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Finite element assessment of the effects of
seismic loading rate on soil liquefaction

Radu Popescu

Abstract: The influence of frequency content of seismic excitation on the extent and pattern of pore-water pressure
build-up in saturated soil deposits is addressed. Seismic acceleration time histories are generated as uniformly
modulated nonstationary stochastic processes, in accordance with prescribed response spectra and prescribed modulating
functions. Based on numerical examples, it is shown that the interplay between the frequency content of seismic
excitation and the dynamic characteristics of the soil system and their evolution during and after the earthquake have

important implications on the dynamic response.
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Résumé : L'influence de la fréguence de I’ excitation séismique sur la magnitude et la configuration de la pression

d eau interstitielle dans les dépbts de sol saturé a été étudiée. Des accélérations séismiques sont simulées en tant que
processus stochastiques uniformément modulés, selon des spectres de réponse et des fonctions de modulation prescrits.
On a démontré que I'interaction entre la fréquence de |’ excitation séismique et les caractéristiques dynamiques du sol
ont des implications importantes sur la réponse dynamique.

Mots clés : mouvement séismique, fréguence, éléments finis, dynamique des sols.

1.0 Introduction

The characteristics of seismic ground motion at a specific
location (e.g., frequency content, amplitude) are mainly gov-
erned by: (1) the distance from the seismic source, (2) local
soil conditions, and (3) the magnitude of the event. As a
consequence of wave propagation and loss of coherence,
there is a certain spatial variation of seismic ground motion
from one location to another. To this end, the earthquake
ground motion can be described by a nonstationary stochas-
tic vector process with evolutionary power, each scalar com-
ponent of the vector process representing the motion at a
certain spatial location (e.g., Deodatis 1996).

As dynamic systems, any soil deposit or soil-structure
ensemble has their own characteristic frequency (or lower
eigenfrequency value), which depends on soil properties
(especially on shear modulus), geometry, and degree of satu-
ration. This characteristic frequency may decrease during
dynamic excitation, due to degradation of the effective shear
moduli as a result of pore pressure build-up and (or) large
shear strains. This phenomenon has been documented by
Madabhushi and Schofield (1993). Based on a series of cen-
trifuge experiments of tower—soil systems, they concluded
that when the dominant frequency of the seismic excitation
was lower than the natural frequency of their model, build-
up of excess pore pressure and subsequent degradation of
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soil stiffness was lowering the initial natural frequency of
the tower—soil system, to a value close to the seismic input
frequency.

Based on two examples of liquefaction potential assess-
ment, it is shown in this paper that the interplay between the
frequency content of seismic excitation and the dynamic
characteristics of soil deposits or earth structures, and espe-
cially their evolution during and after the earthquake, has
important implications on the dynamic behaviour. Nonlinear
dynamic finite element analyses are carried out using a multi-
yield plasticity model implemented in the computer code
DYNAFLOW (Prevost 1999). The calculations are con-
ducted in terms of effective stress, using fully coupled solid —
fluid equations for the treatment of saturated porous media.

2.0 Digital generation of seismic
accelerations

2.1 Simulation algorithm

Seismic design codes provide response spectra for various
types of local site conditions. Acceleration, velocity or dis-
placement time histories that are compatible with the recom-
mended response spectra are used as input motion in
dynamic computations. Such time histories are usually gen-
erated at several locations on the ground surface, as sample
functions of a nonstationary, multivariate stochastic process.
A procedure for digital generation of nonstationary stochas-
tic processes is used here to generate seismic accelerations.

Sample functions, f °(t), of a uniformly modulated, non-
stationary, multivariate stochastic process, f (t), are generated
using a spectral representation based algorithm. This algo-
rithm, implemented in the computer package PRISM
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(Popescu et a. 2000), is a specia case of the simulation algo-
rithm for nonstationary vector processes proposed by
Deodatis (1996). The resulting sample functions are compati-
ble with prescribed response spectra, correlated according to a
given coherence function, include the wave propagation ef-
fect, and have prescribed modulating functions for amplitude
variation. The algorithm takes advantage of the great compu-
tational efficiency of the Fast Fourier Transform technique.

Each simulated time history is a scalar component of the
nonstationary, multivariate sample function f °(t), and corre-
sponds to a specific location on the ground surface. Each
scalar component is expressed as

[11  f'O=A0’® j=1,...N

where N is the total number of points on the ground surface
where correlated seismic motions are simulated; Aj(t) are the
modulating functions (envelopes); and glo(t) are sample func-
tions of a stationary stochastic process.

The Jennings et al. (1968) model is selected for the modu-
lating functions Aj(t) that control the duration of the strong
ground motion. The coherence functions, describing the cor-
relation between the scalar components, follow the
Abrahamson (1993) model, which can be used for a broad
range of soil conditions. The effects of wave propagation are
introduced by prescribing the locations on the ground sur-
face where seismic motion is simulated and the velocity of
seismic wave propagation.

The simulation starts by generating ergodic, stationary time
histories, glo(t), using the spectral representation method.
The stationary sample functions are then modulated with re-
spect to prescribed envelope functions, as shown in eqg. [1].
The resulting sample functions are compatible with pre-
scribed coherence functions and include the effects of wave
propagation, but they are not compatible with the prescribed
(target) response spectra. Iterative upgrading of the power
spectral density functions of each scalar component, gJO(t), is
performed next, until the resulting response spectra of the
nonstationary time histories, fjo(t), are within an acceptable
tolerance of the targets. Less than 10 iterations are usually
needed. For a detailed description of the generation algo-
rithm the reader is referred to Deodatis (1996).

2.2 Acceleration time histories used in this study

To assess the effects of loading rate (frequency content of
seismic excitation) on dynamic behavior, earthquake ground
motions corresponding to different local soil conditions are
simulated using four different prescribed response spectra
shown in Fig. la. Specifically, the first three types of re-
sponse spectra plotted in Fig. 1a correspond to the Uniform
Building Code (UBC) (1994), with Type 1 for rock and stiff
soils, Type 2 for deep cohesionless or tiff clay soils, and
Type 3 for soft to medium stiff clays and sands. The re-
sponse spectrum labeled as Type 4, with a range of maxi-
mum spectral values corresponding to frequencies that are
lower than for Types 1, 2, and 3, is believed to be represen-
tative for locations close to the epicenter. The effectiveness
of the simulation algorithm isillustrated in Fig. 2, where the
prescribed (target) response spectra (continuous lines) are
compared with the response spectra computed from the

corresponding simulated acceleration time histories (repre-
sented by dotted lines).

For demonstration purposes, the synthesized acceleration
time histories presented in Figs. 1b-1e are used as base input
motions in the numerical examples presented in Sections 4
and 5. Identica modulating functions, Aj(t), j = 1,..4,in
eg. [1], are used for al of the acceleration time histories.
They are generated at close locations on the ground, so there
is no significant loss of coherence. The acceleration time his-
tories presented in Fig. 1 have been scaled to maximum val-
ues of about 0.15g, to represent earthquakes delivering the
same amounts of energy (or having similar intensities). This
is illustrated in Fig. 3a, by the evolution of Arias Intensity
values computed for the four time histories. Arias Intensity
index is a measure of the total energy delivered per unit mass
during an earthquake, and can be expressed as (Arias 1970)

_ T T
21 1 =2 Io a’(t)dt

where T is the total duration of the earthquake, and a(t) is
the ground acceleration at instant t. To estimate the amount
of energy delivered up to any time instant, t, the values I(t)
shown in Fig. 3a are computed as

310 =5 [30

Another measure of the seismic intensity of an acceleration
time history is the number of representative cycles at 0.65
Amnax- The number of representative cycles from the begin-
ning of the earthquake to any time instant, t, is computed for
the four acceleration time histories presented in Fig. 1 using
a method proposed by Seed et a. (1975). These numbers are
represented in Fig. 3b. It results from Fig. 3b that the four
acceleration time histories used in this study are similar with
respect to the numbers of representative cycles, at least up to
timet = 8 s. After t = 8 s, the Type 4 acceleration time his-
tory has about 15% less representative cycles than the other
three seismic accelerations.

3.0 Mathematical model

The four acceleration time histories presented in Fig. 1 are
used as seismic input motion for dynamic analyses of a soil
deposit and of an embankment dam. Nonlinear dynamic finite
element analyses are performed using the code DY NAFLOW
(Prevost 1999). DYNAFLOW is afinite element analysis pro-
gram for the static and transient response of linear and nonlin-
ear two- and three-dimensional systems. The solid and fluid
coupled field equations are based on an extension of Biot's
formulation (Biot 1962) in the nonlinear regime, and are ap-
plicable to multidimensional situations. A multiyield constitu-
tive model is used for simulating the behaviour of sail
materias. It is a kinematic hardening model based on a sim-
ple plasticity theory (Prevost 1985), and it is applicable to
both cohesive and cohesionless soils. The yield function is de-
scribed in the principa stress space by a set of nested conical
yield surfaces. A non-associative plastic flow rule is used for
the dilatational component of the plastic deformation. The
model has been tailored (1) to retain the extreme versatility
and accuracy of the simple multisurface J, theory in describ-



Fig. 1. Digital generation of response spectrum compatible seismic accelerations: (a) types of prescribed response spectra; (b)—(€) response
spectrum compatible acceleration time histories used in this study. UBC, Uniform Building Code.
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ing observed shear nonlinear hysteretic behavior and shear
stress induced anisotropic effects, and (2) to reflect the strong
dependency of the shear dilatancy on the effective stress ratio
in both cohesionless and cohesive soils. Accurate simulation
of shear-induced plastic dilation and of hysteretic effects un-
der cyclic loading, together with full coupling between solid
and fluid equations, allows capturing the build-up and dissi-
pation of pore-water pressures and modelling the gradua soft-
ening and hardening of soil materials.

The required constitutive model parameters can be derived
from the results of conventional laboratory (e.g., triaxial,

Period, T (s)

simple shear) and in situ (e.g., standard penetration, cone
penetration, wave velocity) soil tests. Liquefaction strength
analysis (e.g., Popescu 1995; Popescu et a. 1997) is also
needed for saturated materials subjected to cyclic loads. The
multiyield plasticity soil constitutive model, its implementa-
tion algorithm, and the methodology for estimating the con-
stitutive model parameters have been repeatedly validated in
the past for soil liquefaction computations, based on both
centrifuge experimental results (e.g., Popescu and Prevost
1993, 1995) and full scale measurements (e.g., Keane and
Prevost 1989; Popescu et al. 1992, 1998).



Fig. 3. Arias intensities (a), and number of representative cycles at 0.65 a5 (b), computed from the acceleration time histories

presented in Figs. 1b-1e.
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The finite element analysis is performed in one run con-
sisting of two steps. First, gravity loads are applied and the
soil is allowed to fully consolidate. The consolidation phase
is calculated dynamically, by setting the Newmark algorithm
parameters in the integration scheme asy = 1.5 and 3 = 1.
After consolidation is completed, the nodal displacements,
velocities, and accelerations are zeroed, the time is reset to
zero, and the input acceleration is applied at the base. The
Newmark parameters are chosen asy = 0.65 and 3 = (y +
0.5)%/4 = 0.33. This choice for y introduces a slight numeri-
cal damping (y = 0.5 corresponds to no numerical damping),
and the selected value for B maximizes high frequency numer-
ical dissipation. No additional viscous damping is introduced.

4.0 Example 1: liquefaction assessment of
a soil deposit

4.1 Finite element model

Liquefaction risk assessment of a saturated soil deposit is
next presented to illustrate the influence of the seismic load-
ing rate. A loose to medium dense sand deposit, with geo-
mechanical properties as well as gspatial variability
characteristics estimated from the piezocone test results pre-
sented in Fig. 4, is subjected to a horizontal earthquake mo-
tion, as shown in Fig. 5a. Response spectrum compatible
acceleration time histories are used, considering two possi-
ble situations (1) an acceleration time history compatible
with the UBC Type 2 response spectrum (Fig. 1c) corre-
sponding to the presence of arelatively stiff soil layer under-
lying the sand deposit under consideration, and (2) an
acceleration time history compatible with the UBC Type 4
response spectrum (Fig. 1e) that may be characteristic of a
site that is close to the epicenter. The frequency ranges of
the maximum spectral values are (Fig. 1a) between 1.8 and
6.7 Hz for Type 2 input motion, and between 0.7 and 2 Hz
for Type 4 input motion. The seismic acceleration is pre-
scribed at the base nodes of the finite element mesh. A semi-
infinite horizontal soil deposit is simulated by imposing the
same displacements in both horizontal and vertical direc-
tions, and for both solid and fluid phases, at the lateral nodes
situated in the same horizontal planes (same elevations).
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The cone penetration test results shown in Fig. 4 come
from an artificial island in the Canadian Beaufort Sea (Gulf
1984). Though measured in a supposedly homogeneous
man-made soil deposit, the recorded cone tip resistance
shows significant spatial variations. To account for this vari-
ability, Monte Carlo simulations are performed, with soil
parameters corresponding to 25 sample functions of a sto-
chastic vector field with probabilistic characteristics derived
from the field data shown in Fig. 4. Each sample function
represents a possible realization of the spatial distribution of
the field test results over the analysis domain. For each sam-
ple function, and at each spatial location, the simulated val-
ues of field test results are used to estimate the constitutive
parameters of the soil constitutive model used for stochastic
input finite element analyses. For a detailed description of
the Monte Carlo simulation methodology and the estimation
of the soil constitutive parameters, the reader is referred to
Popescu (1995) and Popescu et a. (1997). It is mentioned
that a larger number of simulations is required to provide the
statistics of the response by Monte Carlo simulations. On the
one hand, non-linear dynamic finite element analyses are
computationally expensive, on the other hand, this study is
not aimed at providing the statistics of the response, but only
the general trends, as shown in the next section.

4.2 Analysis results

Some of the results are summarized in Fig. 5 in terms of
the excess pore-water pressure (epwp) ratio with respect to
the initial effective vertical stress (IEVS) and horizontal dis-
placements at the ground level. The predictions of the Monte
Carlo simulations are represented in Fig. 5 as ranges of re-
sults obtained from 25 sample functions. For comparison
purposes, the predicted epwp ratio is presented in terms of:
(1) Liquefaction index (Fig. 5b), computed by averaging the
predicted epwp ratio in the horizontal direction (Ohtomo and
Shinozuka 1990)

[4 Q@) = r(uzhdx

where



Fig. 4. Cone tip resistance recorded in a hydraulic fill deposit at
Tarsiut P-45 (data from Gulf 1984).
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is the ratio of the epwp with respect to the initial effective
vertical stress, and L is the dimension of the analysis domain
in the horizontal direction (Fig. 5a). At each time instant, t,
the liquefaction index, Q(zt), characterizes the distribution
of the epwp ratio in elevation.

(2) Area of liquefied zone, or Agy index (Fig. 5¢), defined as
(Popescu et al. 1997)

1 H.L
[5] Ago(t) = mjo IO Lt (x, z1)=0.8/dXdZ

where H is the depth of the saturated soil layer (Fig. 5a);
and 1;p = 1if Pistrue, and 1 = O if P is fase. Thus, at
each time instant, the Agy index represents the proportion of
the saturated soil deposit for which the epwp ratio, r, ex-
ceeds 80%.

Comparisons in terms of predicted horizontal displace-
ments at the ground level and their evolution with time are
provided in Fig. 5d. Differential displacements between the
ground level and the base of the analysis domain are consid-
ered, as shown below

[6] 6h(t) = @ground level (t) - 5base(t)

For the soil deposit analyzed, significantly larger pore pres-
sures and horizontal displacements are predicted by the nu-
merical model when using the Type 4 input motion, with
lower frequency content, than for the Type 2 input motion
(Fig. 5). The discrepancy between the results obtained for
the two types of input motions becomes larger with time, as
illustrated in Fig. 5¢c. Gradual build-up of epwp leads to soft-
ening of the soil (decrease of shear modulus and shear
strength) and subsequent changes in the vibration character-
istics. The characteristic frequency of the soil deposit gradu-
ally decreases to values that are closer to the frequency
range corresponding to the Type 4 response spectrum.
Therefore, the Type 4 input motion transmits more energy to
the soil deposit than the Type 2 input motion.

The results in terms of the epwp ratio obtained at three
different time instants for one of the sample functions used
in the Monte Carlo simulations are presented in Fig. 6. As
observed, liquefaction is predicted to occur in patches corre-

sponding to the location of loose pockets in the heteroge-
neous soil mass. For further details and results obtained for
other sample functions of assumed soil variability, the reader
is referred to Popescu et al. (1997). For the case presented in
Fig. 6, significant differences can be observed between the
epwp build-up predicted for the same soil deposit and using
input seismic motions with the same energy, but with differ-
ent frequency ranges of the maximum spectral values.

A simplified liquefaction assessment procedure (e.g., Das
1983) was used by Popescu et al. (1997) for the soil deposit
presented in this example. The procedure currently adopted
by geotechnical practice is based on empirical correlations
between observed liquefaction resistance under ground level
conditions and normalized penetration resistance (SPT blow
count or cone tip resistance). Using the average values of re-
corded cone tip resistances plotted in Fig. 4 and the number
of representative cycles, N, estimated for the acceleration
time histories in Figs. 1b—1e, it was predicted that after 8 s
of shaking, corresponding to N, = 10 (Fig. 3b), the soil
would liquefy at a depth between 3 and 12 m. The numerical
results in terms of the liquefaction index presented in
Fig. 5b, predict liquefaction at a depth between 4 and 7 m
for the Type 2 input, and between 4 and 10 m for the Type 4
input. Accounting for the fact that the simplified procedure
for liquefaction assessment is conservative (CPT based lig-
uefaction boundary curves correspond to a probability of
liquefaction P = 50%, see e.g., Juang and Jiang 2000) the
numerical results presented in Figs. 5 and 6 seem realigtic.
The current practice approach however, is not able to differ-
entiate between seismic motions with different loading rates
(e.g., for the case at hand, the higher frequency input pro-
duced considerably less liquefaction).

5.0 Example 2: seismic analysis of an
embankment dam

5.1 Finite element model

In this numerical example, the effects of frequency con-
tent of the input motion are illustrated based on results of
the seismic evaluation of an embankment dam. The cross
section of the dam is presented in Fig. 7. The earthfill body
consists of permeable upstream (U/S) and downstream (D/S)
shells, with average slopes of about 3.5:1, and an impervious
clay-core. The soil material properties for the dam body are
selected to be relatively resistant to soil liquefaction. The
foundation consists mainly of soft to medium stiff clays and
dense sands. There is however, a layer of potentially
liquefiable silty sand located at a depth of about 6-10 m and
extending over the entire length of the dam. The dimensions,
layout, and zonation of the embankment dam used in this
example are fictitious, however the properties of the founda-
tion soils have been estimated based on real in situ standard
penetration and cone penetration test results.

Two-dimensional (plane strain) nonlinear dynamic finite
element analyses are performed for the cross section of the
dam shown in Fig. 7 using the code DY NAFLOW (Prevost
1999). The soil situated above the water level is discretized
into quadrilateral solid finite elements and the saturated soil
into quadrilateral two-phase medium elements with four de-
grees of freedom (d.o.f.) per node (two for the solid and two
for the fluid phase displacements). The finite element mesh



Fig. 5. Liquefaction strength assessment of a soil deposit. The results in (b), (c), and (d) represent ranges of predictions from Monte

Carlo simulations accounting for spatial variability of soil properties.
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is extended vertically in the foundation down to an assumed
impervious soil layer. The analysis domain is extended |ater-
ally about 250 m upstream and downstream of the dam toes
to avoid the influence of the lateral boundary conditions on
the numerical results obtained for the zone of interest. The
boundary conditions are prescribed as follows: (1) no vertica
motion at the base for both solid and fluid phases, (2) pre-
scribed acceleration to the solid phase horizontal d.o.f. at the
base nodes, and (3) prescribed free field motion to the lateral
nodes of the foundation (the procedure is described in
Popescu et al. 1998). The analysis is performed in one run, as
described in Section 3, and includes soil consolidation, step-
by-step dynamic analysis, and postearthquake behaviour.
Three of the acceleration time histories presented in Fig. 1
are selected as base input motions. The first one is compati-
ble with the UBC Type 1 response spectrum (Fig. 1b) and
has a frequency range of the maximum spectral values be-
tween 2.6 and 6.7 Hz. The second is compatible with the
UBC Type 3 response spectrum (Fig. 1d) and has a fre-
guency range of the maximum spectral values between 1.1

and 5 Hz. The third (Fig. 1e) is compatible with the ficti-
tious acceleration response spectrum labeled “Type 47 in
Fig. 1a, and has a frequency range extended more towards
lower values (0.7-1.6 Hz). To ensure visible seismic struc-
tural damage, the acceleration time histories shown in
Figs. 1b, 1d, and 1e have been scaled to a maximum value
of 0.3g in this numerical example. To assess possible post-
earthquake effects, the analysis period has been extended be-
yond the duration of the earthquake (analysis time = 30 s).

5.2 Predicted excess pore pressures

A comparison between predicted excess pore-water pres-
sure (epwp) build-up at the end of the strong shaking period
(time t = 12 s) for the three cases analyzed is presented in
Fig. 8. The numerical results are shown as contours of epwp
ratio with respect to the initial effective vertical stress
(IEVS). Very large pore pressures and soil liquefaction are
predicted in the loose silty sand layer in the vicinity and be-
low the dam toes for al three cases analyzed. No epwp
build-up is predicted in the dam body, which consists of lig-



Fig. 6. Contours of excess pore pressure ratio predicted for the
soil deposit in Fig. 5a using base input accelerations with
different frequency content (the material properties have been
assessed according to one of the sample functions used for the
Monte Carlo simulations).
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uefaction resistant materials. The epwp predicted in the
loose silty sand layer below the dam core have reduced val-
ues due to large static shear stresses and overburden stresses
in this area. These results are in good agreement with field
observations (e.g., Seed and Harder 1990) and recent centri-
fuge experimental results (Steedman et al. 2000).

The evolution of predicted epwp ratio at three locations
in the silty sand layer is presented in Fig. 9. During the
strong shaking period, very similar values are predicted be-
low the dam toes (Figs. 9a and 9c) for all three cases ana-
lyzed. After the shaking, the pore pressures dissipate in the
case of Type 1 input motion, while for Type 3 and 4 inputs
they continue to increase. An explanation can be found in
continuous postearthquake shear deformations, through a
mechanism similar to static liquefaction. Predicted values
of the epwp ratio with respect to the IEVS for Types 3 and
4 seismic inputs exceed unity below dam toes. This is be-
cause of the predicted slope failures that modify the total
vertical stress at those locations. Some dilation is predicted
after the end of strong shaking below the D/S toe for the
Type 1 input motion.

The pore pressures predicted in the loose silty-sand layer
below the core (Fig. 9b) are larger for the Type 3 and Type 4
seismic inputs than for the Type 1 input. However, no lique-
faction is predicted at this location. Excess pore pressure
dissipation after the shaking is predicted at this location for
all three cases, due to the effect of large confining stresses.

The numerical model predictions in terms of epwp ratio
in the loose silty sand layer below the dam core are com-
pared in Fig. 9b with the results of a centrifuge experimen-

tal study on the behaviour of saturated sands under high ef-
fective confining pressure (Steedman et al. 2000). A large
number of tests on saturated loose sands under IEV'S of up
to 1000 kPa and subjected to earthquake-like shaking have
been performed. The base input motion used in the centri-
fuge experiments had a frequency of about 1 Hz (at the
prototype scale), which is within the range of the Type 3
and Type 4 input motions used in this study. The experi-
mental results indicated that, at high IEVS and under mod-
erate amplitudes of excitation, the maximum level of epwp
ratio with respect to the IEVS is capped at values below
100% (i.e., the soil does not reach initial liquefaction). For
example, for IEVS of about 600 kPa, the maximum epwp
ratios recorded in the centrifuge study ranged between 40%
and 60%. The maximum epwp predicted in the loose silty
sand layer below the dam core for Type 3 and Type 4 in-
puts are in good agreement with those experimental results
(Fig. 9b).

5.3 Predicted deformations

Predicted maximum shear strains and deformed shapes of
the dam are presented in Fig. 10 for the three cases ana-
lyzed. At the end of the strong shaking period (timet =12 s,
Figs. 10a—10c), the finite element model predicts a certain
degree of damage at the D/S toe for al three cases. This
damage is due to very large shear deformations in the silty
sand layer and local slope failure of the dam toe. Large shear
deformations are aso predicted below the U/S toe for input
motion Types 3 and 4. In general, the numerical model does
not predict significant differences in terms of deformations
at the end of shaking for the three cases analyzed

Figures 10d-10f present predicted maximum shear strains
and deformed shapes of the dam at the end of analysis (time
t = 30 s). The differences between the three cases anayzed
are now very significant. Except for a limited zone at the D/S
toe affected by relatively large shear deformations, no signifi-
cant damage (or at least, no progressive failure) is predicted
for the dam when the Type 1 acceleration time history is used
as input motion (Fig. 10d). The large deformations predicted
at the D/S toe do not seem to immediately endanger the over-
al safety of the dam. In the case of the input acceleration
time histories compatible with the Type 3 and Type 4 re-
sponse spectra, the numerical model predicts postearthquake
faillure of the dam. Failures of both the U/S and the D/S
slopes, extending from toe to crest, are predicted in the case
of Type 3 input motion (Fig. 10e). The dope failures occur
after the end of strong shaking and continue at relatively con-
stant speed after the earthquake to the end of the analysis pe-
riod. For this input motion, the numerical model does not
predict direct damage to the core during the analysis period.
Genera failure of the dam is predicted in the case of Type 4
input motion (Fig. 10f). Asin the previous case, the U/S and
D/S slopes exhibit progressive failure after the end of strong
shaking. By the end of analysis (timet = 30 s), the failure of
the U/S shell extends into a generd failure of the dam, with a
dlide surface developing through the core.

Predicted displacement time histories are plotted in
Fig. 11 for the U/S zone of the crest. Relatively small hori-
zontal displacements (about 20 cm) and settlements (about
40 cm) are predicted when using the Type 1 input. These
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Fig. 7. Seismic analysis of an embankment dam: cross section showing the soil materials and the finite element mesh. U/S, D/S,

upstream and downstream, respectively.
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Fig. 8. Seismic analysis of an embankment dam: predicted contours of excess pore-water pressure (epwp) ratio with respect to the

initial effective vertical stress (IEVS).
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displacements occur during the strong shaking period (from
timet=4stot=12s), and then stabilize. In the case of
Type 3 and Type 4 input motions, the predicted crest dis-
placements are significantly larger (1-4 m at the end of
shaking, and much larger at the end of analysis). For these
cases, the displacements are predicted to continue at a rela-
tively constant speed after the end of shaking, indicating
progressive slope failures.

5.4 Discussion

The fact that very different structural responses are pre-
dicted for the three seismic inputs, even if the epwp distri-
butions at the end of strong shaking are similar, could be
explained by analyzing the evolution of the vibration char-
acteristics of the dam—foundation system during and after
the shaking. The characteristic period (corresponding to
the first mode of vibration of the structure) and its evolu-
tion with time is presented in Fig. 12a. It was calculated
by the finite element program using eigenvalue analysis
after the consolidation phase, and then every 0.5 s during
the step-by-step dynamic analysis, as a function of the
current state of the structure (e.g., values of the shear
moduli).

Under static conditions (before the earthquake), the dam-
foundation system has a period of vibration of about 1 s.
This relatively large value is due to the presence of the soft
to medium clay and loose silty sand layers in the foundation.
As epwp start building up in the silty sand, this layer softens

(f) Type 4 input

and the dam is practically “floating” on the foundation. This
leads to very large vibration periods (about 2.5 s) during the
strong shaking period. With epwp dissipation, the silty sand
layer partially regains its shear strength and the characteris-
tic period of vibration decreases. This decrease is visible for
Type 1 input motion and insignificant for the other two
cases, where epwp dissipation is prevented by continuing
large deformations.

From the evolution of the epwp ratio (Fig. 9) and of
the characteristic period of vibration (Fig. 12a) during
the first part of the earthquake, it can be concluded that
initially all three types of input motion have similar ef-
fects on the structure. After the vibration period in-
creases (at time t = 8 s), the three input motions start
delivering significantly different amounts of energy. This
fact is illustrated in Fig. 12b, where the spectral ampli-
tudes for Type 1 and Type 4 response spectra are com-
pared at a characteristic period T 2 s. It can be
concluded from this comparison that for a structure with
a characteristic period of about 2 s, Type 4 input motion
delivers significantly more energy per unit mass than
Type 1 input motion. For example, for a1 d.o.f. structure
having a period of vibration T = 2 s, the energy delivered
by a Type 4 input would be 16 times larger than the one
delivered by a Type 1 input. This fact explains the dra-
matic differences in the seismic effects predicted for the
dam—-foundation system using three input accelerations
that only differ in frequency content.



Fig. 9. Seismic analysis of an embankment dam: evolution with
time of the predicted excess pore-water pressure (epwp) ratio at
three locations within the loose silty sand layer: (a) below the

U/S toe; (b) below the core; (c) below the D/S toe. Legend for
al plotsin Fig. 9c. IEVS, initia effective vertical stress.
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5.5 Variability of the structural response

Results obtained from only one simulation have been pre-
sented so far for each type of seismic input. To verify if
these results are representative, i.e., if there is indeed signifi-
cant variation in the structural response induced by differ-
ences in seismic loading rate, results of a study on structural
response variability induced by seismic accelerations repre-
senting various sample functions of the same stochastic pro-
cess are presented in this section. To this end, 20 sample

functions were digitally generated, 10 of them compatible
with the Type 1 response spectrum and the other 10 compat-
ible with the Type 3 response spectrum. All of the accelera-
tion time histories are shown in Fig. 13. The sample
function referred to as “sample #1” in Fig. 13a represents
the acceleration time histories compatible with Type 1 and
Type 3 response spectra that were used throughout this nu-
merical example and are shown in Figs. 1b and 1d.

The acceleration time histories were generated using the
procedure presented in Section 2.1, as explained hereafter.
The simulation procedure, based on the spectral representa-
tion method, employs one set of uniformly distributed ran-
dom phase angles for each resulting sample function. Use of
different “seed numbers’ produces different sets of random
phase angles and therefore different resulting sample func-
tions of seismic acceleration. These sample functions have
the same probabilistic characteristics and are scaled to repre-
sent earthquakes delivering the same amounts of energy
(they have the same Arias Intensity). As for the number of
sample functions (10 for each type), it is certainly too small
to alow any statistical inference on the resulting structural
response. It is deemed however, that for the purposes of this
study 10 samples are sufficient to infer the genera trends
and ranges of the structural response when the structure is
subjected to seismic motions having different frequency con-
tents (namely Type 1 and Type 3).

Predicted maximum shear strains and deformed shapes of
the dam at the end of analysis (timet = 30 s) are presented
in Fig. 14 for al samples of input acceleration. The results
presented in Fig. 14a (sample input #1) are the same as
those in Figs. 10d and 10e. It clearly results from Fig. 14
that there are two distinct types of structural response, corre-
sponding to two different types of seismic motion. When
subjected to seismic motions compatible to the Type 1 re-
sponse spectrum the dam does not fail. Large deformations
are predicted both at the U/S toe (slumping of the bottom
third of the slope) and at the D/S toe (rotational failure of
the lower one half to two thirds of the slope), but the overall
structural safety of the dam is not immediately compro-
mised. When the dam is subjected to the Type 3 seismic mo-
tions, the numerical model predicts progressive failure of
both the U/S and the D/S slopes in al 10 cases. Except for
one input acceleration (sample input #6, Fig. 16f) the coreis
not strongly affected during the analysis period.

Figure 15 presents predicted displacements at the U/S edge
of the dam crest. The results obtained for 10 sample func-
tions of seismic inputs compatible with the Type 1 accelera-
tion response spectrum are in a very close range. For al of
the cases, the predicted crest displacements are small and
stabilize at the end of shaking. The final values of horizontal
displacements range between 0.15 and 0.3 m, and the settle-
ments between 0.3 and 0.5 m.

Except for sample #4, the numerical model predicts simi-
lar behaviour for all of the seismic inputs compatible with
the Type 3 response spectrum. The corresponding crest dis-
placements plotted in Fig. 15 indicate failure of the U/S
slope, continuing after the end of the earthquake at a rela
tively constant speed, indicating progressive slope failures.
When the dam is subjected to the sample #4 seismic input,
the U/S end of dam crest is predicted to move less than for
the other cases and to stabilize after the end of shaking. This



Fig. 10. Seismic analysis of an embankment dam: predicted deformed shapes and contours of maximum shear strains. The deformation

scale is the same as the geometric scale.
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Fig. 11. Seismic analysis of an embankment dam: predicted crest
displacements.

Fig. 12. Analysis of the interplay between the vibration charac-
teristics of an embankment dam and the frequency content of the
input motion: (a) evolution of the characteristic period of vibra-
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is due to the fact that the U/S slope failure is predicted to
initiate below the crest for this case (see Fig. 14d).

The crest displacements predicted using the Type 4 input
motion (one single sample function) are also plotted for
comparison. The crest displacements predicted using 10

Period, T (s)

sample functions of Type 3 input motion resulted in a
relatively large range, but al are contained between dis-
placements predicted using Type 1 and Type 4 inputs. The



Fig. 13. Ten sample functions of seismic inputs compatible with the UBC Type 1 design response spectrum (left) and with the UBC

Type 3 design response spectrum (right).
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scatter can be explained by the occurrence during post-lique-
faction deformations of rigid body motions whose magnitudes
are governed by particular features of the seismic input.

6.0 Conclusions

To assess the effects of loading rate (frequency content of
seismic excitation) on dynamic behaviour, earthquake ground
motions corresponding to different local soil conditions were
simulated using four different response spectra. The seismic
acceleration time histories were generated as uniformly

20

0 5 10

Time (s)

15 20

modulated nonstationary stochastic processes, in accordance
with prescribed response spectra and modulating functions.
They were similar in amplitude, duration of the strong
ground motion, Arias intensity (which is a measure of en-
ergy delivered per unit mass), and number of representative
cycles at 0.65 a,,,, (which is aso used as a measure of the
seismic effects). The only difference among the four seismic
ground motions used in this study was in the frequency
ranges of the maximum spectral values.

Nonlinear dynamic finite element analyses in terms of ef-
fective stresses were carried out for a saturated soil deposit



Fig. 14. Predicted deformed shapes and contours of maximum shear strain at the end of analysis (time t = 30 s) obtained using 10
sample functions of Type 1 seismic input and 10 sample functions of Type 3 seismic input (shown in Fig. 13). The deformation scale
is the same as the geometric scale.
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and an embankment dam. A state-of-the-art finite element
code that had been repeatedly validated in the past for soil
liquefaction analysis was used for this purpose. Some of the
numerical results obtained in this study have been verified
by comparisons with (1) results of a liquefaction assessment
method used in current practice, and (2) centrifuge experi-
mental records.

It was concluded that the interplay between the frequency
content of the seismic motion, the vibration characteristics

Legend for maximum 33%
. 67%

shear strain contours 100%
L

of the structure, and the possible evolution of those charac-
teristics during the shaking had significant influence on the
predicted dynamic response. For the soil deposit illustrated
in Section 4, significantly larger pore pressures and horizon-
tal displacements at the ground level were predicted for in-
put motions with lower frequency content, especially in the
last part of the shaking period when epwp build-up induced
more soil softening. For the embankment dam presented in
Section 5 and subjected to three different seismic input mo-



Fig. 15. Predicted crest displacements using 10 sample functions
for seismic inputs, compatible with Types 1 and 3 acceleration
response spectra.
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tions, the overall structural response was found to be
strongly affected by the frequency content of the input seis-
mic motion. In one case, the numerical model predicted
moderate structural damage and deformations that stabilized
at the end of shaking. In the other two cases, using seismic
input with lower frequency content, the numerical model
predicted progressive slope failures after the end of shaking
and postearthquake failure of the dam.

Build-up of pore-water pressures and large shear strains
may lead to dramatic changes in the vibration characteristics
of saturated soil deposits and earth structures during earth-
quakes. Ground motions having the maximum spectral am-
plitudes in the range of the new characteristic periods deliver
more energy to the system and may produce more damage.
Therefore, besides addressing the whole range of possible
loading rates at a given location, seismic verification of earth
structures has to account for possible changes in the vibra-
tion characteristics during dynamic loading. As earth struc-
tures, and in particular saturated soils, tend to soften during
cyclic loading, they experience a reduction of their charac-
teristic frequency of vibration. Therefore, special attention
should be accorded to low frequency seismic inputs.
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