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Abstract 
The Autonomous Golf Cart Project is a project sponsored by the Cal Poly Robotics Club. The 

multidisciplinary team is adding sensors and electronics to a regular golf cart with the goal to drive the 

golf cart around campus without and human input. This task requires a plethora of hardware and 

firmware to control that hardware. The firmware provides an interface for higher level software to then 

control the hardware and therefore drive the golf cart. This report is focused on the hardware 

modifications and the firmware used in order to drive the golf cart from a computer. 

 

  



Project Overview 
The Autonomous Golf Cart Project is a project within the Cal Poly Robotics Club to build a golf cart which 

can autonomously drive around Cal Poly’s campus. The team for the project consists of around 15-20 

members from the Computer, Electrical and Mechanical Engineering majors. The project started in 

spring of 2013 and has gone through many phases and revisions. The current revision of the golf cart 

started in fall of 2015 and started with a redesign of the control board, a printed circuit board (PCB) 

which controls the electronics of the golf cart. At the heart of this board is a microcontroller, which runs 

the firmware that acts as a bridge between the high level autonomous algorithms and the low level 

electronic controls. This senior project was tasked with writing the firmware necessary to control the 

golf cart from a computer. An image of the golf cart is shown in figure 1. 

 

Figure 1: The Golf Cart 

 

Golf Cart Hardware 
The golf cart has been retrofitted with electronics to enable the entire system to be controlled from a 

computer. The golf cart uses a 2 Horsepower electric motor connected to the rear axle in order to drive. 

This motor is powered off three 12 V batteries in series to create an effective 36 V power source. This 

supply is connected through a power solenoid, to a speed controller, and then to an H-Bridge. 

The power solenoid is a safety feature to ensure that the motor only receives power when someone is 

on the golf cart. The power solenoid is activated by arming an emergency stop switch, and by slightly 

depressing the pedal. When both these events have occurred, the solenoid connects and allows current 

to flow into the H-Bridge and speed controller. 



The drive motor H-Bridge is made up of three solenoids which together control the direction of current 

through the drive motor, thereby controlling the direction of travel. The H-bridge is controlled with two 

wires, forward and reverse. By pulling the forward wire to ground the H-bridge will switch into a forward 

configuration. If the reverse wire is pulled to ground, then the H-bridge will switch into a reverse 

configuration. Leaving both pins floating will leave the golf cart in neutral and the motor disconnected. 

Pulling both pins to ground is an illegal state and must be avoided. If this occurs the 36 V battery will be 

shorted to ground. The batteries are protected by a fuse which will trip if this state occurs. During 

manual operations the H-Bridge is controlled by a physical switch. The wiring of this switch prevents the 

invalid state from ever occurring, but this is not guaranteed when in autonomous mode. Autonomous 

mode has other safety features to prevent this state from occurring. When in this mode, the H-Bridge is 

controlled by the Janus board. Because this H-Bridge controls the forward, neutral, and reverse state of 

the golf cart it is referred to as the FNR H-Bridge. 

The speed controller in the golf cart is controlled through a voltage applied to one of its pins. A higher 

voltage on this pin will result in a higher overall speed of the golf cart. During manual operation this pin 

is connected to the wiper of a potentiometer controlled by the pedal. By pressing the pedal down the 

wiper is moved further up the resistor, resulting in a larger voltage. In order to control the golf cart 

autonomously, the potentiometer is wired through the Hermes board, which either passes the signal 

through or sets its own voltage. 

The steering system of the golf cart consists of two steering shafts connected in parallel. One of the 

shafts is connected to a traditional steering wheel, allowing the golf cart to be steered manually. The 

other shaft is connected to a DC motor. By engaging and applying power to the motor the golf cart can 

be steering either left or right. This DC motor is controlled by a second H-Bridge located on the 

Hephaestus board. In order to get the current steering angle, a linear potentiometer is located near the 

steering wheels. This device acts like a normal potentiometer, but the wiper is connected to a string. As 

the string is pulled the wiper moves and the voltage on the wiper node changes. As the golf cart steers, 

the linear potentiometer string is pulled. This creates a voltage which directly correlates to a steering 

angle. This information is fed into the main MCU in order to properly steering the golf cart 

autonomously. An image of the golf cart internals is shown in figure 2. 

 



 

Figure 2: The Internals of the Golf Cart. The speed controller and the drive H-Bridge are shown on the 

right 

 

Golf Cart Sensors 
The golf cart uses multiple sensors to gain information about its surroundings. First and foremost is the 

LIDAR, which is similar to a radar, but uses light instead of sound waves. By bouncing light pulses off of 

surfaces and recording the time-of-flight for each pulse, the distance to the surface can be measured 

with a high degree of accuracy. The LIDAR used on the golf cart scans 270° with 0.5° resolution at 30 Hz. 

This is known as a 2D LIDAR as it scans its surroundings on a 2D plane. Sample LIDAR data, along with a 

picture of the scene is shown in figures 3 and 4. 



 

Figure 3: Sample Lidar Data. Each point represents a received light pulse. The horizontal bar in the top 

left is the whiteboard in figure 4 

 

Figure 4: Sample Lidar Data Scene 

 



 

Although the LIDAR is very useful at detecting objects, it can be difficult to determine what an object is. 

A camera on the other hand is useful for determining what an object may be, but it is significantly more 

difficult to detect objects, especially comparted to using a LIDAR. Therefore, a camera will be used to aid 

in object recognition. The camera is not currently being used, but it is planned for future use. 

Because of both the viewing angle and position of the LIDAR, the LIDAR cannot see behind the golf cart. 

Also, because the LIDAR can only see on a 2D plane, objects below the LIDAR are invisible. To help with 

object detection in these cases, ultrasonic sensor will be used. These sensors use the time of flight of 

sound to detect an object and are significantly cheaper than a LIDAR. These sensors will go on the sides 

and back of the golf cart to aid in object detection. 

The golf cart also contains two hall effect sensors on the front wheels. A circle of magnets is also present 

on the inside of the wheels. When the sensor passes over a magnet it toggles its output, either from low 

to high or high to low. Therefore, when the golf cart is at a steady speed, the hall effect sensor outputs 

effectively a square wave. The frequency of this square wave is related to the speed of the golf cart and 

higher frequencies indicate faster speeds. Counting the number of transitions from high to low and low 

to high also provides information of the total distance travelled. 

A GPS and Inertial Measurement Unit (IMU) are also used to aid the hall effect sensor in detecting 

position. The GPS returns raw longitude and latitude coordinates, but is only accurate to about +/- 5 

meters or so. the IMU contains and accelerometer and gyroscope internally, which can be used to 

determine the velocity and angle of the golf cart. 

 

Main Computer 
The microprocessor on the control board is not powerful enough to read in the LIDAR and camera 

sensors. For this reason, a computer running Linux is located on the golf cart. The computer run Robot 

Operating System (ROS), which is a popular framework for passing messages between processes. ROS is 

used many places in industry and therefore many help processes, known as nodes, exist to help with 

filtering, formatting and combining raw sensor data. The main computer uses the ROS framework to 

make a decision about where to move the golf cart, and then sends a message down to the control 

board using USB. The control board will then control the golf cart’s electronics to move the golf cart. 

 

Control Board 
The control board is not a single PCB, but a collection of smaller PCBs. All these smaller boards, or 

daughter cards, connect to single mother board known as Olympus. This approach allowed the controls 

boards to be developed in parallel. It also simplifies each board, reducing the chance for mistakes. Also if 

a single board breaks, only that board needs to be fixed. The next sections detail each of these control 

boards. An images of the control board with and without the daughters are shown in figures 5 and 6. 



 

Figure 5: The Control Board without any Daughter Cards 

 

Figure 6: The Control Board with a few Daughter Cards Installed 

Olympus - Motherboard 



Olympus houses the main microcontroller (MCU), an STM32F205 Cortex-M3 ARM microcontroller. It 

also integrates some debug LEDs, a USB port directly connected to the pins on the main MCU, and a 

JTAG port to program the main MCU. The Olympus board also acts as a motherboard, with slots for 7 

daughter cards. The Olympus board does not contain any way to directly interact with the golf cart. This 

task is instead left to the daughter cards. The schematics for the Olympus board are shown in Appendix 

A. 

The main MCU is also not directly connected to any of the daughter card ports. Each pin is connected 

through a jumper and then to the daughter card pin. By doing this and pin can be disconnected from the 

microcontroller and the entire pinout can be reconfigured after the board has been produced. The 

downside to this technique is that it takes up significantly more board space and the signal integrity is 

weakened. Fortunately, the size of the daughter cards leaves a large amount of space for the relatively 

small Olympus circuit. Also, the fastest signal used is full speed USB, which has a maximum bandwidth of 

12 Mbps. It is not ideal to run this signal through a jumper, but it seems to work well enough. 

The USB port on Olympus is connected directly to the pins on the main MCU and is used for the 

communication protocol used between the Linux box and the control board. All the ROS commands to 

control the golf cart get sent through this port. 

 

Zeus – Board Power Supply 
Zeus regulates a 4S, 14.8 V Li-Po battery down to 12, 5, and 3.3 V rails used by various circuits on the 

board and golf cart. These voltage levels are created through the use of step-down, buck converters. The 

only things on the golf cart not powered by the Zeus board are the two motors and the Linux computer. 

The board also provides reverse and over voltage protection for the input voltage and integrates a 12-bit 

ADC to read the input and rail voltage as well as the input and rail currents through the use of shunt 

resistors. The schematics for Zeus are in appendix A. 

The ADC voltage and current values are constantly read by the MCU. These values are then converted 

into a decimal voltage value through multiplication and division by a predefined constant. Although this 

constant could be calculated from the resistor and reference values in the schematic, it is more accurate 

to take a measurement and correlate the measured values to the ADC values than to use the calculated 

values. This allows cheaper, less precise resistors to be used, but the scaling factors produced could not 

be used on another board as easily. 

 

Janus – Forward Neutral Reverse Control 
The Janus board controls the solenoid H-Bridge in the golf cart, allowing the golf cart to travel both 

forward and reverse. This is done by pulling either the forward or reverse wire to ground through the 

use of a relay. The board also contains a small microcontroller which prevents both the forward and 

reverse wire from being pulled to ground. The use of a microcontroller, instead of discrete logic, allows 

for more flexibility and allows for a delay to be added into the switching logic. 

The Janus board is responsible for interfacing between the main MCU and the mechanical H-bridge 

inside the golf card. The board allows the main MCU to both set the FNR H-bridge and detect its 

position. Setting the FNR state is done with two relays. When current is allowed the flow through the 



relay’s coil, the associated wire, F or R, is connected to ground. These relays are controlled by an N-FET, 

which is connected directly to the output for an ATTiny 84 microcontroller. This microcontroller is 

responsible for controlling these N-FETs, and therefore the relays. It is also responsible for never 

asserting both N-FETs at the same time as that would cause the FNR H-bridge to enter the illegal state.  

Janus is able to detect the position of the FNR H-bridge by checking if the Forward and Reverse wires 

have been pulled to ground. This is done through two optocouplers which electrically isolate the board 

from the batteries. The state of these pins is also fed into the ATTiny MCU to send to the main MCU. The 

schematics for the Janus board are provided in appendix A. 

The main MCU sets the state of the FNR H-bridge using two pins, an enable pin and a direction pin. The 

pins follow the truth table shown in Table 1. 

Table 1: Main MCU FNR Control Truth Table 

Enable Pin State Direction Pin State Golf Cart FNR state 

0 0 Neutral 

0 1 Neutral 

1 0 Forward 

1 1 Reverse 

 

The ATTiny MCU uses this truth table to control the FNR H-bridge. The use of an enable and direction 

pin, as opposed to a forward and reverse pins means that the main MCU can never try and send an 

invalid state to the ATTiny MCU, which reduces the chance of an illegal state. 

The main MCU is able to read the state of the FNR using I2C from the ATTiny. The ATTiny acts as an I2C 

slave and responds with a single byte representing the state of the FNR H-bridge. The main MCU polls 

the ATTiny on occasion in order to read the state of the FNR H-bridge. This information is not much use 

to the main MCU, but it is useful as a debugging tool and as feedback for the end user. 

The ATTiny is a very small 8-bit microcontroller, containing 8 kilobytes of flash space and 512 bytes of 

ram. The ATTiny firmware is composed of two parts. The first part uses the direction and enable pins for 

the main MCU to control the FNR H-bridge. This code constantly checks the state of the direction and 

enable pins to see if they have changed. If the MCU has gone from either forward or reverse into 

neutral, the ATTiny stops pulling the forward or reverse wires and the golf card immediately enters the 

neutral state. If the MCU has switched into forward or reverse though more care must be taken. It takes 

a non-zero amount of time to switch the solenoids that make of the FNR H-bridge. This is accounted for 

in the ATTiny MCU by forcing a delay between changing state. When switching into forward, the ATTiny 

first switches to neutral for 250 ms, allowing the solenoids to fully switch into a neutral state. After this 

delay the ATTiny then sets the FNR H-bridge into forward mode. If there was no delay, the golf cart 

could briefly end up in an illegal state while switching FNR states and briefly short the battery. This same 

sequence occurs when switching into reverse. This code is compact and has been thoroughly tested to 

ensure that the illegal state never occurs. 

The second half of the firmware is responsible for responding to I2C commands. The ATTiny does not 

contain an I2C peripheral, but instead contains a Universal Serial Interface (USI). The USI peripheral is 

composed of a 4-bit counter, a shift register, and a couple multiplexers. With a bit of configuration this 



peripheral can act as a I2C slave. The USI has an I2C start bit detector, which can cause an interrupt. The 

counter ticks on both external clock edges and can cause and interrupt on overflow. By combining these 

two interrupts a fully functional I2C slave can be configured. On the start bit interrupt the state of the 

ATTiny is reset, causing it to wait for its slave address. Then, when the counter overflows, the ATTiny 

checks the data in shift register to see if it matches its slave address. If there is a match, then the shift 

register is loaded with the state of the FNR H-bridge and the address is acknowledged. During the next 

byte the USI peripheral will automatically output the state of the FNR H-bridge over I2C and the I2C 

transaction will be complete. If the address is not matched, then the ATTiny will stop the SDA line from 

outputting data and the other I2C slaves on the bus are free to drive the data line. 

The ATTiny has been working very well for multiple months and although the USI peripheral was 

awkward to work with at first, it has been running very well. Using the ATTiny to has also made 

development on the main MCU less stressful, as no invalid states on the main MCU can cause an invalid 

state for the FNR H-bridge. 

 

Hermes – Throttle Control 
The throttle of the golf cart is controlled through a speed controller which sits between batteries and 

the motor. The speed controller is a bit of a black box, but provides a simple interface in order to control 

the speed of the golf cart. By applying a voltage between 0-13 V, the speed of the golf cart can be 

controlled. To control the speed electrically though, a 6-bit digital to analog converter (DAC) is used. The 

DAC generates a 0-3.3 V signal which is later amplified by an op-amp to recreate the 0-13 V signal that is 

sent to the speed controller. The Hermes board integrates the DAC and op-amp along with circuitry to 

switch between manual and automatic speed control. The board also acts intermediary between the 

pedal potentiometer and the speed controller. Hermes automatically passes this voltage through to the 

speed controller, even without power present. The schematic for the Hermes board is shown in 

appendix A. 

Unfortunately, a few flaws were found in the schematic of Hermes after the board was fabricated. 

Namely, the board required power to pass through the pedal potentiometer voltage. To fix this most of 

the switching circuitry was replaced with a relay. This relay allows the potentiometer voltage to pass 

through without power and then physically switches to use the DAC voltage when a pin is asserted by 

the main MCU. 

The Hermes board is controlled by an enable pin and an I2C interface. The enable pin controls the state 

of the relay and therefore switches between manual and automatic speed control. By setting this pin 

high through a GPIO the automatic steering mode is enabled and the DAC controls the speed of the golf 

cart. The DAC is controlled by sending a single byte over I2C. The DAC then converts the higher 6 bits 

into a voltage from 0-3.3 V. 

Although the control interface is simple, the main MCU has a few safety features built in to prevent 

damaging the speed controller. Firstly, when a request to change to a fast speed is received, the main 

MCU does not instantaneously set the higher speed. Instead the main MCU ramps up the speed. This is 

in part to prevent jerking the golf cart and also a reliability feature. The speed controller has failed 

before when a voltage was instantly applied to its input terminal. This resulted in smoking and 

completely broken speed controller. The exact reason for the failure could not be diagnosed so to 



prevent further problems the speed is controlled in a way that would model human operation. The 

firmware also ensures that the golf cart is in either forward or reverse before ramping the voltage and 

that pedal pressed is before the main MCU will start to ramp the voltage. If this is not the case, the main 

MCU will default to 0 V, which stops the golf cart. This technique complicates the control code, but helps 

to protect the golf cart. 

 

Iris – USB-USART Bridge and 7 Segment Display 
The Iris board does not contain an interface to the golf cart like the Janus or Hermes board, but rather 

provides useful debug output for writing firmware. The first main function of Iris is its USB-USART 

bridge. This chip (an FT230XS) converts USART serial signals from the main MCU to a USB-CDC interface 

which can be connected to a computer. The USART peripheral is one of the easiest peripherals to get 

working and can provides simple debug status messages during the initial bring up. The Other half of the 

Iris board contains an I2C GPIO expander and a 7 segment display. The display provides a way to 

communicate the status of the golf cart without having to be connected to the USB interface. As of now, 

the display shows the current FNR state, which is useful for ensuring the H-Bridge is engaged before 

trying to drive the golf cart. 

The USB on Iris is not only for bring up though. It also provides a basic terminal that can be used to 

probe the status of the golf cart and issue commands. This command protocol is detailed in the USART 

Command Line section. 

Even though the board is simple, Iris is one of the most used boards as it acts as an interface between 

the user and the main MCU. The schematics for Iris can be found in Appendix A. 

 

Hera – Sensor Connectors 
The Hera board contains connectors which allow the board to interface with external sensors. The board 

contains inputs for two hall effect sensors, five temperature sensors, six ultrasonic sensors, and a 

steering potentiometer. The board also contains a connector to power the LIDAR. The hall effect sensors 

and ultrasonic sensors are all connected to separate timers on the main MCU, which allows the MCU to 

efficiently determine the pulse width of digital data sent from the hall effect and ultrasonic sensors. The 

temperature and steering encoder both output analog voltages which are connected to the ADC of the 

main MCU.  The schematic for Hera can be found in Appendix A. 

 

Hephaestus – Steering Motor Drive 
Hephaestus contains a solid state H-Bridge which is used to control the steering motor on the golf cart.  

The board also contains a current sense circuit so that the main MCU can log the current consumption of 

the steering motor. The Steering Motor is powered through an isolated 12 V battery and also contains 

circuitry to isolate the board from the main MCU through optocouplers. The schematics for the 

Hephaestus board are still being finalized. 

The main MCU communicates to the steering motor H-Bridge through the use of two pins, a direction 

and a PWM pin. The direction pin controls the direction that the golf cart steers in, while the PWM pin 



acts as a speed control and enable pin. If the PWM pin is held low, then the steering motor receives no 

power. When the pin goes high, the steering motor receives 12 V across its inputs. By turning the PWM 

pin on for only a fraction of the time, the total power to the motor can be decreased and the speed of 

steering can be more finely controlled. 

 

Apollo – Lights 
The Apollo board is responsible for controlling the rear and flashing lights on the golf cart. In order to 

reduce the pinout of the board, the board uses a shift register to control the lights. This allows the board 

to control 16 lights using 3 pins from the main MCU. The schematics for the Apollo board are still being 

finalized. 

 

Dionysus – Battery Voltage Monitoring 
The Dionysus board contains multiple ADCs in order to measure the voltage of the four lead-acid 

batteries inside the golf cart. This information can then be used to roughly estimate the remaining 

capacity of the golf cart’s batteries. Dionysus has not been built yet and is still in the design phase. 

 

Firmware 
Much of the firmware involves reading and writing the MCU’s peripherals. The firmware for the control 

board is built to reduce the opportunity for race conditions. This is done through the use of service 

functions called from a main loop. While Interrupt Service Routines (ISRs) are used throughout the code, 

work actually done in their routines is minimal. This work is limited to copying data out of a peripheral 

and setting a flag to indicate the further processing needs to be done. In the main loop, these flags are 

constantly checked inside service functions to in order to process the peripheral. While the actual work 

done in the ISR vs. service function is peripheral dependent, the service function usually deals with 

starting separate transactions. The details of each peripheral are explained below. 

 

USART 
The Universal Synchronous Asynchronous Input Output (USART) peripheral is used to provide a console 

interface for the control board. At a hardware level, the USART consists of two pins, Rx and Tx. These 

pins are each half-duplex and are used to send data out (Tx) or read data into (Rx) the MCU. Data is sent 

one byte at a time without a clock signal. This requires both devices on the bus to agree on a clock speed 

for transmission. USART is used because it is easy to get up and running and is well suited for simple 

debug interfaces. 

The USART driver makes use of the Direct Memory Access (DMA) peripheral in order to write data to the 

USART efficiently. When using the DMA, the firmware specifies the start location and length of the data 

to send over the USART. By setting a few more configuration registers, the data is automatically 

transferred out of the USART peripheral without needing any MCU intervention. This frees up the MCU 



to do other tasks while USART data is being transferred out. When the DMA is done transferring data, it 

fires an interrupt to signal that it has completed. 

The driver maintains a list of multiple output buffers. Data to be written out the USART peripheral is first 

copied into these buffers. Once a byte has been copied into these buffers, if no USART DMA transfer is 

currently occurring, all the data in a single output buffer is copied out using the DMA. If more data 

arrives before DMA transfer has finished it gets placed into the next available output buffer. Then, when 

the current DMA transfer finishes, it sets a flag, informing the firmware that the USART Tx peripheral 

needs to be serviced. When the USART’s service function is later called in the main loop, it checks to see 

if more data is waiting to be transferred. If so it will start another DMA transfer, otherwise it will wait for 

more data. 

Although it would be possible to check for more data in the DMA ISR, it might introduce difficult to 

debug race conditions if more data was being written to the USART peripheral as a transfer finished. 

Although this would need to eliminate the need for a service function as well as increase the 

communication bandwidth, it would complicate the code to copy data into the USART input buffers. 

Restarting transfers in the service routine also decreases the time spent in the ISR, which is generally a 

good thing. 

The USART driver makes use of a second DMA to read in data over the Rx line. This DMA is configured in 

a similar way to the Tx DMA, but instead of copying data from memory to the USART peripheral, it 

copies bytes from the USART peripheral to memory. The Rx driver only uses a single buffer, unlike the Tx 

driver. The DMA is configured with the location and length of this buffer, but is also configured in 

circular mode. This means that when the DMA has finished writing the entire buffer it automatically 

begins writing data at the beginning of the buffer again. This allows the Rx DMA to operate constantly 

without MCU intervention. The only time the MCU is involved is when it wants to read a byte from the 

input buffer. The MCU keeps track of the next location of valid data. When another part of the firmware 

requests to read a byte, the driver checks to see if the current location has valid data, and returns the 

byte if it does. 

Through the use of these two drivers, the USART peripheral is efficiently able to copy data in and out of 

the peripheral. There are still improvements that could be made, however. Currently, the Tx driver will 

only copy a single buffer out to the peripheral at once, even if multiple buffers are full. These buffers are 

located in consecutive memory locations and therefore it should be possible to set the DMA to transfer 

multiple buffers at once. This would not be too difficult of a change, but it is not pressing enough to fix 

right now. 

 

I2C 
The Inter Integrated Circuit (I2C) peripheral is used to talk to multiple sensors on the golf cart including 

the Janus FNR ATTiny (for current FNR state), and the Zeus ADC (for reading the voltage and currents of 

all the power rails). It also used for writing to the Hermes DAC (for controlling the golf cart speed), and 

the Iris seven segment display (for displaying information on the board). I2C uses only two pins, a clock 

pin (known as SCL) and a data pin (known as SDA), to communicate to all these devices. Each of the 

devices is considered an I2C slave, and is assigned an address. When a slave detects its address on the 

SCL and SDA lines, it responds with an acknowledgement. From there, the MCU, known as the I2C 



master, can choose to either read or write data to the slave device. After the I2C master has finished 

talking to a slave, it sends a stop bit over the lines to signal the end of communication. From there the 

master is free to talk to another slave. 

The I2C driver works by storing a queue of I2C transfers. When another part of the firmware wants to 

either send or receive data over I2C, it creates an entry in the queue. The I2C driver processes each 

element in the queue in the order they are received (FIFO). A queue element contains information about 

the transfer, including: the slave address, the number of bytes to transfer, whether the transfer is 

writing to or reading from the slave, and a callback to call once the I2C transfer has completed. 

When a write transfer is setup, the I2C driver stores the bytes to write into a small FIFO. This FIFO is 

shared between all the I2C transfers, but because each transfer is processed in the order it was received, 

each transfer will always pop out its own bytes. When a new byte needs to be sent, an ISR is generated. 

In this ISR, a byte is popped from the FIFO until all the bytes have been transferred. Once this occurs, the 

ISR sets a flag signaling that the transfer has completed. This is then processed by the I2C service 

function in the main loop. From here, the callback for the transfer is called and the next transfer is 

started if available. 

Reading data over I2C is similar to writing, but with a few differences. Instead of writing data to a FIFO, 

an array is used to store the data received from the I2C peripheral. Once the transfer is completed, the 

callback is called, but includes the location of this array as an argument. The callback is then free to copy 

this data to its own buffers. 

This I2C driver is different from the USART driver in that it actually does some work in the ISR. The 

service function is still called between individual transfers, while the ISR has code to continue the I2C 

transaction until it is completed. This approach was used to shorten the total I2C transfer time. To send 

two bytes over I2C requires four ISR calls. If each of these calls had to wait until the main loop had time 

to service them, the total transfer time could become very long.  

 

ADC 
The ADC is currently used to read in two devices: the steering wheel angle and the accelerator pedal 

position. There are also headers on the Hera board for four other temperature sensors, which can be 

used if more analog inputs are needed in the future. The ADC makes use of the circular mode of both 

the ADC and the DMA in order to run continuously with no processing time required. 

Every pin that can be used as an analog input is assigned a channel by the hardware. This channel is then 

used by the ADC to select a pin to read and convert. The ADC can be given a list of channels to convert. 

As soon as the first channel in the list is converted, the ADC automatically converts the next channel. 

When using a polling or interrupt based approach, care must be taken to read this value quickly or else it 

will be overwritten by the next conversion. This is less of a problem when using the DMA though. By 

setting the DMA priority to its max value, it would be very unlikely that data would not be transferred 

out of the ADC. Along with a list of channels, the ADC can also be set into circular mode. This means that 

once all the channels in the list have been converted, the list begins again. This continues to happen 

forever, keeping the ADC running continuously. By setting up the DMA in circular mode as well, the ADC 



can be continuously read by the DMA into a buffer. From C, this looks like an array that is constantly 

being updated with the latest ADC readings. 

This method can be improved further. By setting the DMA buffer size to eight time the necessary size 

(number of ADC channels * 2 bytes per channel * 8), the DMA will store the last eight readings 

automatically. Then, in software, the MCU can add up all readings and shift the sum by three, effectively 

applying a low pass filter over the ADC readings. Overall, this approach in very efficient as it requires 

zero CPU cycles in order the gather the ADC data, and only a few cycles to apply the low pass filter over 

the data. 

 

USB 
The main MCU supports native low and full speed USB (USB 1.1) without the use of an external PHY. The 

control board implements a USB-CDC interface in order to receive commands from the Linux computer. 

The USB peripheral, as well as ST’s USB stack, provide most of the functionality in order to implement 

this interface. A few callbacks are registered with the USB stack in order to interact with the stack. The 

first callback is called on USB initialization and is used to initialize various buffers for use in the stack. 

The second callback is for deinitialization and is currently unused. The third callback is for CDC control 

messages and is also unused. The final callback is called whenever data is received in a USB OUT packet. 

This callback stores all the received bytes into a buffer that is later read from the main loop. 

The USB stack also provides a system for sending data out the USB port. A transfer is started by passing 

the location and size of the buffer to send to the USB stack. This data is not copied immediately though, 

but is copied straight out of memory on a later USB interrupt. This means that the data must be placed 

into a buffer until it is actually copied out of memory. This caused an issue in an earlier version of the 

code where the buffer to send was stored on the stack. When the USB interrupt finally occurred the 

buffer had been changed, causing weird data to be sent to the Linux computer. 

The current transmit implementation is almost identical to the USART driver, where a set of buffers is 

used to store future transactions. Each time a buffer is passed to the USB stack, it is marked to prevent 

further modifications. Once the USB data has been actually transmitted in a USB IN packet, the buffer 

can then be modified for other USB transactions. 

 

Timer Callbacks 
Although not directly a peripheral, the firmware uses one of the timer peripherals in order to schedule 

periodic tasks. The timer is set up to cause an interrupt every millisecond. Each task registers a callback 

function, a void pointer which is passed to the callback function, and a period in milliseconds. The 

firmware uses the period to store the number of milliseconds until the callback should be fired. Each 

time the timer interrupt occurs these values are decremented. When one reaches zero, the associated 

callback is called. The callback then does its work and returns one of two values: DISABLE_TIMER or 

CONTINUE_TIMER. DISABLE_TIMER disables the callback and removes it from the utility. The 

CONTINUE_TIMER resets the time until the callback to the period provided on initialization allowing it to 

fire again. 



This timer callback mechanism is used in multiple areas of the golf cart. It is used to schedule many of 

the I2C transfer as well as control the steering on the golf cart.  

 

Firmware Drivers 
It is not enough to just read from the sensors. In many cases it is necessary to react to sensor readings 

directly in the firmware. 

 

Steering Driver 
In order the steer the golf cart, the firmware must read from the steering potentiometer to detect the 

current angle of the steering wheels, and then write to the steering H-Bridge on the Janus board in order 

to actually steer the front wheels left or right. The steering driver makes use a callback timer, and is 

currently called every 100 milliseconds, or at 10 Hz, although not much work has been done to find the 

optimal value.  

In order to enable steering, the Linux box provides the control board with an angle to steer to, in the 

form of a number from 0-65535. This is then mapped to a target ADC value to reach. This target ADC 

value represents the final angle of the golf cart. On every call of the steering callback, the firmware 

checks that steering has been enabled and if so steers the golf cart left or right until it is in the correct 

location. As of right now the steering motor is either full on in a direction or off. This makes it difficult to 

steer to an angle precisely because there is no control of the speed of turning. In order to try and 

prevent the steering for oscillating around the correct angle, the steering code has a dead zone and 

therefore accepts a steering value within some range of the correct value as being correct. This means 

that steering to a single angle is less precise than it could be, but it allows the golf cart to eventually 

finish steering, instead of constantly overshooting. Once the driver has noticed that the golf cart has 

steered to correct value it then disables steering until a new steering target is provided by the Linux 

computer. 

This control loop could also have been implemented in Linux. By passing the current steering angles 

back to the computer, the computer could then control the direction of the steering motor and steer the 

wheels to the correct angle. This was not done for two reason. First, by writing the driver in firmware 

the total control loop is tighter. The control can react much to changes in steering angle much quicker 

than the computer could which results in less oscillation in reaching the final angle. Also, the current 

method abstracts the implementation of steering from the computer. If the control board changes in 

the future, no change is required on the computer side, just the firmware needs to be rewritten. 

 

Speed Control 
The speed of the golf cart is controlled through the use of a 6 bit DAC on the Hermes board. A DAC value 

of 0 relates to a speed of 0 mph, while a DAC 63 relates to top speed, around 10 mph. Although it would 

be simple enough to just set the DAC to a value to select our speed, a more complicated approach is 

used to protect the golf cart and provide a better user experience. In initial tests with the Hermes board, 

when the speed was set fairly high, and the pedal was pressed, the speed controller made a popping 



sound and started smoking. As the speed controller in the golf cart is mostly a black box, it is hard to 

know exactly what went wrong. To prevent this from happening with future speed controllers, the 

firmware tries to emulate how a human driver would select the speed. 

When the golf cart is stopped and the firmware receives a command to set the speed to a certain value, 

it store that value as the target speed value. Then it does two checks. The first check is to make sure the 

golf cart has been put into either forward or reverse mode. If it is currently in neutral, the speed will 

automatically be set to zero. The second check is that the pedal has been pressed. Once the pedal has 

been pressed passed a certain point, the pedal check will pass. While there are hardware safety features 

to prevent the golf cart from driving when the pedal is not pressed, putting the check in firmware 

further makes the automatic control look as though a human were driving the golf cart. Once these two 

checks pass, the firmware begins ramping the speed. Every 200 ms the DAC value will increase by 5 until 

it reaches the target speed value. This makes it look as though a human were slowly pressing the pedal, 

as opposed to a sudden step in speed. The ramping on speed also allows the golf cart to accelerate more 

slowly and helps to prevent sudden jerks. 

There are two methods used to control the speed. In the first method, the firmware simply receives a 

value that should be set as the DAC value. The firmware will ramp to this DAC value and stop. There is 

no feedback and the speed will vary if the golf cart is travelling up or down a hill. There are currently 

plans to implement a second speed control mechanism, which uses feedback from the wheel encoders 

in order to keep the golf cart at a steady speed. 

 

Communication 
The main MCU does not have enough power to processing the LIDAR and camera needed for 

autonomous mode. All this processing, as well as all other high level decision making is done inside a 

Linux box on the golf cart. This computer then communicates to the control board. There are currently 

two communication interfaces, a USART interface and a native USB-CDC interface. 

 

USART Command Line 
The USART communication interface runs over USB, but is converted to USART using a USB<->USART 

bridge on the Iris board. From the firmware’s point of view, all communication over this interface is 

done through USART. The command line is fairly simple and is designed to be a human friendly 

communication interface. 

All commands are started with a “[“ character. The command name follows this. If arguments are 

required they are comma separated and written after the command name. Finally, a “]” ends a 

command name. At this point the firmware will process the typed command. For example, the 

command to set a debug LED is named “setLED” and takes 2 arguments. The first argument is the LED 

number and the second argument is the state, 1 for on and 0 for off. To set LED 6 on, the user would 

send the string “[setLED,6,1]”. The command line also allows the use of backspace to deleted characters 

and colors the command to indicate if the command is valid. 

Internally the commands are stored as an array of ConsoleCommand structures. The ConsoleCommand 

struct has three members, the command name stored as a string, the minimum number of arguments, 



and a callback to call when the command has been entered. After the firmware has parsed the 

command name, it looks through this list, performing a string comparison on each entry. If the correct 

entry is not found an error is given. Otherwise the firmware checks the minimum number of arguments 

against the actual number of arguments provided. If the number of arguments provided meets or 

exceeds the minimum number of arguments, the provided callback is called, along with the arguments, 

processing the command. 

 

USB Communication Interface 
The native USB interface is designed to handle the bulk of the communication between the Linux 

computer and the control board. It is designed around command and response packets, where a 

command could be “Set FNR” or “Get Power levels”. A command packet may contain data if necessary. 

Once the control board receives a packet, it processes the packet and sends a response back to the Linux 

computer. The response may also contain data if necessary. The USB communication protocol was 

designed to have significantly less overhead than the USART command line, as well as have error 

checking through the use of a CRC8. 

USB was chosen as the main communication protocol for a few reason. Firstly, it is easy to interact with 

from a PC. Using a USB-CDC interface, a PC can write to the port just like it was a serial port without any 

drivers required. Various libraries exist to make this easier, such as python’s pySerial, but a standard 

write syscall in C will also work. The main MCU also incorporates a USB Full Speed Physical Interface, 

which means that no external circuitry was required to get USB to work. Finally, ST provides a library to 

deal with the low level USB peripheral which eased development of a driver. The other choice for a 

communication protocol was Ethernet. Using Ethernet would allow debugging tools such as wireshark to 

be used to sniff communication. These types of tools exist for USB, but require external hardware and 

are expensive. Using Ethernet also required another chip to handle the physical protocol and would 

have provided another potential point of failure. For these reasons above, USB was chosen for the main 

communication interface. The protocol used is transport layer agnostic and could be used with both USB 

or Ethernet. 

 

Future Improvements 
As the firmware has been implemented, many new features and fixes to the current firmware have been 

suggested. As of now these fixes have not been implemented, but they are planned for the next couple 

of months. 

It is yet to be seen how the switch to many service functions inside the main loop will affect 

performance. It has already drastically reduced the amount of debugging time needed to check for race 

conditions, but that comes at the cost of efficiency. In the coming months it will be necessary to profile 

the firmware in order to see if the service model has negative affect on the total efficiency of the 

firmware. 

Often when the command line is being used the same command is issued over and over again in order 

to check the hardware. Currently there is no way to repeat the last command entered like one would 



expect in a Linux command line. Added a history, even if small, would increase productivity when using 

the command line to debug. 

 

Conclusion 
With the current version of the firmware, all electronics necessary to drive and steer the golf cart are 

operational. This has allowed the team to perform milestone 1, where the golf cart is driven at a wall 

and stops to avoid hitting it. The detection of the wall is done using the LIDAR. As the golf cart 

approaches the wall, the Linux computer will send commands to lower the current speed. Once the golf 

cart is too close to the wall, the computer will switch the golf cart to reverse and back away from the 

wall at a fixed speed. This test control most of the golf carts electronics, with the exception of steering. 

A second test was performed where cone was placed in from of the golf cart. As the golf cart 

approached the cone it continuously checked to see if it could turn to avoid the cone. If it could, it would 

then turn to avoid the object. Otherwise it would stop. This tested all the electronics needed to drive the 

golf cart.  

The next step is to create a test that integrates all the golf cart sensors, including the ultrasonic and hall 

effect sensors. This test is still in development and the team is excited to finally integrate all the golf 

carts sensors into a single test. 

While there is still some work to be done on the firmware. I am satisfied with the current state of the 

firmware and believe that the remain team members will be able to finish up the last firmware tasks. I 

am also excited to see where the team is able to take the project in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Appendix A – Control Board Schematics 

 

Figure A.1: Olympus Schematic Part 1 



 

Figure A.2: Olympus Schematic Part 2 



 

Figure A.3: Zeus Schematic Part 1 

 

Figure A.4: Zeus Schematic Part 2 



 

Figure A.5: Janus Schematic 

 

Figure A.6: Hermes Schematic 



 

Figure A.7: Iris Schematic 



 

Figure A.8: Hera Schematic Part 1 



 

Figure A.9: Hera Schematic Part 2 


