
PROCEDURAL GENERATION AND RENDERING OF LARGE-SCALE

OPEN-WORLD ENVIRONMENTS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Ian Dunn

December 2016

c© 2016

Ian Dunn

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Procedural Generation and Rendering of

Large-Scale Open-World Environments

AUTHOR: Ian Dunn

DATE SUBMITTED: December 2016

COMMITTEE CHAIR: Professor Zoë Wood, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor Franz Kurfess, Ph.D.

Department of Computer Science

COMMITTEE MEMBER: Professor Chris Lupo, Ph.D.

Department of Computer Science

iii

ABSTRACT

Procedural Generation and Rendering of Large-Scale Open-World Environments

Ian Dunn

Open-world video games give players a large environment to explore along with in-

creased freedom to navigate and manipulate that environment. These requirements

pose several problems that must be addressed by a game’s graphics engine. Often

there are a large number of visible objects, such as all of the trees in a forest, as well

as objects comprised of large amounts of geometry, such as terrain. An open-world

graphics engine must be able to render large environments at varying levels of de-

tail and smoothly transition between detail levels to provide a believable experience.

Often this involves finding a way to both store and generate the large amounts of

geometry that represent the environment.

In this thesis we present a system for generating and rendering large exterior

environments, with a focus on terrain and vegetation. We use a region-based proce-

dural generation algorithm to create environments of varying types. This algorithm

produces content that can be rendered at multiple levels of detail. The terrain is

rendered volumetrically to support caves, overhangs, and cliffs, but is also rendered

using heightmaps to allow for large view distances. Vegetation is implemented using

procedurally generated meshes and impostors. The volumetric terrain is editable in

real time, which limits our ability to pre-generate or cache large amounts of geometry,

and also limits the number of assumptions we can make with regard to visibility.

We support a view distance of at least 25 miles in each direction, though distant

objects are rendered at low resolution. The heightmap terrain used to achieve this

view distance consists of over 360,000 triangles. Our system runs at 180 frames per

second on commodity desktop hardware.

iv

ACKNOWLEDGMENTS

Thanks to:

• Andrew Guenther, for uploading this template.

• My advisor, Dr. Wood, for listening to me talk about terrain generation for five

years, and for all her help in making this thesis happen.

• The members of the graphics thesis group, for their insight and support: Lana

Hodzic, Katie Davis, Audrey Waschura, Cody Thompson, and Kyle Piddington.

• My family for their love and encouragement: Linda, Terry, Trevor, and Macken-

zie.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 A World Of Geometry . 1

1.2 Relic Engine . 2

1.3 Outline . 3

2 Background . 4

2.1 The Many Els . 4

2.2 Level of Detail . 5

2.3 Terrain Rendering . 7

2.3.1 Heightmaps . 7

2.3.2 Geometry Clipmaps . 8

2.4 Terrain Generation . 10

2.4.1 Physical process simulations 10

2.4.2 Fractal processes . 11

2.4.3 Noise Algorithms . 11

2.5 Voxels . 14

2.6 Screen-space Ambient Occlusion . 15

2.6.1 Ambient Occlusion . 16

2.6.2 Screen-space Ambient Occlusion 16

2.6.3 HBAO+ . 17

3 Related Works . 18

3.1 Terrain Generation . 18

3.2 Tree Rendering . 18

3.3 Minecraft . 19

3.4 Voxels and Volumetric Terrain . 19

4 Generation . 20

vi

4.1 World Map . 20

4.2 Regions . 20

4.2.1 Oceans and Fields . 23

4.2.2 Beaches . 23

4.2.3 Forests, Hills, and Mountains 24

4.3 System Overview . 26

5 Rendering . 27

5.1 Nearby Terrain . 27

5.1.1 Voxel algorithm . 28

5.1.2 Face Generation . 29

5.1.3 Rendering . 31

5.2 Far Terrain . 33

5.2.1 Pre-calculated Index Buffer 33

5.2.2 Normal Calculation . 34

5.3 Terrain Blending . 34

5.3.1 Terrain Summary . 36

5.4 Forests . 36

5.4.1 Mesh Instances . 36

5.4.2 Impostors . 37

5.4.3 Mesh Facades . 37

5.4.4 Rendering . 38

5.5 Water . 39

5.6 Environment . 39

5.7 Depth Buffer Precision . 39

5.8 Rendering Summary . 41

6 Results . 42

6.1 Full System Screenshots . 42

6.2 Voxels . 42

6.3 Clipmaps . 46

6.4 Vegetation . 49

7 Future Work . 51

7.1 Improved Terrain . 51

vii

7.2 Terrain Lighting . 51

7.2.1 Accurate Scattering . 52

7.2.2 Volumetric Lighting . 52

7.3 Vegetation . 52

7.4 Water . 53

BIBLIOGRAPHY . 54

viii

LIST OF TABLES

Table Page

4.1 Region boundaries from the world map values. 22

5.1 Tree view distances expressed in chunk widths. 38

ix

LIST OF FIGURES

Figure Page

1.1 Overview of the presented system 3

2.1 On the left is an example of a high-detail tree, on the right is a low-
detail tree. While the low detail approximation may appear very
crude, it is a reasonable substitution when the tree is so distant that
it takes up only a few pixels of screenspace. 6

2.2 An example of a heightmap (below) and its respective terrain (above). 8

2.3 An interesting property of a toroid is that moving along either di-
rection of gridlines will eventually lead you back to your starting
point [9]. This concept is used to perform incremental updates to
the heightmaps in geometry clipmaps. 9

2.4 An example of a toroidal update for a geometry clipmaps heightmap
[20]. Image (b) shows how the movement of the viewpoint causes the
red region to be updated. 9

2.5 Fractal noise render . 13

2.6 Ridged fractal noise render on the left, with a shaded render of the
same noise pattern on the right. 14

2.7 Distorted fractal noise render . 15

2.8 Voxels [8] . 16

4.1 Terrain generation system overview, showing the type of noise gen-
erators used. 21

4.2 Example world map section and generator selection. 21

4.3 Beach cliff generation . 24

4.4 Two, Four, and Six octaves of a standard ridged fractal generator
without our modification of using a standard fractal noise source for
the first two octaves. 25

4.5 Four and Six octaves of the ridged fractal generator used by Relic,
where a standard fractal noise source is used for the first two octaves. 26

5.1 Red spheres indicate a full sub-voxel, grey indicates an empty sub-
voxel. 28

x

5.2 Red spheres indicate a full sub-voxel, grey indicates an empty sub-
voxel. The image on the left shows a possible triangulation for this
sub-voxel configuration. However, our algorithm rejects this config-
uration and instead generates the triangulation on the right. . . . 29

5.3 Voxel triangulation of a mountaintop without sub-voxel trimming
enabled. 30

5.4 Voxel triangulation of a mountaintop with sub-voxel trimming en-
abled. 30

5.5 Example of the four types of interior face. Each pink face is an
interior face. Note that this is just one possible orientation of each
class of interior face, but each class can be oriented in either four
or eight directions. (The left two classes have eight orientations and
the right two have four). 32

5.6 In this image the red line represents the shape of the near (voxel)
terrain and the blue line represents the shape of the far (clipmaps)
terrain. The light blue shaded region is an area where the far terrain
might show above the near terrain from this side view. Relic solves
this problem by culling all nearby fragments from the far terrain
render. 35

5.7 Example of the effect described in Figure 5.6 shown in-engine. In the
left image, the far terrain geometry is visible above the near terrain.
In the right image, it is culled properly. 35

5.8 In the left image, tree impostors are rendered on spherical billboards.
At this elevated viewpoint, the billboard effect is clearly visible when
compared to the tree mesh instances in the lower left corner of the
image. The right image shows the same scene as rendered by the
Relic engine, using cylindrical billboards (where only the Y axis ro-
tates). 37

5.9 On the left, a tree facade is shown in detail. The image on the right
is many tree facades at great distance. 38

5.10 Mapping of Z values to depth values [31]. The tick marks on the
blue line indicate the precision of the depth buffer. 40

6.1 Forest region. 43

6.2 Another view of a forest region. 43

6.3 Mountain region. 44

6.4 Mountain region with distant trees. 44

6.5 Same view as the previous screenshot, with different sun position. . 45

6.6 A lake. 45

xi

6.7 Shoreline cliff. 46

6.8 Voxel terrain rendering performance for different chunk sizes. For
each chunk size, view distance is set to 512 feet. 47

6.9 Graph of modification cost (i.e. digging) for different chunk sizes. . 47

6.10 Geometry clipmaps render time for a given number of clipmap layers.
Note that the frame-time is always sub-millisecond, even for a large
number of layers. 48

6.11 Geometry clipmaps view distance and for a given number of clipmap
layers. 48

6.12 Tree performance vs. tree representation type, view distance set to
1280 feet. 50

6.13 Tree performance vs. tree group size. 50

xii

Chapter 1

INTRODUCTION

Many of the top selling video games of all time are “open-world” games. Minecraft,

Grand Theft Auto V, and The Elder Scrolls V: Skyrim are all good examples of this

genre. One of their defining characteristics is that they offer players an expansive

world to play and explore in. Those three titles alone have a combined total of over

190 million copies sold.

Creating such a world is not a simple task, however. It is not straightforward

to write a game engine that can render rolling hills, towering mountains, and dense

forests. Nor is it simple to create these exterior environments, either through the

careful work of artists or the expensive application of procedural generation tech-

niques.

1.1 A World Of Geometry

The primary source of difficulty in this field is the tremendous scale. Landscape scenes

require incredible amounts of geometry to represent everything from the terrain itself

to the trees and water. It is not be possible to store the entirety of the visible scene

in a modern computer’s memory.

Game developers attempting to render an open-world game must use techniques

that not only load in different parts of the environment as they are needed, but also

load those parts at differing detail levels.

1

1.2 Relic Engine

This paper describes Relic, a game engine designed to render large exterior envi-

ronments. The Relic engine procedurally generates and renders terrain, vegetation,

water, and atmospheric effects with a low-poly, untextured art style.

For terrain generation, we implement a system for picking between a variety of

landscape generators using noise algorithms. This system determines not only the

elevation and color of the terrain, but also parameters such as forestation and material

properties. The generated content that can be produced and rendered at multiple

levels of detail.

Relic renders terrain using a heightmap-based implementation for distant terrain

and a novel voxel implementation for nearby terrain. The distant terrain system sup-

ports large view distances, up to 3000 miles in all directions. The use of a volumetric

representation allows the terrain to support caves, overhangs, and cliffs, features

which cannot be represented by a heightmap renderer. The volumetric terrain is also

editable in real time.

Forests are rendered using a combination of three different rendering approaches.

Terrain, forests, and other scene elements including the sky and water render with 25

mile view distance at a 2560x1440 resolution at 180 frames per second. See Figure 1.1

for an overview of the Relic landscape system.

Relic is written in just over 15,000 lines of C++ code and uses OpenGL to interface

with graphics hardware.

2

Figure 1.1: Overview of the presented system

1.3 Outline

In Chapter 2 we discuss some of the terrain rendering and generation techniques that

form the basis for our system. Then, in Chapter 3 we compare some similar systems

to the capabilities of Relic. In Chapters 4 and 5 we describe the contributions of this

thesis. Chapter 6 contains the performance validation of each rendering system, and

Chapter 7 outlines potential future improvements for the engine.

3

Chapter 2

BACKGROUND

Our system builds on a lot of existing technology. To lay the foundation of the thesis

we first discuss some computer graphics fundamentals (Section 2.1). We then describe

level-of-detail algorithms, a fundamental basis for most of the work in the system

(Section 2.2). Next, we discuss some methods for generating and rendering terrain

(Sections 2.4 and 2.3 respectively), including a look at voxel terrain in particular

(Section 2.5). Finally, we give an overview of a rendering effect used to improve the

appearance of our renders (Section 2.6).

2.1 The Many Els

Many computer graphics techniques involve breaking down complex objects into a

large number of individual elements. As such, we need terminology to refer to these

different types of elements.

Perhaps the most commonly known individual element is a pixel. The term pixel

refers to a “Picture Element”. In this case, a picture has been broken down into

its individual elements, pixels. In this paper, we will discuss pixels and other such

elements including:

• Texels “Texture Elements”

• Surfels “Surface Elements”

• Voxels “Volume Elements”

4

2.2 Level of Detail

There are several limitations when it comes to rendering large scenes. In general,

the large amount of geometry required to represent these scenes is at odds with the

limited resources of the computer. The GPU is only able to render and shade a certain

amount of geometry due to processor speed and number of available processors. Scene

geometry must be loaded into main memory, then transferred to graphics memory,

both of which have throughput maximums and storage maximums. The hardware

interface also has some CPU overhead with regard to submitting draw commands, so

we are limited in the number of draw calls we can make.

As such, in order to render large scenes with a large number of scene elements,

we need to account for level of detail. ‘Detail’ in this context refers generally to the

amount of geometry used to represent a scene element. Consider, for example, a

tree. A high-detail representation of a tree would consist of geometry to represent

branches, individual leaves, and the shape of the trunk. A low-detail representation

of a tree might simply consist of a trunk-colored box and a leaf-colored cone. See

Figure 2.1 for an example of high and low detail representations of a tree from our

engine.

Smaller details like branches and individual leaves are no longer visible in the low-

detail representation, but are represented more abstractly by the box and cone shapes.

The advantage of the low-detail representation is that it requires fewer resources to

draw.

In addition, it is also a bad idea to render distant scene elements at full-detail even

if resources are available. The farther away a scene element is from the viewpoint, the

smaller it is in terms of screen-space. Drawing primitives that are smaller in terms

of screen-space can cause aliasing, a visual artifact. As such, low-detail representa-

5

Figure 2.1: On the left is an example of a high-detail tree, on the right
is a low-detail tree. While the low detail approximation may appear very
crude, it is a reasonable substitution when the tree is so distant that it
takes up only a few pixels of screenspace.

6

tions can sometimes appear better than their high-detail counterparts at large view

distances.

Level-of-detail is commonly abbreviated LOD. A rendering system that is capable

of representing scene elements in both high-detail and low-detail formats is referred

to as a LOD rendering system. A LOD system must switch freely between these

representations as the viewpoint changes to reduce the amount of geometry and draw

calls required to render a large scene, while still representing nearby objects at full

detail.

One common LOD system that is implemented in most graphics hardware is

texture mipmapping [34].

2.3 Terrain Rendering

Terrain rendering is a prime candidate for using a level-of-detail algorithm because

terrain consists of a large amount of geometry and is visible both up close and at

large view distances. Over the years there have been many published techniques for

terrain rendering [16] [4] [7] [12] [15] [33] [18] [10]. However, we will focus on some

more modern techniques that serve as the basis for the terrain system presented in

this paper.

2.3.1 Heightmaps

A common technique for simplifying terrain representation is the use of a heightmap.

A heightmap is based on the assumption that terrain elevation is uniformly sampled,

i.e. we know the height of the terrain at evenly spaced intervals. Instead of storing a

set of 3D points to represent the terrain surface, we can instead create a generic 2D

regular grid and store the height separately. This separate array of height values is

7

Figure 2.2: An example of a heightmap (below) and its respective terrain
(above).

referred to as a heightmap. See Figure 2.2 for an example of a heightmap.

2.3.2 Geometry Clipmaps

Geometry clipmaps is a terrain rendering technique from 2004 that uses a series of

nested regular grids to represent each detail level of the terrain [20]. A regular grid

of terrain at maximum detail is centered around the viewpoint. Another regular

grid of terrain at twice the scale (and thus half resolution) is centered around that

inner grid, but with a hole cut out where the inner grid is located. Thus the second

grid is clipped by the first grid (i.e. a clipmap). Consecutive grids are added in the

same manner, each twice the scale and half the resolution of the previous. Each of

these grids is referred to as a layer. The geometry clipmaps approach also includes a

system for blending the low and high detail representations at layer boundaries, and

for updating the heightmaps used by each layer. Heightmaps are updated toroidally

so that small incremental updates are possible as the viewpoint moves. See Figures

2.3 and 2.4.

More recently, work has been done on improving the geometry clipmaps technique

8

Figure 2.3: An interesting property of a toroid is that moving along either
direction of gridlines will eventually lead you back to your starting point
[9]. This concept is used to perform incremental updates to the heightmaps
in geometry clipmaps.

Figure 2.4: An example of a toroidal update for a geometry clipmaps
heightmap [20]. Image (b) shows how the movement of the viewpoint
causes the red region to be updated.

9

for use with modern rendering hardware, but the principles remain the same [1].

The system in this paper uses a modified version of geometry clipmaps, which is

discussed in Section 5.2.

2.4 Terrain Generation

Before addressing the problem of how to render terrain we must first decide where

our terrain data will come from.

There are many possible sources of terrain data. Acquired data from the real

world is often available. The USGS provides satellite data for much of the world’s

surface. Some game engines also use terrain editing tools that allow artists to sculpt

terrain manually.

It is also possible to implement algorithms that procedurally construct terrain.

The advantage of using procedurally generated terrain is that it requires less time

and effort than artistically creating a terrain, and it does not require much or any

disk space (as opposed to using acquired data which can be very large).

Procedural terrain generation methodologies usually employ one or more of the

follow techniques.

• Physical process simulations

• Fractal processes

• Noise algorithms

2.4.1 Physical process simulations

Real terrain is shaped by erosion, the gradual shaping of landscape caused by water,

wind, and other forces. Some terrain generation techniques simulate these physical

10

processes on a starter dataset to create realistic surfaces [14].

However, the nature of the physical simulation usually requires the entire world

(or at least individual continents) to be generated at once. This means that the

generation of very large worlds can be very expensive in terms of both processing

time and memory requirements.

Physical process simulations are often used in fields where time and memory

requirements are not as stringent, e.g. offline rendering for movies.

2.4.2 Fractal processes

Another technique for generating terrain is a fractal process, some algorithm that

operates on geometry to add detail and which can be re-applied at smaller and smaller

scale until a highly detailed surface results. One common form of fractal process is

the Diamond-square Algorithm which sequentially subdivides and modulates a regular

grid [22].

2.4.3 Noise Algorithms

Noise algorithms are similar to fractal processes but do not need to operate on a

regular grid of fixed size [28]. The most typical way that noise algorithms are used

is by generating a patch or formula for noise (typically in two dimensions, though

sometimes more) and employing a technique called fractional Brownian motion to

create a heightmap. The primary advantage of noise terrain generation over the

previous two methods is that the generation of an individual elevation value is entirely

independent of neighboring values. This means that a noise algorithm can be more

easily parallelized, and applied more effectively for use with a LOD terrain rendering

system.

11

Noise is generally a signal that varies randomly. Coherent noise is a special brand

of noise that is more useful for generation purposes. As a random signal, it is reason-

able to expect that a large change in domain results in a random change in output

for a given noise function. Coherent noise has the property that for small changes in

domain, only a small change in output will result.

Coherent Noise

There are two major types of coherent noise.

The most simple is value noise. Value noise is generated by calculating random

numbers at fixed intervals and interpolating between the values.

Another type of coherent noise is gradient noise. Gradient noise is generated by

calculating vectors at a fixed interval, then performing a dot product to calculate

intermediary values instead of interpolating. It is a numerically similar process to

value noise, but produces noise with more variance - that is, more detail in higher

frequencies.

Fractal Noise

Fractal noise, or 1/f noise, is a technique for taking a noise function and adding detail

at higher frequencies [28]. The general approach is:

1. Take a noise function as input

2. Double the frequency and halve the amplitude of the noise function, then add

it to itself. This is called the second octave.

3. Double again the frequency and halve again the amplitude of the noise function,

then add this too into the sum. This is the third octave.

12

Figure 2.5: Fractal noise render

4. Repeat Step 3 for subsequent octaves until amplitude is close enough to zero

that added octaves produce no change in the output, or until desired amount

of detail is reached.

In general you do not need to exactly double the frequency or halve the amplitude

each octave, but can fine tune these values e.g. by multiplying the frequency by 1.2

and the amplitude by 0.3. See Figure 2.5 for an example of fractal noise.

Ridged Noise

An additional step can be added before summing each individual octave. By first

taking the negated absolute value of each generated noise value, a ridged version of

fractional brownian motion can be created. This technique is commonly referred to

as ridged fractal generator, or sometimes a turbulence generator [28]. In addition,

some ridged fractal implementations use the value from each octave to scale the value

13

Figure 2.6: Ridged fractal noise render on the left, with a shaded render
of the same noise pattern on the right.

from the next octave, to further emphasize the shape of ridge lines [2]. We use this

approach in our ridged noise generator. See Figure 2.6 for an example of ridged noise.

Noise Distortion

Ridged noise works on by modifying the range of each noise function, but it is also

possible to modify the domain in a similar fashion. Using two additional fractal

generators, an offset vector can be produced for each sample of the height generator.

This technique helps break up the homogeneous appearance of generated terrain by

shrinking and expanding different areas. See Figure 2.7 for an example of distorted

noise.

2.5 Voxels

A voxel is a three-dimensional analogue to a pixel. While an image can be represented

by a 2D array of pixels, a volume can be represented by a 3D array of voxels - see

14

Figure 2.7: Distorted fractal noise render

Figure 2.8.

Voxels are sometimes used to represent and render 3D terrain. Minecraft is per-

haps the most popular example of this technique, where the terrain and other objects

are represented as voxels.

Voxels can be either converted to a polygon mesh for rendering (this is the tech-

nique used by Minecraft, or rendered more directly using ray-casting or other similar

approaches. In Section 5.1 we discuss our approach to using voxels to represent and

render terrain.

2.6 Screen-space Ambient Occlusion

Without shadows, it is sometimes difficult to understand the shape and spatial orien-

tation of rendered objects. One way to add simple shadows to a scene is by accounting

for the occlusion of ambient light caused by nearby objects.

15

Figure 2.8: Voxels [8]

2.6.1 Ambient Occlusion

In rendering, ambient light is used to represent the indirect lighting of a scene caused

by the natural reflection of light off of all objects. While direct light travels directly

from the light to the object being shaded, ambient light comes from all directions.

Ambient Occlusion is a technique for simulating this global illumination phenomenon

by darkening surfaces whenever they are surrounded by many other nearby surfaces.

In more technical terms, if a hemisphere aligned along the normal of a surfel contains

many other surfel, that surfel is shaded darker than a surfel which is not surrounded.

2.6.2 Screen-space Ambient Occlusion

One simple and efficient way to approximate ambient occlusion in real time computer

graphics is to use a technique called “Screen-space Ambient Occlusion” [32]. SSAO

is a post-processing pass that operates on fragments, or pixels that have depth val-

ues associated with them. Instead of searching a hemisphere around each surfel in

the scene, we instead search a hemisphere around each fragment looking for other

fragments.

While this approach does not accurately account for any non-visible surface (in-

16

cluding any object that is either occluded or off-screen), it is fast and straightforward

to add to an existing rendering engine.

2.6.3 HBAO+

Horizon-based ambient occlusion (plus) is an improved and modern version of SSAO

developed by Nvidia [25]. Nvidia provides HBAO+ as free software to game engine

developers. As such, we choose to use HBAO+ in our engine instead of writing our

own implementation of SSAO.

17

Chapter 3

RELATED WORKS

3.1 Terrain Generation

Some recent publications in the field of terrain generation have produced impressive

landscapes. Génevaux et al. used a vector-based hydrology simulation with user-

controllable parameters [14]. One interesting aspect to note is their novel approach

to storing the terrain which focuses on a hierarchy of features, similar to constructive

solid geometry. Zhou et al. implemented a system to stitch together samples from

real-world DEM data, also with user-controllable parameters [35].

By comparison, the generation system Relic uses is much simpler, but it allows

height values to be easily generated at arbitrary resolution.

3.2 Tree Rendering

Many published techniques for rendering forests involve ray casting or ray march-

ing. Mantler et al. add tree rendering to a terrain renderer by ray marching on an

appended tree heightmap [21].

Bruenton & Neyret use pre-rendered depth maps of tree models from many pos-

sible angles in addition to an algorithm for distant forest shading [5]. Pre-rendered

depth maps are a more complex version of impostor rendering. The low-poly trees of

Relic are more sufficiently represented by an impostor than photo-realistic trees, and

impostors are far less intensive to both generate and render than depth maps.

18

3.3 Minecraft

Minecraft is an open-world game that uses voxels for representing and rendering ter-

rain [29]. The voxel representation makes it possible to support caves and overhangs,

as well as real-time editing. However, all terrain is represented at the same detail

level, making it difficult to support large view distances. Additionally, Minecraft has

a vertical range limited to 256 meters [23].

3.4 Voxels and Volumetric Terrain

Marching cubes is an algorithm for creating a polygonal mesh from volumetric data

[19]. Unlike the voxel meshing used by Minecraft, Marching cubes can be used to

create smooth surfaces because grid values are scalar distances, not boolean occupancy

values. Relic’s voxel algorithm operates on a boolean grid (which is more friendly for

problems like in-game editing) but can still produce slanted surfaces.

The Transvoxel Algorithm is a technique for stitching together volumetric meshes

so that level-of-detail techniques can be applied to volumetric terrain [17]. Relic avoids

the need to apply LOD to volumetric terrain by using a heightmap representation for

distant terrain.

19

Chapter 4

GENERATION

Our terrain generation algorithm creates a world with large continents that contain

beaches, forests, hills, and mountains. The algorithm uses a low-frequency world

map to determine continent outlines and region boundaries. For finely sampled terrain

values, the values of the world map are used to select and influence custom generators

for each region type. See Figures 4.1 and 4.2. The world map is discussed in Section

4.1 and the different region generators are discussed in 4.2

4.1 World Map

The terrain is generated by first establishing a low-frequency world map, then select-

ing from a series of different landscape generators based on general elevation. The

world map uses a single distorted fractal noise layer with a box ramp to force oceans

at all borders.

A low number of octaves is used (four, in our implementation) to guarantee a lack

of high-frequency details. This makes it useful for generating features without having

areas that swap between multiple region types unrealistically. Figure 4.2 shows an

example of the smooth isolines generated by the world map.

4.2 Regions

For rendering, the terrain values need to be generated at 1 foot postings. We also

need color values to shade the ground, and a forestation value to determine how to

place trees.

20

Figure 4.1: Terrain generation system overview, showing the type of noise
generators used.

Figure 4.2: Example world map section and generator selection.

21

Region Minimum Maximum

Ocean -1 0

Shore 0 0.05

Field 0.05 0.15

Forest 0.15 0.30

Hills 0.30 0.45

Mountain 0.45 1.0

Table 4.1: Region boundaries from the world map values.

Values from the world map are used to pick a particular set of terrain generation

rules, referred to as a region. The return value from the world map generator has a

theoretical range from -1 to 1, but most values tend to be between -0.7 and 0.7. This

range is divided into regions with low values mapping to low elevation regions and

high values mapping to high elevation regions. See Table 4.1 for the exact world map

values used to determine regions.

The world map can usually be used to generate color values, i.e. the color from

the image in 4.2 is used by each region generator. However, the Mountains generator

in Section 4.2.3 does some additional coloring.

For each region, a “region delta” is calculated to indicate how far into a region

the engine is currently generating data for. A region delta of 0.0 indicates the bound-

ary with the next lower elevation region, 1.0 indicates the higher boundary, and 0.5

indicates the middle of the region.

The region types used by the engine are: Oceans, Beaches, Fields, Forests, Hills,

and Mountains.

While each region generator is individually responsible for generating elevation

values, some noise sources are shared between the different regions so that smooth

22

transitions can be generated. As an example, the Oceans, Fields, and Forests gener-

ators all share a distorted fractal noise source.

4.2.1 Oceans and Fields

The oceans, fields, and forests generators all simply add some high-frequency noise to

the world map value with some scaling. This generates small sandy hills below water

for Oceans, small grassy hills for Fields, and tree-covered hills for Forests.

4.2.2 Beaches

Beaches serve as a transition between oceans and fields. Beaches may contain a cliff

partway between the shoreline and the transition to the field region.

This cliff is generated by applying a vertical offset to any baseline value above a

certain threshold. The offset is applied gradually over a small area so that the cliffs

are not completely abrupt, but have a horizontal dimension of a few feet. As the

baseline elevation approaches the transition to Fields, the offset is tapered off to give

cliffs some additional prominence. See Figure 4.3.

The cliff generation offset function is as follows, where v is the map value:

shoreline(v) =

 0, for 0 ≤ x ≤ cliff start

cliff size ∗ cliff falloff ∗ cliff gain, for cliff start < x ≤ 1

Where cliff gain and cliff falloff are both computed as follows, but clamped from

0 to 1:

cliff gain =
v − cliff start

cliff range

23

Figure 4.3: Beach cliff generation

cliff falloff =
x− (cliff start + cliff range)

falloff range

The exact size, shape, and shoreline distance of the cliffs are configured by the

parameters cliff start, cliff range, cliff size, and falloff range. Relic uses additional

noise layers to add variance to these parameters, and adds applies a gain function to

both cliff gain and cliff falloff to create a smoother final appearance.

4.2.3 Forests, Hills, and Mountains

The Forests, Hills, and Mountains regions both use a custom version of a ridged

fractal generator.

For the first two octaves of noise, a standard gradient noise sample is used instead

of the ridged version. This helps reduce the sharpness of some peaks and hides some

unnatural artifacts that sometimes occur. Figure 4.4 shows the first few octaves of

24

Figure 4.4: Two, Four, and Six octaves of a standard ridged fractal gener-
ator without our modification of using a standard fractal noise source for
the first two octaves.

a ridged fractal generator without this modifications. The ridge lines established by

the second octave have a large effect on the resulting image even as more octaves

are added. The smoothness of these lines creates circular artifacts in the resulting

terrain. Figure 4.5 shows the first few octaves of a ridged fractal generator with

this modification. The effect is similar to lowering the amplitude and increasing the

frequency of a normal ridged fractal generator but with large-scale variation preserved.

In addition, a hilliness parameter is added to help smoothly transition between

mountains and hills. When hilliness is 0, the standard absolute value is used. At

hilliness of 1, the input value is squared instead to produce a parabolic shape. Hilliness

values between 0 and 1 interpolate between these two shapes.

At the low edge of Hill regions, a hilliness value of 1 is used along with low overall

amplitude. These same parameters are used at the high edge of the Forest region,

and create smooth rolling hills of medium height. In the Mountain region, hilliness

falls to 0 and amplitude increases to create sharp ridge lines and towering peaks.

Mountain regions are colored by adding snow coverage over the region color spec-

ified by the world map. Snow is added whenever the angle between the normal of

the surface and the up vector is smaller than some value. For high elevations, a large

25

Figure 4.5: Four and Six octaves of the ridged fractal generator used by
Relic, where a standard fractal noise source is used for the first two octaves.

angle is used, and at low elevations a small angle is used.

4.3 System Overview

The use of a world map generator defines at a large scale what type of geometry to

generate, including continent outlines and region boundaries. Values generated by

the world map are used to pick a particular region generator and transition smoothly

between each region. The regions, in order of elevation, are Oceans, Beaches, Fields,

Forests, Hills, and Mountains. Oceans and Fields have simple geometry - just some

low amplitude noise to create small hills and variations. Beaches serve as a ramp be-

tween Ocean and Field regions, with a cliff generated partway up the shore. Forests,

Hills, and Mountains use a custom ridged fractal generator to create ridged moun-

taintops and rolling hills.

26

Chapter 5

RENDERING

Our landscape rendering system consists of three primary components - a nearby

terrain renderer, a distant terrain renderer, and a forest renderer.

The nearby terrain renderer uses a meshing algorithm influenced by voxel terrain

systems (Section 5.1). This mesh generation is expensive but is necessary for mean-

ingful player interaction and is limited to a very narrow region around the viewpoint.

Far terrain is rendered using a modified implementation of geometry clipmaps

(Section 5.2). The nature of the clipmaps algorithm makes it possible to extend the

terrain view distance substantially with minimal overhead.

Our forest system uses mesh instances, impostors, and a similar representation

called facades to render vast forests (Section 5.4). The system is designed to render

a large number of individual trees with the highest performance possible.

In addition to these three primary components, our system also renders water and

other additional environment aspects, discussed in Sections 5.5 and 5.6.

5.1 Nearby Terrain

Nearby terrain is rendered using a pseudo-voxel representation designed to allow for

sloped surfaces while maintaining intuitive live editing capabilities. A voxel algorithm

that uses uniform voxel size is simple to implement and manage but is poorly suited

to represent sloped surfaces. Fully volumetric terrain implementations allow for arbi-

trary slopes but are less intuitive for manipulation by players and navigation by AI.

We utilize a pseudo-voxel system that allows for diagonal faces in addition to solid

27

Figure 5.1: Red spheres indicate a full sub-voxel, grey indicates an empty
sub-voxel.

voxels. This system allows for simple grid-based editing and simple physics calcula-

tions, while allowing sloped polygonal faces that are more aesthetically pleasing than

simple voxels.

5.1.1 Voxel algorithm

In principle, the system works by breaking down each individual voxel into eight

sub-voxels (one for each corner of the cube) and generating diagonal faces based on

which of these sub-voxels are occupied. However, certain sub-voxel configurations

are considered degenerate and are automatically trimmed to a lesser configuration.

For example, in our system any pseudo-voxel with only a single sub-voxel occupied is

automatically trimmed to an empty voxel. In this case the trimming occurs because

there is no diagonal face to represent just a single corner of a voxel. Figure 5.1 shows

the pseudo-voxel with the fewest possible sub-voxels, four.

The system can therefore trivially trim any pseudo-voxel configuration with fewer

than four sub-voxels.

28

Figure 5.2: Red spheres indicate a full sub-voxel, grey indicates an empty
sub-voxel. The image on the left shows a possible triangulation for this
sub-voxel configuration. However, our algorithm rejects this configuration
and instead generates the triangulation on the right.

The system also trims certain pseudo-voxel configurations to a simpler configura-

tion. See Figure 5.2 for an example.

This trimming is performed to preserve smooth slopes of generated terrain. See

Figures 5.3 and 5.4 for a comparison between untrimmed and trimmed sub-voxel

configurations.

5.1.2 Face Generation

Triangles are generated for each pseudo-voxel configuration using lookup tables for

efficiency and simplicity. The largest lookup table is 12 kilobytes, so the memory

impact of using the lookup tables is minimal. Triangles are divided into two categories:

interior and exterior.

29

Figure 5.3: Voxel triangulation of a mountaintop without sub-voxel trim-
ming enabled.

Figure 5.4: Voxel triangulation of a mountaintop with sub-voxel trimming
enabled.

30

Exterior Faces

Exterior triangles are the triangles that would normally be generated by a simple voxel

system - the faces of a cube. Exterior triangles are checked against each neighboring

pseudo-voxel for visibility. In the trivial case, a completely solid voxel surrounded

entirely by solid voxels produces no triangles, since all exterior triangles are occluded

by the exterior faces of each neighboring voxel.

Interior faces

Interior faces are the triangles that are unique to Relic’s voxel system, as opposed

to an ordinary voxel system that only generates exterior faces. Interior faces have

some form of diagonal slope see Figure 5.5 for a demonstration of each type of interior

triangle that Relic generates.

5.1.3 Rendering

The world is divided into chunks for triangulation and rendering purposes. Each

chunk is a 32x32x32 volume of voxels. Relic generates voxels at a resolution of one

voxel per foot, so each chunk is also 32x32x32 feet in dimension. The size of voxel

chunks is further discussed in Section 6.2.

One triangle mesh is generated per chunk. Each chunk tracks its neighbors in all

six face directions so that occluded exterior faces can always be accurately detected.

This means that a ring of non-visible chunks must be loaded around all visible chunks,

since no visible chunk can have an unloaded neighbor.

In order to determine which chunks are visible, a large sphere is placed around

the camera and any chunk that intersects this sphere is loaded and rendered. As the

camera moves, chunks that leave this sphere are unloaded and chunks that enter it

31

Figure 5.5: Example of the four types of interior face. Each pink face is
an interior face. Note that this is just one possible orientation of each
class of interior face, but each class can be oriented in either four or eight
directions. (The left two classes have eight orientations and the right two
have four).

32

are loaded.

Screen-space ambient occlusion is used to help visual understanding of the voxel

terrain shape.

5.2 Far Terrain

The voxel terrain described in the previous section is ideal for editability and repre-

sentation of features such as overhangs and caves, but it is very expensive to both

generate and render. In order to maximize the view distance of the Relic world, far

terrain is rendered using a flat-shaded implementation of geometry clipmaps with a

few modifications.

5.2.1 Pre-calculated Index Buffer

The original geometry clipmaps implementation recalculates index buffers pre-frame

so that each layer can grow and expand organically. This makes it possible to seam-

lessly transition to lower-resolution terrain when the viewpoint moves rapidly.

However, our system locks the size of each layer so that the index buffers can be

pre-calculated. This was found to significantly reduce CPU overhead. This means

that while the original geometry clipmaps algorithm would simply show less high-

frequency detail when the viewpoint moves rapidly, our system slows down with

increased load times when the viewpoint moves rapidly. However, our clipmaps im-

plementation is part of an engine designed for a game, where player movement speed

will inherently be limited by a physics simulation. In addition, rapid movement of the

viewpoint will require all other systems (voxel terrain, forests, physics, etc.) to stop

and load new data. As such, allowing the geometry clipmaps algorithm to continue

running in this scenario would not be helpful.

33

5.2.2 Normal Calculation

Since our terrain is flat-shaded for a polygonal effect, the per-quad normals provided

by a normal map must be inaccurately applied to two triangles. We also found that

normal calculation from our procedural generation system incurred significant CPU

overhead. Accurate normal calculation in transition regions was also difficult.

Our implementation uses a per-triangle normal calculation in a geometry shader

so that accurate normals are always calculated for each triangle. This saves significant

CPU time as normals don’t need to be pre-calculated or sent to the GPU normal map.

The addition of the geometry shader was found to not have a significant decrease in

rendering performance.

5.3 Terrain Blending

In order to use both the near and far terrain representations, Relic implements a

blend region between the two systems. In general, the near terrain is simply rendered

on top of the far terrain (ignoring the actual depth of either geometry). However, we

implement a blend region between the two representations so that the transition is

smoother, and there is an additional caveat that must be addressed.

Consider the side-profile view of both terrain systems shown in 5.6. In the red

regions, only the near terrain is visible, so no additional work needs to be done. In

the purple regions, both terrains are visible, but our choice of rendering the near

terrain on top will ensure that only the near terrain is visible. The blue region is the

problem area. From this viewpoint, there is a dip in the near terrain geometry but

the smoother far terrain representation cuts through this gap. At this distance we

only want to see the near representation. Figure 5.7 shows how this effect appears

in-engine. Relic solves this problem by simply culling any fragments from the far

34

Figure 5.6: In this image the red line represents the shape of the near
(voxel) terrain and the blue line represents the shape of the far (clipmaps)
terrain. The light blue shaded region is an area where the far terrain
might show above the near terrain from this side view. Relic solves this
problem by culling all nearby fragments from the far terrain render.

terrain representation that are closer than a given threshold.

Relic also implements a blend between the two terrain representations. This

blend is implemented in a post-processing pass that uses separate frame buffers for

each terrain representation. The algorithm operates on individual fragments. If both

systems are visible at a given fragment, and the distance to the fragment is near the

maximum distance of the near terrain representation, a blend of the two systems is

Figure 5.7: Example of the effect described in Figure 5.6 shown in-engine.
In the left image, the far terrain geometry is visible above the near terrain.
In the right image, it is culled properly.

35

used. For all other fragments, the near terrain fragment is selected if it is visible,

otherwise the far terrain fragment is selected.

5.3.1 Terrain Summary

Terrain is rendered using both a voxel representation and a clipmap representation.

The voxel representation supports editing and 3D terrain features such as cliffs, over-

hangs, and caves. However, the voxel system is costly to generate and render. A

geometry clipmaps implementation is used to support a large terrain view distance

beyond where the voxel representation ends. The blend pass described in Section 5.3

is used to merge these two terrain representations.

5.4 Forests

Our vegetation system currently supports rendering a large number of low-poly spruce

trees, but could be expanded to support other types of vegetation. The system uses

three levels of detail: mesh instances, impostors, and mesh facades.

Trees are rendered in chunks similar to the chunk system used by nearby terrain.

Each chunk represents an 80x80 foot area of forested terrain. A chunk contains at

most 100 tree meshes or impostors, or is represented by a single facade mesh.

5.4.1 Mesh Instances

The mesh instances layer simply uses instance rendering to draw the tree model in

several places.

36

Figure 5.8: In the left image, tree impostors are rendered on spherical
billboards. At this elevated viewpoint, the billboard effect is clearly visible
when compared to the tree mesh instances in the lower left corner of the
image. The right image shows the same scene as rendered by the Relic
engine, using cylindrical billboards (where only the Y axis rotates).

5.4.2 Impostors

The impostors layer draws a billboard for each tree in the group. During initialization,

the colors and normals of the tree model are rendered to textures for use in drawing

each impostor. The impostors are locked in their X and Z axis rotation so that the

base of the impostor always rests on the ground, and to reduce artifacts when the

camera is high above or below the impostor. See Figure 5.8 for a comparison between

the cylindrical billboards we use and the alternative spherical billboard. The rotation

around the Y-axis is used to rotate the normals of the impostor so that lighting is

accurate for impostors in all directions.

5.4.3 Mesh Facades

The final layer uses a simple mesh to represent a group of trees. The appearance of

this mesh is quite simplistic but at large view distances it is sufficient to represent a

group of trees. See Figure 5.9 for a comparison between mesh facades up close and

37

Figure 5.9: On the left, a tree facade is shown in detail. The image on the
right is many tree facades at great distance.

Representation Distance

Mesh Instance 2

Impostor 16

Facade 32

Table 5.1: Tree view distances expressed in chunk widths.

at a distance.

5.4.4 Rendering

Chunks within a certain distance are rendered as meshes. Chunks within a farther

distance are rendered as impostors. Finally, any chunk beyond the impostor distance

is rendered as a facade.

The system therefore has three configurable tree distance parameters. We found

that the values in Table 5.1 worked well. Increasing any view distance reduces the

visual artifacts from using a low-detail representation, but decreases performance.

38

5.5 Water

Our water system uses the geometry of our far terrain (geometry clipmaps) imple-

mentation for simplicity.

Instead of offsetting each vertex by a heightmap value, however, we used summed

Gerstner waves in the vertex shader. This provides both a vertical offset and a normal

to use for rendering.

The result is expensive, but simple and looks reasonable.

5.6 Environment

The system renders a billboard to represent the sun and a sky sphere with vertex

colors to represent the sky.

Lighting for all other objects in the scene uses three directional lights: one for

direct sunlight, one for scene reflection of sunlight, and one for sky light. The sunlight

has high bright white color and points from the sun position towards the scene. The

scene reflection light has dim white color and points in the opposite direction of

the sunlight, with the Y component clamped to zero. The sky light points directly

downward (negative Y) and has soft blue color.

Our system also implements a simple atmospheric scattering simulation by apply-

ing fog to each rendered fragment based on scene depth. The fog color interpolates

between dark blue for near fragments and the sky color for far fragments.

5.7 Depth Buffer Precision

Our system supports very large view distances. Setting the far plane at sufficient

distance for our scene significantly degrades the performance of the depth buffer,

39

Figure 5.10: Mapping of Z values to depth values [31]. The tick marks on
the blue line indicate the precision of the depth buffer.

even with 32 bits of precision. Insufficient precision in the depth buffer results in

Z-fighting on distant elements and especially noise in the ambient occlusion effect.

One problem is that the mapping of Z values to depth values has a reciprocal

shape, such that most of the depth buffer precision is alloted for nearby fragments

(See Figure 5.10). To improve depth buffer performance for far distances, we use the

inverted depth buffer trick [31]. By using a DirectX compatibility feature of OpenGL,

we can use a depth buffer ranging from zero to one instead of negative one to one.

Then, by storing depths reversed from the conventional direction, we can utilize the

inherent distribution of floating point precision to even out the distribution of depth

values in our scene. The conventional depth direction has near values at zero and far

values at one. However, floating point precision is higher for values closer to zero.

By storing near depths at one and far depths at zero, the additional floating point

precision creates a pseudo-logarithmic distribution of depth values.

This results in a significant reduction in depth precision artifacts.

40

5.8 Rendering Summary

The primary rendering components of Relic are a nearby terrain renderer, a distant

terrain renderer, and a forest renderer.

The nearby terrain renderer uses a voxel representation that is meshed using our

novel sub-voxel system. Far terrain is rendered using geometry clipmaps with some

modifications.

Relic’s forest system uses mesh instances, impostors, and facade meshes to render

forests with a large view distance. Finally, Relic includes a system to render water, a

sky sphere, and atmospheric scattering.

41

Chapter 6

RESULTS

We have presented a system for generating and rendering large landscape scenes, sup-

porting mountains, hills, forests, and lakes. This system supports large view distances

while simultaneously supporting local in-game editing using a voxel system. As shown

in Section 6.1, you can see the worlds generated are visually appealing and run at

reasonable rates. Sections 6.2, 6.3, and 6.4 discuss the performance considerations of

the voxel, clipmaps, and forests systems respectively.

6.1 Full System Screenshots

The following screenshots were rendered at around 180 frames per second with a

2560x1440 resolution. The test machine was a desktop computer with an Intel i7-

5820K 3.3GHz CPU, a Nvidia GTX 980 GPU, and 16 GB of RAM.

Figures 6.1 and 6.2 show a view of a forest region with mountain regions in the

distance. Figures 6.3 and 6.4 show a mountain region. Figure 6.5 shows the same

view of the previous mountain screenshot with a different sun position. Figure 6.6

shows a lake and figure 6.7 shows a shore cliff.

6.2 Voxels

The size of voxel chunks affects rendering performance and the cost of modification.

Voxel size is measured in voxels, which in Relic maps one-to-one with world units, or

feet.

Since modifying the terrain requires the entire chunk mesh to be reconstructed,

42

Figure 6.1: Forest region.

Figure 6.2: Another view of a forest region.

43

Figure 6.3: Mountain region.

Figure 6.4: Mountain region with distant trees.

44

Figure 6.5: Same view as the previous screenshot, with different sun po-
sition.

Figure 6.6: A lake.

45

Figure 6.7: Shoreline cliff.

it is ideal to have smaller chunks. However, larger chunk sizes reduce the number of

draw calls.

Figure 6.8 shows the relationship between chunk size and render performance for

a fixed view distance. Since the same amount of geometry is rendered for each chunk

size tested, the decrease in performance at low chunk size can be attributed to draw

calls and other engine overhead. Figure 6.9 shows the modification cost for each chunk

size. These results indicate that that a chunk size of 32 or 64 is a good compromise

between render performance and modification cost.

6.3 Clipmaps

One major motivation for using geometry clipmaps is the exponential relationship

between layer count and view distance. Figures 6.10 and 6.11 show the relationship

between clipmap layers, view distance, and frame time in milliseconds for a scene

containing only the clipmaps terrain and a skybox.

46

0 50 100 150 200 250

0

100

200

300

400

500

600

700

Chunk Size (ft)

F
ra

m
e

T
im

e
(m

s)

Figure 6.8: Voxel terrain rendering performance for different chunk sizes.
For each chunk size, view distance is set to 512 feet.

0 50 100 150 200 250

0

5

10

15

20

25

Chunk Size (ft)

M
o
d
ifi

ca
ti

on
T

im
e

(s
)

Figure 6.9: Graph of modification cost (i.e. digging) for different chunk
sizes.

47

0 2 4 6 8 10 12 14 16 18

0.25

0.3

0.35

0.4

0.45

0.5

Layer Count

F
ra

m
e

T
im

e
(m

s)

Figure 6.10: Geometry clipmaps render time for a given number of clipmap
layers. Note that the frame-time is always sub-millisecond, even for a large
number of layers.

0 2 4 6 8 10 12 14 16 18

0

500

1,000

1,500

2,000

2,500

3,000

Layer Count

V
ie

w
D

is
ta

n
ce

(m
il
es

)

Figure 6.11: Geometry clipmaps view distance and for a given number of
clipmap layers.

48

There is a linear relationship between frame time and layer count, but an expo-

nential relationship between view distance and layer count. For a relatively minor

increase in frame time an absurd view distance of over 3000 miles can be achieved.

For reference, the largest possible view distance on earth is around 300 miles, between

two mountains in South America. [11]

Larger individual layer sizes increase view distance and reduce polygon screen-

space at the cost of performance. The addition of a geometry shader normal calcula-

tion simplifies the terrain generation process and improves visual quality, but incurs a

small performance hit. We found a frame time increase of about 0.01 ms when using

11 layers.

6.4 Vegetation

The far layers of the vegetation system are rough visual approximations of the closeup

tree meshes, but are significantly less costly for rendering. Figure 6.12 shows the cost

of rendering a large number of each type of representation.

Increasing the size of tree groups improves rendering performance by reducing the

number of draw calls, but also causes larger CPU lag spikes when a new group of

trees has to be generated. Figure 6.13 shows the render performance for each group

size.

49

Mesh Impostor Facade

0

10

20

30

40

50

Representation Type

F
ra

m
e

T
im

e
(m

s)

Figure 6.12: Tree performance vs. tree representation type, view distance
set to 1280 feet.

50 100 150 200 250 300
0

5

10

15

20

Group Size (ft)

F
ra

m
e

T
im

e
(m

s)

Figure 6.13: Tree performance vs. tree group size.

50

Chapter 7

FUTURE WORK

The system introduced supports multiple terrain types and render attributes, however

the major limitations at this time are the diversity of the generated terrain, the lack of

advanced lighting calculations, and the view distance of the forest rendering system.

7.1 Improved Terrain

Our presented terrain system produces vast mountain ranges, lakes, and continents.

However, only a few terrain types are supported and at the highest resolution (the

resolution the player primarily experiences) a lot of the terrain lacks interesting fea-

tures. In the future we would like to expand our terrain generation system using some

of the techniques from Génevaux et al. to add sophisticated water systems and more

small-scale terrain features [14].

7.2 Terrain Lighting

Besides the HBAO+ post-processing pass applied to the whole scene, no shadows are

currently calculated. The scene is inherently difficult to shadow due to the large view

scales. A cascaded shadow map system with robust view frustum culling could be

applied to the geometry clipmap layers but the performance hit on rendering may be

significant.

One option to improve rendering performance is horizon-based shadowing. Horizon-

base shadowing pre-calculates horizon values for each pixel in a heightmap. These

horizon values are then compared against sun elevation to determine whether a frag-

ment is in shadow.

51

While calculating horizon values for all clipmap layers may be expensive, it might

be possible to calculate horizon values for e.g. every fourth layer and re-use the low

resolution horizontal values in high resolution layers.

7.2.1 Accurate Scattering

Our current scattering system is a very rough approximation of real scattering. There

are open source solutions with more accurate simulations of the Rayleigh and Mie

scattering which could be used [3].

It might also be better to use a non-photo-realistic color-ramp scattering simula-

tion such as the one used by Firewatch [24].

7.2.2 Volumetric Lighting

Nvidia Gameworks, which Relic uses for screen-space ambient occlusion, also has an

implementation of volumetric lighting that could be used for more accurate sunset

and sunrise effects [26].

7.3 Vegetation

While the mesh facade rendering system is cheap, it is a very rough visual approx-

imation of distance forests. It is also not sufficiently cheap to render at significant

scale. As such, the current system has a much shorter view distance for vegetation

than it does for terrain.

Using a GPU ray-cast simulation of forests could produce much larger view dis-

tances and improved visual approximation. [21]

52

7.4 Water

Our water system uses the shape of geometry clipmaps for simplicity but this causes

a lot of water vertices to be rendered off-screen. Using a grid projected from screen-

space is one way to efficiently render water at different view scales [6].

53

BIBLIOGRAPHY

[1] A. Asirvatham and H. Hoppe. Terrain rendering using gpu-based geometry

clipmaps.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter02.html.

[2] J. Bevins. Ridgedmulti class reference. http://libnoise.sourceforge.net/

docs/classnoise_1_1module_1_1RidgedMulti.html. Accessed: 2016/12/16.

[3] E. Bruneton and F. Neyret. Precomputed Atmospheric Scattering. Computer

Graphics Forum, 27(4):1079–1086, June 2008.

[4] E. Bruneton and F. Neyret. Real-time rendering and editing of vector-based

terrains. Computer Graphics Forum, 27(2):311–320, Apr. 2008.

[5] E. Bruneton and F. Neyret. Real-time realistic rendering and lighting of

forests. Computer Graphics Forum, 31(2pt1):373–382, May 2012.

[6] E. Bruneton, F. Neyret, and N. Holzschuch. Real-time Realistic Ocean Lighting

using Seamless Transitions from Geometry to BRDF. Computer Graphics

Forum, 29(2):487–496, May 2010. EUROGRAPHICS 2010 (full paper) -

Session Rendering I.

[7] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno.

Planet–sized batched dynamic adaptive meshes (p-bdam). In Proceedings IEEE

Visualization, pages 147–155, Conference held in Seattle, WA, USA, October

2003. IEEE Computer Society Press.

[8] W. Commons. Voxels.svg.

https://commons.wikimedia.org/wiki/File:Voxels.svg, 2006. Accessed:

2016/12/16.

54

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter02.html
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1RidgedMulti.html
http://libnoise.sourceforge.net/docs/classnoise_1_1module_1_1RidgedMulti.html
https://commons.wikimedia.org/wiki/File:Voxels.svg

[9] DaveBurke. Toroidal coord.png.

https://en.wikipedia.org/wiki/File:Toroidal_coord.png, 2006.

Accessed: 2016/12/16.

[10] W. H. de Boer. Fast terrain rendering using geometrical mipmapping, 2000.

[11] J. de Ferrant. Longest lines of sight.

http://www.viewfinderpanoramas.org/panoramas.html#longlines.

[12] W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular

networks. Technical report, University of Arizona, Tucson, AZ, USA, 1997.

[13] M. Finch. Effective water simulation from physical models.

http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html.

[14] J.-D. Génevaux, E. Galin, E. Guérin, A. Peytavie, and B. Beneš. Terrain

generation using procedural models based on hydrology. ACM Trans. Graph.,

32(4):143:1–143:13, July 2013.

[15] H. Hakl and L. Van Zijl. Diamond terrain algorithm. South African Computer

Journal, December 2002.

[16] B. D. Larsen and N. J. Christensen. Real-time terrain rendering using smooth

hardware optimized level of detail. Journal of WSCG, 11(2):282–9, feb 2003.

WSCG’2003: 11th International Conference in Central Europe on Computer

Graphics, Visualization and Digital Interactive Media.

[17] E. S. Lengyel. Voxel-based Terrain for Real-time Virtual Simulations. PhD

thesis, University of California at Davis, Davis, CA, USA, 2010. AAI3404919.

[18] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.

Turner. Real-time, continuous level of detail rendering of height fields. In

Proceedings of the 23rd Annual Conference on Computer Graphics and

55

https://en.wikipedia.org/wiki/File:Toroidal_coord.png
http://www.viewfinderpanoramas.org/panoramas.html#longlines
http://http.developer.nvidia.com/GPUGems/gpugems_ch01.html

Interactive Techniques, SIGGRAPH ’96, pages 109–118, New York, NY, USA,

1996. ACM.

[19] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, Aug.

1987.

[20] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering using nested

regular grids. ACM Trans. Graph., 23(3):769–776, Aug. 2004.

[21] S. Mantler and S. Jeschke. Interactive landscape visualization using gpu ray

casting. In Proceedings of the 4th International Conference on Computer

Graphics and Interactive Techniques in Australasia and Southeast Asia,

GRAPHITE ’06, pages 117–126, New York, NY, USA, 2006. ACM.

[22] G. S. P. Miller. The definition and rendering of terrain maps. SIGGRAPH

Comput. Graph., 20(4):39–48, Aug. 1986.

[23] Altitude. http://minecraft.gamepedia.com/Altitude. Accessed:

2016/12/16.

[24] J. Ng. The art of firewatch.

https://www.youtube.com/watch?v=ZYnS3kKTcGg. Accessed: 2016/12/16.

[25] Hbao+. http://www.geforce.com/hardware/technology/hbao-plus.

Accessed: 2016/12/16.

[26] Nvidia volumetric lighting.

http://www.geforce.com/hardware/technology/hbao-plus. Accessed:

2016/12/16.

[27] A. Patel. Polygonal map generation for games.

56

http://minecraft.gamepedia.com/Altitude
https://www.youtube.com/watch?v=ZYnS3kKTcGg
http://www.geforce.com/hardware/technology/hbao-plus
http://www.geforce.com/hardware/technology/hbao-plus

http://www-cs-students.stanford.edu/~amitp/game-

programming/polygon-map-generation/. Accessed: 2016/12/16.

[28] K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296,

July 1985.

[29] M. Persson. Terrain generation, part 1.

http://notch.tumblr.com/post/3746989361/terrain-generation-part-1.

Accessed: 2016/12/16.

[30] I. Quilez. outdoors lighting. http://www.iquilezles.org/www/articles/

outdoorslighting/outdoorslighting.htm, 2013. Accessed: 2016/12/16.

[31] N. Reed. Depth precision visualized.

https://developer.nvidia.com/content/depth-precision-visualized.

[32] P. Shanmugam and O. Arikan. Hardware accelerated ambient occlusion

techniques on gpus. In Proceedings of the 2007 Symposium on Interactive 3D

Graphics and Games, I3D ’07, pages 73–80, New York, NY, USA, 2007. ACM.

[33] M. White. Real-time optimally adapting meshes: Terrain visualization in

games. International Journal of Computer Games Technology, 2008.

[34] L. Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph., 17(3):1–11,

July 1983.

[35] H. Zhou, J. Sun, G. Turk, and J. M. Rehg. Terrain synthesis from digital

elevation models. IEEE Transactions on Visualization and Computer Graphics,

13(4):834–848, July/August 2007.

57

http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://www.iquilezles.org/www/articles/outdoorslighting/outdoorslighting.htm
http://www.iquilezles.org/www/articles/outdoorslighting/outdoorslighting.htm
https://developer.nvidia.com/content/depth-precision-visualized

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	A World Of Geometry
	Relic Engine
	Outline

	Background
	The Many Els
	Level of Detail
	Terrain Rendering
	Heightmaps
	Geometry Clipmaps

	Terrain Generation
	Physical process simulations
	Fractal processes
	Noise Algorithms

	Voxels
	Screen-space Ambient Occlusion
	Ambient Occlusion
	Screen-space Ambient Occlusion
	HBAO+

	Related Works
	Terrain Generation
	Tree Rendering
	Minecraft
	Voxels and Volumetric Terrain

	Generation
	World Map
	Regions
	Oceans and Fields
	Beaches
	Forests, Hills, and Mountains

	System Overview

	Rendering
	Nearby Terrain
	Voxel algorithm
	Face Generation
	Rendering

	Far Terrain
	Pre-calculated Index Buffer
	Normal Calculation

	Terrain Blending
	Terrain Summary

	Forests
	Mesh Instances
	Impostors
	Mesh Facades
	Rendering

	Water
	Environment
	Depth Buffer Precision
	Rendering Summary

	Results
	Full System Screenshots
	Voxels
	Clipmaps
	Vegetation

	Future Work
	Improved Terrain
	Terrain Lighting
	Accurate Scattering
	Volumetric Lighting

	Vegetation
	Water

	BIBLIOGRAPHY

