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CHAPTER ONE 16 

1.1 Abstract 17 

Recent tropical storms that have resulted in flood events with large economic impacts in the Northeastern US 18 

have catalyzed efforts to understand the complex interactions between human and natural systems.  19 

Specifically, the resilience of our transportation infrastructure to climate and the impact of our transportation 20 

systems on the aquatic environment are of significant interest on both the local and regional scales to state 21 

and federal agencies.  It is important that new, innovative approaches be developed that consider both the 22 

robustness of our infrastructure today and its ability to cope with forecasted extremes due to climate change.   23 

Because few streams are gauged to record their flows, road-stream crossings are almost always designed 24 

without adequate knowledge of what floods flows that will occur in the future.  Hydrologic predictions at 25 

these ungauged locations are difficult and few techniques exist that can accurately estimate extreme flows 26 

without long-term precipitation and streamflows records.  Robust analysis using either statistical or physically 27 

based models within a multi-model framework is a useful approach in quantifying the degree of uncertainty 28 

and variability across models at these ungauged, road-stream crossing locations.  29 

This paper reviews background information associated with the development of a hydrologic vulnerability 30 

protocol system for road-stream crossings currently being piloted in the Deerfield River basin, focused 31 

primarily on predicting flows in ungauged basins and  estimating flood flows for current and future climate 32 

scenarios. Finally, a framework for a decision support tool is discussed within the context of providing 33 

hydrologic flood predictions at road-stream crossings within an online interactive map interface.   34 



1.2 Problem Description 35 

Recent research has explored the ecological impacts of road-stream crossing infrastructure (MA DOT, 2010; 36 

Bates et al., 2003; Jackson, 2003; Jackson et al., 2011; MA DER, 2012; Januchowski-Hartley et al., 2014; 37 

Januchowski-Hartley et al., 2013; Zarriello and Barbaro, 2014; Pépino et al,. 2012; Andersson et al., 2000; 38 

Nagrodski et al., 2012). Specifically, understanding the spatial extent and magnitude of barriers to fish passage 39 

poses significant challenges to engineers, biologists, and decision-makers. Parallel to this ecological 40 

motivation also exists a regional, national, and global effort to better understand the vulnerability of our 41 

transportation network and road-stream crossing infrastructure in the face of climate uncertainty (CT DOT, 42 

2013; VTRANS, 2012; U.S. FHWA, 2012; Furniss et al, 1998; Chang et al, 2010; Kalantari et al, 2014; 43 

Rosenberg et al, 2010). This includes both estimating the appropriate hydrologic data at road-stream crossings 44 

and the hydraulic modeling necessary for accurately representing the system.  45 

The most challenging aspect of estimating hydrologic and hydraulic vulnerability at road-stream crossings is 46 

the systemic lack of data. More directly, there are very few (if any) long-term continuous records at these 47 

locations. Streamflow data are fundamentally important because they provide the best estimate of the true 48 

natural system. Currently, the problem of insufficient data are mostly due to the cost of building, operating, 49 

and maintaining streamflow gauges that are able to provide reliable and accurate measurements. It is not 50 

practical (or necessary) to have stream gauges at every location on a river. However, the importance of 51 

collecting streamflow data at systematic locations in a region cannot be overstated.  These data allow an 52 

interpretation of the natural hydrologic response of a watershed to perturbances, such as intense precipitation 53 

events,  as well as provide an ability to determine how other hydrologically similar systems might respond to 54 

these perturbances.  55 

The estimation of hydrologic extremes (e.g. floods) at locations with no streamflow gauge data has great 56 

uncertainty. These uncertainties are categorized into aleatoric and epistemic uncertainties (Bevin, 2013). 57 

Aleatoric uncertainties are uncertainties that are derivative of the irreducible complexity of natural systems. 58 



These uncertainties account for the apparent randomness of nature that are assumed or expected to be 59 

irreducible.  Epistemic uncertainties are those that result in uncertainties associated with knowledge. These 60 

are the uncertainties that could be better understood under a classic reductionism approach and include for 61 

example: hydrologic model structural error or even a simple lack of data (precipitation, streamflow, climate, 62 

etc.). Of these epistemic uncertainties, hydrologic model choice can play a significant role in the uncertainty 63 

associated with estimating the high-flow events necessary for the engineering and design of road-stream 64 

crossing infrastructure.  65 

This research provides estimations for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals at road-66 

stream crossings (ungauged) in the Northeastern US using statistical and process-based hydrologic modeling 67 

approaches for both current and future climate scenarios. Impacts of hydrologic model choice within a road-68 

stream crossing vulnerability assessment framework are identified.  These efforts support a multi-disciplinary, 69 

systems-based model for assessing the vulnerability of road-stream crossings across the Northeastern US 70 

region that include hydrologic/hydraulic vulnerability as well as ecologic, geomorphic, structural, and 71 

transportation network disruption vulnerability metrics. Taken together, these different disciplines provide a 72 

more holistic perspective on the risk and vulnerability of our road-stream crossings, meeting the needs for 73 

both human-use and ecological integrity.  The multiple-model framework on the hydrologic side provides 74 

insight into the level of uncertainty associated with the many models that are available for making these 75 

predictions at ungauged locations.  76 

Decision support tools have become increasingly common in the region for several objectives including 77 

prioritization of stream-barrier removal (Neeson et al., 2015; McGarigal et al., 2011), assessing ecological 78 

impacts of road-stream crossings (TU, 2015; Martin and Apse, 2011), predicting road culvert passability for 79 

migratory fishes (Januchowski-Hartley et al., 2014), and assessing aquatic connectivity through network 80 

analysis methods  (McKay et al, 2013). Significant interest exists globally to develop decision support tools 81 

towards these ends (Lawrence et al, 2014 ; O’Hanley, 2011; Gauthier et al, n.d; Kemp et al, 2010 ).  This 82 

research integrates hydrologic flood forecasts at ungauged locations, including at road-stream crossings, 83 



within an interactive web-based decision support tool to provide a vehicle towards actionable science for 84 

both infrastructure design and ecological connectivity.  85 

 86 

1.3 Background 87 

1.3.1 Implications of Interacting Linear Networks 88 

Humans profoundly transform river landscapes by altering watersheds, climate, and channels, which in turn 89 

modify the hydrologic, biotic, and sediment fluxes through river systems (James and Marcus, 2006; Blanton 90 

and Marcus. 2009). Transportation and fluvial systems both function as linear systems that are strongly 91 

dependent on continuity. A  discontinuity for either system poses significant challenges in their ability to 92 

convey people and materials, in the case of transportation, and environmental services, in the case of rivers.  93 

The ubiquity of these linear networks across the landscape results in frequent interception and interaction 94 

between these systems. Ultimately, water flow is a “master variable” (Power et al, 1995) that is the primary 95 

influence on the fundamental nature of streams and rivers (Poff et al. 1997; Hart and Finelli 1999) and 96 

modification of flow regime from human activity intuitively suggests the consequential alteration of the 97 

structure and function of fluvial ecosystems (Petts, 1984; Chisolm, 1994; Yeager 1994; Ligon et al., 1995; 98 

Ward and Stanford, 1995; Stanford et al., 1996; Poff et al., 1997; Bednarek, 2008). There are few studies that 99 

provide insight to the ecological effect of hydrologic alteration due to discontinuities at the catchment scale in 100 

the region, especially with respect to studies that provide information on the long-term ecological responses 101 

to conservation and restoration efforts like barrier mitigation.   102 

The biological impacts from fragmentation of streams and rivers are complex and interconnected. For 103 

example, the inability for riverine (or native, non-migratory) fish species to traverse the length of the full 104 

extent of the river subsequently affects the ability for native freshwater mussels to complete the reproductive 105 



life cycle. Freshwater mussel larvae, or glochidia, typically need to attach to an aquatic vertebrate (usually to 106 

fish gills) for a period of a few days to a few months where they then release and develop into juvenile 107 

mussels in a new location (Nadeau, 2008).  Loss of fish species in areas upstream of impassable barriers will 108 

eliminate already threatened mussel assemblages and likewise, restoring these species by barrier mitigation 109 

efforts will likely help restore these populations (Smith, 1985).  This is just one example of an biological and 110 

ecological implication of fragmented fluvial networks in the region.  It is estimated that three-quarters of the 111 

297 native mussel species in North America are imperiled and 35 species alone have thought to have gone 112 

extinct in the last century (Bogan, 1996).  113 

The success of aquatic passage at these road stream crossings is ultimately a function of the geometry of the 114 

road-stream crossing infrastructure (e.g. culvert or bridge), which may cause physical or velocity barriers for 115 

migrating species.  For example, a culvert generally constricts flow area at a road-stream crossing and as a 116 

result, velocities are often increased through the structure (Bodhaine, 2015). This velocity is often further 117 

impacted by the culvert substrate which is generally of lower roughness than the natural streambed. The 118 

grade of the culvert can also seriously impact road-stream crossings as a raised slope further increases 119 

velocity. Some culvert outlets are raised above the downstream water surface to an elevation that prevents 120 

aquatic organisms from passing. Either the outlet pool depth is not sufficiently deep for species to generate 121 

an approach velocity or the elevation differential between the culvert outlet and the outlet pool is too great 122 

for a fish to overcome (i.e. perched).  123 

Effective culvert design for both adequate drainage and aquatic organism passage requires an understanding 124 

of the local hydrology,  insight into the maximum and minimum design flows, and anticipated flows during 125 

critical time periods for aquatic passage. The ubiquity of road-stream crossings, coupled with a systemic lack 126 

of streamflow data, makes the accurate estimation of local hydrology across a broad region challenging. Since 127 

most of these road-stream crossings exist in absence of stream gauge data, the design of culverts and bridges 128 

on these stream must be informed by “best estimates” of flow at these ungauged locations. 129 



1.3.2 Road-Stream Crossing Vulnerability and Barrier Prioritization 130 

Much interest has been paid recently to understanding the ecological impacts of road-stream crossing 131 

infrastructure in the northeast region. From a broad perspective, habitat loss and fragmentation are leading 132 

drivers of declining biodiversity and ecosystem services across the world (Sala et al., 2000; Tilman et al., 2001; 133 

Fahrig, 2004) and implementation of both landscape corridors and barrier mitigation, including stream 134 

restoration, ecologically informed culvert design, and dam removal, are widely used as effective strategies for 135 

reducing fragmentation (Bednarek, 2001; Damschen et al., 2006; Neeson et al., 2015).  The concept of 136 

“connectivity” may serve to represent and encapsulate the ultimate goal in the assessment road-stream 137 

crossing vulnerability, barrier prioritization, and aquatic connectivity research. Connectivity is defined here in 138 

its most broad sense including the spheres of ecological, hydrological, geomorphological sciences and the 139 

feedback between these disciplines and the local, regional, and global human populations.  Unlike the field of 140 

ecology, little consensus exists for a standard definition of connectivity with respect to hydrological and 141 

geomorphological systems.  Connectivity is defined here as having three characteristics (Bracken and Croke, 142 

2007): (1) landscape connectivity; (2) hydrological connectivity; and(3) sedimentological connectivity. These 143 

three types of connectivity, in addition to an established notion of ecological connectivity, serve to represent 144 

ideals for the fluvial and transportation networks for road-stream crossing vulnerability and barrier 145 

prioritization research.  146 

The Federal Highway Administration (FHWA) created guidelines in the past decade to achieve greater 147 

interagency cooperative conservation with respect to infrastructure planning, design, review and construction 148 

that emphasizes approaches that are more sensitive to wildlife and their ecosystems (FHWA, 2006).  149 

Motivations for creating these guidelines include the principles stated in the National Environmental Policy 150 

Act (NEPA) and Executive Order (EO13352) on Facilitation of Cooperative Conservation as well as an 151 

Executive Order (EO13274) for Environmental Stewardship and Transportation Infrastructure Project 152 

Reviews.  These guidelines set a national precedent in the U.S. within the transportation sectors to promote 153 

principles of conservation and connectivity in the context of infrastructure design.  154 



At the state level, the Massachusetts Department of Transportation (MassDOT) has prepared its own 155 

guidelines to underscore the importance of designing new and replacement bridges and culverts to 156 

accommodate fish and other wildlife passage at road-stream crossings (MassDOT, 2010).  In Massachusetts, 157 

state and federal regulations of stream crossings apply requirements based on the Massachusetts River and 158 

Stream Crossing Standards developed by the ‘Massachusetts River and Stream Continuity Partnership’ in 159 

2006 (revised again in 2011).  This partnership includes the University of Massachusetts Amherst, The Nature 160 

Conservancy, the Massachusetts Division of Ecological Restoration (DER) Riverways Program, and 161 

American Rivers.  The stream crossing design standards developed through this partnership establish the 162 

paradigm to which all road-stream crossing infrastructure should be built to accommodate ecological, 163 

hydrologic, and geomorphic connectivity.  The diverse technical committee that supported the development 164 

of these standards included the US Fish and Wildlife Service, USGS BRD, UE EPA, US Army Corps of 165 

Engineers, MA Division of Fisheries and Wildlife, Connecticut River Watershed Council, Connecticut DEP, 166 

and hydraulic engineering consultants.  The standards adopted a “stream simulation” design approach in 167 

which, at a fundamental and conceptual level, flows through a road-stream crossing should be no less 168 

constrictive than the natural river channel.  This implies that no impairment to movement for aquatic 169 

organisms should occur and thereby maintaining connectivity in a full sense of the word.  170 

At a regional level, the North Atlantic Aquatic Connectivity Collaborative (NAACC) provides a participatory 171 

network of practitioners across thirteen states that serves to provide multiple levels of support for road-172 

stream crossing field assessments including: unified protocols for road-stream crossing assessments; online 173 

field assessment training; database repository for field assessment data; a watershed level crossing assessment 174 

prioritization tool; and general support for conducting road-stream crossing assessments throughout the 175 

region (NAACC, 2014).  Field assessments of road-stream crossings are currently an important step in the 176 

ecologic, hydraulic and geomorphological assessments. However there has been less research on estimating 177 

the passibility at road-stream crossings (Januchowski-Hartley et al., 2014), as well as measuring the ecological 178 

integrity of road-stream crossings through remote sensing and GIS analysis alone (McGarigal et al., 2011).  179 

Although research has addressed road-stream crossing vulnerability and barrier prioritization in the region 180 



(e.g. MA DOT, 2010; Bates et al., 2003; Jackson, 2003; Jackson et al., 2011; McGarigal et al., 2011; MA DER, 181 

2012; Januchowski-Hartley et al., 2014; Januchowski-Hartley et al., 2013; Zarriello and Barbaro, 2014; Pépino 182 

et al. 2012; Andersson et al., 2000; Nagrodski et al., 2012), understanding the spatial extent and magnitude of 183 

barriers to fish passage still poses significant challenges to engineers, biologists, and decision-makers.  184 

 185 

1.3.3 Predicting Flows at Ungauged Locations 186 

Road-stream crossings are numerous and as a result are almost always at locations that do not have a 187 

streamflow gauge. Therefore, these locations are considered “ungauged” from a hydrological perspective.  188 

Ungauged locations have inadequate records (in terms of both data quantity and quality) of hydrological 189 

observations to enable an accurate estimate of hydrological variables of interest (e.g. high flows) (Silvapalan et 190 

al., 2003).  Predictions in ungauged basins (PUB) have been a research topic for decades.  More recently, the 191 

International Association of Hydrologic Sciences (IAHS) dedicated the decade from 2003 to 2013 to 192 

furthering the research of predictions in ungauged basins. Apart from a fundamental lack of data in making 193 

these predictions, one of the main challenges is understanding the uncertainty inherent to these predictions, 194 

whether it be from climatic inputs, land-cover, soils, vegetation, or even from the model structure used to 195 

inform the predictions/forecasts.  This challenge is further exacerbated by a historic fragmentation of 196 

approaches and methods in making predictions in ungauged basins across the world.  This has led to a 197 

“cacophony of noises” as opposed to a “harmonious melody” within the scientific hydrology community 198 

(Blöschl  et al., 2013). The authors believe that the gluttony of hydrologic models used in the field across the 199 

world is one symptom of this fragmentation phenomenon in the field of hydrology.    200 

There are several methods that are used when predicting flows in ungauged basins. These methods can be 201 

broadly categorized into two different categories: statistical and process-based (Figure 1).  Statistical methods 202 

use available runoff time series data from neighboring catchments (donor catchments) to estimate runoff 203 

hydrograph at ungauged locations based on one or more similarity measure. An advantage of statistically 204 



based runoff simulation methods is their simplicity of input, as they do not require variables like precipitation, 205 

evapotranspiration, or other climactic variables.  In addition, these methods, once developed, are typically less 206 

data intensive than process-based methods to utilize.  However, the process-based methods are often the 207 

preferred methods for hydrologists as they allow for more flexibility in the modeling process such as the 208 

ability to simulate different land-use or climate change scenarios, as well as provide a way to interpret the 209 

hydrologic landscape of a single catchment: an opportunity that many stochastic methods do not allow.  A 210 

more detailed description of these two categories will be discussed in the following section.  211 

 212 

Figure 1: Different approaches for making hydrologic predictions in ungauged basins. 213 

Implementation of any hydrologic model at an ungauged location can be particularly challenging. As 214 

previously mentioned, the largest challenge in predicting flows at ungauged locations is that there are no data 215 

to verify or calibrate a hydrologic model. Understanding this challenge and the uncertainties implied by this 216 

fact is essential when developing protocols for assessing the hydrologic/hydraulic vulnerability at a road-217 

stream crossing.  Due to the lack of streamflow gauge data at these road-stream crossing locations, stream 218 

discharge cannot be known with certainty. Instead hydrologic modeling tools applied intelligently can help 219 

inform what the stream discharge might be during a given period, but until long term continuous streamflow 220 

data are collected at these locations, it is impossible to know for certain.  221 

 222 



1.4 Hydrologic Modeling at Ungauged Basins 223 

1.4.1 Stochastic 224 

Stochastic approaches to estimating streamflow include regression equations, index methods, and 225 

geostatistical methods.  The use of regression equations to directly transfer the full hydrograph to an 226 

ungauged location is rather unusual (Blöschl et al., 2013).  More often, regression equations are used to 227 

estimate the flows for specific return intervals and not the full hydrograph.  Geostatistical methods (Gandin, 228 

1963; Martheron, 1963) to estimate the runoff hydrograph are relatively uncommon. Geostatistical methods 229 

exploit the spatial correlation of the variable of interest and provide an estimate of that variable as the 230 

weighted average of the measurements in the neighborhood (Blöschl, 2013).  Skoien and Blöschl  (2007) 231 

proposed ‘spatio-temporal top-kriging’ to estimate runoff time-series at all locations of a river network.  This 232 

method avoids precipitation data errors and also avoids the parameter identifying issues associated with 233 

traditional process-based models (Blöschl , 2013).  234 

The most commonly applied statistical approach to estimating flows are index methods.  These methods are 235 

strongly reliant on an assumption of similarity between the ungauged (recipient) catchment and a gaged 236 

(donor) catchment.  The simplest and most common index methods assume that the time series of runoff, 237 

once normalized by the mean flow, is identical between the donor catchment and the ungauged catchment. 238 

The drainage-area ratio method (Stedinger et al., 1993) is the most widely used index method. The drainage-239 

area (DA) ratio method assumes that the runoff at the donor and recipient ungauged catchments only differ 240 

because the sizes of the drainage areas at the respective catchments are different and that for a given time the 241 

runoff per unit area at the donor and recipient catchments are equal (Stedinger et al., 1993).  242 



1.4.2 Process-Based 243 

Process-based methods of predicting runoff in ungauged basins is the alternative approach to statistically 244 

based models. These models, also known as physically-based or deterministic models, describe the spatial 245 

variability of hydrological processes through mathematically determining conservations of mass and 246 

momentum of water across a landscape.  Process-based hydrologic models are an important evolutionary step 247 

in representing hydrological processes and spatially distributed data.  Their complexity and application have 248 

increased since the first computer-based rainfall-runoff model (RRM) was developed in the 1960s (Crawford 249 

and Linsley, 1966).  The need for better representation of physical processes in space and time is evident, 250 

especially considering the explosion of accessibility of digital products (e.g. elevation, soil, and vegetation) 251 

along with new technologies for measuring temporal and spatial variability in precipitation (Yu, 2003). 252 

Process-based hydrologic models can be grouped into three categories that are representative of their 253 

respective discretization of space, or essentially how the models “interpret” the landscape (Figure 2).  This 254 

characterization is model specific and involves transferring the continuous landscape into discrete 255 

counterparts that are used in ensemble to represent the spatial extent being modeled as a whole. Depending 256 

on the application, different RRM have different advantages.  257 



 258 

Lumped conceptual models are generally applied at a single point or a region for the simulation of 259 

hydrological processes.  These models are typically less complex than the distributed models.  The 260 

parameterization of a lumped conceptual model is relatively simple.  For example, input data (e.g. land use, 261 

soil type) used in these models are typically averaged or weighted across the extent of the landscape, 262 

effectively reducing landscape heterogeneity.  The result of this discretization method is often described as an 263 

advantage in computational efficiency.  One general disadvantage of lumped-conceptual watershed RRMs is 264 

that, in reducing the sub-basin scale variability, the model parameters that were designed to represent physical 265 

properties may become obscured during regression based regionalization.  266 

Discretization using a grid-based method distributes the variability of landscape features uniformly based on 267 

the resolution (cell size) appropriate for the site being modeled and hence, these types of models are typically 268 

called ‘distributed models.’  Hydrologic response units (HRUs) lay between lumped-conceptual and grid-269 

based discretization where smaller subbasins, or sometimes referred to as reaches, are appropriated across a 270 

catchment and are commonly referred to as having a ‘semi-distributed’ model structure.  Landscape variability 271 

is distributed across these reaches (HRUs) which can vary in area, depending on the spatial extent of the site 272 

being modeled.  273 

 

Figure 2: Representations of three types of physical model discretization: (a) lumped conceptual; 
(b) distributed hydrological response units (HRUs); (c) distributed grid-based. For the purposes of 
this report, we considered lumped conceptual and HRU-based discretization to be grouped as one 

under “physical HRU-based.”     [Borrowed from © the COMET Program] 



In applying a typical process-based hydrological model application (Figure 3), the first steps are to identify the 274 

watershed of interest as well as the streamflow gauges that have adequate and reliable historical records.  It is 275 

almost always necessary to choose streamflow gauges that are not impacted by reservoir operations and are 276 

representative of natural flows in the system.  The next step is to discretize the landscape, which will vary by 277 

model (Figure 2), and compute the necessary data needed for the model to represent the natural hydrologic 278 

system (e.g. river channel slope; land-use or soil types across the landscape; elevation data, etc.). Next, the 279 

input drivers to the model are identified, collected, and assimilated into the proper format. These data usually 280 

include at a minimum temperature and precipitation, however more complex models require more data such 281 

as potential evapotranspiration, cloud cover, and radiative energy (for example).  Finally, the model is 282 

calibrated to the stream gauge at the basin outlet by adjusting model parameters.  The model must be 283 

validated to ensure that it is appropriate and calibrated properly.  It is important that there be clear calibration 284 

and validation periods and that they do not overlap.  This step compares and statistically tests the fit of the 285 

calibrated model parameters and ensures that the physical processes represented adequately.  If the model 286 

fails in its validation, it is then necessary to repeat the process to ensure input data are well-represented 287 

and/or assumptions are correct.   288 



 289 

Figure 3: Conceptual flow diagram of a typical catchment based hydrological (rainfall-runoff) model 290 
application. 291 

The extensive data input requirements of many of these process-based RRMs represent a significant challenge 292 

associated with use of these tools.  Data collection, model development, parameter sensitivity analysis, and 293 

calibration/validation processes require significant resources of time and effort  In addition, professional 294 

experience is required to properly implement these models. However, there are distinct advantages of 295 

process-based hydrologic modeling. One of the most important assets of these models is their ability to 296 

respond to perturbations introduced by the modeler when assessing how these impacts might impact the 297 

hydrology of the modeled system.  For example, future climate change impacts can be interpreted directly 298 

using a well-calibrated RRM by modifying the meteorological drivers such as precipitation and temperature.  299 

Future drought conditions or flood conditions could be interpreted from scenarios with process-based 300 

models whereas statistical models are generally unable to easily incorporate such inputs.  In addition, RRMs 301 

provide a more site-specific understanding of hydrologic response at the catchment level in comparison to 302 

statistical methods.  303 

The primary challenge of process-based, rainfall-runoff modeling methods at an ungauged location is the lack 304 

of local runoff data that could be used for model selection and calibration (Blöschl, 2013). This is also called 305 



the regionalization problem in hydrological modeling.  Regionalization can be defined as the process of 306 

transferring hydrological information (e.g. process-based model parameters) from one catchment to another 307 

(Blöschl  and Sivapalan, 1995).  Regionalization without runoff data can be a very difficult task and may be 308 

approached in several different ways (see Figure 4).  309 

Catchment characteristics such as soil type, land-use type, stream hydraulic geometry, or topography (to only 310 

name a few) can be used to provide an estimate for what the model parameters where runoff data are 311 

unavailable.  This “a-priori” approach is typically done without calibration of neighboring catchments and 312 

requires model specific knowledge as well empirical type relationships regarding how parameters are related 313 

to these catchment physical properties. 314 

 An alternative parameter estimation approach is the transfer of calibrated model parameters from a gauged 315 

catchment (or multiple gauged catchments) to the ungauged catchment.  This is a commonly used technique 316 

and can be applied in several different ways.  Spatial proximity, similarity, and model averaging methods are 317 

the most simple and straightforward methods that assume that the calibrated model parameters from 318 

hydrologically similar or adjacent catchments are also valid at an ungauged basin.  Regression between 319 

calibrated model parameters and catchment characteristics is an alternative approach of parameter transfer.  320 

Finally, parameters may also be constrained by runoff characteristics and/or dynamic proxy data.  This 321 

approach involves the use of dynamic data in the ungauged catchment such as soil moisture or regionalized 322 

runoff to reduce uncertainty in the model parameters.  For example, a short runoff record in an ungauged 323 

catchment, if it is available, may be leveraged to provide information regarding rainfall-runoff model 324 

parameters (Seibert and Beven, 2009).  These approaches are not mutually exclusive and can be used in 325 

tandum to provide the most suitable estimate of model parameters at an ungauged site.  326 



 327 

1.4.3 Evaluating Model Performance 328 

There are many ways to evaluate hydrologic model performance and there is much research on the subject 329 

(see Krause et al., 2005).  A brief accounting of some of the commonly used goodness-of-fit (GOF) 330 

performance criteria are listed in Table 1 and are described below.  331 

The coefficient of determination (R2) is used to describe and measure the amount of variance explained by 332 

the model.  This value ranges from 0 to 1, with unity representing a model of perfect fit. The coefficient of 333 

determination is equal to the ratio of explained variation to the total variation and can be represented as the 334 

square of the correlation coefficient r. The R2 value is one of the most common goodness-of-fit measures for 335 

hydrologic models.  336 

 

Figure 4: Conceptual schematic representation for estimating parameters in process-based 
models for ungauged basins. (a) A-priori estimation of model parameters from catchment 

characteristics; (b) transfer of calibrated model parameters from gaged catchments; (c) 
constraining model parameters by regionalized runoff characteristics; (d) constraining model 

parameters by dynamic proxy data.  [Figure 10.20 and caption from Blöschl et al., 2013. 
Runoff Prediction in Ungauged Basins, pg. 247] 



The Nash-Sutcliffe Efficiency (NSE) value was proposed by Nash and Sutcliffe in 1970 as a modification to 337 

the mean-square-error (MSE) goodness-of-fit value.  This is one of the most popular transformations of the 338 

MSE (Singh, 2014).  The NSE can be interpreted as a classic skill score where skill is the comparative ability 339 

of a model with regard to a baseline model.  The NSE value ranges from negative infinity to 1. If the NSE 340 

value is 0, then the model is no better than using the observed mean as predictor.  If the MSE is zero, then 341 

NSE is unity indicating the model is a perfect fit.  342 

The NSE value has been criticized for its inability to infer a sampling distribution (McCuen et al., 2006) as 343 

well as the inadequacy of the metric to fully capture a model’s performance (Jain and Sudheer, 2008).  In 344 

addition, it ignores the degrees of freedom in the data, does not apply an exact probability function, is prone 345 

to subjective interpretations, has no lower bound, and is sensitive to outliers (personal communication with 346 

Richard McCuen, 2015).  However, the NSE can be applied to a wide range of model types and is commonly 347 

used in the literature..  348 

The KGE (Gupta et al., 2009) is a criterion that  decomposes the NSE (and MSE) value.  It has been used in 349 

hydrologic modeling as an objective function that serves to mitigate some (but not all) of the shortcomings of 350 

the NSE value.  The range of this value is between negative infinity to 1. The closer the model is to one, the 351 

more accurate the model is.  352 

Several other measures are also used to help quantify overall model goodness-of-fit.  Volumetric efficiency is 353 

proposed to circumvent some of the problems associated to the NSE value.  It ranges from 0 to 1 and 354 

represents the fraction of water delivered at the proper time (Criss and Winston, 2008).  The index of 355 

agreement is a standardized measure of the degree of model prediction error developed by Willmott (1981) 356 

and ranges between 0 and 1 with a value of 1 indicating a perfect match and 0 indicating no agreement at all.  357 

Its benefits include the ability to detect additive and proportional differences in the observed and simulated 358 

means and variances; however, similar to other measures, it has been demonstrated to be overly sensitive to 359 

extreme values due to the squared differences term (Legates and McCabe, 1999).  The percent bias measure 360 



measures the average trend of simulated values to be greater or smaller than observed values with an optimal 361 

value of 0.  Negative values indicate model underestimation. The result is often reported in a percentage.  362 

Table 1: Commonly used goodness-of-fit criteria used in hydrological modeling. 363 

  Name Abrv.  Equation Range 

(1) Root Mean 
Square Error 

RMSE       √
 
 

∑        
 

   

 0 to inf 

(2) 
Normalized 
Root Mean 

Square Error 
NRMSE            

√ 
 ∑          

   

  
 

0 to inf 

(3) Percent Bias PBIAS          
∑         

   

∑   
 
   

 0 to inf 

(4) Coefficient of 
Determination 

R2     [
 
 ∑      ̅      ̅  

   

    
]

 

 0 to 1 

(5) 
Nash-Sutcliffe 

Efficiency 
Value 

NSE       
∑          

   

∑      ̅   
   

   
   
  

  -inf to 1 

(6) 
Kling Gupta 
Efficiency 

Value 
KGE 

         

    √                     

    

  
 ;     ̅

 ̅
 

-inf to 1 

(7) Volumetric 
Efficiency 

VE       
∑ |     | 

   

∑   
 
   

 0 to 1 

(8) Index of 
Agreement 

d     
∑          

   

∑  |    ̅|  |    ̅|  
   

  0 to 1 

Notes: xi is a set of observations; yi                                                                        
                                                                                dard deviations for the 
observed and predicted data, respectively; MSE represents the mean-square-error; ED represents the 
Euclidean distance from the ideal point in the scaled space; r is the correlation coefficient; a is a 
measure of relative variability of the predicted and observed values; and b is the bias defined as the 
ratio of the mean and predicted flows to the mean of the observed flows.  

  364 



1.5 Estimating Flood Flows  365 

1.5.1 Regression Equations 366 

Developing empirical relationships between hydrologic variables of interest and catchment characteristics are 367 

used quite frequently to provide estimates in data sparse situations.  These regression equations are typically 368 

developed and tested using many streamflow gauges over a region of interest.  The greater the number of 369 

gauges used to develop relationships between catchment characteristics and hydrologic variables, the better.  370 

This approach harnesses the historical streamflow data over long periods of record to draw conclusions about 371 

a catchment’s response.  These analyses are then used to extrapolate what an ungauged catchment response is 372 

without any streamflow record at a site of interest. 373 

For floods, the regression approach assumes that there is a relationship between a flood peak runoff of a 374 

given return period and catchment/climate characteristics (Thomas and Benson, 1970).  In the U.S., peak 375 

flow regression equations have been developed on a state-by-state basis.  In Massachusetts, the analyses 376 

reported in the USGS Water-Supply Technical Paper 2214 written by Wandle (1983) serve to provide the 377 

regional peak flow regression equations (RPFE) across the different regions in the Commonwealth.  While 378 

applying these regression equations is straightforward, it should be noted that these flood estimations have 379 

not been updated by the state since they were published (to-date) and may be skewed by the stationary 380 

assumption (Milly et al., 2007).  The regression equations reported by Wandle (1983) are over 30 years old.  381 

 382 

1.5.2 Index Scaling Approach 383 

Index methods apply the principle of hydrologic similarity, including the assumption of temporal similarity.  384 

More precisely, the timing of flows in an adjacent or donor catchment is similar to the timing response of 385 

flows in an ungauged catchment.  The most powerful assumption for this method is that a time-series of 386 



runoff, once normalized by the mean flow, is identical between the donor catchment and the ungauged 387 

catchment (Blöschl , 2013).  For example, the drainage-area ratio method (Stedinger et al., 1993) assumes that 388 

the runoff between donor and ungauged catchment only differ because of their differing drainage-areas.  The 389 

assumption with this very simple and commonly applied model is that the runoff per unit area between donor 390 

and ungauged catchments are equal.  391 

 392 

1.5.2 Using the Daily Runoff Hydrograph 393 

When estimating flows from a continuous record of daily discharge, the first step is to determine the 394 

maximum average daily discharge for each year across the period of record in what is called an annual 395 

maxima series (AMS).  The AMS is then used to fit an appropriate distribution for these flows to extrapolate 396 

flood flows from the continuous daily record.  397 

There are two families of continuous probability distributions that are most commonly suggested as the initial 398 

choices for flood flow estimation:  the Generalized Extreme Value (GEV) distribution and the log Pearson 399 

type 3 (LP3) distribution.  Although the LP3 distribution was recommended by the U.S. Water Resource 400 

Council, recent research suggests that the GEV distribution is often preferred (Vogel, 1993), especially for the 401 

northeastern US region (Villarini and Smith, 2010; Vogel and Wilson, 1996).  The GEV has a cumulative 402 

distribution function,  403 

                  { [   (
   

 
)]

    
} 

where μ,  , and   are the location, scale, and shape parameters, respectively.  404 

The parameters of the GEV distribution are often estimated using the method of L-Moments which are 405 

analogues of traditional moments.  They were developed to provide estimators that were less sensitive to 406 



outliers and were therefore considered more robust (Hosking, 1990).  L-Moments are used to calculate 407 

quantiles that are similar to standard deviation, skewness, and kurtosis.  Although probability weighted 408 

moments can be used to estimate the distribution parameters, an advantage of the L-Moment approach is 409 

that they are easier to interpret, can calculate more accurate parameters for smaller sample sizes, and are 410 

nearly unbiased (Kochanek, 2010; Rowinski, 2001, Millington et al., 2011).  For a more detailed discussion of 411 

the application of L-moments for flood frequency analysis, see Kuczera and Franks (2011).  412 

A component of flood frequency analysis is the probability plot.  These plots present the annual exceedance 413 

probability (AEP) (defined as the inverse of the return storm year), and the discharge.  These plots provide 414 

the opportunity to visually evaluate the adequacy of the fitted distribution as an empirical probability 415 

distribution. The AEP for each observed peak discharge on record is often referred to as the plotting 416 

position.  The Cunnane plotting position, whose general form (Blom, 1958) can be represented by, 417 

      
    

      
 

where i is the rank of the high flow in the annual maxima series (AMS), n is the number of years in the AMS, 418 

and   is a constant whose value is 0.4, is used to estimate unbiased quantities that are used to plot with the 419 

fitted distribution (Cunnane, 1978; Kuczera and Franks, 2006; Stedinger et al., 1993).  A more complete 420 

discussion of plotting positions can be found in Stedinger et al. (1993).  In addition, statistical bootstrapping 421 

can provide the confidence intervals for the flood flow estimations providing more information regarding the 422 

uncertainty of the empirical distribution.  423 

It is important to consider the advantages and disadvantages of flood frequency analysis. For one, flood peak 424 

flows are the results of complex interactions of many different components associated with a rainfall event, 425 

antecedent conditions, and rainfall-runoff transformation.  Because peak flood records represent the 426 

integrated response of a storm event with the catchment in which the precipitation falls, they are able to 427 

provide a direct measure of flood exceedance probabilities (Franks and Kuczera, 2006).  As a result, this 428 



approach is less susceptible to bias that can affect alternative methods such as design rainfall approaches 429 

(Kuczera et al., 2003).  This comes with the disadvantages of:  the true probability distribution family for 430 

floods is unknown; short records may produce estimates with significant uncertainty; an inability to account 431 

for the physical processes that develop from land-use or climate changes in a catchment; and the issue of 432 

streamflow gauges often not being able to reliably capture the high flow events (Franks and Kuczera, 2006).   433 

 434 

1.6 Pilot Study in the Deerfield River Basin 435 

In May of 2014, the University of Massachusetts (UMass) Amherst, proposed to  the Massachusetts 436 

Department of Transportation to develop risk-based and data driven protocols for assessing the present and 437 

future extreme flood vulnerability of road-stream crossing infrastructure in the Massachusetts’s portion of the 438 

Deerfield River basin.  This project was to incorporate multiple dimensions of vulnerability for the road and 439 

stream network including present and future flood hydrologic conditions, geomorphic stability, ecological 440 

system accommodation, structural flood resilience, and transportation/emergency response service disruption 441 

impact (Figure 5).  The goals of the MassDOT Deerfield River Pilot (herein referred to as DRP) were to 442 

develop an innovative, systems-based approach to improve the assessment, prioritization, planning, 443 

protection, and maintenance of roads and road-stream crossings that are:  (1) proactive with respect to 444 

upgrading structures to account for climate change; (2) complimentary of existing MassDOT project 445 

development and bridge design processes; and (3) provides a decision-support tool (DST) that can be used 446 

during project planning and development phases.  447 



 448 

Figure 5: Holistic approach to vulnerability in the MassDOT Deerfield River Pilot (DRP) Project. 449 

 450 

The Deerfield River basin (Figure 6) straddles north-western Massachusetts and southern Vermont with a 451 

drainage-area of approximately 1722 km2.  It is a major sub-basin of the Connecticut River.  The largest 452 

tributary in the Deerfield basin is the North River with a total drainage-area of approximately 240 km2.  There 453 

is extensive hydroelectric-power generation (ten major dams) in the basin and the flows on this river are 454 

considered to be heavily altered by these activities (Friesz, 1996).  The basin is mostly undeveloped with only 455 

about 5.3% of the total area classified as developed and about 82% as forest according to the 2011 National 456 

Land Cover Dataset (NLCD).  There are approximately 1.48 km of stream length for every square kilometer 457 

of land in the basin calculated using the USGS National Hydrography Dataset (NHD+) dataset.   There are 458 

three USGS streamgages operated in the basin that are not impacted by the reservoir and dam operations.  459 

The catchments of these gages represent about 23% of the total drainage-area of the Deerfield River basin 460 

(Table 2).  Elevations in the Deerfield Basin range from about 35 meters above sea level in the Connecticut 461 

Valley Lowlands to about 1,202 meters in the ridges of the Berkshire Hills with a mean altitude of about 475 462 

meters.  Average annual precipitation in the basin is 107-112 cm in the low altitudes to 127-188 cm in the 463 



higher altitudes (PRISM, 2004; Knox and Nordenson, 1955).  Snowmelt in spring and evapotranspiration in 464 

summer and fall cause annual cyclical trends in mean monthly runoff, even though mean monthly 465 

precipitation is evenly distributed throughout the year (Gay et al., 1974).  466 

 467 

Figure 6: Deerfield River basin. 468 

  469 



 470 

Table 2: Selected catchment characteristics in the Deerfield River basin and the three unimpaired USGS 471 
streamflow gages.  472 

Catchment Property Deerfield 
Basin 

01170100 01169000 01169900 
Green 
River 

North 
River 

South 
River 

(11) (12) (14) 
Drainage Area (km2) 1718.23 107.66 231.24 62.78 
Mean Annual Precipitation (mm)a 1374.88 1384.04 1378.52 1289.08 
Mean Temperature (deg C)a 6.30 6.61 6.61 7.28 
Max Temperature (deg C)a 12.10 12.44 12.36 13.15 
Mean Elevation (m)b 475.11 413.51 430.79 343.22 
Mean Slope (deg)b 9.0 9.8 8.6 8.8 
North Facing (%)b 8.8 7.9 9.3 12.3 
East Facing (%)b 17.3 16.9 17.6 17.9 
Developed (%)c 5.3 3.0 4.4 6.8 
Forest (%)c 82.0 90.3 84.0 78.6 
Agriculture (%)c 5.9 3.8 7.8 10.0 
Hydrological Group B (%)d 23.3 20.8 22.1 16.3 
Hydrological Group C (%)d 1.9 0.7 0.7 0.8 
Hydrological Group D (%)d 5.4 1.3 10.1 9.5 
Stream Density (km/km2)e 1.48 1.67 1.40 1.31 
Notes: a PRISM (2011); b National Elevation Dataset; c NLCD (2011); d NRCS SSURGO Dataset; e 
NHD High Resolution Dataset 

 473 

Because there are a variety of hydrologic models that vary in complexity and structure, determining the effect 474 

of model choice on the vulnerability ranking of road-stream crossings is an important question for the DRP.  475 

Through an assessment of the differences between various hydrologic models at predicting flood flows, the 476 

uncertainty of these estimates can be better understood.  Comparing the models at locations where historical 477 

data are available,  it is possible to evaluate which models are more suitable for this particular region.  These 478 

are the benefits of the multiple-model framework as applied to the vulnerability ranking analysis. 479 

For the DRP, both process-based models and statistical models are employed to estimate a range of flood 480 

flows at the road-stream crossings in the basin (Figure 7).  These models are also compared at locations 481 



where historical streamflow data exists to determine model performance.  The data from the models used in 482 

this approach are incorporated into the hydrologic/hydraulic vulnerability ranking component of the 483 

vulnerability and risk assessment framework (Figure 8).   484 

 485 

Figure 7: Multiple model framework for DRP.  486 

 487 

Figure 8: Conceptual flow diagram for estimating flood flows and performing vulnerability ranking analysis.  488 

  489 



1.6.1 Vulnerability Analysis 490 

To calculate the hydrologic vulnerability, it is necessary to assess the hydraulics of road-stream infrastructure 491 

on an individual location basis to determine hydraulic capacity. There are many different types of crossing 492 

infrastructure resulting in a wide variety of hydraulic responses. The site specific nature of these crossings 493 

requires a set of simplifying assumptions that allow for the calculation of hydraulic capacity. The hydraulic 494 

capacity is defined as the upper threshold of discharge that the structure is able to pass before it reaches a 495 

critical failure state. The critical failure state differs depending on the type of crossing infrastructure. For most 496 

crossings, hydraulic capacity can be defined as the total amount of discharge that can pass with an allowable 497 

headwater to culvert diameter ratio of 1.2. Literature suggests that it is at this point that the headwater 498 

elevation becomes greater than the culvert and submerges the inlet (Bodhaine, 1968; Normann et al., 1985).  499 

Once a critical discharge capacity has been established, the discharges at the design exceedance probabilities, 500 

mainly the 10- and 50-year storms, at the crossing location can inform a high, medium, or low probability of 501 

failure. A crossing falls into the high category if the critical discharge capacity (Qcritical) is greater than the 502 

discharge for the 10-year storm. A crossing will fall into a medium risk category if it lies between the 10- and 503 

50-year storm discharge. If Qcritical is above the 50-year design storm, the crossing is binned in the low-risk 504 

category (Figure 9).  505 



 506 

Figure 9: Conceptual schematic for road-stream crossing vulnerability analysis. 507 

 508 

1.6.2 Future Climate Analysis 509 
 510 

Climate change is expected to impact the range of extreme hydrologic events, however, the precise impact of 511 

these changes is difficult to estimate.  Annual air temperature in the northeastern U.S. is projected to increase 512 

by an average of 5.3 degrees Celsius (˚C) by the end of the 21st century relative to 1961-1990 conditions 513 

(Hayhoe et al., 2007). While future climate models (e.g. AOGCM simulations) are able to detect confident 514 

trends in average temperature increases, there is much more variability in the precipitation signal for the 515 

future making trend predictions much less robust (Hayhoe et al., 2007). While at a seasonal time-step, future 516 

precipitation from future model scenarios suggest an increase in winter precipitation and little impacts on 517 

summer precipitation in the later part of the 21st century, even less is known about the change in frequency of 518 

    High                             Med    Low 



higher intensity precipitation events in this region.  There is much uncertainty in the modeling of future flood 519 

flows since the range of climate model simulations, which provide the driving input to the rainfall-runoff 520 

models, do not provide a clear consensus  on higher intensity storm events.  However, in the northeastern 521 

region both increasing trends in annual maximum instantaneous peak discharge and increasing trends in flood 522 

frequency have been noted (Collins, 2009; Armstrong et al., 2012; Hodgkins, 2010).  In addition, it has been 523 

suggested that New England hydroclimatic flood trends are congruent with the observed (increased) 524 

precipitation trends (Armstrong et al., 2014).   525 

Figure 10 provides a visualization of standard methods for estimating flood flows from the 75 years of record 526 

for the North River streamgauge in the Deerfield River basin.  The two solid lines represent the flows 527 

predicted from the fitted GEV distribution or the first half of the historical record (1940 to 1975) to the 528 

second half of the historical record (1976 to 2015) and demonstrate the impact of choosing a time-frame for 529 

which low-frequency, high flow events are estimated.  In this figure, the 90% confidence intervals for these 530 

two curves are presented to represent the uncertainty of both these estimations.  The uncertainty increases as 531 

the storm return period increases.  Based on this information, it appears that the magnitude and frequency of 532 

high-flow events in this region is increasing based on this historical streamflow record.  A 20% increase in the 533 

100 year storm between the two time periods is suggested.  534 



 535 

Figure 10: Split record at the North River USGS stream gauges (ID: 01169000). The solid lines represent the 536 
fitted GEV distribution for each half of the 75 years of record and the hashed-lines represent the 90% 537 

confidence interval for the GEV distribution model fit. 538 

 539 

1.6.3 Decision Support Tool  540 

As part of the MassDOT DRP, a decision support tool (DST) will be leveraged to provide flood flow 541 

estimations at ungauged locations throughout the Deerfield River watershed.  This information will be made 542 

publicly available through the Spatial Hydro-Ecological Decision System (SHEDS) framework, which is a 543 

web-based interactive mapping tool developed by the USGS (Figure 11).  544 



 545 

Figure 11: The USGS Spatial Hydro-Ecological Decision System (SHEDS) web-based interactive map.  546 

  547 
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CHAPTER TWO 1 

2.1 Abstract 2 

Catchment-scale hydrologic predictions for current and future climate are of interest to river 3 

restoration and conservation efforts in the northeastern U.S. and well-calibrated rainfall-runoff 4 

models are useful towards this end. However, most of the catchments in this region are ungauged or 5 

poorly gauged posing a significant challenge to hydrologic modelers. This research uses a multiple 6 

model framework with regression-based regionalization at ungauged locations in the Deerfield River 7 

Basin, a major tributary to the Connecticut River Watershed. Two process-based rainfall-runoff 8 

models that differ in complexity are compared and evaluated in the region for accuracy of simulating 9 

the daily runoff hydrograph. Catchment characteristics are calculated across the study area and are 10 

correlated to the parameters of the rainfall-runoff models with a higher degree of accuracy compared 11 

to simpler, commonly applied approaches. This study provides a framework for hydrological 12 

modeling at ungauged locations in the region that may be more suitable for addressing hydrology at a 13 

small-catchment scale as well as provides a viable framework for addressing impacts such as climate 14 

change and flood flows at a local level. Furthermore, this study provides a superior method for 15 

regionalization of rainfall-runoff model parameters for ungauged basins in the northeastern U.S. 16 

region.     17 



2.2 Introduction 18 

The importance of accurate predictions of hydrologic processes are critical to the support of the 19 

sustainable management of our water resources and increasingly, society looks to science for these 20 

predictions, driving the field of hydrologic sciences to continuously improve its capacity and 21 

reliability (Blöschl, 2013). However, the majority of rivers and stream reaches and tributaries in the 22 

world are ungauged or poorly gauged (Blöschl, 2013; Sivapalan et al., 2003; Young, 2006; Mishra and 23 

Coulibaly, 2009; Razavi and Coilibaly, 2012). These locations constitute what are called “ungauged 24 

basins” defined by Sivapalan et al. (2003) as locations that have inadequate records of hydrological 25 

observations, in terms of both data quantity and quality, to enable the reliable and accurate 26 

computation of hydrological variables of interest. Streamflow estimations serve as an important 27 

surrogate towards a more holistic interpretation of the hydrological and ecological regimes at a 28 

catchment scale and towards this end, there exist a variety of tools that can generate streamflow 29 

predictions over a range of time and space scales. However, these methods are almost always heavily 30 

dependent and driven by data.  The effects of this fundamental lack of data drives a need to better 31 

understand and compare the variety of different methods and approaches for estimating hydrologic 32 

response at locations with little to no streamflow data.  33 

There are two primary approaches to estimating streamflows at ungauged sites: process-based 34 

methods and stochastically-based methods. Stochastically-based methods include index methods for 35 

scaling flows from another gauged location, regression estimations of hydrologic variables such as 36 

flood flows, or geo-statistical methods that take into account spatial characteristics using, for example 37 

kriging techniques(Skøien et al., 2006). Process-based methods include the use of rainfall-runoff 38 

models (RRMs) to represent the surface runoff at a location based on mathematical modeling of the 39 

physical processes behind the hydrological components across a landscape. The deterministic 40 

approach inherent to RRMs provide unique advantages to hydrologists and water resource engineers 41 

as they provide an ability to interpret the hydrologic landscape more fully and also provide the 42 



opportunity to impose perturbations in the model input data (e.g. land-cover, meteorological data, 43 

etc.) and measure hydrologic responses: a unique ability of process-based modeling. The ability to 44 

collect data and measure the goodness-of-fit (GOF) of simulated hydrologic variables is also an 45 

important advantage of a process-based modeling approach.  However, RRMs are also heavily data 46 

driven and model parameters are estimated through calibration against observed historical 47 

streamflow data at a gauged location until the catchment and model behavior show sufficient 48 

agreement.   49 

Regionalization refers to the process of transferring hydrological information, for instance the 50 

parameters of a RRM, from one catchment to another (Blöschl and Sivapalan, 1995) and is a well-51 

recognized solution to provide time series of streamflow for ungauged basins (Young, 2006; Samuel 52 

et al., 2011; Razavi and Coulibaly, 2012). The process of regionalization may be satisfactory if the 53 

catchments are similar (hydrologically, topographically, climatically, ecologically) but error-prone if 54 

not (Blöschl and Sivapalan, 1995; Razavi and Coilibaly, 2012).  In addition, regionalization is widely 55 

regarded as a challenging task by hydrologists (Sivapalan et al., 2003, Oudin et al. 2008; Stoll and 56 

Weiler, 2010; Samuel et al., 2011; Razavi and Coilibaly, 2013) despite continued efforts in this area.  57 

 In recent decades, research has focused on the problem of regionalization for ungauged basins  of 58 

which much effort has stemmed from the Predictions in Ungauged Basins (PUB) research decade 59 

from 2003-2012 initiated by the International Association of Hydrological Science (IAHS) 60 

(Hrachowitz et al., 2013; Sivapalan et al., 2003; Blöschl, 2013).   Despite the significant research 61 

efforts over the past decade, the need to improve estimates and understand the effectiveness of 62 

different approaches remains (Hrachowitz et al., 2013; Steinschneider et al., 2014).  Currently, there is 63 

no universal method of regionalization for a given region or catchment and the common approach is 64 

testing and applying various regionalization methods to attempt to shed light on the most 65 

appropriate for a specific location (Samuel et al., 2011).  66 



 Several different regionalization approaches exist to estimate model parameters at ungauged 67 

locations.  Three common regionalization approaches include the spatial proximity method, model 68 

averaging, and regression techniques (Blöschl, 2013).  The most commonly employed and most  69 

straightforward methods are the spatial proximity and averaging methods in which one or more 70 

similar gauged catchments in the region are identified and the assumption is made that the parameter 71 

set derived from these donor (or analogue) catchments is also valid for the ungauged location 72 

(Blöschl, 2013).  In the spatial proximity approach, hydrological model parameters are estimated 73 

based on the assumption that hydrologic and climactic similarity are a function of distance from a 74 

specified location and a model parameter set at an ungauged location is assumed most similar to the 75 

closest gauged catchment (Merz and Blöschl , 2004; Vandewiele and Elias, 1995; Parajka et al., 2007; 76 

Bardossy, 2007; McIntyre et al., 2005; Oudin et al., 2008; Parajka et al., 2005).  The model averaging 77 

approach assumes that hydrologic and climactic similarity can be derivative of multiple donor 78 

catchments where catchments are selected based on proximity, catchment characteristics, or both 79 

(Goswami et al., 2007; Kim and Kaluarachchi, 2008; Seibert and Beven, 2009; Blöschl, 2013).   80 

A regression approach is often used in which calibrated RRM parameters are related to catchment 81 

physical and climate characteristics.  This approach assumes that the model parameters are closely 82 

related to catchment attributes, since the model parameters are designed to be representative of the 83 

functional behavior of catchment physical and climate driven processes (Merz and Blöschl , 2004).  84 

While this method is popular in regionalization studies (Abdulla and Lettenmaier, 1997; Seibert, 85 

1999; Merz and Blöschl , 2004; Hudecha and Bardossy, 2004; Wagener and Wheater, 2006; Oudin et 86 

al., 2008; Kling and Gupta, 2009), often low correlations between model parameters and catchment 87 

attributes are discovered and this method has been strongly criticized (Bardossy, 2007; McIntyre et al., 88 

2005; Oudin et al., 2008; Parajka et al., 2007; Zhang et al., 2009). However, regression-based 89 

regionalization of model parameters is inherently useful in elucidating the underlying influential 90 

characteristics of hydrologic response and has been successfully applied in the literature (see Razavi 91 

and Coulibaly, 2013). Although it has been suggested that parameter sets from neighboring gauged 92 



catchments may be more useful to estimate parameter sets on ungauged catchments than establishing 93 

relationships between catchment descriptors and model parameters (Merz and Blöschl, 2004; 94 

McIntyre et al., 2005; Kay et al., 2007; Oudin et al., 2008), the authors believe that this conclusion may 95 

be affected by model structure and complexity.  96 

Because of the numerous available hydrologic models, it is difficult to ascertain which RRM is best 97 

suited for a particular region or application or the degree of complexity that is appropriate for a 98 

specific application (Bevin, 2011).  However, given a set of models for a catchment that are 99 

considered appropriate for a given objective (e.g. estimating the daily runoff hydrograph or 100 

predicting the 50-year flood), hypotheses testing can be used to gain insight towards model suitability 101 

(Clark et al., 2011a; Beven, 2011; Beven et al., 2012).  An overabundance of RRMs may be 102 

symptomatic of an insufficient scientific understanding of environmental dynamics at the catchment 103 

scale (Clark et al., 2011a; Clark et al., 2011b).  This is not surprising given the difficulties in measuring 104 

and representing the heterogeneity inherent to natural systems (Koren et al., 2003; Duan et al., 2006;  105 

Grayson et al., 1992; Beven, 1989; McDonnell et al., 2007; Beven, 2002; Kirchner, 2006).  106 

Differences in the simulation of hydrologic processes and model structure can directly affect the 107 

accuracy of model results (Johnson et al., 2003). In addition, there have been few studies that have 108 

compared the results of differing watershed models applied to the same catchment. Summaries of 109 

this literature are given by Perrin et al. (2001) and Refsgaard and Knudsen (1996). A recent study 110 

focused on the assessment of different models for predicting the daily runoff  in a single catchment 111 

have discovered that models do indeed differ in their accuracy in predictions, however some models 112 

may be more well-suited than others depending on the hydrologic information of interest to the user 113 

such as peak flows (Linhart et al., 2013). Gan et al. (1997) reports that significant differences among 114 

simulation results from differing models applied in a common catchment were primarily due to the 115 

differences in the models’ runoff-generating mechanisms. Model complexity has also been 116 

investigated with respect to performance (Orth et al., 2015), however the results show that the 117 



definition of accuracy is dependent on the hydrologic variable being assessed. There have been few, 118 

if any, studies in the literature that have compared regression-based regionalization approaches across 119 

different models of varying complexity for a particular location.  120 

This paper assesses the responses of two different RRMs of varying complexity with a regression-121 

based regionalization approach. A more parsimonious lumped-conceptual model (HBV) and a 122 

slightly more complex semi-distributed model (HSPF) are commonly used for catchment scale 123 

rainfall-runoff modeling and are compared in this study.  The paper quantifies the accuracy of 124 

regression regionalization in forecasting the daily runoff hydrograph in ungauged basins.  Despite the 125 

small-scale heterogeneity and process complexity, the hydrologic response at the catchment scale is 126 

often characterized by surprising simplicity (Sivapalan 2003a) which can often be represented quite 127 

well by a lumped-conceptual model (Sivapalan, 2005).  Consequently, distributed and semi-128 

distributed RRMs are considered to provide a more realistic representation of the spatial 129 

heterogeneity of hydrological processes because of their more complex model structure.  A 130 

comparison of model performance as it relates to predictions in ungauged basins will be useful for 131 

directly comparing two different model structure types to help to identify appropriate regionalization 132 

approaches for the study region, provide an implicit accounting of emergent hydrological processes 133 

at the catchment scale, and create a framework for comparing the accuracy different RRMs within a 134 

small northeastern US catchment.  135 

Finally, because the Northeastern US hydrologic regime is heavily affected by dam operations at a 136 

larger catchment scale, modeling the surface runoff hydrograph accurately becomes incredibly 137 

challenging when applying RRMs. However, this type of approach is often implemented at these 138 

scales in the northeastern US region and studies have mostly focused mainly on larger catchments 139 

(e.g. Marshall and Randhir, 2008; Parr and Wang, 2015a; Parr and Wang, 2015b; Parr et al., 2014). 140 

The application of these models at this larger catchment scale may not be appropriate to draw 141 

conclusions about the hydrological responses at the smaller catchment scale, especially when using 142 



the daily runoff hydrograph generated by the RRMs to extrapolate other hydrologic variables of 143 

interest (e.g. flood flows).  In this respect, this paper provides a framework for hydrological modeling 144 

at ungauged locations in the northeastern US that may be more suitable for addressing hydrology at a 145 

small-catchment scale as well as suggest a more suitable method for addressing impacts such as 146 

climate change and flood flows at a local level. 147 

2.3 Study Area and Data  148 

2.3.1 Study Area 149 

The Deerfield River basin straddles the border between north-western Massachusetts and southern 150 

Vermont with a drainage-area of approximately 1722 km2.  It is a major sub-basin of the Connecticut 151 

River.  The largest tributary in the Deerfield basin is the North River with a total drainage-area of 152 

approximately 240 km2 (Figure 12).  There is extensive hydroelectric-power generation (ten major 153 

dams) in the basin and the flows on this river are considered to be heavily altered by these activities 154 

(Friesz, 1996).     155 



 156 

Figure 12: Overview of Deerfield River basin, selected watershed locations for both direct and 157 

indirect calibration/validation of RRMs, and climate station data locations.  158 

The Berkshire Hills physiographic province contributes most of the drainage area of the Deerfield 159 

River Basin.  It consists of narrow river valleys boarded by steep hillslopes.  The southeastern part of 160 

the basin is part of the Connecticut Valley Lowlands physiographic province where the topography is 161 

flatter than the Berkshire Hills (Fenneman, 1938; Friesz, 1996).  Elevations in the Deerfield Basin 162 

range from about 35 meters above sea level in the Connecticut Valley Lowlands to about 1,202 163 

meters in the ridges of the Berkshire Hills with a mean altitude of about 475 meters.  Average annual 164 

precipitation in the basin is 107-112 cm in the low altitudes to 127-188 cm in the higher altitudes 165 

(PRISM Climate Group, 2004; Knox and Nordenson, 1955).  Snowmelt in spring and 166 



evapotranspiration in summer and fall cause annual cyclical trends in mean monthly runoff, even 167 

though mean monthly precipitation is evenly distributed throughout the year (Gay et al., 1974).  168 

 169 

2.3.2 Data 170 

2.3.2.1 Climate Data 171 

Historical climate data used for modeling included precipitation, temperature, and potential 172 

evapotranspiration. Hourly precipitation was used exclusively for the HSPF model because of its 173 

model structure. A total of four stations were selected based on the time-period of record and quality 174 

of data, two of which are located in the Deerfield River Basin and two which are adjacent to the 175 

basin (Figure 12). These observations were selected based on their proximity to the basin as well as 176 

the continuity and temporal overlap of the historical records.  177 

Climate data was distributed across the subbasins in the HSPF model by the spatial proximity 178 

method. Climate data were averaged across the stations for the HBV model. Daily potential 179 

evapotranspiration (PET) was estimated using the Hamon (1963) method for the HBV model which 180 

computes the PET based on daytime length and the saturated vapor density calculated using the 181 

mean daily air temperature and a coefficient of 0.0065 (Hamon, 1963). The Hamon PET model was 182 

applied because of its simplicity of data inputs and accuracy (Lu et al., 2005; Federer et al., 1996; 183 

Vorosmarty et al., 1998; McCable et al., 2015).   184 



2.3.2.2 Surrogate and Observed Streamflow in Deerfield Basin 185 

There are seven streamflow gages as part of the USGS National Water Information System (NWIS) 186 

network, however, only three of these gages are considered unimpaired (Falcone, 2010), as there are 187 

several major dams in the basin (Table 3). These three unimpaired gages represent approximately 188 

23% of the total drainage area of the Deerfield River basin.  Forest cover is the dominant land-use 189 

type in each of these catchments and there is relatively little impervious or developed landscape. The 190 

North River is the Deerfield’s largest gaged unimpaired tributary with a historical observation record 191 

of about 73 years. The Green River and South River gauges (1170100 and 01169900) have periods of 192 

record of about 49 and 48 years, respectively.   193 



 194 

Table 3: Catchment characteristics of the three unimpaired streamflow gauges in the Deerfield River 195 
basin. These three catchments represent about 23% of the total drainage-area of the Deerfield River 196 

basin. 197 

 
01170100 01169000 01169900 

Catchment Property: Green River North River South River 

 
(11) (12) (14) 

Drainage Area (km2) 107.66 231.24 62.78 
Mean Annual Precipitation (mm)a 1384.04 1378.52 1289.08 
Mean Temperature (deg C)a 6.61 6.61 7.28 
Max Temperature (deg C)a 12.44 12.36 13.15 
Mean Elevation (m)b 413.51 430.79 343.22 
Mean Slope (deg)b 9.8 8.6 8.8 
North Facing (%)b 7.9 9.3 12.3 
East Facing (%)b 16.9 17.6 17.9 
Developed (%)c 3.0 4.4 6.8 
Forest (%)c 90.3 84.0 78.6 
Agriculture (%)c 3.8 7.8 10.0 
Hydrological Group B (%)d 20.8 22.1 16.3 
Hydrological Group C (%)d 0.7 0.7 0.8 
Hydrological Group D (%)d 1.3 10.1 9.5 
Stream Density (km/km2)e 1.67 1.40 1.31 
Notes: a PRISM (2011); b USGS NED (2002); c NLCD (2011); d NRCS SSURGO 
Dataset; e USGS NHD High Resolution Dataset 

 198 

The Connecticut River UnImpacted Streamflow Estimation (CRUISE) tool is used to estimate the 199 

streamflow at 12 additional major subbasins within the Deerfield River Basin to use as surrogate data 200 

for an indirect RRM calibration procedure. Vleeschouwer and Pauwels (2013) suggest that in the case 201 

of spatial gauging divergence, that is when no observed discharge records are available at the outlet 202 

of the ungauged catchment, the calibration can be carried out successfully based on a rescaled 203 

discharge time series of a “very similar” donor catchment. Because the Deerfield River Basin falls 204 

within the larger Connecticut River Basin, the CRUISE tool was applied. The CRUISE tool uses a 205 

geostatistical approach to select the donor catchment, calculates the cross-correlation coefficients of 206 



runoff with unimpacted streamflow gages in the Connecticut River Basin, and then interpolates these 207 

correlation coefficients in space using kriging (Blöschl  et al., 2013). For CRUISE, basin 208 

characteristics are computed using the online USGS Streamstats tool and these characteristics are 209 

then used in this procedure to identify the most suitable catchment. This method has been shown to 210 

give better runoff estimates than when choosing the nearest streamgage as the donor (Blöschl  et al., 211 

2013; Archfield et al., 2013) By increasing the number of subbasins modeled in the Deerfield basin 212 

using an indirect RRM calibration procedure in addition to the unimpaired NWIS gages, the authors 213 

believe that a more accurate representation of the physical hydrological processes and landscape 214 

heterogeneity could be obtained across the entire extent of the Deerfield basin (Figure 12).  215 

 216 

2.3.2.3 Catchment Characteristics 217 

Catchment characteristics were calculated from publically available raster datasets. The USGS 218 

National Elevation Dataset (NED) was downloaded and clipped to the catchment area where it was 219 

used to delineate the subbasins used in this study and derive the elevation, slope, and aspect 220 

characteristics. The USGS National Hydrography Dataset (NHD) was used to determine the total 221 

length of stream and the stream density of the subbasins. The National Land Cover Database 2011 222 

(NLCD, 2011) was used to determine the different types of land cover in the subbasins, which was 223 

reclassified to represent agricultural, forest, and developed land categories (Homer et al., 2011). The 224 

National Resources Conservation Service (NRCS) SSURGO database was used to estimate the 225 

different hydrological soil groups across the subbasins. Finally, the PRISM raster datasets were used 226 

to provide estimates of average annual climate characteristics (PRISM Climate Group, 2004). This 227 

particular dataset was chosen because it has been used extensively in evaluating annual normals for 228 

precipitation and temperature in addition to being homogeneously applied throughout the region as a 229 



single uniform dataset. Catchment characteristics were all chosen based on their hydrological value, 230 

but also based on their accessibility and ease of computation.  231 

 232 

2.4. Methodology 233 

Two process-based RRMs, Hydrologic Simulation Program Fortran (HSPF) and the Hydrologiska 234 

Byråns Vattenbalansavdelning (HBV) model, are applied to fifteen subbasins in the Deerfield River 235 

basin. Because of the lack of unimpaired stream gauge data within this basin, both direct and indirect 236 

calibration to historical streamflow data were applied. A split sample calibration and validation 237 

routine is applied using the shuffled complex evolutionary (SCE-UA) genetic algorithm for 238 

calibration with the Kling-Gupta Efficiency (KGE) criterion as the objective function. Finally, 239 

calibrated model parameters are related to catchment characteristics in the basin to inform regression 240 

based regionalization and the accuracy of this method is tested through comparison to two other 241 

commonly applied methods as well as through open and closed-form validation. The details of each 242 

step in the methodology are provided in the following subsections.  243 

 244 

2.4.1 Hydrologic models  245 

2.4.1.1 Hydrologic Simulation Program Fortran (HSPF) 246 

The Hydrologic Simulation Program Fortran (HSPF) model was selected for use in this study. HSPF 247 

has been applied across the northeastern US with much success (Taner et al., 2011; Srinivasan et al., 248 

1998; Johnson et al., 2003; Filoso et al., 2004) on the mid-Atlantic region (Seong et al., 2015; 249 

Gutiérrez-Magness and McCuen, 2005; Kim et al., 2007; Gao et al., 2014; Doherty and Johnston, 250 

2003) as well as other places throughout the world (Baloch et al, 2011; Bergman and Donnangelo, 251 



2000; Iskra and Droste, 2007; Saleh and Du, 2004). This model was selected based on its widespread 252 

use in the region as well as being one of the most mature RRMs in the field of hydrology.   253 

The HSPF model is a process-based, semi-distributed, continuous simulation watershed model for 254 

quantifying runoff and addressing water quality impairments associated with combined point and 255 

non-point sources (Bicknell et al., 1996; Johnson et al., 2003).  The model was derived from the 256 

Stanford Watershed Model (SWM) developed by Norman Crawford and Ray Linsley, which was 257 

developed in the early 1960’s and is credited as being the first computer based watershed model.   258 

The SWM was transformed into the Hydrologic Simulation Program Fortran (HSPF) in 1974 by the 259 

newly formed U.S. Environmental Protection Agency (EPA).  The HSPF model is currently 260 

maintained by the EPA and exists as a core watershed model tool in EPA’s software application 261 

BASINS (Better Assessment Science Integrating Point and Non-point Sources) in the current version 262 

4.0 (2013).  263 

BASINS was used to develop the HSPF model files as well as assemble the climate data needed for 264 

the model. The WinHSPF v3.0 interface within BASINS was used to automatically estimate the F-265 

Tables for all the reaches in the model for the channel routing sub-routine. Reaches within each 266 

subbasin were defined using automatic watershed delineation methods in BASINS using a minimum 267 

drainage-area threshold of 2.5 km2. A degree-day snow simulation was also applied for the HSPF 268 

model that uses a simple approach for estimating snow in the watersheds using minimum and 269 

maximum daily temperature data. The HSPF model was executed using WinHSPFLt called through 270 

the Windows 7 command line interface using RStudio and R (ver 3.2.1). Post-processing of the 271 

model output was performed using R coupled with the Python (ver 3.4.3) ‘wdmtoolbox’ package (ver 272 

0.9.0) that allowed the extraction of the model output data from the HSPF binary WDM files.  273 

In the HSPF model water mass and energy balances are simulated though the use of hydraulic 274 

response units (HRUs).  The model is typically used at a spatial resolution that ranges in extremes 275 

from 10 to 100 km2.  HRUs provide a distributed calculation of surface runoff, interflow, and 276 



groundwater flow to streams by processes that determine the fate of water through losses and 277 

storage.  Flows from the HRUs are typically directed to streams and routed by the kinematic-wave 278 

method to simulate streamflow.  HSPF can simulate any period from a few minutes to hundreds of 279 

years using a time step ranging from sub-hourly to daily.  Usually the model is executed for a time 280 

span ranging from 5 to 20 years or more using an hourly time step (Duda et al., 2012).  Input data 281 

includes both topographical controls and meteorological drivers.  Meteorological drivers can include 282 

various climate data such as hourly precipitation, estimates of potential evapotranspiration, air 283 

temperature. Topographical controls include vegetation, digital elevation model (DEM), 284 

hydrography, and a land-use type layers.  285 

Major elements of the HSPF model are reproduced from Crawford and Linsey (1966) in Figure 13. 286 

The calculations represented in this conceptual model diagram can be carried out by any number of 287 

reaches (HRUs) from any number of meteorological input stations.  Upper and lower zone storages 288 

control overland flow, infiltration, interflow, and inflow to the groundwater while these two zone 289 

storages also combine together with groundwater storage to represent soil moisture profiles and 290 

groundwater conditions (Crawford and Linsey, 1966). Surface runoff is simulated as essentially an 291 

infiltration-excess process and the output from each HRU represent the average response of the 292 

HRU to precipitation and are routed to a stream channel (Johnson et al., 2003). Flow is routed 293 

downstream from reach to reach by a kinematic wave method.  294 



 295 

Figure 13: Conceptual flow diagram of the HSPF model based on a similar figure for the SWM 296 
published by Linsey and Crawford (1966). 297 

2.4.1.2 Hydrologiska Byråns Vattenbalansavdelning (HBV Model) 298 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a process-based, continuous 299 

streamflow simulation watershed model that has been characterized as a semi-distributed conceptual 300 

model (Lindstrom et al., 2005; Parajka et al., 2007), however it is often applied in a lumped-conceptual 301 

structure (eg. Merz and Blöschl , 2004; Yu and Yang, 2000; Singh and Woolhiser, 2002; Berstrom 302 

1976).  The HBV model was named after the Water Balance Department of the Hydrological Bureau 303 

Sweden (Berstrom and Lindstrom, 2015) and designed by the Swedish Meteorlogical and 304 

Hydrological Institute (Berstrom, 1992). Motivation for developing this model arose from a need for 305 

hydrological research purposes in Sweden followed by hydropower system forecasting. Although the 306 

SWM had been tested in Sweden, the HBV model provided a less complex approach that was 307 

congruent to the data availability in the observation network at the time (Wetterhall, 2014).  308 



 This model has been applied in more than 50 countries around the world and has been used 309 

extensively in Finland, Norway and Sweden, especially in the development of nationwide 310 

hydrological mappings (Bergström, 2006). In addition, new guidelines for flood prediction 311 

established in 1990 in Scandinavia included the HBV model as part of the design procedure 312 

(Flödeskommittén, 1990; Bergström et al., 1992; Norstedt et al., 1992; Bergström, 2006).  Even 313 

though the model was originally developed for use in Scandinavia catchments, it has been effectively 314 

applied in tropical and subtropical areas as well (Bhatia et al., 1984; Haggstrom et al., 1990; Zhang and 315 

Lindstrom, 1997) and while the application of the HBV model has yet to be used extensively in the 316 

northeastern US, it holds significant promise as an applicable model to the region based on its 317 

original conception and application across cold, mountainous European climates. 318 

Input to the TUW model includes daily precipitation, air temperature, and potential 319 

evapotransipiration estimations. There are three main routines for this model including a snow 320 

accumulation and melt routine, soil moisture accounting routine, and a response and channel routing 321 

routine (Figure 14). The snow routine consists of a simple degree day and threshold approach. The 322 

soil moisture accounting routine computes an index of the wetness of the entire basin and integrates 323 

interception and soil moisture storage (Bergstrom, 1992). The runoff response transforms the excess 324 

water from the soil moisture routine into river flow. This routine consists of two tanks (reservoirs) 325 

that represent different time dependent contributions to the river flow. Finally, a triangular 326 

distribution is used to attenuate the flood pulse at the basin outlet. For a further discussion on the 327 

history of the HBV model, including its application with respect to ungauged basins, see Bergstrom 328 

(2006).  329 



 330 

Figure 14: Conceptual flow diagram for the HBV model. 331 

2.4.2 Quantifying Sensitive Parameters 332 

The two RRMs used in this study have a large number of parameters which need to be calibrated to 333 

daily streamflow data (HSPF: +100; HBV: 15). Utilizing all the model parameters is almost 334 

impossible and it is necessary to identify the most sensitive parameters for the calibration process. 335 

Reducing the model parameters is important in reducing correlation and interdependence between 336 

parameters during the calibration process (Jackman and Hornberger, 1993; Zhang and Lindstrom, 337 

1997). For this study, HSPF calibration parameters were selected based on peer-reviewed literature 338 

(Seong et al., 2015; Kim et al., 2007; Iskra and Droste, 2007; Gao et al., 2014; Doherty et al., 2003; 339 

Bicknell, 2000; Duda et al., 2012, US EPA, 1999) and the personal modeling experience of the 340 

authors.  341 

The HBV model uses fifteen parameters to simulate runoff response in a watershed. The parameter 342 

set was reduced to the eight most sensitive parameters informed through the literature (Zhang and 343 



Lindstrom, 1997; Merz and Blöschl , 2004; Parajka et al., 2007; Harlin and Kung, 1992) as well as 344 

from a Hornberger-Spear-Young generalized sensitivity analysis (HSY-GSA) method approach 345 

similar to Harlin and Kung (1992) (Hornberger and Spear, 1981; Young, 1983; Beck, 1987). A Monte 346 

Carlo approach is used to randomly generate parameter combinations from a uniform distribution 347 

based on the parameter constraints defined by Parajka and Viglione (2012) for 50,000 simulations. 348 

Model output is categorized as either behavioral or non-behavioral based on a threshold KGE value 349 

of 0.3. Behavioral simulations have a KGE value greater than 0.3 while non-behavioral simulations 350 

have a KGE value of less than 0.3 defined approximately by the average KGE value across all the 351 

Monte-Carlo simulation runs.  352 

 353 

2.4.3 Calibration 354 

To perform regionalization, calibrated model parameters are required for all gauged locations in the 355 

region. Model calibration was performed in R with the ‘hydromad’ library (ver. 0.9) that contained 356 

code for the shuffled complex evolution method developed at the University of Arizona (SCE-UA) 357 

which is very effective and efficient for global optimization for calibration of hydrological models 358 

(Wu and Zhu, 2006; Duan et al., 1994; Seong et al., 2015). The calibration period took place from 359 

January 1, 1980 to December 31, 1990 with a one-year warm-up period. Model validation was 360 

performed over January 1, 1991 to December 31, 1995.  361 

Significant research exists concerning the differences between objective functions and their 362 

implication with respect to RRM calibration (Gutiérrez-Magness and McCuen, 2005; Gao et al., 2014; 363 

Gupta et al., 1998; Madsen, 2003). The objective function for the calibration period was to minimize 364 

the (–) KGE criterion at a daily-timestep. The KGE was defined by Gupta et al. (2009) and is a 365 



criterion that is essentially a decomposition of the NSE (and MSE) value. It can be expressed by the 366 

following equation: 367 
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 368 
where r is the correlation coefficient,  ̅ is the arithmetic mean of observed daily streamflow,  ̅ is the 369 

arithmetic mean of the modeled streamflow data;  Sx and Sy represent the standard deviations for the 370 

observed and predicted data, respectively. The a term is a measure of relative variability of the 371 

predicted and observed values and b is the bias defined as the ratio of the mean and predicted flows 372 

to the mean of the observed flows.  ED represents the Euclidean distance from the ideal point in the 373 

scaled space.  374 

The KGE has been used in hydrologic modeling as an objective function that serves to mitigate 375 

some of the shortcomings of the NSE value. In particular, this metric has advantages over the NSE 376 

because it removes interactions between error components and reduces negative variability bias in 377 

simulation results (Steinschneider et al., 2014). This criterion is composed of three independent 378 

components including mean bias, variability bias, and the correlation between simulated and 379 

observed flows. This value ranges from minus infinity to 1. Model accuracy is maximized as the 380 

KGE approaches unity. After calibration, model performance was evaluated by the authors’ using a 381 

suite of performance criteria to achieve a more holistic interpretation of the model’s performance 382 

(Table 4).   383 



 384 

Table 4: Model goodness-of-fit was evaluated in this study over these criteria. 385 

  Name Abrv.  Equation Range 

(1) 
Kling Gupta 
Efficiency 

Value 
KGE 

         
    √                     

    

  
 ;     ̅

 ̅
 

-inf to 1 

(2) Coefficient of 
Determination R2     [

 
 ∑      ̅      ̅  

   

    
]

 

 0 to 1 

(3) 
Nash-Sutcliffe 

Efficiency 
Value 

NSE       
∑          

   

∑      ̅   
   

   
   
  

  -inf to 1 

(4) 
Normalized 
Root Mean 

Square Error 
NRMSE 

       
√ 
 ∑          

   

  
 

0 to inf 

(5) Percent Bias PBIAS          
∑         

   

∑   
 
   

 0 to inf 

(6) Volumetric 
Efficiency VE       

∑ |     | 
   

∑   
 
   

 0 to 1 

Notes: xi is a set of observations; yi is a set of predictions;  x   is the arithmetic mean of observed data, y   is 
the arithmetic mean of the predicated data;  Sx and Sy represent the standard deviations for the observed 
and predicted data, respectively; MSE represents the mean-square-error; ED represents the Euclidean 
distance from the ideal point in the scaled space; r is the correlation coefficient; a is a measure of relative 
variability of the predicted and observed values; and b is the bias defined as the ratio of the mean and 
predicted flows to the mean of the observed flows.  

 386 

2.4.4 Regionalization 387 

Attempts to define functional relationships can be assessed through correlating model parameters 388 

with catchment characteristics (e.g. topography and climate). This type of regionalization can be 389 

expressed by the following simple expression:  390 



 ̂       |      ( 4 ) 

where  ̂ is the estimated model parameter at the ungauged site,      is a functional relation for the 391 

parameters,   is the set of catchment characteristics,    is a set if regional model parameters, and    392 

is an error term. An ordinary-least-squares (OLS) linear regression approach defines the functional 393 

relationship between highly correlated catchment characteristics ( ) with the RRM model parameters 394 

(  ) with the underlying assumption that the model parameters are independent. A Shapiro-Wilks 395 

test is used to determine if the set of calibrated model parameters and catchment are normally 396 

distributed and standard transformations are used on values from this test that were <0.05. If the 397 

distribution of a catchment characteristic was not correctable using a standard transformation, they 398 

were removed from the subsequent analysis.  399 

Pearson’s r value is calculated between the regional model parameters (    and the catchment 400 

characteristics across the subbasins ( ) and significant relationships between these two independent 401 

data are determined. A threshold of 0.514 was used to identify significant relationships (p 402 

value<0.05). If a RRM parameter (dependent variable) had more than one significant relationship to 403 

a catchment characteristic (independent) variable, a principle component analysis (PCA) was applied 404 

to the significant independent variables and the first component was used in the OLS regression for 405 

each parameter. Otherwise, if the dependent variable had only one significant relationship or none 406 

that were above the threshold, the most significant independent variable was selected for the OLS 407 

regression. The use of the PCA in the regression development reduced both the dimensionality of 408 

the independent variables and eliminated the effects of colinearity between the catchment 409 

characteristics.  410 

To compare the usefulness of our regression regionalization approach, two other methods are 411 

evaluated, namely spatial proximity and naïve approaches. Spatial proximity uses the parameter set 412 

from the closest donor catchment. The Euclidean distance is calculated between the ungauged 413 

catchment and the gauged catchments in the region and the catchment with the minimum distance is 414 



selected to be the donor catchment in this approach. The naïve mean is also compared in which the 415 

mean of the model parameters across the gauged sites are used at an ungauged site.  416 

A “jack-knife” or “leave-one-out” cross validation (LOOCV) approach was used after the regression 417 

development. This LOOCV method was applied in a closed-form approach, in which the accuracy of 418 

hydrologic model parameter estimations were evaluated without running the model, as well as an 419 

open-form approach, in which the model parameters estimated were then used to simulate the 420 

streamflow and standard goodness-of-fit measurements were calculated. For the close-form analysis, 421 

the ordinary residuals and the leverages are used instead of fitting fifteen separate least-squares 422 

models and omitting each observation once. The hat matrix is calculated for each of the eight model 423 

parameter regressions, which describes the influence of each response value on each fitted value. The 424 

diagonal of the hat matrix is then used to calculate the deleted-residuals for each regression. These 425 

deleted-residuals are then used to create a plot with the estimated hydrologic model parameter value 426 

that has been left out through calculation of the deleted-residual with the actual calibrated values.  In 427 

addition, the residuals from the OLS regression equations are calculated for each parameter in the 428 

hydrologic models and are mapped to the subbasins to identify any potential spatial clustering.  429 

 430 

2.5 Results 431 

For the HSPF model a total of eight parameters were adjusted to achieve an acceptable fit between 432 

the observed streamflow data (Table 5). These parameters were constrained using values suggested 433 

by Bicknell (2000) and initial parameter values were established using the HSPF Parameter Database 434 

(HSPFParm) (US EPA, 1999). Similar to Seong et al. (2015) the ‘infilt’ parameter was changed by a 435 

multiplier which retains difference between infiltration values across the different land use types. 436 

Unlike other studies (e.g. Seong et al., 2015, Kim et al., 2007), the nominal upper zone soil moisture 437 

storage term ‘uzsn’ was not allowed to vary monthly in order to reduce effects of colinearity between 438 



model parameters, increase numerical stability, and decrease non-uniqueness (equifinality) of 439 

calibrated parameter sets.  440 

The analysis of the TUWmodel (HBV) model using the HSY-GSA method indicates that there is a 441 

range of sensitivities of parameters in the model().  The cumulative distribution of each parameter in 442 

the behavioral and non-behavioral sets are compared using the non-parametric Kolmogorov-443 

Smirnov d statistic, which is used as an index of relative difference with higher d-values representing 444 

parameters that are more sensitive.   A visualization of the behavioral and non-behavioral cumulative 445 

distribution curves provide a graphical representation of these results, with more sensitive parameters 446 

showing the most divergence between these two curves and the less sensitive parameters showing 447 

little to no change between these two groups (Figure 15). The Kolmogorov-Smirnov (K-S) statistic 448 

provides a quantitative accounting of this sensitivity analysis approach and shows agreement with the 449 

behavioral cumulative distribution curves. Both analyses suggest that the cperc and lsuz parameters 450 

are the most sensitive parameters for the Deerfield River Basin, followed by two flow recession 451 

parameters k1 and k0 and then several snow melt parameters including ‘SCF’ (snow correction 452 

factor), ‘DDF’ (degree day factor), ‘Tm’ (threshold melt temperature), followed by another soil 453 

moisture parameter ‘fc’ (field capacity, i.e. max soil moisture storage). These results correlate closely 454 

to other sensitivity analyses performed in the literature using this model (Harlin and Kung, 1992; 455 

Abebe et al., 2010) providing support to this sensitivity analysis approach for this model. The HSY-456 

GSA analysis and the K-S statistic was only applied to the TUWmodel (HBV) model to identify 457 

sensitive parameters while the literature was used to support the most sensitive parameters for the 458 

HSPF model.   459 



Table 5: Selected sensitive parameters for each hydrological model.  HBV parameters are the results 460 
of the most sensitive parameters from the HSY-GSA analysis. The lower and upper bounds for these 461 

parameters are represented as well as the final calibrated range between all of the subbasins.  462 

  parameters description units lower range upper 

H
SP

F 

agwrc groundwater recession rate (1/day) 0.85 (0.8503 - 
0.9403) 0.999 

deepfr 

fraction of infiltrating water lost to 
deep aquifers with the remaining 

fraction assigned to active 
groundwater storage  

- 0 (0.00011-
0.38796) 0.5 

infilt index to mean soil infiltration rate (in/hr) 0.001 (0.06745-
0.49976) 0.5 

intfw 

coefficient for the amount of water 
which enters ground from surface 

detention storage and becomes 
interflow 

- 1 (1.8 - 
9.998) 10 

irc interflow recession coefficient (1/day) 0.001 0.031 0.85 

kmelt constant degree-day factor for the 
temp index snowmelt method (in/d.F) 0 (0.03416 - 

0.13815 none 

lzsn lower zone nominal moisture storage (in) 2 (2-10) 15 

uzsn nominal upper zone soil moisture 
storage (in) 0.05 (0.01-1.4) 2 

H
BV

 

scf snow correction factor - 0.9 (0.9-1.5) 1.5 

ddf degree day factor (mm/degC/day) 0 (1.11-
2.78) 5 

tm threshold temperature above which 
melt starts (deg C) -2 (-2-2) 2 

fc field capacity, i.e. max soil moisture 
storage (mm) 0 (5.6-600) 600 

k0 storage coefficient for very fast 
response (day) 0 (0.555-2)  2 

k1 storage coefficient for fast response (day) 2 (2.02-
29.24) 30 

lsuz threshold storage state, i.e. the very 
fast response start if exceeded (mm) 1 (15.46-

71.70) 100 

cperc constant percolation rate (mm/day) 0 (0-1.355) 8 
 463 



 464 

Figure 15: Results of the HSY-GSA for the 15 parameters of the TUWmodel. 465 

Model performance on a daily time step was calculated with a split sample calibration and validation 466 

approach for both the HBV model and the HSPF model across the fifteen subbasins in the Deerfield 467 

River Basin using the period from 1981 to 1990 for calibration and from 1991 to 1995 for model 468 

validation (Table 6). The calibration performance over the ten-year period differed between the two 469 

models. HSPF tended to outperform the HBV across the subbasins and generally had higher KGE, 470 

R2, and NSE values. The model bias (PBIAS) was slightly lower across the subbasins for the HSPF 471 

model, although there was a slightly greater range as well for this model compared to the HBV 472 

model. The results from the model performance over the validation period showed slightly lower 473 

performance, as expected. However, the values are similar to the calibrated values indicating the 474 

models are not over-parameterized (parsimonious) and appropriate.  475 

  476 



Table 6: Goodness-of-fit summary for HSPF and HBV calibration/validation. 477 

 Calibration Validation 

 HBV HSPF HBV HSPF 

KGE 
0.67 0.78 0.66 0.73 

(0.58-0.73) (0.71-0.86) (0.41-0.74) (0.67-0.86) 

R2 
0.46 0.63 0.49 0.66 

(0.34-0.54) (0.52-0.74) (0.27-0.59) (0.58-0.77) 

NSE 
0.35 0.59 0.30 0.53 

(0.15-0.46) (0.45-0.72) (-0.21-0.46) (0.37-0.74) 

NRMSE 
0.80 0.64 0.83 0.68 

(0.73-0.92) (0.52-0.74) (0.73-1.10) (0.51-0.80) 

PBIAS 
-4.34 -3.08 1.04 3.29 

(-12.1-4.1) (-16.9-8.4) (-7.7-7.9) (-23.9-11.7) 

Note: Values in parenthesis represent the minimum and maximum range of 
values across the subbasins. Calibration was performed from Jan 1, 1980 to 
Dec 31, 1990 (one-year ramp up period). Validation was performed from Jan 
1, 1991 to Dec 31, 1995.  

 478 

A Shapiro-Wilks test was performed on the RRM parameters as well as the catchment characteristics 479 

to assess the normality of these assumed to be independent variables. Standard log and square-root 480 

transformations were applied to variables that had a p-value of < 0.05. If the transformation 481 

increased the p-value from the Shapiro-Wilks test, it was used in the remainder of the analysis. 482 

However, there were several variables in which the transformations either reduced the normality of 483 

the variable or were ineffective for other reasons (e.g. domain included negative values). RRM 484 

parameters that could not be corrected by a standard transformation r for which the transformation 485 

reduced the normality (as estimated by the Shapiro-Wilks test) were noted (Table 7).  486 

  487 



 Table 7: Shapiro-Wilks test for normality for RRM parameters and catchment characteristics. 488 

  Indep. Variable p-value 

H
SP

F 
Pa

ra
m

et
er

s 

kmelt 0.241 
infilt 0.585 

lzsn_log 0.005 
agwrc 0.233 

deepfr_log 0.016 
intfw 0.062 

uzsn_log 0.108 
irc 0.123 

H
B

V
 P

ar
am

et
er

s 
SCF 0.014 
DDF 0.870 
Tm 0.033 
FC 0.179 
k0 0.220 

k1_log 0.442 
lsuz_log 0.657 

cperc_sqrt 0.036 

Sp
at

ia
l 

per_north 0.267 
per_east 0.193 

per_developed 0.730 
per_forest 0.936 

per_agr 0.336 
elev_MEAN 0.693 
slope_MEAN 0.582 

slope_std 0.544 
per_HGB 0.190 
per_HGC 0.284 

per_HGD_log 0.748 
TI_mn 0.854 
TI_max 0.505 
TI_min 0.591 
DA_log 0.914 

strm_len_log 0.314 

C
lim

at
e ppt_log 0.144 

tmax 0.732 
tmean 0.071 

Note: Values highlighted in bold indicate the paramters that 
could not be corrected using a log transformation. These 
parameters tended to bump into their upper/lower limits 
during calibration.  

 489 



The correlation coefficients between the calibrated model parameters and the model catchment 490 

characteristics are represented in two matrixes, one for each model (Table 8 and Table 9). Prior to 491 

assessing these relationships, standard transformations were applied to the ‘cperc’, ‘k1’, and ‘lsuz’ 492 

parameters for the HBV model and the ‘deepfr’, ‘lzsn’, and ‘uzsn’ parameters for the HSPF model, to 493 

obtain a more normal distribution. The first principle component of the most significant catchment 494 

characteristics was selected using a PCA approach for use in regression for each RRM parameter. If 495 

there was only one significant catchment characteristic (or no statistically significant catchment 496 

characteristics), the catchment characteristic with the highest significance was used for regression.  497 

Table 8: HSPF correlation coefficient values across catchment characteristics 498 

 499 

  500 



Table 9: HBV correlation coefficient values across catchment characteristics 501 

 502 

In general, the HSPF had a greater number of significant catchment characteristics as well as higher 503 

correlation values with these significant parameters. The PCA approach was only needed for two of 504 

the HBV model parameters compared to five of the eight HSPF parameters. The percentage of 505 

variance explained for the RRM parameters in which the PCA approach was calculated was at least 506 

70%.  The percent of the catchment facing east and the minimum topographic index value in the 507 

catchment were most often related to HBV model parameters while the mean elevation and both 508 

annual average precipitation and temperature were most often correlated with HSPF parameters. 509 

Residuals from the regressions for each parameter are mapped to their spatial location within the 510 

basin (Figure 16). While the sample size in this particular study is relatively small, there is no obvious 511 

clustering pattern occurring across the parameters. The only parameters that might demonstrate 512 

some level of patterning are the ‘kmelt’ HSPF parameter and the ‘fc’ HBV parameter. The ‘kmelt’ 513 



parameter seems to have more positive residuals in the lower part of the basin. However, when 514 

compared to the degree-day factor from the HBV model (‘ddf’), there does not seem to be any 515 

similar patterning occurring. Also, the ‘fc’ parameter seems to display a negative tendency on the 516 

western side of the basin. However, there are a couple subbasins that are exceptions to this trend as 517 

well. It is difficult to infer from this sample size alone whether these possible clustering tendencies 518 

are significant, however we do gain some information as to the uncertainty of the regression 519 

regionalization from this analysis from both the positive negative bias and range of these residuals.  520 

 521 

Figure 16: Spatial mapping of model residuals from the regionalization regressions by subbbasin. 522 

 523 



The closed-form validation of the model parameters from the regression, proximity, and naïve mean 524 

regionalization methods are compared between models to evaluate the predicted RRM parameters in 525 

the calibrated parameter set (Figure 17). These values represent the average NRMSE between all the 526 

predicted and calibrated model parameters for each model. The regression method had the lowest 527 

NRMSE compared to the proximity method and the naïve mean method for both HBV and HSPF. 528 

There was greater variability in the NRMSE across the parameter predictions using the proximity 529 

method with the regression regionalization approach showing the least variance.   530 

 531 

Figure 17: Closed-form validation results in predicting model parameters outside of running the 532 
RRMs. The regression method shows comparatively much less variance overall and lower NRMSE. 533 

 534 

The open-form validation included running the RRMs with the estimated parameter set for the 535 

different regionalization methods. Multiple GOF criteria were used to gain a broader view of model 536 

performance using the regionalization methods (Figure 18). The calibrated model parameters are 537 

represented as the “Best” method and graphically indicate the spread of the performance across the 538 

fifteen subbasins for each of the RRMs. Again the HBV model generally seemed to perform less well 539 

across all the criteria compared to the HSPF model.  540 



 541 

Figure 18: Open-form validation goodness-of-fit results across all subbasins for the HSPF and HBV 542 
models. 543 

The regression method produces the best model results across most of the GOF performance 544 

criteria. The naïve mean method performs consistently better for the HSPF model while the 545 

proximity method often performs better than the naïve mean for the HBV model. The volumetric 546 

efficiency (VE) seemed to be increased when using the proximity and naïve mean method compared 547 

to the regression method.  548 

Normalizing the GOF results from the regionalization method by the calibrated parameter set 549 

(‘Best’) yields a ratio wherein a value of unity suggests that the regionalization method performed the 550 

same as the calibrated model (Figure 19). In most cases, this ratio was less than one, as expected. 551 

However, in a few scenarios, the ratio was greater than one indicating that the estimated model 552 

parameters performed better than the calibrated model parameters. For the KGE GOF measure, this 553 

is a surprising result because the models were calibrated to this criterion. However it can interpreted 554 



from this analysis that there are distinct differences between these three GOF metrics and some of 555 

the estimated values may lead to improvements in one GOF measure while simultaneously 556 

decreasing another. While this is considered mostly an artifact of the differences between the GOF 557 

metrics, it appears that the HSPF model generally had less variation between the calibrated model 558 

simulations and the regionalization simulations. The regression method seemed to overall perform 559 

best for both models compared to the other approaches.  Again, there is a wider distribution for the 560 

proximity method for both models across all the GOF measures.  561 

 562 

Figure 19: Ratios of goodness-of-fit (GOF) criteria between the calibrated “Best” paramter set and 563 
the different regionalization methods across all subbasins for the HSPF and HBV models.  564 

2.6 Discussion 565 

The HSY-GSA provided a qualitative and quantitative attempt to estimate the parameter uncertainty 566 

in the HBV model, similar to Harlin and Kung (1992). Literature has suggested shortcomings of this 567 

type of sensitivity analysis approach is the potential subjectivity in the determination of the 568 

behavioral and non-behavioral threshold in which the cumulative distributions of the model 569 

parameters are compared. The authors used the KGE criterion to measure sensitivity and attempted 570 

to minimize this subjectivity by setting a threshold that was the average of the KGE values across all 571 

of the Monte-Carlo simulations. This value was then adjusted 20% above and below this value and 572 

the KS statistics were compared across these three runs: 20% below 0.30, 0.30, and 20% above 0.30. 573 



In ranking the model parameters based on the KS statistic for each of these three thresholds, the top 574 

8 sensitive parameters did not change. Therefore, it was assumed that the most sensitive parameters 575 

to maximizing the KGE function were significantly accurate. Although this study did not address the 576 

differences in the parameter sensitivity from variations in the threshold value explicitly, unlike other 577 

RRM studies that have used this technique, it was at least considered in our analysis. Furthermore, 578 

the sensitive parameters for the HBV model found in this study agree with the ones found in other 579 

studies (Harlin and Kung, 1992; Abebe et al., 2010).  580 

Several of the model parameters, both for HBV and HSPF, approached their upper or lower limits 581 

during the calibration process. For HSPF, the ‘lzsn’ and ‘agwrc’ parameters reached their lower limit 582 

and the ‘infilt’ and ‘intfw’ parameters approached the upper limits in several of the subbasins. For the 583 

HBV model, the parameters more often approached their respective upper and lower limits than the 584 

HSPF model. This suggests that the HBV model parameters are poorly represented in the model 585 

structure or that the homogeneous, lumped discretization of the subbasins contributed to the 586 

increased instability of the HBV model parameter space. The non-normal distribution of several of 587 

the RRM parameters may also be attributed to the tendency to approach upper and lower limits 588 

during the calibration process. While standard statistical transformations were applied to the model 589 

parameters prior to applying the regression regionalization approach, some transformations failed to 590 

help correct the normality of a few parameters (Table 7).  591 

Overall, the HSPF model tended to perform better than the HBV model in the Deerfield over the 592 

calibration period with median KGE values of about 0.78 and 0.68, respectively. The HSPF model 593 

also had higher median R2 and NSE values over the calibration period of about 0.65 and 0.61, 594 

respectively with the HBV model having significantly lower median values of 0.58 and 0.33. The 595 

NRMSE error is lower for the HSPF model  and the percent-bias (PBIAS) measure was closer to 0 596 

on average for the HSPF model compared to HBV. In addition, volumetric efficiency (VE) was 597 

greater across the calibration and regionalization methods for the HSPF model compared to the 598 



HBV model. The semi-distributed HSPF model seemed to perform better compared to the lumped-599 

conceptual structure overall, suggesting this discretization difference might serve to better represent 600 

landscape heterogeneity as well as distribute the climate data more accurately.   601 

In addition, there was less variance and fewer outliers in the regionalization GOF results for the 602 

HSPF model (Figure 18) compared to the HBV model. However, the regression method seemed to 603 

perform almost equally well for both RRMs with the KGE criterion (also used as the objective 604 

function for calibration), suggesting that the regression method was superior to the proximity and 605 

naïve mean methods overall across both RRMs. These results suggest that our method is quite useful 606 

and can be as reliable or more reliable compared to simpler methods. 607 

Estimating the RRM parameter values using the proximity method resulted in both the highest 608 

average NRMSE as well as the greatest variance between the calibrated and predicted parameter sets 609 

(Figure 17). The proximity method consequently had the most variance in RRM simulations GOF 610 

measures and overall performed more poorly than the other two methods.  For the HBV model, the 611 

naïve-mean method was equal or superior to the regression method for several of the subbasins 612 

(Figure 18). However, it also performed less well for the other subbasins suggesting that the wide 613 

variability in the mean NRMS (Figure 17) resulted in decreased performance in the RRM simulations 614 

(Figure 18). A mean NRMSE of about 0.26 for the regression regionalization method for both RRMs 615 

indicates that the regression method is again the more accurate means for estimating the RRM 616 

parameters and implies that this regionalization technique may be the preferred method for this 617 

particular region even through the uncertainty in the parameter estimations (Figure 16).  618 

A comparison of Pearson’s r (correlation coefficient) values between the RRMs indicate a distinct 619 

difference between models. The HSPF model had both more significant correlations to catchment 620 

characteristics as well as more significant correlations compared to the HBV model. While the 621 

mechanism for this is not clear, it might be indicative of the reduced resolution of the HBV model 622 

since this model is being used in a “lumped” approach. Because of the inherent heterogeneity of the 623 



subbasins, the model parameters may no longer be truly representative of the basin’s physical 624 

processes. The lumping of land-use types, soil types, topography, and climate may serve to increase 625 

the noise between the lumped-model parameter set and the catchment characteristics. This concept 626 

has been noted previously and this study may serve to support those particular findings. In 627 

comparison to a more complex, semi-distributed model like HSPF, a reduction in the measure 628 

correlation between the model parameters and the catchment characteristics between these two 629 

RRMs is noted. However, these correlations are also most likely strongly influenced by calibration 630 

GOF, in which HSPF performed better than the HBV model, which generally had poorer 631 

performance. Climate stations were assigned to HSPF reaches (HRUs) independently based on 632 

proximity and infiltration was allowed to vary across the different land use types. In this way HSPF is 633 

considered semi-distributed in this study. However, as previously mentioned, it is difficult to identify 634 

why the correlations between the catchment characteristics were significantly less for the lumped-635 

conceptual model (HBV) as compared to the semi-distributed (HSPF) model and most likely this 636 

result is a factor of both calibration fit and model structure.  637 

In comparison to a more complex, semi-distributed model like HSPF, we do notice a reduction in 638 

the measure correlation between the model parameters and the catchment characteristics between 639 

these two RRMs. However, these correlations are also most likely strongly influenced by calibration 640 

GOF, in which HSPF performed better than the HBV model. Climate stations were assigned to 641 

HSPF reaches (HRUs) independently based on proximity and infiltration was allowed to vary across 642 

the different land use types. In this way HSPF is considered semi-distributed in this study. However, 643 

as previously mentioned, it is difficult to identify why the correlations between the catchment 644 

characteristics were significantly less for the lumped-conceptual model (HBV) as compared to the 645 

semi-distributed (HSPF) model and most likely this result is a factor of both calibration fit and model 646 

structure.  647 



Dingman (1981) suggests that the primary influence on the hydrology of mountainous areas of New 648 

England is elevation; strong correlations observed in the HSPF model to the catchment 649 

characteristics support this notion. Dingman notes that “the effect of elevation is so dominant in the 650 

region that it can be used as the single independent variable in predicting many streamflow 651 

parameters” (Dingman, 1981). While elevation was not the only strongly correlated catchment 652 

characteristic, most of them (besides percent hydrologic soil group D and percent agricultural land 653 

use) were functions of the topography.  Temperature variables as well as mean subbasin elevation 654 

were most often correlated with the HSPF parameters and both are complimentary of Dingman’s 655 

hypothesis.  656 

Limitations of lumped models include all the typical uncertainties associated with quality and 657 

availability of the input forcing data.  One of the largest limitations of lumped-conceptual RRMs 658 

such as the HBV model is the inability to represent the true variability of the landscape and climate 659 

characteristics across the spatial domain.  However, because lumped models tend to be parametrically 660 

parsimonious, they are also easier to calibrate and may even reduce issues with parameter 661 

identifiability and equifinality inherent to more complex distributed models (Beven, 2001; Kling and 662 

Gupta, 2009).  In addition, because of the reduced representation of the landscape heterogeneity 663 

inherent to these models, attempts to derive significant relationships between catchment 664 

characteristics and lumped model parameters can become challenging (Kling and Gupta, 2009). This 665 

is of significance when these models are applied at ungauged locations, especially if regression based 666 

regionalization efforts are used towards this end.  667 

In the case of HBV, there was less indication that elevation plays a major role in parameter 668 

estimation. This may be a product of two differences compared to the HSPF model: (1) calibrated 669 

parameters did not reproduce the daily hydrograph as well and (2) the model structure may have 670 

deconstructed the true process-based mechanisms of the HBV variables because of the lumped 671 

nature of the model discretization. The three most sensitive parameters (‘cperc’, ‘lsuz’, and ‘k1’) were 672 



all most correlated with the percent east-facing catchment attribute. Slope aspect can have a large role 673 

to play in forested catchments, affecting solar radiation, precipitation, wind speed, soil and air 674 

temperatures, snow accumulation, snowmelt, evapotranspiration, and vegetation type and growth 675 

(Chang, 2006). For example, in the northern hemisphere, forest transpiration is generally greater in 676 

northern than in southern slopes because of denser vegetative cover and deeper soils (Bethlamy, 677 

1973). Also, west-facing forests tend to use more water than those on east-facing slopes (Chang, 678 

2006). This attribute may also be indicative of the orientation of the subbasin, which can be 679 

important from a hydrological perspective. For example, because weather systems in mid-latitudes 680 

move from west to east, west-facing slopes and basins may receive more rain (Ward and Trimble., 681 

2003). Ward and Trimble (2003) postulate that theoretically, an east-facing basin should have a more 682 

peaked hydrograph than a west-facing one, but there have been few investigations to conclusively 683 

support this idea. In the case of the HBV model, the correlation of these sensitive parameters, which 684 

include the constant percolation rate, recession rate parameter, and soil moisture parameter, with this 685 

potentially influential catchment attribute may support these concepts. However, percent east-facing 686 

was not correlated nearly as often to HSPF model parameters, serving to weaken Ward and Trimbles 687 

hypothesis.  688 

 689 

2.7 Conclusions 690 

Streamflow quantity and timing are essential components for the ecological integrity of river systems 691 

(Poff et al., 1997) and are also vital for practical applications such as design of infrastructure, flood 692 

predictions, water supply and allocation, and climate impact analysis (Blöschl, 2013). Considering it is 693 

often difficult to measure these hydrologic processes directly, for example at ungauged locations such 694 

as road-stream crossings, rainfall runoff models (RRMs) are often used. When streamflow 695 

observations are not available to calibrate these models, the hydrologic regime can only be inferred 696 



from available physical and climatic characteristics of the catchments or by identifying hydrologically 697 

similar gauged catchments (Singh et al., 2014). This study attempts to evaluate the effectiveness of 698 

different RRMs as well as assess a the accuracy of regression-based regionalization.  699 

Two process-based RRMs that vary in complexity and structure are applied to fifteen subbasins in 700 

the Deerfield River Basin in the Northeastern US using indirect and direct streamgauge calibration. 701 

The Connecticut River UnImpacted Streamflow Estimation (CRUISE) tool (Archfield, 2013) is used 702 

to provide the streamflow data for twelve subbasins for the indirect calibration approach. Three 703 

USGS NWIS streamflow gauges within the Deerfield River Basin that are considered unimpaired are 704 

used to directly calibrate the RRMs. Calibration takes place over a ten year period (with one-year for 705 

warm-up) from January 1, 1980 to December 31, 1990 and validation of the models takes place over 706 

four years from January 1, 1991 to December 31, 1995. Goodness-of-fit (GOF) performance 707 

measures indicate an overall slight decrease in model performance between the calibration and 708 

validation model periods as expected, however the changes were not significant to indicate issues 709 

associated with over-parameterization.  710 

PCA and OLS are used to develop a regression-based regionalization approach relating the sensitive 711 

parameters of RRMs with physical and climatic catchment characteristics. These regressions are used 712 

to predict the RRM parameters for the fifteen subbasins and are compared to the accuracy of using 713 

the two simpler regionalization methods, closest proximity and naïve-mean, in order to determine the 714 

effectiveness of this regionalization approach.  715 

The comparison of the regionalization approaches suggest that the more complex regression 716 

approach used in this study was able to more accurately estimate the RRM parameters. In general, the 717 

NRMSE error of the regression method was noticeably lower than the proximity and the naïve-mean 718 

methods. When the models were run with the predicted RRM parameters from the different 719 

regionalization methods, the regression method seemed to provide the best results compared to the 720 



calibrated parameters. The proximity method showed the highest variation in model performance 721 

while the naïve-mean seemed to generally be lower on average than the other two methods.  722 

Overall, the HSPF model tended to perform better as compared to the HBV model based on an 723 

evaluation of multiple GOF criteria. This may be attributed to several factors, including differences 724 

in model structure as well as a loss of accuracy associated with lumping climatic drivers to the HBV 725 

model. The semi-distributed nature of the HSPF model may lead to more accurate representations of 726 

the physical processes that drive surface runoff in the Deerfield River Basin. This hypothesis is 727 

supported in the calibration results for this model. However, because of the uncertainties associated 728 

with the modeling process for both HSPF and HBV, in addition to the lack of available data in the 729 

Deerfield Basin, it is difficult to more than surmise that either model is representing the physical 730 

processes at a basin scale accurately.   731 

Wise stewardship of water and the environment requires a variety of predictive tools that can 732 

generate predictions of hydrological responses over a range of space-time scales and climates and is 733 

necessary for the sustainable management of river basins, integrating economic, social, and 734 

environmental perspectives (Sivapalan et al., 2003). Because so many of our rivers across the globe 735 

are ungauged, it is necessary to evaluate the accuracy of different models and methods for making 736 

predictions of runoff at these ungauged locations. This study provides a framework for assessing the 737 

accuracy of estimating the parameters of process-based RRMs in the region and also provides an 738 

assessment of RRM performance as applied within a small forested northeastern U.S. catchment.  739 

  740 
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3.1 Tables 1021 

 1022 

Location Station Name Latitude Longitude Record Start Record End 
MA190120 Amherst 42.3833 -72.5333 5/1/1948 3/31/2006 

VT430277 Ball Mountain 
Lake 43.1167 -72.8000 1/1/1970 12/31/2005 

VT436761 Readsboro 1 SE 42.7500 -72.9333 2/1/1951 3/31/1998 
VT437152 Searsburg Station 42.8667 -72.9167 1/1/1970 12/31/2005 
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3.1.1 HSPF Modeling 1026 

  parameters description units lower range upper 
co

ns
ta

nt
 p

ar
am

et
er

s 
snowcf multi factor for poor gage catch efficiency - 1 1.3 2 

covind max SWE depth at which entire land 
segment is covered in snow (in) 0.1 6 10 

tbase refernce temp for the temp index method (F) 0 32 60 

rdcsn density of new snow relative to water when 
temp < F - 0.05 0.2 0.3 

tsnow wet bulb air temp at which snow forms  (deg F) 30 32 40 

snowevp factor to adjust sublimination from 
snowpack - 0 0.1 0.5 

ccfact factor to adjust rate of heat transfer from 
atm. to snowpack - 0.5 1 8 

mwater max liquid water holding capacity in 
snowpack (in/in) 0.005 0.03 0.2 

mgmelt maximim rate of snowmelt by ground heat (in/day) 0 0.01 0.1 

kvary 
groundwater recession flow parameter to 

describe non-linear groundwater recession 
rate 

(1/in) 0 0 5 

petmax temp below which ET will be reduced to 
50% of that in the input time series (deg F) 32 40 48 

petmin temp at and below which ET will be zero (deg F) 35 35 40 

infexp 
exponent that determines deviation from 

mominal lower zone storage affects 
infiltration rate 

- 1 2 3 

infild ratio of max and mean soil infiltration 
capacities - 1 2 3 

basetp fraction of ET from riparian vegitation as 
active groundwater enters streambed - 0 0.02 0.2 

agwetp fraction of remaining PET that can be met 
from active groundwater storage - 0 0 0.2 

cepsc amount of rainfall retained by vegetation 
and never reaches land surface (in) 0.01 0 0.4 

nsur Manning's n for overland flow plane - 0.05 0.35 0.5 

lzetp index to lower zone ET - 0.1 0.7 0.9 
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  HSPF Calibration - Jan 01, 1980 to Dec 31 1990 HSPF Validation - Jan 1, 1991 to Dec 31, 1995 

locationID RMSE NRMSE PBIAS R2 NSE KGE VE d RMSE NRMSE PBIAS R2 NSE KGE VE d 

0 22.78 62.3 8.4 0.65 0.61 0.79 0.53 0.89 19.91 68.4 9.6 0.65 0.53 0.74 0.52 0.89 

1 49.61 72.1 0.1 0.55 0.48 0.74 0.45 0.86 40.59 78.5 4.5 0.59 0.38 0.67 0.43 0.86 

2 28.92 61 3.4 0.67 0.63 0.81 0.5 0.9 24.29 69.5 9.2 0.68 0.52 0.7 0.48 0.89 

3 66.64 61.1 -5.2 0.67 0.63 0.81 0.49 0.9 57.02 71.2 6.4 0.65 0.49 0.71 0.46 0.89 

4 82.36 64.5 -0.5 0.63 0.58 0.8 0.48 0.89 70.07 73.7 2 0.62 0.46 0.71 0.43 0.87 

5 33.49 61.1 0.8 0.66 0.63 0.81 0.51 0.9 30.46 74.9 6.2 0.65 0.44 0.67 0.46 0.88 

6 29.85 64.5 -0.1 0.63 0.58 0.79 0.49 0.89 28.44 79.7 3.9 0.58 0.37 0.67 0.39 0.86 

7 74.89 63.9 -6.2 0.62 0.59 0.78 0.51 0.88 55.91 61.3 4.2 0.72 0.62 0.78 0.48 0.91 

8 142.46 67.1 -14.5 0.61 0.55 0.74 0.48 0.88 105.5 58.4 -6.8 0.72 0.66 0.81 0.49 0.92 

9 19.28 73.9 -4.3 0.52 0.45 0.72 0.44 0.84 13.32 65.7 8.7 0.69 0.57 0.74 0.45 0.9 

10 126.32 73.4 -6.4 0.52 0.46 0.71 0.46 0.84 88.74 66.4 6.1 0.67 0.56 0.75 0.48 0.9 

11 83.34 59.6 0.8 0.67 0.64 0.82 0.55 0.9 70.77 64.8 11.7 0.69 0.58 0.74 0.51 0.9 

12 193.59 52.5 -1.2 0.74 0.72 0.86 0.59 0.92 142.68 51.4 2 0.77 0.74 0.86 0.59 0.93 

13 26.04 58.4 -16.9 0.7 0.66 0.76 0.5 0.91 25.66 67.2 -23.9 0.62 0.55 0.68 0.43 0.88 

14 55.48 59.7 -4.4 0.68 0.64 0.82 0.51 0.9 48.84 69 5.5 0.65 0.52 0.74 0.48 0.89 

Notes: The calibration period includes a one-year warm up period. For validation, the model is run through the calibration period and then the goodness-of-fit 
measures are assessed from Jan 1, 1991 to Dec 31, 1995. All sub-basins were used in the regionalization regression process.   
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Shapiro-Wilks Test for Normality 

  Indepent. 
Variable p-value 

H
SP

F 
Pa

ra
m

et
er

s 

kmelt 0.241 
infilt 0.585 

lzsn_log 0.005 
agwrc 0.233 

deepfr_log 0.016 
intfw 0.062 

uzsn_log 0.108 
irc 0.123 

Sp
at

ial
 

per_north 0.267 
per_east 0.193 

per_developed 0.730 
per_forest 0.936 

per_agr 0.336 
elev_MEAN 0.693 
slope_MEAN 0.582 

slope_std 0.544 
per_HGB 0.190 
per_HGC 0.284 

per_HGD_log 0.748 
TI_mn 0.854 
TI_max 0.505 
TI_min 0.591 
DA_log 0.914 

strm_len_log 0.314 

Cl
im

at
e ppt_log 0.144 

tmax 0.732 
tmean 0.071 

Note: Values highlighted in bold indicate the paramters that 
could not be corrected using a log transformation. These 
parameters tended to bump into their upper/lower limits 
during calibration.  
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Results for the HSPF regionalization regressions 

Parameter 
agwrc intfw irc lzsn_log uzsn_log deepfr_log infilt kmelt 

(1) (2) (3) (4) (5) (6) (7) (8) 

agwrc PCA comp. -0.009*** 
(0.003)        

intfw PCA comp.  
1.062*** 
(0.233)       

irc PCA comp.   
0.035*** 
(0.009)      

lzsn.log PCA comp.    
-0.060** 
(0.022)     

uzsn.log PCA 
comp.     

-0.217*** 
(0.049)    

tmean      
0.635** 
(0.291)   

per.north       
1.780 

(1.104)  

per.forest        
0.348** 
(0.157) 

Constant 0.892*** 
(0.006) 

6.549*** 
(0.489) 

0.267*** 
(0.020) 

0.464*** 
(0.042) 

-0.588*** 
(0.111) 

-5.557*** 
(1.808) 

0.102 
(0.101) 

-0.230 
(0.135) 

N 0.47 0.616 0.556 0.36 0.603 0.268 0.167 0.275 
R2 0.43 0.586 0.522 0.311 0.572 0.212 0.103 0.219 

Adjusted R2 0.022 1.895 0.077 0.162 0.43 1.146 0.122 0.025 
Residual Std. Error 

(df = 13) 11.549*** 20.832*** 16.284*** 7.328** 19.723*** 4.759** 2.601 4.924** 

F Statistic (df = 1; 
13) 5.107** 15.011*** 10.236*** 6.908** 11.394*** 4.759** 2.601 4.924** 

Notes: 
Parenthesis represent standard error of estimate. The first PCA component is used for the agwrc, 
intfw, irc, lzsn, and uzsn regressions. ***Significant at the 1 percent level; **Significant at the 5 
percent level; *Significant at the 10 percent level. 
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LOOCV - Comparison to Calibration  
Period Goodness-of-fit Measures 

locationID NSE 
ratio 

KGE 
ratio 

R2 
ratio 

RMSE 
ratio 

VE 
ratio 

0 0.984 1.000 1.046 1.003 1.019 

1 0.750 0.824 0.945 1.085 0.711 

2 0.952 0.852 1.030 1.042 0.860 

3 0.984 0.951 0.970 1.002 1.000 

4 0.845 0.850 0.937 1.111 0.771 

5 0.825 0.815 0.985 1.135 0.765 

6 0.638 0.835 0.794 1.229 0.633 

7 1.017 0.949 0.984 0.986 1.000 

8 0.564 0.892 0.836 1.204 0.792 

9 0.911 0.931 0.904 1.005 1.000 

10 0.826 0.972 0.923 1.040 0.935 

11 0.906 0.915 0.896 1.073 0.945 

12 0.958 0.837 0.946 1.055 0.915 

13 0.970 1.000 0.986 1.003 0.980 

14 0.891 0.768 0.853 1.077 0.941 

Notes: Values reported in this table are a ratio between the goodness-of-
fit values estimated from the parameter regressions to the values 
obtained over the calibration period.  
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LOOCV - Deleted Residuals 

parameter model 
variance 

deleted residual 
variance 

agwrc 4.51E-04 5.67E-04 

deepfr_log 1.22E+00 1.60E+00 

infilt 1.37E-02 1.70E-02 

intfw 3.33E+00 4.19E+00 

irc 5.55E-03 8.42E-03 

kmelt 5.86E-04 8.89E-04 

lzsn_log 2.43E-02 3.12E-02 

uzsn_log 1.71E-01 2.22E-01 
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3.1.2 HBV Modeling 1039 

 1040 

HBV Sensitivity Analysis: 
HSY-GSA 

Parameter d-value 
cperc 0.356 

lsuz 0.272 

k1 0.183 

k0 0.182 

SCF 0.171 

DDF 0.169 

Tm 0.134 

FC 0.115 

BETA 0.093 

k2 0.086 

Ts 0.063 

LPrat 0.035 

Tr 0.029 

croute 0.028 

bmax 0.005 
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  parameters description units lower range upper 

co
ns

ta
nt

 p
ar

am
et

er
s 

tr threshold temperature above which precipitation 
is rain (deg C) 1 1.96 3 

ts threshold temperature below which precipitation 
is snow (deg C) -3 -1.75 1 

lprat parameter related to the limit for potential 
evaporation - 0 0.4819 1 

beta the non linear parameter for runoff production - 0 9.38 20 
k2 storage coefficient for slow response (day) 30 122.1 250 

bmax maximum base at low flows (day) 0 12.48 30 
croute free scaling parameter (day2/mm) 0 20.83 50 
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  HBV Calibration - Jan 01, 1980 to Dec 31 1990 HBV Validation - Jan 1, 1991 to Dec 31, 1995 

locationID RMSE NRMSE PBIAS R2 NSE KGE VE d RMSE NRMSE PBIAS R2 NSE KGE VE d 

0 2.32 79.6 -5.8 0.48 0.37 0.69 0.45 0.82 1.8 76.7 -6.1 0.53 0.41 0.71 0.49 0.84 

1 3.15 89.5 4.1 0.36 0.2 0.6 0.34 0.75 2.47 91.3 5.4 0.37 0.17 0.6 0.38 0.76 

2 2.9 77.6 0.3 0.5 0.4 0.71 0.41 0.83 2.28 82.8 2.8 0.51 0.31 0.67 0.44 0.83 

3 3.21 85.7 -5.2 0.4 0.26 0.63 0.34 0.78 2.98 108.3 7.9 0.33 -0.17 0.48 0.26 0.72 

4 2.96 77.7 -0.3 0.5 0.4 0.7 0.43 0.83 2.24 78.8 1.7 0.53 0.38 0.7 0.48 0.84 

5 2.83 74.9 -1.9 0.52 0.44 0.72 0.42 0.84 2.16 77 0.7 0.54 0.41 0.72 0.44 0.85 

6 2.97 73.4 -5.4 0.54 0.46 0.73 0.44 0.85 2.32 74.1 -3.2 0.57 0.45 0.73 0.47 0.86 

7 3.2 78.6 -6 0.49 0.38 0.69 0.44 0.83 2.5 78.7 1.4 0.54 0.38 0.7 0.43 0.85 

8 3.19 82.6 -8.6 0.43 0.32 0.65 0.42 0.8 2.67 78.9 -0.6 0.47 0.38 0.68 0.44 0.82 

9 3.07 82.4 -7.7 0.43 0.32 0.64 0.41 0.79 2.33 77.8 4.6 0.53 0.39 0.71 0.42 0.84 

10 3.16 84.4 -12.1 0.43 0.29 0.63 0.41 0.79 2.37 78.7 -1 0.54 0.38 0.7 0.44 0.85 

11 2.36 75.4 -4.9 0.53 0.43 0.72 0.45 0.84 1.82 73.4 2.1 0.59 0.46 0.74 0.45 0.87 

12 3.06 78.4 -3.7 0.49 0.39 0.7 0.42 0.83 2.27 77.2 2.2 0.58 0.4 0.7 0.43 0.86 

13 3.29 73.6 -2.9 0.49 0.46 0.68 0.4 0.82 3.09 78.5 -7.7 0.42 0.38 0.61 0.4 0.78 

14 3.26 92 -5 0.34 0.15 0.58 0.31 0.74 3.03 109.9 5.4 0.27 -0.21 0.47 0.25 0.69 

Notes: The calibration period includes a one-year warm up period. For validation, the model is run through the calibration period and then the goodness-of-fit measures are 
assessed from Jan 1, 1991 to Dec 31, 1995. All sub-basins were used in the regionalization regression process.   
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Shapiro-Wilks Test for 
Normality 

  Indepent. 
Variable p-value 

H
BV

 P
ar

am
et

er
s 

SCF 0.014 
DDF 0.870 
Tm 0.033 
FC 0.179 
k0 0.220 

k1_log 0.442 
lsuz_log 0.657 

cperc_sqrt 0.036 

Sp
at

ial
 

per_north 0.267 
per_east 0.193 

per_developed 0.730 
per_forest 0.936 

per_agr 0.336 
elev_MEAN 0.693 
slope_MEAN 0.582 

slope_std 0.544 
per_HGB 0.190 
per_HGC 0.284 

per_HGD_log 0.748 
TI_mn 0.854 
TI_max 0.505 
TI_min 0.591 
DA_log 0.914 

strm_len_log 0.314 

Cl
im

at
e ppt_log 0.144 

tmax 0.732 
tmean 0.071 

Note: Values highlighted in bold indicate the 
paramters that could not be corrected using a 
log transformation. These parameters tended 
to bump into their upper/lower limits during 
calibration.  

 

  



Results for the HBV regionalization regressions 

 cperc_sqrt ddf fc k0 k1_log lsuz_log scf tm 
  (1) (2) (3) (4) (5) (6) (7) (8) 

fc PCA comp. 8.828*** 
(2.560)   

7.833** 
(3.496) -16.514    

tm PCA comp.  
-0.258 
(0.168)       

per.east   
91.119*** 
(29.632)      

per.HGD.log      
17.133 

(10.455)   

TI.min       

-
0.129** 
(0.055)  

tmean        
0.667** 
(0.250) 

Constant -1.118** 
(0.448) 

1.580*** 
(0.285) 

228.044*** 
(37.467) 

0.031 
(0.612) 

1.879*** 
(0.503) 

1.299*** 
(0.100) 

1.991*** 
(0.342) 

0.235 
(0.339) 

N 15 15 15 15 15 15 15 15 
R2 0.478 0.153 0.421 0.279 0.235 0.171 0.297 0.354 

Adjusted R2 0.438 0.088 0.377 0.223 0.177 0.107 0.242 0.304 
Residual Std. 

Error (df = 13) 0.306 0.448 145.111 0.418 0.343 0.162 0.217 1.312 

F Statistic (df 
= 1; 13) 11.897*** 2.35 9.456*** 5.020** 4.001* 2.685 5.480** 7.112** 

Notes: 

Parenthesis represent standard error of estimate. The first PCA component is 
used for the agwrc, intfw, irc, lzsn, and uzsn regressions. 

***Significant at the 1 percent level; **Significant at the 5 percent level; 
*Significant at the 10 percent level. 

  



LOOCV - Comparison to Calibration  
Period Goodness-of-fit Measures 

locationID NSE 
ratio 

KGE 
ratio 

R2 
ratio 

RMSE 
ratio 

VE 
ratio 

0 0.595 0.913 0.979 1.108 0.867 

1 0.100 0.883 0.861 1.105 0.735 

2 0.650 0.873 0.820 1.110 0.829 

3 0.885 0.651 0.775 1.025 1.059 

4 0.625 0.914 0.840 1.115 0.837 

5 0.523 0.847 0.750 1.173 0.786 

6 0.457 0.836 0.704 1.215 0.727 

7 1.053 0.986 0.980 0.988 1.023 

8 1.188 0.908 1.093 0.956 1.024 

9 0.688 0.844 0.744 1.068 1.000 

10 0.862 0.889 0.837 1.025 1.000 

11 0.581 0.889 0.925 1.153 0.933 

12 1.103 0.971 1.000 0.961 1.119 

13 1.109 0.956 1.102 0.951 1.200 

14 1.067 0.776 0.824 0.994 1.129 

Notes: Values reported in this table are a ratio between the 
goodness-of-fit values estimated from the parameter regressions to 
the values obtained over the calibration period.  

 

LOOCV- Deleted Residuals (HBV) 

parameter model 
variance 

deleted residual 
variance 

cperc_sqrt 8.68E-02 1.35E-01 

ddf 1.87E-01 2.58E-01 

fc 1.96E+04 2.56E+04 

k0 1.62E-01 2.13E-01 

k1_log 1.09E-01 1.36E-01 

lsuz_log 2.44E-02 2.89E-02 

scf 4.37E-02 5.68E-02 

tm 1.60E+00 1.95E+00 

  



 

3.2 Figures 

 

3.2.1 HSPF Modeling 

 

 



 

  



3.2.2 HBV Modeling 
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