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ABSTRACT 

Lower Scotts Creek Floodplain and Habitat Enhancement Project 

Benjamin O. Cook 

Scotts Creek, located in northern Santa Cruz County, maintains the southernmost persistent 

population of Central California Coast (CCC) Coho Salmon (endangered) in addition to CCC 

steelhead (threatened). Fisheries biologists believe overwinter mortality due to lack of refuge 

habitat is the primary factor limiting salmonid production. Instream rearing habitat may also be 

limiting, especially during drought years. The legacy effects of historic land use practices, including 

dredging, wood removal, and the construction of levees, continued to limit refuge and rearing 

opportunities. A restoration project was implemented to improve refuge and rearing opportunities 

for salmonids along lower Scotts Creek by removing portions of the deteriorating levee, grading 

new connections with existing off-channel features, enhancing tributary confluences, constructing 

alcove habitat features at the margins of the stream channel, and constructing large wood complexes 

(LWCs) instream. 

Novel restoration techniques were employed on an experimental basis. Whole in-situ alder trees 

were pushed into the stream channel with their root systems left partially intact to establish living 

key pieces. Individual log, boulder, and rootwad LWC components were attached together with 

couplers that permitted some freedom of independent movement among the individual components. 

LWCs were braced against live, standing trees and stabilized with boulder ballasts placed on the 

streambed, which eliminated excavation of the streambed/banks and the need to dewater or divert 

the stream during construction. 

Project performance, changes to physical habitat characteristics, and changes to stream morphology 

associated with implementation were monitored using habitat assessment methods derived from 

the California Department of Fish and Wildlife’s (CDFW) salmonid habitat survey protocol (Flosi 
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et al. 2010), and topographic survey techniques and data analysis adapted from Columbia Habitat 

Monitoring Protocol (Bouwes et al. 2011). Preliminary results indicated that LWCs remained stable 

and functional. In addition, implementation of the restoration project increased pool frequency, 

low-flow pool volume, instream cover, frequency of instream, alcove, and off-channel refuge 

habitat features, and frequency of points of connectivity with the floodplain. Long-term monitoring 

will be required to determine the survivorship, decay rates, and overall persistence of alder recruits. 
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1. INTRODUCTION 

1.1 Decline of Central California Coast Salmon 

The Santa Cruz Mountains Diversity Stratum of the Central California Coast (CCC) Coho Salmon 

Oncorhynchus kisutch Evolutionarily Significant Unit (ESU) encompasses the southernmost 

historical populations of Coho Salmon in North America. Currently, only Scotts Creek (Santa Cruz 

County) maintains a persistent population within the stratum, represented by all three year classes. 

Consequently, Scotts Creek is the focal point of Coho Salmon recovery in the region (Kiernan, 

personal communication, 11/25/2015). With virtually no urbanization, high water quality, and cold 

perennial flows, Scotts Creek has the potential to help rebuild Coho Salmon populations within the 

greater Santa Cruz Mountains Diversity Stratum and maintain the historic range of the species. 

Conversely, further loss of habitat or failure to address factors limiting Coho Salmon production in 

Scotts Creek could lead to the extirpation of the local diversity stratum, and hinder recovery efforts 

throughout the entire CCC Coho Salmon ESU. 

In 1971 the California Department of Fish and Game documented 80%, 65%, and 64% declines in 

North Coast steelhead Oncorhynchus mykiss, Coho Salmon, and Chinook Oncorhynchus 

tshawytscha runs respectively, from 1940 to 1970, and a 46% decline in the Sacramento-San 

Joaquin Chinook fall-run. In the 1970s, environmental legislation including the California Forest 

Practices Act, Porter-Cologne Water Quality Act, the California Environmental Quality Act 

(CEQA), and the National Environmental Policy Act (NEPA) were enacted to protect declining 

species and habitats, including fisheries (Flosi et al., 2010). According to the California Advisory 

Committee on Salmon and Steelhead Trout (1988), "this trend of decline is the cumulative result 

of nearly a century of water and land use practices and policies that have favored development of 

other natural resources over the conservation of fish..." Estimates of CCC Coho Salmon abundance 

show a decline since the 1940s, and then a collapse across nearly all populations in the late 2000s 

(Table 1). 
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Table 1. Population estimates for CCC Coho Salmon abundance since the 1940s (excerpted from NMFS 

2012). 

Year or range Population estimate 

1940s 200,000-500,000 statewide 

1963 99,000 statewide, approximately 56,100 in CCC Coho Salmon ESU streams 

1984/1985 18,000 wild CCC Coho Salmon adults 

1990s 6,000 wild CCC Coho Salmon adults 

2009 > 500 wild adults 

2011 2,000-3,000 wild adults 

The CCC Coho Salmon ESU was listed under the Federal Endangered Species Act as threatened 

with extinction in 1997, and its protection status was upgraded to endangered in 2005. In response 

to the 2005 listing, the National Marine Fisheries Service (NMFS) Southwest Region Protected 

Resources Division, North Central Coast Office recovery team developed the Recovery Plan for 

the Evolutionarily Significant Unit of Central California Coast Coho Salmon (Final Plan, NMFS 

2012), a non-regulatory document that describes “site-specific management actions as may be 

necessary to achieve the Plan’s goal for the conservation and survival of the species” (16 U.S.C. 

1531). Across the CCC ESU, Coho Salmon populations alarmingly collapsed in 2006 and remained 

depressed for the remainder of the decade affecting all three year classes. Spence and Williams 

(2011) concluded that the CCC Coho Salmon ESU was in danger of extinction, reinforcing the 

2005 state and federal listings, and added that the risk of extinction was greater than five years 

before. The findings of Spence and Williams (2011) caused the NMFS Fisheries Protected 

Resources Division to “shift our focus from long-term recovery to include a short-term strategy to 

prevent extinction” (NMFS 2012, Executive Summary, p. 16). 
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1.2 Anthropogenic Habitat Loss 

According to NMFS (2012), the “destruction and modification of habitat over 150 years has been 

identified as a primary cause” for the decline of CCC Coho Salmon. Across the CCC Coho Salmon 

ESU domain, researchers identified low juvenile summer and winter rearing survival due to 

impaired instream habitats, combined with poor ocean conditions as the primary causes of the 

decline of CCC Coho Salmon populations (NMFS, 2012, vol. I, p. vii). Recovery domain streams 

were found to be impaired by low stream complexity associated with lack of instream wood, high 

sediment loads, lack of winter refugia, inadequate summer flows, and high temperatures. Low 

stream complexity is associated with historic land management practices of dredging, 

channelization, and wood removal. In the past, these practices were widely accepted methods of 

increasing agricultural production and protecting structures or roads from flood damage. Statewide, 

habitat losses are associated with past and current land use activities, including hydroelectric 

development, dams and reservoirs, instream hydraulic and dredge mining, water diversions, 

floodplain encroachment including urbanization and farming agriculture (on floodplains), timber 

harvesting, and the construction of highways and railways. 

Habitat conditions in lower Scotts Creek were degraded by a number of anthropogenic effects 

(NMFS 2012). Habitat loss was associated with a legacy of dredging, channelization, wood 

removal, clearing of riparian forest, and the construction of levees along lower Scotts Creek. In 

particular, the deteriorating levees along the lower one-mile reach of Scotts Creek continued to 

limit floodplain connectivity and high-flow refugia (NMFS 2012). Although dredging and levee 

maintenance ceased in the early 1980s, and the practice of wood removal was strictly limited, the 

associated habitat impairments persisted. The straightened morphology, deteriorating levees, and 

impaired wood recruitment likely contributed to the long-term stability of simplified, planar-bed 

reaches lacking functional rearing and refuge habitat and LWD. While observations suggested that 

floodplain connectivity was slowly improving as the levees deteriorated, NMFS (2012) found 
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salmonid habitat was impaired by low habitat complexity in terms of pool:riffle:flatwater ratio and 

shelter rating, and an independent 2013 habitat survey found lower Scotts Creek lacking in percent 

primary pools and density of key large woody debris (LWD) pieces (Brubaker 2015). 

1.3 Goals and Objectives 

The goals of the project were to restore floodplain connectivity and improve salmonid habitat 

conditions, with a focus on addressing the physical habitat impairments limiting salmonid 

production on lower Scotts Creek. The project’s specific objectives were to: 

1. Increase the frequency of instream and alcove refugia 

2. Increase the frequency of points of floodplain connectivity 

3. Increase the frequency, depth, and volume of pools 

4. Increase the frequency of primary pools 
5. Increase stream percent cover and pool shelter ratings 

6. Improve sediment sorting and increase the frequency of spawning habitat 

The objectives of the project were consistent with high-priority federal recovery actions. The 

NMFS Recovery Strategy for Scotts Creek (Recovery Strategy ScC-CCC, 2012) recommends 

specific recovery actions necessary to prevent extinction of the CCC Coho Salmon ESU. The goal 

of the recommended actions is to “address the present or threatened destruction, modification, or 

curtailment of the species habitat or range” by restoring floodplain connectivity, habitat 

complexity, hydrology, sediment regime, and species viability (NMFS 2012). The recommended 

recovery actions included enhancing floodplain connectivity by breaching levees and increasing 

alcove and side-channel refuge and rearing habitat (Recovery Actions 2.1.1.1 and 2.1.1.2), 

increasing large wood frequency by constructing instream wood features to restore habitat 

complexity (3.1.1.1), improving shelter rating, habitat complexity, pool frequency and pool depths 

by maintaining or enhancing instream woody debris or other instream structures (3.1.2.1), 

improving pool:riffle:flatwater ratios by increasing the frequency of riffles (3.1.3.1), minimizing 

redd scour by constructing instream wood features (4.1.1.1), improving instream gravel quality by 

decommissioning riparian roads (9.1.1.5), and monitoring the performance of recovery efforts 

(10.1.1.5). 
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1.4 Project Partnership 

There has been considerable interest from local, state, and federal fisheries biologists in restoring 

floodplain connectivity and ecological function in lower Scotts Creek to benefit both Coho Salmon 

and steelhead. The importance of Scotts Creek to the survival and recovery of Coho Salmon led to 

a partnership between the Cal Poly Corporation (the landowner) and the Resource Conservation 

District of Santa Cruz County to design and implement a project to “improve salmonid and 

terrestrial amphibian habitat quality along a one-mile reach of Lower Scotts Creek”, and ‘benefit 

hydrologic and overall riparian function by remediating the adverse effects that resulted from the 

channel modification and levee system” (IWRP Phase 3 Individual Design Project Work Program, 

revised 11/4/2013). 

1.5 Project Overview 

The lower one-mile reach of Scotts Creek, upstream from the estuary, was targeted for restoration. 

Portions of the existing levees along lower Scotts Creek were breached to increase the frequency 

and duration of floodplain inundation and increase high flow refugia. Alcove features were 

excavated at the margins of the main channel, and connection channels with existing hydrologic 

features on the floodplain were excavated, to increase winter refugia. The Archibald Creek 

confluence was enhanced to form backwater winter refugia. Instream large wood complexes 

(LWCs) were constructed to increase instream habitat complexity in terms of percent cover and 

pool frequency, depth, and volume. Accelerated hardwood recruitment was used to enhance LWC 

performance, and alternative techniques were used to stabilize the LWCs. A riparian road was 

decommissioned and revegetated to improve riparian function and address a potential sediment 

source. 

The project was largely focused on process-based restoration. It was recognized that the legacy 

effects of past land uses likely interrupted important hydraulic and vegetative processes responsible 

for driving morphologic change and forming salmonid habitat, including bed and bank scour, 
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sediment sorting/deposition, bar development, and riparian forest colonization and recruitment. 

The project sought to jump-start these natural processes that were interrupted by a legacy of 

frequent and intense anthropogenic disturbance. 

1.6 Monitoring 

A monitoring plan was developed and implemented to determine if the project met its objectives, 

and answer key research questions related to stream and floodplain restoration. Proposed metrics 

included the quantity, frequency, and volume or depth of pools; the quantity, frequency, and quality 

of instream refugia, and the frequency and duration of inundation of off-channel, and floodplain 

refugia. Post-project monitoring was viewed as essential because of the experimental nature of the 

proposed wood recruitment and LWC stabilization techniques, and the constructed connection 

channels with existing off-channel habitat features. 

1.7 Key Research Questions 

The project served as a platform for answering key research questions related to stream and 

floodplain restoration. In Central California coastal streams, the effectiveness of restoration on 

salmonid populations is a key unknown. Demonstrating a link between restoration and salmonid 

recovery is critical to maintaining funding and political support for restoration. The Life Cycle 

Monitoring Station (LCMS) on Scotts Creek, operated by NMFS since 2001 as part of the 

California Coastal Salmonid Monitoring Plan (CMP), presents a unique opportunity to track project 

effectiveness on salmonid populations at both the watershed and regional levels. CMP’s objectives 

are to measure fish production in coastal rivers and streams. The Scotts Creek LCMS is one of 

several monitoring stations which support this program by helping to determine what factors affect 

Coho Salmon and steelhead production. LCMS baseline data and post-project data may be useful 

for evaluating restoration effectiveness. 

The project sought to increase instream habitat complexity through accelerated hardwood 

recruitment, a technique that had not been previously documented in the literature. Opperman 
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(2002, 2005) and Opperman and Merenlender (2007) found that the majority of intact, natural LWD 

in response reaches of coastal streams were formed by living hardwood key pieces, and that debris 

jams formed by living key pieces were more likely to remain stable and influence stream 

morphology and habitat. This research prompted an attempt to mimic natural recruitment of 

hardwood living key pieces through accelerated recruitment, with a focus on the feasibility and 

longevity of in-situ red alder Alnus rubra, the dominant riparian tree species along lower Scotts 

Creek. Short-term monitoring was used to document the effects of accelerated alder recruitment on 

habitat complexity and instream hydraulics, and long-term monitoring was begun to track the 

stability and survivorship of red alder recruits. 

Standard anchoring techniques for constructed wood features are outlined in Flosi et al. (2010). 

Alternative stabilization techniques were used in the project that offered potential advantages over 

standard techniques. The performance of these techniques was monitored during and after winter 

stormflows and the results are documented herein. 

Finally, lower Scotts Creek represents a demonstration site for the interaction between floodplain 

restoration and agricultural operations. The project may provide research opportunities for studying 

the ecosystem services afforded by increased floodplain activation related to agricultural 

production and groundwater storage. 
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2. LITERATURE REVIEW 

Central California Coast (CCC) populations of native Coho Salmon and steelhead are on the brink 

of extinction or threatened with extinction from streams where once historically abundant or present 

(Nehlsen et al. 1991; Brown et al. 1994; Adams et al. 1999, 2007; Good et al. 2005; Spence et al. 

2011; NMFS 2012), including some streams draining to the San Francisco estuary (Leidy et al. 

2005). CCC Coho Salmon and steelhead, and their habitat, are federally protected under the Federal 

Endangered Species Act (ESA). For the purpose of implementing the ESA, salmonid populations 

are defined as discreet, locative, demographic units (Waples 1991; McElhany et al. 2000; 

Bjorkstedt et al. 2005). Coho Salmon Evolutionarily Significant Units (ESUs) and steelhead 

Distinct Population Segments (DPSs) are considered genetically significant metapopulations 

(McElhany et al. 2010) and are classified as distinct species under the ESA. The CCC Coho Salmon 

ESU and steelhead DPS are recognized as endangered and threatened respectively (Good et al. 

2005). In 2011, the Southwest Fisheries Science Center reviewed and updated the status of the CCC 

steelhead DPS (Williams et al. 2011a). The status of the CCC Coho Salmon ESU was updated 

(Williams et al. 2011b) following the completion of a response to petitions challenging the southern 

extent of the ESU. Petitioners challenged the historical precedence of Coho Salmon south of San 

Francisco prior to the introduction of hatchery-reared fish beginning in the 1890s (see McCrary, 

unpublished letters, 2003, 2004, 2005; Alvarado et al., unpublished comments on CDFG review, 

2005; Kaczynski and Alvarado 2006). A special review established the precedence of wild Coho 

Salmon south of San Francisco, updated the listing status, and expanded the southern extent of the 

ESU to include Soquel and Aptos Creeks (Adams et al. 2007; Spence et al. 2011; Williams et al. 

2011). CCC Coho Salmon critical habitat is defined as all accessible streams and estuaries from 

Punta Gorda to the San Lorenzo River, and two additional streams south of the San Lorenzo River 

(Soquel and Aptos Creeks) (Weitkamp et al. 1995; NMFS 1999; Adams et al. 2007; Spence et al. 

2011b). 
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NMFS is required by federal law to guide the recovery of ESA listed populations of Coho Salmon 

and steelhead, and protect their critical habitat (McElhany et al. 2000). The Recovery Plan for the 

Evolutionarily Significant Unit of Central California Coast Coho Salmon (NMFS 2012), mandated 

by the ESA, was created to prevent the extinction of, and promote the recovery of, the CCC Coho 

Salmon ESU. Immediate recovery action is needed to prevent the extinction of the CCC Coho 

Salmon ESU (Spence and Williams 2011; NMFS 2012; J.J Smith 2013). To plan recovery efforts, 

NMFS analyzed recovery domain streams using The Nature Conservancy’s Conservation Action 

Planning Analysis. Streams were evaluated by comparing physical habitat and population survey 

data to the intrinsic potential (IP) of each stream to support salmonids. IP, a proxy for historical 

carrying capacity, is a GIS-derived composite of mean channel gradient, mean annual discharge, 

and valley constraint (ratio of floodplain width to width of active channel), all of which are 

indicators of critical watershed processes capable of supporting Coho Salmon (Burnett et al. 2003; 

Agrawal et al. 2005; Bjorkstedt et al. 2005). 

Habitat complexity and floodplain connectivity along Scotts Creek were found to be impaired 

respectively by lack of instream wood and the deteriorating levee system (NMFS 2012). The 

Recovery Strategy for Scotts Creek (Recovery Strategy ScC-CCC, 2012) recommended specific 

recovery actions including enhancing floodplain connectivity and increasing alcove and side-

channel refuge and rearing habitat by breaching levees (NMFS 2012). Refugia allow organisms to 

survive natural disturbances (Lake et al. 2007) and winter refuge habitat was found to be critically 

important to salmonid production in systems limited by overwinter parr-smolt survival 

(Zimmerman et al. 2012). Recovery Strategy ScC-CCC also recommended increasing habitat 

complexity by constructing instream wood features to restore habitat complexity, improving shelter 

rating, habitat complexity, pool frequency and pool depths by maintaining or enhancing instream 

woody debris or other instream structures, improving pool:riffle:flatwater ratios by increasing the 

frequency of riffles, minimizing redd scour by constructing instream wood features, improving 
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instream gravel quality by decommissioning riparian roads, and monitoring the performance of 

recovery efforts. 

Coho Salmon require clean loose gravels free of fine sediment for successful spawning, adequate 

pools with cover for juvenile rearing, alcove and off-channel refuge habitat, cool water, and 

sufficient ocean connectivity to permit outmigration and escapement (Flosi et al. 2010; NMFS 

2012). Spawning and incubation occur in riffles with coarse permeable gravels (Shapovalov and 

Taft 1954; Beschta and Platts 1986; Flosi et al. 2010). Successful incubation requires adequate 

oxygenated flow. Deposition of fine sediment on redds increases mortality of pre-emergent 

salmonids (Beschta and Platts 1986). Emergent juveniles prefer shallow, slow water zones, 

associated with backwater pools, side channels, and stream margins (Flosi et al. 2010). Juvenile 

Coho Salmon prefer to forage and rear in slow current with temperatures between 48 and 60 degrees 

Fahrenheit (Flosi et al.2010). Preferred summer rearing habitat includes primary pools or backwater 

eddies with cool water associated with direct cover from undercut banks, living vegetation, and 

woody debris (Flosi et al. 2010). During high flows, juvenile Coho Salmon disperse to refuge 

habitats including slow and deep instream pools, and side- and off-channel backwater pools (Flosi 

et al. 2010). Pool depth and volume have been found to positively correlate with salmonid 

production. Survival is negatively correlated with increased water temperature and turbidity. There 

is mounting evidence that winter high flows limit survival and lack of winter habitat (refugia) limits 

Coho Salmon production in Northern California streams (Gallagher et al. 2012). Increased habitat 

complexity, in terms of the distribution of flow depths and velocities, large woody debris, bed 

substrate, temperature zoning, refugia, and shelter, has been found to reduce travel distance, risk of 

predation, and mortality (Columbia Habitat Monitoring Protocol 2014). Freshwater salmonid 

populations are strongly density dependent reinforcing the hypothesis that production is limited by 

lack of functional habitat (Gallagher et al. 2012). 
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Dynamic natural processes, including LWD recruitment, vegetative growth and succession, 

sediment transport, channel meander, bed, bank and floodplain scour, aggradation, and bar 

formation, form a variety of salmonid habitat (Swanson et al. 1976; Beschta and Platts 1986; Sedell 

et al. 1988; Gregory et al. 1991; Abbe and Montgomery 1996; Beechie and Bolton 1999; Naiman 

et al. 2000; Florsheim and Mount 2002; Mount et al. 2003; Beechie et al. 2010). Streams reach a 

dynamic equilibrium of long-term processes, constrained by hydraulic, geologic, and vegetative 

conditions, that support non-random groupings, frequencies, and proportions of pools, riffles, bed 

material, and vegetation, all of which comprise critical salmonid habitat (Beschta and Platts 1986). 

Pool-riffle patterns are formed by localized scour and deposition during higher flows. Channel 

planform geometry strongly influences the frequency and distribution of habitat units. In a 

meandering stream, pools typically form at the outside of meander bends while riffles form at 

meander inflection points (Beschta and Platts 1986; Montgomery and Buffington 1997). Watershed 

processes and habitat conditions capable of supporting salmonids were historically present in 

Central California Coast recovery domain streams (Spence et al. 1996; Beechie and Bolton 1999; 

Bjorkstedt et al. 2005; NMFS 2012). 

The decline of salmonid populations is attributed in part to loss of freshwater habitat associated 

with past and current land-use (Bisson et al. 1992; Gregory and Bisson 1997) and anthropogenic 

disruption of “natural rates of critical watershed processes” (NMFS 2012). Rapid disruption of 

local conditions to which native stocks are adapted threatens the viability of those local stocks, 

because stocks adapt on evolutionary time-scale to the specific areas they inhabit (Beechie and 

Bolton 1999). Historical reconstruction can reveal the root causes of disruption, establish 

benchmarks for stream functionality, and help prioritize restoration activities for the recovery of a 

selected species (Beechie and Bolton 1999). A comparison of historical and current conditions in 

Pescadero Creek, a coastal stream in southern San Mateo County revealed a doubling of sediment 

loads in the last 200 years due to anthropogenic surface erosion and channel incision related to 
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logging, grazing, and agriculture. The lower floodplain is now a sediment source instead of a 

storage area and the rate of deposition in the lagoon is approximately 15 times the pre-European 

settlement rate which has resulted in a 75% reduction in the tidal prism and a 50% reduction in 

estuary surface water. Elevated sediment loads persist despite the cessation of the highest-intensity 

land-use practices, and the current sediment regime is expected to continue indefinitely (S.B. 

Frucht, 2/12/2015 presentation to the IWRP TAC on channel changes and sediment loads in the 

Pescadero-Butano watershed). 

These findings highlight two important concepts. First that managing land use and land cover on a 

watershed scale can lead to improved aquatic habitat conditions because doing so addresses 

landscape-scale processes that contribute to habitat degradation (Opperman and Merenlender 

2004), and second, that the negative impacts of high-intensity land use to persist long after the 

cessation of those land use activities (Foster et al. 2003). Cutting of riparian forests impairs large 

woody debris recruitment and the development of instream habitat for at least 50 years after (Grette 

1985; Andrus et al. 1988), and instream wood loading will not return to pre-European levels for 

250 years after (Murphy and Koski 1989). 

Stream restoration is an effective means of counteracting the legacy effects of land use. The overall 

impact since European settlement can be characterized as a simplification of freshwater habitat. 

Restoration counteracts this trend by directly creating habitat units/components, and by restoring 

natural processes responsible for forming habitat and supporting the life-histories of native 

salmonid populations. Process-based restoration restores processes and morphologies which match 

long-term equilibrium conditions to which salmonids are adapted (Beschta and Platts 1986; 

Beechie and Bolton 1999). Restoration of habitat-forming processes may be more effective than 

constructing individual habitat features, partly because constructing habitat features may fail to 

address the ongoing processes responsible for habitat degradation, and constructed features may be 

damaged by these ongoing processes (i.e. sedimentation of constructed wood features, Beechie and 
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Bolton 1999). Restoration of freshwater habitat will be effective at increasing productivity, and as 

a result, increasing population viability, because freshwater survival is strongly density dependent 

and, in addition, high quality freshwater habitat will buffer poor marine survival rates (Gallagher 

et al. 2012). 

The legacy effects of land use combined with the steep decline of pacific salmon warrant the 

application of accelerated approaches to jump-start critical watershed processes responsible for 

maintaining salmonid populations. Jump-starting critical watershed processes must be done on a 

landscape scale to produce measureable results on the population level (Roni et al. 2010). 

Landscape scale restoration will require the development of low-cost and low-disturbance 

techniques in order to be affordable and applicable on a landscape scale. Accelerated wood 

recruitment may provide a viable alternative to engineered wood features to improve instream 

habitat in degraded systems that is applicable on a watershed or landscape scale. 

CDFW and other agencies published standardized restoration techniques developed over several 

decades. The California Salmonid Stream Habitat Restoration Manual, 4th edition (Flosi et al. 

2010) describes recommended stream restoration planning, design, implementation, and 

monitoring practices within the State of California. The manual focuses on improving fish passage, 

and on increasing habitat complexity by constructing instream structures including divide logs, 

digger logs, spider logs, log-rootwad-boulder combinations, log and boulder weirs, and log or 

boulder barbs. The manual provides detailed guidelines for appropriately sizing constructed 

features to the target stream based on parameters such as stream order and bankfull width, and for 

anchoring buoyant structures to boulder ballasts or buried deadman anchors using wire rope or 

rebar/all-thread pins. The manual includes brief guidance regarding the construction and sizing of 

unanchored LWD. Specifically, unanchored LWD is best suited for 1st–3rd order streams and 

should be constructed from ≥12 in diameter logs with a length at least 1.5 times the bankfull width, 

or from ≥5 ft diameter rootwads with ≥15 ft in length and at least one-half the bankfull width (Flosi 
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et al. 2010). Burial by bedload, anchor bolt failure, cable failure, stranding, and undermining due 

to bed/bank scour are prominent failure modes of constructed instream features (Frissell and Nawa 

1992). 

Large wood strongly influences channel morphology of smaller streams and is a critical element in 

the formation of freshwater salmonid habitat. LWD forms pools (Bisson et al. 1987; Montgomery 

et al. 1995, Abbe and Montgomery 1996), increases pool frequency in response reaches of small to 

moderately sized channels (Montgomery et al. 1995; Beechie and Sibley 1997), and retains 

sediment and POM (Bilby 1981; Megehan 1982; Bilby and Ward 1989). Salmonids prefer pools 

with LWD (Bisson et al. 1988). Debris jams retain organic material which fuels biotic processes in 

headwater streams (Bilby and Likens 1980). LWD increases prey availability which enhances fish 

production (Benke et al. 1985; Bilby and Bisson 1987; Naiman et al. 2002). Debris jams can 

influence stream hydraulics and facilitate colonization of portions of the stream channel with 

riparian vegetation leading to the development of patches of riparian forest (Abbe et al. 1996). 

Recent studies have documented the effectiveness of restoration projects involving the placement 

of large wood pieces in the stream channel and floodplain (Roni et al. 2008). Input of large wood 

improved salmonid survival rates by sorting sediment, improving habitat shelter, increasing pool 

frequency and depth, and reconnecting floodplains (Gallagher et al. 2012). Managing stream energy 

using LWD has been a successful means for improving winter refuge opportunites for salmonids. 

Installation of LWD should be done in the lower portion of the watershed to create or preserve 

high-quality salmonid habitat, improve floodplain connectivity, and create new connections to 

ephemeral waterways (Gallagher et al. 2012). 

Wood features constructed with whole tree materials were more effective than simple structures at 

providing instream cover, increasing pool habitat, sorting gravel, and improving habitat 

heterogeneity. Increasing wood piece count and jam volume generally increased effectiveness at 

achieving habitat objectives. Jam volume positively correlated with residual pool depth and 
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upstream aggradation (Benegar 2011). Live wood is morphologically significant and debris jams 

that had living key pieces were more stable and persistent than those without living key pieces, 

were more likely to facilitate pool formation, and were associated with deeper pools with higher 

shelter ratings. Live wood will be more stable because of an attached rootwad and increased 

resistance to decay. Surveys should include living pieces, and further studies should be conducted 

to track the persistence and decay rates of living pieces (Opperman and Merenlender 2007). 

Northern California Alnus spp. and Salix spp. are capable of regenerating from pieces or whole 

fallen trees (Francis 2007). Recruitment of live wood occurs typically when trees fall into the 

channel as a result of bank erosion (Opperman et al. 2008). Opperman et al. (2008) hypothesize 

that living wood may be more geomorphically functional at smaller sizes than dead wood 

(Opperman et al. 2008). 

Red alder is the most common hardwood in the Pacific Northwest, ranging from Southern Alaska 

(60°N) to Southern California (34°N) (Harrington 1990), and would be an attractive source of 

material for instream habitat enhancement except that red alder decays fastest compared to other 

species (Harmon et al. 1986, Harrington 1990, Naiman et al. 2002). For these reasons it is typically 

not used to create instream large wood structures. Conifer logs (redwood, cedar, hemlock) are 

preferred to create instream structures because of their resistance to decay (Harmon et al. 1986, 

Flosi et al. 2010). Establishing living red alder LWD through an accelerated recruitment technique 

may allow red alder to be effectively utilized to enhance instream habitat. Living red alder is 

“exceptionally resistant to decay after typical stem injuries” (Niemiec et al. 1995, p. 95). 

Key studies in Pacific Northwest streams describe salmonid habitat preferences, and habitat 

characteristics which promote salmonid production, or overall ecosystem productivity. Juvenile 

Coho Salmon prefer to overwinter in off-channel habitat compared to the main channel (Swales et 

al. 1988). Juvenile Coho Salmon abundance in winter remained higher in stream reaches with 

adequate refuge habitat (Tschaplinski and Hartman 1983). Pre- and post-flood survey data from a 
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Northern California stream showed high fidelity to and densities within off-channel alcove habitat. 

Fidelity, immigration, and density was highest in off-channel alcoves, second-highest in instream 

backwater zones, and lowest in main-channel pools (Bell et al. 2001), indicating strong preference 

and suggesting off-channel alcoves provide the highest-quality winter refuge habitat. 

Coho Salmon disperse to instream structures and off-channel habitat features in summer and winter 

to seek temperature and velocity refuge (Morley et al. 2005; Whitmore 2014). Constructed off-

channel habitat was utilized at a rate comparable to or higher than natural off-channel habitat 

features (Morley et al. 2005). Off-channel pond temperatures were presumably attenuated by 

groundwater inputs which provided temperature refuge in summer. Constructed off-channel ponds 

had higher temperatures in winter and lower temperatures in summer compared to natural features 

(Morley et al. 2005). Restoration of instream and off-channel habitat through the construction of 

large wood structures and off-channel ponds increased overwinter/oversummer survival, and 

growth/retention rates (Gallagher 2012; Whitmore 2014). 

The flood pulse concept (Junk et al. 1989; Tockner et al. 2000) established the importance of the 

natural flood cycle to ecosystem function in tropical and temperate systems. Natural floodplains 

exhibit high biologic productivity and diversity (Tockner and Sanford 2002). In the Pacific 

Northwest, species richness and diversity was generally found to be higher in riparian zones than 

upslope habitat, and exhibits a gradient in the transition from lotic to upslope communities (Gregory 

et al. 1991). This gradient of productivity and diversity from lotic to upslope communities suggests 

that restoring the flood pulse to the historical floodplain will increase biologic productivity and 

species diversity and richness in riparian ecosystems. The short- and long-term effects of 

curtailment of flood pulse in riparian systems by the construction of flood control structures are not 

fully understood. Flood pulse restoration restructured ecosystem function of the riparian forest floor 

(Molles et al. 1998). Managed flooding jump-started chemical and physical processes and 

microbial populations (Ellis et al. 1996). Microbial populations and forest floor respiration 
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increased, as did decomposition of leaf litter following a flood pulse. In addition, the riparian forest-

floor arthropod community was restructured (Molles et al. 1998). Levee breaching can restore 

floodplain topographic variation, leading to greater habitat variability, and by extension may induce 

ecological response (Florsheim and Mount 2002). Levee removal can be effective when legacy 

channelization structures continue to limit channel meander and the development of wetland areas 

and a functional riparian corridor. Increased groundwater recharge associated with improved 

floodplain connectivity can improve flow levels during summer low flows (California 

Environmental Protection Agency 2009). Computer modeling has shown that levee removal can 

reduce flood stages in zones of backwater influence (Hammersmark et al. 2005). 

Unanchored wood structures may be a viable and cost-effective alternative to anchored structures 

in Northern California coastal streams (Carah et al. 2014). Accelerated wood recruitment mimics 

natural processes at considerably lower costs per length of stream treated compared to engineered 

wood structures (Carah et al. 2014). A project carried out on Soquel Creek, a 42 square-mile coastal 

stream in Santa Cruz County, introduced unanchored multi-stem redwood trees along a 300-foot 

reach. Rootwads were excavated from the streambanks and placed in the channel with stems 

attached to emulate the natural recruitment processes of landslides, debris flows or bank erosion 

that deliver key structural woody debris elements (“key logs”) to the stream channel. Key logs are 

stable, capable of racking debris, provide instream cover, and facilitate geomorphic change and 

habitat forming processes (Reynolds 2013). Further research into the effectiveness of unanchored 

LWD is needed. The long-term retention rates and the differences, if any, in effectiveness between 

unanchored and anchored structures, are still unknown and under investigation (Carah et al. 2014). 

Large instream wood structures were constructed in lower San Vicente Creek to increase stream 

complexity and improve habitat conditions for salmonids. These structures were constructed from 

imported redwood rootwads and granitic boulders. These structures improved instream cover and 

facilitated scour and aggradation. The highest densities of juvenile salmonids were observed in and 
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around the constructed features (J. Kiernan, personal communication, cited by S. Gillett et al. 2014, 

report on salmonid recovery in the San Vicente Creek watershed). Design flow depths, velocities, 

and shear stresses were modeled using the Army Corps of Engineers Hydrologic Engineering 

Center’s River Analysis System (HEC-RAS) and these modeled parameters were used to engineer 

the instream features. The 100-year flow was modeled to evaluate the effect of the addition of the 

proposed wood structures on flood elevations. Wood features were designed to obstruct no more 

than 50% of the bankfull channel. Wood elements were ballasted with boulders. Anchoring was 

achieved by attaching wood structures to boulder ballasts with rigid all-thread/nut/washer fasteners, 

according to methods described in Flosi et al. (2010). Boulder anchors were buried in the streambed 

to withstand the drag forces on the structures applied by streamflow (Ruttenberg, unpublished 

engineering docket, 2011). 

The major question surrounding the practice of stream restoration for Coho Salmon recovery in 

California is whether or not restoration is effective at increasing production on a watershed or 

landscape scale (Gallagher et al. 2012), or recovering or preventing the extinction of Coho Salmon 

at a population or metapopulation level (Swales, personal communication, 2015; Kiernan, personal 

communication 2/2/2016.) Arrays of monitoring activities combined with regional data 

warehousing and analysis has been used to determine whether or not the cumulative effects of 

restoration projects are leading to the recovery of the species, whether individual projects are 

meeting their intended objectives, and to compare the benefit of restoration effort versus the 

environmental and economic costs (e.g. Columbia Habitat Monitoring Program [CHaMP]). The 

CDFW Fisheries Restoration Grant Program (FRGP) requires specific monitoring activities as a 

condition of funding. FRGP views off-channel and side-channel habitat projects as “experimental” 

and project proposals “must include physical and biological monitoring appropriate to the targeted 

species and targeted time period of project use” to demonstrate the “biological and geomorphic 

merits of these projects” on a landscape/population scale (FRGP, 2015 Public Solicitation Notice, 
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Part V, p. 38). Projects resulting in neutral or negative biological effects are likely underrepresented 

in the literature. Documentation of failures is important in order to prevent costly mistakes 

(Hamilton 1989; Frissell and Nawa 1992). 

Effectiveness monitoring has been carried-out on a watershed scale. Eleven years of Coho Salmon 

parr, smolt, and adult abundance data from three coastal Life Cycle Monitoring Streams in 

Mendocino County, California were analyzed to evaluate the effectiveness of restoration on Coho 

Salmon productivity. Abundance and survival at each life-stage was estimated using capture-

recapture, depletion sampling, and PIT-tagging. Marine and freshwater survival, and carrying 

capacity were estimated. Survival estimates were carried out through a panel of survey methods 

including mark and release, PIT tagging, electrofishing, flashboard weirs (Gallagher et al. 2012). 

Establishing the relationship between restoration effort and species recovery is critical because 

policy makers and government officials need scientific data to support their policy decisions and 

budget expenditures. While salmonid utilization of LWD is documented, it is not known how much 

wood is enough to bolster a declining population, or by extension, how much freshwater restoration 

will be required to recover threatened and endangered salmonids in California. 
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3. SITE DESCRIPTION 

Scotts Creek, located near the town of Davenport in northern Santa Cruz County (Figure 1), 

California, drains 30 sq mi of the Santa Cruz Mountains to the Pacific Ocean. Tributaries include 

Queseria, Archibald, Winter, Little, Big, and Mill Creeks (downstream to upstream order). The 

upper watershed consists of steep inner gorges in redwood and mixed conifer forest. The lower 

watershed (below the Swanton Road bridge) consists of a forested multi-story riparian stream 

corridor dominated by red alder and 65 acres of organic crop fields set on a broad alluvial/colluvial 

floodplain. Soils are generally characterized as sandy loam with high erosion potential. Erosion is 

curbed by dense vegetative cover within the riparian corridor. The bed substrate in lower Scotts 

Creek is composed mostly of low specific gravity (<1.4) Santa Cruz mudstone gravel and cobbles 

embedded in granitic sands. Extensive shaping of the floodplain has occurred as a result of 

agricultural operations that date back nearly 200 years, the construction of a railroad in the early 

1900s, the construction of the CA-1 bridge, road prism, and levees in the estuary in 1938, and the 

construction of additional levees along the crop fields in the late 1950s (Rowley [ed] 2003, 

unpublished Scotts Creek watershed assessment). Lower crop fields were laser-levelled in the 

1990s. Other land uses include uneven-aged forest management for single tree selection harvesting 

of primarily redwood in the upper watershed, and rotational planned grazing (or ‘holistic’) 

rangeland management on the coastal terraces within the watershed. Thirty-six percent of the 

watershed (primarily the upper watershed) burned in August of 2009 (Auten 2012). Ninety-five 

percent of the watershed is privately owned, mostly in large parcels with some residential 

subdivisions. Scotts Creek is not listed as impaired on the State 303(d) list for any Total Maximum 

Daily Load (TMDL) constituents (State Water Resources Control Board 2012). There are 14.3 

miles of anadromous streams within the watershed, including upper watershed reaches of the 

mainstem and three major tributaries, Little Creek, Big Creek, and Mill Creek, below migration 

barriers (Hayes et al. 2012). 

20 



 

 
            

           

  

Figure 1. The Scotts Creek watershed (outlined in black), and project reach (dotted line), on the USGS 

Davenport topographic map. The inset shows the location (circled) within the state. 
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3.1 Hydrology 

Precipitation is orographically influenced, with annual precipitation totals averaging 30 in at the 

mouth and 49 in along high ridgelines (Perkins 2012). The channel gradient averages 0.3% from 

the CA-1 bridge to Archibald Creek at station 5900. Throughout this document, features are located 

by river station in feet upstream from the CA-1 bridge (see Figure 9 on page 49). The active channel 

is typically 30 ft wide. The representative bankfull channel cross section in this reach is 55 feet 

wide and 5 feet deep with an effective flow area of 200 square feet (Akers 1999; Goin 2011, 

unpublished reports). There is support that the 1- to 2-year flow corresponds to the flow at which 

incipient flooding occurs along lower Scotts Creek (Dietterick, personal communication, 

7/9/2013). 

The bankfull discharge in lower Scotts Creek is estimated to be 1000 ft3/s with a mean velocity 

of 5 ft/s. Recent summer low-flow depths in riffles have been typically <0.5 ft with flow rates <10 

ft3/s and velocities of 1 ft/s (J. Louen, personal communication, 3/27/2014). In addition to manual 

flow measurements, a stream gage records continuous stage data near the confluence with 

Archibald Creek at station 5700. A rating curve is used to estimate discharge on stage. Stage and 

discharge hydrographs for 2010-2012 show typical seasonal flow cycles (Figure 2). For the period 

of record represented below, Scotts Creek flowed at 0-20 ft3/s (summer low flow) for 58% of the 

time, from 20-200 ft3/s (winter base flow) for 38%, and above 200 ft3/s (high flow) for 4% of the 

time (Figure 3). Major flood events occurred recently in 1998, 1999, and late in December 2012. 
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Figure 2. Stage (top) and estimated discharge (bottom) hydrographs for lower Scotts Creek below 

Archibald Creek from 1/17/2010-12/12/2012. 
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Figure 3. Flow histogram with flow regimes for the Scotts Creek stream gage below Archibald Creek for 1/17/2010-12/16/2012. 
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3.2 Vegetation 

Along lower Scotts Creek, the riparian corridor is 50–300 ft wide, and canopy cover generally 

approaches 100%. The dominant tree species are red alder and arroyo willow Salix lasiolepis. Other 

tree species include boxelder acer negundo, big leaf maple acer macrophyllum, California buckeye 

Aesculus californica, coast live oak Quercus agrifolia, and California bay Umbellularia 

californica. The dominant understory species were found to be California blackberry Rubus 

ursinus, American stinging nettle Urtica dioica, Cape ivy Delairea odorata, California hedge nettle 

Stachys bullata, and red elderberry Sambuchus racemosa red elderberry. Cape ivy, periwinkle 

Vinca major, and veldtgrass Ehrharta erecta are the most aggressive non-native invasive species 

within the riparian corridor along lower Scotts Creek. On the floodplain, Italian thistle Carduus 

pycnocephalus, poison hemlock Conium maculatum, bristly ox-tongue Helminthotheca echioides, 

radish Raphanus sativus, and summer mustard Hirschfeldia incana dominate open areas adjacent 

to the crop fields. A vegetation survey was performed along the project reach within the riparian 

corridor in summer of 2013. Quadrat sampling at random locations along multiple transects was 

utilized to quantify percent ground cover by species (Figure 4, A. Broz 2013, unpublished 

vegetation survey report). 

Historically, lower Scotts Creek experienced frequent, intense disturbance which probably resulted 

in a loss of plant species diversity (J. West, personal communications). Historic disturbances 

include farming, grazing, and large flood events. The introduction of non-native invasive plants has 

resulted in large, monocrop colonies of Italian thistle and poison hemlock, occurring mostly on the 

margins of the crop fields, with the largest colony occurring between Queseria Creek and the field 

to the north. Poison hemlock grows well over head-high in these areas, and Italian thistle grows 

shoulder- to head-high. These colonies limit the establishment of native plants. A colony of velvet 

grass Holcus lanatus occupies the floodplain of Queseria Creek south of the creek. Cape ivy is 

aggressively colonizing the riparian corridor of lower Scotts Creek and is causing tree mortality 
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and loss of riparian habitat. This species is known to occur in the upper watershed, making 

eradication impossible without a watershed-wide approach. Eradication of poison hemlock and 

Italian thistle are probably not feasible, however mowing combined with revegetation with 

overstory species, especially those that produce dense leaf-litter, such as deciduous trees, may be 

an effective treatment for suppressing these invasive plant species. 

dead 

California blackberry (Rubus ursinus) 

American stinging nettle (Urtica dioica) 

Cape ivy (Delairea odorata) 

bare ground 

hedge nettle (Stachys bullata) 

red elderberry (Sambuchus racemosa) 

arroyo willow (Salix lasiolepis) 

red alder (Alnus rubra) 

periwinkle (Vinca major) 

Douglas's nightshade (Solanum douglasii) 

straggly gooseberry (Ribes divaricatum) 

wood fern (Dryopteris argata) 

veldtgrass (Ehrharta erecta) 

thimbleberry (Rubus parviflorus) 

forget-me-not (Myosotis latifolia) 

poison hemlock (Conium maculatum) 

sword fern (Polystichum munitum) 

whorled dock (Rumex conglomeratus) 

California figwort (Scrophularia californica) 

poison oak (Toxicodendron diversilobum) 

peppermint (Mentha sp.) 

0% 5% 10% 15% 20% 25% 30% 35% 

Percent ground cover 

Figure 4. Results of 2013 vegetation survey for the project reach. 

3.3 Geology and Sediment 

The background sediment delivery rate in the Scotts Creek watershed may significantly impact 

Coho Salmon viability and productivity. Landslides have caused major disruptions to the location 

of the lower Scotts Creek stream channel within the valley and delivered large quantities of 

colluvium in the form of debris flows directly to the stream (R. Smith, personal communication, 

11/18/2015). Within the watershed, intrusive igneous granitic and associated metasedimentary 

basement rocks are overlain by erodible Santa Margarita Sandstone and primarily the younger 
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Santa Cruz Mudstone. Steep inner gorges, rapid uplift, earthquakes, and high rainfall intensity 

contribute to frequent landslides and associated high background delivery rates of sediment 

composed of mudstone and granitic material. Landslides initiated by bedding plane failures occur 

episodically resulting in delivery of mudstone and sandstone derived colluvium to the floodplain 

along its eastern edge. Such landslides may deliver sufficient amounts of material to cause the 

stream channel to migrate west or even dam the valley (R. Smith, personal communication, 

5/9/2015). Alluvium composed of mudstone, sandstone, and granitic rock is delivered to lower 

Scotts Creek from the upper watershed. Mudstone of varying particle sizes and granitic sand 

dominate the sediment load. The prevalence of mudstone in the bedload exacerbates redd scour 

because mudstone gravels can be easily mobilized by late season stormflows. Lower Scotts Creek 

is subject to the input of granitic sands from Big Creek which can clog redds. This combined with 

a mobile streambed makes redd survival along lower Scotts Creek tenuous (J. Smith, personal 

communication, 8/1/2013). Fish density in a lower Scotts Creek survey site is typically half that 

found in sites upstream from the Big Creek confluence. The contrast in fish density may be 

attributed to low spawning success and recruitment occurring in lower Scotts Creek due to flushing 

of redds and limited velocity refuge (J. Smith, personal communication, 8/1/2013). 

3.4 Topographic Features 

Two small ponds are present on the floodplain at 3300 and 3800. The large flood events of 1982 

and 1998 initially scoured these ponds (Dietterick, personal communication). The ponds remain 

wetted perennially through the current drought, probably through groundwater discharge. In 

summer of 2013, water quality measurements were recorded for each of the two off-channel ponds. 

The purpose of these measurements was to determine the suitability of the ponds to support aquatic 

species. The results of September 2013 water quality measurements are shown below in Table 2. 

Readings taken nearby in Scotts Creek are included for comparison. 
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Table 2. Dissolved oxygen levels and temperatures in existing off-channel ponds on 9/20/2013. 

Scotts Creek Scotts Creek Upper Pond Lower Pond 

(3800) (3000) (3800) (3300) 

DO % 67.4 69.5 2.5 18.0 

DO mg/L 7.02 7.22 0.25 1.90 

Temp C 13.61 15.23 13.69 

Comments: pool, still water run, moving water 

These ponds supported limited populations of rearing but not breeding Rana draytonii (California 

red-legged frog [CRLF]) (Swaim 2014). While the location and migration pattern of the source 

population has not been recently studied, J. Bulger documented CRLF breeding in a nearby pond 

adjacent to the Scotts-Queseria confluence at station 1500 in 2004. CRLF may be migrating to the 

ponds at 3300 and 3800 from the pond at 1500. 

A small 10-foot-wide by 20-foot-long by 4-foot-deep scour feature is located next to the main 

channel of Queseria Creek adjacent to station 1800. This feature develops surface water in winter 

through direct rainfall or groundwater discharge, and through seepage in summer as a result of an 

elevated water table driven by backwater from the lagoon. 

Agricultural ditches drain portions of the crop fields adjacent to Scotts Creek. One of these ditches, 

located at station 3000, drained to the main channel of Scotts Creek through an 18 in culvert under 

the levee berm. 

Archibald Creek joins lower Scotts Creek at station 5800. Field observations indicate that the main 

channel of Archibald Creek overflows into a vegetated auxiliary channel that flows south, losing 

definition at a swale below station 5650. 

A network of gullies and swales are present in the riparian corridor to the east of the main channel. 

Many of these are not represented by existing topographic datasets and are difficult to identify in 
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the field due to dense multi-story vegetation. Some of these swales and gullies appear to be points 

of connectivity with lower Scotts Creek, exemplified by those in the vicinity of the pond at 3800. 

Others are separated from the main channel by levees or berms. These gullies indicate flow parallel 

to the main channel for significant distances, having infrequent points of connectivity with the main 

channel. Parallel flow paths are evidenced by gullies and berms just north of the Queseria Creek 

confluence area, and swales along lower Scotts Creek behind the levees in the vicinity of the NMFS 

fish weir at station 4300. The scour ponds and gullies indicate that large flood flows are capable of 

developing sufficient velocity parallel to the main channel to scour the floodplain. 

3.5 Fluvial Functionality 

The connectivity between lower Scotts Creek and its floodplain is generally assumed to be poor, 

due to the functional remnants of a deteriorating levee system constructed in 1938 associated with 

the Highway One Bridge project and late 1950s flood-control projects designed to maximize 

farmland on the floodplain. The levees extend one mile upstream from the CA-1 bridge, and 

continue to influence the hydrology of the lower reach of Scotts Creek by confining flows and 

entrained sediments to a straightened, low-complexity channel. The levees appear to be the primary 

limitation to floodplain connectivity along a reach that is otherwise not acutely incised. Flooding 

may occur when confined flows at artificially elevated stages overtop the levees, causing incipient 

flooding on the floodplain at stages greater than bankfull. The levees are accepted to seriously limit 

the frequency of return flow paths to the main channel. Insufficient return flow paths to the main 

channel limit floodplain exchange, which is assumed to negatively impact salmonids by limiting 

nutrient availability, and increasing the potential for stranding. Stream complexity in lower Scotts 

Creek appears to be slowly improving as evidenced by bank erosion, natural wood recruitment, and 

pool formation. Brubaker (2015) reports that since 1997, “instream cover and LWD appear to be 

improving without direct management actions and may only need time to recover to desirable 

levels” (p.53), however “the overall number of pools has remained steady, [and] pool quality has 
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generally decreased” (p.56). Brubaker suggests that direct management intervention may be 

warranted to increase the percentage of primary pools, and recommends long-term monitoring to 

determine the factors affecting pool formation and persistence. 

3.6 Ocean Connectivity 

River mouth dynamics control ocean connectivity and the hydrology of lower Scotts Creek below 

Queseria Creek. Summer low flow conditions combined with adequate wave energy allow a 

sandbar to form at the mouth of Scotts Creek, creating an estuarine lagoon that typically extends 

upstream to the confluence with Queseria Creek, approximately 1500 feet upstream from the CA-

1 bridge, with water surface elevations approaching 11 feet. The lagoon generally persists from 

July through mid-December. Winter stormflows breach the sandbar, establishing ocean 

connectivity from mid-December through June. It is worth noting that Shapovalov and Taft (1954) 

report substantially earlier timing of ocean connectivity at Waddell Creek (next watershed north) 

for the years 1933-1942 and that “the mouth of Scott Creek has usually opened and closed on the 

same dates [as Waddell Creek]” (p. 15). 

Lagoon dynamics strongly influence the life-history of anadromous fish by determining the timing 

of spawning and smolting events. The lagoon provides critical rearing habitat for juvenile steelhead 

(Bond 2006; Hayes et al., 2008), and there is evidence that the lagoon may also provide critical 

rearing habitat for Coho Salmon in drought years, when low flows limit access to upper watershed 

reaches normally used for spawning and rearing (Kiernan, personal communication, 2/4/2014). The 

lagoon dynamics were likely altered by the CA-1 bridge and levees, constructed in 1938. The CA-

1 road prism, bridge abutments, and levees on both sides of the stream channelize flow through the 

bridge opening. These alterations likely influence the timing of breach events, tidal prism, and 

lagoon and estuary habitat volumes. 
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3.7 Drought 

Coho Salmon in Scotts Creek displayed atypical patterns of utilization of riverine and estuarine 

habitat during their life cycle related to the ongoing drought. During a non-drought water year, 

juvenile Coho Salmon only briefly utilize the estuary during outmigration. In the 2013-2014 water 

year, precipitation totals and mainstem flow rates were some of the lowest on record. Early 

formation of the sand bar and delayed breaching, combined with limited access to upper reaches, 

trapped smolts in the lower watershed, requiring them to survive an extended period of time in 

freshwater. Surveys conducted by NMFS in February of 2014 indicated that Coho Salmon were 

ranging from the estuarine lagoon to the life-cycle station on lower Scotts Creek approximately 

4,000 feet upstream from the CA-1 bridge. This range includes 2,500 feet of the 4,500-foot-long 

restoration project reach on lower Scotts Creek. This change in behavior suggests that lower Scotts 

Creek may provide critical rearing habitat in drought years (Kiernan, personal communication, 

2/4/2014). In dry winters, when low flows limit access to upper reaches or tributaries normally 

preferred by salmonids, lower Scotts Creek may also provide critical spawning habitat (J. Smith, 

personal communication, 8/1/2013). 

3.8 Anthropogenic Impacts 

Land management practices linked to habitat loss were common throughout Santa Cruz and San 

Mateo Counties. Scotts Creek experienced impacts typical of Central Coast streams: the 

construction of the CA-1 bridge and road prism across the estuary, the construction of levees to 

channelize flow through the CA-1 bridge opening and to protect the crop fields from flooding, the 

construction of road and railway prisms parallel to lower Scotts Creek and through the historic 

floodplains of several tributaries, intense row-cropping and the associated loss of riparian habitat, 

stream channelization, and a legacy of wood removal. Scotts Creek is, however, set apart from 

many other central coast streams in that intense urbanization and habitat loss associated with 

urbanization has not occurred, which affords a rare restoration opportunity. “Urbanization is a more 
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prominent factor for the future than logging, and likely a more significant influence on the fate of 

CCC Coho Salmon…” (NMFS 2012 vol. 1, p.38). 

Wood removal was performed extensively throughout Santa Cruz County to protect homes and 

other important resources such as crop fields. The practice was also supported by the California 

Department of Fish and Game, because it was deemed necessary for the maintenance of fish 

passage. This culture arose in part to deal with legacy effects from intense logging that occurred in 

the late 1800s and in the early 1900s following the 1906 earthquake, when logging activities further 

intensified to supply wood to rebuild San Francisco after the devastating earthquake and fires of 

1906. Intense logging left large quantities of debris of various sizes in forested watersheds. Woody 

debris, both natural and anthropogenic, was episodically delivered to the stream channels during 

storm events or landslides where it often formed debris jams. Small woody debris played an 

important role in the ability of log jams to impound water or induce flooding, because small debris 

plugs gaps in log jams. The practice of wood removal was reconsidered when studies following the 

1982 flood in Soquel Village suggested that wood removal was not effective in preventing 

destructive log jams because large quantities of wood were delivered to the stream channel during 

storm events, and because wood removal promoted the formation of larger, more destructive log 

jams by removing instream structures that accumulate debris in smaller, more evenly distributed 

units. The County of Santa Cruz now “recognizes the value of allowing large woody material to 

remain in these streams to the greatest extent possible and its importance for sorting sediment, 

protecting steam banks and channel stability, providing pools and refuges, and generally benefiting 

stream habitat, when such material does not threaten life, public infrastructure, public safety, or 

aquatic habitat” (Santa Cruz County Environmental Health Department 2009). 

Major impacts to habitat in lower Scotts Creek were mostly associated with agricultural practices 

and the construction of the CA-1 crossing. Agricultural activities involving tilling began within the 

watershed in the mid-1800s. The riparian corridor was cleared and tilled up to the edge of the stream 
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channel to maximize the area of crop fields (Rowley 2003). Scotts Creek was straightened and 

dredging was performed to maintain the straightened channel. Levees were constructed in the late 

1938/9 on both sides of the stream to channel flow through the CA-1 Bridge opening. The United 

States Army Corps of Engineers (USACE) constructed additional levees and revetments along the 

lower crop fields beginning in 1956 (Figure 5). Portions of the streambanks were armored with 

steel vertical piles linked together with steel cable and welded wire fence. USACE continued to 

dredge the stream channel and maintain the levees through 1982 (Rowley 2003). Wood was 

historically removed from the lower Scotts Creek stream channel (County of Santa Cruz 1982). 
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Figure 5. Hillshade view of lower Scotts Creek showing deteriorating levees (highlighted in yellow) along 

the left bank. 
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3.9 Limiting Factors 

Coho Salmon viability in Scotts Creek is primarily limited by low habitat complexity including 

poor pool:riffle:flatwater ratio and shelter rating (NMFS 2012). In September of 2013, a physical 

habitat survey was conducted on the mainstem of Scotts Creek to evaluate physical habitat 

conditions for salmonids (see Brubaker 2015). These data show a spatial contrast in habitat 

availability on Scotts Creek. Pool frequency and percent pools was found to be diminished in the 

project reach compared to upper reaches (Tables 2 and 3). Survey data combined with additional 

field observations indicate a lack of instream woody debris and low stream complexity in three 

sub-reaches of the project reach (Table 5, also see Brubaker 2015). These sub-reaches are 

dominated by runs or glides with shallow, infrequent pools lacking adequate cover and having 

virtually no instream wood. 

Table 3. Frequency of habitat units per river mile. Project reach is italicized. 

Reach Glides Pools Riffles Runs 

Queseria to Stream Gage 12.7 15.6 5.7 8.5 

Stream Gage to Little Creek 4.3 28.8 7.2 10.1 

Little Creek to Big Creek 9.1 24.1 9.1 12.1 

Big Creek to Mill Creek 5.9 47.0 6.5 23.5 

Mill Creek to Swanton Road 12.8 40.9 15.3 12.8 

Above Swanton Road 5.9 42.0 16.0 17.7 

Table 4. Percent of each reach dominated by habitat type. Project reach is italicized. 

Reach Glide Pool Riffle Run 

Queseria to Stream Gage 38% 19% 10% 34% 

Stream Gage to Little Creek 16% 33% 11% 41% 

Little Creek to Big Creek 11% 28% 10% 51% 

Big Creek to Mill Creek 6% 39% 4% 51% 

Mill Creek to Swanton Road 21% 36% 9% 34% 

Above Swanton Road 10% 46% 13% 31% 
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Table 5. Lengths and locations of target sub-reaches along lower Scotts Creek. 

Sub-Reach Length (ft.) Downstream Extent Upstream Extent 

1 400 2600 3000 

2 300 3300 3600 

3 500 4300 4800 

The persistence of low-complexity reaches dominated by planar beds may be attributed to a lack 

of instream wood coupled with the legacy of stream straightening and dredging. Lack of instream 

wood likely limits complexity in the form of sinuosity within the bankfull channel, pool frequency 

and depth, and instream refuge habitat. The deteriorating levees continue to limit floodplain 

connectivity by confining flows to the main channel. The levees may significantly limit access to, 

or the development of, critical refuge and foraging habitat for fish during high flows and may limit 

the ability of the floodplain to store flood waters and sediment. 

The straightened, channelized geometry of the main channel, maintained by the presence of levees 

and bank armoring, likely increases main channel velocities, depths, shear stresses, and sediment 

loads over pre-agrarian levels. These conditions may significantly increase Coho Salmon red scour 

and egg–parr and parr–smolt overwinter mortality. Juvenile overwinter mortality is attributed to 

harsh conditions in the main channel exacerbated by lack of accessible refuge habitat. High velocity 

stormflows transporting low specific gravity bedload substrate through straightened and leveed 

reaches of lower Scotts Creek may bludgeon and flush overwintering juveniles into the ocean (the 

“bowling alley” effect) (J. Kiernan, personal communication). Fisheries biologists hypothesize that 

juvenile winter mortality is a primary factor limiting salmonid production in lower Scotts Creek (J. 

Kiernan, J. Smith, personal communications). 

To summarize, the factors limiting salmonid production on lower Scotts Creek, as understood by 

local fisheries biologists and as outlined in NMFS (2012), are juvenile winter mortality attributed 
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to lack of instream, alcove, off-channel, and floodplain refuge habitat (refugia), oversummer 

mortality or limited oversummer growth due to lack of productive instream and alcove rearing 

habitat with adequate cover and foraging opportunities, scouring or sedimentation of redds due to 

lack of instream wood to sort sediment or manage instream velocities during high flows, and 

unsuccessful spawning due to lack of or inaccessibility (during drought years) of spawning habitat. 
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4. DESIGN AND IMPLEMENTATION 

In the early 2000s, Cal Poly staff and agency representatives, including NMFS biologists, began 

planning restoration projects along lower Scotts Creek to improve floodplain connectivity and 

habitat conditions for salmonids. The restoration of Queseria Creek, the lowest tributary to Scotts 

Creek, was the first of Cal Poly’s planned restoration projects for lower Scotts Creek to be 

implemented. Lower Queseria Creek had been channelized to a straight ditch designed to route 

flow away from structures and farmland sometime in the late 1800s or early 1900s. Coho Salmon 

utilized this ditch for summer rearing and winter refuge habitat, though habitat conditions were 

impaired by high summer temperatures, lack of cover and complexity, migration barriers, and high 

velocities during winter stormflows. The Queseria Creek project was completed in 2004 to improve 

refuge and rearing habitat conditions by reducing summer stream temperatures and high-flow 

velocities, improve floodplain connectivity, increase cover and habitat complexity, and remove 

migration barriers. The project replaced the 950-ft-long ditch with a 1300-ft-long meandering 

stream channel inset into a low, vegetated floodway, constructed a sequence of instream cross-vane 

and j-hook structures using logs and boulders, replaced a 36-in perched culvert under Swanton 

Road that had been a migration barrier with a 14-ft bottomless arched culvert, replaced the failed 

barn access road culvert and washed out road prism with a 30-ft flat car bridge, and revegetated the 

reconstructed stream corridor with native riparian vegetation (Pearson 2004). 

During the planning of the Queseria Creek project, a project to improve floodplain connectivity 

and refuge opportunities by breaching the levee system along lower Scotts Creek was considered. 

Cal Poly anticipated that the project would significantly increase the frequency and duration of 

floodplain inundation. At that time, the riparian corridor of lower Scotts Creek was far less 

vegetated than today, and Cal Poly decided to suspend plans to breach the levee system until a 

vegetated riparian buffer could be established that would stabilize the floodplain and minimize the 

risk of flood damage to crop fields. In 2003, the crop fields were set back from the stream channel, 
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and 20.4 acres of the riparian corridor were placed in a NRCS Wetland Reserve Program (WRP) 

conservation easement (Casale, personal communication, 11/9/2015). By 2012, the riparian buffer 

had visibly increased in width and density (Figure 6). Riparian restoration is linked to improved 

habitat conditions. Opperman and Merenlender (2004) found that restoration of riparian buffers 

and associated vegetation through cattle exclosures was effective at improving instream salmonid 

habitat, potentially more so than placement of instream structures. 

In 2012, Cal Poly partnered with the Resource Conservation District of Santa Cruz County 

(RCDSCC) to initiate a formal design process for a restoration project on lower Scotts Creek to 

restore floodplain connectivity and improve habitat conditions for salmonids and associated aquatic 

and terrestrial species. The design phase was funded by the California State Coastal Conservancy, 

and coordinated by the Integrated Watershed Restoration Program (IWRP). IWRP was founded in 

2002 to facilitate and coordinate restoration projects on a watershed scale in California’s Central 

Coast region. The RCDSCC allocated funding to design a project “to improve salmonid and 

terrestrial amphibian habitat quality along a one-mile reach of Lower Scotts Creek” and “benefit 

hydrologic and overall riparian function by remediating the adverse effects that resulted from the 

channel modification and levee system that was constructed along with the Scotts Creek Highway 

One bridge crossing in 1938” (IWRP Phase 3 Individual Design Project Work Program 2012, p.1). 

The design process was guided by a recognition of “the value in presenting a project that benefits 

floodplain connectivity while preserving prime agricultural land” (J. Robins, personal 

communication, 12/20/2012). 

The project fit criteria specified by RCDSCC’s Partners in Restoration (PIR) Permit Coordination 

Program. PIR, developed through IWRP in 2003, facilitates small-scale restoration projects with 

clear environmental benefits. Projects utilizing one or more of 15 pre-approved NRCS Field Office 

Technical Guide conservation practices for erosion control, stream restoration, or wildlife habitat 

enhancement may qualify for implementation under PIR. Regulatory agencies including U.S. Fish 
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and Wildlife Service, NMFS, USACOE (includes National Environmental Policy Act compliance), 

Regional Water Quality Control Board, The County of Santa Cruz (includes California 

Environmental Quality Act compliance), and the California Coastal Commission have issued five-

or ten-year programmatic permits for PIR. For projects that qualify for PIR, RCDSCC submits a 

Pre-Construction Notification (PCN) to each regulatory agency, which is not a permit application, 

but instead documents each project’s compliance with each agency’s existing programmatic permit. 

PIR criteria, or other criteria identified as important by the IWRP Technical Advisory Committee 

(TAC) and Cal Poly, included placing no fill on the 100-year floodplain, limiting the volume of 

excavation to no more than 1000 cubic yards, not dewatering more than 300 feet of stream, and 

limiting the combined areas of temporary access and staging areas to 0.25 acres or less. 

Additionally, the total area of disturbance was limited to less than 1.0 acres to avoid triggering the 

implementation of an EPA-mandated Storm Water Pollution Prevention Plan (SWPPP). 

4.1 Design Concept 

Cal Poly staff, along with members of the IWRP TAC, identified restoration opportunities in the 

field and drafted a restoration concept map (Figure 7). In December of 2012, the IWRP TAC 

convened in the field to refine the preliminary design and provide technical guidance regarding the 

formal design and permitting process. The design objectives that were discussed included breaching 

portions of the levees to increase floodplain connectivity, constructing a low-profile setback levee 

to protect crop fields, constructing backwater connections with existing tributaries and floodplain 

ponds, and constructing large wood features instream using a combination of imported and locally-

sourced materials including redwood logs, rootwads, boulders, and in-situ alders located on the 

streambanks of lower Scotts Creek. During the meeting, the extents of the project reach were 

defined as the reach of lower Scotts Creek between Queseria and Archibald Creeks. This reach was 

chosen for four main reasons: 1) it is seen as critical to salmonid productivity and recovery, 2) it 

contains the legacy levee system prioritized for removal, 3) habitat conditions in this reach are 
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highly degraded compared to other reaches, and 4) it avoids the estuary which is governed by tidal 

influences that may change hydrologically with the planned CA-1 bridge replacement/estuary 

restoration. 

The preliminary design proposed increasing floodplain connectivity by excavating five to ten 300-

600-ft-long breaches in the existing levee, protecting crop fields by constructing a low-profile 

setback levee to replace the unmaintained levees, constructing lateral berms on the floodplain to 

slow flood flows, constructing backwater connections with tributaries and existing off-channel 

ponds, and constructing 12 large wood complexes (LWCs) using a combination of in-situ alders 

and locally-sourced redwood logs. Large alders would be recruited from the streambanks and be 

kept alive and anchored by pushing the trees over into the stream with their roots partially intact. 

The incorporation of in-situ alders into the design of the LWCs was proposed to 1) reduce the cost 

and impact associated with importing materials, 2) add complexity and cover value to the LWCs, 

3) to answer the important research question of whether the recruitment technique is a viable 

restoration alternative by monitoring mortality, decay rate, and persistence of the alder recruits. 

Work done by Opperman (2002), Opperman and Merenlender (2007), and Opperman et al. (2008) 

showed that coastal riparian hardwood species play an important in influencing stream morphology 

and instream hydraulics when trees remained living and anchored by their roots. These findings led 

to the first documented attempt to the author’s knowledge (described below) to develop a 

restoration technique around recruitment of living hardwood species. 
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Figure 6. Orthographic aerial images of project reach showing regeneration of riparian vegetation from 

1993 (above, representative of the vegetative condition that persisted until the establishment of the WRP) to 

2012 (below), and approximate 2003 WRP boundary (hatched area). The CA-1 bridge is visible at top left. 
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Figure 7. Conceptual map showing restoration opportunities along lower Scotts Creek (Perkins, 2012). 
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4.2 Design Alternatives 

All practical design alternatives were considered. Iterations of the preliminary design included a 

number of alternatives that were not implemented, including the ‘do nothing’ alternative. These are 

discussed below: 

4.3 ‘Do-Nothing’ 

The ‘do-nothing’ alternative was considered to avoid disturbing the biota of lower Scotts Creek, 

and incurring the anticipated cost and resource expenditure. The preliminary design proposed 

extensive disturbance to the project reach at a significant cost. When the design was later refined 

to minimize disturbance and expenditure, the ‘do-nothing alternative’ was subsequently discarded, 

because the benefits of implementing the project were seen as strongly outweighing the negative 

impacts associated with the anticipated disturbance, cost, and use of resources. 

4.4 Scope of Levee Removal 

Alternative levee removal options were considered. The preliminary design called for five to ten 

300- to 600-foot-long breaches, and an iteration of the design proposed up to twelve 75- to 100-

foot-long breaches, with the objective of maximizing floodplain connectivity, and refuge and 

foraging opportunities. The IWRP TAC concluded that 2D modeling and extensive data collection 

would be required to predict how the stream would respond to removal of large portions of levee. 

The TAC alternatively recommended breaching the levees near the downstream extent of the 

project reach to minimize the risk of damage to crop fields and wells, where floodplain access is 

maximized by lower Queseria Creek. There was consensus within the IWPR TAC that a setback 

levee would not be necessary, nor would 2D modeling be required, if levee removal was restricted 

to the lower portion of the project reach. 

Removing a 350-foot-long section of levee (“diagonal berm”) located on the floodplain between 

Scotts Creek and Queseria Creek adjacent to river stations 2000-2500 was considered 

(FigureFigure 8). A HEC RAS model showed that the bankfull event would not activate the 
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diagonal berm (C.G. Surfleet, 2013, unpublished report on the proposed restoration project’s 

modeled effect on flood levels, see Appendix A). Visual observations of bankfull indicators and 

measurements of the cross sectional geometry of the main channel indicated that the channel was 

incised adjacent to the diagonal berm, supporting the model’s results. These analyses, combined 

with examinations of other alternatives, led the design team to conclude that removing the diagonal 

berm would not effectively improve floodplain connectivity. 

Figure 8. Diagonal berm. 

4.5 Setback Levee 

The design team considered using the spoils from the restoration project to construct a continuous 

low-profile (3-ft-high) setback levee along the western edge of the crop fields. The TAC 

recommended further analysis to determine the appropriate height and location of the setback levee, 

and determine if the levee should run the entire length of the crop fields or be constructed in key 

flood-prone locations. The design team ultimately moved away from this idea because the 

magnitude of levee removal was reduced and restricted to the lower end of the project reach, where 

the risk of damage to crop fields would be minimized by the wide riparian buffer and backwater 

45 



 

             

              

  

   

           

             

             

              

               

    

             

         

            

            

              

    

     

               

             

                

                

               

                 

               

effects from Queseria Creek, and because it was determined that the setback levee would exacerbate 

ponding on the crop fields by impounding subsurface flows that emerge in the middle of the crop 

fields during stormflow. 

4.6 Lateral Berms 

The design team proposed constructing lateral berms on the floodplain adjacent to Scotts Creek, 

oriented perpendicular to streamflow, to slow flood flows in the downstream direction. The TAC 

advised that placement of significant fill on the floodplain would warrant extensive data collection 

and 2D modeling to ensure its function. The design team abandoned the concept, primarily because 

the scope of levee removal was reduced and did not warrant the construction of lateral berms. 

4.7 Side Channel Features 

The design team considered constructing side-channels to circulate stream flow through each of 

two existing floodplain ponds. This alternative would potentially maximize side-channel refuge 

habitat and maintain sediment transport through the features. The design team discarded this 

alternative because of the difficulty in predicting side-channel velocities and thus the quality of 

side-channel refuge habitat, and because of the unknown risks of dewatering the ponds or causing 

the channel to avulse. 

4.8 Drainage Ditch at 4300 

The design team considered connecting the main channel to the drainage ditch at 4300 to provide 

off-channel refuge habitat. Runoff from the ditch enters a network of gullies and swales running 

south, parallel to lower Scotts Creek on the east side of the left bank levee. These gullies converge 

into a single defined gully at station 4250, where the gully bottom is lower than the bankfull 

indicators in the main channel, indicating the gully had the potential to activate below the bankfull 

stage. The design team instead decided to connect the main channel to the swale at 4250 because it 

was expected to activate the gully and floodplain more frequently at a reduced disturbance and cost. 
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4.9 Preferred Alternative 

A design team and TAC identified a preferred alternative that would best meet the most important 

habitat and hydrologic objectives while minimizing risk to agriculture and infrastructure. The 

preferred alternative, later implemented, is summarized below: 

1. Levee breaches were excavated to allow the stream to access the floodplain bounded by Scotts 

and Queseria Creeks 

2. Floodplain connection channels were excavated to create backwater connections with existing 
hydrologically active features on the left bank and floodplain of Scotts Creek 

3. Alcove pools were inset into the left bank of Scotts Creek at the confluences of floodplain 

connections to provide additional refuge habitat. 
4. The Archibald Creek confluence was reconfigured to provide additional backwater winter 

refuge habitat. 

5. Large wood complexes (LWCs) were constructed in sub-reaches of low-complexity lacking 

wood using imported redwood materials, boulder ballasts, and in-situ alder trees 
6. Riparian restoration was accomplished by decommissioning an existing road segment and 

revegetating the road and all disturbed areas following construction with appropriate native 

riparian vegetation to stabilize the floodplain and improve habitat diversity. 

The preferred alternative’s measureable objectives were to: 

1. Increase the number of points of connectivity with the floodplain at the bankfull stage 
2. Increase pool frequency, depth and volume 

3. Increase LWD frequency, density and stream percent cover 

4. Increase the number and frequency of instream, alcove, and off-channel refuge habitat units 

Additionally, the project was expected to improve access to floodplain refuge and foraging habitat 

during high flows, reduce the risk of floodplain stranding by providing additional points of ingress 

back to the main channel, increase groundwater recharge, take advantage of floodplain storage and 

conveyance to attenuate stormflows, and increase the delivery of floodplain-derived food to the 

main channel. CDFW engineers reviewed the design of both phases (see Appendix B). 

4.10 Two-Phase Approach 

The project was implemented in two sequential phases (Figure 9) to address several challenges 

related to funding, permitting, and implementation. RCDSCC coordinated the design, funding, 

permitting, and implementation of both phases. Implementation of Phase I was funded by a grant 

from the Wildlife Conservation Board with permitting assistance through PIR. Phase I was 
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implemented in October of 2014 and spanned from station 1500 to 3000 (Queseria Creek to an 

agricultural drainage ditch near 3000). Phase I included five levee breaches, four instream large 

wood complexes, an alcove feature and backwater connection with the drainage ditch at 3000, and 

a backwater connection with an existing alcove feature adjacent to Queseria Creek at 1800. Phase 

II was funded by a grant from the California Department of Fish and Wildlife’s Fisheries 

Restoration Grant Program with permitting assistance through FRGP and PIR. Phase II was 

implemented in September 2015 and spanned 3000-6000 (just upstream from the ditch to Archibald 

Creek). Phase II included nine instream large wood complexes, two backwater pond connections 

and alcove features, an alcove feature and backwater connection with an existing hydrologically 

active swale feature, the enhancement of the Archibald Creek confluence, and the decommissioning 

of an existing road segment within the riparian corridor. 

The two-phase approach allowed the design team to make adjustments to the design of Phase II 

based on observations of the performance of Phase I. Below are four lessons learned from Phase I 

that were applied to the design of Phase II. 

1. LWCs sometimes influenced the cross-sectional velocity profile to a degree that would scour 
large, deep pools. Scour was most pronounced when channel capacity was obviously reduced. 

Large, densely foliated alder crowns, in combination with stabile redwood and boulder 

structures, appeared to be effective at reducing channel capacity. 

2. Velocity refuge appeared to form in the hydraulic shadow of alder crowns and rootwads, as 
evidenced by observations of the velocity profile across the channel during stormflow, and the 

location of depositional features. 

3. LWCs constructed on the left bank generally pushed the thalweg towards the right bank. 
Downstream from the LWC, the thalweg swung back towards the left bank. 

4. LWC frequency matched the natural thalweg frequency. LWC frequency should not exceed 

the sinuosity that the thalweg is capable of, otherwise the thalweg may simply migrate away 
from the LWCs. Maximum thalweg sinuosity probably depends on channel gradient. 

A comparison of Phase I and Phase II implementation techniques yielded an important lesson. 

During Phase I, the contractor used a rubber-tracked loader to ship spoils and load trucks, whereas 

during Phase II, the contractor used an excavator. The rubber tracked loader was faster and resulted 

in a smaller area of disturbance compared to the excavator. The author recommends that future 

projects require the use of a rubber-tracked loader at the pre-contracting stage. 
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Figure 9. Project reaches with river stationing in feet upstream from the CA-1 bridge. Blue denotes Phase 

I, cyan Phase II. Stationing is offset by approximately -100 feet compared to stationing shown in the 100% 

design drawings. 
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4.11 Levee Breaches 

Portions of the existing levees were removed to increase the number of points of connectivity with 

the floodplain bounded by Scotts and Queseria Creeks, increase the number and frequency of refuge 

habitat units, and create access to floodplain refuge and foraging habitat (Recovery Actions 2.1.1.1 

and 2.1.1.2, NMFS 2012). Five levee breaches were distributed along the reach spanning from the 

Queseria Creek confluence to the drainage ditch at 3000, at approximate stations 1900, 2000, 2650, 

2750, and 2850. This reach was chosen because the wide vegetated riparian buffer and low 

floodplain gradient (<0.3%) are expected to minimize risk of flood damage to crop fields by 

slowing floodflows, and because observations during overbank events suggest that flood flow 

velocities are buffered by backwater effects from the Queseria confluence. Breaches were cited 

along sub-reaches where they would likely activate the floodplain at the bankfull stage. The 

likelihood of activation was determined by comparing the elevation of bankfull indicators in the 

main channel to adjacent floodplain elevations. Two sub-reaches were identified where these 

elevations were approximately equal (1800-2100 and 2500-3000) whereas the channel was more 

incised from 2100-2500 and was avoided for that reason. Within the favorable sub-reaches, the 

approximate locations of the levee breaches were determined by selecting gaps in vegetation, and 

by attempting to evenly distribute the breaches throughout the sub-reach. 

The sizes of the breaches were minimized to reduce the volume of excavation and the area of 

disturbance. Breaches were laid out perpendicular to the main channel and levee berm to minimize 

the length required to connect the main channel to the floodplain. The breach bottom widths were 

minimized and the side slopes were optimized to minimize volume yet remain stable. While the 

breach openings were conceptually regarded as pilot channels with the potential to adjust in size 

during a very large flood event, it was necessary to determine a stable geometry to prevent mass-

wasting and sediment delivery to the main channel, and promote regeneration of native riparian 

habitat. The minimum bottom width required to keep the velocity of lateral outflow/inflow below 

50 



 

             

          

            

            

          

             

           

       

          

            

            

            

            

               

             

         

             

            

        

            

             

         

            

            

             

an erosive threshold was chosen, because it resulted in a stable configuration and minimal 

disturbance (see hydraulic calculations in Phase I Engineering Docket, Appendix C). 

Levee breaches were expected to result in an array of hydrologic, hydraulic, and habitat-related 

effects. The breach openings were expected to form five additional refuge habitat features at the 

margins of the stream channel during high flows. Increased floodplain connectivity was expected 

to improve access to floodplain refuge and foraging habitat, primarily for spawning adults, and 

reduce the potential for stranding by providing five additional points of egress/ingress. 

Additionally, increased floodplain connectivity could deliver additional floodplain-derived 

nutrients to the main channel which would improve instream foraging opportunities. 

In addition to increasing floodplain refuge and foraging opportunities for salmonids, levee breaches 

were intended to improve floodplain function and increase riparian habitat and species diversity by 

restoring the historical frequency and duration of floodplain inundation along lower Scotts Creek. 

High productivity, biodiversity and species richness of natural floodplains, and the importance of 

the flood pulse to floodplain function, has been documented (Junk et al. 1989, Gregory et al. 1991, 

Naiman et al. 2000, Tockner et al. 2000). Intentional levee breaches were found to influence 

floodplain topography through depositional sand-splay formation and floodplain scour, and 

delivery of large wood to the floodplain which further facilitates scour (Florsheim and Mount 

2002). Restoring the flood pulse along lower Scotts Creek may increase variation in floodplain 

topography, and as a consequence, increase habitat and species diversity. 

Hydrologically, the levee breaches were designed to increase the frequency (spatial) and number 

of points of connectivity with the floodplain, the frequency (temporal), duration, and area of 

floodplain activation, and increase groundwater recharge. Hydraulically, levee breaches were 

expected to reduce main channel discharge, velocities and shear stresses above the bankfull stage 

by taking advantage of floodplain storage and conveyance. Levee breaches have the potential to 

reduce sediment transport capacity and aggrade the main channel, however this effect may be 
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mitigated by the constructed instream features (see Large Wood Complexes below) located to 

increase flow competence in the vicinity of the breach openings, and by a reduction in sediment 

loads in the main channel due to conveyance and storage of sediment on the floodplain. Multi-year 

repeat longitudinal profiles or topo surveys should be done to track these potential effects (see 

Chapter 6. Monitoring). 

HEC RAS 4.1.0 was used to check whether the levee breaches, and other features, would activate 

at the bankfull stage as designed. To accomplish this, AutoCAD Civil 3D 2014 Imperial was first 

used to create a DEM of a design iteration which included five levee breaches, 12 instream large 

wood complexes (modeled as prism-shaped obstructions in select main channel cross-sections), 

connections with two off-channel ponds, connections with two drainage ditches, and the 

enhancement of the Archibald Creek confluence. HEC RAS was used to model the bankfull 

discharge through the main channel on the design DEM. The results were analyzed with the HEC 

GeoRAS plugin for ArcMap 10.2 (Figure 10). While the one-dimensional HEC RAS model cannot 

accurately model overbank flow (Roni and Beechie 2012), the results were useful for comparing 

bankfull water surface elevations (WSEs) to the bottom elevations of the proposed features. 
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Figure 10. HEC RAS model results for the bankfull event showing potential inundation (shaded blue) 

through the proposed levee breaches. 

53 



 

     

        

            

           

           

               

              

            

             

     

             

          

             

               

        

   

              

             

                

               

                

             

              

             

            

4.12 Floodplain Connections and Alcoves 

Low-gradient backwater connection channels were sited to establish hydrologic connectivity 

between the main channel and existing hydrologically active features on the floodplain (NMFS 

Recovery Action 2.1.1.2). These existing features included one small depression at 1800, an 

existing drainage ditch at station 3000, two floodplain ponds at stations 3300 and 3800, and an 

existing network of swales and gullies in the vicinity of station 4250. The small depression at 1800 

and the two ponds at 3300 and 3800 were likely scoured by large flood events in 1982 and 1998. 

The measureable objectives were to increase the number and frequency of instream, alcove, and 

off-channel refuge habitat units, and increase the number of points of connectivity with the 

floodplain at the bankfull stage. 

Alcove features were constructed at the confluence of each constructed connection channel, and at 

tributary confluences within the project reach. Alcoves were irregular teardrop shaped, with a 

nominal bottom diameter of 12 feet with 3:1 side-slopes. Alcoves were typically graded at the 

elevation of the streambed outside of the wetted low-flow channel and were expected to activate 

above summer base flow conditions (>20 ft3/s by visual estimate). 

Scour Feature at 1800 

At station 1800, a short channel was excavated to connect an existing depression to the main 

channel of Queseria Creek (tributary to Scotts Creek). The existing depression, formed by major 

recent flood events, was approximately 30 ft long by 20 ft wide by 4 ft deep, and located 

approximately 30 ft northwest of the main channel of Queseria Creek. The excavation removed the 

mass of soil between the scour feature and the main channel of Queseria Creek 210 ft upstream 

from the confluence of Queseria and Scotts Creeks, adjacent to station 1800 of Scotts Creek. The 

objective was to create a backwater connection with an existing but disconnected feature to provide 

additional refuge habitat. The constructed channel bottom was 6 ft wide and was graded at the 

elevation of the existing Queseria invert and scour feature invert. Rock was uncovered during 
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excavation and used in place to armor a section of the cut bank of the connection channel. In 

December 2014, flood flows in the vicinity of the scour feature were observed to have low 

velocities, due to a backwater effect from Scotts Creek. This area was revegetated with rushes 

Juncus spp., barberpole sedge Scirpus microcarpus, and umbrella sedge Cyperus eragrostis. 

Alcove at 3000 

An alcove pool feature was excavated, and a culvert and a portion of the existing levee berm were 

removed where a crop field ditch drained to Scotts Creek at station 3000. The ditch had previously 

passed under the levee into the main channel of Scotts Creek through an 18 in culvert that was 

50% plugged. The alcove feature was graded at the elevation of the bottom of the ditch/culvert. 

The alcove was teardrop shaped, with a nominal diameter of 12 ft. The objective of this feature was 

to create alcove and off-channel refuge habitat, reduce the potential for floodplain stranding, and 

reduce the main channel flood stage. The alcove feature was expected to activate at or above winter 

baseflows and fully connect to the floodplain at the bankfull stage. 

Ponds at 3300 and 3800 

Pond connections were excavated to provide an additional 0.25 acres of off-channel refuge and 

foraging habitat during high flows, with the goal of improving juvenile overwinter survival rates. 

The hydrologic objective of connecting these ponds to the main channel was to increase the 

frequency and duration of inundation of the ponds. Alders on the south side of the ponds were 

pushed over to increase insolation. Ecologically, improved connectivity combined with reduced 

canopy cover is expected to increase primary productivity within the ponds. 

Off-channel ponds may provide important winter rearing and refuge habitat. Salmonids were found 

to overwinter in off-channel ponds at much higher rates than main channel habitat features (Swales 

and Levings 1989, Whitmore 2014). Patterns of utilization in arid or Mediterranean climates near 

the southern extent of the range of Oncorhynchus spp. are not well understood, though utilization 

of off-channel features appears to be more transient and temperature limited (Merz et al. 2015). 
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Anthropogenic impacts limit the availability of off-channel habitat. The construction of off-channel 

ponds and other habitat features is an accepted method of increasing refuge opportunities in Pacific 

Northwest systems. Salmonids were observed to use constructed off-channel ponds as winter refuge 

habitat with higher occupancy than the main channel (Whitmore 2014, Morley et al. 2005). 

The ponds at 3300 (“lower pond”) and 3800 (“upper pond”) were determined to be groundwater-

fed and remained wetted perennially over the 2013-2015 drought. Rana draytonii were found in 

both ponds, however they were not breeding populations (Swaim, unpublished report, 2013). An 

important design objective was to connect the ponds to the main channel without dewatering them, 

because the ponds provided functional habitat for Rana draytonii, and potential salmonid habitat. 

Pond connection channels were excavated at a depth that corresponded to the winter baseflow stage 

(>20 ft3/s) and became fully connected to the ponds at the 0.5 to 1-year flow event. The channels 

began at the tail crest of each pond and terminated at the main channel in a constructed alcove 

feature. The geometries of the channels varied slightly along the length of the channels but were 

generally 4 feet wide with 3:1 side slopes. The preliminary design called for log or rock check dams 

to be placed in the channels to mitigate the potential for head-cutting that could dewater the ponds. 

The final design instead utilized vegetation, woody debris, sinuosity, and topographic variation to 

mitigate the potential for headcutting while promoting a natural appearance. 

At station 3250, the “lower pond” connection channel was aligned to follow an existing swale that 

began at the pond tail crest and ran south, parallel to Scotts Creek. The channel diverged from the 

existing swale and cut through the existing levee to join the main channel of Scotts Creek at station 

3200. The design length was approximately 140 feet. Mild irregularity was incorporated into the 

channel’s alignment and longitudinal profile to naturalize the feature, increase roughness and 

flowpath length, and create small residual pools capable of retaining surface water within the 

feature. The bottom width of the channel was 4 feet, and the slope was <1% towards the alcove. 
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The channel slope increased briefly to transition to the alcove as per the plan set. Planting density 

was increased at the transition to control erosion. 

The “upper pond” connection channel at 3800 was excavated perpendicular to the main channel to 

connect the “upper pond” to main channel. The plan set called for angling the channel in the 

downstream direction from the pond to Scotts Creek, however multiple woodrat nests were 

discovered along the proposed alignment prior to construction and the channel was realigned to 

avoid disturbing the nests. The final alignment followed an existing gully running perpendicular to 

the main channel of Scotts Creek, which further reduced the volume of excavation. The channel 

was approximately 60 feet long. 

Live in-situ alders were pushed into or over the ponds to provide escape cover for salmonids and 

CRLF, increase the productivity of the ponds by increasing insolation, and provide habitat for 

macroinvertebrates and breeding CRLF. Native aquatic vegetation is expected to colonize the 

ponds. If natural colonization does not occur, native aquatic vegetation will be transplanted to the 

ponds from other wetlands adjacent to Scotts Creek. 

Alcove features were inset into the left bank of Scotts Creek, at the outlets of the pond connections. 

The alcove features were graded at the elevation of the bed of the active channel, but above the 

wetted summer low-flow channel. The construction of alcove features at the outlets of the off-

channel pond connections was expected to provide additional refuge habitat at or above winter 

baseflow conditions. 

Floodplain connection at 4250 

An existing network of gullies was connected to the main channel of Scotts Creek by excavating 

an irregular channel through the existing levee. The objective was to increase alcove and off-

channel refuge habitat, and increase floodplain connectivity. The channel was excavated through 

the levee at the elevation of the gully bottom. The connection channel terminated at teardrop-shaped 

constructed alcove feature inset into the left bank of Scotts Creek. The bottom of the alcove feature 
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was excavated at the elevation of the active channel with a nominal diameter of 12 feet. The location 

was chosen because the bottom elevation of the gully was below the bankfull indicators in the main 

channel, indicating that the feature would activate frequently, because of the relatively short 

distance between the gully network and the main channel, and because a large natural debris jam 

formed immediately downstream which was expected to backwater the feature and further increase 

the depth and frequency of activation. 

4.13 Archibald Confluence Enhancement 

At 5600, the confluence of Archibald Creek was enhanced by excavating a backwater pool, 

excavating a connection to increase activation of an existing auxiliary channel parallel to Archibald 

Creek, and constructing two LWCs to increase the functionality of the confluence and increase 

habitat complexity. The objectives of enhancing the confluence were to increase the frequency, 

distribution, and volume of alcove refuge habitat at or above winter baseflow conditions, increase 

instream cover over a wide range of flows, and create access to additional tributary habitat along 

the mainstem of Archibald Creek during stormflows. 

Archibald is a seasonal tributary to Scotts Creek that behaved ephemerally in the current drought. 

West of Swanton Road, Archibald Creek emerged onto a terrace above Scotts Creek, and then 

cascaded east-west down a series of step-pools with cobble/boulder substrate into Scotts Creek at 

station 5850. The total channel length between Swanton Road and Scotts Creek was 300 feet at an 

average slope of 4.4%. The floodplain south of where Archibald Creek emerged onto the terrace 

activated when Archibald Creek experienced overbank flows. Activation was evidenced by debris 

racking and a gravel/cobble auxiliary channel bed running southwest from the terrace and 

terminating in a swale adjacent to Scotts Creek at station 5650. 

The confluence enhancement took advantage of this existing auxiliary channel and swale by 

excavating a pool at 5650 to connect the swale to Scotts Creek, and by excavating a connection 

between Archibald Creek and the existing auxiliary channel to increase the frequency of activation. 
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An existing downed willow that fell into Archibald Creek just downstream from the connection 

was repositioned to further increase activation of the auxiliary channel. 

The enhanced confluence was sited to avoid removing trees, and to utilize trees as bank armor. A 

teardrop-shaped pool was excavated in the left bank of Scotts Creek at 5650 to connect the swale 

with Scotts Creek. 

One wood complex was placed in the main channel of Scotts Creek along the left bank, just 

upstream from the confluence. The log was oriented parallel to streamflow to shunt water into the 

confluence and create an eddy. A boulder ballast was attached to the upstream end of the log, and 

a rootwad was attached to the downstream end of the log at the mouth of the confluence to provide 

cover and enhance the eddy. The parallel orientation of the log reduced the drag profile sufficiently 

to eliminate need for additional anchoring. 

A second wood complex was constructed downstream to backwater the confluence. An alder on 

the left bank was pushed over in the upstream direction. A log was place over the alder, 

perpendicular to flow. The log was braced against a live standing alder on the streambank. A 

boulder was attached near the midpoint of the log. A rootwad was attached to the log near the center 

of the active channel to shunt some flow under the log and against the left bank in an attempt to 

maintain the thalweg near the confluence. 

The auxiliary channel was expected to activate anytime flow was present in Archibald Creek. Scotts 

Creek was expected to backwater the constructed pool at or above the low-flow stage and the 

backwater effect will be enhanced by the downstream LWC. Flow from Archibald Creek, combined 

with the eddy generated by the upstream LWC, was expected to maintain sediment transport 

through the constructed pool feature. Backwater effects from Scotts Creek were expected to 

inundate the alcove feature and connection channel at the downstream end of the auxiliary channel. 

Full connectivity from Scotts Creek upstream along Archibald Creek to the top of the auxiliary 
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channel was expected to occur annually for several hours or days when flow overwhelmed the 

subsurface storage capacity along the auxiliary channel. 

4.14 Large Wood Complexes 

A total of 13 large wood complexes (LWCs) were constructed using redwood rootwads, logs, in-

situ alders, and boulder ballasts along lower Scotts Creek, to increase habitat complexity in sub-

reaches lacking wood, activate the floodplain, and enhance the functionality of other existing or 

constructed habitat features. The objectives of constructing LWCs were to increase the frequency 

of instream refuge habitat and rearing pools, backwater alcove and off-channel features, increase 

stream percent cover, sort sediment, and store organic debris. Storage of organic debris was 

expected to increase macroinvertebrate production. 

LWC placement generally targeted sub-reaches lacking wood and functional habitat (2500-3000, 

3200-3600, 4600-4800) and avoided sub-reaches where functional habitat was present (2100-2500; 

3600-3800; 4200-4300 and 5100-5300). The size of LWCs was constrained to span no more than 

half of the main channel width to reduce the potential for channel-spanning debris jams to form 

and minimize the risk of flooding the crop fields in large events. LWCs were stabilized using a 

combination of boulder ballasts and bracing against or attaching to live, standing trees located along 

the streambanks. Bracing LWCs against live standing trees, rather than creating fixed attachment 

points, allowed the complex to rise and fall with changes in stream stage, as might occur with 

naturally recruited large wood pieces. A novel fastening technique was utilized to attach individual 

components to one another to avoid the pit-falls of traditional cable and all-thread fasteners. 

In-Situ Alder Recruits 

Opperman and Merenlender (2007) found that the majority of intact, natural LWD in response 

reaches of coastal streams was created by living hardwood. The project sought to mimic natural 

recruitment of hardwoods by pushing alders or other hardwood species into the stream in a way 

that would promote stability and survival. Living LWD could be a cost-effective way to improve 
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stream complexity because it may minimize or eliminate the need to import conifers. This technique 

was carried out at a small additional cost to overall project and may provide important data leading 

to development of low-disturbance and cost-effective restoration techniques. The project used a 

combination of redwood and alder to insure stability and longevity of the LWCs. In-situ Alnus 

rubra offered several benefits: 

1. Foliage, branches, and dendritic structure adds complexity to LWCs. 

2. Complex structure is capable of racking debris of varying sizes. Crowns, with foliage and 
small, dense branches and twigs, can rack small debris particles. 

3. Alders add to the shelter rating of the LWC. 

4. Alder crowns may have strong hydraulic influence. 

5. Use of in-situ materials reduces impact and cost of importing redwood materials. 

Alders were downed by partially excavating their rootmass (when feasible) and then pulling or 

pushing the tree over into the stream channel, leaving some of the root structure intact and anchored. 

The alders were effectively pinned-down by placing the redwood log on top of the downed alder 

recruit. The log was then stabilized in the manner described above, which limited the movement of 

the alder recruit enough to keep it in place during stormflow. Alders and other hardwoods are not 

typically utilized to create instream structures. The use of hardwoods is not listed in the California 

Salmonid Stream Restoration Handbook (CDFW, 2010) and in the past FRGP has cautioned 

against constructing instream hardwood features, because LWD loading in N. California streams 

dominated by hardwoods is much lower than that in conifer-dominated streams. This suggests that 

hardwood LWD may be less influential on physical habitat conditions than conifer LWD 

(Opperman, 2002). Opperman (2002) reasons that LWD loading in hardwood-dominated streams 

is lower for four important reasons: 1) individual hardwood LWD pieces tend to be lower in volume 

than conifer pieces (results are reported in LWD volume/stream area); 2) stability is a function of 

piece size (among other factors), implying that hardwood LWD will be more easily mobilized by 

flows; 3) hardwood LWD is less resistant to decay than conifer debris; and 4) hardwood trees are 

shorter than conifers and thus the distance from which they can be recruited into the channel is 

shorter. 
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Recruitment of in-situ alders is analogous to the accelerated recruitment technique used by 

Redwood Forest Foundation/Blencowe Watershed Management and Soquel Demonstration State 

Forest on redwood-dominated reaches of coastal streams. Accelerated recruitment utilizes 

unanchored or minimally-anchored near-stream redwood materials instead of imported materials 

anchored using engineered anchors and ballasts (Carah et al. 2014). 

Stabilization using Live Trees 

Large wood features are frequently constructed well within the margins of the bankfull channel, 

and anchored to the stream bed, to ensure the feature is hydraulically influential, or capable of 

providing direct cover, at even the lowest flows. The drawback is that features constructed in this 

way may easily be buried in bedload (Frissell and Nawa 1992), and additionally, that the features 

are located at the bottom of the water column during high flows where shear stresses are highest, 

where the greatest sediment transport is occurring including potentially lethal transport of boulder 

and cobble material, where oxygen levels are lowest, and where there is the least opportunity for 

foraging. 

To address these problems, large wood complexes were stabilized by bracing one end of the 

redwood log backbone against a live-standing alder or willow growing on the streambank. Bracing 

would resist drag force in the downstream direction and enhance the stability of the feature. 

Configuring the logs in this way had two other important implications. First, the end of the log that 

was braced generally did not need to be anchored, which would allow it a degree of freedom 

(vertical). Vertical freedom of movement allowed the feature to rise and fall with stream stage. 

Probably the most important implication of this configuration was that a portion of the log was 

outside of the active channel. The intended effect was to create an eddy and backwater at the margin 

of the bankfull channel that would serve as refuge habitat. The author hypothesizes that wood 

features that occupy the top of the water column and the margins of the active channel during high 

flows will be more likely to provide functional refuge habitat, provide higher refuge quality habitat, 
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and be more stable, because the features will form eddies, capture insect drift and promote foraging, 

rack buoyant debris, mix oxygen into the top of the water column, and will be subject to lower 

velocities and shear stresses. 

Couplers 

An alternative fastening technique to traditional cable or all-thread fasteners was used to attach the 

components of the LWC structure together. Typically, constructed wood features are cabled or 

pinned to boulder ballasts or buried deadman anchors (Flosi et al. 2010). Rigidly anchored 

structures are susceptible to burial in bedload which reduces functionality (Frissell and Nawa 

1992). Boulder ballasts are commonly used to anchor buoyant instream structures (Flosi et al. 2010, 

also see Ruttenberg 2011). Boulders are typically attached to instream log structures using rigid 

all-thread/nut/washer fasteners (Flosi et al. 2010). Through-holes are bored through the diameter 

of the log. A slip-fit hole is drilled several inches deep into the boulder ballast, and a length of all-

thread is driven through the log and epoxied in place in the slip-fit hole in the boulder. A nut and 

washer is used to rigidly clamp the log against the boulder. Rigid all-thread connections are very 

strong in tension, but lack strength in bending and torsion, especially when subjected to cyclic 

loads. Bending and twisting may result from drag and buoyant forces, shock-loading due to debris 

impacts, static loading from sediment accumulation, or displacement of the structure. Cyclic 

loading may occur with the rise and fall of the stream. All-thread fasteners present additional 

challenges related to assembly. Very long drill bits may be required to drill through-holes. Long 

bits are prone to overheating and breakage. Long through-holes may be crooked or misaligned. 

Unanchored LWD structures avoid problems related to fasteners and assembly but requires the use 

of very large wood material or whole trees, often spanning the entire channel (Carah et al. 2014, 

Reynolds 2013). 

An alternative to bolting or cabling was used that was not found in the literature. Quick-links (a 

steel carabiner with a locking gate) or shackles were used to couple the individual log, boulder, and 
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rootwad LWC components together. These couplers securely held the structure together while 

allowing some independent movement among the individual components. Freedom of independent 

movement allowed the individual log and rootwad components to float above the bedload, adjust 

under large loads, and allowed debris jams to pass that could have otherwise caused the structures 

to fail. 

To create attachment points for the couplers in each of the LWC components, the design drawings 

called for the use of large-diameter eyeleted fasteners. Due to the difficulty and expense in sourcing 

large-diameter eyeleted bolts and lag screws, an alternative was devised by Jack Dietrich of 

Dietrich Ironworks (Santa Cruz). Steel angle brackets were coupled using a quick-link and then 

bolted to the boulder or log (Figure 11 and Figure 12). Go Native, Inc. alternatively used a pair of 

shackles instead of a single quick-link (see Figure 17 later in Chapter 5). An extra quick-link or 

shackle was added when it was necessary to extend the reach of the coupler. 

Figure 11. Log-rootwad coupler. 
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Figure 12. Log-boulder coupler. 

The connections were relatively easy to assemble. The narrow gate of the quick-link required that 

the brackets be linked together prior to assembly, however this was an advantage (discussed below). 

The coupler assembly was placed on the log/boulder and hole locations were marked. Eight-inch 

deep, slip-fit (7/8 in) or slightly oversized (15/16 in or 1 in) holes were drilled in the boulders using 

a masonry bit. A 12 inch long, 7/8-inch diameter, length of galvanized all-thread was bonded was 

epoxied in place, with 4 in protruding (room for bracket, washer, and double-nuts), using Simpson 

SET-XP® epoxy anchoring adhesive (manufacturer’s model number SET-XP22-N) dispensed 

through a Simpson 18-element mixing nozzle (Model number EMN22I) and allowed to cure for at 

least 24 hours. A 12-inch-deep interference-fit (5/8 in or 3/4 in) hole was drilled in the redwood 

component (log or rootwad). One bracket was placed over the all-thread protruding from the 

boulder and secured with a double-nut. The opposing bracket was attached to the redwood 

component using a 7/8 in diameter galvanized lag-screw. Tightening the lag screw against the 

bracket was used to draw the components together when necessary. 
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Ballasting 

The use of boulder ballasts is an accepted technique for stabilizing buoyant instream structures 

(Flosi et al. 2010) and was used in combination with the aforementioned techniques to create stable 

features that mimicked naturally-recruited large woody debris (see ballast calculations in 

Appendices C and D). Together, quick-link attachments, bracing against live trees, and ballasting 

facilitated the use of moderately-sized buoyant materials spanning less than half the active channel, 

while addressing performance, failure, and construction issues associated with traditional 

constructed wood features. 

LWCs at 2500–3000 

Four LWCs were constructed in the reach from 2500–3000 to increase instream wood and stream 

percent cover, facilitate pool scour and enhance pool habitat, increase instream refuge 

opportunities, and enhance floodplain connectivity along the sub-reach containing three 

constructed levee breaches and one constructed alcove feature. Each LWC was ballasted by at least 

one boulder and braced against a live tree on the left bank. Each LWC incorporated one in-situ 

alder and one rootwad to enhance the complexity of the features. At 2750 and 3000, rootwads were 

attached to the log near the left bank to create eddies near the margin of the stream channel. In the 

case of the LWC at 3000, the log and rootwad were oriented to establish an eddy in the constructed 

alcove feature. The rootwad was placed at the margin of the alcove to provide cover. At 2650 and 

2850, rootwads were attached to the end of the log near the middle of the stream to facilitate pool 

scour. The LWCs at 2650 and 2850 resembled naturally-recruited rootwads with large stems. 

Alders at 2650 and 2750 were topped and limbed. Alders at 2850 and 3000 were only partially 

limbed. 

LWCs at 3200–3600 

Four wood features were constructed in the sub-reach from 3200–3600. One large wood complex 

was placed to backwater the constructed alcove and connection channel at 3250. The redwood log 
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was positioned to span the low flow channel and thalweg, with one end near the center of the active 

channel and one end braced against a live tree on the streambank. The log was positioned so there 

would be a large gap under the log near the left bank. One rootwad was attached to the downstream 

side of the log near the log-end in the middle of the channel. One alder was felled upstream with 

the top pinned under the log and rootwad. One boulder was placed upstream of log and the log was 

attached to the boulder. The feature was designed to constrict the stream channel substantially to 

backwater alcove and facilitate scour within the active channel. Scour is expected to occur through 

the gap between the log and the left bank, at the outlet of the alcove feature/off-channel pond 

connection. The zone of scour/gap is expected to help maintain sediment transport through the 

alcove feature as floodwaters return to the main channel following stormflow. Scour is expected to 

occur at the end of the log and around the rootwad, near the center of the active channel. The gap 

under the log may cause the left bank to erode until channel capacity adjusts. A large gravel bar 

was present on stream right at the time of construction. A single alder was felled in the downstream 

direction over the gravel bar to maintain the gravel bar and keep the thalweg close to the alcove 

and wood complex. 

The feature at station 3350 was constructed to mimic the feature at 2850, constructed during Phase 

I. A large alder was felled upstream along the left bank. A redwood log, boulder, and rootwad, were 

placed in the channel. The log extended from the left bank to the middle of the channel. The rootwad 

and boulder were placed near the end of the log. The feature was located opposite the downed alder 

rootmass to focus flow at end of log/rootwad and facilitate deep scour pool. The feature is expected 

to reduce velocities along the left bank, providing instream refuge habitat and facilitating 

deposition, and increase velocities near the middle-right of the channel, especially near the end of 

the log, to facilitate scour. where the channel is constricted. 

At station 3450, the log was set above the thalweg in the middle of the active channel, nearly 

parallel to flow, to reduce the drag profile and keep the feature activated during low flows. The 
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feature was designed to provide cover over an exposed riffle-run. A large rootwad and boulder 

were attached to the downstream end of the log, and the upstream end was braced against an alder 

growing at the edge of the low-flow channel. The feature will likely direct flow towards the right 

bank and produce substantial bank scour. 

A large wood complex was constructed at 3600 to enhance an existing pool and provide instream 

cover. This feature was configured similarly to the structures at 2850 and 3350. The feature was 

located in middle of existing pool to enhance pool depth, and set-back from pool tail crest to 

maintain the pool tail crest elevation. The pool was targeted mainly because it is one of the largest 

pools in the project reach, yet lacked instream cover and velocity refuge. 

LWC at 3800 

One LWC was constructed to enhance the functionality of the constructed alcove feature at the 

confluence of the upper pond connection channel. The stream channel near the alcove had existing 

functional spawning habitat (2015 NMFS spawner survey), and existing woody debris. To avoid 

impacting the existing habitat, the feature was placed against the left bank and oriented parallel to 

flow to avoid significantly altering the original flow characteristics through the existing spawning 

area. This orientation was also intended to shunt flow along the length of the log and form an eddy 

within the alcove. A rootwad was attached to the downstream end of log.to provide cover and 

enhance the eddy. A boulder was attached to the upstream end of the log to ballast the feature. The 

log was attached to a live tree using a coupler. The upstream end of the log was ballasted with a 

boulder. The log was oriented parallel to streamflow to minimize obstruction to streamflow and the 

drag profile of the feature. The feature is expected to settle as the left bank scours around the end 

of the log and rootwad. 

LWC at 4200 

At station 4200, the plan set called for constructing a wood complex near the constructed alcove, 

however a large debris jam formed just downstream between design and implementation. The large 
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wood feature was not constructed at this location but instead installed at the Archibald Creek 

confluence enhancement. 

LWCs at 4400–4600 

Two large wood complexes were constructed between the NMFS PIT tag reader antenna arrays at 

stations 4400 and 4600. The downstream LWC was constructed on the right bank of the stream 

using an excavator parked on the left bank. The log was manipulated into place on the right bank 

without disturbing the streambed, using the excavator and rigging. The boulder and rootwad were 

placed at the end of the log in the center of the channel using the 30,000 lb. excavator. The feature 

was designed in tandem with the LWC just upstream to induce thalweg sinuosity within the 

bankfull channel. Rootwads and boulders were placed near the center of the active channel to 

achieve the greatest hydraulic influence. These features were designed to facilitate scour, form 

instream pools and refugia, and provide instream cover. 

LWCs at 5650 

Two large wood complexes were constructed to enhance functionality of the reconfigured 

Archibald Creek confluence. One LWC was positioned upstream and parallel to flow to shunt water 

into the confluence and provide cover over the backwater area. A second LWC was positioned 

downstream and perpendicular to flow to backwater the feature, facilitate scour, and provide 

additional cover. 

4.15 Riparian Restoration 

Passive and active restoration of riparian vegetation are accepted techniques for improving aquatic 

habitat conditions and increasing the resiliency of near-stream areas to flooding. NMFS (2012) 

recommended decommissioning riparian road systems to protect spawning habitat by minimizing 

the delivery of sediment to the stream channel (NMFS Recovery Action 9.1.1.5.). Restoring 

riparian function through passive restoration of riparian vegetation was shown to improve salmonid 

habitat conditions in coastal watersheds (Beschta 1997; Kauffman et al. 1997; Opperman and 
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Merenlender 2004). A 12- to 16-foot-wide, 860-foot-long segment of an existing access road that 

ran through the riparian corridor of Scotts Creek from 4400–5300 was identified as a potential 

sediment source (Figure 13). The road segment had become a concern because it was straight, 

incised, and the road surface was devoid of vegetation or other roughness or stabilizing features. 

The top of the road segment was oriented towards the outside of a meander bend in Scotts Creek 

where flood flows had damaged a portion of the existing levee. The levee had been repaired using 

a combination of rock and rootwads, but chronic erosion continued at that location. Levee 

maintenance was seen as undesirable due to the ongoing cost and disturbance to the riparian 

corridor, and Cal Poly instead sought to control erosion of the road surface by decommissioning 

and revegetating the road segment with native riparian over- and understory species. 

This alternative was chosen because provided multiple management and habitat benefits at 

relatively low cost, including increasing flood protection by increasing floodplain roughness, 

increasing habitat diversity and the area of riparian habitat. The road surface was de-compacted, 

strewn with slash and downed wood, and revegetated with locally-sourced native riparian plant 

species, including rushes, sedges, red alder, and willow. 

The road was replaced by a six-foot-wide sinuous trail located between the old road alignment and 

the streambank. The trail was placed on an elevated alignment and incorporated multiple grade 

reversals utilizing existing topographic features. The elevated alignment and grade reversals 

improved drainage of the trail surface and when combined with a sinuous alignment, should be 

effective at preventing unimpeded flow along the trail. 
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Figure 13. Photo taken during the 12/11/2014 storm of the access road segment that was to be 

decomissioned. 

4.16 Revegetation 

Erosion control and revegetation was performed to prevent erosion of disturbed areas, stabilize the 

constructed channels and alcoves, and increase plant species diversity in the riparian corridor of 

lower Scotts Creek. Weed-free rice straw was applied to bare soil. A revegetation palette (Table 6) 

was developed in consultation with botanist James West. Revegetation occurred in October and 

November following implementation of each phase. Disturbed areas were revegetated with 

transplants sourced from the Scotts Creek watershed and nearby coastal terraces, however a portion 

of the plants were sourced several weeks before implementation and stored in a shade structure. 

Barberpole sedge was sourced from the upper estuary marsh and big-leaf sedge from the 

streambank of north of the Archibald confluence. The crews planted most plants in the 

alcove/channel features, with barberpole sedge at the base of the alcove and big-leaf sedge in the 
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channel set back from the creek at 1/sq. yd. Crews planted remaining plants on temporary access 

routes near the streambanks. Crews sourced red alder seedlings and water knotweed Persicaria 

punctata from gravel bars in lower Scotts Creek. Crews planted red alder seedlings on streambanks 

above alcove features or on temporary access routes. Crews planted water knotweed at the bottom 

of alcoves near the edge of the active channel. Crews sourced 6-8 tons of rushes (includes weight 

of soil) from the coastal bluffs using a backhoe. Transplants were installed in disturbed areas in the 

project site, including connection channels and the decommissioned road segment. Rushes were 

divided into gallon-sized plugs and planted 2–3 ft apart in the graded areas. Cut banks were planted 

at higher density than the bottom of gradings. 
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Table 6. Revegetation palette. 

Common Name Scientific Name Function Location 

Shreve oak Quercus parvula var. shrevei 

California buckeye Aesculus californica 

Boxelder Acer negundo SS, S, C RC 

Red alder Alnus rubra SS, S RC 

Red elderberry Sambucus racemosa var. racemosa SS, S, C RC 

Blue elderberry Sambucus nigra subsp. caerulea SS, S, C RC 

Willow Salix spp SS, S, C FP, RC 

Creek dogwood Cornus sericea SS, S, C FP, RC 

Brown rush Juncus spp SS, EC FPA 

Bigleaf sedge Carex amplifolia SS, EC FPA 

Barberpole sedge Scirpus microcarpus SS, EC FP, RC 

Cyperus Cyperus eragrostis SS, EC FP, RC 

Slough sedge Carex obnupta SS, EC FP, RC 

Salmonberry Rubus spectabilis EC RC 

Blackberry Rubus ursinus EC RC 

Thimbleberry Rubus parviflorus EC RC 

Woodland strawberry Fragaria vesca EC RC 

Straggly gooseberry Ribes divaricatum var. pubiflorum EC RC 

California hedge-nettle Stachys bullata EC RC 

California figwart Scrophularia californica EC RC 

Douglas' nightshade Solanum douglasii EC RC 

Golden yarrow Eriophyllum confertiflorum EC RC 

Lady fern Athyrium felix-femina var. cyclosorum EC RC 

Giant chain fern Woodwardia fimbriata EC RC 

Sword fern Polystichum munitum EC RC 

Wood fern Dryopteris arguta EC RC 

Common yarrow Achillea millefolium EC RC 

Key: 

SS = soil stabilization RC = riparian corridor 

EC = erosion control FP = floodplain 

S = shade FPA = floodprone area 

C = cover 
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Transplants with dense root structures performed the best, especially rushed and sedges. Willow, 

big-leaf maple, California buckeye, creek dogwood, and elderberry cuttings were planted during 

Phase I, but experienced near-100% mortality in the first year. Overall mortality of transplants was 

estimated to be >50% after one year, probably due to winter floods and extreme drought. Cal Poly 

personnel watered once in November 2014 and once in June 2015. Watering was insufficient to 

sustain most plants through the drought. Tree cuttings were probably not planted deep enough to 

remain in contact with moist soil throughout the summer. In June of 2015, approximately 50 

additional plants were transplanted to the Phase I project area to augment plantings that had failed. 

Overall, vegetation survival rates from the original plantings that occurred in November of 2014 

were highest in areas with moist soil (near-stream or low floodplain) and deep shade. 
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5. MONITORING 

A panel of monitoring activities were initiated to monitor both phases. The purpose of the 

monitoring activities was threefold: first, to track the stability and performance of the constructed 

features; second, to track the longevity and survivorship of the alder recruits, and third, to determine 

whether the project met its objectives of increasing refuge and rearing habitat, wood density, stream 

percent cover, and floodplain connectivity. Preliminary monitoring activities provided important 

information that may help to guide future restoration projects in coastal streams. In order to 

determine whether or not the project succeeded in achieving its objectives and document project 

effectiveness, the following panel of monitoring activities was implemented: 

1. Physical habitat surveys 

2. Photo monitoring 

3. Collection of stream flow and floodplain inundation data 
4. Repeat topographic surveys in designated study sites 

5. As-built surveys 

6. A characterization of the ground-surface water relationship 
7. Water quality in the existing off-channel ponds 

Components of physical habitat assessment protocol described in the California Salmonid Stream 

Habitat Restoration Manual, Part VIII, were selected and implemented (California Department of 

Fish and Wildlife, 1997). Additional appropriate protocols specified in Scientific Protocol for 

Salmonid Habitat Surveys within the Columbia Habitat Monitoring Program (Bouwes et al. 2011), 

were selected and adapted for monitoring the project. 

5.1 Streamflow 

Streamflow was monitored using continuous flow data from the automated stream gage (pressure 

transducer with data logger and telemetry) located on Scotts Creek just below the Archibald Creek 

confluence. Discharge was estimated on stage using a calibrated rating curve. Manual flow 

measurements were taken opportunistically since the installation of the gage in 2010 to develop 

and maintain the stage-discharge rating curve for the gage. The accuracy of the automated gage 

was verified by observing a staff plate installed at the same depth as the gage’s pressure transducer. 
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The two largest peak flow events of the 2014-2015 rain season occurred on December 3rd and 

December 12th, 2014. The first event breached the sandbar at the mouth of Scotts Creek which 

resulted in the partial draining of the estuarine lagoon. The peak stage for this event was 3.2 feet. 

Prior to December 3rd, backwater from the lagoon had partially inundated the lower portion of the 

Queseria Creek stream channel, the newly constructed connection channel at station 1800, and the 

existing scour feature. Photos show a progression of wetting, draining, and re-wetting of the scour 

feature as the lagoon filled, drained, and then filled again as a result of stormflow. The largest peak 

flow event occurred on December 12th. This event slightly exceeded bankfull and produced minor 

flooding along the project reach. The stream gage above Archibald Creek recorded a peak stage of 

5.52 feet. Videos were taken of stormflows around the constructed features on the afternoon of 

December 11th, on the rising limb of the hydrograph near peak flow. Videos are available at: 

http://www.youtube.com/playlist?list=PLRRplD3jkK_Fn-Ryg_IktLgrGWw6qUZl4 

Figure 11. Hydrograph for Scotts Creek at the stream gage above Archibald Creek for December 2 – 22, 

2014. Vertical grid lines represent 6-hour intervals. 
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5.2 Level Loggers 

Level loggers (Odyssey capacitive, 1.5 meter) were deployed to monitor floodflow stages for the 

purpose of characterizing floodplain connectivity. The level loggers were calibrated according to 

the procedures described in the technical manual available at http://odysseydatarecording.com. One 

level logger was installed in the constructed alcove feature at the outlet of the agricultural ditch at 

3000 and the other was installed in the ditch 115 feet to the east. The level logger locations and 

elevations were surveyed using a total station. These loggers recorded depth data at 15 minute 

intervals in winter and spring of both 2015 and 2016. Redeployed in the same locations may reveal 

changes to the flood regime associated with Phase II. 

Data from the level loggers were plotted for the mid-December 2014 stormflow events (Figure 14). 

These plots show that the WSE in the alcove feature was higher than that of the ditch before and 

during the peak of the December 11-12 stormflow, indicating that lateral outflow was occurring. 

These data were in agreement with field observations on the afternoon of 12/11/2014. This suggests 

that the feature was backwatering the floodplain as intended through the improved connection. 

Four hours after peakflow, the WSE in the alcove feature fell below the ditch WSE and remained 

lower as storm flows receded. This condition suggests that surface water on the floodplain was 

draining back into the main channel, and that water was ponding in the ditch. Field observations of 

rilling at the ditch outflow confirm that the ditch drained the floodplain with enough velocity to 

erode the silt deposit that formed during stormflows. This indicates that the improved connection 

provided a return flow path for floodwaters, and could provide a point of return to the main channel 

for fish utilizing the floodplain during peak flows. 

Video from December 12th shows surface water flowing down the access road, located between 

the two level-loggers. An unknown portion of floodwaters flowed south down the access road 

which lies between the two level loggers. The access road was an apparent preferential flow path 
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which probably confounds the dataset’s usefulness in determining connectivity between the two 

level logger locations. 
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Figure 14. A comparison of water surface elevations in the alcove feature (solid line) and the drainage 

ditch (dashed line) during a December 2014 peak flow event.. 

5.3 Photo Monitoring 

Pre-construction, during-construction, and post-construction photographs were taken of each of the 

features that were constructed during both project phases. Additional photos were taken 

opportunistically of each of the features during and after winter stormflow events (see Appendices 

E and F). Photos are dated and arranged to document pre- and post-construction conditions, to 

illustrate the performance of each of the project features during storm flow events, and to document 

changes that were apparent after stormflows subsided. 

5.4 Snorkel Surveys 

NMFS staff conduct an array of ongoing salmonid life-cycle monitoring studies in Scotts Creek, 

including snorkel surveys to document the abundance and distribution of juvenile Coho Salmon. 
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Snorkel survey protocol is described in NMFS Santa Cruz/San Mateo County Coho Salmon 

Presence-Absence Study: Protocols for Snorkel Counts and Habitat Typing—2008 (Spence 2008). 

In 2015, NMFS snorkeled in July and again in November. Survey data has reach-scale resolution. 

Georeferenced survey data is forthcoming (Kiernan 2015). 

NOAA Fisheries staff conducted repeat snorkel surveys along lower Scotts Creek within the project 

reach to characterize salmonid utilization and survival. Total steelhead and Coho Salmon 

abundance by size class were recorded in every other pool, in summer, fall, and spring. The results 

of the snorkel survey for salmonid abundance by size class conducted on 7/31/2014 in the Phase I 

study reach are show below in Table 7. These data will later be used to track juvenile oversummer 

and overwinter survival rates. 

Table 7. Pre-project snorkel survey results for the Phase I study reach. 

Lengths (mm) Coho Salmon Steelhead 

< 25 2 

25-50 1 12 

51-75 1 24 

76-100 13 

101+ 4 

In addition to salmonids, four Three-Spined Stickleback Gasterosteus aculeatus and four Sculpin 

Cottoidea sp. were observed. 

5.5 As-built Surveys 

Georeferenced as-built surveys of the constructed features were performed by a two-person crew 

using a Topcon OS-103 total station, a SECO tripod, a SECO 8.5-foot reflector pole, and -30mm 

offset prism. Tom Mastin, (L.S., Professor, Cal Poly) set permanent and temporary survey control 

along the project reach using a combination of existing survey benchmarks and GPS-based survey 

techniques. New permanent survey control points were set in the Phase II project reach (point 

numbers 1089-1099) to supplement existing control (see Appendices I and J for a map and table of 
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survey control points). Point 1089 and 1090 are in field 4 near point 1500. Point 1500 is USGS 

benchmark M1238, located at the base of the utility pole at the intersection of Swanton Road and 

the farm access road between fields 2 and 4. The total station was set up over permanent survey 

control with line-of-sight to each feature. Each log, rootwad, boulder, and alder were surveyed. 

Logs were surveyed by taking two points at each of the two ends at the widest point in plan view 

(Figure 15). Rootwads and boulders were surveyed by taking select points on the top surface, which 

included the highest point, and around the perimeter, to capture the irregular surface and plan-view 

footprint of the element (Figure 16). Alders were surveyed by capturing select points on the top 

surface and perimeter of the rootmass, and pairs of points along the trunk and major branches at 

the widest point in plan view, single points at crotches, and a single or pairs of points at the tips of 

major branches or trunks, depending on whether the limb tapered to a point or terminated at a break 

or cut. Additionally, the center of each of the bolt-heads were surveyed. Surveying the bolt-heads 

was useful for determining displacement, including rotational displacement, of the elements, or 

may be useful in the future for capturing joint failure (Figure 17). Overhung features that could not 

be surveyed with the rod, usually bolt-heads, were surveyed using a reflectorless sideshot. Log 

points were coded “LOG”, boulder points were coded “BLDR”, alder points were coded “ALDR”, 

rootwad points were coded “RW”, and bolt-head centers were coded “BOLT”. 
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Figure 15. Log survey method. 

Figure 16. Surveying the permiter of a boulder. 
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Figure 17. Surveying bolt heads. 

Each graded feature was surveyed. These were the five levee breaches, the alcove feature/drainage 

ditch connection, and the alcove connection along Queseria Creek. The features were treated as 

having trapezoidal cross sections, with break lines at the top and bottom of the cut bank. Break 

lines were surveyed (coded ‘TB’ for top bank and ‘BB’ for bottom bank). TB points were taken at 

the top of the cut bank of each graded feature, which represented the feature’s footprint. BB points 

were taken at the hinge point between the cut bank and bottom of each graded feature. TB and BB 

break lines were chosen to converge at a common terminus along the perimeter of each grading. 

5.6 Condition of Wood Complexes 

Phase I wood complexes were surveyed during the as-built survey and during the post-season 

survey to track displacements of each element within the features and the condition of the couplers. 

The as-built survey was compared to the March 2015 survey to look for displacement (Figure 18). 
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Figure 18. Plan view plot of the fall 2014 as-built survey (red) overlain with the spring 2015 post-season 

survey(black) of the Phase I constructed large wood complexes showing displacement of the individual 

components. The stream flow was from top to bottom relative to the page. 
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All of the constructed wood features exhibited mild displacement (Figure 18). Movement of logs 

is attributed to the couplers elongating to their maximum extent in the downstream direction. In the 

case of the large wood complex at 2650, the rootwad was constructed upstream from the log. 

Stormflows flipped the rootwad over the log, rotated the log slightly, and displaced the log axially 

2 feet towards the center of the channel. The design team anticipated that the rootwad might 

change positions if placed upstream from the log. The rootwad was placed upstream because the 

excavator could not reach the downstream position without significant disturbance to the 

streambank vegetation. The design team was confident that the feature would self-adjust to a stable 

configuration. None of the other features exhibited visually discernable displacement. 

Alder components generally were displaced by stormflow. The downstream end of the alder at 

2750 swung towards the streambank 5 feet whereas the upstream end, anchored by the rootmass 

was not measurably displaced. The upstream end (unanchored) of the alder at 2850 swung out 

towards the center of the channel 4 feet while the rootmass remained stable at the downstream 

end. 

The boulders at 2650, 2850, and 3000 were not measurably displaced, while the boulder at 2750 

moved downstream and slightly inboard toward the left bank a total of 3 feet, possibly because 

the boulder was undersized. At 2650, the boulder in the stream channel was covered by the rootwad 

and its displacement could not be measured with the total station. However, it does not appear to 

have been displaced as evidenced by the lack of measured displacement of the log end that is 

anchored to the boulder. 

5.7 Alder Mortality 

The project proposed to utilize in-situ alders in addition to importing rock and redwood materials 

to construct instream wood features. Preliminary work by Opperman (2002), and Opperman and 

Merenlender (2007) suggests that hardwoods may play an important geomorphic role in hardwood-

dominated streams if recruited pieces remain alive and partially rooted. By extension, recruiting in-
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situ hardwoods may be a viable restoration technique, but the effectiveness of this experimental 

technique is unknown. Due to the experimental nature of using alder recruits, long-term monitoring 

was begun to track the longevity and mortality of alder recruits. 

Alder recruits were monitored visually throughout 2015 to track their survival. Visual indicators of 

survival were live foliage or shoots. In October 2015, the alder recruit at 2650 had a handful of live 

green leaves/shoots. The recruited alder at 2750 had no live or dead foliage/shoots. The alder at 

2850 had dead foliage, that had previously been green in the summer of 2015. The alder at 3000 

had live, green foliage. 

5.8 Stream Morphology 

The design team sought to track morphologic change associated with the constructed features, and 

to collect information that would inform the design of Phase II. Since the 1980s, repeat topographic 

surveys have been used in streams to track physical habitat changes over time, and volumetric 

analysis using DEM differencing has been used since the late 1990s (Wheaton, 2008). 

A total-station-based topographic survey protocol based on “Scientific Protocol for Salmonid 

Habitat Surveys within the Columbia Habitat Monitoring Program” (see Bouwes et al. 2011) was 

used to track changes in channel morphology. Topographic surveys of the channel segment of 

interest were repeated once in summer/fall to capture the as-built, pre-stormflow condition, and 

once in spring following implementation to capture the post-stormflow condition. Triangulated 

irregular network (TIN) and digital elevation model (DEM) surfaces were constructed from survey 

point data and overlain with habitat unit vector data to construct a physical habitat snapshot of the 

channel. 

These repeat topographic surveys were performed in one study reach within the Phase I project 

reach (2500–3000), two study reaches within the Phase II project reach (3000–3800 and 4200– 

4800), and a control reach (6000–6600). The objective was to track morphologic change associated 

with project implementation. The Phase I study reach included the four constructed wood features, 
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three of the five levee breaches, and the alcove feature/drain confluence enhancement. The Phase 

II study reach from 3000–3800 included four wood complexes and one alcove/pond connection, 

and the study reach from 4200-4800 included two wood complexes. The control reach where no 

restoration activities occurred was morphologically similar to the study reaches in that it was a 

straight, low-gradient reach with a planar bed lacking woody debris. 

In addition, portions of the floodplain where floodplain connections and alcove features were 

constructed at 3200-3300. A georeferenced longitudinal profile of the entire Phase II project reach 

was also performed. The topographic surveys and longitudinal profile were georeferenced using a 

combination of existing survey monuments and new temporary survey control points. Going 

forward, repeat longitudinal profiles or topographic surveys of the study reach and the constructed 

off-channel features will be conducted once in each of the first (2016) and second (2017) post-

construction seasons. The volumetric analysis performed for Phase I will be applied to the pre- and 

post-project survey data for the Phase II study reach. Additionally, a repeat longitudinal profile 

could help evaluate overall geomorphic change of the Phase II project reach. 

Repeat topographic surveys were performed using the set of equipment that was used for the as-

built surveys. Break lines for the top of levee (coded TL), bottom of levee (BL), top of bank (TB), 

bank bottom (BB), and thalweg (TW) were surveyed. Ground points (coded SD for side ditch or 

BD for bottom ditch) were surveyed to capture topographic variation in between break lines. The 

bottoms of pools, tops of gravel bars, maximum pool tail crest elevations, riffles, and other 

significant features were surveyed. Additional points were surveyed to capture all visually obvious 

breaks in slope. In addition, all existing wood >6 in dia. was surveyed within the bankfull channel. 

Points were taken to approximate the footprints of existing LWD. Only debris within the bankfull 

channel and below or partially below bankfull were surveyed. The topographic/LWD survey was 

repeated in spring of 2015 following winter stormflows. All prominent bathymetric features, and 

all constructed wood features were surveyed. The spring 2015 LWD survey included each 

86 



 

            

  

  

           

            

              

           

              

               

             

             

     

               

     

     

       

       
 

 

           

              

              

           

                

component of the constructed wood features using the survey methods described above for the as-

built survey. 

Topographic Data Processing 

Survey points for both summer 2014 and spring 2015 surveys were imported into AutoCAD Civil 

3D 2014 Imperial (C3D). Survey statistics are shown in Table 8. These statistics do not include the 

LWD survey. The point density of the spring 2015 topographic survey was more than double that 

of the summer 2014 topographic survey. A triangulated irregular network (TIN) surface was 

constructed from each set of points. Polygon shapes were constructed using the LWD survey points 

to represent the location of surveyed wood features. C3D was used to export LWD polygons as 

shapefiles and then imported to ArcMap for display and later analysis. C3D was used to generate 

a raster DEM (.tiff format) of each TIN. The DEMs were imported into ArcMap 10.2 for analysis 

using Geomorphic Change Detection Software. 

Table 8. Pre- and post- season topographic survey point statistics for the Phase I study reach. 

Surface: Summer 2014 Spring 2015 

Number of Points 814 2,110 

2D Surface Area (sq. ft.) 29,835 35,244 

2D Point Density (#/sq. ft.) 0.027 0.060 

Volumetric Analysis 

A boundary mask (polygon) was drawn on each of the two surfaces (summer 2014 and spring 

2015). The two polygons were intersected, and then the two TINs were clipped based on the 

intersected mask, so that the subsequent analysis would only be performed on the intersection of 

the two surfaces. A simple volume analysis was performed on the pre- and post-season TINs using 

C3D. A TIN volume surface was created using the June 2014 TIN as the base surface and the March 
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2015 TIN as the comparison surface. C3D was used to perform a cut/fill summary for the TIN 

volume surface to characterize volumetric changes within the study reach. 

The TINs were converted to DEMs in C3D and then imported into ESRI ArcMap 10.2. Within 

ArcMap, Geomorphic Change Detection Software 6.1.6.0 (GCD) was used to perform a simple 

Thresholding Change Detection analysis using minimum level of detection of 0.10 feet to reflect 

the typical vertical error observed when performing backsights. 

The DEMs were differenced to create a DEM of difference (DoD) and the results were displayed 

graphically by color coding the pre- and post-season DEMs, and the DEM of DoD. Raster cells in 

the DoD that fell under the minimum level of detection were greyed out. The polygon layer 

representing existing wood at the time of the fall 2014 survey were overlaid on the fall 2014 DEM. 

The polygon layer representing the constructed instream large wood complexes were overlaid on 

the spring 2014 DEM and DoD. 

A final analysis was performed in ArcMap to compare summer 2014 and spring 2015 total low-

flow pool habitat volumes within the study reach. An ArcMap “model” was used to run the Surface 

Volume tool (toolboxes\system toolboxes\3d analyst tools.tbx\functional surface\surface volume) 

to calculate habitat volume for a range of uniform water surface elevations within the study reach 

in 0.01-foot increments. The analysis was repeated for each surface (pre- and post-season) and 

identical processing extents were used for each analysis, which was the polygon formed by the 

intersection of both surfaces. Modeling volume using uniform water surface elevations was thought 

to closely approximate actual low-flow conditions because the overall channel gradient of the study 

reach is low (<0.3%). It would be worthwhile to compare the results of this analysis and a similar 

analysis done on detrended DEMs, or to model habitat volume based on surveyed WSEs. 

The results of the two volumetric analyses (GCD and AutoCAD Civil 3D) are shown in Table 9. 

GCD plotted an elevation change histogram for the analysis which is skewed towards deposition 

(Figure 19). 
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Table 9. Comparison of results from the AutoCAD Civil 3D (TIN) and Geomorphic Change Detection 

(DEM) analyses. 

2d Area 
(sq. ft) 

Cut (cy) Fill (cy) Net (cy) 

AutoCAD Civil 3D 27962.79 301.60 342.02 40.41 

GCD 27489 300.60 328.34 27.05 

Figure 19. Elevation change histogram of scour (red) and deposition (blue) within the study reach showing 

bias towards deposition (distribution is skewed to the right). 

The results of the topographic surveys, including the surveyed wood features, and habitat units, are 

displayed graphically in Figure 20. The volumetric analysis is plotted in Figure 21. 

It was found that pool volumes and depths increased within the study reach in the vicinity of the 

constructed features. Preliminary results indicate low-flow pool habitat volume increased by nearly 

2500 cubic feet assuming a low flow condition with a uniform water surface elevation of 11.3 feet 

(Figure 21). 
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The volumetric analysis showed net deposition occurred within the study reach, despite large areas 

of scour. Net deposition indicates a reduction in mean shear stresses, either because mean velocities 

decreased, or because bankfull depths decreased as a result of increased floodplain connectivity. 

Rates of deposition may yield information regarding localized velocities. Deposition was 

pronounced in the hydraulic shadow of downed, foliated alders, indicating the presence of slow-

water zones. More than 3 feet of deposition occurred downstream from the alder component of the 

LWC at 3000. 

Significant error in the volumetric analysis could occur if the elevation of one or more of the survey 

control points changed as might occur if the rebar were accidentally pushed into the ground by a 

vehicle tire or a person walking. The error would exaggerate the detected magnitude of deposition 

and diminish the magnitude of scour, because the total station would over-calculate the elevation 

of each topo point. 
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Figure 20. Study reach survey results showing habitat units, instream wood, and channel change between June 2014 DEM (top) and March 2014 DEM 

(bottom), and DEM of difference (bottom). 
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Figure 21. Habitat volumes at varying water surface elevations (primary axis), and volumetric differences 

(secondary axis) between June 2014 and March 2015. 

5.9 Alder Propagation 

The short-term and small-scale morphological influence of the constructed instream LWCs may 

initiate vegetative processes capable of driving long-term channel-scale and morphologic change 

(West, personal communication, 12/9/2016). The constructed LWCs were observed to facilitate the 

formation of deeper, more frequent pools, and also taller (bathymetrically) and potentially more 

stable bars. Alder seedlings were observed growing on many bars along lower Scotts Creek, 

including those bars that formed in association with LWCs. If these bars persist (for an unknown 

length of time) the alders themselves will likely begin to stabilize the bars. Once the bars are 

stabilized by durable vegetation, they may begin to control channel morphology, though the LWC 

or other hydraulically influential feature that facilitated the formation of the bar may no longer be 

present. Once stable, bars with rigid vegetation should be capable of racking debris and storing 
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sediment until some dynamic equilibrium is reached. These bars may begin to influence reach-scale 

morphology in terms of increasing sinuosity of the thalweg or even meander frequency/amplitude 

of the channel. 

5.10 Performance, Stability, and Hydraulic Influences of Phase I LWCs 

LWC at 2650 

The LWC at 2650 may have backwatered the upstream breach at 2750. Following stormflow, some 

scour was observed under the log, and around the end of the log near the center of the channel. 

Deposition occurred in the hydraulic shadow of the feature near the left bank. This feature had two 

boulder ballasts, unlike all other LWCs which utilized only one boulder per feature. One boulder 

was attached to each end of the log. One rootwad was attached to the end of the log on the upstream 

side. During stormflow on December 11th, 2014, the rootwad floated and flipped over the log, 

rotating log in the downstream direction. The log also moved axially toward the center of stream 

2 feet, probably as the log was destabilized during rotation. The flexible connections remained 

intact and no deformation of the individual hardware was observed. During construction, the alder 

was topped and all limbs were removed. The alder had live shoots as of October 2015. This feature 

appeared to be less influential on facilitating scour/deposition, possibly because the alder had been 

fully limbed and no crown structure remained. Limbing probably reduced its effectiveness at 

slowing instream velocities and constricting the channel’s effective cross-sectional flow area. 

LWC at 2750 

The LWC at 2750 noticeably changed the velocity profile across the stream channel during high 

flows in December 2014. The feature influenced the pattern of slow, turbulent flow near the left 

bank, and rapid, laminar flow near the right bank. The large rootwad placed near the left bank 

combined with the alder trunk facilitated deposition of coarse material downstream as evidenced 

by the formation of a narrow bar against the left bank (Figure 22). Debris racked against the alder 

crown and log. Pool scour occurred at the end of the redwood log. 
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Figure 22. Photo of LWC at 2750 following stormflow showing depositon of cobbles, pool scour, and 

debris racking. 

LWC at 2850 

The LWC at 2850 constricted the channel and directed flow between the rootwad at the end of the 

log and the right bank of the channel. The large alder crown apparently had a substantial effect on 

instream velocities, evidenced by deposition near the left bank and scour near the right bank. The 

feature scoured a large pool with a residual depth of 4.5 feet, and the rootwad provided direct cover 

over the pool. Prior to implementation, the section of stream had been a low-complexity glide 

lacking wood. Following stormflow, pool scour exceeded -3 feet near the right bank. 

LWC at 3000 

The LWC at 3000 moved the thalweg against the right bank, shunted flow into the alcove, formed 

a large gravel bar, and enhanced the depth of an existing pool. More than 3 feet of deposition 

occurred in the hydraulic shadow of the downed alder crown (Figure 20), forming a large gravel 

bar in the middle of the channel. A high-velocity region occurred between the LWC and right bank 
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which scoured the streambed and right bank. Bed scour enhanced the depth of the pre-existing pool 

at that location. A large amount of debris racked on the LWC and in between the log and 

streambank, partially obstructing shunting effect. Despite racking, the log shunted water into the 

alcove, and circular flow was observed within the alcove with a velocity of 2–3 ft/s. 

5.11 Alcove at 3000 

The existing point of connectivity at 3000 was improved by increasing the cross-sectional area of 

the connection from 1.8 sq. ft. – 9 sq. ft., an increase of 509%. The max. discharge of the culvert 

was estimated to be 13 ft3/s using the FHWA culvert nomograph (18 in culvert, W/D=2 [36 in flow 

depth], in actuality, the culvert was 50% filled with sediment). Using Manning’s equation, the 

max. discharge through the reconfigured ditch was estimated to be 200 ft3/s at 13.3 ft/s as 

floodwaters return to the main channel (depth=3 feet, bottom width=2 feet, 1:1 side slopes, channel 

slope= 2% (measured from DEM), n=0.02). although velocity will be buffered by backwater effects 

from the main channel. Several inches of silt were deposited in the alcove during the December 

2014 stormflows, however return flows downcut through the silt deposit as evidenced by rilling. 

Narrowing of the alcove feature occurred somewhat, though the bottom elevation of the alcove 

feature was maintained at 13.5 feet which was the as-built condition (see photo packet). 

5.12 Physical Habitat Assessment 

As-built and repeat topographic survey data were used in combination with photos, stormflow 

videos, field measurements, and observations, to quantify changes in the following habitat 

complexity and floodplain connectivity parameters associated with implementation. 

 Pool frequency per unit length of stream 

 Pool depth 

 The number of primary pools per unit length of stream 

 Percent stream cover 

 LWD density (LWD per unit length) 

 The number of high flow refuge habitat units per unit length of stream 

 The number of points of connectivity with the floodplain per unit length of stream 

 The potential reduction of flood stages/velocities/shear stresses in the main channel 
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5.13 Stream Complexity 

The pre- and post-stormflow DEMs were used in combination with field observations and depth 

measurements to quantify changes in the number and frequency of pools per unit length of stream, 

and pool depth. Overall pool frequency increased within the study reach. While NMFS considers 

the entire study reach to be one pool, prior to implementation of Phase I there were two 

distinguishable pools at 2600 and 2900 with residual depths of 1.5 and 1.0 feet respectively. In 

spring 2015, one additional pool formed at 2800, with a residual depth of 4.6 feet. 

The number of primary pools within the Phase I project reach increased from zero to one as a result 

of scour associated with the constructed large wood complexes. The pre-project condition is based 

on a 2013 habitat typing survey (Brubaker 2015). A primary pool developed around the rootwad 

component of the large wood complex at 2850. The pool/riffle/flatwater ratio increased within the 

study reach due to scour and deposition associated with the constructed large wood complexes. The 

footprint of instream debris, calculated in GIS using topographic survey data, was used as a proxy 

for cover. The footprint increased from 85.9 to 645.7 sq. ft., a 652% increase. The percent stream 

cover (measured as a percent of the active low-flow channel within the study reach AOI polygon) 

increased from 0.44% (from pre-existing natural wood) to 3.37% (from the constructed features). 

The LWD count increased from 2 pieces to 12 pieces (logs, rootwads, and downed alders) over 500 

feet of stream, or 2/500 feet – 12/500 feet within the study reach. Key LWD pieces increased from 

zero to four pieces per 500 feet of stream (count of redwood logs). 

5.14 Refugia 

The number of high flow refuge habitat units increased by at least six within the study reach. Refuge 

habitat units included the five breach openings and the constructed alcove feature. This count is 

based on field observations and video of activation of the breach openings and alcove feature, and 

visual indicators of low velocity regions. Additional instream refuge areas were visible in the 

vicinity of the LWCs, including backwater refuge areas upstream from some of the LWCs. 
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5.15 Floodplain Connectivity 

The number of new points of floodplain connectivity increased along the 1500-foot-long project 

reach by five due to the excavation of five levee breaches. Hydrologic modeling of the bankfull 

flow on the pre-project ground surface showed that prior to restoration, the project reach had one 

point of connectivity with the floodplain through the culvert/ditch at 3000 (see Appendix A). 

All five of the levee breaches activated during December 2014. Outflow was directly observed 

through the breaches at 1900 and 2000 on December 11 (Figure 23) Debris racked across the throat 

of 2000, apparently during outflow (Figure 18). Rilling at the mouth of 2000 indicated that return 

flow occurred (Figure 25).Vegetation in 1900 was laid down in the outflow direction and rilling 

was not observed at the mouth, suggesting that return flow did not occur there (Figure 26). One 

possible explanation for return flow at 2000 and not at 1900 is that floodwaters that were routed 

down the access road returned to the channel through 2000 before they could reach 1900. 

5.16 Instream Hydraulics 

Additional points of connectivity with the floodplain combined with roughness elements 

represented by the LWCs likely reduced instream flood stages, velocities and shear stresses. 

Overall, the sediment balance within the study reach tipped towards deposition (see Volumetric 

Analysis above). The reduction in sediment transport through the study reach indicates that shear 

stresses were reduced as a result of implementation. 2D modeling should be performed to test this 

hypothesis. 
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Figure 23. Looking NE on 12/11/2014 at breach at 1900 (foreground) and 2000 (background). Photo 

shows outflow through both breaches and floodplain inundation. 

Figure 24. Looking east at debris racked across the throat of the breach at 2000 on 12/18/2014. Scotts 

Creek is directly behind the vantage point. 
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Figure 25. Rilling at the mouth of levee breach at 2000 on 12/18/2014 

Figure 26. Standing in the breach channel at 1900 looking west at Scotts Creek on 12/18/2014. Vegetation 

is laid down in the outflow direction (towards camera). 
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6. CONCLUSION AND RECOMMENDATIONS 

Overall, installing large wood complexes measurably increased habitat complexity in terms of 

percent cover, frequency of key wood pieces, frequency of primary pools, and bathymetric 

variability. Preliminary results indicated low-flow habitat volume increased as a result of the 

constructed large wood complexes. Debris racking increased dramatically with the installation of 

large wood complexes in a reach previously lacking wood. Specific outcomes are discussed below 

along with recommendations for additional monitoring to more thoroughly understand the 

effectiveness of the project over time. 

6.1 Salmonid Production and Restoration Effectiveness 

Gallagher et al. (2012) estimated adult, parr, and smolt abundance on Caspar Creek, Pudding Creek, 

and south fork Noyo River (California Coastal Salmonid Monitoring Plan Life Cycle Monitoring 

Streams) using capture-recapture, depletion sampling, and PIT tagging. Survival at each life stage 

was estimated, including marine survival. Survival rates were used to estimate carrying capacity, 

and relate survival to abiotic factors, including physical habitat conditions and restoration effort. 

NMFS performs all of the necessary surveys and data collection to perform a similar analysis of 

the effectiveness of restoration effort in the Scotts Creek watershed. 

In addition, fine-spatial-scale fish abundance surveys which include size estimates may reveal 

habitat preference and growth potential of restored reaches versus control reaches. A Before-After-

Control-Impact (BACI) study could be carried out with existing data because the project was 

implemented in two phases. NMFS snorkel surveys may provide the necessary data to perform a 

fine spatial scale BACI analysis. 

6.2 Accelerated Alder Recruitment 

While short-term monitoring suggests that the hardwood components enhanced percent cover and 

were hydraulically and ecologically influential, long-term monitoring of stability, longevity, and 
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survivorship are required to reveal whether or not accelerated hardwood recruitment in stream 

reaches dominated by Alnus rubra will be a feasible and cost-effective restoration technique for 

enhancing stream complexity. Although some recruited trees had new green foliage in the first year 

following recruitment, the observation was inconclusive because new growth may have been a 

product of the previous year’s stored energy within the root system or tree. 

Alder recruits had noticeable hydraulic effect, especially those that were not substantially limbed 

or topped. Deposition occurred in the lee of foliated alder crowns, and the thalweg tended to migrate 

away from the crown or the region of deposition that occurred just downstream. Flow appeared to 

accelerate in cross sections occupied by the crown, as indicated by bed and bank scour. Foliated 

alder crowns also provided enhanced cover over a large area compared to the cover provided by 

simple log or boulder elements. Additionally, foliage and small branches retained leaf litter and 

other small debris. The upturned rootmass and cavity that resulted from pushing whole trees into 

the stream channel, created complex pools with cover at the margins of the stream channel. Pools 

formed by upturned alder rootwads were also observed to form slow water zones during high flows, 

especially in the lee of flow. 

Accelerated alder recruitment may increase natural rates of LWD recruitment in the future. Key 

LWD pieces, often in the form of a downed tree pointing downstream with an upturned rootwad at 

the upstream end, were found to provide refugia for the development mature riparian forest patches 

through the processes of debris and sediment accumulation (Abbe et al. 1996). Bars along lower 

Scotts Creek were observed to be nurseries for alder seedlings. Accelerated alder recruitment may 

initiate a feedback loop which increases future recruitment through the propagation of riparian 

forest patches. This may lead to the restoration of dynamic habitat-forming processes. These 

potential benefits suggest that accelerated alder recruitment warrants further investigation. 
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6.3 Alternative LWC Stabilization 

The use of couplers is a viable alternative to cabling or rigid all-thread connections in the 

construction of instream wood features. Additionally, bracing structures against live trees enhanced 

stability and in combination with couplers, prevented the structures from becoming buried in 

bedload. These alternative stabilization techniques offer significant advantages over traditional 

techniques. 

6.4 Floodplain Connectivity 

Levee perforation and the construction of floodplain connections was expected to increase 

floodplain activation. This project may provide opportunities to monitor the effects of increased 

activation on crop production and groundwater recharge. 

6.5 Modeling 

Uncertainty over the potential effects of increased floodplain connectivity may be reduced through 

the use of 2D modeling. 2D modeling may help quantify floodplain velocities, and additionally 

help evaluate the project’s effectiveness by quantifying changes to floodplain inundation and off-

channel habitat volume associated with implementation. 

6.6 Instream and Off-Channel Refugia 

The development of instream refugia during high flows is difficult to assess through direct velocity 

measurements due to a number of challenges including extreme hazard to personnel. Due to the 

difficulty in measuring instream velocities during peak flows, a forensic means of estimating 

instream velocities is desirable. Mapping particle size distributions may provide information 

regarding instream velocities. Occupation of off-channel features during high flows may be 

quantified through the use of PIT-tag readers installed in the off-channel connection channels. 
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6.7 Survey Methods 

Given the cost and disturbance associated with habitat surveys, it is recommended that remote 

sensing techniques be utilized as much as possible, especially during the spawning season. UAV-

mounted photography offers a means of capturing reach-scale changes to both particle size 

distributions and stream morphology (Carbonneau 2005; Carbonneau et al. 2003, 2004, 2005a, 

2005b, 2006; Lejot et al. 2007; Fonstad et al. 2013) and should be considered in the future. 

6.8 Sediment Budget 

Sediment loads, whether anthropogenic or natural, may be attenuated by constructing large wood 

complexes. The placement of complex structures instream may decrease mean instream velocities 

and facilitate net deposition. Net deposition may reduce downstream sedimentation by storing 

sediment locally. Overall, 300 yards of cut and 340 yards of fill (bank volumes) occurred in the 

stream channel associated with the construction of four large wood complexes, compared to 580-

730 yards (bulk volume) excavated using heavy equipment during the construction of the levee 

breaches and alcove connection channel. This comparison illustrates the ability of wood features 

to harness stream energy to do work that would otherwise be done by equipment running on fossil 

fuels. 

Given the desire to reduce greenhouse gas emissions, conserve resources, lower project costs, and 

reduce disturbance to riparian and instream habitats, future projects should explore alternative 

techniques that minimize the use of imported materials and heavy equipment. Restoration 

techniques that utilize in-situ materials, such as riparian hardwoods, or that incorporate specialized 

techniques from other fields (i.e. arboriculture, forestry, back-country trail construction), may offer 

worthwhile advantages. 

An efficiency analysis should be done to track the efficiency of contemporary construction 

techniques by comparing fossil fuels consumed during construction versus work done in terms of 

grading volumes and masses, end-hauling distances, and masses and displacements of imported 
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materials. An efficiency analysis would establish baseline efficiency against which progressive 

techniques could be evaluated. Overall, the practice of stream restoration is still young and offers 

plenty of opportunities for research and development. 

104 



 

 

 

           

        

               

          

        

     

              

             

           

 

             

      

            

                 

              

            

             

    

                

        

 

           

           

  

               

         

BIBLIOGRAPHY 

Abbe, T.B.; and D.R. Montgomery. 1996. Large woody debris jams, channel hydraulics, and 

habitat formation in large rivers. Regulated Rivers 12: 201–222. 

Adams, P.B., M.J. Bowers, H.E Fish, T.E Laidig, and K. Silberberg. 1999. Historical and current 

presence-absence of Coho Salmon (Oncorhynchus kisutch) in the Central California Coast 

Evolutionarily Significant Unit. National Marine Fisheries Service, Southwest Fisheries 

Science Center Administrative Report SC-99-03. 

Adams, P.B., L.W. Botsford, K.W. Gobalet, R.A. Leidy, D.R. McEwan, P.B. Moyle, J.J. Smith, 

J.G. Williams, and R.M. Yoshiyama. 2007: Coho Salmon are native south of San Francisco 

Bay: a reexamination of North American Coho Salmon's southern range limit. Fisheries 

32(9):441–451. 

Advisory Committee on Salmon and Steelhead Trout, 1988. The tragedy continues. Annual Report. 

California Department of Fish and Game. 

Alvarado, F., R.O. Briggs, and H.T. McCrary. 2005. Comments on the CDFG December 2004 

response to the CCFA and Big Creek Lumber Co. June 17, 2004 petition to the CDFG to 

redefine the southern boundary of the Central California Coast Coho ESU, dated January 26, 

2004. Big Creek Lumber Co. and Central Coast Forest Association. Davenport, CA. 

Beechie, T., and S. Bolton. 1999. An approach to restoring salmonid habitat-forming processes in 

Pacific Northwest watersheds. Fisheries 24(4):6–15. 

Beechie, T.J., D.A. Sear, J.D. Olden, G.R. Pess, J.M. Buffington, H. Moir, P. Roni, and M.M. 

Pollock. 2010. Process-based principles for restoring river ecosystems. BioScience 60(3):209– 

222. 

Beechie, T.J., and T.H. Sibley. 1997. Relationships between channel characteristics, woody debris, 

and fish habitat in Northwestern Washington streams. Transactions of the American Fisheries 

Society 126:217–229. 

Bell, E., W.G. Duffy, and T.D. Roelofs, 2001. Fidelity and survival of juvenile Coho Salmon in 

response to a flood. Transactions of the American Fisheries Society 130(3):450–458. 

105 



 

 

             

    

                

      

            

              

             

 

           

    

             

      

                

           

            

         

       

   

                 

              

          

          

    

              

          

 

Benegar, J.R. 2011. Evaluation of constructed wood jams in a forested, graveled stream. Master’s 

thesis. Humboldt State University. 

Benke, A.C., R.L. Henry III, D.M. Gillespie, and R.J. Hunter. 1985. Importance of snag habitat for 

animal production in Southeastern streams. Fisheries 10(5):8–13. 

Beschta, R.L. 1997. Restoration of riparian and aquatic systems for improved aquatic habitats in 

the upper Columbia River basin. Pages 475–491 in Stouter, D.J, P.A. Bisson, and R.J. Naiman, 

eds. Pacific salmon and their ecosystems: status and future options. Chapman and Hall, New 

York. 

Beschta, R.L., and W.S. Platts. 1986. Morphological features of small streams: significance and 

function. Water Resources Bulletin 22(3):369–379. 

Bilby, R.E., and G.E. Likens. 1980. Importance of organic debris dams in the structure and function 

of stream ecosystems. Ecology 61(5): 1107–1113. 

Bjorkstedt, E.P., B.C. Spence, J.C. Garza, D.G. Hankin, D.F uller, W.E. Jones, J.J. Smith, and R. 

Macedo. 2005. An analysis of historical population structure for evolutionarily significant units 

of chinook salmon, Coho Salmon, and steelhead in the North-Central California coast recovery 

domain. NOAA Technical Memorandum NMFS-SWFSC-382. U.S. Department of Commerce 

National Oceanic and Atmospheric Administration National Marine Fisheries Service 

Southwest Fisheries Science Center. 

Bouwes, N., J. Moberg, N. Weber, B. Bouwes, S. Bennett, C. Beasley, C.E. Jordan, P. Nelle, M. 

Polino, S. Rentmeester, B. Semmens, C. Volk, M.B. Ward, and J. White. 2011. Scientific 

protocol for salmonid habitat surveys within the Columbia Habitat Monitoring Program. 

Prepared by the Integrated Status and Effectiveness Monitoring Program and published by 

Terraqua, Inc., Wauconda, WA. 

Bulger, J.B. Unpublished letter to Dr. Brian Dietterick dated September 2, 2004. College of 

Agriculture, Food, and Environmental Sciences, California Polytechnic State University, San 

Luis Obispo. 

106 



 

 

             

              

  

            

         

     

          

         

             

  

             

           

        

         

        

          

    

             

          

  

               

          

     

             

           

  

Carah, J.K., C.C. Blencowe, D.W. Wright, and L.A. Bolton. 2014. Low-cost restoration techniques 

for rapidly increasing wood cover in coastal Coho Salmon streams. North American Journal of 

Fisheries Management 34(5):1003–1013. 

Chartrand, S., B. Hecht, D. Shaw. 2003. Soquel Creek watershed assessment: geomorphology and 

baseflow hydrology. Balance Hydrologics. Unpublished report for the Resource Conservation 

District of Santa Cruz County. 

Cramer, M.L. (ed.) 2012. Stream habitat restoration guidelines. Washington Departments of Fish 

and Wildlife, Natural Resources, Transportation and Ecology, Washington State Recreation 

and Conservation Office, Puget Sound Partnership, and the U.S. Fish and Wildlife Service. 

Olympia, Washington. 

Federal Register 1978. Memorandum of understanding between the U.S. Fish and Wildlife Service, 

United States Department of The Interior, and the National Marine Fisheries Service, National 

Oceanic and Atmospheric Administration, United States Department of Commerce, regarding 

jurisdictional responsibilities and listing procedures under the endangered species act of 1973. 

Federal Register. 1999. 50 CFR Part 226. 64(86):24049–24062. 

Fisheries Restoration Grant Program. 2015. Proposal solicitation notice. California Department of 

Fish and Wildlife. http://www.dfg.ca.gov/fish/administration/Grants/FRGP/Solicitation.asp 

Florsheim, J.L., and J.F. Mount. 2002. Restoration of floodplain topography by sand-splay complex 

formation in response to intentional levee breaches, Lower Cosumnes River, California. 

Geomorphology, 44(1–2):67–94. 

Flosi G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins. 2010. California salmonid 

stream habitat restoration manual 4th edition. Wildlife and Fisheries Division, California 

Department of Fish and Wildlife. 

Fonstad, M.A., J.T. Dietrich, B.C. Courville, J.L. Jensen, and P.E. Carbonneau. 2013. Topographic 

structure from motion: a new development in photogrammetric measurement. Earth Surface 

Processes and Landforms 38(4):421–430. 

107 

http://www.dfg.ca.gov/fish/administration/Grants/FRGP/Solicitation.asp


 

 

                 

         

            

     

              

     

              

           

  

              

            

 

                

          

       

          

           

     

             

           

  

            

     

              

          

  

Foster, D., F.J. Swanson, J. Aber, I. Burke, N. Brokaw, D. Tillman, and A. Knapp. 2003. The 

importance of land-use legacies to ecology and conservation. Bioscience 53(1):77–88. 

Francis, R.A. 2007. Size and position matter: riparian plant establishment from fluvially depositied 

trees. Earth Surface Professes and Landforms 32(8):1239-1243. 

Frissell, C.A. 1992. Cumulative effects of land use on salmon habitat in Southwest Oregon Coastal 

Streams. Thesis. Oregon State University. 

Frissell, C.A. and R.K. Nawa. 1992. Incidence and causes of physical failure of artificial habitat 

structures in streams of Western Oregon and Washington. North American Journal of Fisheries 

Management 12(1):182–197. 

Gallagher, S. P., S. Thompson and D. W. Wright. 2012. Identifying factors limiting Coho Salmon 

to inform stream restoration in coastal Northern California. California Fish and Game 

98(4):185–201. 

Gillett, S., C. Tan, J. Morley, J. Missaghian, G. Wesolowski, J. Robins, M. Podlech, K. Camara. 

2014. San Vicente Creek watershed plan for salmonid recovery. Resource Conservation 

District of Santa Cruz County. Capiltola, California. 

Gobalet, K.W., P.D. Schulz, T.A. Wake and N. Siefkin. 2004. Archaeological perspectives on 

native American fisheries of California, with emphasis on steelhead and salmon, Transactions 

of the American Fisheries Society 133(4):801–833. 

Good, T.P., R.S. Waples, and P. Adams (eds.). 2005. Updated status of federally listed ESUs of 

west coast salmon and steelhead. U.S. Department of Commerce, NOAA Technical 

Memorandum NMFS-NWFSC-66. 

Harmon, M.E. and twelve coauthors. 1986. Ecology of coarse woody debris in temperate 

ecosystems. Advances in Ecological Research 15:133–302. 

Harrington, C.A. 1990. Red alder. P. 116-123 in Silvics of North America, Volume 2, Hardwoods. 

Burns, R.M and B.H. Honkala, technical coordinators. USDA Forest Service Agriculture 

Handbook 654. 

108 



 

 

               

           

           

       

               

                

         

  

            

           

  

              

         

  

          

           

 

             

         

      

              

        

 

              

         

           

       

Hammersmark, C. T., W. E. Fleenor, and S. G. Schladow. 2005. Simulation of flood impact and 

habitat extent for a tidal freshwater marsh restoration. Ecological Engineering 25(2):137–152 

Hayes, S.A. 2013. Untitled Presentation. Class lecture, Watershed Management, February 23, 

2013. Cal Poly/Swanton Pacific Ranch, Davenport, CA. 

Hayes, S.A., C.V. Hanson, D.E. Pearse, M.H. Bond, J.C. Garza, R.B. MacFarlane. 2012. Should I 

stay or should I go? the influence of genetic origin on emigration behavior and physiology of 

resident and anadromous juvenile Oncorhynchus mykiss. North American Journal of Fisheries 

Management 32:722–780. 

Hilderbrand, R.H., A.D. Lemly, C.A. Dolloff, K.L. Harpster. 1998. Design considerations for large 

woody debris placement in stream enhancement projects. North American Journal of Fisheries 

Management 18:161–167. 

Hillard, A.B. 2015. Detecting change in Central California Coast Coho Salmon habitat in Scotts 

Creek, California, from 1997 –2013. Master’s thesis. California Polytechnic State University, 

San Luis Obispo. 

Integrated Watershed Restoration Program. 2012. IWRP Phase 3 Individual Design Project Work 

Program, amended 11/4/2013. Resource Conservation District of Santa Cruz County, Capitola, 

California. 

Junk, W.J., P.B. Bayley, and R.E. Sparks. 1989. The flood pulse concept in river-floodplain 

systems. Proceedings of the International Large River Symposium. Canadian Special 

Publication of Fisheries and Aquatic Sciences 106:110–127. 

Kaczynski, V.W., and Alvarado, F. 2006. Assessment of the southern range limit of North 

American Coho Salmon: difficulties in establishing natural range boundaries. Fisheries 

31(8):374–391. 

Kauffman, J.B., R.L. Beschta, N. Otting and D. Lytjen. 1997. An ecological perspective of riparian 

and stream restoration in the Western United States. Fisheries 22(5):12–24. 

Koopman, J. 4/11/2008. Salmon fishing closed for California, Oregon—California, parts of Oregon 

coasts closed—fishing industry braces for disaster. San Francisco Chronicle. 

109 



 

 

 

              

   

               

           

      

             

       

              

          

               

          

      

               

             

            

    

             

              

           

   

             

           

     

http://www.sfgate.com/green/article/Salmon-fishing-closed-for-California-Oregon-

3288476.php 

Lake, P.S., N. Bond, and P. Reich. 2007. Linking ecological theory with stream restoration. 

Freshwater Biology 52(4):597–615. 

Lejot, J., C. Delacourt, H. Piégay, T. Fournier, M.L. Trémélo, and P. Allemand. 2007. Very high 

spatial resolution imagery for channel bathymetry and topography from an unmanned mapping 

controlled platform. Earth Surface Processes and Landforms 32(11):1705–1725. 

Marcus, W.A. and M.A. Fonstad. 2008. Optical remote mapping of rivers at sub-meter resolutions 

and watershed extents. Earth Surface Processes and Landforms 33(1):4–24. 

Marston, D. 1992. June-July 1992 stream survey report of lower Scott Creek, Santa Cruz County. 

State of California, The Resources Agency, Department of Fish and Game. 

McCrary, H.T. 2003. Petition to redefine the southern extent of the Central California Coho ESU. 

Letter dated November 23, 2003 to R. McInnis, Acting Regional Administrator, NOAA 

Fisheries, Southwest Region, Long Beach, CA. 

McCrary, H.T. 2004. Addendum to the petition to redefine the southern extent of the Central 

California Coho ESU, submitted to NOAA Fisheries on November 6, 2003. Letter dated 

February 6, 2004 to R. McGinnis, Acting Regional Administrator, NOAA Fisheries, Southwest 

Region, Long Beach, CA. 

McCrary, H.T. 2005. Response to the NOAA Fisheries, Santa Cruz Laboratory’s second review of 

the November 6, 2003 petition from Homer T. McCrary concerning coho salmon south of San 

Francisco. Letter dated 10 May 2005 to R. McGinnis, NOAA Fisheries, Southwest Region, 

Long Beach, CA. 

McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 2000. Viable 

salmonid populations and the recovery of evolutionarily significant units. U.S. Department of 

Commerce, NOAA Technical Memorandum NMFS-NWFSC-42. 

110 

http://www.sfgate.com/green/article/Salmon-fishing-closed-for-California-Oregon


 

 

                

          

       

                  

      

            

             

    

              

    

           

           

           

    

              

         

              

         

        

           

      

            

         

     

             

    

Merz, J.E., D.G. Delaney, J.D. Setka And M.L. Workman. In press. Seasonal rearing habitat in a 

large Mediterranean-climate river: Management implications at the southern extent of Pacific 

salmon (Oncorhynchus spp.). River Research and Applications. 

Molles, M. C., C. S. Crawford, L. M. Ellis, H. M. Valett, and C. N. Dahm. 1998. Managed flooding 

for riparian ecosystem restoration. Bioscience 48:749–756. 

Morley, S.A., P.S. Garcia, T.R. Bennett, P. Roni. 2005. Juvenile salmonid (Oncorhynchus spp.) 

use of constructed and natural side channels in Pacific Northwest rivers. Canadian Journal of 

Fisheries and Aquatic Sciences 62(12):2811–2821. 

Naiman, R.J., E.V. Balian, K.K. Bartz, R.E. Bilby, and J.J. Latterell. 2002. USDA Forest Service 

General Technical Report PSW-GTR-181. 

National Agriculture Imagery Program. 2012. Aerial photograph. 1-meter resolution. CA 087. 

National Marine Fisheries Service. 2012. Final recovery plan for the Evolutionarily Significant 

Unit of Central California Coast Coho Salmon. National Marine Fisheries Service, Southwest 

Region, Santa Rosa, California. 

Nehlsen, W., J.E. Williams, and J.A. Lichatowich. 1991. Pacific Salmon at the Crossroads: Stocks 

at Risk from California, Oregon, Idaho, and Washington, Fisheries 16(2):4–21. 

Niemiec, S.S., G.R. Ahrens, S. Willits, and D.E. Hibbs. 1995. Hardwoods of the Pacific Northwest. 

Research Contribution 8. Oregon State University, Forest Research Laboratory. 

Opperman, J.J., 2002. Anadromous fish habitat in California’s Mediterranean-climate watersheds: 

influences of riparian vegetation, instream large woody debris, and watershed-scale land use. 

Doctoral dissertation. University of California, Berkeley. 

Opperman, J.J; and A.M. Merenlender. 2004. The effectiveness of riparian restoration for 

improving instream fish habitat in four hardwood-dominated California streams. North 

American Journal of Fisheries Management 24(3):822–834. 

Opperman, J.J., and A.M. Merenlender. 2007. Living trees provide stable large wood in streams. 

Earth Surface Processes and Landforms 32:1229–1238. 

111 



 

 

            

         

             

        

            

       

              

      

               

          

  

        

           

    

          

           

        

 

       

 

            

         

 

                

                

Opperman, J.J., M. Meleason, R.A. Francis, and R. Davies-Colley. 2008. “Livewood”: geomorphic 

and ecological functions of living trees in river channels. BioScience 58(11):1069–1078. 

Pearson, J.A. 2004. Riparian restoration of Queseria Creek: A model for planning, design, and 

implementation. Master’s thesis. California Polytechnic State University, San Luis Obispo. 

Reynolds, S.D. 2013. Soquel Creek large woody debris project Site 1 as-built report. California 

Geological Survey, Department of Conservation. Sacramento, California. 

Roni, P. and T. Beechie. 2012. Stream and watershed restoration: A guide to restoring riverine 

processes and habitats. John Wiley & Sons. 

Roni, P., K. Hanson, and T. Beechie. 2008. Global review of the physical and biological 

effectiveness of stream habitat rehabilitation techniques. North American Journal of Fisheries 

Management 28:856–890. 

Rowley, M. (editor). 2003. Unpublished Scotts Creek watershed assessment. Scotts Creek 

Watershed Council, with major funding from the Salmon and Steelhead Trout Restoration 

Account (SB 271, 1997-Thompson). 

Ruttenberg, D. 2011. Engineering docket—San Vicente Creek LWM (Large wood material 

installation on San Vicente Creek for coho and salmonid habitat restoration). Unpublished 

report. Natural Resources Conservation Service, Salinas Service Center, Monterey County, 

California. 

Santa Cruz County Environmental Health Department. 2009. 

http://scceh.com/Home/Programs/WaterResources/WatershedandStreamHabitatProtection/Water 

shedRestoration/WoodyDebris.aspx) 

Scrudato, M. 2010. Comparison of two potential stream gage locations on Scotts Creek at Swanton 

Pacific Ranch, California. Master’s thesis. California Polytechnic State University, San Luis 

Obispo. 

Sedell, J.R., P.A. Bisson, F.J. Swanson, and S.V. Gregory. 1988. What we know about large trees 

that fall into streams and rivers. In Maser, C., R.F. Tarrant, J.M. Trappe, and J.F. Franklin (eds). 

112 

http://scceh.com/Home/Programs/WaterResources/WatershedandStreamHabitatProtection/Water


 

 

               

          

              

         

         

         

                  

         

              

       

             

          

             

              

       

             

       

 

             

          

       

   

              

            

        

From the forest to the sea: a story of fallen trees. General Technical Report PNW-GTR-229, 

USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon. 47–81. 

Shapovalov, L., and A.C. Taft. 1954. The life histories of the steelhead rainbow trout (Salmo 

gairdneri gairdneri) and silver salmon (Oncorhynchus kisutch) with special reference to 

Waddell Creek, California, and recommendations regarding their management. State of 

California Department of Fish and Game, Fish Bulletin No. 98. 

Skidmore, P., T. Beechie, G. Pess, J. Castro, B. Cluer, C. Thorne, C. Shea, and R. Chen. 2012. 

Developing, designing, and implementing restoration projects, in stream and watershed 

restoration: a guide to restoring riverine processes and habitats. Roni, P. and T. Beechie (eds). 

John Wiley & Sons, Ltd, Chichester, UK. 

Spence, B.C., W.G. Duffy, J.C. Garza, B.C. Harvey, S.M. Sogard, L.A. Weitkamp, T.H. Williams, 

and D.A. Boughton. 2011. Historical occurrence of Coho Salmon (Oncorhynchus kisutch) in 

streams of the Santa Cruz Mountain region of California: response to an endangered species 

act petition to delist Coho Salmon south of San Francisco Bay. National Marine Fisheries 

Service, Southwest Fisheries Science Center. Technical Memorandum 472. 

Spence, B.C., G.A. Lomnicky, R.M. Hughes, and R.P. Novitzki. 1996. An ecosystem approach to 

salmonid conservation. TR-4501-96-6057. National Marine Fisheries Service, Portland, 

Oregon.) 

Spence, B., and T.H. Williams. 2011. Status review update for Pacific salmon and steelhead listed 

under the Endangered Species Act: Central California coast Coho Salmon ESU. NOAA-TM-

NMFS-SWFSC-475. National Marine Fisheries Service, Southwest Fisheries Science Center, 

Santa Cruz, CA. 

Surfleet, C.G., and R.R. Ziemer. 1996. Effects of forest harvesting on large organic debris in coastal 

streams. J. LeBlanc (ed). conference on coast redwood forest ecology and management, 18-20 

June 1996, Humboldt State University, Arcata, CA. 134–136. 

113 



 

 

                

            

 

              

     

               

 

           

           

 

          

         

          

            

         

              

     

                

           

         

    

 

Swaim, K. 2014. Annual Report TE 815537. Letter dated January 31, 2014 to Chris Kofron, Senior 

Biologist and Recovery Permit Coordinator, U.S. Fish and Wildlife Service, Ventura, CA Field 

Office. 

Tockner, K. and J.A. Sanford. Riverine flood plains: present state and future trends. Environmental 

Conservation 29(3):308–330. Cambridge University Press. 

Tockner, K., F. Malard and J.V. Ward. 2000. An extension of the flood-pulse concept. Hydrological 

Processes 14(16–17):2861–2883. 

United Nations, Department of Economic and Social Affairs, Population Division. 2015. World 

population prospects: The 2015 revision, key findings and advance tables. Working Paper No. 

ESA/P/WP.241. 

United States Congress. 1973. Endangered species act of 1973. United States Code 16:35 §1531. 

United States Department of Agriculture Natural Resources Conservation Service. 1980. Soil 

survey of Santa Cruz County, California. National Cooperative Soil Survey. 

University of California Santa Cruz Library Digital Collections. Santa Cruz County aerial 

photograph. 1:31,680. WAC 93-CA 124-23. Santa Cruz, CA, April 19, 1993. 

Waples, R. 1991. Pacific salmon, Oncorhynchus spp., and the definition of "species" under the 

Endangered Species Act. Marine Fisheries Review 53(3):11–22. 

Zimmerman, M., K. Krueger, B. Ehinger, P. Roni, B. Bilby, J. Walters, and T. Quinn. 2012. 

Intensively monitored watersheds program: an updated plan to monitor fish and habitat 

responses to restoration actions in the Lower Columbia watersheds. Washington Department 

of Fish and Wildlife. 

114 



 

 

 

   

      

  

      

  

         

          

              

             

         

            

              

             

          

            

      

  

              

      

            

          

      

           

  

APPENDICES 

A. FLOOD MODELING REPORT 

Comparison of Modeled Flood Extents and Levels for Existing vs. Proposed Restoration 

Design Conditions 

Christopher Surfleet, Benjamin Cook, Brian Dietterick, October 14, 2013 

A.1 Introduction 

This report presents the results of modeled flood depths and extents using the Hydrologic 

Engineering Center River Analysis System (HEC RAS) for lower Scotts Creek, near Davenport, in 

Santa Cruz County, California. Lower Scotts Creek is being assessed for the feasibility of a stream 

enhancement project that will increase instream and off-channel winter refuge habitat for native 

salmonid populations that utilize Scotts Creek. Specifically, 12 large wood structures are being 

proposed for habitat diversity within the Scotts Creek active channel (Figure 27). Additionally, off-

channel habitat will be connected to Scotts Creek through construction of small breaches in a 

historic agriculture berm at the confluence of Archibald Creek, two historic wetland areas, and two 

outlets of agricultural field drainage ditches. The actual details of the stream enhancement’s design 

will not be presented here; rather this report demonstrates the analysis of the water surface and 

potential flooding consequences associated with the design. 

A.2 Modelling Approach 

The HEC RAS model was used to predict peak flow events for the lower Scotts Creek valley. 

The objectives of the modeling were to: 

 Determine water surface changes in Scotts Creek channel and flood plain from the 

conceptualized restoration design for the bankfull event (1000 ft3/s), 10-year event (2550 

ft3/s), and the 100-year event (6500 ft3/s). 

 Determine if Scotts Creek streamflow accesses off channel habitat during the bankfull 

event. 
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Figure 27. Hillshade DEMs showing existing (left) and proposed (right) ground surfacess. Top: Archibald 

Creek confluence area with “Field 2” at right of frames. Bottom: Locations of floodplain and pond 

connections. Red dots highlight the proposed locations of large wood complexes. 

The HEC RAS model calculates water surfaces through an energy equation based on change in 

slope, roughness, and ground geometry through cross section profiles of a river and floodplain area. 
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The geometry of the lower Scotts Creek valley was determined from a one-ft digital elevation 

model created from 2010 LiDAR data. Cross-section profiles for use in HEC RAS modeling were 

generated from the DEM using HEC GeoRAS tools in ArcMap. 

We calibrated HEC RAS water surfaces using steady state stream flow simulations for 1000 ft3/s, 

our approximate bankfull discharge. Adjustments to the Manning’s roughness coefficient (n) were 

the easiest method to calibrate the water surface predictions for HEC RAS. Local knowledge of 

water depth at the gaging station and past high flow events were compared to HEC RAS 

predictions. Analysis of the stream gaging location on Scotts Creek indicated a Manning’s n value 

of 0.35 (Scrudato, 2010). This value was lowered considerably (n = 0.15) to fit the HEC RAS 

predicted bankfull water surface to measured water depths. The floodplain Manning’s n has been 

estimated to be between 0.1 and 0.2 due to variations in riparian vegetation. The floodplain 

roughness coefficients only affect high flows which access the floodplain, they have only a little 

effect on off-channel habitat water levels and no effect on instream habitat. For this reason, one n-

value for the entire floodplain was used (n= 0.1). 

The modeling used a steady state flow analysis. Although streamflow down a river valley is most 

certainly unsteady, an unsteady flow analysis required considerably higher data requirements such 

as comprehensive streamflow measurements down Scotts Creek. These measurements were not 

available making any results from an unsteady flow analysis highly uncertain. In our modeling we 

make the assumption, that since we only evaluated instantaneous peak flows for the Scott’s Creek 

valley, a steady flow analysis was reasonable. 

The water surface modeling in HEC RAS produces water elevations based on the elevation of the 

cross section. Water surfaces are estimated based on the velocity and depth of the water in relation 

to the lowest elevations on the cross section. This often resulted in water predicted on the floodplain 

of Scotts Creek due to depressions on the floodplain even when the stream channel had the capacity 

to encompass all of the water. This spurious water surface was corrected by hand in the cross 
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sections and plan view diagrams presented here. The water surface was corrected if it was a result 

of upstream inundation, in other words the water surface had a connection from the stream channel. 

A.3 Results 

The model results are presented in graphic format on the following pages (Figures 28–33). 

Figure 28. Pre- (left) and post-restoration (right) water surface extents and depths for the bankfull flow. 

Red dots represent wood habitat structures, with river stations labeled in yellow (Note: stations in this 

report do not correspond to stationing found elswhere in the parent document). 
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Over 
tops

Off channel 
habitat provided

Figure 29. Pre- (left) and post-restoration (right) instream and flood extents and depths for the bankfull 

discharge. Close-up is near the ag drain at 3657 and proposed off channel pond habitat at 3869. Red dots 

represent LWCs with river stations labelled in yellow. The combination of wood structures slowed the 

velocity of the water increasing water depth such that some water overtopped the ag field drain berm and 

flowed on to floodplain. 
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Figure 30. Pre- and Post- restoration water surface elevations for the bankfull flow at the location of a 

wood vane structure and pond connection channel junction (top, cross section 4569), and upstream of pond 

connection channel, but intersecting the pond at section station 700 (bottom, cross section 4598). Notice 

innundation of pond post-restoration. 
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Figure 31. Pre- and post- restoration water surface elevations for the bankfull flow at the location of a 

LWC at cross-section 3535 (top), and at cross-section 3579 immediately upstream of the structure. Notice 

the higher water surface elevation and flooding originating from upstream via the ag drain at 3657 (see 

Figure 3). 
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Figure 32. Pre- and post- restoration water surface elevations for the bankfull flow at the location of a 

LWC and connection channel (top, cross-section 3657), and upstream (bottom, cross section 3694). Notice 

the higher water surface elevations post-restoration. 
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Figure 33. Longitudinal water surface profiles for the bankfull (top), 10-year (middle) and 100-year 

(bottom) flow events pre- and post-restoration, with locations of LWCs (blue diamonds). 
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B. DESIGN REVIEW 

California Department of Fish and Wildlife Design Review Correspondence 

B.1 Comments on Phase II 60% Design 

by Marcin Whitman, CDFW Senior Engineer 

Thanks for the opportunity to comment on the design for the Lower Scott Creek Habitat 

Improvement Project. The review is based on the following two documents: 

Drawings and Specifications – Engineering Docket – Lower Scott Creek Habitat Improvement 
Project July 2014 

Lower Scott Creek Habitat Improvement Project 60% Submittal Planset 7/25/14 

Ben Cook, graduate student at SLO has done an excellent a job designing and assembling this 

package and clear writing; he should be commended for professional level work. Note that some 
of the comments below are looking for clarification or detail not necessarily suggesting changes to 

the design. 

Comments on Engineering Docket: 

Title Page – Says “Drawings and Specifications” – should make clear that while there are drawings 

in this document, there is also a separate planset for this project. (Perhaps such is stated and I missed 

it?) 

Page 4 – Summary say there will be ten instream wood complexes but below only nine are referred 

to. 

Page 4 – General comment about floodplain connections: Literature has shown that to maintain a 

good opening at such a connection, angle of channel leading from the main channel and any “set-
up” from channel bends upstream are key parameters. The connections geometry and in-stream 

features to maintain scour appear to be set perpendicular to the channel; literature and current 

practice suggests a more acute angle. 

Page 8 – soil samples: Do soil samples, perk rates or experience suggest that floodplain is also 

flooded by pore pressure through/under levee or is all inundation due to surface flows? My 

understanding is that only surface flows are being considered for the features being design in this 
effort. 

Page 11&12 – Letter from NRCS appropriately appears in hydrology section but appears abruptly 

– suggest adding an introduction or a summary and including the letter as an attachment. 

Page 14: Good work on doing a field verification of model stage. However, with respect to shear 
stress, HEC-RAS only gives average shear. Shear due to both reach level and local field effects 

(e.g transient debris moving downstream, bed configuration during a bed mobilizing event) can 

cause shear much higher than average. Similarly, velocities do not remain average but vary spatially 
and temporally even in “steady-state” conditions. Design of in-stream elements should be based 

on maximum shear/velocity likely to be experienced over the life of the project. Not sure if 

drag/velocity from HEC-RAS were used and for what event. Perhaps the Debris Factor on p22 is 

accounting for this. The matter would best be resolved in a conversation with the author. 
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Page 18: Although use of toppled riparian trees is discussed in ERDC TN-EMRRP-SR-13 (2000), 

longevity of toppled alders in California has been found to be lacking and they are not included in 
the CDFW Restoration Manual nor paid for when a project is being performed under an FRGP 

grant. Felling alders to boot off-channel pond complexity is probably OK – will need to check with 

CDFS biological staff. 

Page 20: Was the calculation of live tree anchors derived by the author or was this a method from 
literature (if literature, please cite). Similar with tractive force of typical wood complex estimated 

at 10 kips. 

Page 21: Simple spheres (surrogate for rootball) and simple cones (surrogate for live tree) have 
much less surface and thus drag than the actual article. (However, interior surfaces of both also 

receive reduced velocities).Was this estimation method from literature (please cite) and is there any 

recommended safety factor to be applied? 

Page 22: Buoyant force calculations are clear. For drag force, where did velocity of 7.3 ft/s come 

from? HEC-RAS? Other ? 

Page 25: Archibald Creek designed backwater channel is targeted to be 2.5%. Is this substantially 

than Creek itself? 

Page 28: Monitoring – besides photo monitoring, what other monitoring or measurements are 

intended? 

Comments on Planset: 

Sheet 1 : Good to see general job description and drawing date of draft on this sheet. 

Sheet 1 (con’t): 

Is Aug 1-Oct 31 standard work window in Santa Cruz? I thought in-channel work ended Oct 15th. 

Will NRCS engineering be stamping final planset ? 

Sheet 2, etc.: Flow arrow should be shown on each sheet. Labeling average slope of reaches and/or 

overall slope on drawing would be helpful. 

Sheet 5: Good to see access routes considered and depicted. 

Sheet 14: Good to see drilling notes for anchor on plans. Note should also include clearing dust 

from holes before adding epoxy (failure to do so is frequent cause of connection failure). 

Sheet 15: Good to see dewatering plan; CDFW biologist should comment on barrier, block nets 
and silt fencing. 

Sheet 16: CDFW biological staff should comment on planting pallet. 

B.2 Response to comments on Phase II 60% Design 

by Ben Cook 

Added note about separate planset 

Changed engineering docket to reflect only nine LWC’s. 

Design of floodplain connections has been through a number of iterations. Latest iteration 

prioritized minimizing soil volumes to meet PCP requirements. Soil volumes were minimized at 
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the expense of connection orientations. Current soil volume for project is currently 30% below 

maximum. The drawings will be revised to achieve optimization between soil volume and 
connection orientation. 

LWC’s are to be field fit at the time of construction. LWC’s will be configured to function as a 

vane-type structure (digger or spider log). The orientation and dimensioning of instream features 

shown in the drawings will be revised to better reflect their intended function. 

Observations suggest subsurface flows play a limited role in floodplain inundation. The design of 

the project does not take subsurface flows into account because their effect is not expected to be 

significant at the design flow (Q10 event). The rate of floodplain inundation at or above the 
bankfull event is likely dominated by rapid surface flows through deteriorated sections of the 

existing levee, as evidenced by existing scour features/rilling. 

The proposed LWC configurations rely on durable and proven materials (redwood log, redwood 
rootwad, boulder) to influence stream hydraulics. While the LWC’s are designed to function 

without the in-situ alder component, in-situ alders are proposed to be utilized because they are 

expected to provide a significant benefit at a low additional cost. The added benefit of the in-situ 

alder component will be significant additional stream cover, feature complexity, hydraulic effect, 
and debris racking capability due to the presence of the trunk, limbs, and foliage of the toppled 

alders within and around the LWC’s. 

The proposed design will incorporate measures to increase the longevity of In-situ alders. Efforts 
will be made to topple alders while keeping major roots intact with the intention of keeping the 

trees alive, in a manner similar to that of existing naturally recruited alders observed on lower Scotts 

Creek. Bank undercutting has brought down several trees on lower Scotts Creek that continue to 
produce new growth in the form of vertical shoots and foliage. The proposed project will allow 

researchers to monitor and evaluate the longevity and effectiveness of the alder components. 

The design team is confident that inclusion of these alder components is justified for the reasons 

discussed above. 

The calculations in question were developed in consultation with an NRCS engineer. The engineer 

has reviewed the final calculations presented in the 60% designs. 

This method was discussed with an NRCS engineer. The engineer was comfortable with this 
modeling approach. Further research will be conducted to either validate this approach or develop 

an alternative approach. 

Lower Scotts Creek has a gradient of approximately 0.5%. 

A monitoring strategy is proposed that will include biological surveys, habitat typing, habitat 
volume, characterization of bed substrate. The monitoring strategy proposes to track changes in 

these metrics to evaluate the effectiveness of the proposed project in establishing the desired 

physical habitat conditions and determine how salmonids and potentially other aquatic species are 
utilizing the project reach. 

B.3 Response from Jim Robins 

Thanks so much Marcin. As always your comments are invaluable and appreciated. I will work 

with Ben and Brian to make sure we can address some of the easier comments in the final designs 

and perhaps set-up a call with you to discuss the 2-3 more complex comments. 
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One thing that I would like to address is the felling of alders. The plan is experimental and we are 

building a literature by Dr. Jeff Opperman of TNC and others (2005, 2007, 2008, and 2009) looking 
at longevity of wood in small coast streams in Ca. Data by Opperman (who sat next to me from 

much of grad school...) suggests high levels of longevity for hardwoods- especially willows and 

alders IF the trees stay alive. From walking streams in SM and SC, it seems to me that Opperman's 

work really resonates in our region. To my knowledge, there has been very little experimental work 
to see if we can mimic natural processes (wind throw and hydraulic forces) that tip alders into the 

stream and create a situation that may enable the tree to survive. Since many of our coastal streams 

have tons of alders and very little redwood in the lower reaches (and limited upstream recruitment 
of redwoods) our hypothesis is that living LWD could be an incredibly cost-effective way to start 

recreating complexity without having to import nearly as many (or possibly any) conifers - which 

is costly and the import process can be damaging to the riparian corridor. Any way, I see your point 
about the Manual, but feel strongly that we need to start trying new techniques that could be 

ecologically effective and cost effective. This technique represents only a tiny piece of the overall 

cost and could provide invaluable data. CalPoly is committed to tracking the longevity of these 

pieces and providing solid monitoring data. Finally, I believe that for this project we are planning 
to use a combination of redwood and alder for the structures as an insurance policy to make sure 

that at least part of the structure is long-lived. I hope this helps clarify the whole alder felling thing. 

Thanks, 

Jim 

B.4 Lower Scotts Creek Design Review Meeting, 1/22/14 

Notes written by Jim Robins, IWRP TAC Coordinator, and Consultant, Alnus Ecological 

Participants 

Ben Cook (Cal Poly), Brian Dietterick (Cal Poly), Marcin Whitman (CFW), Devin Best (NOAA 

Fisheries), Jim Robins (Alnus Ecological) and Alicia Moss (RCD) 

Goal of Meeting 

Work with subset of the TAC on status of design and outstanding fisheries and engineering 

considerations that need to be addressed. 

Meeting Minutes: 

Brian provided background of project identification and development 

Ben provided overview of proposed project elements and analysis completed thus far. Below are 

specific highlighted questions and issues regarding necessary future analysis: 

Breaches in lower reach: 

Key Question: How were height and width of breaches determined? Somewhat arbitrary, but based 

on visual cues. Ben use a combination of "natural" floodplain elevation as per cross sections AND 
visual estimate of bankfull (~3ft above water baseflow water surface) to determine approximate 

elevation for breach. For width of the breach, Ben tried to balance minimizing disturbance while 

not increasing velocity too much by making breaches too narrow. CalPoly's design breaches are 
we intended to stay somewhat static and maintain general dimensions ove time, though we all clear 

expect some change, but don’t want them to expand too much. Marcin suggested conducted 2 
types of analyses to understand sheer calcs and velocity at each breach. The first analysis 
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specifically focused on something like the 2 yr event to understand wse elevation and velocity when 

water is moving in and out of the breach, but not overtopping the levee as a whole and the second 
looking at a larger flow 20yr or 100 yr with a similar analysis. Key is to determine ascending and 

descending limbs (i.e. after 6 hrs, what is happening with water surface on landscape) and 

scour/velocity as water moves back through the breach to determine whether geometry is 

sufficient/within the ball park. There are tools available for this such as mass balance and 
embayment tools through ACOE. Overall, need to understand when floodplain will be activated, 

what that looks like and how long it’s inundated. We need to be able to show due diligence that 
data shows a the notch dimensions will be stable at range of flows and design the notch dimenstion 
to ensure they are stable. Want breaches to have gentle slopes, 2:1-3:1, front could be steeper but 

back should be gentle sloped 

LWD: would be helpful to include photos w/ diagrams of wood placement to include with FRGP 
proposal (Jim to send along some examples of past FRGP apps for LWD that were approved. 

Confluence enhancements at Archibald and 2 ag drainages: Scope includes removing culverts and 

excavating pools. Will address filling of pools with installation of LWD structure. Need to look at 

what’s need to create scour, what elevations are required and what sediment supply of watershed 
is to determine appropriate LWD structure at these confluence areas. Should consider including 

cover (i.e. rootwad) at scour holes. Should we push confluence areas out to thalweg more or keep 

near banks? Goal is high flow refuge then better to keep near banks. 

Connect off-channel pond: These are for high flow refuge, may not be accessable at low flows. 

Add key way trenches, wood weirs and/or rock weirs ramp at grade at pond confluences to maintain 

elevations. Need to be sure to say ponds already exist, we’re not creating ponds and that these are 
groundwater fed and project activities won’t dewater them. Need to show what velocity differences 

are going to be between main channel and off-channel ponds to show ponds will provide winter 

velocity refuge. Should take photos of water level in current drought conditions. Need to address 

water supply for ponds. Are ponds dependent on existing levees? No. 

Reveg on road: Rip and reveg. Would be good to show this on layout map. 

Need to be sure to indicate goals and life stage affected for each project element. Overall goal we’re 
trying to achieve is high flow velocity refuge but there are secondary benefits. Need to source coho 
recovery plan and fisheries biologists that have referenced need for high flow refuge and why 

(specific quotes are ideal); can’t just reference hearsay. Other goal is trying to create more instream 
summer rearing habitat for coho since they have limited use of estuary as summer rearing habitat. 

Fish may be stranded w/ floodplain connectivity and off channel pools, consensus is that this 
happens naturally and is okay so just make it clear that this is a potential and we are reducing the 

risk by x, y and z. 

Post project monitoring: Need to identify biological and physical monitoring. Work with NOAA 
Science Center on ideas/opportunities and discuss w/ Jon Jankovitz by 2/1/14. Will need to conduct 

photo monitoring and complete pre- and post- profiles. 

How do we provide qualitative potential for channel avulsion? By taking culverts out of ag 
drainages, minimizing potential for plugging. 

Be clear about which FRGP project type is applicable, can’t mix project types in one proposal 

PSN should be coming out by 2/1, be sure to address everything called for in design criteria 

Action Items: 

Devin to follow-up with Joe P. regarding potential funding for IWRP projects (Scotts and/or 

Soquel?) 
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Alicia/Jim to request FRGP comments from last FRGP proposal (check on licensed professional) 

Brian to talk to NOAA Science Center about potential ideas/opportunities for biological and 
physical project monitoring and Alicia will then follow-up with Jon Jankovitz to discuss monitoring 

prior to 2/1 (send him project layout docs) 

Alicia to follow-up with Brian re: UCSC’ LWD material available soon 

Alicia to get Q10 flow from Brian and Ben 

Ben/Brian to complete sheer calcs and velocity for levee breaches 

Velocity/Shear Calcs for breach openings: 

Assumptions: 

Steady flow through opening 

Elevated stage in stream, no water on floodplain 

Clear-water 

Breach opening bottom has no slope 

Two events: 

“2 year event” approximated by December 2012 storm event. (Has known ws elevations and 

extents) 

Discharge=1908 cfs, stage =7.0’ 

Bottom of breach channel=5.0’ 

Contraction scour through opening 

“25 year event” approximated by 1982 event 

Discharge roughly 4400 cfs, from estimated discharge @ USGS gage, corrected for watershed area 

of 30.0 sq miles 

Stage from HEC RAS model on existing ground surface = 8’ max, 8.0’@ RS 5594 

Ben/Brian to show velocity of main channel and ponds to show that ponds will provide high flow 

velocity refuge 

HEC RAS results have velocity output in main channel 

Ben/Brian-take photos where LWD structures will be installed and include diagram of wood 

placement 

Ben/Brian-address water supply for ponds 

Groundwater relationship not shown, need to check depth again in well and take staff plate readings 

this week 

Ben to take photos of ponds to show water present even in drought conditions 

Next weekend 

Send Marcin pond drawings and be sure he has copy of goals & objectives 

Sent drawings, goals and objectives in progress 

Ben to research Queseria thesis to find Jennifer Nelson’s observations on limiting factors observed 
in Scotts Creek 

129 



 

 

--------------------------------------------------------------------------------------------------------------------- 

       

       

   

     

   

   

     

  

              

             
             

              

             

               
       

               

                
                     

 

                 
    

                  

    

      

 

 

   

   

      

  

   

  

---------------------------------------------------------------------------------------------------------------------  

B.5 Review of Phase II 60% Design 

by Margie Caisley, Senior FRGP Hydraulic Engineer 

From: Caisley, Marjorie@Wildlife 

Sent: Friday, July 10, 2015 10:45 AM 

To: Swales, Stephen@Wildlife 

Cc: Seymour, Gail@Wildlife 

Subject: RE: 100% designs revised 6/27 

Hi Stephen, 

I am concerned that the 100% plans still have widened alcove pools where they connect with Scotts 

Creek. I think these are invitations for deposition that risk disconnecting the floodplains and ponds 
that they are meant to connect. I also have the following concerns: 

3250 Plan (Sheet 3): I am concerned that the woody debris meant to backwater the alcove 

connection will result in deposition. If this occurs, this element should be removed from the 

channel. The pulled over alder on the opposite bank is a good idea and should probably be 
mimicked at the rest of the sites. 

3850 Plan (Sheet 5): I am concerned that there will be deposition downstream of the structure. 

Thus, it is essential that it be low profile such that even low flows plunge over the log rather than 
skirt around the end of the log. Is there any way to put a wood structure on the opposite bank at this 

site? 

4250 Plan (Sheet 6): Same concerns as Site 3250. Is there any way to put a wood structure on the 
opposite bank at this site? 

5650 Plan (Sheet 9): Same concern as Site 3850. Is there any way to put a wood structure on the 

opposite bank at this site? 

Let me know you have any questions. 

Thanks, 

Margie 

Marjorie Caisley, P.E. 

Senior Hydraulic Engineer 

California Department of Fish and Wildlife 

1812 9th Street 

Sacramento, CA 95811 

(916) 445-3162 
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B.6 Response to Phase II 60% Design Review 

by Ben Cook, 7/13/2015 

Margie, 

Thank you for reviewing the LSCFHEP Phase II Designs and providing comments. The review we 

have received over the past two years has resulted in significant improvements to the design and 

we appreciate very much these opportunities to further refine the design. 

As I am sure you are aware, Marcin Whitman has visited the project site and provided review at 

the 60% level when the project was planned as a single phase project. We soon after decided to 

break the project into two phases, and Marcin provided review at the 90% level for the Phase I 
designs, which included four instream wood features, five levee breaches, the connection of 

Queseria Creek (a tributary to Scotts) with an existing scour feature, and the construction of a 

floodplain connection and alcove feature. 

The two-phase approach has allowed us to observe and also perform a preliminary study of the 

response of the restoration project to stormflow. We constructed Phase I in October of 2014, and 

then in December we had some decent storms, one of which produced a bankfull flow event. One 

of the monitoring activities we were excited about was tracking morphologic change instream 
around the wood features and constructed alcove pool. Some of our biggest questions were, 1) 

would there be serious deposition in the alcove feature, 2) how would the wood features perform, 

and 3) how would the stream respond in the vicinity of the wood features, particularly, would the 
wood feature that was configured to direct flow into the constructed alcove feature perform as 

intended, or would the alcove fill in and cease to be functional as refuge habitat? 

To track the response of the project to stormflow, we performed a pre-construction topo survey of 
our study reach within the phase I project, using a total station. We surveyed the stream corridor, 

including the levee, streambanks, and streambed, and all existing LWD within the bankfull channel, 

and built a TIN with an LWD layer that we could overlay. Following construction, we performed 

an as-built survey of the constructed features (levee breaches, alcove feature, scour feature, and 
wood complexes), built a TIN of the gradings, merged it with the pre-construction TIN to represent 

the modified stream channel, and overlaid the constructed wood layer to lock-down the position of 

the wood features. Following the December storms, we performed a third TS topo survey (in April), 
built a post- TIN and subtracted the pre- TIN from the post-. 

Additionally, we conducted long-term photo monitoring and visual observations during storm 

flow (video available at: 

http://www.youtube.com/playlist?list=PLRRplD3jkK_Fn-Ryg_IktLgrGWw6qUZl4). 

What we learned was invaluable in terms of the design of Phase II. A couple of things surprised us. 

First, there was deposition in the alcove feature, although not enough to prevent it from functioning 

as refuge habitat, but returning floodwaters through the floodplain drain cleared sediment and 
maintained the depth of the alcove feature. The second thing was that there was circular flow within 

the alcove feature with significant velocity. While it’s difficult to estimate the velocity, it appears 

from the video to be 2-3 fps around the perimeter. 

There also was significant deposition under some of the downed alders that had small branches and 

foliage. 

With regards to your first point, I tend to agree that the alcove features are drawn wider than they 

need to be. I expect that if we construct them at the specified widths, they will narrow over time. 
While it is too late to send out a bid addendum, narrowing the alcove features is a change that I 
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think we could make at the time of construction. I don’t want to decrease the volume of the features 
too much, so I would ask if we could simply elongate these features along the direction of expected 
flow as floodwaters return to the main channel through the connections. 

Regarding your second point, that the wood feature at 3250 meant to backwater the alcove feature 

and pond connection will result in deposition (clarification: the concern would be deposition within 

the alcove, correct?), is a possibility, however I expect that flows will be directed along the east 
bank at the location of the alcove with adequate velocity to maintain the feature during stormflow 

(facilitated in part by the downed alder on the west bank), and then as flow subside, returning flood 

flows will maintain the feature. 

In regards to 3850, yes a low-profile feature is essential there and we will achieve this to the greatest 

extent possible without losing the feature in the bedload. We are avoiding crossing the stream with 

equipment, thus constructing features on the opposite bank is not preferred, but pulling alders down 
is a possibility because we expect it will be feasible to do by rigging alders by hand and pulling 

from equipment parked on the east bank. To address your concerns at 3850, 4250, and 5650, we 

will investigate the feasibility of downing alders on the opposite bank. There is an outside 

possibility of constructing features on the opposite bank at 3850 and 4250 because we have an 
approved ford crossing at 4900 that is used for farm operations that may be used for equipment 

during construction. 

Thanks very much for your time. Your review will ultimately make this a better project. I hope I 
have addressed your concerns. Please feel free to contact me directly by email or phone. 

Ben Cook 

Graduate Assistant in Hydrology 

Natural Resources Management and Environmental Sciences Department 

Cal Poly State University, San Luis Obispo, CA 93407 

cell: (831) 345-0508 

bocook@calpoly.edu 
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      D. PHASE II ENGINEERING DOCKET 
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E. PHASE I PHOTO MONITORING PACKET 
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F. PHASE II PHOTO MONITORING PACKET 
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G. PHASE I 100% DESIGN SUBMITTAL 
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I. SURVEY CONTROL DATA 

All coordinates are in NAD 83 State Plane III (ft). 

Point Northing Easting Elevation Description 

97 1847730.165 6057875 27.95 Natural 

98 1845272.128 6058446.337 15.67 Natural 

100 1843577.263 6059141.065 63.19 Set Rebar Cap 

101 1850401.909 6059547.309 456.92 Set Rebar Cap 

102 1849471.84 6054669.56 781.94 CGPS P534 

1000 1844345.162 6058071.169 15.75 Rebar 

1001 1843990.524 6058111.73 14.91 Rebar 

1002 1844292.886 6057978.472 17.82 Spike 

1003 1844274.185 6057937.016 12.43 Spike 

1004 1843880.441 6058092.712 14.23 CP 

1005 1843639.779 6058140.139 14.68 Rebar Cap 

1006 1846730.955 6057914.902 28 Rebar 

1007 1846855.333 6057824.728 27.88 38 rebar 

1008 1845539.054 6057919.359 25.49 Rebar 

1009 1844799.575 6057853.356 17.21 Rebar Cap 

1050 1843578.134 6058026.543 12.87 Rebar 

1051 1843458.088 6057867.525 13.06 Rebar 

1052 1843461.342 6057769.406 11.87 rebar 1052 

1053 1843406.774 6057785.112 11.3 Rebar 

1054 1843346.123 6057890.644 12.34 Rebar 

1055 1844455.778 6058075.962 16.39 Rebar 

1056 1844546.923 6058056.857 16.86 Rebar 

1057 1844564.002 6057924.92 23 Rebar 

1058 1844566.977 6057823.637 14.94 Rebar 

1059 1844464.657 6057973.285 18.86 Rebar 

1085 1844643.129 6057941.727 15.51 Rebar 

1086 1844464.755 6057973.446 18.77 Rebar 

1087 1844794.962 6057685.405 14.53 Rebar 

1088 1846687.552 6057763.804 22.33 Rebar 

1089 1845016.089 6058221.519 23.02 Rebar 

1090 1845218.07 6058198.952 24.03 Rebar 

1091 1845362.071 6057685.953 24.09 Rebar 

1092 1845080.656 6057687.835 19.42 Rebar 

1093 1844747.808 6057751.533 19.09 Rebar 
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1094 1844785.805 6057899.555 17.74 Rebar 

1095 1845985.992 6057738.964 22.61 Rebar 

1096 1845889.937 6057798.843 24.06 Rebar 

1097 1845931.418 6057690.7 25.93 Rebar 

1098 1845104.822 6057678.522 19.582 Rebar 

1099 1844688.526 6057768.964 18.691 Rebar 

1500 1845568.532 6058182.121 25.94 BM M1238 

1501 1837346.281 6060702.964 89.04 HPGN 04-02 

2066 1843954.087 6057960.51 20.14 CP 

2067 1844022.054 6057975.298 20.22 CP 

2068 1844146.073 6057976.495 20.67 CP 

2069 1844278.351 6057971.921 18.34 CP 

3000 1843791.134 6058110.428 14.15 CP 

4000 1844217.803 6057919.494 12.11 CP 

5000 1844010.397 6057955.278 16.6 CP 

5100 1843943.159 6057879.855 17.39 CP 

5999 1843931.924 6057961.222 19.89 CP 

7001 1844277.448 6057937.032 12.52 BM 

8185 1843880.604 6058092.56 14.24 CP 

8785 1844276.114 6057934.999 14.18 CP 

9132 1844311.081 6058010.97 14.79 CP 
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J. SURVEY CONTROL MAP 
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