303 ± 0.063 0.795 ± 0.14 -2.01 ± 0.64 

Chitosan 
Functionalized 

PP 
0.128 ± 0.13 0.453 ± 0.47 0.795 ± 0.38 -2.29 ± 0.40 

Polyphenol 
Coated PP 

15.7 ± 0.43 3.51 ± 0.77 10.8 ± 1.7 52.9 ± 1.8 
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TEAC in phosphate buffer) were less than the surface phenol content, which suggests that 

radical scavenging capacity may be limited to surface phenols. Higher radical scavenging 

capacity was observed by TEAC assay than ORAC assay. This finding suggests that radical 

scavenging by polyphenol coated materials may have proceeded more readily by electron 

transfer than hydrogen atom transfer reactions.  The low ORAC value of polyphenol coated 

PP may also be due to diffusion limitations of surface immobilized antioxidants to quench 

active degradation induced by peroxyl radicals. TEAC assay was further conducted in 

ethanol to generate conditions that are favorable to lipophilic antioxidants. TEAC was 

significantly higher in ethanol than TEAC in neutral phosphate buffer and surface phenol 

content. These results suggest that lipophilic conditions improve accessibility of phenols 

entrapped within the polyphenol coating to enhance overall radical scavenging capacity. 

Arrua, et al. 113 quantified the radical scavenging capacity of caffeic acid polymers grafted 

onto PP and similarly observed higher radical scavenging capacity of surface grafted 

phenols in lipophilic media compared to hydrophilic media. Overall, ORAC, TEAC, and 

iron chelating assay of the polyphenol coated PP suggest that both radical scavenging and 

metal chelating potentially contribute to the overall antioxidant capacity of polyphenol 

coated PP.  

7.4.4 Lipid Oxidation  

An accelerated lipid oxidation study was performed at 37°C in soybean oil-in-water 

emulsions at pH 4.0 to assess the ability of polyphenol coated PP to inhibit lipid rancidity. 

Emulsion alone and emulsion with clean PP were negative controls, whereas emulsion with 

EDTA (0.08 mM, FDA maximum legal limit)20 and catechin (0.08 mM, equivalent of iron 

chelating capacity of polyphenol coated PP) were positive controls. None of the treatments 
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had a significant effect on the physical stability of the emulsions as determined by 

comparing particle size and zeta potential on 0 d and 20 d (Table D1).  

 

Figure 7.4. (a) Lipid hydroperoxide and (b) hexanal concentrations of soybean oil-in-water emulsions (pH 
4.0) stored at 37 °C for 20 days (n=3). 

The ability of polyphenol coated PP to inhibit lipid oxidation was determined by 

quantifying the lag phase of formation for lipid hydroperoxides (primary oxidation product) 

and hexanal (secondary oxidation product) (Figure 7.4). Lag phase was defined as the 

storage time before a statistically significant increase in concentration of oxidation 

products. The emulsion alone and emulsion with clean PP oxidized rapidly, with lag phases 

for oxidation product formation of 5 and 6 d, respectively. Polyphenol coated PP extended 

the lag phase of oxidation product formation to 15 d for both lipid hydroperoxides and 

hexanal. Emulsion with 0.08 mM catechin (concentration equivalent to the chelating 

capacity of polyphenol coated PP) exhibited an extended lag phase of 17 d for both lipid 

hydroperoxides and hexanal. One possible explanation for the longer lag phase of catechin 

compared to polyphenol coated PP is the diffusional limitations of a surface grafted 

antioxidant compared to a soluble antioxidant that may reduce overall efficacy. As 

expected, the emulsion with EDTA did not form oxidation products during the course of 



122 
 

the 20 d accelerated storage study. This lipid oxidation study confirmed that the polyphenol 

coated PP had antioxidant capacity to inhibit lipid rancidity in oil-in-water emulsions, but 

it was less reactive than soluble antioxidants (ie: catechin and EDTA).  

7.4.5 Lycopene Degradation  

The mode of action for polyphenol coated PP to inhibit oxidative degradation was 

further investigated using lycopene as a model oxidation-sensitive food component. 

Lycopene is a carotenoid pigment predominantly found in tomatoes that is used in the food 

industry as a natural color and bioactive in functional foods.181 Previous research has 

demonstrated that the primary mechanism for oxidative degradation of lycopene in acidic 

emulsions is ferric iron promoted oxidation.175-177 For this study, two models for lycopene 

degradation were tested: a ferric iron promoted oxidation model emulsion (lycopene 

emulsion alone) and a radical induced oxidation model (lycopene emulsion with EDTA 

and a radical initiator, AAPH) to elucidate the antioxidant mechanism of polyphenol coated 

PP. Lycopene was dispersed into medium chain triglycerides (MCT) rather than soybean 

oil to minimize co-oxidation reactions. 

 

Figure 7.5. Lycopene degradation in oil-in-water emulsions, pH 4.0 at 37°C by (a) ferric iron promoted 
oxidation and (b) radical induced oxidation. Values represent means ± standard deviations (n=3). 
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Ferric iron promoted lycopene degradation was quantified by measuring loss of 

lycopene color in an emulsion (5% w/w oil phase (0.3 mg lycopene/g MCT), 30 mM Tween 

20 in 50 mM sodium acetate/imidazole buffer, pH 4.0) during a 20 d storage study 

conducted at 37°C (Figure 7.5a). Similar to the lipid oxidation study, emulsion alone and 

emulsion with PP were negative controls, whereas emulsion with 0.08 mM EDTA and 

emulsion with 0.08 mM catechin were positive controls. None of the treatments had a 

significant effect on the physical stability of the emulsions as quantified by particle size 

and zeta potential (Table D1). As expected, emulsion alone and emulsion with PP film 

exhibited rapid lycopene degradation. Polyphenol coated PP was more effective than 

EDTA and catechin at inhibiting ferric iron promoted lycopene degradation during the 

storage study. After 20 d storage at 37°C, emulsion with polyphenol coated PP retained 

approximately 68 % lycopene, whereas emulsion with 0.08 mM EDTA retained 

approximately 52% lycopene and emulsion with catechin retained approximately 41% 

lycopene. Improved efficacy was hypothesized to be attributed to the partitioning of ferric 

iron from the emulsion droplet interface onto the polyphenol coated PP surface to impede 

iron reactivity. In contrast, EDTA/iron and catechin/iron chelate complexes may have some 

reactivity as soluble chelator complexes are dispersed throughout the emulsion and may 

interact with the emulsion droplet interface. In fact, it has been reported that at pH 3.0, 

EDTA can improve the solubility of iron to enhance lycopene degradation in emulsions.175  

Radical induced lycopene degradation was quantified by measuring loss of 

lycopene in an emulsion (5% w/w oil phase (0.3mg lycopene/g MCT), 30 mM Tween 20, 

0.08 mM EDTA in 50 mM sodium acetate/imidazole buffer, pH 4.0) at 37°C in the 

presence of a radical initiator, AAPH (10 mg/ml emulsion) (Figure 7.5b). The radical 
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initiator caused lycopene degradation to occur more rapidly than the ferric iron promoted 

oxidation lycopene model emulsion. Negative controls (emulsion, emulsion with PP film) 

had a higher initial rate of lycopene degradation compared to emulsion with polyphenol 

coated PP and emulsion with 0.08 mM catechin, which suggest both soluble and surface 

bound phenols can inhibit radical induced degradation. This finding is in agreement with 

previous research, in which tea catechins immobilized in methyl cellulose film protected 

β-carotene against radical induced degradation.178 There was no significant difference in 

the lycopene degradation of emulsion with polyphenol coated PP and emulsion with 0.08 

mM catechin. After 2 h at 37°C, both emulsion with polyphenol coated PP and emulsion 

with 0.08 mM catechin retained approximately 65 % lycopene. This finding is in contrast 

to what was observed in the ferric iron promoted lycopene degradation model, which 

further supports the hypothesis that partitioning of iron from emulsion droplets may have 

a key role in the enhanced inhibition of lycopene degradation by polyphenol coated PP.  

7.5 Conclusions 

In conclusion, a synthetic route to immobilize polyphenols onto PP film was 

developed by laccase assisted oxidative polymerization of catechol and catechin onto the 

surface of chitosan functionalized PP to create nonmigratory polyphenol coated active 

packaging material. This active packaging material demonstrated both iron chelating and 

radical scavenging capacity for dual antioxidant functionality. In lipid oxidation studies, 

polyphenol coated PP films were able to extend the lag phase of oxidation product 

formation in oil-in-water emulsions 10 d compared to emulsion alone. Polyphenol coated 

PP inhibited ferric iron promoted lycopene degradation better than soluble chelators, 

EDTA and catechin, potentially due to partitioning of ferric iron from the emulsion droplet 
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interface. The application of polyphenols in nonmigratory antioxidant active packaging 

may enable removal of synthetic preservatives from food and beverage product 

formulations while maintaining quality and shelf life.  
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CHAPTER 8 

CONCLUSIONS 

The overall goal of this work was to synthesize non-migratory metal chelating 

active packaging materials and demonstrate their ability to inhibit microbial growth and 

oxidation to extend the shelf life of packaged foods. Metal chelating active packaging 

materials were synthesized by grafting of metal chelating polymers from the surface of a 

common food packaging material, polypropylene (PP). Three metal chelating ligand 

chemistries were investigated for their known affinity for iron: carboxylic acids, 

hydroxamic acids, and catechols. Iron was chosen a target metal ion because it is a strong 

prooxidant and essential nutrient for spoilage and pathogenic bacteria. When utilizing the 

surface modification technique of photoinitiated graft polymerization, it was demonstrated 

metal chelating polymer chain length and density may be manipulated to tailor ferrous iron 

chelating capacity. In the case of carboxylic acid functionalized PP (PP-g-PAA), polymer 

chain length influenced overall metal chelating capacity, whereas polymer chain density 

influenced ligand to metal binding ratio.  

Microbial growth is one of the key limiting factors in the shelf life and safety of 

packaged foods. Potential antimicrobial application of metal chelating active packaging 

was assessed by examining the ability of PP-g-PAA to enhance the antimicrobial activity 

of lysozyme against Listeria monocytogenes. The antimicrobial interaction of PP-g-PAA 

and lysozyme depended on growth media composition at neutral pH. At low ionic strength, 

PP-g-PAA hindered lysozyme activity (2.48 log increase at 64.4 mM total ionic strength), 

whereas lysozyme activity was enhanced by PP-g-PAA at high ionic strength (5.22 log 

reduction at 120 mM total ionic strength). It is hypothesized that, at neutral pH, carboxylic 
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acid functionalized PP films (PP-g-PAA, pKabulk 6.45) and lysozyme (pI 11.35) 

antimicrobial activity is optimal in moderate to high ionic strength environments to reduce 

undesirable charge interactions (e.g. protein fouling). Furthermore, these findings suggest 

that a metal chelating active packaging material with lower effective charge under neutral 

conditions, such as PP-g-PHA (pKabulk 9.65), may be more effective to enhance the activity 

of food antimicrobials.  

Performance stability of metal chelating active packaging relies on the retained 

activity of the surface grafted chelator in complex food systems. The performance stability 

of PP-g-PHA was investigated by evaluating the influence of pH value (3.0 to 5.0), 

competing ions (Na+, Mg2+, Ca2+), food viscosity (~1 to 105 mPa·s), and hydrocolloid 

chemistry on ferric iron chelating capacity. Maximum iron chelating capacity was observed 

at pH 5.0 (102 ± 9.7 nmol Fe3+ cm-2) and reduced by 29% and 77% at pH 4.0 and 3.0, 

respectively. PP-g-PHA retained iron chelating capacity in the presence of sodium, 

magnesium and calcium competing ions, although at pH 5.0 the presence of calcium 

reduced iron chelation. Although maximum iron chelating capacity was reduced in viscous 

solutions (>102 mPa·s), PP-g-PHA retained at least 76% iron chelating capacity. When in 

contact with food hydrocolloids with specific affinity for iron, materials retained 32-45% 

iron chelating capacity. It is important to note that such competitively chelating food 

hydrocolloids may support antimicrobial and antioxidant systems in food products. These 

findings suggest that surface grafted hydroxamic acids may retain functionality in complex 

food products.  

Polyphenols have been widely researched as direct additives to control oxidation in 

foods because they possess catechol metal chelating ligands and radical scavenging 
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phenolic ligands that provide dual antioxidant functionality. A synthetic route was explored 

to polymerize phenols (catechol and catechin) onto the surface of polypropylene films by 

oxidative polymerization to create a polyphenol coated active packaging material. 

Polyphenol coated active PP demonstrated both iron chelating (39.3 ± 2.5 nmol Fe3+ cm-2, 

pH 4.0) and radical scavenging capacity (3.51 ± 0.77 nmol Trolox eq. cm-2, ORAC). 

However, iron chelating capacity of polyphenol coated PP was not as stable at low pH 

value as PP-g-PHA (polyphenol coated PP: 13% maximum ferric iron chelating capacity 

at pH 3.0; PP-g-PHA: 23% maximum ferric iron chelating capacity at pH 3.0). Polyphenol 

coated PP tripled the lag phase of lipid oxidation in oil-in-water emulsions (pH 4.0) in 

accelerated storage studies. Lycopene degradation in oil-in-water emulsions (pH 4.0), 

where ferric iron is the primary prooxidant, was inhibited by polyphenol coated PP. Indeed, 

polyphenol coated PP inhibited lycopene degradation better than soluble chelators, EDTA 

and catechin, possibly due to partitioning of ferric iron from the emulsion droplet interface 

to the packaging surface.   

In conclusion, this work demonstrates the synthesis and characterization of non-

migratory metal chelating active packaging materials that contain carboxylic acid, 

hydroxamic acid and catechol ligands. Non-migratory metal chelating active packaging 

materials retained iron chelating capacity under conditions typically found in packaged 

food products (ie: pH, counter-ions, competitive chelating ingredients, viscosity) and 

exhibited antimicrobial and antioxidant efficacy. Such active packaging technology may 

be used to reduce synthetic additive use in packaged foods without loss of food quality and 

safety.  
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CHAPTER 9 

FUTURE WORK 

The non-migratory metal chelating active packaging materials that were developed 

and characterized in this dissertation research have demonstrated potential to preserve 

foods while reducing use of synthetic additives, such as EDTA. However, further research 

is recommended to optimize design and overcome practical challenges of 

commercialization of such active packaging technology.  

9.1 Improving Material Chemistry 

A variety of metal chelating polymers with different metal chelating ligand 

chemistries (ie: carboxylic acid, hydroxamic acid, catechol) were explored in this 

dissertation work. Each chelator chemistry exhibited drawbacks that warrant further 

investigation in improving material chemistry. For example, although carboxylic acid 

functionalized PP (PP-g-PAA) enhanced the antimicrobial activity of lysozyme, it could 

do so only under certain ionic strength conditions that minimized protein fouling onto the 

packaging food contact surface. Optimization of material chemistry may involve further 

characterization of metal chelating polymer chemistry, such as pKa, stability constants, and 

molecular weight, and relating those parameters to material functionality and performance. 

Additionally, exploring surface grafting of fouling resistant polymers, combinations of 

metal chelating polymers and antimicrobials (e.g. lysozyme, nisin, polylysine), and other 

metal chelating polymers may be useful in design of material chemistry for specific 

intended applications.  
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9.2 Efficacy in Real Food Matrices 

Thus far, non-migratory metal chelating active packaging materials have only been 

evaluated in model food systems in order to identify specific factors that may limit 

applications and address those limitations in the improvement of material chemistry. 

However, it is important to demonstrate that non-migratory metal chelating active 

packaging materials can inhibit oxidation and microbial growth in real food matrices that 

currently use EDTA as a preservative, such as beverages, salad dressings, sauces and 

mayonnaise. Understanding in which real food matrices non-migratory metal chelating 

active packaging materials are effective may give further insight to improve chemistry and 

drive technology development.  

9.3 Evaluating Chemical Food Safety 

An important consideration for the development of active packaging materials that 

are intended for use with food and beverages is chemical food safety. Although metal 

chelating active packaging materials are designed to be non-migratory by covalent 

attachment of metal chelating polymers to the food contact surface, there is still potential 

for migration. For example, poly(hydroxamic acid) has the potential to hydrolyze and 

release hydroxylamine into the food matrix. Therefore, formal migration study using 

standard food simulants (water, 3% acetic acid, 15% ethanol, olive oil, iso-octane, and 95% 

ethanol) as per FDA and EU regulations should be performed to confirm metal chelating 

active packaging materials are indeed ‘non-migratory’ and does not pose a safety risk.   

 9.4 Scaling Up Packaging Production 

The research presented in this dissertation is intended to guide in the development 

of metal chelating active packaging for commercial application in the food industry. As 
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such, fabrication methods should be improved to translate to commercial production of 

both flexible and rigid packaging materials. Incorporation of metal chelating polymers into 

an ink that can be applied to the packaging surface by gravure printing is a potential method 

that can be explored for roll-to-roll processing of flexible packaging. Functionalization of 

activated polymers with metal chelating ligands by melt functionalization can be explored 

to create metal chelating polymers that may be formed into a parison for blow molding of 

rigid packaging or as a component of multilayer packaging. Prior to scale up, the influence 

of metal chelating polymers on bulk material properties (thermostability, barrier) should 

be evaluated as any significant change in these properties would significantly influence 

material processability and permeability.  
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APPENDIX A: IRON CHELATING ACTIVE PACKAGING:  INFLUENCE OF 
COMPETING IONS AND PH VALUE ON EFFECTIVENESS OF SOLUBLE 

AND IMMOBILIZED HYDROXAMATE CHELATORS6  

The following work was conducted in collaboration with Yoshiko Ogiwara under the 

guidance of Julie M. Goddard and Eric A. Decker. The author of this dissertation outline 

made the following contributions: experimental design, ICP-MS sample preparation and 

data collection, data interpretation, and manuscript revision. 

A.1 Abstract 

Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic 

acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in 

quality loss.  To address consumer demands for all natural products, we have previously 

developed a non-migratory iron chelating active packaging material by covalent 

immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid 

oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron 

chelating active packaging to retain iron chelating capacity; even in the presence of 

competing ions common in food. Both immobilized and soluble hydroxamate chelators 

retained iron chelating capacity in the presence of calcium, magnesium, and sodium 

competing ions, although at pH 5.0 the presence of calcium reduced immobilized 

hydroxamate iron chelation. A strong correlation was found between colorimetric and mass 

spectral analysis of iron chelation by the chelating packaging material. Such chelating 

active packaging may support reducing additive use in product formulations, while 

retaining quality and shelf life. 

                                                 
6 The contents of this chapter have been published: Ogiwara, Y.; Roman, M. J.; Decker, E. A.; Goddard, J. 
M. Iron chelating active packaging:  Influence of counter-ions and pH value on effectiveness of soluble and 
immobilized hydroxamate chelators. Food Chem. 2015, 196,842-847. 
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A.2 Introduction 

In foods, beverages, and consumer products, the presence of even trace 

concentrations of transition metals (e.g. Fe, Cu) can cause degradative reactions and 

support microbial growth which leads to unacceptable changes in product quality.  Lipid 

oxidation, natural color degradation, and nutrient loss are examples of such degradative 

reactions that ultimately lead to product loss.182 To inhibit such metal promoted 

degradation reactions, synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) are 

commonly incorporated into products.1  However, as consumers are increasingly 

demanding products free of synthetic additives in the food and consumer products 

industries, alternative technologies are needed.  Active packaging, in which the packaging 

performs a role beyond containment, may offer a solution by performing the functional 

role of additives.  Many reported technologies on antioxidant active packaging rely on 

migration of an active component from the package into the product. For example, common 

antioxidants, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 

rosemary extract, and δ-tocopherol, were added to low-density polyethylene (LDPE) to 

preserve color by migration from LDPE film to the surface of fresh beef.183 In addition, a 

multilayer packaging, where the innermost layer composed of LDPE with either BHT, 

BHA, or α-tocopherol designed for antioxidant migration into the food product, 

demonstrated inhibition of lipid oxidation in whole milk powder 184. While effective, such 

migratory active packaging technologies (as it pertains to food packaging regulations) 

would still fall under the classification of direct additive, as the functional agent is intended 

to become a part of the food product.37  Recently, our and other groups have explored the 

concept of non-migratory active packaging, in which the active agent is covalently bound 
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to the packaging material such that it retains activity but is unlikely to migrate to the food 

product.30, 113   

We have recently reported on the development of novel non-migratory active 

packaging materials capable of chelating iron ions at a capacity similar to that of the 

maximum legal limit of EDTA in beverages.43, 44, 76, 85, 146 Such materials are designed for 

application in liquid and semi-liquid foods that are susceptible to oxidation, such as citrus 

beverages, salad dressing, sauces, and mayonnaise. First generation materials utilized 

carboxylic acid derived functional groups grafted from the surface of polymer films (ie: 

polyacrylic acid grafted from polypropylene).  While effective in both chelating iron ions 

and significantly delaying the onset of lipid oxidation at pH values of 5.0 and above, these 

materials had reduced effectiveness at lower pH values.146 This result was to be expected 

due to the pKa of the chelating moiety (pKa~6.45), as further explored in detailed studies 

on their dissociation behavior.77 To expand the potential application of our non-migratory 

iron chelating active packaging materials, we then grafted polyhydroxamic acid from the 

surface of polypropylene films (noted PP-g-PHA) and demonstrated greatly improved 

performance at pH values down to 3.0.44 What is unique about the hydroxamate chelating 

moiety compared to other chelating compounds is the well characterized high specificity 

to iron compared to other ions, as well as its low effective charge (Figure A.1).77, 114 These 

characteristics suggest that a chelating active packaging material prepared using 

hydroxamic acid chelators would be effective even in the presence of complex matrix 

components (e.g. proteins, lipids, carbohydrates, and competing ions) typical of food and 

consumer products.  The goal of the present work was to demonstrate the ability of our PP-

g-PHA iron chelating non-migratory active packaging materials to perform in the presence 



135 
 

of competing ions (calcium, magnesium, and sodium) at a range of pH values typical of 

food and consumer products.  Additionally, the performance of the PP-g-PHA iron 

chelating packaging material was compared to a soluble analog, deferoxamine (DFO).  

 
Figure A.1. Chemical structure of (A) soluble DFO/Fe3+ complex and (B) PP-g-PHA non-migratory iron 

chelating active packaging material. 

A.3 Materials and Methods 

A.3.1 Materials  

Polypropylene (PP, isotactic, pellets) was purchased from Scientific Polymer 

Products (Ontario, NY).  Isopropanol, acetone, heptane, methanol, sodium acetate 

trihydrate, ferric chloride hexahydrate, hydrochloric acid, nitric acid (trace metal grade), 

sodium hydroxide, calcium chloride, and sodium chloride were purchased from Fisher 

Scientific (Fair Lawn, NJ).  Hydroxylamine hydrochloride, magnesium chloride 

hexahydrate (99%) and imidazole (99%) were purchased from Acros Organics (Morris 

Plains, NJ).  Benzophenone (BP, 99%), deferoxamine mesylate salt (≥ 92.5%, DFO) and 

methyl acrylate (MA, 99%) were purchased from Sigma-Aldrich (St. Louis, MO).  All the 

chemicals and reagents were used without further purification. 
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A.3.2 Preparation of Polyhydroxamic acid Grafted Polypropylene Iron Chelating 

Materials 

Polyhydroxamic acid was grafted from the surface of polypropylene (resulting 

material denoted PP-g-PHA) using a method previously reported by Tian et al 85 (Figure 

A.1b), in which polymethyl acrylate (PMA) is grafted from PP via UV initiated graft 

polymerization, followed by conversion of methyl acrylate groups to hydroxamate 

chelating moieties by exposure to hydroxylamine.  PP pellets were cleaned by sonication 

in isopropanol, acetone, and deionized water twice for each solvent. Cleaned PP pellets 

were then pressed into films using Carver Laboratory Press (Model B, Fred S. Carver Inc., 

NJ) at 170 oC with a loaded force of 9000 lbs. PP were cut into 8 × 8 cm2 squares and 

cleaned by same procedure as cleaned PP pellets. Cleaned PP were dried in a desiccator 

(25 oC and 15 % relative humidity) until use. 

A two-step photografting process was used to introduce PMA to the surface of PP. 

In the first step, the photoinitiator BP was covalently grafted to the PP surface. BP (5 wt% 

in heptane) was spin coated on both sides of the PP.  BP coated PP were cut into 2 × 8 cm2 

pieces and placed in septum-fitted screw cap bottles. Nitrogen gas was purged into the 

bottles for 5 min to remove oxygen. Then, PP were exposed to ultraviolet (UV) irradiation 

(Dymax, Model 5000 flood, 320-395 nm, 200 mW/cm2, Dymax Corporation, Torrington, 

CT) for 90 s. The BP-functionalized PP (PP-BP) were washed three times in acetone for 5 

min for each time to remove non-covalently grafted BP.  In the second step of the graft 

polymerization procedure, PP-BP were cut into 1 × 2 cm2 and submerged in MA solution 

(70 wt% in acetone) in glass vials with septum-fitted screw caps. Vials were nitrogen 

purged for 5 min to remove oxygen, then PP-BP were exposed to UV irradiation for 3 min. 
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The resulting PP-g-PMA were extensively cleaned by Soxhlet extraction (150 mL acetone, 

12 h) to remove any residual monomer and non-covalently grafted PMA homopolymers.185 

 Ester groups on the surface of PP-g-PMA were converted to hydroxamic acid by 

reaction with hydroxylamine, to produce the final PP-g-PHA iron chelating active 

packaging materials.98, 99 Hydroxylamine reagent was prepared by neutralizing 

hydroxylamine hydrochloride solution (20 wt% in 5:1 methanol:water) to pH 13 by sodium 

hydroxide followed by removal of sodium chloride precipitate by Buchner filtration.  PP-

g-PMA were submerged in hydroxylamine solution in a flask equipped with a reflux 

condenser, and the hydroxyamidation reaction was conducted at 73 oC for 4 h with stirring. 

After reaction,  PHA-grafted PP materials (PP-g-PHA) were washed three times in 

methanol/water (5:1) for 30 min for each time, treated in hydrochloric acid solution [0.2 M 

in methanol/water (5:1)] for 5 min, washed three times in methanol/water (5:1), and finally 

washed three times in deionized water for 30 min for each time to remove residual 

compounds. PP-g-PHA were stored in a desiccator (25 oC, 15% RH) until use. 

A.3.3 Characterization of Material Surface Chemistry 

The surface chemistry of PP, PP-g-PMA, and PP-g-PHA was analyzed by an 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometer equipped 

with a diamond ATR crystal (IRPrestige-21, Shimadzu Scientific Instruments, Inc., Kyoto, 

Japan). Each spectrum was collected with 32 scans at a 4 cm-1 resolution. The 

representative spectrum of each sample reported in this work was replotted with SigmaPlot 

12.0 (Systat Software, Inc., Chicago, IL).   
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A.3.4 Iron Chelating Capacity of Soluble Hydroxamate Chelators 

Hydroxamic acids develop a characteristic reddish brown color when they chelate 

iron.186-188 Therefore, the effect of pH value on ferric (Fe3+) chelating activity of DFO was 

investigated by colorimetric quantification of the stability of the DFO/Fe3+ complex. DFO 

and ferric chloride were combined at the reported ligand:metal binding ratio of 1:1189 at 

concentrations up to 1.0 mM in  0.05 M sodium acetate/imidazole at pH 3.0, 4.0, or 5.0. 

Experiments were not conducted above pH 5.0 due to precipitation of iron from the solution. 

The effect of competing ions on DFO ferric iron chelating activity was investigated by 

addition of the following salts to the DFO/Fe3+ reaction solutions (0.5 mM DFO and 0.5 

mM ferric chloride in 0.05 M sodium acetate/imidazole, pH 3.0, 4.0, or 5.0): 35 mM CaCl2, 

10 mM MgCl2, or 0.8 M NaCl.  Competing ion concentration was determined based on the 

concentration of metal ion in milk, hard water, and salad dressing for calcium, magnesium, 

and sodium, respectively.190-192 The reaction solutions were incubated for 48 h in the dark 

at room temperature, and the absorbances were quantified at 430 nm.  

A.3.5 Iron Chelating Capacity of Polyhydroxamic acid Grafted Polypropylene Active 

Packaging Materials  

Effect of pH on ferric (Fe3+) chelating activity of PP-g-PHA active packaging material 

was investigated by quantifying the color difference (ΔE*) of material color before and 

after Fe3+ chelate reaction. As with soluble hydroxamate moieties, immobilized 

hydroxamate groups turn a characteristic reddish-brown upon complexing with iron, which 

can be quantified using colorimetry (and confirmed by direct mass spectral quantification 

as noted below).  The Fe3+ chelating reaction solution was prepared with 0.08 mM ferric 

chloride in 0.05 M sodium acetate/imidazole at pH values of 3.0, 4.0, or 5.0 to minimize 
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iron precipitation during the reaction time necessary to reach immobilized hydroxamate 

maximum iron chelating capacity.  Effect of competing ion on Fe3+ chelating activity of 

PP-g-PHA was investigated by addition of the following salts to the Fe3+ chelating reaction 

solutions described above:  35 mM CaCl2, 10 mM MgCl2, or 0.8 M NaCl.  Packaging 

materials (native PP, PP-g-PHA; 1 × 2 cm2) were submerged in the appropriate Fe3+ 

solutions (10 mL) in the dark with shaking at room temperature for up to 48 hours.  PP-g-

PHA submerged in 0.05 M sodium acetate/imidazole (10 mL at pH 3.0, 4.0, or 5.0) without 

iron served as negative controls. After incubation, materials were washed three times in 

deionized water, and then dried in desiccator for 24 h at room temperature.   

The color coordinates (L*, a*, and b*) of packaging materials were measured by a 

colorimeter (ColorFlex EZ, HunterLab, Reston, VA) with a tristimulus absorption filter in 

which L* represents the lightness (value ranging from 0-pure black to 100-pure white), a* 

refers to the color change from greenness (negative values) to redness (positive values), 

and b* value is a measure of the color from blueness (negative values) to yellowness 

(positive values).193  Color difference (ΔE*) between the material before (L0*, a0*, and b0*) 

and after chelating Fe3+ (Lt*, at*, and bt*) was calculated by eq 1. 

ΔE* = [(L0*-Lt*)2 + (a0*-at*)2+(b0*-bt*)2]1/2    (1)                         

Additionally, selected treatments of PP and PP-g-PHA were analyzed for iron 

chelating activity by inductively coupled plasma-mass spectroscopy (ICP-MS). PP samples 

were prepared for ICP-MS analysis using a standard method for analysis of lead in non-

metal children’s products.126 Approximately 150 mg of the native PP or PP-g-PHA (1 x 2 

cm2 pieces) were weighed directly into microwave digestion vessels (Mars Xpress 75ml 

vessels, CEM, Matthews, NC) and nitric acid (5 ml) was added to each vessel. Calibration 
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standards were prepared with iron solution (1,000 ppm Iron ICP-MS Standard, Ricca 

Chemical Company, Arlington, TX) and clean PP. The microwave digestion was 

conducted in the Mars Xpress (CEM, Matthews, NC) and is as follows: ramp to 210°C for 

20 min, hold at 210°C for 10 min, and cool for 10 min. Digested samples were transferred 

to 50 ml centrifuge tubes, diluted with deionized water, and held at 4°C until analysis. ICP-

MS analysis was conducted on a Perkin Elmer Elan 9000 equipped with an autosampler 

(Waltham, MA). 

A.4 Results and Discussion 

A.4.1 ATR-FTIR Analysis of Material Surface Chemistry  

 
Figure A.2. ATR-FTIR spectra of PP, PP-g-PMA, and PP-g-PHA films from 1000-2000 cm-1.  

The surface chemistry of PP, PP-g-PMA, PP-g-PHA was analyzed by ATR-FTIR 

to confirm successful synthesis of PP-g-PHA iron chelating active packaging materials 

(Figure A.2). PP-g-PMA presented new absorption bands at 1735 and 1200 cm-1, 

characteristic of the expected C=O and C-O of ester groups, respectively, confirming 

successful grafting of PMA from PP. After conversion to PP-g-PHA, the absorption band 

at 1735 cm-1 disappeared and new bands at 1649 and 1554 cm-1 appeared, corresponding 
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to C=O stretching vibrations and a combination of N-H bending vibration and C-N 

stretching vibration of amide groups, respectively. The introduction of absorbances 

characteristic of hydroxamate functionality in PP-g-PHA confirms successful conversion 

from PMA to PHA groups at the surface of the PP. 

A.4.2 Influence of Competing ion and pH Value on Iron Chelating Capacity of 

Soluble Hydroxamate Chelators  

 
Figure A.3. Influence of increase concentration of DFO/Fe3+ complex in solution on absorbance at 430 nm. 

Error bars represent standard deviation (n=3). Error bars are smaller than data points. 

As previously noted, the DFO/Fe3+ complex exhibits a characteristic reddish brown 

color (absorption maximum 430 nm) which enables its colorimetric quantification by 

spectrometry. The absorbance of the solution containing DFO and Fe3+ at concentrations 

ranging from 0 to 1.0 mM was measured to investigate the effect of pH on the stability of 

DFO/Fe3+ in solution (Figure A.3). A linear correlation was observed, with a slope of 

approximately 1.75 at each pH value tested. These results suggest that up to 1.0 mM 

concentration of both DFO and ferric iron, pH value does not influence the stability of the 

DFO/Fe3+complex.  In the absence of iron, absorbance of 1.0 mM DFO solutions were 

negligible. 
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Figure A.4. Effect of competing ion and pH on DFO/Fe3+ complex in solution after 48 h incubation. Error 

bars represent standard deviation (n=3). 

The effect of competing ion on the stability of DFO/Fe3+ complex in solution was 

demonstrated by quantifying the absorbance of 0.5 mM DFO and Fe3+ in 0.05 M sodium 

acetate/imidazole in the presence of competing ions (Figure A.4).  There was no significant 

difference in solution absorbances among treatments, suggesting that the DFO/Fe3+ 

complex is highly stable in the solution regardless of the pH value and presence of 

competing ion.  Our interest in hydroxamate chelators stems from the well characterized 

specificity of DFO to iron based on metal complex stability.  Indeed the stability constant 

for the complexes formed between DFO and Fe3+ (30.4) is much higher than the stability 

constants for DFO/Ca2+ (3.03) and DFO/Mg2+ (2.8).114 Our results correspond well to the 

reported stability constants of DFO.   

A.4.3 Influence of Competing ion and pH Value on Iron Chelating Capacity of 

Polyhydroxamic acid Grafted PP Materials  

 
Figure A.5. PP-g-PHA film after 48 h incubation at pH 3, 4, and 5 in Fe3+ solution, PP-g-PHA film after 48 

h incubation in buffer solution at pH 5, and PP film after 48 h incubation at pH 5 in Fe3+ solution. 
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The Fe3+ chelating activity of PP-g-PHA was quantified both by a colorimetric 

method and ICP-MS.  As noted above, it is well characterized that hydroxamate chelators 

turn reddish brown after complexing with iron, and this color change was observed in our 

hydroxamate derived iron chelating PP-g-PHA materials as well (Figure A.5).  This color 

change is specific to the hydroxamate/iron complex as PP-g-PHA incubated in buffer alone, 

and PP incubated in iron solution remain transparent.  Prior work has shown that after 24 

h incubation of PP-g-PHA with Fe3+ and presence or absence of competitive chelators, the 

material present a difference in color intensity that correspond with results of a colorimetric 

characterization of iron content in solution (ferrozine assay).44 On the basis of these 

qualitative results, we developed a method to correlate color development (quantified by 

colorimetry) to iron chelation (directly quantified by ICP-MS).  The color difference (ΔE*) 

of native and PP-g-PHA before and after Fe3+ chelation was plotted against iron contents 

determined by inductively coupled plasma-mass spectroscopy (ICP-MS) (Figure A.6). A 

strong quadratic correlation between ΔE* and iron content measured by ICP-MS was 

determined (R2
 of 0.903), confirming that colorimetric characterization can be used to 

effectively quantify iron chelation by PP-g-PHA.   

 
Figure A.6. Correlation between PP-g-PHA film color difference (ΔE*) and iron content measured by ICP-

MS. Error bars represent standard deviation (n=4). In some instances, error bars are smaller than data 
points. 
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PP-g-PHA incubated in Fe3+ chelating reaction solution exhibited a reddish brown 

color regardless of pH, with the color intensity of PP-g-PHA incubated in Fe3+ reaction 

solution increasing with increasing pH value (Figure A.5).  The increasing chelating 

activity with pH value was further confirmed by ICP-MS quantification, supporting our 

colorimetric results (Figure A.7).  At pH 3.0, PP-g-PHA exhibited approximately 23 % of 

the maximum chelating activity observed at pH 5.0 (102 ± 9.7 nmol/cm2 iron), while PP-

g-PHA at pH 4.0 exhibited approximately 61 % of the maximum observed chelating 

activity.  Minimal iron was detected on control material (PP-g-PHA incubated in buffer 

without iron and native PP incubated with buffer with iron). The presence of slight iron on 

PP that increases with pH value is likely a result of pH induced precipitation of soluble 

iron from solution, but is orders of magnitude lower than the iron content observed in PP-

g-PHA, suggesting that the iron quantified on PP-g-PHA is a result of hydroxamate specific 

iron chelation.  These results are in support of other reports; for example, Haron, et al. 194 

reported a maximum loading of PHA with Fe3+ attained at pH 4.75. Our results indicate 

the optimum pH value for Fe3+ chelating by PP-g-PHA to be 5.0 which is similar to 

previous reports.85 At pH values greater than 5.0, iron precipitated from the reaction 

solution during the time it took for the immobilized hydroxamate to reach equilibrium, 

complicating data interpretation; we therefore limited our investigation to pH values at and 

below 5.0. This was not an issue for soluble hydroxamate since iron chelation reaction 

occurs rapidly in solution. 
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Figure A.7. Effect of pH on chelation of Fe3+ by PP-g-PHA films. Error bars represent standard deviation 

(n=4). 

Colorimetry was utilized to further characterize the influence of time, pH value, 

and presence of competing ions (sodium, calcium, and magnesium) on chelating capacity 

of the PP-g-PHA (Figure A.8).  For each pH value tested, material color difference (ΔE*) 

fit a one-phase association exponential model (GraphPad Prism 6.0, La Jolla, CA), 

suggesting iron chelating reactions followed first order kinetics. Maximum chelation 

capacity was achieved within 24 hours of exposure to iron solutions.  Saturation occurred 

more quickly at pH values 3.0 and 4.0, although total iron chelation capacity was greatest 

at pH 5.0, in agreement with ICP-MS results.  As with the analysis of soluble hydroxamate 

chelators, the introduction of sodium and magnesium competing ions did not affect the 

chelating capacity of immobilized polyhydroxamate chelators of the PP-g-PHA.  Likewise 

at pH values 3.0 and 4.0, introduction of calcium had no significant effect on the chelating 

capacity of PP-g-PHA.  However, at pH 5.0, the presence of calcium ions reduced the 

maximum chelating capacity of the PP-g-PHA to approximately 22% (22.4 ± 1.3 nmol/cm2 

iron).  
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Figure A.8. Effect of competing ion on PP-g-PHA film Fe3+ chelating kinetics as measured by color 
difference (ΔE*) at pH 3.0, 4.0, and 5.0. Error bars represent standard deviation (n=4). In some instances, 

error bars are smaller than data points. 

These results are in contrast with those of soluble hydroxamate chelators as 

observed in this study (Figure A.4). However, these findings are in agreement with other 

reports on solid support bound chelators. Polomoscanik, et al. 195 evaluated the effect of 

competing ions on hydroxamic acid-containing hydrogels at pH 5.7 and found that when 
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calcium was in excess (89 times ferrous iron concentration), iron chelating capacity was 

reduced 74%. It is hypothesized that the observed discrepancy between soluble and solid 

support bound hydroxamate chelators may be structure related. The high binding constant 

and specificity of deferoxamine to iron is a result of its unique chemical structure. While 

the grafted polyhydroxamate chelating moieties are expected to have similar chemistry to 

soluble hydroxamate chelators,77 there is inherent difference in graft chain length, degree 

of cross-linking, and local chain mobility which cause steric restrictions that may affect 

not only chelating kinetics and capacity, but also specificity.196 Nevertheless, our results 

suggest that the PP-g-PHA chelating active packaging materials are effective in chelating 

iron specifically, even in the presence of competing ions commonly found in food and 

consumer products and the environment.  

A.5 Conclusions 

We have synthesized iron chelating active packaging materials by the UV initiated 

graft polymerization of polymethyl acrylate from polypropylene, followed by conversion 

to polyhydroxamate chelating grafts in aqueous hydroxylamine.  The PP-g-PHA iron 

chelating materials were able to chelate iron at pH values down to 3.0, with maximum 

chelating capacity at pH 5.0, above which precipitation of iron from solution began to 

occur.  Both immobilized and soluble hydroxamate chelators retained iron chelating 

capacity even in the presence of calcium, magnesium, and sodium competing ions, 

although at pH 5.0 the introduction of calcium ions reduced iron chelation by PP-g-PHA.  

A colorimetric method to quantify iron chelation in solid support bound hydroxamate 

chelators was developed with strong correlation to direct ICP-MS quantification of iron 

content.  These results support the potential application of PP-g-PHA iron chelating non-
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migratory active packaging materials for preventing iron promoted degradative reactions 

in packaged products.  Such non-migratory active packaging technologies may offer an 

alternative strategy to using synthetic additives in food and consumer products, while 

retaining product quality and shelf life. 
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

Table B.1. Water contact angles of native polypropylene (PP), benzophenone activated polypropylene (PP-
BP) and  poly(acrylic acid) on polypropylene (PP-g-PAA) films. Values are means ± standard deviations 

(n=6). Letters denote significant differences (p<0.05). 

Variable 
Test 

Parameters
Advancing Angle Receding Angle Hysteresis 

Native PP 101.5 ± 5.8a 75.1 ± 7.1a 26.4 

PP-BP 103.5 ± 5.7a 83.3 ± 3.1a 20.2 

Control Parameters 42.4 ± 2.1d 14.6 ± 1.2f 27.8 

Benzophenone 
Concentration 

3% 55.9 ± 3.3c 16.3 ± 3.2e,f 39.6 

1% 69.7 ± 4.3b 36.4 ± 2.9b,c 33.3 

Benzophenone 
Graft Time 

1 min 72.9 ±  6.2b 35.0 ± 7.4b,c 37.9 

0.5 min 39.9 ± 3.5d,e 16.5 ± 3.4e,f 23.4 

Acrylic Acid 
Concentration 

30% 56.4 ± 5.7c 29.0 ± 4.5c,d 27.4 

20% 32.0 ± 2.2e 14.0 ± 2.4f 18.0 

15% 64.7 ± 2.2b 26.8 ± 2.7c,d 37.9 

10% 71.7 ± 4.9b 42.6 ± 3.8b 29.1 

Acrylic Acid 
Graft Time 

4.5 min 43.3 ± 3.2d 12.5 ± 2.9f 30.8 

3 min 52.8 ± 4.6c 24.9 ± 9.0d,e 27.9 

1.5 min 63.9 ± 2.0b 24.9 ± 3.4d,e 39.0 
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Table C.1. ATR-FTIR spectral band assignment for PP-g-PAA. All bands present in the FTIR spectra were 
attributed to PAA brushes and the base material, PP, except for a band at 700 cm-1, which is attributed to 

the aromatic ring of the photoinitiator, benzophenone, used to active PP for surface polymerization.  

Band 
PP-g-PAA 
Protonated 
(pH 2.99) 

PP-g-PAA 
Deprotonated 

(pH 8.87) 

PP-g-PAA/Fe 
Complex 

(pH 5) 

C=O 1710 
1566 
1411 

1710 
1589 
1547 

C-O 1255 1255 1255 

O-H 1043   

Fe-O   631 

C-C, C-H 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 

Aromatic 
ring 

700 700 700 
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 Table C.2. ATR-FTIR spectral band assignment for PP-g-PHA. All bands present in the FTIR spectra 
were attributed to PHA brushes and the base material, PP.  

Band 
PP-g-PHA 
Protonated 
(pH 5.98) 

PP-g-PHA 
Deprotonated 

(pH 12.8)

PP-g-PHA/Fe 
Complex 

(pH 5) 

C=O 1649 1612 
1720 
1678 

C-NH 
 

1554 
1318 

1554 
1318 

1587 
1531 
1207 

N-O 1031 1033 1049 
Fe-O   631 

C-C, C-H 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 

1454 
1375 
1357 
1166 
997 
972 
898 
840 
808 
750 
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APPENDIX D: SUPPLEMENTARY MATERIAL FOR CHAPTER 7 

 

Figure D.1. Representative SEM micrographs of polyphenol coated PP films after incubation in (a) 
aqueous (DI water), (b) acidic (3% acetic acid), (c) alcoholic (10% ethanol), and (d) fatty (MCT) food 

simulants at 40°C for 10 d. Micrographs are representative of a total of eight images taken on quadruplicate 
samples at 10,000x (scale bar is 2 µm). 
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Figure D.2. Representative ATR-FTIR spectra of polyphenol coated PP films before and after incubation 
in aqueous (DI water), acidic (3% acetic acid), alcoholic (10% ethanol), and fatty (MCT) food simulants at 

40°C for 10 d. Spectra are representative of a total of eight spectra collected on quadruplicate samples. 
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Table D.1. Particle size and zeta potential of oil-in-water emulsions stored for 20 days at 37°C for lipid 
oxidation and lycopene degradation studies. Values represent mean ± standard deviation (n=3). Significant 

differences for treatments of each oxidation study are denoted with letters (p<0.05).  

Oxidation Study Treatment 
Particle Size 

(nm) 
Zeta Potential 

(mV) 

Lipid Oxidation 

Original Emulsion (d=0) 202 ± 4.7a -1.41 ± 0.40a 

No film 204 ± 7.0a -2.52 ± 0.61a 

PP 210 ± 8.4a -2.55 ± 0.65a 

Polyphenol Coated PP 192 ± 4.3a,b -2.62 ± 1.8a 

Catechin 183 ± 2.4b -1.60 ± 0.62a 

EDTA 208 ± 3.5a -1.75 ± 0.48a 

Lycopene 
Degradation 

Original Emulsion (d=0) 188  ±  4.5c -1.24 ± 0.88a 

No film 201  ± 3.3b -1.88 ± 1.1a 

PP 215 ± 2.9a -1.30  ± 0.97a 

Polyphenol Coated PP 214  ± 7.2a -0.750  ± 0.64a 

Catechin 209  ± 2.2a -1.62 ± 0.98a 

EDTA 212  ± 5.6a -1.34 ± 0.78a 

 

 

 

  



155 
 

REFERENCES 

(1) Hart, J. R. EDTA-type chelating agents in everyday consumer products: Some food, 
cleaning, and photographic applications. J. Chem. Educ. 1985, 62, 75. 

(2) Sloan, A. E. Coming Clean. Food Technol. 2014, 68. 

(3) Panera Bread. The No No List. 
https://www.panerabread.com/panerabread/documents/panera-no-no-list-05-
2015.pdf (March 30, 2016). 

(4) Whole Foods Market. Food Ingredient Quality Standards. 
http://www.wholefoodsmarket.com/about-our-products/quality-standards/food-
ingredient (March 30, 2016). 

(5) Frankel, E. N., Lipid oxidation. The Oily Press: 2005. 

(6) Waraho, T.; McClements, D. J.; Decker, E. A. Mechanisms of lipid oxidation in 
food dispersions. Trends Food Sci. Technol. 2011, 22, 3-13. 

(7) McClements, D. J.; Decker, E. A. Lipid oxidation in oil-in-water emulsions: Impact 
of molecular environment on chemical reactions in heterogeneous food systems. J. 
Food Sci. 2000, 65, 1270-1282. 

(8) Decker, E. A.; McClements, D. J. Transition metal and hydroperoxide interactions: 
an important determinant in the oxidative stability of lipid dispersions. Inform 2001, 
12, 251-255. 

(9) Pasch, J.; Elbe, J. Betanine stability in buffered solutions containing organic acids, 
metal cations, antioxidants, or sequestrants. J. Food Sci. 1979, 44, 72-75. 

(10) Xu, D.; Wang, X.; Jiang, J.; Yuan, F.; Decker, E. A.; Gao, Y. Influence of pH, 
EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-
stabilized oil-in-water emulsions. LWT-Food Sci. Technol. 2013, 54, 236-241. 

(11) Buescher, R.; Hamilton, C. Protection of cucumber quality by CaNa2EDTA1. J. 
Food Qual. 2000, 23, 429-441. 

(12) Ball, G. F., Vitamins in foods: analysis, bioavailability, and stability. CRC Press: 
2005. 

(13) Madhavi, D.; Deshpande, S.; Salunkhe, D. K., Food antioxidants: Technological: 
Toxicological and health perspectives. CRC Press: 1995. 

(14) Damodaran, S.; Parkin, K. L.; Fennema, O. R., Fennema's food chemistry. CRC 
press: 2007. 

(15) Mei, L.; Decker, E. A.; McClements, D. J. Evidence of iron association with 
emulsion droplets and its impact on lipid oxidation. J. Agric. Food Chem. 1998, 46, 
5072-5077. 

(16) Mei, L.; McClements, D. J.; Wu, J.; Decker, E. A. Iron-catalyzed lipid oxidation in 
emulsion as affected by surfactant, pH and NaCl. Food Chem. 1998, 61, 307-312. 



156 
 

(17) Shimoni, E.; Armon, R.; Neeman, I. Antioxidant properties of deferoxamine. J. Am. 
Oil Chem. Soc. 1994, 71, 641-644. 

(18) Jacobsen, C.; Hartvigsen, K.; Thomsen, M. K.; Hansen, L. F.; Lund, P.; Skibsted, 
L. H.; Hølmer, G.; Adler-Nissen, J.; Meyer, A. S. Lipid oxidation in fish oil 
enriched mayonnaise: calcium disodium ethylenediaminetetraacetate, but not gallic 
acid, strongly inhibited oxidative deterioration. J. Agric. Food Chem. 2001, 49, 
1009-1019. 

(19) Rufián-Henares, J. A.; de la Cueva, S. P. Antimicrobial activity of coffee 
melanoidins: A study of their metal-chelating properties. J. Agric. Food Chem. 
2009, 57, 432-438. 

(20) FDA. In Food additives for direct addition to food for human consumption, Code 
of Federal Regulations Title 21 Section 172.120, Washington D.C., 2013; US 
Government Printing Office: Washington D.C., 2013. 

(21) Roman, M. J.; Decker, E. A.; Goddard, J. M. Metal-chelating active packaging film 
enhances lysozyme inhibition of Listeria monocytogenes. J. Food. Prot. 2014, 77, 
1153-1160. 

(22) Branen, J. K.; Davidson, P. M. Enhancement of nisin, lysozyme, and monolaurin 
antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. 
Food Microbiol. 2004, 90, 63-74. 

(23) Boland, J.; Davidson, P.; Bruce, B.; Weiss, J. Cations reduce antimicrobial efficacy 
of lysozyme-chelator combinations. J. Food. Prot. 2004, 67, 285-294. 

(24) Boland, J.; Davidson, P.; Weiss, J. Enhanced inhibition of Escherichia coli O157: 
H7 by lysozyme and chelators. J. Food. Prot. 2003, 66, 1783-1789. 

(25) Martell, A. E.; Smith, R. M., Critical stability constants. Springer: 1974; Vol. 1. 

(26) Pokorný, J. Are natural antioxidants better–and safer–than synthetic antioxidants? 
Eur. J. Lipid Sci. Technol. 2007, 109, 629-642. 

(27) Mahoney, J. R.; Graf, E. Role of alpha-tocopherol, ascorbic acid, citric acid and 
EDTA as oxidants in model systems. J. Food Sci. 1986, 51, 1293-1296. 

(28) Robertson, G. L., Food packaging: principles and practice. CRC press: 2012. 

(29) Nerín, C.; Decker, E.; Elias, R.; McClements, D. Antioxidant active food packaging 
and antioxidant edible films. Oxidation in foods and beverages and antioxidant 
applications. Volume 2: Management in different industry sectors 2010, 496-515. 

(30) Tian, F.; Decker, E. A.; Goddard, J. M. Controlling lipid oxidation of food by active 
packaging technologies. Food Funct. 2013, 4, 669-80. 

(31) Ünalan, İ. U.; Korel, F.; Yemenicioğlu, A. Active packaging of ground beef patties 
by edible zein films incorporated with partially purified lysozyme and Na2EDTA. 
Int. J. Food Sci. Tech. 2011, 46, 1289-1295. 



157 
 

(32) Güçbilmez, Ç. M.; Yemenicioğlu, A.; Arslanoğlu, A. Antimicrobial and 
antioxidant activity of edible zein films incorporated with lysozyme, albumin 
proteins and disodium EDTA. Food Res. Int. 2007, 40, 80-91. 

(33) Hosseini, M. H.; Razavi, S. H.; Mousavi, S. M. A.; Yasaghi, S. A. S.; Hasansaraei, 
A. G. Improving antibacterial activity of edible films based on chitosan by 
incorporating thyme and clove essential oils and EDTA. J. Appl. Sci. 2008, 8, 2895-
2900. 

(34) Sivarooban, T.; Hettiarachchy, N.; Johnson, M. Physical and antimicrobial 
properties of grape seed extract, nisin, and EDTA incorporated soy protein edible 
films. Food Res. Int. 2008, 41, 781-785. 

(35) Barish, J. A.; Goddard, J. M. Polyethylene glycol grafted polyethylene: A versatile 
platform for nonmigratory active packaging applications. J. Food Sci. 2011, 76, 
E586-E591. 

(36) Goddard, J. M.; Hotchkiss, J. Polymer surface modification for the attachment of 
bioactive compounds. Prog. Polym. Sci. 2007, 32, 698-725. 

(37) Koontz, J. Active packaging materials to inhibit lipid oxidation: US regulatory 
framework. Inform 2012, 23, 598-600. 

(38) Koontz, J. L., Packaging technologies to control lipid oxidation. In Oxidative 
Stability and Shelf Life of Foods Containing Oils and Fats, Academic Press and 
AOCS Press: 2016; pp 479–517. 

(39) Rånby, B. In Surface modification of polymers by photoinitiated graft 
polymerization, Makromol. Chem., Macromol. Symp., 1992; Wiley Online Library: 
1992; pp 55-67. 

(40) Soares, N.; Hotchkiss, J. Naringinase immobilization in packaging films for 
reducing naringin concentration in grapefruit juice. J. Food Sci. 1998, 63, 61-65. 

(41) Wong, D. E.; Talbert, J. N.; Goddard, J. M. Layer by layer assembly of a 
biocatalytic packaging film: Lactase covalently bound to low-density polyethylene. 
J. Food Sci. 2013, 78, E853-E860. 

(42) Muriel-Galet, V.; Talbert, J. N.; Hernandez-Munoz, P.; Gavara, R.; Goddard, J. 
Covalent immobilization of lysozyme on ethylene vinyl alcohol films for 
nonmigrating antimicrobial packaging applications. J. Agric. Food Chem. 2013, 61, 
6720-6727. 

(43) Tian, F.; Decker, E. A.; Goddard, J. M. Control of lipid oxidation by nonmigratory 
active packaging films prepared by photoinitiated graft polymerization. J. Agric. 
Food Chem. 2012, 60, 7710-8. 

(44) Tian, F.; Decker, E. A.; Goddard, J. M. Controlling lipid oxidation via a biomimetic 
iron chelating active packaging material. J. Agric. Food Chem. 2013, 61, 12397–
12404. 



158 
 

(45) Frankel, E. N. Review. Recent advances in lipid oxidation. J. Sci. Food Agric. 1991, 
54, 495-511. 

(46) Tian, F.; Decker, E. A.; Goddard, J. M. Development of an iron chelating 
polyethylene film for active packaging applications. J. Agric. Food Chem. 2012, 
60, 2046-52. 

(47) Mahoney, K. W.; Talbert, J. N.; Goddard, J. M. Effect of polyethylene glycol tether 
size and chemistry on the attachment of lactase to polyethylene films. J. Appl. 
Polym. Sci. 2013, 127, 1203-1210. 

(48) Bastarrachea, L. J.; Peleg, M.; McLandsborough, L. A.; Goddard, J. M. Inactivation 
of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer 
deposition of the antimicrobial N-halamine. J. Food Eng. 2013, 117, 52-58. 

(49) Ozdemir, M.; Yurteri, C. U.; Sadikoglu, H. Physical polymer surface modification 
methods and applications in food packaging polymers. Crit. Rev. Food Sci. Nutr. 
1999, 39, 457-477. 

(50) Desmet, T.; Morent, R.; Geyter, N. D.; Leys, C.; Schacht, E.; Dubruel, P. 
Nonthermal plasma technology as a versatile strategy for polymeric biomaterials 
surface modification: a review. Biomacromolecules 2009, 10, 2351-2378. 

(51) Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and new applications of UV-
induced surface graft polymerizations. Prog. Polym. Sci. 2009, 34, 156-193. 

(52) Chan, C.-M.; Ko, T.-M.; Hiraoka, H. Polymer surface modification by plasmas and 
photons. Surf. Sci. Rep. 1996, 24, 1-54. 

(53) Ma, H.; Davis, R. H.; Bowman, C. N. A novel sequential photoinduced living graft 
polymerization. Macromolecules 2000, 33, 331-335. 

(54) Rånby, B. Surface modification and lamination of polymers by photografting. Int. 
J. Adhes. Adhes. 1999, 19, 337-343. 

(55) Mohd Yusof, A. H.; Ulbricht, M. Polypropylene-based membrane adsorbers via 
photo-initiated graft copolymerization: optimizing separation performance by 
preparation conditions. J. Membr. Sci. 2008, 311, 294-305. 

(56) Ulbricht, M.; Yang, H. Porous polypropylene membranes with different carboxyl 
polymer brush layers for reversible protein binding via surface-initiated graft 
copolymerization. Chem. Mater. 2005, 17, 2622-2631. 

(57) Yu, H.-Y.; Xu, Z.-K.; Yang, Q.; Hu, M.-X.; Wang, S.-Y. Improvement of the 
antifouling characteristics for polypropylene microporous membranes by the 
sequential photoinduced graft polymerization of acrylic acid. J. Membr. Sci. 2006, 
281, 658-665. 

(58) Ma, H.; Davis, R. H.; Bowman, C. N. Principal factors affecting sequential 
photoinduced graft polymerization. Polymer 2001, 42, 8333-8338. 



159 
 

(59) Ulbricht, M. Photograft-polymer-modified microporous membranes with 
environment-sensitive permeabilities. React. Funct. Polym. 1996, 31, 165-177. 

(60) Himstedt, H. H.; Marshall, K. M.; Wickramasinghe, S. R. pH-responsive 
nanofiltration membranes by surface modification. J. Membr. Sci. 2011, 366, 373-
381. 

(61) Mansourpanah, Y.; Habili, E. M. Preparation and modification of thin film PA 
membranes with improved antifouling property using acrylic acid and UV 
irradiation. J. Membr. Sci. 2012, 430, 158-166. 

(62) Seman, A.; Khayet, M.; Bin Ali, Z.; Hilal, N. Reduction of nanofiltration membrane 
fouling by UV-initiated graft polymerization technique. J. Membr. Sci. 2010, 355, 
133-141. 

(63) Costamagna, V.; Strumia, M.; López-González, M.; Riande, E. Gas transport in 
surface-modified low-density polyethylene films with acrylic acid as a grafting 
agent. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2828-2840. 

(64) Costamagna, V.; Strumia, M.; López-González, M.; Riande, E. Gas transport in 
surface grafted polypropylene films with poly (acrylic acid) chains. J. Polym. Sci., 
Part B: Polym. Phys. 2007, 45, 2421-2431. 

(65) Fasce, L.; Costamagna, V.; Pettarin, V.; Strumia, M.; Frontini, P. Poly (acrylic acid) 
surface grafted polypropylene films: Near surface and bulk mechanical response. 
eXpress Polym. Lett. 2008, 2, 779-790. 

(66) Uchida, E.; Uyama, Y.; Ikada, Y. Sorption of low-molecular-weight anions into 
thin polycation layers grafted onto a film. Langmuir 1993, 9, 1121-1124. 

(67) Kang, E.; Tan, K.; Kato, K.; Uyama, Y.; Ikada, Y. Surface modification and 
functionalization of polytetrafluoroethylene films. Macromolecules 1996, 29, 
6872-6879. 

(68) Mirabella, F. M., Internal reflection spectroscopy: Theory and applications. CRC 
Press: 1993; Vol. 15. 

(69) Davidson, P. M.; Taylor, T. M., Chemical preservatives and natural antimicrobial 
compounds. In Food microbiology: fundamentals and frontiers, 3rd ed.; Doyle, M. 
P.; Beuchat, L. R.; Montville, T. J., Eds. ASM Press: Washington D.C., 2007; pp 
713-745. 

(70) Phillips, D. C. The hen egg-white lysozyme molecule. Proc. Natl. Acad. Sci. U. S. 
A. 1967, 57, 483. 

(71) Anonymous, Nonagricultural (nonorganic) substances allowed as ingredients in or 
on processed products labeled as “organic” or “made with organic (specified 
ingredients or food group(s))". In 7, Regulations, C. o. F., Ed. US Government 
Printing Office: Washington D.C., 2012. 



160 
 

(72) Gill, A. O.; Holley, R. A. Interactive inhibition of meat spoilage and pathogenic 
bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium 
chloride at 24 C. Int. J. Food Microbiol. 2003, 80, 251-259. 

(73) Cannarsi, M.; Baiano, A.; Sinigaglia, M.; Ferrara, L.; Baculo, R.; Del Nobile, M. 
A. Use of nisin, lysozyme and EDTA for inhibiting microbial growth in chilled 
buffalo meat. Int. J. Food Sci. Tech. 2008, 43, 573-578. 

(74) Gill, A. O.; Holley, R. A. Surface application of lysozyme, nisin, and EDTA to 
inhibit spoilage and pathogenic bacteria on ham and bologna. J. Food. Prot. 2000, 
63, 1338-1346. 

(75) Mastromatteo, M.; Lucera, A.; Sinigaglia, M.; Corbo, M. R. Synergic antimicrobial 
activity of lysozyme, nisin, and EDTA against Listeria Monocytogenes in Ostrich 
meat patties. J. Food Sci. 2010, 75, M422-M429. 

(76) Roman, M. J.; Tian, F.; Decker, E. A.; Goddard, J. M. Iron chelating polypropylene 
films: Manipulating photoinitiated graft polymerization to tailor chelating activity. 
J. Appl. Polym. Sci. 2014, 131, 39948. 

(77) Roman, M. J.; Decker, E. A.; Goddard, J. M. Fourier Transform Infrared studies on 
the dissociation behavior of metal-chelating polyelectrolyte brushes. ACS Appl. 
Mater. Interfaces 2014, 6, 5383-5387. 

(78) Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J. P. Review 
on hydrogel-based pH sensors and microsensors. Sensors 2008, 8, 561-581. 

(79) Gong, P.; Wu, T.; Genzer, J.; Szleifer, I. Behavior of surface-anchored poly (acrylic 
acid) brushes with grafting density gradients on solid substrates: 2. Theory. 
Macromolecules 2007, 40, 8765-8773. 

(80) Dong, R.; Lindau, M.; Ober, C. K. Dissociation behavior of weak polyelectrolyte 
brushes on a planar surface. Langmuir 2009, 25, 4774-4779. 

(81) Min, S.; Harris, L. J.; Han, J. H.; Krochta, J. M. Listeria monocytogenes inhibition 
by whey protein films and coatings incorporating lysozyme. J. Food. Prot. 2005, 
68, 2317-2325. 

(82) Kihm, D. J.; Leyer, G. J.; An, G.-H.; Johnson, E. A. Sensitization of heat-treated 
Listeria monocytogenes to added lysozyme in milk. Appl. Environ. Microbiol. 1994, 
60, 3854-3861. 

(83) Seyrek, E.; Dubin, P. L.; Tribet, C.; Gamble, E. A. Ionic strength dependence of 
protein-polyelectrolyte interactions. Biomacromolecules 2003, 4, 273-282. 

(84) Halperin, A. Polymer brushes that resist adsorption of model proteins: Design 
parameters. Langmuir 1999, 15, 2525-2533. 

(85) Tian, F.; Roman, M. J.; Decker, E. A.; Goddard, J. M. Biomimetic design of 
chelating interfaces. J. Appl. Polym. Sci. 2015, 132, 41231. 



161 
 

(86) Pincus, P. Colloid stabilization with grafted polyelectrolytes. Macromolecules 
1991, 24, 2912-2919. 

(87) Delcroix, M.; Huet, G.; Conard, T.; Demoustier-Champagne, S.; Du Prez, F.; 
Landoulsi, J.; Dupont-Gillain, C. Design of mixed PEO/PAA brushes with 
switchable properties toward protein adsorption. Biomacromolecules 2012, 14, 
215-225. 

(88) Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. 
Drug Del. Rev. 2006, 58, 1655-1670. 

(89) Welch, M.; Rastogi, A.; Ober, C. Polymer brushes for electrochemical biosensors. 
Soft Matter 2011, 7, 297-302. 

(90) Santonicola, M. G.; de Groot, G. W.; Memesa, M.; Meszyńska, A.; Vancso, G. J. 
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