
             

  

     
        

 

   

    
       

     

     
     

 

 

                  
               

         
             

             
           
               

            
            

            
             

                
             

               
        

 

         
        

                            

    

                 
                

             
                

                
              

                                                           
                  

               
                   

                 
             

Jens Pohl: Reverse-Engineering the Brain, InterSymp-2016, 1 August, 2016 RESU109-IS16 

Reverse-Engineering the Brain:
 
The parts are as complex as the whole.
 

Jens Pohl, PhD 

Professor of Architecture (Emeritus)
 
California Polytechnic State University (Cal Poly)
 

Vice President, Engineering & Technology
 
Tapestry Solutions (a Boeing Company)
 

San Luis Obispo, California, USA
 

Abstract 

The purpose of this paper is to review the current state of neuroscience research with a focus on 
what has been achieved to date in unraveling the mysteries of brain operations, major research 
initiatives, fundamental challenges, and potentially realizable objectives. General research 
approaches aimed at constructing a wiring diagram of the brain (i.e., connectome), determining 
how the brain encodes and computes information, and whole brain simulation attempts are 
reviewed in terms of strategies employed and difficulties encountered. While promising 
advances have been made during the past 50 years due to electron microscopy, the development 
of new experimental methods, and the availability of computer-enabled high throughput imaging 
systems, brain research is still greatly encumbered by inadequate monitoring and recording 
capabilities. Four hypotheses relating to comprehension through the assembly of parts, formation 
of memories, influence of genes, and synapse formation are described as plausible explanations 
even though they cannot be validated at this time. By assessing the feasibility of overcoming the 
principal problems that beleaguer brain research in comparison with the potential benefits that 
can be derived from even partial achievement of the goals the author concludes that the 
significant investment of government funding is justified. 
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Neuroscience Research in Perspective
1 

Although a great deal of progress has been made in the scientific study of the human nervous 
system over the past 50 years, even today (2016) neuroscience is essentially still a collection of 
experimental findings and hypothesis rather than an integrating set of theories and validated 
principles. We know that the brain is a network of networks in which billions of neurons 
communicate with each other, but we know very little about what they communicate or the role 
of individual neurons in achieving the end result of the communication. Similarly, although we 

1 The author is not a neuroscience researcher but has been involved in the design and development of decision-
assistance software with embedded intelligence for the past 40 years. His attraction to neuroscience research 
stems from his interest in the current level of understanding of how the brain operates and how that knowledge 
may impact the design of intelligent software. Since this paper is intended for persons with similar background 
and research interests an appendix describing molecular biology fundamentals has been added. 
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have some understanding of the molecular elements and their functions within a neuron and its 
synaptic connections to other neurons, we can only hypothesize how these functions may 
contribute to our ability to comprehend, memorize and reason (Marcus 2015). 

There is general agreement that the brain is an information processor of some kind that takes 
inputs from the outside, encodes these inputs into some format that allows it to compute a virtual 
model of the outside, and formulates instructions to the various components that control our 
physical (e.g., movement) and behavioral (e.g., thinking) functions. However, the fundamental 
principles of brain computation have yet to be discovered and there is no overarching theory of 
how networks of neurons contribute to something as complex as human cognition. 

The difficulties that are continuing to confront neuroscience research are related to the enormous 
scope of the undertaking in terms of the number of neurons involved, the complexity of the 
individual parts and their interactions within the whole, and the relatively limited capabilities of 
the available research techniques and devices. Although there have been significant advances in 
microscopy with the development of the electron microscope that can achieve resolutions of 
objects smaller than 50 picometer2 , the maximum number of neurons that can be recorded 
simultaneously is around 100 with a recording speed that lags well behind the neuronal firing 
rate. 

So far most of the recording of neural activity has been confined to the measurement of single 
neurons. While this provides some insight into the operation of a single node, it provides little 
reliable information about the behavior of the network of several million of nodes that this 
neuron is part of. Sporns (2015) draws attention to this problem by pointing to variables such as 
synaptic weightings and neuron shapes that are likely to have significant influence on the 
behavior of a network of neurons. It is now generally recognized that the behavior of a network 
as a whole may differ markedly from the behavior of its nodes under certain conditions. This 
gives rise to the notion of emergence in network theory, where the collective interactions among 
the nodes of a complex network can lead to new properties that do not exist at the node level. In 
the case of the human brain such emergent phenomena leading to the coordinated firing of large 
numbers of neurons is referred to as neural synchronization. This is a condition that represents 
the global outcome of many local events that are orchestrated by the network as a whole rather 
than any specific chain of causes at the node level (Sporns 2015, 93). 

Measurable Brain Parameters 

The complexity of the brain is not only due to the enormous number of neuron nodes (around 86 
billion in the human brain) and the even much larger number of connections between nodes 
(around 1000 trillion in the human brain), but also due to the variables that govern the behavior 
of the nodes. First, there are probably hundreds of thousands of neuron types that appear to play 
different roles and are therefore likely to function in different ways. The roundworm C elegans

3 , 
whose complete connectome was published in 1986 (White et al. 1986), has only 302 neurons 
but 100 types of neurons. Therefore, even though researchers have been able to record the 
behavior of single neurons the role and function of different types of neurons is likely to involve 
the tracing of synaptic chains (i.e., pathways) involving a large number of neurons. This requires 
the ability to record thousands if not millions of neurons simultaneously. While increasingly 

2 In the metric system of units 1 picometer (pm) is equal to one trillionth of a meter (i.e., 10-12m)
 
3 Caenorhabditis elegans (C elegans) is a roundworm (nematode) about 1 mm in length that lives in temperate soil
 

environments. 
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more powerful technologies are becoming available for recording the behavior of groups of 
neurons, they are limited in both what they can measure and their ability to keep up with the 
speed at which the state of individual neurons can change. 

Second, neurons produce (i.e., express) extremely complex sets of molecules that generate and 
sense the electrical signals that underlie all neuronal responses and synaptic transmissions. There 
is evidence that the reweighting of the synapses is influenced by multiple factors that include not 
only the shape (i.e., morphology) of the neuron but also the rate of excitatory or inhibitory 
signals and the strengths of those signals. In this way the synapses play a decisive role in how 
neurons interact to reinforce or diminish, compete or cooperate with each other. Even though the 
communication at a synapse is a point-to-point connection that is restricted to the two neurons 
involved, the influence of synapse variables on the complex behavior of large groups of 
connected neurons will likely continue to be a severe challenge to researchers for the foreseeable 
future. 

Neurons and synapses: Neurons
 
consist of a cell body and branches
 
called neurites. There are two kinds of
 
neurites, namely: a relative long axon
 

along which the neuron passes an
 
electric charge when it spikes or fires;
 
and, many much shorter and more
 
convoluted dendrites (Figure 1). The
 
axon and dendrites of any one neuron
 
connect to many other neurons
 
forming a complex network of equally
 
complex sub-networks. The
 
connection or contact points between
 
neurons are referred to as synapses. Figure 1: Brain component – the neuron
 

However, the two sides of a synapse do not actually touch but are separated by a very narrow 

vesicles, while the receiving side of the
 
cleft contains receptors referred to as
 
postsynaptic density. Triggered by an
 
electrical spike one or more vesicles
 
(the senders) secrete a neurotransmitter
 
into the cleft, which is sensed by the
 
postsynaptic density receiver. While
 
there are over 100 types of
 
neurotransmitters consisting of atoms
 
that are bonded to each other, a neuron
 
typically secretes the same
 
neurotransmitters (often only one) at
 
all of its synapses. Figure 2: Brain component – the synapse
 

The receptor senses the neurotransmitter but will accept it only if it is the right kind. The 
analogy is a lock and key. The receptor is the lock and the neurotransmitter is the key. Each 
type of neurotransmitter has a distinctive molecular shape that must match the configuration 

cleft or synaptic gap (Figure 2). The sending side of the cleft stores neurotransmitters in 
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of the binding site (i.e., the receptor lock). Some receptors are a combination of a lock and a 
door, with a small tunnel threading through the receptor molecule that connects the inside of 
the neuron with the outside. This tunnel is blocked by a door-like structure most of the time. 
However, when the neurotransmitter binds to the receptor the door is opened for an instant to 
allow the electrical current to momentarily flow through the tunnel. This type of protein that 
contains a tunnel is referred to as an ion channel, where ions are the electrically charged 
particles that conduct electricity in aqueous solutions. However, there are many types of ion 
channels that are not receptors. For example, some of them enable neurons to generate 
spikes. 

How does a synapse deal with the relative slowness of chemical communication, the 
prevention of potential crosstalk, and timing? Certainly chemical signals are much slower 
than electrical signals. However, a synaptic gap is very narrow and therefore the 
neurotransmitter does not have to travel far. Also, since brain tissue is tightly packed with up 
to a million neurons and a billion synapses per cubic millimeter, the synapse has to ensure 
that the secretion of a neurotransmitter is not sensed by other nearby connections. To prevent 
a cascading sequence of nearby neuron activations, the synapse either sucks the 
neurotransmitter back up for reuse or degrades it into an inert form. Using the same 
mechanism of recycling and degrading that minimizes crosstalk the synapse is also able to 
control the timing of the chemical signal by ensuring that the signal does not linger on. 

Synaptic chains: A synapse is activated when a spike triggers secretion on the sender side. 
On the receiver side receptors sense the neurotransmitter and then make electrical current 
flow. In other words, a synapse converts an electrical signal into a chemical signal and then 
back into an electrical signal. A pathway (i.e., synaptic chain) is created when the electrical 
signal passes from neuron A to neuron B to neuron C, and so on. These pathways are 
directional because synapses are one-way communication devices. At any synapse one 
neuron is always the sender and the other always the receiver. In the case of electrical signals 
the spike travels from the cell body along the axon away from the neuron and from other 
neurons through dendrites towards the neuron to the cell body. 

In summary, in any neuron electrical signals flow from dendrites to the cell body and once an 
action potential threshold has been exceeded a new electrical signal flows from the cell body 
along the axon to the dendrites of connected neurons. Chemical signals jump from the axon 
of neuron A to the dendrite of neuron B. In neuron B electrical signals again flow from 
dendrites to the cell body and along the axon if the action potential is exceeded and a spike 
occurs. These pathways end when axons finally connect to nerves that connect to muscle 
fibers, which respond by contracting. This causes the muscle to shorten and produce a 
movement. 

The electrical signals (i.e., spikes) that trigger the chemical communication at the synapse 
can travel long distances by propagating through axons and dendrites much like wires. 
However, the transmission of electrical signals is isolated to occur only at synapses. In axons 
the electrical signals are brief pulses (i.e., spikes) lasting about a millisecond and referred to 
as action potential, much like Morse Code to prevent the signal from becoming corrupted by 
noise over longer distances. Almost all synapses are weak and far below the level required to 
produce a spike. However, once a spike occurs and travels along the axon it will be passed 
onto multiple other neurons through their dendrites. In other words, a single spike becomes 
many spikes in connected neurons. Accordingly, the stimulation of one sense organ can 

4 
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cause multiple responses and any one neuron can be activated to generate a spike by 
receiving weak signals from multiple connected neurons. 

Weighting of synapses: In most neurons the electrical signals received by the dendrites of 
that neuron are weighted according to their strength. Strong synapses produce large currents 
and weak synapses produce small currents. In principle every neuron is different in its 
behavior due to the unique configuration of its ion channels. Therefore the weighting model, 
which is common in most neurons, must not imply a common behavior of neurons 4 . 
However, the classification of neurons into types suggests that neurons of the same type 
behave in similar ways. It is also possible for a neuron to receive multiple signals from the 
same external neuron through several synapses. These signals must be received within a brief 
time span from milliseconds to seconds for them to be combined by the cell body into one 
signal that is compared with the action potential of that neuron. It follows that there are two 
mechanisms that prevent neurons from spiking indiscriminately, namely: the threshold of the 
neuron’s action potential; and, the action of inhibitory synapses that will reduce the strength 
of the combined signal. 

A neuron is either excitatory or inhibitory but not both. The existence of inhibitory synapses 
is crucial to the operation of the nervous system. An excitatory neuron makes only excitatory 
synapses onto other neurons and an inhibitory neuron makes only inhibitory synapses. 
However, this is not the case for the synapses received by a neuron from other neurons. 
Therefore an inhibitory neuron may also receive excitatory signals and vice versa. The 
analogy is to a conformist stance as opposed to a contrarian stance in society. There is also a 
type of excitatory synapse that has a direct electrical connection and does not use a 
neurotransmitter. These synapses communicate more quickly, but are far less in number than 
the chemical synapses. 

The threshold action potential of the neuron spike mechanism has two functions, to either 
transmit a signal that may precipitate an action or to not send a signal because the combined 
strength of the signals it has received is insufficient to warrant an action. In this respect the 
brain is far more sophisticated than a telecommunication network or the wiring of a Cray 
supercomputer that are designed to essentially support only two states (i.e., on or off). 

Life cycle of the human brain: The creation of neurons and synapses proceeds through four 
stages (Figure 3): neurons are created; neurons migrate to their assigned places in the brain; 
neurons extend branches (i.e., neurites) throughout the body; and, neurites make connections. 

Neurons are created: Through the division of progenitor cells neurons are created in the 
prenatal stage before birth. Similar to stem cells, progenitor cells replicate into a specific 
type of cell. However unlike stem cells that can replicate indefinitely, progenitor cells can 
divide only a limited number of times. 

Neurons migrate to the brain: The migration of neurons to the brain during the prenatal 
stage can be disrupted with the result of structural abnormalities in the brain, such as the 

4	 Computer simulations of brain functions such as Henry Markram’s Blue Brain project (Markram 2006) and 
Dharmendra Modha’s simulation of a cat’s brain (Wong et al 2012) rely mostly on the weighted voting model 
of neurons that assumes that the behavior of all neurons is essentially the same. Also, since there is no known 
cortical connectome these computer models typically assume that connections are formed randomly. However, 
since Neural Darwinism includes the concept of activity-dependent synapse elimination, the surviving 
connections are not subject to randomness. Finally, computer models do not make allowances for reconnection, 
rewiring and regeneration. 
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cortex lacking folds.
 

Both of these stages occur in the prenatal brain. By the time a baby is born the creation and
 
migration of neurons are virtually complete and there are only a few areas of the brain in
 
which neurons will continue to be created after birth.
 

Figure 3: Creation of neurons from conception to early childhood 

Neurons grow neurites: After birth the neurons continue to grow branches in the form of 
dendrites and axons. The axons have to grow the most since they are much longer than 
the dendrites. The growing tip of an axon is called a growth cone, which navigates its 
way through the body under the guidance of genes. The surfaces of neurons are coated 
with special guidance molecules and the spaces between neurons contain drifting 
guidance molecules. The axon’s growth cone is equipped with sensor molecules that can 
detect the guidance molecules much like dogs following a scent. Since both the guidance 
molecules and the sensor molecules are produced under genetic control we can say that 
the wiring of the brain is guided by genes. Axons grow fairly straight and do not branch 
until the growth cones reach their destinations. While the overall shape of an axon 
appears to be genetically determined, the branching pattern at the tip is likely to be 
largely random. The analogy is a tree where the need for branches is determined by the 
genetic plan but the actual location and size of branches is influenced by environmental 
conditions and a degree of randomness. 

Neurites make connections: During the wiring of the brain neurons make connections 
between neurites by creating synapses. This process is probably driven by a combination 
of genetic control (i.e., wiring paths and potential affinity between neuron types) and a 
degree of randomness (i.e., some probability whenever the neurites of different neurons 
cross each other). Accordingly it appears that the initial connectome at the very early 
development stage is largely a product of genes and randomness. Genes appear to control 
the wiring in terms of the shape of each neuron and the region over which it extends 
branches, while synapses are formed randomly where the neurites of neurons touch. 
However, as development proceeds sensory stimuli (i.e., experiences) also shape the 
connectome. 

6 
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Synapses are created at an astonishing rate in the infant brain. For example, in Brodmann 

area 17 alone half a million synapses per second are produced during the third and forth 
month after birth (Huttenlocher 1990). Another argument in favor of the randomness 
hypothesis is that while such large numbers of synapses are formed during development 
many synapses are also eliminated. Pruning of both synapses and dendrites takes place to a 
significant extent after the age of two years, leaving persons that have just reached adulthood 
with only about 60% of the synapses that they had when they were two years of age 
(Huttenlocher and Dabholkar 1997). 

Figure 4 (Seung 2013, 108) is an example of the increase in synapses and dendrites from 
birth to one month, 6 months and two years, followed by the results of pruning at the age of 
four years. One could speculate that the 
early connectome is a rough draft based 
on gene guidance and randomness, 
which is subsequently refined based on 
the survival of the fittest principles of 
Neural Darwinism5 . In other words, 
dendrites and synapses that are not or 
very infrequently used are weakened 
(or remain very weak from the time of 
their creation) and eventually 
eliminated. However, it appears that the 
creation and destruction of synapses are 
not separate processes but occur 
concurrently. Figure 4: Pruning of dendrites and synapses 

In summary, while the creation of synapses is largely random, the elimination of synapses is 
based on lack of utilization of synapses. In other words, the dendrites and synapses that are 
eliminated were not needed in the representation, interpretation and comprehension of the 
stimuli that were processed by the brain. 

General Research Approaches 

Recent large-scale research efforts in neuroscience have focused on three related areas, namely: 
(a) connectomics, to determine (map) which neuron is connected to which other neurons (Sporns 
2015, Zador 2015, Hawrylycz et al. 2015, Seung 2013); (b) brain activity mapping, to observe 
the electrical discharges along the synaptic pathways (Shenoy 2015, Koch et al. 2015); and, (c) 
large-scale brain simulation, the integration of data of all areas of neuroscience to construct a 
biophysically realistic model that can be compared with experimental findings (Hill 2015). 
While each of these large-scale research efforts is certainly valuable none of them on their own is 
likely to lead to a holistic understanding of how the multi-level brain functions. In addition, it is 
often difficult to determine how to integrate the findings from each area since each area has 
missing pieces that the other two areas cannot compensate for. For example, an activity map 
without a connectome could tell us a great deal about the behavior of larger neural groups 

5 The theory of Neural Darwinism first proposed by Edelman in 1978 and extended in 1987 (Edelman 1987) is 
still considered to be highly speculative (Lichtman and Coleman 2000, Purves and Lichtman 1985). Studies of 
synapse elimination have been performed on neuron to muscle connections. While early in human development 
each muscle fiber has synapses with many neurons, over time many of these are eliminated until each fiber 
receives synapses from just one axon. 
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(networks) but would not allow us to reconstruct the underlying circuitry. A connectome without 
an activity map would provide the static circuit architecture but not tell us anything about the 
dynamic reweighting of excitatory and inhibitory synapses. 

Even though the brain of every human is different since both genes and experience shape the 
human connectome, mapping of experimental data into a common reference framework is a 
necessary requirement for coordinating research efforts. Not only will it allow the comparison of 
multiple brains, but it will also facilitate the recognition of unusual features in a particular brain 
and contribute to an understanding of how these apparent anomalies differ from the norm. 
Digital atlases can provide an effective framework for building a standard atlas that serves as a 
single-point-of-access clearing house for accessing multiple databases and related documents 
(Hawrylycz 2015). However, a standardized brain atlas will require a common three-dimensional 
coordinate system so that the findings of neuroimaging experiments can be readily analyzed, 
compared and integrated into the appropriate atlas database. This requires agreement on the 
specification of an origin (i.e., reference point) and a transformation function that relates each 
individual three-dimensional brain image from its native coordinates to the coordinates of the 
atlas6. A standard toolset that allows different neuroscience data to be combined is now under 
development by the International Neuroinformatics Coordinating Facility (INCF) for the mouse, 
which has remained to this day one of the most important subjects in experimental neuroscience. 

Connected brain: There is much evidence to suggest that the overall interconnectedness of 
the brain rather than the simple expansion of specialized regions of the brain is responsible 
for human cognitive capabilities. For example, it is now recognized that neuropsychiatric 
disorders such as depression, anxiety, schizophrenia, and obsessive-compulsive behavior, are 
likely to be the result of complex genetic and environmental factors impacting neural 
circuitry. The independent proposals in 2005 for a unified approach to defining connectional 
atlases of the brain by Sporns of Indiana University and Hagmann of Lausanne suggested the 
term connectome to refer to a complete map of the neural connections within the brain 
(Sporns et al 2005, Hagmann 2005). 

Since the study of the first complete neural circuit of any organism in the 1970s by Nobel 
laureate Sydney Brenner several neuroinformatics databases of connectivity have become 
available (e.g., CoCoMac www.cocomac.org and Brain Architecture Management System 
(BAMS) http://brancusi.usc.edu). Several projects to map the connectome of the laboratory 
mouse have been supported by public and private funding. Of these the Allen Mouse Brain 
Connectivity Atlas developed by the Allen Institute contains more than 1.5 petabytes of data 
mapped into a common three-dimensional reference space that allows the identification of 
neural circuits of the laboratory mouse. 

Mapping the connectome of the human brain is one of the great scientific challenges of the 
21st century. The Human Connectome Project (HCP) (www.humanconnectome.org) is 
tackling a key aspect by focusing on some of the main neural pathways that underlie brain 
functions and behavior. Due to the enormous complexity of the human brain HCP is 
targeting only large-scale circuitry in 1,200 adults using non-invasive neuroimaging 
techniques (e.g., MRI, fMRI, EEG). However, the current non-invasive imaging techniques 
cannot capture brain activity at a neural level and mapping the connectome at a cellular level 

6 Many of these standardization advantages grew out of the National Institutes of Health’s Decade of the Brain 

initiative in the 1990s that established the field of neuroinformatics (i.e., the application of computer-based and 
mathematical technologies for organizing and understanding brain data). 
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currently requires microscopic postmortem analysis of brain tissues. The required data 
collection would take years given the current technology when we consider that the human 
cerebral cortex alone contains 1010 neurons and 1014 synapses. The inadequacy of existing 
annotation tools to fully delineate and extract information at a neuronal scale and the 
incompleteness of the algorithms that are required to map relevant connections and construct 
connectivity pathways are current obstacles. The open source, crowd-sourcing initiative 
Open Connectome Project (www.openconnectomeproject.org) was launched in 2011 to meet 
this challenge. 

Computational brain: Similar to a computer the brain operates over input and manipulates 
information systematically. However, both the memory capabilities of the brain and its 
encoding operations appear to be based on different principles. Marcus (2015) believes that it 
is very important for the neuroscience community to break away from the notion that the 
brain is not a computer. He believes that the computational capability of the brain is a 
fundamental component of the highly plausible and extremely useful notion that perception 
and comprehension in the brain are constructed progressively and hierarchically from low 
level feature detectors (e.g., differences in luminance and orientation) into meaningful 
objects such as cars, animals, persons, and faces. He argues that the unwillingness to consider 
the brain as a computer stems from the promises of neural networks. The pattern matching 
capabilities of neural networks (i.e., Parallel Distributed Processing (PDP)) were seen as the 
first serious alternative to the simplistic understanding of intelligence in terms of stored 
computer-like programs. However, eventually it became clear that the ability of PDP 
networks to explain higher level cognition is severely limited. Even though the brain is itself 
a network of neurons it is far more complex than a PDP network that consists of an array of 
input nodes that are connected to output nodes through one or more layers of hidden nodes. 

The attractiveness of PDP networks was that they did not resemble computer programs. They 
had no variables or syntax like loops and if-then comparisons. It was assumed at the time that 
the brain operates in a similar pattern matching manner based on an initial more or less 
random organization that is adapted and tuned by experience. While the parallel processing 
capability of PDP networks is mirrored by the brain there is now some evidence that suggests 
that even at the embryo stage the brain begins to develop intricate (rough drafts) of brain 
structures in the absence of experience. For example, Nobel laureate Thomas Südhof 
conducted an experiment with mice whose transsynaptic neurotransmitter secretion was 
genetically blocked, thereby shutting down most of the brain’s internal communication 
mechanism (Yang et al 2010). If the brain’s organization is initially random and then tuned 
by experience then this laboratory breed of mice would essentially have random brain 
structures at birth. In fact, these synaptically silent mouse embryos had developed brains that 
appeared to be normal in respect to folds, different neuron types and the organized structures 
that one would expect in typical mice. Subsequent studies by others in physiology and 
behavior further validated that the brain’s basic organization is structured in advance of 
experience. 

It can be argued that computers are no longer totally sequential. Since the advent of the 
personal microcomputer some 30 years ago computers have used input-output controllers, 
graphic processing units and multi-core co-processors operating in parallel. In other words, 
computers can no longer be strictly characterized as von Neumann machines that execute a 
set of stored instructions sequentially. Similarly, Marcus (2015, 209) argues that many 
pathways in the visual cortex appear to perform transformations of the representation of 
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visual scenes in parallel, such as extracting edges across a scene. He concludes that at least 
the brains of vertebrates are computational in the sense that they operate over inputs and 
manipulate information systematically. 

This does not mean that a brain is a digital computer. The memory capabilities of a brain may 
be based on different principles and a brain may perform different kinds of operations on the 
information it encodes, but it does encode information. Specifically, brains transduce inputs 
into chemical and electrical information, operate over that encoded information, and use the 
resulting output to generate actions and update the internal representation accordingly. 
Similarly, computers take inputs, encode and manipulate information, and transform their 
inputs into outputs. 

The question then arises how do brains store and encode information and what operations do 
they perform over the encoded information? If one were to reverse engineer a computer co
processor one would find that its basic elements are transistors and that these transistors are 
organized so that they perform a primitive set of instructions. More complex operations 
would be combinations of these instructions interacting with other components of the 
environment in which the co-processor functions. Transistors connected in circuits create 
basic logical operations. In a brain the neuron is the equivalent of the transistor and a circuit-
level understanding of the equivalent neurocomputational logic is fundamental to 
understanding how a brain functions. 

Simulating the brain: While a computer-based simulation of the brain would be very useful, 
building the necessary model will require in-depth knowledge of how the brain operates. 
Should we attempt to build such a model of the brain although we currently do not even have 
the most superficial understanding of how the brain works? The Human Brain Project (Hill 
2015, 113) research group that is endeavoring to create a Whole Brain Simulation believes 
that even identifying the data that are required and systematically categorizing the 
information that is available is a step in the right direction and a worthwhile contribution to 
the body of knowledge in the field of neuroscience. 

Unfortunately much information is lacking. There are no comprehensive atlases available 
that identify those parts of the brain that have been mapped and those that have not been 
mapped. Currently available tools are inadequate for determining whether any particular test 
data are significant or irrelevant to understanding the functions of the brain. Many 
fundamental questions are still unanswered. For example, how many classes or types of 
neurons are there? To date researchers have identified a few hundred but suspect that there 
are thousands or perhaps even millions. As mentioned previously, the worm C. elegans was 
found to have 100 neuron types out of 302 neurons (White et al 1986). Foremost the Human 
Brain Project group is relying on advances in information management technology to classify 
and characterize the enormous volume of data that is being collected in the emerging 
discipline of neuroinformatics. For example: there are around 100,000 publications per year; 
a single human brain scan generates 1 terabyte (1000 gigabytes) of data; and, the Allen 
Institute produced more than 1 petabyte (1,000,000 gigabytes) of data in one year in one 
study to characterize mouse brain connectivity. At least four formidable challenges confront 
the Human Brain Project: 

Challenge 1: Since it is unlikely that the human brain will ever be fully mapped it will be 
necessary to identify principles to fill in missing data and parameters based on the 
available data and knowledge. This will require the use of predictive neuroscience 
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approaches and methodologies. 

Challenge 2: For whole brain simulation it will be necessary to build individual models of 
the components such as proteins, neurons, synapses, circuits, and brain regions. This is 
more difficult then it seems at face value because the behavior of these individual brain 
components may vary based on how they are connected. In other words, the behavior of 
the whole may not be able to be extrapolated from the behavior of the parts. 

Challenge 3: During all stages of its construction the whole brain model will need to be 
validated by comparison with thousands of experimental test results and findings. 
Following the Open Source approach that has proven itself in computer software, it will 
be necessary to periodically release new versions of the whole brain model after it has 
been modified to resolve inconsistencies with recent experimental results and clinical 
evidence. 

Challenge 4: The primary input to the brain is from our senses (i.e., vision, hearing, smell, 
taste, and touch) and the primary output is the control of muscles and movement. Thus it 
will be necessary to provide a simulated body to couple with a simulated brain. Neither 
the European Common Market Human Brain Project

7 nor the United States DARPA 
sponsored SyNAPSE project8 are in their present state able to couple with a human body 
simulation. Therefore, since these models do not have memory, movement or learning 
capabilities it is not possible to evaluate them in terms of what is arguably the purpose 
(i.e., output) of the brain. 

Monitoring and Recording Techniques and Devices 

Advances in neuroscience have been largely made possible by developments in experimental 
laboratory techniques, innovative applications and extensions of existing devices, and the 
development of entirely new equipment, such as the electron microscope, with orders of 
magnitude greater capabilities. Existing techniques fall essentially into five categories (Figure 5): 
staining; imaging; scanning; slicing; and, computing. 

Historically, the discovery of the Golgi Stain in 1873 by the Italian physician Camillo Golgi 
made neurons visible for the first time. It allowed the Spanish neuroanatomist Santiago Ramon y 
Cajal to identify and draw many types of neurons. Both Golgi and Cajal became Nobel laureates 
in 1906 in recognition of their contributions to neuroscience. The electron microscope invented 
by the German physicist Ernst Ruska in 1933 used electrons rather than light to produce orders 
of magnitude greater magnification and sharper images. In the 1950s the first two-dimensional 
images of synapses under the electron microscope showed that two neurons do not fuse at a 
synapse. At the same time dense staining methods showed the entangling of the branches of 
many neurons, confirming that brain tissue is packed full of neurons and their branches. 
However, these were still two-dimensional images. 

Subsequent development of a sequence of innovative techniques, device extensions and the 
integration of computer processing allowed researchers to transition to three-dimensional 
imaging. The invention of the ultramicrotome in 1953 by Keith Porter and Joseph Blum (Porter 
and Blum 1953) allowed brain tissue to be cut into 50 nanometer thick slices that could be 
imaged and stacked into a three-dimensional model of bundles of neurons. Fifty years later the 
invention of the SBFSEM (Serial Block Face Scanning Electron Microscope) in 2003 by 

7 https://www.humanbrainproject.eu/2016-overview 
8 http://www.artificialbrains.com/darpa-synapse-program 
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German physicist Winfried Denk (Denk and Horstmann 2004) overcame the problem of 
inevitable distortion during handling of the very thin slices. The SBFSEM consists of an 
ultramicrotome mounted inside the vacuum chamber of an electron microscope that captures a 
succession of block face images after each slice is cut. 

Figure 5: Experimental recording techniques and devices 

In the early 2000s the availability of computers allowed the processing of the large volume of 
data provided by stacks of two-dimensional brain slices. The invention of the ATUM 
(Automated Tape-collecting Ultramicrotome) by Ken Hayworth (Hayworth et al 2014) 
automated the stacking of two-dimensional brain slices on a plastic tape like a film strip. In 
collaboration with Jeff Lichtman they were able to reduce the thickness of slices from an initial 
10 microns to 30 nanometers. While the ATUM is certainly a promising step towards addressing 
the challenge of processing the enormous volume of data produced by three-dimensional bundles 
of neurons, it may not be sufficient when we consider that one cubic millimeter of brain tissue 
can yield a petabyte of image data. For example, the reconstruction of the complete connectome 
of C elegans during the 1970s and 1980s required the manual tracing of each neuron pathway 
because there was no automated alternative for interpreting the images of the enormous number 
of 50 nanometer thick slices of brain tissue. The C elegans connectome, which has only 302 
neurons, was published in 1986 (White et al. 1986). Based on this experience we can extrapolate 
that the manual reconstruction of just one cubic millimeter of the cortex of the human brain 
would take more than a million person-years. Clearly the future of connectomics depends on the 
ability to automate image analysis. However, this is a difficult task because it essentially relies 
on the ability of computers to recognize boundaries (i.e., edges) that are only vaguely defined on 
the two-dimensional image of each slice and even the most advanced computer software has 
difficulties performing this task (Seung 2015, 160-163). 

Devices that are currently available for monitoring the electrical activity of neurons and imaging 
brain tissue include: 

Electroencephalography (EEG) and Magnetoencephalography (MEG): Both EEG and MEG 
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are used for recording the electrical activity of the brain, mostly non-invasively with 
electrodes placed along the scalp. They measure voltage fluctuations resulting from the flow 
of ionic currents in the dendrites of neurons during synaptic transmissions (i.e., neuron 
spiking). However, since the magnetic fields generated by the brain are very weak 
approximately 50,000 neurons must be active for a detectable magnetic field. The brain’s 
magnetic field strength of around 10 femtotesla (fT)9 for cortical activity is far below the 
ambient magnetic noise of 108 fT (or 0.1µ T) in an urban environment. 

Magnetic Resonance Imaging (MRI): MRI is capable of imaging two-dimensional slices of 
the brain. A stack of such two-dimensional images provides a means for reconstructing the 
brain in three dimensions. While it is useful for determining the size of brain regions, it 
produces poor spatial resolution. Also, MRI’s millimeter-scale resolution it is not enough for 
the discrimination of single neurons and axons (Seung 2013, 209). 

Diffusion Magnetic Resonance Imaging (dMRI): dMRI maps the diffusion process of 
molecules (mainly water) in biological tissue both in vivo and non-invasively. The first 
diffusion MRI images of the normal and diseased brain were made public in 1985. The 
primary clinical applications are in the study and treatment of neurological disorders such as 
stroke. Since dMRI allows non-invasive visualization of anatomical connections between 
different parts of the brain it represents a major breakthrough for human connectome 
research. While it is useful for tracing neuronal pathways and even computes the direction of 
the axon, the inherently poor spatial resolution of MRI makes it difficult to follow thin axon 
tracts if they cross. Nevertheless, dMRI is currently used by the Human Connectome Project 
to track white-matter pathways (Seung 2013, 209). 

While efforts are underway to improve MRI technology, it should be noted that the current 
resolution of dMRI is 1000 times worse than light microscopy, which is a 100 times worse 
than electron microscopy. Since microscopy already delivers the resolution required for 
connectomics research and needs only to be scaled up to handle larger volumes of data and 
MRI improvements call for a major breakthrough, MRI and microscopy are likely for at least 
the time being to remain complimentary methods. 

Functional Magnetic Resonance Imaging (fMRI): Developed in the 1990s, fMRI provides 
images that indicate brain activity (in color) typically superimposed on a black-and-white 
MRI image of the brain. While showing which cell networks are active when a person 
performs a particular physical movement or thought process, it has temporal limitations 
because brain activation changes from moment to moment. Again, fMRI suffers from the 
same spatial resolution limitations that govern all current MRI-based imaging techniques. 

Positron Emission Tomography (PET): The PET scan method is an imaging test that uses a 
radioactive drug (i.e., tracer) that may be swallowed, injected or inhaled. In clinical 
applications PET scans with flurodeoxyglucose (FDG) as the tracer are used to indicate 
tissue metabolic activity in the exploration of cancer metastasis (i.e., spreading of cancer to 
other sites). In neuroscience research PET neuroimaging is used on the assumption that areas 
of high radioactivity are associated with brain activity (i.e., actually the flow of blood to 
different parts of the brain). 

Individual-Particle Electron Tomography (IPET): IPET is a technique that allows 

9 
Femto is a prefix in the metric system of units that denotes a factor of 10-15. It is derived from the Danish word 
femten meaning 15. 
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determination of a high-resolution structure for a single molecule. Each particle from a tilt 
series of micrographs is tracked and then reconstructed into a three-dimensional density map 
using an iterative reconstruction algorithm (Zhang and Ren 2012). A University of California 
(Berkeley) research team led by Gang (Gary) Ren published the first high-resolution three-
dimensional image of a DNA segment reconstruction using IPET in April 2016 (Ren et al 
2016). 

In-Situ Hybridization (ISH): ISH is a technique for mapping gene expression that uses probes 
that bind to RNA within sectioned but intact brain tissue, thereby preserving spatial context. 
ISH was automated by Gregor Eichele and colleagues at the Max Planck Institute. 

Two-Photon Microscopy: Two-Photon excitation microscopy is a fluorescence imaging 
technique that allows imaging of living tissues up to about 1 millimeter in depth. It is a 
special variant of the multi-photon fluorescence microscope that uses red-shifted excitation 
light to excite fluorescent dyes. The method was pioneered by Winfried Denk at Cornell 
University in 1990 by combining the idea of two-photon absorption with the use of a laser 
scanner. 

Promising Research Programs 

Neuroscience is no longer a niche field but a major scientific endeavor. The US-based Society 
for Neuroscience has more than 40,000 members. On-going world-wide research funding is now 
estimated to be over $3 billion. Despite the limitations of the available research methods and the 
daunting scope of the data processing requirements, headway is being made through the 
application of innovative combinations of MRI imaging, electron microscopy, staining, stacking 
of nanoscale slices of brain tissue to construct three-dimensional models of neural groupings, and 
automated (i.e., computer-based) high throughput image interpretation techniques. The major 
advances are in the molecular area with increased understanding of the structure and function of 
ionic channels and receptors10 . 

Digital atlases: Digital brain atlases are used to represent the spatial organization of 
neuronal structures, for planning and guidance during neurosurgery, and as a reference for 
interpreting gene expression (i.e., the structure and functions of proteins). Existing atlases are 
extensive and include to the extent possible with existing research techniques and devices 
partial mappings of the mouse, rat, rhesus macaque11, and human brain. In addition to atlases 
based on anatomy, histology, MRI, and PET scans, modern digital atlases use gene 
expression, connectivity, probabilistic and multi-modal techniques, as well as visualization 
software (Hawrylycz 2015). The development of large-scale brain atlases is now a major 
undertaking in neuroscience and there have been recent advances in neuroimaging 
techniques that are providing maps of remarkable resolution: 

Brainbow: A combinatorial color labeling technique using fluorescent proteins. Josh 
Sanes and Jeff Lichtman at Harvard University have been classifying and visualizing 
microscopic neurons by marking individual neurons with over one hundred distinct 
colors to trace and reconstruct their cellular structure (Lichtman et al. 2008). 

10 The ionic channels and receptors function as switches and modulators in the membrane to control the 
processing of information by neurons, resulting in spikes along the axon and the release of neurotransmitters in 
synapses. 

11 Rhesus macaque is a monkey species widely used for medical research. 
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Array Tomography: Developed by Stephen Smith at Stanford University to classify 
diversity in the synaptic code (Micheva and Smith 2007). Can also achieve combinatorial 
labeling of synaptic connections using an electron microscope. 

High Resolution 3-D Microscopy: Culmination of the work of Katrin Amunts and the 
Karl Zilles laboratory at Jülich (Germany) and Evans in Montreal (Canada), BigBrain is a 
dataset 125,000 times larger than a typical MRI. However, still not at the resolution of the 
finest structures in the brain (Amunts et al. 2013). 

CLARITY: A method that subjects the brain to a three-dimensional network of 
hydrophilic polymers and then removes the lipids from the brain by electrophoresis12 . 
The brain remains fully intact but optically transparent and macromolecule permeable. 
CLARITY uses intact tissue in-situ hybridization and immunohistochemistry with 
multiple rounds of staining and de-staining to visualize gene expression or protein 
binding. 

EyeWire: Crowdsourcing project launched by Sebastian Seung of MIT to map the retinal 
connectome through an interactive game (Johnson 2012). 

The transition from printed to digital atlases has been revolutionary, since digital atlases 
allow navigation, three-dimensional reconstruction and visualization from the smallest nuclei 
to macro-scale regions of the brain. 

Integrated mapping of the brain: Ideally projects focused on creating an integrated mapping 
of the brain should aim to include a sufficiently comprehensive set of data to convey an 
understanding of the brain’s biological structure and functions that interlink to form an 
integrated system. This would include: cell types (the distinct features of the different neuron 
types); cell networks (the circuitry architecture within and between neural groups (i.e., 
networks)); connections (the strengths and types of synaptic excitatory and inhibitory 
transmissions); pathways (from lowest level feature detectors to highest level neuron 
functions); histories of electrical activity patterns over time; and, histories of molecular 
changes over time. 

Church et al (2015, 52-56), in drawing an analogy to the Rosetta stone13, have proposed in 
conceptual terms that the construction of a Rosetta Brain could be reduced to the two 
operations of labeling and counting. Their argument proceeds along logical lines as follows: 

•	 A connectome is at its core a large matrix that indicates whether neuron A is 
connected to neuron B to neuron n, where n is however a very large number. 

•	 If each neuron could be given a unique barcode so that the children of neuron A have 
the barcode of their parent (neuron A) included then we could easily trace synaptic 
chains (i.e., pathways). 

•	 Gene expression (i.e., DNA to messenger RNA (i.e., transcription) to protein (i.e., 
translation)) could be used to determine cell type by counting the numbers of each 

12 In electrophoresis a sample is placed on one end of a gel consisting of a substance with a molecular matrix of 
evenly spaced opening. When an electric current is passed through the gel it moves the molecules in the sample 
through the gel. The rate at which the molecules move through the gel depends on both their size and their 
charge, with small molecules and charged molecules moving more quickly. The gel can be visualized under 
ultraviolet light to show DNA samples as bands. 

13	 The Rosetta stone allowed hieroglyphics to be deciphered because it recorded the same statement in three 
different languages, two of which were known. 
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messenger RNA in the neuron. 

•	 Gene expression changes due to learning and memory in combination with time 
stamps, could be used to track the history of molecular changes. 

•	 On the assumption that the number of synapses influences the strength of a 
connection, synaptic connection strengths and types could be inferred by counting the 
abundances of different proteins on either side of a synapse in combination with the 
number of distinct synapses between neuron A and neuron B. 

Recognizing that DNA can be used to store any nitrogen bases string in addition to those 
used in the biological blueprint genome of an organism, they propose to generate and read 
barcodes by using the four nitrogen bases of nucleotide in the DNA (i.e., adenine (A), 
thymine (T), guanine (G), and cytosine (C)) to form barcode sequences (e.g., ATGC). There 
would be a sufficient number of unique barcodes because a DNA barcode of 25 nitrogen 
bases has 425 unique combinations and there are only about 423 synapses in the human brain 
(i.e., 1014 is approximately 423). They further argue that to make a test tube with all 425 

unique combinations is not difficult and that to randomly insert one sequence into each of the 
100 million neurons in the brain of a mouse is potentially feasible. To read these DNA 
sequences would then require the normal DNA sequencing process to be applied to brain 
slices using fluorescent dyes to distinguish between A,T,G and C. 

Figure 6: Connectome – barcoding solution 

The same barcoding concept with a somewhat different implementation approach has been 
proposed by Zador’s team at Cold Spring Harbor Laboratory (2015) for constructing the 
connectome of sections of the neocortex of laboratory mice. The selection of the neocortex 
region of the brain is based on its central role in biological intelligence (higher level 
functions such as sensory perception), the similarity of its basic structure across all mammals 
(a piece of mouse cortex is not very different from a monkey), its uniformity (portion for 
processing sound is not very different to the portion processing touch), and its layered 
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modularity (six layers). The BOINC14 approach (Figure 6) utilizes the high-throughput DNA 
sequencing technology originally developed for sequencing the human genome. It proposes 
to overcome three challenges in very innovative ways: 

Challenge 1: How to express a unique sequence of DNA (i.e., a DNA barcode) in each 

neuron of the neuronal circuit? Approach: Breeding a laboratory mouse that is 
engineered with: (a) a specific sequence of DNA inserted into a known location on a 
chromosome that is scrambled randomly in each neuron; and, (b) a transiently expressed 
special Recombinase protein. 

Challenge 2: How to induce each neuron to share copies of its barcode with each 

connected neuron? Approach: Using a virus such as the pseudorabies virus ((PRV) that 
is essentially a core of DNA wrapped in a protein coat. PRV unlike most viruses 
propagates from neuron to neuron across the synaptic cleft, thereby carrying the DNA 
sequence with it. However, the DNA is inverted between any pair of Recombinase sites. 

Challenge 3: How to join pre-synaptic and post-synaptic barcodes into a single molecule 

for high-throughput DNA sequencing? Approach: Express a specialized protein called an 
integrase, which irreversibly joins the DNA at the sites forming a single piece of DNA 
out of two. By positioning the barcode sequence near the integrase sites it can be ensured 
that the single piece of DNA contains two barcodes in sequence. The joined barcodes are 
then sent to a high throughput sequencing machine for processing. 

The advantages of the BOINC approach are that it is relatively inexpensive15 and that its 
error rate does not increase with the length of the synaptic chain (i.e., pathway) even if there 
are millions of neurons involved. However on the negative side, it does not include any 
spatial representation and provides no indication of whether a neuron is excitatory or 
inhibitory because it cannot differentiate between cell types. 

Whole brain neuroimaging: A team comprised of Ahrens, Engert, Keller and others at the 
Howard Hughes Medical Institute (Ashburn, Virginia, USA) has developed an experimental 
microscopy technique for the holistic study of the sensorimotor system of the zebrafish, with 
the ability to simultaneously record about 80,000 of the total 100,000 neurons (Ahrens et al. 
2012). They partially paralyzed the zebrafish so that only the connections between the 
neurons and the muscles are inactive. This allows the neural commands to the muscles to be 
recorded while the brain is stationary and the zebrafish is exposed to a virtual reality 
environment displayed underneath them using a video projector. 

Using the fluorescent protein technique (i.e., staining) the researchers are able to track the 
activity of some 80,000 neurons at the rate of several times per second. Nevertheless, the 
question remains how to make sense of the enormous volume of data collected? For 
example, one neuron may simply reflect the activity level of another. They identified groups 
of neurons that appeared to be active together at some points in time and inactive at others, 
and found these groups to have a well defined anatomical structure (e.g., six tightly packed 
and symmetrically arranged clumps of neurons). However, why these neuron groups 
appeared to be tightly communicating remains unknown. In a broader sense, how do large 
groups of neurons coordinate to represent a feature of the visual environment, or how does 

14 The BOINC acronym stands for Barcoding Of Individual Neuronal Connections. 
15 The cost of sequencing an entire human genome has fallen dramatically in recent years; - from (US)$1 million 

in 2007 to around (US)$1,000 in 2015. 
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the entire brain respond to a signal that suggests the presence of food and guide the zebrafish 
to food? 

Recording many neurons simultaneously: Until now the recording of neuron activity has 
been restricted to either measuring the activity of one neuron at a time or measuring the 
aggregate activity of entire networks of thousands to millions of neurons. Recent reports in 
the literature suggest that researchers may be on the threshold of being able to concurrently 
measure the individual activities of several hundred neurons and that further significant 
increases in the number of concurrent recordings may be on the horizon (Shenoy 2015, 78). 

While the action potential and chemical activity (e.g., neurotransmitters and ion 
concentrations) of individual neurons has been measured with intracellular and extracellular 
electrodes, the aggregate activity of neural networks has been recorded with EEG, MEG and 
fMRI facilities. Some of these techniques have now scaled up and new techniques are being 
developed. For example genetically encoded calcium indicators (GCaMP) allow calcium 
concentration changes due to action potential to be optically imaged in thousands of neurons 
simultaneously (Ahrens 2015). Traditional electrode approaches for measuring the activity of 
single neurons have also scaled up to hundreds of neurons with electrode arrays (Shenoy 
2015, 79-81). However, there remain at least two serious obstacles that need to be overcome 
before the simultaneous recording of much larger numbers of neurons can be realized. 

First, there is the need to analyze the parallel data from thousands of neurons. As our 
knowledge of brain operations increases we must expect the discovery of additional variables 
(e.g., cell type, axon and dendrite projection patterns, synaptic connection strength) that will 
need to be recorded and a much greater increase in the combinations of these variables due to 
interdependencies. By comparison, it would be a far easier undertaking to try to gain an 
understanding of how a computer functions by measuring the electrical activity of its 
millions of transistors simultaneously. It is doubtful that such an undertaking would lead to 
more than a superficial understanding of computer operations even though there are no 
concurrent chemical processes involved in a computer and the number of connections 
between transistors is far fewer than there are synapses in the brain. 

Second, there is the question of degree of importance of the individual variables and their 
relationships. A further complication could arise if it were to be found that the influence of 
specific combinations of variables becomes relevant only under certain circumstances that 
are related to the particular task undertaken by the brain. For example, whether the degree of 
synaptic strength is an important factor in the movement of a limb may depend on the cause 
of the movement rather than the accomplishment of the movement task. 

Hypothetical Explanations 

While the severe limitations of current experimental techniques do not allow what might appear 
to be plausible hypotheses to be validated into theories, there are four hypotheses that the author 
would like to briefly discuss; namely, comprehension through the assembly of parts, ability to 
retain information in memory, influence of genes, and randomness in the formation of synapses. 

In general terms the hypotheses are based on the assumption that neurons are assembled into 
networks and that the brain is in fact a neural network of networks. While any neuron will have a 
number of connections within its own assembly of cells (i.e., subnetwork) it may also have one 
or more connections to neurons in other networks. Therefore, a spike in one neuron may activate 
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several neurons in other networks apart from activating the connected cells in its own assembly 
of cells. 

Hypothesis 1 - Comprehension through the assembly of parts: According to this
 
proposition the comprehension of, for example, a visual sensory input such as the scene
 
shown in Figure 7 starts with the activation of neurons that respond to very low level
 
properties of the image such as the luminance of one or more distinct areas or dots or
 
lines or planes in the image.
 

Figure 7: Comprehension through hierarchical feature detection 

The firing of these neurons will activate other connected neurons that respond to other 
features that may or may not build on the partial interpretations of the previous level 
neurons, and so on. With each successive level of response the comprehension of the 
whole image becomes more complete and the contribution of the next level builds more 
and more on the cumulative results of the previous levels. Throughout this process 
involving millions of neurons in thousands of subnets there will be not only excitatory 
but also inhibitory neuron responses. It is in this way that the evolving comprehension of 
the image is continuously challenged, rejected or validated, and fine tuned. At lower 
levels these challenges and validations are likely to involve factors that are based more on 
conditioned (subconsciously acquired) experience, while at higher levels conscious 
memory might be expected to play an increasing role. 

This explanation is based on the proposition that the brain consists of neurons that 
respond to particular stimuli. At the lowest level(s) these stimuli are very primitive 
elements like spots of light or sound vibrations that by themselves provide no clues of 
what the eventual outcome of the perception (i.e., the whole) is going to be, except for the 
gross distinction between visual, auditory, olfactory, somatic (touch), gustatory (taste), 
and vestibular (movement) senses. At succeeding levels the stimuli that the neurons 
respond to become increasingly more indicative in their representation of the whole. 

19 



             

  

             
            

            
               

              
           

          
            

    

               
             
             

               

         

       

                
                 

               
               

      
     
     
     

      
    
     

      
    
    

      
       

                                 

               
             

             
        

               

               
               

              
              

                
                 

             
                

Jens Pohl: Reverse-Engineering the Brain, InterSymp-2016, 1 August, 2016 RESU109-IS16 

Along the way individual neurons will receive and/or send both excitatory signals and 
inhibitory signals. While the excitatory signals indicate agreement with the current path 
to comprehension, the inhibitory signals indicate disagreement. This means that along the 
entire hierarchy from the lowest to the highest level there are many decision points that 
will influence the final comprehension of the whole. This process is based on the 
following hypothetical rules (Figure 8) for which there exists some experimental 
evidence but not enough for definitive validation (Seung 2013, 62-75): 

1.	 A neuron that detects a ‘whole’ receives excitatory synapses from neurons 

that detect its parts. 

This rule applies to how higher level neurons in the hierarchy of a network receive 
signals from lower level neurons. In the opposite direction the following rule would 
govern how a neuron sends signals to one or more higher level neurons. 

2.	 A neuron that detects a part (i.e., something that it has been conditioned to 

recognize) sends excitatory synapses to higher level neurons thereby 

contributing to the comprehension of the ‘whole’. 

For example, the comprehension of a person in the visual field could start with outlines of 
one or more limbs such as the head, arms, or legs. At higher levels the limbs are 
combined into a human body and particular details such as the face, clothing, color, and 
posture, are added depending on the distance of the person from the beholder and the 
nature of the interaction. At the 
higher levels recognition of the 
person as a known acquaintance 
would be triggered by connections 
to other networks that respond to 
particular persons or other 
associated memories. If the person 
is located close to the beholder 
then the comprehension sequence 
may start immediately with 
primitive features of the face, lips 
or eyes (e.g., pupil, iris, white, and 
blue leading to blue eyes). Figure 8: Hypothesis 1 – Potential Formal Rules 

In this case the visual stimuli are likely to occur simultaneously with any auditory stimuli 
that would be processed concurrently by other networks of neurons from primitive sound 
elements to speech, to language, to meaning, to relevant knowledge. Seung (2013, 68) 
suggests that this leads to a third rule: 

3. The function of a neuron is defined chiefly by its connections to other neurons. 

Hypothesis 2 – Ability to retain information in memory: It has been generally agreed for 
several decades that long term memory in the human brain is associative. If we have 
difficulty recalling information about a past event or experience we find it helpful to 
establish a line of thought by thinking about related information that may eventually lead 
us to the information that we are seeking. For example, if we are randomly asked to 
reconstruct where we were and what we were doing on a particular day 20 years ago then 
we would most likely initially draw a complete blank. However, given enough incentive 
to try to recollect we would start by broadening the targeted information into where was I 
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living during that year, what was my principal occupation, who were my closest friends, 
and so on? One or more of these related information items would likely eventually lead 
into a line of thought that would allow me to recall some of the particulars about that time 
period in my life. 

It appears that the connectivity of cells in networks of networks is the basis of memory. If 
this is true then the focus of our 
attention in determining how the 
brain forms memories must be on 
the plasticity of synapses, in 
respect to: how are cell assemblies 
formed; how is the strength of a 
synapse increased or decreased; 
how is the action potential of a 
neuron increased or decreased; 
what role (if any) does ordering in 
time play; to what extent is 
repetition a factor; and, can new 
connections be formed? Figure 9: Hypothesis 2 - Memory 

In respect to repetition it has been proposed (Figure 9) that we learn to associate ideas 
when one idea repeatedly accompanies or succeeds another. This has led to the following 
rule of plasticity: 

1.	 If neuron A and neuron B are repeatedly simultaneously activated, then the 

connections between them are strengthened in both directions. 

A similar rule has been proposed for our ability to learn sequential ideas (Hebb 1949): 

2.	 If neuron A and neuron B are repeatedly activated sequentially, then the 

connection from neuron A to neuron B is strengthened. 

Both of these rules have become known as the Hebbian rules of plasticity and are 
applicable only to synapses between excitatory neurons. In his 1949 book (The 
Organization of Behavior) Hebb 
also proposed that neurons are 
connected in cell assemblies. Since 
the 1950s it has been possible to 
measure the spiking strength of a 
neuron by inserting a glass 
electrode with an extremely sharp 
tip into a single neuron. In the 
1970s it became possible to 
measure changes in synaptic 
strength by repeatedly stimulating 
the spiking of two connected 
neurons. Figure 10: Hypothesis 2 – Process of forgetting 

While it is difficult to keep two neurons alive after they have been repeatedly penetrated, 
there is experimental evidence to suggest that the increased synaptic strength can be 
persistent for time periods of hours to days and weeks (Figure 10). 
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Seung (2013, 76-95) traces the logic of the corollary as follows. Neurons whose synaptic 
strengths have increased through some particular kind of sensory stimulation will through 
their connectivity form an assembly of neurons that have now become sensitive to this 
type of sensory stimulus. We can call this a synaptic chain based on a pattern of strong 
connections. Any stimulus that activates the first group of lower level neurons will 
activate the higher level neurons in this chain (chain A). 

It would be reasonable to expect that a stimulation coming from another cell assembly 
(chain B) through one or more synapses anywhere in chain A could activate the neurons 
in chain A. If the connections are sufficiently strong then the spiking will propagate 
through the entire chain without the need for the particular sensory stimulus that was 
originally responsible for the formation of chain A. This would provide an explanation of 
how the brain operates in support of associative memory; - i.e., any stimulus that 
activates chain A will trigger the recollection of the sequence of ideas (memories) that are 
associated with chain A and every successive recollection of these memories will further 
strengthen the connections of chain A by Hebbian plasticity. 

Hypothesis 3 – Influence of genes: The relative influences of genes and life experience 
on the behavioral characteristics of an individual person is still very much a topic of 
debate. While there is little doubt about the influence of the genes of the parents on the 
physical features of children, it is 
not clear to what extent the 
behavioral similarities between 
parents and child are due to nature 
(genes) or nurture (upbringing). 
Studies of monozygotic (MZ) 
twins with 100% of the same genes 
and dizygotic (DZ) twins with 50% 
of the same genes have shown that 
twins score more similarly on 
intelligence tests than two 
randomly selected persons (Figure 
11). Figure 11: Hypothesis 3 – The role of genes 

However, twins score less similarly on personality tests than on intelligence tests but still 

three laws of behavior genetics: 

1.	 All human behavioral traits
 

are heritable.
 

2.	 The effect of being raised
 

in the same family is
 

smaller than the effect of
 

genes.
 

3.	 A substantial portion of the 

variation in complex 

human behavioral traits is 

not accounted for by the 

effects of genes or families. Figure 12: Hypothesis 3 – Potential formal rules 

more similarly than two randomly selected persons. Turkheimer (2000) has formulated 
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Turkheimer’s first law holds not only for mental differences but also for mental disorders 
between persons (Figure 12). In the case of twins it was found that the concordance rate 
of autism for MZ twins has a 60% to 90% probability, but only 10% to 40% in DZ twins. 
In the case of schizophrenia it is 40% to 65% for MZ twins and only 0% to 30% for DZ 
twins. In other words, these studies of twins show that genes matter, but they do not 
explain why. 

Hypothesis 4 – Randomness in the formation of synapses: Little is known why certain 
neurons form connections and others do not. With the high density of neurons hundreds 
of thousands of dendrites are intertwined with axons in every cubic millimeter of brain 
tissue. In this thick forest of neurites there are many more opportunities for the formation 
of synapses than are actually formed. It is interesting to note that although the human 
brain has an estimated 1000 trillion neurons this very large number is in fact only a small 
fraction of the number of synapses that would exist if each neuron were to be connected 
to every other neuron. With 86 billion neurons there would not be nearly enough room in 
the skull to accommodate the required number of synapses. 

It would not seem to be an unreasonable proposition that with so many opportunities for 
the formation of synapses that there is at least initially a degree of randomness involved. 
We do know that initially there are more synapses than are required. In comparing the 
density of neurites in the brain of a two-year old child with a four-year old child we see 
that noticeable pruning has already taken place (Figure 4). The pruning continues with an 
approximately 40% reduction in synapses by the time the child reaches adulthood. It 
could be argued that any new synapse either finds use and becomes part of potentially 
many synaptic chains or it never gains much strength and is eventually eliminated (Seung 
2013, 87-88). 

Concluding Assessment of Feasibility and Value 

In general terms reverse-engineering means decomposing a system (i.e., a whole) systematically 
into its component parts without prior knowledge of the model of the whole and the logic of each 
individual part. The objective of reverse-engineering is to build a system with the same behavior 
by discovering the model of the whole through discovery of the logic of its component parts. 
However, with a system as complex as the human brain the behavior of the whole may not be 
able to be extrapolated from the behavior of the parts. In other words, the interaction of neurons 
through synapses and possibly other glial connections may not be predictable from an 
understanding of the fundamental operations of each neuron type. 

In this regard, the number and complex nature of the problems confronting neuroscience 
researchers call into question the feasibility of the undertaking and the advisability of channeling 
a significant proportion of available government funding into brain research. On the other hand, 
it can be argued that even if the research findings fall far short of the original objectives they will 
be of enormous benefit to improving the health of mankind through the treatment of mental and 
physical disorders. It therefore seems appropriate to conclude this paper with a comparative 
discussion of the feasibility of the attempt to reverse-engineer the brain and the benefits that may 
accrue to clinical medicine, psychiatry and psychology. 

Feasibility: There are many fundamental problems facing neuroscience research today.
 
While continued advances in experimental techniques and the combination of microscopy
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with high speed computer analysis are very promising, there is no guarantee that they will be 
sufficient to gain a full understanding of the operation of the human brain. 

Zador (2015, 40-49) suggests that if the functional behavior of the brain is based on a general 
biological algorithm with many exceptions then the reverse engineering approach may not 
lead to the kind of overarching theory that neuroscience researchers are seeking. With about 
86 billion neurons and 1000 trillion connections there could be a staggering number of 
exceptions. In fact one of the reasons for the large number of neurons and the complexity of 
the brain may be that the brain operates according to a relatively small number of principles 
with a very large number of exceptions. Under these circumstances recording the behavior of 
single neurons within neural circuits would be an endless task of discovering exceptions and 
lead to the danger of assuming that some of these exceptions are sufficiently common to be 
mistaken as an overarching theory. 

The challenges confronting neuroscience researchers appear to be insurmountable within the 
current limitations of laboratory experimentation that cannot take into account the enormous 
scale of the human brain involving a vast range of stimuli in a dynamically changing 
environment. As Freemen (2015, 100) and other researchers point out, the experimental 
context is so limited in scale that it may mislead rather than usefully predict much about the 
rules that govern cognition, memory, reasoning, planning, and imagination. For example, the 
calcium fluorescence image from an experiment is often so messy and indirect that the 
researcher has difficulty inferring what the brain appears to be doing and in particular to 
separate the expected experimental signals from noise due to other factors. 

Even imaging all neurons is not enough to fully understand brain functions, because looking 
at brain activity in isolation ignores the physical context of the brain. The brain resides inside 
the human body with its own environment and the body resides within the external natural 
environment (Chiel and Beer 1997). The brain through its massively connected neurons is 
part of the sensorimotor loop. Decisions made by the brain lead to actions that produce 
bodily and environmental changes that feed back to the brain as new sensory input that is 
again processed by the brain. This loop is important. For example, it appears that aural input 
from a decision to listen to a speaker is processed differently from the same aural input in the 
absence of that decision. It follows that understanding the brain requires an understanding of 
the entire holistic system of brain, body and environment. 

Donoghue (2015, 222-3) gives a simple example in which his team recorded the spiking of 
two neurons in the motor cortex of an animal as it reaches from one point to another. 
Combined in the motor cortex commands to move are the results of interactions with many 
other brain structures (i.e., a network embedded in a network). The experimental record 
shows that one of the two neurons spikes significantly stronger whenever the animal reaches 
to the left and the other neuron spikes strongly when the animal reaches up and weakly when 
reaching down. This would suggest that when both neurons spike strongly the animal is 
reaching upward to the left. However, the experiment recorded only two neurons out of 
millions and those two neurons were recorded in isolation from other brain structures that 
they interact with. Therefore, the assumption that there is a direct relationship between the 
two neurons and the reaching action of the animal may well be erroneous. 

In more general terms, identifying the behavior generated by the brain in any particular 
situation must occur concurrently with how the brain generates the necessary actions. So far 
it has not been possible to extract principles of brain function from recordings of neuronal 
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activity. For example, after decades of research the approximately 30-neuron network that 
controls the stomach system of decapod crustaceans (e.g., crayfish, crabs, lobsters, prawns, 
etc.) is still not fully understood. This casts considerable doubt on the ability to understand 
the 100,000 neuron network of the zebrafish, let alone the 86 billion neuron network of the 
human brain. The situation is exacerbated by the fact that the current methods for recording 
neuronal activity are relatively slow compared with the millisecond timescale at which 
neurons communicate. Order of magnitude increases in recording speeds will be necessary to 
improve upon the current ability to observe each neuron only a few times per second. 

There are two additional problems that confront neuroscience researchers. First, the inability 
to infer higher level human behaviors from animal studies because human behaviors like 
language and reasoning do not have comparable animal models. Second, the extreme 
restriction on invasive studies of the human brain, which are essentially limited to the 
targeted monitoring of specific brain functions during neurosurgery. Therefore, studies of the 
human connectome are limited to postmortem analysis of human brain images and living 
animal studies. Non-invasive imaging methods do not allow researchers to discriminate 
between individual neurons but only brain regions. While phrenologists16 have attempted to 
explain mental differences in terms of the functions and sizes of regions of the brain, they are 
unable to explain how each region performs its function. Seung (2013, xx) points out that the 
influence of experience on the organization of the connectome is still a hypothesis that has 
not been validated by conclusive laboratory tests because of the inadequacies of experimental 
techniques. While the findings of phrenology can be empirically tested, they are too 
simplistic. At the same time, the much more sophisticated ideas of connectionism cannot be 
evaluated experimentally. 

Potential benefits: Several reasons may be offered why research of the brain is worthy of an 
investment of billions of dollars. First, there is the significant and growing health, social, and 
economic impact of brain and mental disorders that could be mitigated by the findings of 
brain research that would help us to compare healthy and unhealthy brains, develop new 
medical interventions, and provide an understanding of the biological mechanisms that the 
brain employs and how they fail in diseases, mental disorders, and following injuries. 
According to Seung (2013, 100-115) an accurate and comprehensive cataloging of the 
connectome would provide valuable insight into the sources of many mental disorders; - for 
example, whether autism and schizophrenia are due to macrocephaly during the creation of 
neurons, or lissencephaly during the migration of neurons to the brain, or connectopathies 
during the later stages of neurite growth and the creation of synapses. 

Second, due to military conflicts and terrorist attacks there are an increasing number of 
physical injuries leading to amputation of limbs that require prosthetic replacements with the 
desirability of linkage to the brain’s motor control mechanisms and feedback from the 
prosthesis to the sensory reception mechanisms. 

Third, an understanding of how the brain operates is potentially a major aid in the quest for 
Augmented Intelligence, Artificial General Intelligence and Artificial Superintelligence. 

16 Phrenologists have in the past associated the regions of the human brain and their size to the personal traits of 
an individual. While their belief that character, thoughts and emotions are located in particular regions of the 
brain was an important historical contribution to neuroscience, further extensions of this notion in respect to the 
size of any of these regions is now regarded as being obsolete. Their hypothesis that differences in the mind are 
due to differences in the brain was not unreasonable based on the limited methods available at the time. 
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There is a justified expectation that a deeper understanding of brain operations will lead to 
the development of methodologies and algorithms to improve artificial intelligence (i.e., 
machine learning) and the discovery of new technologies that exploit the physical principles 
exhibited by neural computation. Specifically in the area of network theory, there is a need 
for greater insight into the behavior of complex networks, the discovery of new principles 
underlying network operations, and the development of new theories describing network 
behavior (Eliasmith 2015). 

Finally, there is the innate driving need of human curiosity to gain an understanding of brain 
functions as a means of unraveling the mystery of one of the most complex problems facing 
humanity. 

It is highly probable that advances in neurotechnology will produce an entirely new set of 
much more powerful clinical applications. Early examples include: cochlear implants that 
convert sound into electrical impulses that are delivered to auditory nerves in the ear; deep 
brain stimulation (i.e., neuromodulation) using electrodes to electrically alter neural circuits 
to, for example, reduce the tremor in Parkinson’s disease; transcranial magnetic stimulation 
to temporarily relieve symptoms of depression despite the fact that magnetic devices are too 
coarse to target specific brain circuits; and, brain-computer interfaces to create replacement 
commands for actions that can be no longer performed by paralyzed persons. 

Research aimed at providing an implantable, untethered interface between the brain and a 
prosthetic device is facing challenges that would be ameliorated by a deeper understanding 
of brain operations (Maharbiz 2015). The engineering design of such a neural interface that 
is capable of lasting a lifetime requires knowledge of the nature of the physical substrate, 
how to avoid the biotic (i.e., organismic) and abiotic (i.e., chemical and physical) factors that 
lead to performance degradation at the electrode-tissue interface, the spatial coverage and 
density of the sensing site, the type of signals, and the communication capabilities. Both the 
neurons that are being recorded and the algorithms that are decoding the neural signals 
should have the ability to learn to improve the performance of the prosthetic device. The 
ultimate objective is a degree of control of the prosthetic device that will allow the user to 
perform tasks in a natural and effortless manner. 

The large amount of funding being allocated by governments in support of the substantial 
research efforts in the field of neuroscience appear to be entirely justified. Even though the 
ultimate objective of complete knowledge of how the brain works may not be realized for several 
generations, if ever, the benefits to mankind of even partial understandings are considerable. 
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Appendix: Molecular Biology Fundamentals 

The genome of a living organism is made up of chromosomes that are made up of genes, which 
are composed of deoxyribonucleic acid (DNA). DNA is made up of atoms that are arranged in a 
particular order on a double helix structure. Genes are pieces of DNA with particular variations 
in the order of atoms depending on the type of gene that form into chromosome strands. Every 
human cell contains 23 pairs of chromosomes in its nucleus (Figure 13). Ribonucleic acid (RNA) 

is the chemical messenger that carries the DNA instructions to the cell cytoplasm for execution. 

While a cell such as a neuron is built from many types of molecules, one of the main types is a 
class of molecules known as proteins. Some of these proteins have structural functions (i.e., 
supporting the cell like the frame of a house), others perform functions on other molecules, and 
many proteins combine both structural and functional roles. Just like DNA is a chain of 
nucleotides, a protein molecule is a chain of smaller molecules called amino acids. Since there 
are 20 types of amino acids each protein is specified by a sequence of 20 letters rather than the 
four letters used in DNA. This amino acid sequence represents a gene in the genome. 

The cell reads the nucleotide sequence of a gene and translates this into an amino acid sequence 
to synthesize a protein. When a cell reads a gene and constructs a protein, it is said to express the 
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gene. Every cell in a person’s body contains the genome. The question then arises: Why do a 
liver cell and a heart cell look different and perform different functions? The answer is that cells 
of different type express different genes. 

Figure 13: DNA – Chromosomes – Genes 

A genome contains tens of thousands of genes, each corresponding to a different kind of protein. 
Each type of cell expresses some of these genes but not others. Neurons are arguably the most 
complex type of cell in the body and therefore it is no surprise that many genes encode proteins 
that are either exclusively or partially devoted to supporting functions in neurons. For this reason 
alone it would appear that genes are likely to play a role in the operation of the brain. 

DNA: Deoxyribonucleic acid (DNA) is a molecule that contains the information that governs 
the way cells function in an organism. The information is encoded in a double helix (ladder 
like) structure of atoms in the form of a strand. A single human DNA molecule carries a vast 
amount of information equivalent to 4000 500-page books. 

1.	 The double helix structure of DNA is like two ladders twisted around each other. 

2.	 DNA is made up of molecules called nucleotides. Each nucleotide contains a 
phosphate group, a sugar group and a nitrogen base. There are four types of nitrogen 
bases: adenine (A); thymine (T); guanine (G); and, cytosine (C). Adenine (A) always 
pairs with thymine (T) and guanine (G) always pairs with cytosine (C). The order or 
sequence of these nitrogen bases determines genetic code (i.e., instructions). 

3.	 Sometimes during cell division the sequence or order of the nitrogen bases is not 
reproduced exactly resulting in a mutation (i.e., mutant gene). 

4.	 In humans half of the DNA comes from the mother and half from the father at 
conception. Therefore much of the biological blueprint of a person is inherited from 
the parents. 
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5.	 Apart from being able to store information DNA can also replicate itself (i.e., exact 
copy) during cell division. 

6.	 DNA instructions determine the production of enzymes, which are proteins. Enzymes 
ensure that the production of protein in a cell is assembled from the correct sequence 
of amino acids. Protein is the fundamental building block of cells. 

Chromosomes: Chromosomes are composed of DNA strands that are made of genes. 
Thousands of genes make up the thread-like chromosomes that are about six feet long. Every 
human has 22 pairs of matching chromosomes plus a 23rd pair of sex chromosomes (i.e., XX 
for female and XY for male). Each cell (except sex cells) contains 23 pairs of chromosomes. 
Sex cells contain only 23 unpaired chromosomes so that at conception they can create one 
cell containing a full set of chromosomes. While chromosomes are normally hidden in the 
opaque nucleus of a cell, they can be chemically stained to become visible during cell 
division. 

Genes: Genes are made up of DNA and control heredity. The DNA structures from the two 
parents can combine in an almost infinite number of ways. Therefore there is almost no 
probability that any two persons (except identical twins) will have exactly the same genetic 
profile. 

Genetics: Genetics is the science of the mechanisms of heredity and the variations that can 
occur in both animals and plants. 

Genome: A Genome is all of the genetic material in a living organism. It is the entire set of 
DNA instructions for building, operating and maintaining an organism. Genome Sequencing 
is the process of determining the order of DNA nucleotides (i.e., bases) in a genome. 

Cells: A cell is the basic structural and functional unit of all living organisms. Cells are the 
smallest unit of life that can replicate independently. Cell cytoplasm is a thick solution that 
fills each cell and is enclosed by the cell membrane. It includes all of the material inside the 
cell, but outside of the cell nucleus. 

RNA: Ribonucleic acid (RNA) acts as a chemical messenger that communicates the DNA’s 
instructions to the cell cytoplasm. There are three types of RNA: 

1.	 Ribosomal RNA is made in the cell’s nucleus and is a direct copy of the gene that is 
being exported along messenger RNA (mRNA) pathways through the cytoplasm. 

2.	 Transfer RNA (tRNA) acts as an adaptor that allows the information-coded ribosome 
to attach to successive amino acids and trigger the release of the appropriate enzymes 
to construct them into a growing protein chain. 

3.	 Like DNA, RNA also contains four bases of nucleotides. Since the average protein 
contains about 400 amino acids and the coded signal is known to be three bases in a 
row, it follows that each protein message must be about 1,200 nucleotides long. 
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