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ABSTRACT 

STUDY OF MINIMUM VOID RATIO FOR SOILS WITH A RANGE OF GRAIN-

SIZE DISTRIBUTIONS 

December 2013 

Zhenning Yang 

Directed by Dr. C. S. Chang 

 

Minimum void ratio or maximum packing density is an important soil property in 

geotechnical engineering. It apply to volume change tendency control, fluid 

conductivity control and particles movement. 

Previous researchers have attempted to predict maximum packing density by 

empirical/graphic method, rock correction method, alpha method. Based on the 

concepts of F. de Larrard in concrete mixture research, we have developed a 

mathematic model that can predict the minimum void ratio for soils with a wide range 

of particle size.  

Probability density function-lognormal distribution was tested and used to provide a 

reasonable representation for soils with a range of grain-size distribution. We 

incorporate the lognormal distribution in the mathematical model, and predict the 

minimum void ratio for various types of soil gradations.  The validity of the model is 

evaluated.  

The evaluation of the model is also performed on several sets of data in the literature, 

which include binary packing system of steel balls, ternary packing system of spheres, 

mixtures of round and crushed aggregates, and soils containing gravelly sand with silt. 

Comparison of the results will be discussed.  
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1. INTRODUCTION 

Void ratio or solid volume fraction of aggregates is essential factor to describe 

physical properties of soils. Insufficient fulfillment of requirements of void ratio or 

compaction would lead magnificent loss. Compactness of granular material is of 

importance for construction and transportation structures like pavements (Fragaszy 

and Sneider, 1991). Packing of particles is important to many represented industries, 

including concrete mixture, soil geology and ceramics. Study of making voids filled 

was meager published around 1930’s. Research interest of high-density packing of 

ceramics and metal particles was renewed around 1954, for the reason of impetus of 

atomic energy and space research. However, those were mainly considering packing 

of uranium oxide and optimum particle size distribution (PSD) for maximum packing 

density.(McGeary, 1961). In 1957, a method of prediction of maximum dry density 

was proposed by Humphres using empirical and graphical method. It is shown in 

Figure-1.1 a).  

 

Figure-1.1 a) Derivation of Humphres Maximum Density Curve (Humphres, 1957), cited at (Fragaszy and Sneider, 1991) 

Even this method did not considered effect of soil-interaction, Humphres’ math nature 

is the sound foundation of computer-based modeling. Around 1986, AASHTO T 224-

86 specifications for compaction includes a rock correction factor that can be used 

when the percent of gravel size particles is less than or equal to 70%. This is also a 

way to describe or limit soil-interaction. Similar to it, Alpha method proposed by 
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Fragaszy et al (1989) defined a factor, α, to consider soil interaction. This is illustrated 

in Figure-1.1 b).  

 

Figure-1.1 b) Illustration showing Derivation of Alpha Term (Fragaszy et al, 1989), cited at (Fragaszy and Sneider, 1991) 

In 1991, based on experiments, “Humphres method”, “AASTO rock correction” and 

“Alpha method” were compared together by Fragaszy and Sneider. In 1999, F. de 

Larrard published a detailed book about concrete mixture proportioning (F. de Larrard, 

1999). Larrard detailed analyzed virtual packing density and actual packing density. 

Using the concept of dominant particle size, a mathematical model is developed for 

predicting the minimum void ratio of a packing containing a range of particle sizes. 

This paper is organized as follows: Chapter 2 introduces the analytical method for 

predicting minimum void ratio, including by general packing, binary packing and 

ternary packing. Chapter 3 then explains how to use lognormal distribution to model 

soils with a range of particle size distributions. Chapter 4 and 5 test the model with 

literature data of spherical particles and soils or aggregate. Finally, Appendix presents 

parametric study of coefficient of interaction and model. 
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2. ANALYTICAL METHOD 

A mathematical model for predicting the minimum void ratio for sand-silt mixture has 

been proposed by Chang and Yin (2011) and Chang and Meidani (2012). The model 

was applicable for gap-graded soils, which have two particle size-groups, and the two 

sizes are very different in magnitudes. Based on the concept used by Francois de 

Larrard(1999) for concrete mixture, the model by Chang and Meidani (2012) is 

extended to a be applicable for soils with an arbitrary gradation (or particle size 

distribution). The extended model is briefly summarized below.  

2.1 General Packing 

Multiple particle-sizes of system are 1 2 3 .... ,  2nd d d d n     .The solid volume 

fraction of each class is denoted by  

1

i
i n

j

j

v
y

v





,  

1

1
n

j

j

y


                                                                                                     (1) 

For the i
th

 class of particles with size id , its minimum void ratio is 
ie . Assuming we 

know the values of 
ie
 
for each individual class. For a mixture with given

iy
 
for each 

class, our objective is to estimate the value of minimum void ratio e of the mixture (or 

the maximum density). 

2.1.1Without Interaction 

If there is no interaction between particles, minimum void ratio e can be expressed as 

 
1

1 1

ˆ 1
i n

i i i j i j

j j i

e e e y e y


  

 
    

 
                                                                              (2) 

1
ˆ i

i n
e Max e

 
                                                                                                                       (3) 

2.1.2 Full Interaction 

Full interaction happens on condition that particle sizes are same, expression is 

1

n

j j

j

e e y


                                                                                                                     (4) 

2.1.3 Partial Interaction 

When partial interaction are existing between particles, the true void ratio is affected 

by “wall” effect bij due to larger size particles, and “loosening” effect aij due to small 

size particles. The interaction coefficients, 
ija  and 

ijb  were introduced in the 

following equation, 
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1 1

q
p

j

ij

i

d
a

d

  
    
   

                                                                                                     (5) 

1 1

t
s

i
ij

j

d
b

d

  
        

                                                                                                      (6) 

where p, q, s,and t are both positive numbers decided by inner properties of mixture. 

Two physical effects can be interpreted in binary system: d1> d2 and class 2 grain is 

inserted in the porosity of coarse-size packing (class 1grains dominant), if void is no 

longer capable to fit, there is a decrease of volume of class 1 grains (loosening effect); 

when some isolated coarse grains are overwhelmed in fine grains (class 2 grains 

dominant), there is a further amount of voids in the packing of class 2 grains located 

in the interface vicinity (wall effect).(de Larrard, 1999) 

 

Figure-2.1 a) Loosening effect exerted by a fine grain in a coarse grain packing; wall effect exerted by a coarse grain on a fine 

grain packing (de Larrard, 1999) 

The equation expressing the void ratio under the circumstance that i class dominants 

should be written as 

   
1 1

1 1 1 1

1 1
i i n n

i i i j ij j j i j ij j j

j j j i j i

e e e y b e y e y a e y
 

     

   
         

   
                                   (7) 

1
ˆ i

i n
e Max e

 
                                                                                                                       (8) 

In this report, equation (7) plays an important role of prediction of void ratio in 

mixture. And it follows 0 1ija   and 0 1ijb  ;  0 represents no-interaction and 1 

represents full interaction.   

To predict minimum void ratio in general packing system at different mixture, we 

need data of d1 to dn, e1 to en, p, q, s and t for interaction coefficients. 
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2.2 Binary System 

If a mixture system consist of only two grain sizes (uniform), 1 2d d , n=2, we have 

following equations, 

   1 1 1 2 12 2 21 1  ,e e e y a e y      
          (9) 

 2 2 2 1 21 1 1  ,e e e y b e y  
                                                                                             

(10) 

1 2( , )e Max e e                                                                                                              (11) 

where parameters 12a  and 21b can be determined from experiments (e vs. y2 curve) by 

equation (12) and (13), 

   1 12 2

2

1 1  ,
e

e a e
y


    


                                                                                       (12) 

2 21 1

1

 ,
e

e b e
y


  


                                                                                                        (13) 

In curve of e vs. y2, y2 represent fine grain proportion. Equation (9) means that size of 

i=1 dominant the system. Therefore, e1 would decide the minimum void ratio and it 

represents coarse soil. Thus, the partial derivative of void ratio for y2 is rate of change 

for coarse soil. As for y1, y1=1-y2, 
1 2

e e

y y

 
 

 
, then 

2

e

y




represents the rate of change 

for fine soil. By this way, a12 and b21 can then be determined. 

To predict minimum void ratio in binary system at different mixture, we need data of 

d1, d2, e1, e2, p, q, s and t for interaction coefficients. 

2.3 Ternary System 

It will be established with the help of equations (5) (6) (7) that ternary model will be 

acquired as n=3. The physical relation and mutual interaction between particles were 

expressed by ija and ijb .  Therefore, the equations describing ternary packing are 

      1 1 1 2 3 12 2 2 13 3 31 1 1  ,e e e y y a e y a e y                                                   
(14) 

   2 2 2 1 21 1 1 2 3 23 3 3(1 ) (1 )  ,e e e y b e y e y a e y      
                                                   

(15) 

 3 3 3 1 2 31 1 1 32 2 2( )  ,e e e y y b e y b e y    
                                                                     

(16) 

1 2 3( , , )e Max e e e                                                                                                         (17) 

To predict minimum void ratio in ternary system at different mixture, we need data of 

d1, d2, d3, e1, e2, e3, p, q, s and t for interaction coefficients. 

The values of 
ija and

ijb will be obtained by Eqs (5, 6) in which the parameters p, q, s 

and t for coefficient of interaction needs to be determined. We will describe how to 

determine the interaction coefficients later in this report.  
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3. PROBABILITY DENSITY FUNCTION FOR 

PARTICLE SIZE DISTRIBUTION 

3.1 Log-normal distribution 

In probability density function (PDF) theory, the log-normal distribution (with two 

parameters) may be defined as the distribution of a random variable whose logarithm 

is normally distributed (Crow and Kunio, 1988). If the random variable X is log-

normally distributed, then Y=log(X) has a normal distribution. It is used in this paper 

to approximate the particle size distribution of packing system of spherical particles, 

aggregates and soils. The probability density function of a log-normal distribution is: 

 
 

2

2

ln
 

2
1

; ;  , 0
2

x

Xf x e x
x



 
 




                                                                         (18) 

where μ and σ means the mean value and standard deviationof the variable’s natural 

logarithm. Then we wrote them as μlnx and σlnx in this report. 

Assuming in binary packing system (fine and coarse soil), each size has a size range 

in form of log-normal distribution. A log-normal distribution with mean μx and 

variance vx has parameters (Mood et al, 1974) 

2

ln ln 22
=ln  , = ln 1  .x x

x x

xx x

v

v


 



   
   
                                                                     

(19)

 

Based on μlnx and σlnx calculated above, for easy calculation, five particle sizes 

(selected by writer) can be generated by dividing log-normal distribution into five 

histograms whose summation is close to 99.73%. First, it is assumed that normal 

distribution incorporates 99.7% confidence belt with 3-sigma rule. It is divided into 

five equal distances (base) within six standard deviations. Then, five probability 

histograms can be constructed with same base. The centers of them are normal 

distributed five particle sizes. Last, with the help of relation between log-normal 

distribution and normal distribution, natural logarithms of them are used to represent 

grain size distribution in this paper. Five particle sizes will then be produced from one 

particle size with a range as following Table-3.1 a), 

Table-3.1 a) Five particle sizes in log-normal distribution  
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  

Assuming void ratios of these five particles remain the same (Adjustment coefficient 

will be introduced in Chapter 5.1). Each area of histogram (percentage) in log-normal 

distribution is also constant value, which can be calculated in following Table-3.1 b), 

Table-3.1 b) Five area of histograms (percentage) in log-normal distribution 

a5= 0.03458 a4= 0.23832 a3= 0.45149 a2= 0.23832 a1= 0.03458 
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3.2 Probability Density Function determined from soil gradation 

Fragaszy and Sneider (1991) studied three methods of prediction of maximum density, 

including humphres’ graphical method, AASHTO Rock correction method (1986) and 

alpha method Fragaszy et al proposed at 1989. Experiments data were acquired by 

using the Washington Test method No.606 (WTM 606), whose method manipulates 

vibration under static load to make soil dense (Fragaszy and Sneider, 1991). Fragaszy 

separated soil into a gravel portion (plus #4 sieve) and a fine portion (minus #4 sieve), 

then two parts were mixed at different ratios to test the actual maximum dry density 

by means of WTM 606. Since each component passed through one sieve and was 

completely retained on the following smaller sieve, assuming that amount of retained 

percentage is equal to the average magnitude of upper and under sieve. Table-3.2 

presents the soil description and approximate calculation of mean m and variance v. 

Table 8.2- Soil description of No.1 to No.8 (Fragaszy and Sneider, 1991) 

 
Soil No. No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 

coarse (mm) 

>19 5 6 2 5 5 5 1 10 

19-9.5 45 54 53 65 55 50 34 65 

9.5-4.75 50 40 45 30 40 45 65 25 

 
μx (mm) 10.95 11.72 11.15 12.38 11.66 11.31 9.67 12.99 

 
vx (mm) 16.03 15.69 13.92 13.22 15.14 15.71 12.43 14.01 

Fine (mm) 

4.75-2.36 30 15 23 24 21 14 20 25 

2.36-1.7 13 7 12 6 10 9 15 12 

1.7-0.6 29 18 22 23 25 29 36 23 

0.6-0.4 9 15 7 18 10 10 9 5 

0.4-0.3 4 15 12 11 9 6 5 3 

0.3-0.419 5 16 11 13 12 12 7 7 

0.149-0.074 1 7 7 3 6 5 2 5 

<0.074 9 7 6 2 7 15 6 20 

 
μx (mm) 1.74 1.06 1.43 1.40 1.36 1.13 1.51 1.47 

 
vx (mm) 1.73 1.38 1.71 1.70 1.61 1.30 1.38 1.84 
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After calculation of mean μx and variance vx of each set of grain size distribution, 

grain size distribution of soils can be represented roughly by log-normal distribution 

built by them. Comparisons of cumulative distribution are shown in the following 

Figures-3.2 a), 

 

Figure-3.2 a) Comparisons of cumulative distribution between experiments grain size distribution and log-normal distribution 

built by μx and vx. (The gravel soils are poorly graded and are classified as GP; the minus #4 fraction of four soils is classified 

SW-SM, two are classified SM, and the remaining two are classified SP and SM(Fragaszy and Sneider, 1991).) 
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Since Fragaszy separated soil into two portions: a gravel portion (plus #4 sieve) and a 

fine portion (minus #4 sieve). Range of particle size is from 4.75mm to 20mm for 

coarse soils, and 4.75mm to 0 for fine soils. We separated each of them into 10 

portions. Bins of coarse soils are: 20-18.475, 18.475-16.95, 16.95-15.425, 15.425-

13.9, 13.9-12.375, 12.375-10.85, 10.85-9.325, 9.325-7.8, 7.8-6.275, 6.275-4.75mm; 

their center-size are: 19.2375, 17.7125, 16.1875, 14.6625, 13.1375, 11.6125, 10.0875, 

8.5625, 7.0375, 5.5125 mm. Bins of fine soils are: 4.75-4.275, 4.275-3.8, 3.8-3.325, 

3.325-2.85, 2.85-2.375, 2.375-1.9, 1.9-1.425, 1.425-0.95, 0.95-0.475, 0.475-0mm; 

their center-size are: 4.5125, 4.0375, 3.5625, 3.0875, 2.6125, 2.1375, 1.6625, 1.1875, 

0.7125, 0.2375mm. Thus, based on gradation of coarse and fine soils, frequency 

histogram vs. center-sizes can then be drawn for Soils No.1 to No.8 as in Figure-3.2 b) 

to Figure-3.2 q)  

 

Figure-3.2 b) No.1 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution 

built by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 c) No.1 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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Figure-3.2 d) No.2 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution 

built by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 e) No.2 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 f) No.3 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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Figure-3.2 g) No.3 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 h) No.4 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution 

built by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 i) No.4 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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Figure-3.2 j) No.5 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 k) No.5 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 l) No.6 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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Figure-3.2 m) No.6 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 n) No.7 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution 

built by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 o) No.7 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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Figure-3.2 p) No.8 Coarse Distribution: Comparison between experiments grain size distribution and log-normal distribution 

built by m and v. (Fragaszy and Sneider, 1991).) 

 

Figure-3.2 q) No.8 Fine Distribution: Comparison between experiments grain size distribution and log-normal distribution built 

by m and v. (Fragaszy and Sneider, 1991).) 
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3.3 Probability Density Function determined from given particle size range  

If there is no available soil grain size distribution in literature, method to acquire 

variance is to subtract minimum diameter mind from maximum diameter maxd .  First, 

mean μx is simply the average value of mind and maxd . Then, we can skip the process of 

determination of variance instead of directly calculate σlnx by dividing subtraction of 

minln( )d  and maxln( )d  into six standard deviations σlnx (six is arbitrary). In study of 

concrete mixture, two families of aggregate were selected: rounded aggregate from 

the Loire (Decize quarry), with nearly spherical shapes; crushed angular aggregate 

from the Pont de Colonne quarry at Arnay le Duc (F. de Larrard, 1999). Parameters of 

μlnx and σlnx can be calculated in the following equations, and Table-3.3 a) and Table 

3.3 b) represent results of two sets of data of aggregates. 

max min
ln ln
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x

d d


 
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                                                                                                   
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Table-3.3 a) Soil description of Rounded aggregate (F. de Larrard, 1999) 

Rounded aggregate 

Names dmin(mm) dmax(mm) particle density μlnx (mm) σlnx (mm) 

R<05 0.08 0.5 0.593 -1.2378744 0.3054302 

R05 0.5 0.63 0.592 -0.5709295 0.0385186 

R1 1 1.25 0.609 0.117783 0.0371906 

R2 2 2.5 0.616 0.8109302 0.0371906 

R4 4 5 0.6195 1.5040774 0.0371906 

R8 8 10 0.628 2.1972246 0.0371906 

 

Table-3.3 b) Soil description of Crushed aggregate (F. de Larrard, 1999) 

Crushed angular aggregate 

Names dmin(mm) dmax(mm) packing density μlnx (mm) σlnx (mm) 

C<05 0.08 0.5 0.63 -1.237874 0.3054302 

C05 0.5 0.63 0.516 -0.57093 0.0385186 

C1 1 1.25 0.507 0.117783 0.0371906 

C2 2 2.5 0.529 0.8109302 0.0371906 

C4 4 5 0.537 1.5040774 0.0371906 

C8 8 10 0.572 2.1972246 0.0371906 
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3.4 Probability Density Function determined from mean particle size 

Except for above two situations, mean value or median value of particle sizes could 

be assumed as μlnx. It can be easily deduced from relation between log-normal 

distribution and normal distribution: if X is random variable of log-normal 

distribution, ln(X) will be random variable of normal distribution and reverse analysis 

is also feasible. Based on equation (19) (20) (21), five particle sizes can then be 

determined. In the following two chapters, detailed examples will be demonstrated.   
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4. PACKING SYSTEM OF SPHERICAL PARTICLES 

In this chapter, two detailed prediction examples of spherical particles were shown 

clearly. One is predicted in binary system with steel shot, and another ternary system 

with DEM simulation data is interpreted based on binary method to calculate 

coefficient of interactions of three sizes. 

4.1 Spherical Metal Shot In Binary System 

Literature data for packing of spherical metal shot is fromR. K. McGeary,1961. Note 

that McGeary used “pure” components consisting of a single mesh size in research of 

mechanical packing of spherical particles. Besides, the calculated average sphere 

diameter was used rather than size of the sieve where spherical retained in each 

passing through. Therefore, assuming that variance v of data is 0. 

Relation between solid volume fraction γ and void ratio are 

1
 , =  , 1v s

s T

v v
e e

v v



                                                                                                (22) 

Where vv is the volume of void-space; vs is the volume of solids, and vT is the total or 

bulk volume. Packing-density diagram plotted by McGeary is shown in Figure-4.1 a), 

where “theoretical density” in plot can be transferred to void ratio based on equation 

(22). 

 

Figure-4.1 a) Binary mechanical packing of coarse steel shot with 6 other fine sizes (R. K. McGeary, 1961) 



28 

 

Binary model needs ten particle sizes: d1 to d10;  p, q, s and t for each coefficient of 

interactions: a12 and b21; void ratios: e1 and e2. It is already assumed that for coarse 

particles of d1 to d5, void ratios of them stay e1; for fine particles of d6 to d10, void 

ratio of them keep e2. Void ratio under 100%coarse is e1, void ratio under 0%coarse is 

e2. 

As method described in Chapter2.2, to acquire coefficient of interactions:  a12 and b21, 

the experiments data shown in Figure-4.1 a) were redrawn in Figure-4.1 b) with rate 

of change lines for the two sides.  

 

Figure-4.1 b) Six sets of rate of change lines describing slopes of coarse and fine (R. K. McGeary, 1961) 

In Equatioin (12), 
2

e

y




equals slope of e1 side (coarse), a12 can be determined; since it 

is known in Chapter2.2 that 
1 2

e e

y y

 
 

 
,  

2

e

y




 equals slope of e2 side (fine), b21 can 

be determined. Then six sets of coefficient of interactions a12 and b21 can be 

calculated.  

Results are represented in Table-4.1 a).  
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Table-4.1 a) Coefficient of interactions of No.1 to No.6 (R. K. McGeary, 1961) 

Item No. μx1(inch) μx2(inch) μx1(mm) μx2(mm) ratio a12 b21 

No.1 0.124 0.036 3.1496 0.9144 0.29032  0.60938  0.44444  

No.2 0.124 0.026 3.1496 0.6604 0.20968  0.21875  0.41667  

No.3 0.124 0.019 3.1496 0.4826 0.15323  0.16667  0.25000  

No.4 0.124 0.011 3.1496 0.2794 0.08871  0.06250  0.05000  

No.5 0.124 0.0075 3.1496 0.1905 0.06048  0.02344  0.06667  

No.6 0.124 0.0065 3.1496 0.1651 0.05242  0.06250  0.06667  

where μx is mean value of particle sizes: μx1=d3, μx2=d8; ratio=μx1/μx2 

Then parameters p, q, s and t can be estimated through equations of coefficient of 

interactions (5) (6) by given six sets of a12 and b21 in Table-4.1 a). Two fitting graphs 

were shown in Figure-4.1 b). Study of fitting p, q, s and t to get aij or bij can be found 

in Appendix. 

 

Figure-4.1 c) Fitting graphs of coefficient of interactions for six sets of steel shot (R. K. McGeary, 1961) 

After fitting, we get p=4, q=2.3 for a12, and s=4.5, t=2.7 for b21. Take No.1 mixture 

for example.  

Since particle size range is 0 (assuming variance is 0), d1=d2=d3=d4=d5=3.1496, 

d6=d7=d8=d9=d10=0.9144; e1=e2=e3=e4=e5=0.6(e1), e6=e7=e8=e9=e10=0.6(e2). And ai is 

known that in Table-3.1 b) that a1=a6=0.03458, a2=a7=0.23832, a3=a8=0.45149, 

a4=a9=0.23832, a5=a10=0.03458. 

For fines (i = 6, 7, 8, 9, 10), fc, is percent of fine content in the mixture system.
iy
 
can 

be obtained in following equations, where  

i iy fc a                                                                                                                    (23) 
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For coarse (i= 1, 2, 3, 4, 5), cc, is percent of coarse content in the mixture system. 
iy

can be obtained in following equations, 

i iy cc a                                                                                                                    (24) 

Put all data above into Binary Equation (9, 10, 11). Prediction of minimum void ratio 

under different ratio of fine and coarse content can then be obtained. Figure-4.1 c) 

illustrates six sets of prediction results. 

 

Figure-4.1 d) Comparison between binary system prediction and experiments (Steel shot experiments made byMcGeary, 1961) 

 

 

 

 

 



31 

 

4.2 Spheres In Ternary System 

Literature data for packing spheres in ternary system were from research of Yi et al 

(2012), who took advantage of discrete element method (DEM). 28 sets of DEM 

experiments data showed that particle sizes consist of large (L), medium (M) and 

small (S) class, are 24.4 mm, 11.6 mm, 6.4 mm, respectively. Raw data are shown in 

Table-4.2 a) 

Table-4.2 a) Packing density and void ratio in ternary system (Yi et al, 2012) 

cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

XL 0 0 0 0 0 0 0 0.17 0.17 0.17 0.25 0.25 0.28 0.28 

XM 0 0.28 0.33 0.5 0.67 0.72 1 0.17 0.415 0.66 0.25 0.5 0 0.72 

XS 1 0.72 0.67 0.5 0.33 0.28 0 0.66 0.415 0.17 0.5 0.25 0.72 0 

PD 0.62 0.64 0.64 0.65 0.65 0.65 0.63 0.66 0.67 0.66 0.67 0.67 0.67 0.65 

e 0.613 0.563 0.563 0.538 0.538 0.538 0.587 0.515 0.493 0.515 0.493 0.493 0.493 0.538 

cases 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

XL 0.33 0.33 0.33 0.415 0.415 0.5 0.5 0.5 0.66 0.67 0.67 0.72 0.72 1 

XM 0 0.34 0.67 0.17 0.415 0 0.25 0.5 0.17 0 0.33 0 0.28 0 

XS 0.67 0.33 0 0.415 0.17 0.5 0.25 0 0.17 0.33 0 0.28 0 0 

PD 0.68 0.69 0.65 0.69 0.68 0.7 0.7 0.66 0.7 0.72 0.66 0.73 0.66 0.63 

e 0.471 0.449 0.538 0.449 0.471 0.429 0.429 0.515 0.429 0.389 0.515 0.370 0.515 0.587 

XL+XM+XS=1 

Ternary model needs fifteen particle sizes: d1 to d15; p, q, s and t for each coefficient 

of interactions: aij and bij; void ratios: e1, e2 and e3. It is already assumed that for large 

particles (L) of d1 to d5, void ratios of them stay e1; for medium particles (M) of d6 to 

d10, void ratio of them keep e2; for small particles (S) of d11 to d15, void ratio of them 

keep e3. 

Method of for dealing with ternary system is to establish coefficient of interactions aij 

and bij based on known binary mixture in ternary system. Among 28 sets of 

assemblies, 15 of them are binary mixture with 3 different particle sizes.It is set that 

larger particle mean size is named by μx1, and smaller one’s is named by μx2. Then 

binary experiments data (M-S, L-S, L-M) were drawn with fitting line describing 

slopes of coarse and fine. They were drawn in Figure-4.2 a) 
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Figure-4.2 a) Three sets of rates of change line describing slopes of coarse and fine (Yi et al, 2012) 

Same method as Chapter 4.1, aij and bij can be determined by slopes of relative coarse 

and fine by equation (12) (13). Table-4.2 b) lists their volume fractions, ratio and 

coefficient of interactions. 

Table-4.2 b) Coefficient of interactions obtained by binary mixture of data (Yi et al, 2012) 

Item No. μx2 (mm) μx1 (mm) ratio aij bij 

No.1 6.4 11.6 0.5517 0.8680 0.7662 

No.2 6.4 24.4 0.2623 0.4921 0.4257 

No.3 11.6 24.4 0.4754 0.8314 0.7662 

where ratio=μx2 / μx1 

Then parameters p, q, s and t can be estimated through equations of coefficient of 

interactions (5) (6). Two fitting graphs were shown in Figure-4.2 b). 

 

Figure-4.2 b) Fitting graphs of coefficient of interactions for three sets of spheres in DEM (Yi et al, 2012) 
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Therefore, we get p=2, q=0.8 for aij, and s=2, t=1.05 for bij.  

Assuming variance of range (vx) is 1 for each particle size distribution (Results from 

vx=0.01 is also shown). Based on equation (19), μlnx and σlnx values can be determined 

by μx and vx. e1, e2 and e3 are also known data from experiments. 

Table-4.2 c) lists some parameters: 

Table-4.2 c) Parameters can used in the model of  ternary system (Yi et al, 2012) 

μx3 μx2 μx1 e3 e2 e1 p q 

6.40000 11.60000 24.40000 0.61290 0.58730 0.58730 2.00000 0.80000 

σlnx3 σlnx2 σlnx1 μlnx3 μlnx2 μlnx1 s t 

0.15531 0.08605 0.04097 1.84424 2.44730 3.19374 2.00000 1.05000 

 

By means of Chapter 3.1 and Table-3.1 a), fifteen particle sizes, fifteen void ratios 

and corresponding log-normal areas (percentage) were produced in Table-4.2 d). 

Table-4.2 d) Fifteen particle sizes, log-normal areas, void ratios of ternary system (Yi et al, 2012) 

d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 

4.35575 5.24811 6.32328 7.61872 9.17955 9.40075 10.42333 11.55714 12.81428 14.20816 22.09662 23.21003 24.37953 25.60797 26.89831 

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 

0.03458 0.23832 0.45149 0.23832 0.03458 0.03458 0.23832 0.45149 0.23832 0.03458 0.03458 0.23832 0.45149 0.23832 0.03458 

e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 

0.61290 0.61290 0.61290 0.61290 0.61290 0.58730 0.58730 0.58730 0.58730 0.58730 0.58730 0.58730 0.58730 0.58730 0.58730 

Put all data above into Equation (14, 15, 16, 17). Prediction of minimum void ratio 

under different mixture of large, medium and small content can then be obtained. 

Figure 4.2.c) - Figure 4.2 e) will show comparison between the ternary prediction 

results and experiments. 
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Figure-4.2 c) Void ratio- ternary contour of experiments (Yi et al, 2012)  

 

 

 

Figure-4.2 d) Void ratio- ternary contour of model with vx=1 (Yi et al, 2012)  
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Figure-4.2 e) Void ratio- ternary contour of model with vx=0.01 (Yi et al, 2012)  

 

 

If three particle sizes range were called  d1, d2, d3 with variance of 1 and 0.01.Log-

normal distributions used in prediction model were drawn from Figure -4.2 f) –

Figure-4.2 h) for both conditions: vx=1 and vx=0.01.  

 

Figure-4.2 f) Log-normal distribution describing size range with v=1 and v=0.01, large sizes d1 (Yi et al, 2012)  
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Figure-4.2 g) Log-normal distribution describing size range with v=1 and v=0.01, medium sizes d2 (Yi et al, 2012)  

 

Figure-4.2 h) Log-normal distribution describing size range with v=1 and v=0.01, small sizes d3 (Yi et al, 2012)  
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5. PACKING SYSTEM OF AGGREGATE OR SOIL 

When it comes to soils or concrete aggregate, method used in the paper also works. 

However, coefficient of interaction would be different than spherical particles. There 

will be three parts to give detailed examples to compare experiments and the proposed 

method. 

5.1 Gravelly Sand with Silt 

Literature data for packing of gravelly sand with silt is from Fragaszy and Sneider, 

1991. Densities and void ratios of packing experiments were list in Table 5.1 a) - 

Table-5.1 h) 

Table-5.1 a) Data of packing density and void ratio- No.1 (Fragaszy and Sneider, 1991) 

No.1 
      

%gravel %fine density,pcf density e specific gravity 

0 100 120 0.720 0.388 gravel fine 

40 60 128.2 0.766 0.305 2.7 2.67 

70 30 124.8 0.743 0.346 
  

85 15 116 0.690 0.450 
  

100 0 111 0.659 0.518 
  

 

Table-5.1 b) Data of packing density and void ratio- No.2 (Fragaszy and Sneider, 1991) 

No.2 
      

%gravel %fine density,pcf density e specific gravity 

0 100 121.5 0.718 0.392 gravel fine 

20 80 127.3 0.753 0.328 2.71 2.71 

40 60 132.3 0.782 0.278 
  

70 30 136.6 0.808 0.238 
  

85 15 125.4 0.742 0.349 
  

100 0 114.5 0.677 0.477 
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Table-5.1 c) Data of packing density and void ratio- No.3 (Fragaszy and Sneider, 1991) 

No.3 
      

%gravel %fine density,pcf density e specific gravity 

0 100 126 0.737 0.357 gravel fine 

20 80 131 0.767 0.304 2.73 2.74 

40 60 133.9 0.784 0.275 
  

70 30 131.6 0.772 0.296 
  

85 15 114.4 0.671 0.490 
  

100 0 106 0.622 0.607 
  

 

Table-5.1 d) Data of packing density and void ratio- No.4 (Fragaszy and Sneider, 1991) 

No.4 
      

%gravel %fine density,pcf density e specific gravity 

0 100 119 0.704 0.421 gravel fine 

40 60 132.7 0.782 0.278 2.73 2.71 

70 30 138.5 0.815 0.227 
  

85 15 128.7 0.756 0.322 
  

100 0 119 0.699 0.432 
  

 

Table-5.1e) Data of packing density and void ratio- No.5 (Fragaszy and Sneider, 1991) 

No.5 
      

%gravel %fine density,pcf density e specific gravity 

0 100 122 0.746 0.340 gravel fine 

20 80 127 0.772 0.295 2.7 2.62 

40 60 130.5 0.789 0.268 
  

70 30 126.2 0.756 0.323 
  

85 15 116.2 0.693 0.443 
  

100 0 106 0.629 0.589 
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Table-5.1f) Data of packing density and void ratio- No.6 (Fragaszy and Sneider, 1991) 

No.6 
      

%gravel %fine density,pcf density e specific gravity 

0 100 135 0.816 0.225 gravel fine 

20 80 136.5 0.822 0.216 2.7 2.65 

50 50 137.2 0.822 0.217 
  

70 30 129.6 0.774 0.293 
  

85 15 124.2 0.739 0.353 
  

100 0 109 0.647 0.546 
  

 

Table-5.1g) Data of packing density and void ratio- No.7 (Fragaszy and Sneider, 1991) 

No.7 
      

%gravel %fine density,pcf density e specific gravity 

0 100 128.5 0.771 0.297 gravel fine 

20 80 129.6 0.777 0.287 2.68 2.67 

50 50 130.7 0.783 0.277 
  

70 30 124.6 0.746 0.341 
  

85 15 111 0.664 0.506 
  

100 0 104 0.622 0.608 
  

 

Table-5.1h) Data of packing density and void ratio- No.8 (Fragaszy and Sneider, 1991) 

No.8 
      

%gravel %fine density,pcf density e specific gravity 

0 100 139.8 0.830 0.205 gravel fine 

20 80 140.7 0.834 0.198 2.71 2.7 

40 60 137.6 0.816 0.226 
  

50 50 135.4 0.802 0.247 
  

70 30 125.3 0.742 0.348 
  

85 15 111.4 0.659 0.517 
  

100 0 100.5 0.594 0.683 
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Binary model needs ten particle sizes: d1 to d10; p, q, s and t for each coefficient of 

interactions: a12 and b21; void ratios: e1 and e2. It is already assumed that for coarse 

particles of d1 to d5, void ratios of them stay e1; for fine particles of d6 to d10, void 

ratio of them keep e2. Void ratio under 100% coarse is e1, void ratio under 0%coarse 

is e2. 

As method described in Chapter2.2, to acquire coefficient of interactions:  a12 and b21, 

the experiments data shown in Table-5.1 a) - Table-5.1h) were redrawn in Figure-5.1 

a) with rate of change lines for the two sides.  

 

Figure-5.1 a) Eight sets of rate of change line describing slopes of coarse and fine (Fragaszy and Sneider, 1991) 
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In Equatioin (12), 
2

e

y




equals slope of e1 side (coarse), a12 can be determined; since it 

is known in Chapter 2.2 that 
1 2

e e

y y

 
 

 
,  

2

e

y




 equals slope of e2 side (fine), b21 can 

be determined. Then six sets of coefficient of interactions a12 and b21 can be 

calculated.  

Results are represented in Table-5.1 i). 

Table-5.1 i) Particle size ratio and coefficient of interactions of No.1 to No.8 (Fragaszy and Sneider, 1991) 

Soil No. ratio aij bij 

No.1 0.16 0.66330 0.34579 

No.2 0.09 0.45937 0.20969 

No.3 0.13 0.43432 0.24707 

No.4 0.11 0.51209 0.17380 

No.5 0.12 0.50973 0.25448 

No.6 0.10 0.80707 0.31153 

No.7 0.16 0.58719 0.41118 

No.8 0.11 0.48260 0.29298 

Ratio in this table was obtained by: 2

1

x

x

ratio



 , where μx2 and μx1 are mean value from fine and coarse in Table 9.2- Soil 

description of No.1 to No.8 (Fragaszy and Sneider, 1991) 

Then parameters p, q, s and t can be estimated through equations of coefficient of 

interactions (5) (6) by given eight sets of a12 and b21 in Table-4.1 i). Two fitting 

graphs were shown in Figure-5.1 b). Study of fitting p, q, s and t to get aij or bij can be 

found in Appendix 

 

Figure-5.1b) Fitting graphs of coefficient of interactions for eight sets of gravelly sand with silt (Fragaszy and Sneider, 1991) 
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Therefore, we get p=4, q=0.6for aij, and s=5, t=1.7 for bij. Take No.1 mixture for 

example.  

Since particle size variance can seen from Table-3.2, we can get d1=24.06552, 

d2=15.73185, d3=10.28406, d4=6.96107, d5=6.72278, d6=4.39474, d7=3.11080, 

d8=1.39018, d9=0.62125, d10=0.27763; 

 e1=e2=e3=e4=e5=0.51784(e1), e6=e7=e8=e9=e10=0.3884(e2). And ai is known that in 

Table-3.1 b) that a1=a6=0.03458, a2=a7=0.23832, a3=a8=0.45149, a4=a9=0.23832, 

a5=a10=0.03458. 

For fines (i= 6, 7, 8, 9, 10), fc, is percent of fine content in the mixture system.
iy
 
can 

be obtained in following equations, where 

i iy fc a                                                                                                                    (23) 

For coarse (i= 1, 2, 3, 4, 5), cc, is percent of coarse content in the mixture system. 
iy
 

can be obtained in following equations, 

i iy cc a                                                                                                                    (24) 
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Put all data above into Binary Equation (9, 10, 11). Prediction of minimum void ratio 

under different ratio of fine and coarse content can then be obtained. Figure-5.1 c) 

illustrates eight sets of prediction results. 

 

Figure-5.1 c)- Comparison of void ratios between experiments and model (Fragaszy and Sneider, 1991) 
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Since void ratio e1 and e2 used in model cannot represent real condition, an 

adjustment  coefficient, “α” , is then proposed. The input value of void ratio of fines, 

e2, was putted into model as a process of iterating until prediction curve fits 

experiment data. Adjustment coefficients for e2 from soils No.1 to No.8 are: 1.1, 1.3, 

1.15, 1.15, 1.15, 1.35, 1.15 and 1.25. Thus, after each original e2 times α, the adjusted 

prediction results are shown in Figure-5.1 d). 

 

Figure-5.1 d)- Comparison of void ratios between experiments and model with adjustment coefficient, α(Fragaszy and Sneider, 

1991) 
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Besides, real particle size distributions were also put into model to investigate the 

validities of modeling log-normal distribution. Take Soil No.1 into account, as it is 

mentioned in Chapter 3, bins of coarse soils are: 20-18.475, 18.475-16.95, 16.95-

15.425, 15.425-13.9, 13.9-12.375, 12.375-10.85, 10.85-9.325, 9.325-7.8, 7.8-6.275, 

6.275-4.75mm; their center-size are: 19.2375, 17.7125, 16.1875, 14.6625, 13.1375, 

11.6125, 10.0875, 8.5625, 7.0375, 5.5125 mm. Average value of every two of them 

was used to represent d1 to d5 in model: 18.475, 15.425, 12.375, 9.325 and 6.275 mm; 

probability of each size is sum of area of two adjacent frequency columns what we 

talked in Chapter 3. Thus, a1 to a5 are: 0.11375, 0.13829, 0.17268, 0.23007 and 

0.34520. Bins of fine soils are: 4.75-4.275, 4.275-3.8, 3.8-3.325, 3.325-2.85, 2.85-

2.375, 2.375-1.9, 1.9-1.425, 1.425-0.95, 0.95-0.475, 0.475-0mm; their center-size are: 

4.5125, 4.0375, 3.5625, 3.0875, 2.6125, 2.1375, 1.6625, 1.1875, 0.7125, 0.2375mm. 

Average value of every two of them was used to represent d6 to d10 in model: 4.275, 

3.325, 2.375, 1.425 and 0.475mm; probability of each size is sum of area of two 

adjacent frequency columns what we talked in Chapter 3. Thus a6 to a10 are: 0.08507, 

0.10934, 0.15412, 0.26346 and 0.38800. 

Then, adjustment coefficients were back fit the experiments data: 1.15 for e2 and 1.1 

for e1. Prediction of No.1 soils which used real size distribution was shown in Figure-

5.1 e), compared to prediction by using log-normal distribution. 

 

Figure-5.1 e)- Comparison results of void ratios between by real size distribution and by log-normal distribution for Soil No.1 

(Fragaszy and Sneider, 1991) 
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5.2 Rounded Aggregate 

Literature data for packing of rounded aggregate is from F. de Larrard, 1999. 

Densities and void ratios of packing experiments were list in Table 5.2 a) –Table 5.2 b) 

 

Table-10.2 a) Data of packing density and void ratio- ra part 1 (F. de Larrard, 1999) 

R8R05 R8R1 R4R05 R8R2 

%fine PD e %fine PD e %fine PD e %fine PD e 

0 0.628 0.592 0 0.628 0.592 0 0.6195 0.614 0 0.628 0.592 

5 0.657 0.522 5 0.6545 0.528 5 0.645 0.550 5 0.653 0.531 

10 0.6865 0.457 10 0.6795 0.472 10 0.6715 0.489 10 0.682 0.466 

15 0.71 0.408 15 0.707 0.414 15 0.689 0.451 15 0.697 0.435 

20 0.729 0.372 20 0.724 0.381 20 0.706 0.416 20 0.714 0.401 

25 0.754 0.326 25 0.742 0.348 25 0.7265 0.376 25 0.7235 0.382 

30 0.758 0.319 30 0.748 0.337 30 0.7485 0.336 30 0.728 0.374 

40 0.753 0.328 40 0.7285 0.373 40 0.736 0.359 40 0.723 0.383 

50 0.7385 0.354 50 0.7095 0.409 50 0.725 0.379 50 0.705 0.418 

60 0.7165 0.396 60 0.6965 0.436 60 0.7 0.429 60 0.689 0.451 

70 0.68 0.471 70 0.677 0.477 70 0.6745 0.483 70 0.671 0.490 

80 0.652 0.534 80 0.6585 0.519 80 0.648 0.543 80 0.646 0.548 

90 0.6195 0.614 90 0.635 0.575 90 0.614 0.629 90 0.632 0.582 

100 0.592 0.689 100 0.609 0.642 100 0.592 0.689 100 0.616 0.623 
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Table-11.2 b) Data of packing density and void ratio- ra part 2 (F. de Larrard, 1999) 

R2R05 R8R4 R1R05 

%fine PD e %fine PD e %fine PD e 

0 0.616 0.623 0 0.628 0.592 0 0.609 0.642 

5 0.635 0.575 5 0.6375 0.569 5 0.624 0.603 

10 0.663 0.508 10 0.643 0.555 10 0.633 0.580 

15 0.678 0.475 15 0.654 0.529 15 0.64 0.563 

20 0.692 0.445 20 0.66 0.515 20 0.656 0.524 

25 0.708 0.412 25 0.663 0.508 25 0.666 0.502 

30 0.718 0.393 30 0.6595 0.516 30 0.6705 0.491 

40 0.708 0.412 40 0.6565 0.523 40 0.6635 0.507 

50 0.693 0.443 50 0.6535 0.530 50 0.6545 0.528 

60 0.67 0.493 60 0.649 0.541 60 0.644 0.553 

70 0.656 0.524 70 0.6445 0.552 70 0.636 0.572 

80 0.633 0.580 80 0.638 0.567 80 0.6215 0.609 

90 0.613 0.631 90 0.629 0.590 90 0.61 0.639 

100 0.592 0.689 100 0.6195 0.614 100 0.592 0.689 
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Binary model needs ten particle sizes: d1 to d10; p, q, s and t for each coefficient of 

interactions: a12 and b21; void ratios: e1 and e2. It is already assumed that for coarse 

particles of d1 to d5, void ratios of them stay e1; for fine particles of d6 to d10, void 

ratio of them keep e2. Void ratio under 100% coarse is e1, void ratio under 0%coarse 

is e2. 

As method described in Chapter2.2, to acquire coefficient of interactions:  a12 and b21, 

the experiments data shown in Table-5.2 a) - Table-5.2 b) were redrawn in Figure-5.2 

a) with rate of change lines for the two sides.  

 

Figure-5.2 a) Seven sets of fitting line describing slopes of coarse and fine-round aggregate(F. de Larrard) 
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In Equatioin (12), 
2

e

y




equals slope of e1 side (coarse), a12 can be determined; since it 

is known in Chapter 2.2 that 
1 2

e e

y y

 
 

 
,  

2

e

y




 equals slope of e2 side (fine), b21 can 

be determined. Then seven sets of coefficient of interactions a12 and b21 can be 

calculated.  

Results are represented in Table-5.2 c). 

Table-12.2 c) Seven sets of coefficient of interactions (F. de Larrad) 

ratio 0.0625 0.125 0.125 0.25 0.25 0.5 0.5 

R R8R05 R8R1 R4R05 R8R2 R2R05 R8R4 R1R05 

a12 0.2949 0.2483 0.3496 0.3727 0.3933 0.7434 0.6450 

b21 -0.0798 0.3917 0.0814 0.3376 0.3208 0.7837 0.5451 

Where ratio it can also be calculated  from Table-3.3 a) Soil description of Rounded aggregate (F. de 

Larrard, 1999) that ratio of different combinations of mean value of dmin and dmax 

Then parameters p, q, s and t can be estimated through equations of coefficient of 

interactions (5) (6) by given eight sets of a12 and b21 in Table-5.2 c). Two fitting 

graphs were shown in Figure-5.2 b). Study of fitting p, q, s and t to get aij or bij can be 

found in Appendix. 

 

Figure-5.2 b) Fitting graphs of coefficient of interactions for seven sets of rounded aggregate (Fragaszy and Sneider, 1991) 
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Therefore, we get p=1.02, q=0.0.5 for aij, and s=1.5, t=1 for bij. Take R1R05 mixture 

for example.  

Since particle size variance can seen from Table-3.3 a) Soil description of Rounded 

aggregate (F. de Larrard, 1999), we can get d1=1.23003, d2=1.17634, d3=1.125, 

d4=1.07590, d5=1.028936, d6=0.61972, d7=0.59173, d8=0.565, d9=0.53948, 

d10=0.51511; 

 e1=e2=e3=e4=e5=0.64204(e1), e6=e7=e8=e9=e10=0.68919(e2). And ai is known that in 

Table-3.1 b) that a1=a6=0.03458, a2=a7=0.23832, a3=a8=0.45149, a4=a9=0.23832, 

a5=a10=0.03458. 

For fines (i= 6, 7, 8, 9, 10), fc, is percent of fine content in the mixture system.
iy
 
can 

be obtained in following equations, where 

i iy fc a                                                                                                                    (23) 

For coarse (i= 1, 2, 3, 4, 5), cc, is percent of coarse content in the mixture system. 
iy
 

can be obtained in following equations, 

i iy cc a                                                                                                                    (24) 
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Put all data above into Binary Equation (9, 10, 11). Prediction of minimum void ratio 

under different ratio of fine and coarse content can then be obtained. Figure-5.2 c) 

illustrates seven sets of prediction results. 

 

 

 

 

Figure-5.2 c) Comparison of void ratios between experiments and model, rounded aggregate (F. de Larrard, 1999) 
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5.3 Crushed Aggregate 

Literature data for packing of crushed aggregate is from F. de Larrard, 1999. Densities 

and void ratios of packing experiments were list in Table-5.3 a) – Table-5.3 b) 

Table-13.3 a) Data of packing density and void ratio- ca part 1 (F. de Larrard, 1999) 

C8C05 C8C1 C4C05 C8C2 

%fine PD e %fine PD e %fine PD e %fine PD e 

0 0.572 0.748 0 0.572 0.748 0 0.537 0.862 0 0.572 0.748 

5 0.62 0.613 5 0.613 0.631 5 0.591 0.692 5 0.597 0.675 

10 0.642 0.558 10 0.646 0.548 10 0.6185 0.617 10 0.611 0.637 

15 0.676 0.479 15 0.6755 0.480 15 0.638 0.567 15 0.625 0.600 

20 0.705 0.418 20 0.699 0.431 20 0.669 0.495 20 0.634 0.577 

25 0.731 0.368 25 0.7215 0.386 25 0.693 0.443 25 0.643 0.555 

30 0.7365 0.358 30 0.7245 0.380 30 0.711 0.406 30 0.651 0.536 

40 0.723 0.383 40 0.7025 0.423 40 0.691 0.447 40 0.643 0.555 

50 0.6941 0.441 50 0.6705 0.491 50 0.667 0.499 50 0.6335 0.579 

60 0.6585 0.519 60 0.638 0.567 60 0.64 0.563 60 0.6245 0.601 

70 0.616 0.623 70 0.611 0.637 70 0.603 0.658 70 0.5975 0.674 

80 0.583 0.715 80 0.5965 0.676 80 0.571 0.751 80 0.5695 0.756 

90 0.5655 0.768 90 0.5435 0.840 90 0.545 0.835 90 0.5435 0.840 

100 0.516 0.938 100 0.507 0.972 100 0.516 0.938 100 0.529 0.890 
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Table-14.3 b) Data of packing density and void ratio- ca part 2 (F. de Larrard, 1999) 

C2C05 C8C4 C1C05 

%fine PD e %fine PD e %fine PD e 

0 0.529 0.890 0 0.572 0.748 0 0.507 0.972 

5 0.54 0.852 5 0.5825 0.717 5 0.527 0.898 

10 0.552 0.812 10 0.5875 0.702 10 0.532 0.880 

15 0.5515 0.813 15 0.588 0.701 15 0.545 0.835 

20 0.566 0.767 20 0.592 0.689 20 0.552 0.812 

25 0.573 0.745 25 0.5955 0.679 25 0.5485 0.823 

30 0.594 0.684 30 0.594 0.684 30 0.555 0.802 

40 0.588 0.701 40 0.5875 0.702 40 0.556 0.799 

50 0.582 0.718 50 0.587 0.704 50 0.549 0.821 

60 0.579 0.727 60 0.587 0.704 60 0.546 0.832 

70 0.568 0.761 70 0.572 0.748 70 0.5425 0.843 

80 0.5555 0.800 80 0.564 0.773 80 0.537 0.862 

90 0.534 0.873 90 0.553 0.808 90 0.53 0.887 

100 0.516 0.938 100 0.537 0.862 100 0.516 0.938 
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Binary model needs ten particle sizes: d1 to d10; p, q, s and t for each coefficient of 

interactions: a12 and b21; void ratios: e1 and e2. It is already assumed that for coarse 

particles of d1 to d5, void ratios of them stay e1; for fine particles of d6 to d10, void 

ratio of them keep e2. Void ratio under 100% coarse is e1, void ratio under 0%coarse 

is e2. 

As method described in Chapter 2.2, to acquire interaction coefficients:  a12 and b21, 

the experiments data shown in Table-5.3 a) - Table-5.3 b) were redrawn in Figure-5.3 

a) with rate of change lines for the two sides.  

 

Figure-5.3 a) Seven sets of fitting line describing slopes of coarse and fine- crushed aggregate (F. de Larrard) 
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In Equatioin (12), 
2

e

y




equals slope of e1 side (coarse), a12 can be determined; since it 

is known in Chapter 2.2 that 
1 2

e e

y y

 
 

 
,  

2

e

y




 equals slope of e2 side (fine), b21 can 

be determined. Then seven sets of coefficient of interactions a12 and b21 can be 

calculated.  

Results are represented in Table-5.3 c). 

Table-15.3 c) Seven sets of coefficient of interactions (F. de Larrad) 

Ratio 0.0625 0.125 0.125 0.25 0.25 0.5 0.5 

C C8C05 C8C1 C4C05 C8C2 C2C05 C8C4 C1C05 

a12 -0.017 -0.062 0.187 0.594 0.659 0.806 0.649 

b21 0.064 0.137 0.046 0.267 0.337 0.601 0.720 

Where ratio it can also be calculated  from Table-3.3 b) Soil description of Crushed aggregate (F. de 

Larrard, 1999) that ratio of different combinations of mean value of dmin and dmax 

Then parameters p, q, s and t can be estimated through equations of coefficient of 

interactions (5) (6) by given eight sets of a12 and b21 in Table-5.3 c). Two fitting 

graphs were shown in Figure-5.2 b). Study of fitting p, q, s and t to get aij or bij can be 

found in Appendix. 

 

Figure-5.3 b) Fitting graphs of coefficient of interactions for seven sets of crushed aggregate (Fragaszy and Sneider, 1991) 
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Therefore, we get p=4, q=2 for a12, and s=2, t=1.5 for b21. Take C8C05 mixture for 

example.  

Since particle size variance can seen from Table-3.3 b) Soil description of Crushed 

aggregate (F. de Larrard, 1999), we can get d1=9.84026, d2=9.41076, d3=9, 

d4=8.60717, d5=8.23149, d6=0.61972, d7=0.59173, d8=0.565, d9=0.53948, 

d10=0.51511; 

 e1=e2=e3=e4=e5=0.74825(e1), e6=e7=e8=e9=e10=0.93798(e2). And ai is known that in 

Table-3.1 b) that a1=a6=0.03458, a2=a7=0.23832, a3=a8=0.45149, a4=a9=0.23832, 

a5=a10=0.03458. 

For fines (i= 6, 7, 8, 9, 10), fc, is percent of fine content in the mixture system.
iy
 
can 

be obtained in following equations, where 

i iy fc a                                                                                                                    (23) 

For coarse (i= 1, 2, 3, 4, 5), cc, is percent of coarse content in the mixture system. 
iy
 

can be obtained in following equations, 

i iy cc a                                                                                                                    (24) 
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Put all data above into Binary Equation (9, 10, 11). Prediction of minimum void ratio 

under different ratio of fine and coarse content can then be obtained. Figure-5.3 c) 

illustrates seven sets of prediction results. 

 

 

Figure-5.3 c) Comparison of void ratios between experiments and model, crushed aggregate (F. de Larrard, 1999) 

 

 

 

 

 



58 

 

6. SUMMARY 

1. The aim of this model is to predict minimum void ratios curve based on two 

known minimum void ratios of fine and coarse grains with given mixture. 

2. Author manipulated VBA language to make the modeling of equation (7) and (8).  

3. The model can correctly predict minimum void ratio at different mixture of fine 

and coarse particles, referring to spherical balls, gravelly sand with sand and 

rounded/crushed aggregate.   

4. Log-normal distribution can be used to approximate particle size distribution for 

granular soils 

5. For small given particle size range, the predicted results value of minimum void 

ratio are same when using two particle classes and 10 particle classes to put into 

the model. 
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7. APPENDIX 

7.1 Coefficient of Interaction 

Equations describing coefficient of interactions in this method are determined by 

“wall effect” and “loosening effect” parameters: p, q, s, t. Concepts were explained in 

Chapter 2.1.3. 

1 1

q
p

j

ij

i

d
a

d

  
    
   

                                                                                                  (5) 

1 1

t
s

i
ij

j

d
b

d

  
        

                                                                                                  (6) 

A summary of coefficient of interactions used from literature were shown in the 

Figure-7.1 a). 

 

Figure-7.1 a) Summary five sets of coefficient of interaction 
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Since equation forms for aij and bij are same, scale of equations are shown in Figure- 

7.1 b). 

 

Figure-7.1 b) Scale of equation-coefficient of interaction  

Effect of increasing q for aij is shown in Figure 

 

Figure-7.1 c) p=4, increasing q from 0.5 to 2.3 

 

Figure-7.1 d) p=1.02, increasing q from 0.5 to 2.3 
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Effect of increasing q for aij is shown in Figure-7.1 e) 

 

Figure-7.1 e) s=5, increasing t  from 1.07 to 2.7 

 

 

Figure-7.1 f) s=1.02, increasing t from 1.05 to 2.7 
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7.2 Parametric Analysis 

In binary system, if there are ten active parameters influencing trend or direction of 

minimum void ratios: e1, e2, m1(μx1), m2(μx2), p, q, s, t, v1, v2. Their influences on 

results are shown separately in Figure-7.2 a) –Figure-7.2 j).  

 

Figure-7.2 a) Overall influence from increasing e1  

 

Figure-7.2 b) Overall influence from increasing e2 

 

Figure-7.2 c) Overall influence from increasing m1 
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Figure-7.2 d) Overall influence from increasing m2 

 

Figure-7.2 e) Overall influence from increasing p 

 

Figure-7.2 f) Overall influence from increasing q 
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Figure-7.2 g) Overall influence from increasing s 

 

 

Figure-7.2 h) Overall influence from increasing t 

 

 

Figure-7.2 i) Overall influence from increasing v1 
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Figure-7.2 j)  Overall influence from increasing v2 
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