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ABSTRACT

ANEX: Automated Network Exploitation through Penetration Testing

Eric Francis Dazet

Cyber attacks are a growing concern in our modern world, making security evalua-

tion a critical venture. Penetration testing, the process of attempting to compromise

a computer network with controlled tests, is a proven method of evaluating a sys-

tem’s security measures. However, penetration tests, and preventive security analysis

in general, require considerable investments in money, time, and labor, which can

cause them to be overlooked. Alternatively, automated penetration testing programs

are used to conduct a security evaluation with less user effort, lower cost, and in a

shorter period of time than manual penetration tests. The trade-off is that automated

penetration testing tools are not as effective as manual tests. They are not as flexible

as manual testing, cannot discover every vulnerability, and can lead to a false sense of

security. The development of better automated tools can help organizations quickly

and frequently know the state of their security measures and can help improve the

manual penetration testing process by accelerating repetitive tasks without sacrificing

results.

This thesis presents Automated Network Exploitation through Penetration Test-

ing (ANEX), an automated penetration testing system designed to infiltrate a com-

puter network and map paths from a compromised network machine to a specified

target machine. Our goal is to provide an effective security evaluation solution with

minimal user involvement that is easily deployable in an existing system. ANEX

demonstrates that important security information can be gathered through auto-

mated tools based solely on free-to-use programs. ANEX can also enhance the manual

penetration testing process by quickly accumulating information about each machine

to develop more focused testing procedures.
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Our results show that we are able to successfully infiltrate multiple network levels

and exploit machines not directly accessible to our testing machine with mixed suc-

cess. Overall, our design shows the efficacy of utilizing automated and open-source

tools for penetration testing.
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Chapter 1

INTRODUCTION

The advancements in computational power and efficiency, the flexibility of intercon-

nected networks, and the growth of physical and virtual data storage capabilities

provide benefits essential to successful business [36]. However, this increasing re-

liance on technology has turned more and more companies into targets for malicious

activity [36]. According to Symantec’s yearly threat report, in 2014, there were sev-

eral areas of growing concern from both a cyber attack and defense point of view.

For example, the twenty-four new zero-day vulnerabilities, security holes in software

programs that are unknown to their vendors, was the highest total for a single year

in Symantec’s history and affected popular services such as Adobe’s Flash Player

and Internet Explorer [40]. One of these vulnerabilities was the Heartbleed security

bug, a widely-publicized vulnerability in the TLS security protocol [10]. A possibly

more alarming fact is the amount of time it took for vendors to respond and re-

lease patches for these zero-day vulnerabilities. In the case of Heartbleed, the patch

took 204 days [40]. Other techniques, including, but not limited to, spear-phishing,

targeted communication that tries to trick users into providing private information,

and trojanizing, the hiding of infectious code within legitimate programs, were also

extremely prevalent and effective. Symantec also concluded that in 2014, 60 per-

cent of all targeted attacks were aimed at small and medium sized organizations,

organizations that often have less resources to devote to security measures [40].

More recently, Symantec’s monthly report for September 2015 indicated that the

finance, insurance and real estate sector was the target for twenty-seven percent of

all targeted attacks while the agriculture, forestry, and fishing sector was the most

targeted sector for malware, 1 in every 308 emails, and phishing attempts, 1 in every
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988 emails [37]. Additionally, forty-six percent of all spear-phishing attempts in

September alone were on large businesses [37]. This statistical analysis emphasizes

the fact that no company or industry is completely impervious to cyber attacks.

Preventive measures against cyber threats are now a fundamental necessity to

help protect private data and maintain the integrity of systems. Directly related to

the previous notion is the importance of monitoring and testing the effectiveness of

deployed security measures in order to maintain resiliency to the evolving organism

that is cyber crime [36].

Penetration testing, or ethical hacking, is one of these testing methods and is

one of the most popular software security practices [2]. Penetration testing is the

process of identifying ways to exploit vulnerabilities for the purpose of circumventing

or defeating the security features of a system [29]. The overall goal of penetration

testing is to find ways around security measures in a controlled environment to identify

weak spots and fix them before the same weaknesses are exploited by people with

malicious intentions [22].

1.1 Problem

Although cyber attacks threaten valuable resources in our modern world, namely

intellectual property and the Internet, research has shown that the high value of

intellectual property and its susceptibility to cyber attacks often go unappreciated

[9]. This fact is highlighted by the U.S. Office of Personnel Management (OPM)

security breach that occurred in March of 2014 [23]. After the breach was discovered,

an audit conducted by the Office of the Inspector General revealed that OPM, which is

responsible for storing the personal information of Federal employees and Federal job

applicants, was lacking up-to-date security features in several areas. For instance, the

audit found that OPM did not have a complete agency-wide risk management system,
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there wasn’t a comprehensive inventory of servers, databases, and network devices,

known weaknesses weren’t being timely addressed and incorporated into plans of

action, and there were no standards or compliance checks for any operating platforms

[23]. This real-world example emphasizes the need for proper security measures to

be put in place and maintaining and updating them appropriately to mitigate the

amount of potential damage.

It is important to recognize that security measures are not one-time additions to a

system. Proven preventive solutions, like firewalls, can be effective, but can lead to a

false sense of security. Therefore, it is critical that security solutions like firewalls are

routinely tested and maintained [2]. Similarly, computer applications and services,

which have the potential to introduce security flaws into systems, must be kept up to

date and patched when necessary. Proper network configuration and permissions also

need to be in place to restrict unauthorized data access and unauthorized connections.

System security is a continuous endeavor that increases in both importance and re-

sources as systems expand. Fortunately, there are a number of tools and techniques,

such as penetration testing, that can help assess this area of concern.

Penetration testing has a clear definition, repeated here as the process of identi-

fying ways to exploit vulnerabilities for the purpose of circumventing or defeating the

security features of a system [36]. However, there is also a related process known as

vulnerability assessment that is oftentimes confused with penetration testing despite

having a different meaning. Vulnerability assessment is the process of identifying,

ranking, and reporting vulnerabilities that, if exploited, could compromise the sys-

tem [36]. A common example of this is conducting a port scan on a machine and

then identifying potential vulnerabilities of the ports that are found open. Given the

definition above, penetration testing is an extension of vulnerability assessment in

that the exploitation of potential security holes can use the results from a vulnerabil-

ity assessment as a starting point. An example of a penetration test would be using
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vulnerability information to launch exploits at a machine in order to gain access and

then steal login credentials, install a backdoor into the system, setup a key logger, and

other methods that could compromise the security of the machine or its connected

network.

1.2 Solution

We present Automated Network Exploitation through Penetration Testing (ANEX),

a tool that combines the desirable qualities from both vulnerability assessment and

penetration testing to perform what we define as machine targeting, the process of

identifying exploitable paths within a network to a target machine. Given a initial

network and a particular machine of interest, maybe one that manages a sensitive

database or server, ANEX attempts to compromise all of the machines and networks

that it can find that are associated with the initial network. Once no additional

machines or networks are found, all of the compromised machines and networks are

related to the target via parent-child relationships to indicate if and how an attacker

can reach a target from a specific location within the network. A high level architec-

ture diagram of ANEX can be found in Figure 1.1.

The specific question that we address is the following: can we design an auto-

mated penetration testing solution that provides useful security information, improves

its own performance using data from previous executions, and is able to exploit as

many machines and networks as possible? Our useful function is the machine tar-

geting process. Machine targeting is useful because it can quickly identify if a target

is vulnerable to common exploits and identify which machines or networks require

security improvements. Improving performance over time is key for both execution

runtime and reducing the number of exploits launched at a given machine. Exploiting
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Figure 1.1: High level architecture diagram of ANEX

as many machines and networks as possible provides a better security assessment of

the system being tested.

Automated penetration testing solutions are not new. Tools such as FastTrack’s

Autopwn [14], Core’s Impact Pro [1], and Immunity’s Canvas [12] all successfully

incorporate elements from both vulnerability assessment and penetration testing into

their products. Since this was our goal as well, we analyzed these other tools to see

why they are successful and then used our analysis to influence our design.

ANEX is designed to run with minimal resources and user interaction while main-

taining efficiency, adaptability, and safety in the exploitation process. When complete,

ANEX provides a comprehensive report of its testing results and saves information

gathered during its execution for future use. Our overall goal is to contribute a

solution to the penetration testing domain and promote further development of util-

ities that combine automated vulnerability assessment tools and manual penetration

testing techniques.
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Chapter 2

BACKGROUND

In this chapter, we define penetration testing, why penetration testing is important,

common types of penetration tests, and the different methodologies that are used.

We then narrow our focus and outline the penetration testing process in detail. We

then compare penetration testing to vulnerability assessment, a separate process that

is often misconstrued as penetration testing in industry. Finally, we describe some

popular tools that are used to aid the penetration testing process.

A lingering question around penetration testing is why do it. Why invest money

and time to try and exploit a system that is “secure”? Why run potentially dangerous

tests that can harm working infrastructure? The simple answer is that it is better

for the owners of a system to identify flaws that can compromise their system and

fix them so that hackers cannot exploit those same flaws and cause damage [14].

Penetration testing helps shrink the gap between safeguarding a security system and

the exposure of its risks by determining if the implemented security measures are

adequate and working [8]. In 2015, the Ponemon Research Institute conducted a study

to analyze the cost of data breaches across 350 companies in eleven countries. They

found the average cost of a data breach to be $3.79 million dollars [30]. Typically, a

penetration test will cost significantly less than $3.79 million dollars, but the actual

cost of a penetration test is a difficult figure to obtain. Prices vary widely depending

on the system in question, the time needed to perform the test, the number of people

involved in the testing, and other factors. This leads into the debate over spending

money on preventive security measures vs. the cost of potential breaches. However,

since the cost of a penetration test is typically a fraction of the data breach figure, it

makes good business sense to invest in penetration testing and use the information
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it provides to keep security protocols up to date and learn how to better identify

potential vulnerabilities in the future [4].

Proper penetration testing takes into account more than just software applications

and deployed security measures. For the most comprehensive results, a system’s hard-

ware components and the people that interact with the system must be considered as

well [4]. There are three common variations of penetration testing: network testing,

application testing, and social engineering. Network penetration testing attempts to

identify and exploit holes in the design, implementation, and operation of a system’s

network in order to discover potential software or hardware vulnerabilities that would

allow attackers into the test system. Application penetration testing determines the

effectiveness of installed security measures, such as firewalls, in order to make sure

they are working properly. Social engineering leverages human interaction in order to

obtain or compromise sensitive system information. This strategy is used to manage

unauthorized access opportunities by assessing the security awareness of employees

[4]. In this work, we focus on a combination of network and application penetration

testing. Our design tests the effectiveness of local firewalls, application maintenance,

and the physical configuration of a network.

Penetration tests are classified into three categories: black box, white box, and

grey box [4]. Black box penetration tests are conducted with no prior knowledge about

the system being tested in order to determine if accessing the system is possible and if

so, how much data can be compromised. This method simulates attackers that have

no information about their target. White box penetration tests are conducted with

all of the available information about the system being tested. This can involve the

testers and the owners of the system working together on what to focus on during the

testing process. Grey box penetration tests are in between black box and white box

testing where only partial information about the system are provided to the testers

[4]. In this work, we focus on black-box testing.
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Shifting to network penetration testing, the process can be separated into three

phases: preparation, execution, and post-execution [29]. In the preparation phase, it

is important that the client and tester communicate to determine the system to test,

the scope of the testing, the type of testing, and how to perform the tests [29]. This

is also the time for the client to convey the goals of the testing and for the tester to

educate the client on what to expect from the testing, such as test duration, what

the testing results will look like, etc. [14]. Next, the tester tries to learn as much

as possible about the target system. This involves acquiring documentation about

the systems components and past penetration testing results, running sample tests,

and using third-party resources such as vulnerability scanners [34]. The final step

before the execution phase is vulnerability modelling and analysis. The results from

the vulnerability analysis are used to formulate attacks, specific exploits and their

targets, to use in the execution phase [14].

The execution phase launches the attacks formulated in the preparation phase at

the target system or systems. Even though this process sounds simple, it is important

to think about the approaches and tools to use in order to provide the most meaningful

results. For example, launching every available exploit at once and seeing what

happens is not an effective procedure [14]. A large spike in activity can be easily

detected and it might not be obvious which exploits were successful or not. It is

also important to think ahead and configure the exploits to return useful information

that will be used in the post-exploitation phase. This includes determining the types

of exploits and exploit payloads to achieve desired results. After determining which

exploits were successful, the post-execution phase begins. Post-execution refers to any

actions that follow the initial compromise of the system. This includes techniques like

pivoting, using a compromised host as a bridge to reach other networks or systems

that aren’t directly accessible to the attacking machine [11], and privilege escalation,

the process of gaining root or administrator privileges if not granted already through
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exploitation, that can provide the attacker access to additional systems and data [29].

The post-exploitation phase is critical because this is where the attacker can possess

root-level access over the entire system and potentially do the most damage [14].

The post-execution phase also involves compiling all of the test results. Properly

reporting the test results is the most important part of the penetration testing process

because the results need to accuratly depict the state of the system and make sense

to the people responsible for implementing the appropriate changes [14]. The report

should include the tests that were run, how they were run, why they were run, and

most importantly, the issues that were found and suggestions on how to fix them [14].

If possible, after the appropriate changes are deployed, a re-test should take place in

order to validate that the new changes fixed the old problems. It is also important

to document and report any changes made to the system during the execution phase

and then reverse the changes once testing is complete [29].

Automated penetration testing combines the three phases explained above into

readily-deployable, security assessment tools. The use of automated testing proce-

dures has grown in recent years due to the frequent technological changes that are

needed to alter and scale networks [8]. Manual penetration tests can take days or even

weeks to complete and require lots of planning and labor. Automated solutions can

provide results in a couple of hours, be used as frequently as desired, and save labor

costs [8]. However, repeated use of these tools can lead to a sense of false security.

The tools themselves are only as good as their developers, they cannot guarantee

a vulnerability discovery rate of 100%, and are not as flexible as manual tests [8].

Even so, the speed and efficiency of automated penetration testing tools makes them

valuable resources on their own and when used to supplement manuel penetration

tests.
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Table 2.1: Comparison Between Vulnerability Assessment and Penetration
Testing, from [29]

Vulnerability Assessment Penetration Testing

Purpose Identify and rank vulnerabilities Identify ways to exploit vulnerabilities

When Quarterly or after significant changes Annually or after significant changes

How Typically uses automated tools with

manual identification of issues, can be

done completely manually, static and

dynamic analysis (fuzzing)

Manual process that may include au-

tomated, tools like vulnerability scan-

ners, typically conducted by experi-

enced third-party engineers

Report Contains potential risks as a result of

the identified vulnerabilities

Detailed description of each verified

vulnerability (risks of not fixing it, how

and to what extent it can be exploited)

Duration Relatively short (several seconds to sev-

eral minutes per host)

Depends on size of system, scope of

test, and issues uncovered during test-

ing (days to weeks)

Cost Some automated tools are free, prices

vary between third party services (typ-

ically quoted price host)

Same parameters as duration, varies

between third-party services

One common point of confusion around penetration testing is the difference be-

tween penetration testing and vulnerability assessment. Vulnerability assessment is

the analysis and reporting of the severity and impact of vulnerabilities identified

within a system [34]. Using the definition of penetration testing from Section 1.1,

penetration testing is an extension of vulnerability assessment because the final re-

sults of a vulnerability assessment define the attack vectors in the preparation phase

of a penetration test. Put simply, vulnerability assessment indicates potential points

in a system that can be exploited while penetration testing attempts to exploit those

points to figure out if in fact an attacker can breach the system, how much access an

attacker can acquire, and how to repair the vulnerable points. A more quantified side-

by-side comparison of vulnerability assessment and penetration testing is provided in

Table 2.1.
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Penetration testing, and security assessment in general, is not without its limita-

tions, particularly from legal and ethical viewpoints. For example, if a penetration

test is conducted on a system containing sensitive financial data, preserving the confi-

dentiality of the data by omitting it from a test can detriment the value of the testing

because the tester is now contrained where an attacker wouldn’t be [8]. Organiza-

tions also need to adhere to specific laws and policies, which can make comprehensive,

real-world testing difficult. The testers themselves also need to act within legal and

ethical guidelines. An example would be testing a system within constraints provided

by an organization and not extending beyond those constraints without authorization

even if it is safe, easy, or beneficial to do so. Therefore, it is important to define and

explicitly communicate the parameters of the test in order to hold the testers liable

for their actions [7].
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2.1 Popular Penetration Testing Tools

2.1.1 Metasploit Framework

The Metasploit project [14] is a free-to-download, open-source exploitation frame-

work designed to be a comprehensive development environment for penetration test-

ing. Initially released in 2003, Metasploit 1.0 quickly gained popularity within the

penetration testing and information security communities. Since being acquired in

2009 by Rapid7, an industry leader in vulnerability scanning, the Metasploit project

has grown exponentially; initially released with 11 exploits in 2003, the most recent

version (4.11.5) now has over 1500 exploits [33]. In addition to exploits, Metasploit

contains other tools to aid the various stages of penetration testing. These tools in-

clude scanners, payloads, and session handles. Various network and port scanners are

integrated into Metasploit in order to assist host and vulnerability discovery. Metas-

ploit also provides a large number of payloads, code packages that are delivered to

target machines via exploits. Payloads, when delivered by a successful exploit, pro-

vide post-exploitation capabilities to the tester; one example is a terminal session,

such as a reverse shell, which returns a command shell from the target machine to

the tester [38]. Session handlers are used to interact with sessions returned from a

successful exploit and payload delivery. Interactions include enabling or background-

ing multiple sessions, remote code execution, and the use of features such as routing,

hash dumping, and privilege escalation.

2.1.2 Nmap

Nmap or ”Network Mapper” [16] is an open source tool used for network exploration

and security auditing. Using IP packets, Nmap is able to determine the available hosts

on a network, their services, their operating systems, and if some type of firewall or
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packet filtering is in place. Nmap is widely acclaimed and one of the most popular

tools in the penetration testing community. Its flexibility, power, compatibility, and

developer and user support makes it a useful tool for novel developers as well as system

and network administrators for monitoring hosts and conducting network inventory.

2.1.3 Nessus

Tenable Network Security’s Nessus[17] is a free, multi-platform, vulnerability assess-

ment package that runs automated tests on a target network using various protocol

scanners (ICMP, TCP, and UDP) and specific service testing. Nessus also features a

wide range of reporting options to convey the resulting information. Nessus is widely

used by penetration testing providers to perform a large portion of the network scan-

ning work. It is also worth noting that in 2011, a plugin that integrated Nessus into

the Metasploit framework was released, combining two of the most popular penetra-

tion testing options into one essential tool [3].

2.1.4 Burp Suite

Burp Suite [32] is a Java-based platform that tests the security of web applications.

Burp contains its own internal mapping and exploitation tools that can be combined

with manual techniques into an automated, effective testing process. Some of its

other features include an application spider crawler, an internal web proxy for traffic

inspection, a sequencer that specifically tests session tokens, and support for custom

plugins.

2.1.5 Wireshark

Wireshark [15] is a real-time, network packet analyzer and one of the most popular

software applications amongst network engineers for its network examination and
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troubleshooting capabilities. Wireshark’s primary function is to parse and display

data from captured network packets. To support this process, Wireshark comes

loaded with features such as packet filtering, hex conversion, and statistical analysis.

2.1.6 BeEF

BeEF or ”Browser Exploitation Framework” [12] is a free-to-download, open-source

penetration testing tool focused on exploiting holes in web browsers. Through the

use of a custom API, BeEF provides a penetration tester with the ability to launch

client-side attacks directly at web browsers and the ability to launch system-targeted

attacks from the system’s web browser.
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Chapter 3

IMPLEMENTATION

In this chapter, we describe our design’s architecture and functionality.

3.1 Components

In this section, we describe the underlying components used to build our design.

3.1.1 Metasploit Framework

As mentioned in Section 2.1.1, Metasploit is a fully-featured, open-source tool de-

signed to help automate the penetration testing process [14], making it a natural

choice for our design’s foundation. The main reasons for choosing Metasploit over

other alternatives include its consistent maintainence and development community.

Metasploit is also constantly updated, ensuring that the the most up-to-date exploits

and payloads are available for use, and its popularity has led to the development

of plugins, interfaces, and programming languages all with goal of extending Metas-

ploit’s functionality.

The elements of Metasploit that we leverage are its exploit database, its ability

to launch exploits, the Meterpreter payload, and its use of isolated working environ-

ments. Metasploit’s exploit database is a repository within the framework that stores

all of the attacks that can be launched by Metasploit. All exploits are considered

either active or passive [26]. Active exploits attempt to exploit a host and either run

until completion or are manually terminated. Passive exploits setup listeners that are

designed to accept incoming connections from a malicious website, executable, etc.

that an attacker has provided or distributed. Each exploit is also given a rank value
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indicating its likelihood of crashing its target. More details on our use of this rank

value can be found in Section 3.2.3.1. Once an exploit has been selected, Metasploit

allows the user to be bring an attack into the foreground, and then customize, launch,

and handle the attack’s results with few commands in a very straightforward process.

Metasploit’s Meterpreter shell [18] is a specialy designed injection payload that de-

liveres a DLL to the target machine and loads an API to facilitate post-exploitation

features, such as a spawning command shell and key logging. Meterpreter was the

payload of choice for all compatiable exploits because of the features of its API. In

cases where Meterpreter wasn’t compatible, other shell payloads were used and then

transformed into Meterpreter shells; more details can be found in Section 3.2.3.2. By

default, the Metasploit framework includes the ability to use isolated working envi-

ronments, or workspaces [25]. Each workspace is an isolated database that stores host

information and scan data. Workspaces allow data from multiple tests and scans to

be saved simultaneously without overwritting or contaminating one another.

3.1.2 Armitage

Armitage [19] is a Metasploit-specific collaboration tool. Armitage was developed to

provide Metasploit with a graphical visual interface that can be accessed by multiple

parties to encourage collaboration within a penetration testing team. Through this

interface, host machines and their vulnerabilities are visually presented to the users.

Armitage also presents other visual components that deal with session handling, pay-

load selection, and post-exploitation features.

The main feature of Armitage that we leverage is its team server. The team server

is initialized on the same machine as the local Metasploit instance and allows multi-

ple users to remotely connect to a single instance of Metasploit. Starting the team

server requires the IP address that will be used to accept incoming local and remote
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connections and a password for authentication. The team server communicates over

SSL and, as a secondary security precaution, the team server generates a SHA-1 hash

from its SSL certificate and presents this hash to verify the legitimacy of the server.

Armitage, specifically the Armitage team server, was included in ANEX because

it is the utility that allows Cortana scripts, described below, to connect to an instance

of Metasploit and utilize Metasploit’s resources.

3.1.3 Cortana

Cortana [21] is a scripting language specifically designed for Metasploit that helps

automate the penetration testing processs. Cortana’s main features include the ability

to create persistent bots that resemble penetration testing team members, automating

the Metasploit framework, and extending the Armitage GUI. Cortana is built on top

of Sleep, a Perl-inspired, Java-based scripting language [20].

Cortana scripts can be run from the Armitage GUI or as standalone scripts from

within a console program. We used standalone Cortana scripts to automate the

Metasploit framework. In order to use standalone Cortana scripts to automate Metas-

ploit, the Armitage team server needs to be running so that scripts can connect to it,

as shown in Figure 3.1. The Armitage team server, as previously explained, allows

multiple users to interact with a single instance of Metasploit. Standalone Cortana

scripts behave as individual entities, or bots, that when connected to the Armitage

team server, resemble fellow penetration testing team members. In order to properly

connect to the server, standalone Cortana scripts need to provide proper connection

and authentication information through a properties (.prop) file. This file is specified

when using the command line to launch a Cortana script. A properties file contains

the following information: host IP address, the port number that the team server is

listening on, a user name, and the password to connect to the team server.
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Figure 3.1: Relationship between Metasploit, Armitage, and Cortana,
from [19]

All of the interaction between ANEX and Metasploit is done through Cortana

scripts. A high level interaction diagram can be found in Figure 3.2. The exact

nature of these interactions are explained in more detail in Section 3.2.

3.1.4 Nmap

As mentioned in Section 2.1.2, Nmap is a tool that is used to scan machines and

networks to discover characteristics such as operating systems and installed services.

We decided to use Metasploit’s custom db nmap command instead of the traditional

version. Db nmap [24], runs the same Nmap executable that can be downloaded on-

line and then automatically stores the results into the current Metasploit workspace.

This data is then retrieved and integrated into ANEX’s exploit launching process,

which is described in Section 3.2.3.1. We chose Nmap as our scanning utility because

of its ease of use and its compatability with Metasploit and Armitage, both of which

support db nmap.
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Figure 3.2: Relationship between ANEX, Metasploit, Armitage, and Cor-
tana

3.2 Architecture

Automated Network Exploitation through Penetration Testing (ANEX) is a combina-

tion of different modules. We define three types of modules: input, data-generation,

and task. Input modules prompt the user for information. Data-generation modules

gather data from the local Metasploit database and store it in an easy-to-manage

data strucuture. Task modules handle the more complex functions and interact with

the target machine or network. We also define four module groups: initialization,

recon, exploitation, and reporting. Each of these module groups represent a phase

in ANEX’s overall execution, the interaction of which can be found in Figure 3.3.

The initialization module gathers information from the user and connects to the Ar-

mitage team server. The recon module is responsible for gathering information about

the system being tested. The exploitation module handles the exploit generation,
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Figure 3.3: ANEX’s Flow Diagram

launching, and post-exploitation procedures. The report module compiles all of the

information found during testing into a user report.

All of our individual modules are connected together through ANEX’s control

driver. The control driver’s purpose is to facilitate operation by invoking the modules

and managing data. This involves collecting data from the input and data-generation

modules, distributing it to the task modules, and managing any data returned by the

modules.

3.2.1 Initialization

In this section, we describe ANEX’s interaction with the user and the retrieval of key

information that is used throughout execution. A low level diagram of the initializa-

tion group can be found in Figure 3.4.
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Figure 3.4: Diagram for the Initialization Group

3.2.1.1 User Input

Our user input module prompts the user for information needed at the start of each

run. The main job of this module is to collect and pass the user input back to

the control driver so that it can be used by other modules. User input includes

credentials for initializing or connecting to an Armitage teamserver, IP addresses or

ranges specifiying the machines to be tested, an IP address for the target machine, and

an exploit rank threshold. As mentioned in Section 3.1.2, the Armitage teamserver

requires a host IP address and a password. The user then supplies the IP addresses of

the machines to be tested that are reachable from the test machine and specifies the

target machine via its IP address. The last piece of information that user provides

is an exploit threshold rank value. This value is used to determine which exploits to

include in the exploitation process and which exploits to filter out.
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3.2.1.2 Service Startup

Our service startup module initializes the programs required by ANEX. These pro-

grams include PostgreSQL and the Armitage team server. PostgreSQL is the database

management system used by Metasploit. The Armitage teamserver, as described in

Section 3.1.2, handles all of the incoming Cortana script connections. PostgreSQL

and the Armitage teamserver need to be running in order for Cortana scripts to ac-

cess the Metasploit database. Therefore, both services need to either be initialized

by ANEX or be already running. The service startup module also handles the execu-

tion of the Metasploit update command to download and install Metasploit updates,

ensuring that our tool is using the most recent information available.

This module is only invoked if special flags are provided as command line argu-

ments. The service initialization flag (-init) is used to indicate that the programs re-

quired by ANEX need to be initialized by the service startup module. The Metasploit

update flag (-update) is used to run the Metasploit update command and download

the most recent version of Metasploit. If no flags are provided, it is assumed that

PostgreSQL and an Armitage teamserver are already up and running.

As mentioned in Section 3.1.3, Cortana scripts require a properties file in order

to connect to an Armitage team server. When a team server instance is initialized

by this module, a properties file with the information used to start the server is

created in the working directory. In the case where the team server is not initialized

by this module, the property file name is set to the same name as the file that is

generated when the teamserver is initialized by our module. In this case, it is the

user’s responsibility to ensure that information in the property file is accurate before

running ANEX.
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3.2.1.3 Exploit Database Generation

Our exploit database generation module handles the retrival of exploits from the

local Metasploit instance and then formatting them into an easy-to-reference data

structure. Each exploit contains the following information:

• A name, represented by a Metasploit directory path (os/service/exploit name)

• The operating system the exploit is designed for

• The port number that the exploit uses

• The date the exploit was added

• An integer value that indicates the exploit’s ranking [5]

• A float value equal to the exploit’s impact ranking that will be used for rank

updating (Section 3.2.4)

• A description of what the exploit does

Our module invokes a Cortana script that runs a Metasploit command that prints

the entire Metasploit exploit database to the console and then transforms each ex-

ploit into a CSV formatted string to return to the module. The module parses each

returned exploit string and stores it in a dictionary for easy lookup and distribution

to other modules. Whenever execution completes, the exploit dictionary is written

to a file in the working directory. We use this file to generate the exploit dictionary

on any subsequent runs of ANEX to avoid the slower process of polling Metasploit’s

exploit database. This module also updates exploit rankings after the main loop

completes according to data found during execution and incorporates these changes

prior to writing the file to disk. Generating the exploit database from this file allows

ANEX to utilize any alterations made to the exploit rankings by the previous run.
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Figure 3.5: Diagram for the Recon Group

3.2.2 Recon

In this section, we describe the network information gathering and consolidation

processes. A low level diagram of the recon group can be found in Figure 3.5.

3.2.2.1 Vulnerability Scanning

Our scanning module controls the use of Metasploit workspaces and executes an Nmap

scan on the IP addresses initially provided by the user and on the networks found

in subsequent loop iterations. Metasploit workspaces are used to retain multiple sets

of host and service information within Metasploit without the need to overwrite or

re-enter previous data. With this functionality, multiple system configurations can be

tested, saved, and re-tested very easily. As previously mentioned in Section 3.1.4, we

use Metasploit’s db nmap command to run Nmap and store the scan results into our

selected workspace for easy retrieval. The stored information includes details about

the machines that were scanned, the open ports that were found, and the services
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running on those ports. Our module also uses auxiliary scanners that are integrated

into Metasploit [24]. These scanners include a TCP port-scanning module similar

to db nmap and scanners designed to determine the version of a given service. Our

design uses the TCP port-scanning module instead of the db nmap command when

attempting to discover information about networks found over the course of ANEX’s

execution. We then use various version scanners to gather additional information

about services found on the discovered machines.

3.2.2.2 Service Database Generation

Our service database generation module retrieves the service information that was

stored in the current workspace by our scanners. These results consist of port numbers

for each host that was scanned and include details such as whether or not the port

is open, what protocol the port is associated with, and a description of the service.

This module invokes a Cortana script to run a Metasploit command that prints all

of the services in the current workspace to the console. Each service is read from the

console and transformed into a CSV formatted string, containing the details listed

above, to return to the module. The module parses each returned service string and

stores it in a dictionary for easy lookup and distribution to other modules.

3.2.2.3 Host Database Generation

The host database generation module retrieves the host information that was pre-

viously stored in the current workspace by our scanners. These results are in the

form of IP addresses for each machine that was scanned and includes details such as

MAC address, operating system, and operating system version. This module invokes

a Cortana script to run a Metasploit command that prints all hosts to the console and

then transforms each service into a CSV formatted string to return to the module.
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Figure 3.6: Diagram for the Exploitation Group

The module parses each returned host string and stores it in a dictionary for easy

lookup and distribution to other modules.

3.2.3 Exploitation

In this section, we describe the attack generation and launching process, the post-

exploitation process, and the data preservation module. A low level diagram of the

exploitation group can be found in Figure 3.6.

3.2.3.1 Attack Generation and Exploitation

Our attack generation and exploitation module creates a list of exploits for each

machine being tested. The exploit, service, and host dictionaries are used to determine

the exploits that can be used against a particular machine. Information such as

a machine’s operating system and its open ports are critical in determining which

exploits could potentially work. The user-provided exploit rank threshold is also used
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to filter potential exploits by their rank value. Once all of the exploits have been

gathered, the lists are passed to a Cortana script along with the user-provided exploit

rank threshold.

Before describing the specifics of our Cortana script for this module, it is impor-

tant to explain the design decisions we made with respect to the order in which we

launched exploits. We decided to modify the exploit rankings after each test in order

to influence subsequent tests, but we didn’t want the exploits for a machine to run in

the same order for every test. Therefore, we designed a weighted random sampling

system to utilize the exploit rankings and the user-provided exploit ranking thresh-

old to objectively determine the launching order. Using the threshold, we create a

number of bins equal to the highest predetermined exploit rank minus the threshold

value. Each bin is then populated with exploits corresponding to their exploit rank.

For example, with a highest exploit rank of six and an exploit threshold of four, three

bins, the difference plus one, are created and then populated with exploits whose

rankings are greater than or equal to six, less than six and greater than or equal to

five, and less than five and greater than or equal to four respectively. Each bin is

then assigned a weight, where the weights are influenced by the number of bins and

higher weights are assigned to bins with higher-ranked exploits.

After receiving the lists of exploits and the ranking threshold, our Cortana script

creates a dictionary entry for each host with their own set of bins and exploits as

previously described. Then, for each host, we use a random number generator to

select a bin and then a function to pick and launch a random exploit from the selected

bin. Once an exploit is launched, we start a timer that will stop an unsuccessful

exploit after a predetermined duration. It is also important to mention that our

exploitation module was designed to only use active exploits, mentioned in 3.1.1.

Our use of a timeout with no secondary interaction with the host machines reflects

this design decision. The exploit selection and launching process continues until
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either an exploit is successful or there are no more exploits for a given machine.

After successfully exploiting or launching all possible exploits for a given machine, we

return the results to our module. Each result contains the following information: if

the machine has been exploited, the number of launched exploits, and every launched

exploit with a value indicating success of failure. If a machine is successfully exploited,

the Metasploit session identification number, the user privileges of the session, the

exploit that spawned the session, and the session type, either shell or Meterpreter,

are also returned. The module parses these messages and then passes the relevant

information to the post-exploitation and exploit database generation modules. The

post-exploitation module uses the open session numbers and their associated details

for further exploration. The exploit database generation module uses the session

information and the lists of the launched exploits to update exploit rankings.

3.2.3.2 Post-Exploitation

Our post-exploitation module uses the spawned session information to interact with

the compromised machines. A compromised machine on a network opens the door to

pivoting, using a compromised host as a bridge to reach other networks or systems

that aren’t directly accessible to the attacking machine [11], and privilege escalation,

the process of gaining root or administrator privileges if not granted already through

exploitation [29].

The module starts by parsing the session information returned by the attack mod-

ule into a dictionary. Next, the sessions are analyzed to determine if they have root

privileges and if they were established using the Meterpreter payload. If a session

doesn’t have root privileges, it is passed to a Cortana script that attempts to elevate

its privileges through Metasploit’s post-exploit features. If a session was established

with a payload other than Meterpreter, it is passed to a Cortana script that uses a
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Metasploit function that transforms shell sessions into Meterpreter sessions. Meter-

preter sessions are desired because the built-in API contains features that are key to

the network discovery and pivoting processes of our design.

After the sessions have been properly altered, the session dictionary is passed to

the Cortana script that discovers new networks. The script interacts with each session

and invokes a Meterpreter API call that returns all of the network information on

the target machine. This information is parsed for networks that are not associated

with localhost or the known IP address of the compromised machine. Just prior to

sending the data back to the module, the script invokes a Metasploit command that is

used to establish pivots based on the networks that were found through each session.

This allows the testing machine to connect to other networks that weren’t initially

reachable by tunneling through the compromised machine. The returned data is then

passed from this module to the scanning module to begin a new iteration of the main

loop. If no new networks are found, it is assumed that the traversal of the network

has been saturated and the work done by the main loop is complete.

3.2.3.3 Data Copying

Our data copying module collects and maintains gathered data over the course of

ANEX’s runtime. The program’s main loop repeats the process of vulnerability scan-

ning, finding services and hosts, attacking, transforming sessions, and then searching

for new networks. At the end of each iteration, the copy module is invoked to take the

gathered data and append it to previously collected data. Then, when the main loop

is complete, all of the accumulated information is used to update exploit rankings

and generate the final report.

29



Figure 3.7: Diagram for the Reporting Group

3.2.4 Reporting

In this section, we describe execution analysis, exploit rank updating, and report

generation. A low level diagram of the reporting group can be found in Figure 3.7.

3.2.4.1 Targeting

Our targeting module identifies the supplied target machine, if found, within the ma-

chines that were exploited and then determines the relationships between the target

and the other machines. This is represented by a tree-like structure, with the target

as the root, the machines on its same subnet or the machines that share a network

with it as its children, and so forth until every found machine is accounted for or if

there are no more direct or indirect paths for a machine to the target. The paths in

this tree indicate exploitation chains that would need to occur from a machine to the

target in order to compromise it.
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3.2.4.2 Exploit Ranking Modification

The exploit ranking modification process is used to the update the rankings of the

exploits that were used by the attack generation and exploitation module. As pre-

viously mentioned, the exploits that are launched at each machine are returned by

the attacking module, each with a value indicating if the exploit succeeded or not.

This information is then used to modify values in the exploit database that we cre-

ated. Each exploit that is launched has its rank altered by a weighted value. The

weight of the value depends on a few factors: if the exploit succeeded or not, the

operating system specified by the exploit, the operating system of the machine being

exploited, and the prevalence of the machine’s operating system according to market

share data. Most Metasploit exploits are designed for a single operating system, but

there are some that are classified as multiple operating system exploits and therefore,

are launched against a wider range of operating systems. The version of the operating

system also matters given that the distribution of different operating systems versions

is not equal. For example, as indicated by recent market share data [35], Windows

7 is used more than Windows XP. Therefore, if a single exploit is used to exploit

both computers, the weighted increase in rank from the Windows 7 session would be

greater then the weighted increase from the Windows XP session.

3.2.4.3 Reporting

Our reporting module compiles all of the provided and gathered information into

an overall synopsis of what our tool accomplished. The output report contains the

following details:

• The initial data provided by the user (target IP, networks, exploit severity

rating)
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• The machines that were discovered from the provided data

• All of the machines that were compromised

• The services that were found on each machine

• The number of exploits that were found during the attack generation process

• The number of exploits that were launched during the exploitation process

• The exploits that were used to compromise each machine along with descriptions

and their Metasploit vulnerability rankings

• The networks that were discovered during the post-exploitation phase and the

machines they were found on

• The machines whose sessions required altering and the sessions that couldn’t

be altered

• All of the machines that weren’t compromised

• If the target was found over the course of ANEX’s execution

• The paths to the target arranged in a tree-like hierarchy

The report conveys several things. First, the report identifies if the target machine

can be compromised and the relationships of each compromised computer to the target

machine. Second, the user is informed of the machines that need to be patched, the

specific exploits that need to be addressed, and all of the open services that were

found. Finally, the compromised machines and the networks that were found on

them are displayed in a network map-like structure, allowing the user to see all of the

expected or unknown connections.

32



Chapter 4

VALIDATION

In this chapter, we explain our validation process. We define our experimental pro-

cedure, testing environment, expected and actual results, and the key characteristics

that we measured.

4.1 Experimental Procedure

In this section, we describe our testing process for validating the functionality of

ANEX, Automated Network Exploitation through Penetration Testing. We built our

testing process around ANEXs three main features, exploit launching, the identifica-

tion and exploration of found networks, and target mapping.

4.1.1 Exploit Launching

ANEXs exploitation process is based entirely on the results from the port scanning

module. The results from the port scanning module are in turn based entirely on the

services that are running on a specific machine and the configuration of the firewall.

Therefore, we purposefully varied the services that were running and the configuration

of the firewalls to observe how ANEX responded to the changes and the effect on the

overall findings.

4.1.2 Handling Found Networks

ANEX is designed to look for unexplored networks on every compromised system.

This feature allows it to find unspecified networks where it can then look for more

machines to potentially compromise. Some key behaviors we looked at were the ability
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to handle finding multiple new networks on the same machine and the time required

to scan these networks.

4.1.3 Target Mapping

We used our different network configurations to determine the robustness and ac-

curacy of the targeting system. We used three main configuration templates, all

designed to focus on a specific element of the targeting process. The first configura-

tion was our base case where every machine was connected to a single network. This

configuration was used to test if the targeting system was accurate in the simplest

case. The second configuration contained two subnets with varying numbers of ma-

chines and a target located in one of the subnets. The third configuration contains

two subnets similar to the previous configuration, but with the target and a machine

in one of the subnets connected via a local area network. This configuration was used

to test the discovery and exploration of networks found during the post-exploitation

procedure. The three configuration templates can be found below in Figures 4.1 -

4.3.

Figure 4.1: Single Network Template
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Figure 4.2: Two Subnets Template

4.2 Testing Goals and Parameters

In this section, we describe our testing goals and parameters. Our goals for testing

were to show a high exploitation success rate, ANEX’s ability to identify and exploit

machines that weren’t initially accessible to the testing machine, and the ability to

take advantage of multiple paths to a single machine in order to exploit it.

We classify our key testing parameters into three categories: static, dynamic, and

dependent variables. Our sole static variable, data that remains constant throughout

testing, was the Metasploit framework version. We ensure that all of the tests are

conducted with the same database of exploits and the rankings determined during

testing. Updating the Metasploit framework during testing would potentially alter

our results due to the addition or removal of exploits and modifications to the exploit

base rankings. Therefore, just prior to the beginning of the experimental trials,

we updated the framework and then maintained the same version until testing was

complete.
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Figure 4.3: Secondary Network Template

Our dynamic variables, data that changes throughout testing, were our test net-

work configurations and the exploit rankings. With ten different virtual machines

available, the number of possible test configurations exceeds three million. Therefore,

we selected the configurations before any tests are run since testing all possible config-

urations was not feasible. In addition to varying the network topology, we also varied

the number of running services and firewall settings of each machine. Changing these

two properties directly affects the results of the port scanning module which directly

affects our exploitation process. As mentioned in 3.2.4.2, an exploit’s rank is updated

depending on if if succeeded or failed. The new rankings affect how the exploits are

sorted by our weighted random sampling scheme which affects the likelihood of when

or if an exploit is launched during the exploitation phase.

Our dependent variables, data that is a function of the dynamic variables, were

exploit success and runtime. We knew initially that our ability to exploit machines

was based on the exploit rank threshold and the individual configurations of our ma-

chines, but we wanted to test how much impact certain configuration changes would

have. Therefore, we measured our exploit success rate as we varied the configurations
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of each machine. As for runtime, one of the benefits of automated penetration testing

solutions over manual testing is time investment. Automated solutions are typically

faster and can be used more frequently. Therefore, it was important that our design

ran in a reasonable amount of time, depending on the system being tested. Depend-

ing on the configuration, this time varied between a few minutes to a few hours. At

the time of testing, we were aware that our scanning and exploitation modules were

our main time contributors because of the critical data they provide. Therefore, we

watched our runtime as we varied the configurations of the test networks.

4.3 Development and Testing Components

In this section, we describe our testing environment, the virtual machines we used,

and the configurations of each virtual machine.

4.3.1 Kali Linux 2016.1

Kali Linux is an open-source, Debian-based Linux distribution, developed by Offen-

sive Security, that is specifically designed to assist penetration testing and security

auditing procedures [27]. Designed for penetration testing professionals, Kali con-

tains hundreds of tools that support vulnerability scanning, password cracking, and

many other penetration testing and security-related tasks. Kali Linux was specifically

chosen as the development and testing platform for our design because the key tools

that make up ANEX, Metasploit, Armitage, Cortana, and Nmap, come pre-installed.

4.3.2 VMware Workstation 12.0

VMware Workstation [39] is a popular virtual machine management program that

allows multiple machines to be created, managed, and run simultaneously. Virtual
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machines with various operating systems were spawned and arranged in various config-

urations in order to test ANEXs functionality on makeshift corporate network setups.

VMware Workstation was chosen to test ANEX because of its easy availability and

its ability to easily create virtual networks and LANs.

4.3.3 Virtual Machines

We chose ten different operating systems for our testing machines, listed below:

• Windows XP Bare

• Windows XP SP1

• Windows XP SP2

• Windows XP SP3

• CentOS 6.7 Server

• Ubuntu 12.04 Server

• Ubuntu 14.04 Desktop

• Ubuntu 15.04 Desktop

• Windows 7

• Windows Server 2012 R2

Our choices were based on the types of machines in a corporate environment.

Windows 7 was a clear choice for a Windows workstation. The various Windows XP

versions were chosen because they are still sparingly used [35]. The three servers,

Windows 2012, Ubuntu 12.04, and CentOS 6.7, were chosen for operating system

variety and to capture the use of older server versions. Ubuntu 14.04 and 15.04 were
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chosen to represent older, stable Linux workstations. The most recent market share

data from [35] indicates that our selected virtual machines account for around 60%

of the total market.

4.3.4 Installed Services

In order to make the virtual machines resemble systems that would be found in a typ-

ical corporate environment, various services were installed on both the workstations

and servers. All of the services we installed on our virtual machines can be found in

Table 4.1 1. All of the services for each machine, including used default, can be found

in Figure 4.4.

Figure 4.4: All Services

1I’d like to personally thank Professor John Bellardo and Raz Chowdhury for their suggestions
regarding typical services installed on corporate workstations and servers
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Table 4.1: Installed Services

Service Description Installed On...

MySQL Open Source Database Management

System

Centos 6.7, Ubuntu 12.04, Ubuntu 14.04,

Windows Server 2012 R2

Apache Open Source HTTP Server Windows 7, Ubuntu 12.04, Ubuntu 14.04,

Ubuntu 15.04, Centos 6.7, Windows Server

2012 R2

Samba File and Print Service Centos 6.7, Ubuntu 14.04, Ubuntu 15.04

Bind9 Open Source DNS Utility Centos 6.7

Squid Web Proxy Server Centos 6.7

SSH Remote Login Utility Ubuntu 12.04, Ubuntu 14.04, Centos 6.7

Postfix Open Source Mail Server Centos 6.7

Dovecot Open Source Email Server Centos 6.7, Ubuntu 12.04

CUPS Print Server Ubuntu 14.04, Ubuntu 15.04

Java Standard Desktop Package Ubuntu 14.04, Ubuntu 15.04, Windows 7

FileZilla Open Source FTP Server Windows Server 2012 R2

LDAP File Server Ubuntu 12.04

NFS File Server Ubuntu 12.04

LTSP Open Source Terminal Server Ubuntu 12.04

Proftpd FTP Server Centos 6.7

Vsftpd FTP Server Ubuntu 12.04

DHCP Windows DHCP Server Windows Server 2012 R2

DNS Windows DNS Server Windows Server 2012 R2

IIS Windows Web Server Windows Server 2012 R2
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4.4 Expected Results

For each test, we ran ANEX against a different network configuration built from the

templates in Figures 4.1 - 4.3. In each test, we varied the firewall configurations, the

exploit rank threshold, and the connections of the secondary networks if appropriate.

We expected various firewall configurations and exploit rank thresholds to directly

influence the number of exploits run and the overall success of the exploitation process.

We anticipated that altering the configuration of the secondary networks wouldn’t

have a large impact on the overall results. Other than slightly altering the target tree

produced in the report, we expected the identification, exploration, and exploitation

of machines on the network to remain unchanged.

For our runtime values, we expected to observe a linear-like relationship between

the size of the tested network, including secondary networks, and the time required

to scan, exploit, and search through them. This time would also be affected by the

machines in the networks given that some would be more vulnerable than others and

take less time to exploit.

4.5 Results

Our initial hypothesis was: We can identify and exploit a high percentage of the

machines on a given network and show paths from every compromised machine to a

target machine.

Unfortunately, we found that we were only able to exploit the Windows XP ma-

chines. The remaining Windows, CentOS, and Ubuntu machines were consistently

immune to ANEXs exploitation techniques, regardless of their firewall configuration,

number of running services, and the user-provided exploit rank threshold. However,
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despite the fact that our exploitation success wasn’t as comprehensive as we expected,

we also did not want to make our test machines unnecessarily vulnerable.

4.5.1 Analysis

Overall, we observed a couple of things. First, we found no correlation between the

number of exploits generated for a machine and successfully exploiting said machine.

Although we generated far more exploits for the machines running a large number of

services, particularly the servers, than all of the Windows XP machines, we weren’t

able to retain the same relationship when tallying successful exploitations. Second,

we found an obvious relationship between the age and type of operating system and

if we were able to successfully exploit it. The machines we were able to exploit were

the oldest in terms of release date compared to the other machines and among the

more widely-used and popular operating systems that we used for testing. Finally, we

found that the configuration of the test network, specifically the configuration of the

secondary networks, had a direct effect on the test results. Since we were not able to

exploit every machine as we initially thought, if a secondary network was configured

on an unexploitable machine, we were not able to find that network. The specific

configurations and results for each individual test can be found in Appendix A.

With respect to our initial goals and expectations, we did not achieve the high

success rate we were anticipating, but we were able to exploit machines unreachable

from our test machine and make use of multiple paths to a single machine. Figure

4.5 shows one of our test networks. This network contains three subnets, two of

which contain machines that ANEX cannot directly reach. However, we were able

to exploit both machines on the 221 subnet, which allowed us to access the 222

subnet. We then proceeded to exploit the machine on 222 subnet, gain access to the

223 subnet, and then exploit its sole machine as well. This test confirmed ANEX’s
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Figure 4.5: Test Network with Unreachable Machines

ability to successfully exploit machines and then use their proximity to other subnets

and traverse through initially unreachable networks. Figure 4.6 shows another of

our test networks. This network contains a machine whose network interface was

completely closed off to incoming traffic on the 221 subnet. Therefore, ANEX was

unable to scan it and subsequently exploit it. However, ANEX was able to exploit the

Windows XP Bare machine, which contains a connection to the 222 subnet. After

scanning this network, we were able to find and subsequently exploit the machine

through a different network interface that we initially couldn’t find or exploit. This

test confirmed ANEX’s ability to exploit machines by utilizing mulitple connections

on different subnets. The specific details of these two tests can be found in Appendix

A.

We also determined several reasons that address our low exploitation rate and the

machines we couldn’t compromise. First, the Metasploit exploit database is published

information. Rapid7, Metasploit’s distributor, maintains an online version of Metas-

ploit’s exploit database for easy lookup and searching. Therefore, the developers of

the programs that are vulnerable to these exploits have an incentive to develop and
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Figure 4.6: Test Network with Multiple Exploitation Paths

release patches for them. Second, ANEX’s reliance on an exploit database means

we can only use exploits that Metasploit’s developers decided to integrate into the

framework, and ones that exploit unpatched vulnerabilities. Third, older operating

systems tend to be more vulnerable than newer operating systems. Older, widely-used

operating systems usually have more known vulnerabilities and lack the newer ver-

sions of programs and security updates when compared to their newer counterparts,

making them more susceptible to exploitation overall. Finally, the simple premise of

active exploits is well known. Some of the Metasploit’s active exploits only require

operating system information and an IP address in order to take full control of a ma-

chine. Now while this is great if it works, the simplicity of this type of exploit makes

it unreliable if it is patched. Alternatively, more intricate exploitation methods, such

as targeting and tricking a user into visiting a malicious website, are more resistant

to updated security measures at the cost of convincing a user to perform a desired

action. This targeted method of attack is also performed from the inside-looking-out

which is much less regulated, especially in terms of firewalls, than an attack from the

outside-looking-in from a network perspective.
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4.5.1.1 Exploitation Success

We found that the firewall settings and running services directly affected our ability

to exploit machines. Stopping a service that was being exploited or reconfiguring the

firewall to block the vulnerable services prevented ANEX from exploiting a machine,

which is what we expected. For the machines that couldn’t be exploited, any changes

to their firewall settings or running services proved ineffective. The exploit rank

threshold and exploit updating also affected our exploiting capabilities. We found

that if we set the exploit rank threshold too high, we weren’t able to exploit a machine

that we previously exploited with a lower exploit rank threshold. This was due to the

default and updated rankings of certain exploits. We also noticed that throughout

testing, the ranks of the exploits that were consistently successful on certain machines

were decreasing over time. We attributed this to our exploit rank updating scheme,

where we weighted the specific versions of operating systems based on market share

research. For example, a Windows exploit that could successfully exploit a Windows

XP machine, but not successfully exploit a Windows 7 machine in the same run would

have its overall ranking decreased. We eventually needed to lower the exploit rank

threshold during testing to ensure exploitation. This was something that we had not

initially anticipated and indicates the need to improve our exploitation process to

achieve higher exploitation rates and avoid this problem.

4.5.1.2 Runtime

We measured runtime as a function of the test network’s parameters, which includes

the network topology, firewall settings, running services, and the exploit rank thresh-

old. First, we wanted to observe if runtime scaled with the size of the network. The

factors we took into account were the number of initial machines, number of sec-

ondary networks, and the number of hosts connected to the secondary networks. We
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observed that the number of secondary networks and their varying number of hosts

only affected the runtime if the routes to them were through exploitable machines.

This is because ANEX cannot reach any networks whose only paths are through un-

exploitable machines. If ANEX is able to reach a secondary network, the runtime

becomes dependent on the network’s subnet mask, the number of machines on the

network, and the individual settings of each machine. The subnet mask determines

the specfic network region to scan, which directly affects the scan’s duration. The

number of machines on the network and their individual settings affects the total

number of generated attacks.

Firewall settings, running services, and the exploit rank threshold also affect the

total number of generated attacks. As mentioned previously, the firewall settings and

the services running on a given machine affect the results of the scanning module,

which affects the number of generated attacks. The exploit rank threshold also affects

the number of generated attacks due to exploit rank updating. Overall, we found

that the number of generated attacks, based on all of the variables above, is the

main contributor to the total runtime because of our decision to have only one active

attack at a time. We also observed that our weighted random sampling scheme altered

the number of attacks launched and total exploitation time for machines that were

exploitable, as expected. However, when the same number of exploits are generated

for an unexploitable machine in different program runs, the weighted random sampling

provides no benefit because all exploits are launched in both cases.

4.5.1.3 Exploit Rank Updating

As previously mentioned in Section 3.2.3.1, we used weighted random sampling dur-

ing the exploitation phase to prevent identical exploitation results and the under-

utilization of potential working exploits. The overall changes to the exploit rankings
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Figure 4.7: Exploit Rank Updating Results

throughout all of our testing are shown in Figure 4.7. From these results, we noticed

a trend of decreasing exploit rankings, which was unsurprising given our exploitation

success. However, since we were expecting a more equal distribution as a result of

higher exploitation success, the overall decreasing trend indicates the need to improve

the exploitation process. As of now, the general downward trend could require the

use of a lower exploitation threshold in order to try previously unused exploits, which

potentially increases the risk of instability due to using exploits with lower initial

rankings.
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Chapter 5

RELATED WORK

In this chapter, we present several automated penetration testing solutions, contextu-

alize their advantages and disadvantages, and describe how our design was influenced

by our analysis of these tools.

5.1 Fast-Track

Fast-Track [14] is a free-to-download, open-source, Python-based tool designed to en-

hance various penetration testing techniques. Fast-Track is built around the Metas-

ploit framework and utilizes Metasploit’s payload database and client-side attack vec-

tors and extends Metasploit’s functionality with more exploits, attack vectors, and

focused tools such as MSSQL injection and server attacks. One interesting extension

is Fast-Track’s Autopwn, an improvement upon an older feature of Metasploit also

called Autopwn. Metasploit’s Autopwn automatically targets and launches all possi-

ble exploits at a given port on a specified machine. Fast-Track’s Autopwn improved

this process by first performing a vulnerability scan and then using its results to

launch all possible exploits. However, although Fast-Track does add useful extended

functionality to Metasploit, Fast-Track only automates the information gathering and

exploit launching phases, leaving all of the post-exploitation techniques for the user

to manually perform.

5.2 Tool developed by Haubris and Pauli

Another tool that closely resembles ANEX is the tool described in [13]. This tool

is also Python-based and is designed to automate the information gathering and ex-
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ploitation process. The authors of [13] utilize several open-source tools including

Metasploit [14], Nmap [16], Nessus [17], OWASP’s Zed Attack Proxy [28], and the-

Harvester [31]. The authors start by running several different vulnerability scans.

The results are then parsed and written to a file. The contents of this file are then

imported into their automated exploitation process which launches exploits and re-

turns results. The inclusion of multiple methods of gathering information gives this

tool a very comprehensive exploitation process, with multiple sources of information

and the ability to exploit multiple attack vectors. However, similar to Fast-Track,

there is no automated post-exploitation functionality.

5.3 Core Impact Pro

Core Impact Pro [1] [38] is an automated penetration testing application developed by

Core Security Technologies. Core Impact Pro is designed to consolidate the penetra-

tion testing process and necessary resources into a single framework. This was done to

simplify and speed up overall execution and standardize the execution methodology

for maximum efficiency and ease of repetition. Core’s internal architecture includes

the following features: agents, host-controlled software programs that are deployed on

compromised systems; modules, an operation or group of operations to be performed

by an agent, such as web server attacks or port scanning; the console, a graphical

user interface used to launch and manage attacks and display results; entity database,

central information repository that contains target information, activity logs, agent

deployments, and more.

Core Impact Pro is one of the highest rated automated penetration testing prod-

ucts available. However, Core does struggle with determining if certain exploits will

lead to damage or stability issues on the target. Also, its substantial price tag of
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$40,000 a year and the lack of a command-line interface are both factors that could

prevent its widespread adoption beyond its current market.

5.4 Immunity’s Canvas

Immunity’s Canvas [12] [38] is a Python-based exploitation framework that helps a

user automate their exploitation and testing procedures. Similar to Metasploit, Can-

vas is not a fully integrated penetration testing tool, but it does provide penetration

testers with features to help aid the process. Canvas has a modular architecture sim-

ilar to that of Core Impact, but it does not offer as much automation and lags behind

in other features. Unlike Core, Canvas does have a command-line interface and a

much lower price tag. However, the same damage and stability issues when using

exploits are present and the learning curve for Canvas is much higher than similar

products.

5.5 Beyond Security’s AVDS

Beyond Security’s Automated Vulnerability Detection System (AVDS) [6] is a network

vulnerability assessment application. A self-contained system, AVDS is able to auto-

matically scan networks, identify and test vulnerabilities, and report output, giving

it the appearance of an all-in-one penetration testing system similar to Core Impact.

However, it is reliant on a constantly updated database of vulnerabilities, meaning

that it cannot identify and test vulnerabilities that arent available to it. It also only

has a web browser interface, with no command-line interface option available.
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5.6 Impact on Design

We analyzed the tools mentioned above to determine the foundation of our design,

the features we found desirable, and the drawbacks that we wanted to avoid.

Areas we specifically focused on were functionality, user expertise and involve-

ment, deployability, and cost. We decided to imitate the generation of exploits from

vulnerability scan results, similar to FastTrack and the tool from [13], due to their

speed and simplicity. We also decided to use an exploit database to determine our

potential attacks, similar to AVDS, despite the restrictions on vulnerability identifica-

tion. A lot of work and research has been accomplished in this area and we determined

that using a database was sufficient for our purposes. Finally, we wanted to include

automated post-exploitation functionality, something that both Fast-Track and the

design from [13], were lacking. However, we chose to narrow the focus of the infor-

mation gathering and exploitation phases in order to focus on our post-exploitation

phase, a tradeoff we deemed reasonable.

The second area we addressed was our target audience and the level of required

user involvement. We identified our target audience to be IT system administrators

and penetration testing engineers. We chose to target IT system adminstrators be-

cause we identified them as our primary use case, people with computer network and

security knowledge with the understanding of how to properly deploy our design in

a corporate environment. We also wanted to appeal to penetration testing engineers

because they also use automated tools, such as Core Impact, Immunity’s Canvas, etc.,

to aid the testing process. With these two cases in mind, we decided on the following

features. First, we chose to rely on as little user involvement as possible to promote

a low learning curve and the ability to run ANEX in the background. Second, we

chose a command-line interface as our sole interaction medium because of its simplic-

ity and our decision to minimize user involvement. The last two, tightly-linked areas
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we focused on were deployability and cost. Our primary contribution was to show

that important security information could be gathered by an automated penetration

testing tool built by combining open-source and free-to-download programs. To ac-

complish this, we designed ANEX around software that is easily available at no cost

to the user.
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Chapter 6

FUTURE WORK

This chapter outlines some potential areas for further research.

6.1 Post-Exploitation

Compromising a machine through a shell session, Meterpreter session, etc. gives the

tester access to information that can be used to determine the severity of exploiting

a certain machine and aid in the exploitation of other machines. We only looked

for other connected networks to explore from each compromised machine. However,

other post-exploitation tactics such as observing the current processes, interacting

with the command shell, or dumping credential hashes can be useful as well. Re-

porting back the processes currently running on a compromised machine can help

determine if any unwanted information is being leaked simply through process names

or execution times and the impact of an attacker either stopping a legitimate process

or spawning a malicious one. Command line interaction has a wide range of potential

uses. In addition to observing and altering processes, the installation of backdoors

and altering firewall configurations are just two things that an attacker can do that

should be reported by the tester. Using hashed credentials or dumping the hash and

uncovering the plaintext can promote the use of exploits that utilize credentials as

well as the ability to revisit uncompromised machines with information that could

lead to compromising it after the initial attempt.
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6.2 Information Gathering

There are several methods to determine if and where a computer is vulnerable, ranging

from automated scanners to manual probing. We opted to use Nmap and Metasploit’s

auxiliary scanning modules for their convenience and fast results. The addition of

other scanning modules, specifically Nessus, would seemingly integrate well with our

designs similar module for Nmap. Metasploit does support a Nessus plugin and

its output along with other information gathering techniques could improve ANEXs

exploitation abilities.

6.3 Passive Exploitation and User Evaluation

As mentioned in Section 3.2.3.1, we decided to use only active exploits in our design

and not passive ones for a number of reasons. However, passive exploits are still useful

and can be used to test the awareness and security practices of users interacting with

the system being tested. Adding functionality to spawn exploit handlers and wait for

the incoming connections activated by users would be useful for at least two reasons.

First, it provides the tester with a different avenue to exploit machines. Second, the

tester can gauge user responses to determine how to properly inform and educate

users on spotting potentially malicious actions and their impact.

6.4 Exploration of Different Attack Vectors

Tying into the section above about the use of passive exploits, expanding the ex-

ploitation capabilities of ANEX beyond services and desktop and server applications

is a logical step as well. Web applications and system users are other potentially

vulnerable elements that can be exploited to gain control of a system. Automated

tools such as OWASP’s Zed Attack Proxy (ZAP) and Burp Suite are popular for
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web vulnerability analysis. Integrating another specialized tool into ANEX alongside

Metasploit could prove to be a very useful utility. User-based tests, such as phish-

ing or masquerading as a high level official, are effective, real-world tactics that can

determine if the users of a system are potential weaknesses to security. This ties

directly into the use of passive exploits, but also covers things such as accidently or

purposefully leaking credentials.
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Chapter 7

CONCLUSION

Our idea of designing an easily-deployable, no-cost, and easy-to-use automated pene-

tration testing tool was a worthwhile one, but our tool needs to be improved to handle

more diverse system configurations. Despite that, we did have several promising re-

sults. We were able to successfully combine several popular and effective free-to-use

tools in the manner that we initially desired and build an automated utility that per-

forms all of the phases of a penetration test. We were also able to exploit machines

that could not be reached except through other machines as well as utilize multiple

paths to exploit a machine. These two scenarios were two of our main goals when we

came up with the idea for ANEX and the fact that we were able to complete these

goals with ANEX is a fulfilling accomplishment.

Although ANEX did not perform at the level we had initially hoped, it can still

be used in its current state to exploit the machines that it can and return vulner-

ability information about the machines that it cannot exploit. This information is

still very useful from a security perspective despite needing to run ANEX on different

machines to gather a more complete network and target map. For example, further

exploitation and post-exploitation activities can easily build off of the results and net-

work connections created by ANEX, enabling a manuel tester to quickly determine

where immediate fixes need to be made and the machines that require more focused

attention. In its current state, ANEX is an effective, all-in-one, automated penetra-

tion testing tool that can help evaluate the security measures of individual machines

and networks, assist the manual penetration testing process, and a foundation for

easily-accessible penetration testing utilities based on free tools.
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Finally, as a disclaimer, it is important that we state explicitly that our design is

not an all-in-one security evaluation tool and should not be used as the sole source of

information to indicate the effectiveness or status of the security of a given computer

system or network of systems.
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APPENDICES

Appendix A

TESTING SPECIFICS

The following figures and tables specify the various testing configurations we used.

Each figure represents the test network with the various connections to ANEX, the

input provided by the user, the size and number of subnets that were used, and

the resulting target tree. The table associated with each figure contains information

about each machine in the network. This information includes operating system, the

services that were running, whether or not ANEX found the machine, whether or not

ANEX exploited the machine, and the number of exploits that were generated and

launched per machine. The table also contains the specified exploit rank threshold

as well as the overall runtime.
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A.1 Test 1

Figure A.1: Configuration for Test 1

Table A.1: Results for Test 1

OS IP Services Found Exploited Exploits

Windows XP Bare 172.16.221.1 Netbios-ssn, Widnows RPC, Microsoft-ds Yes Yes Launched: 3, Generated: 11

Windows 7 172.16.221.2 Windows RPC, Microsoft-ds, Microsoft

lpd, Netbios-ssn

Yes No Launched: 1, Generated: 1

Ubuntu 14.04 172.16.221.3 Samba Yes No Launched: 1, Generated: 1

Exploit Rank Threshold 5 Runtime 2 minutes, 12 seconds
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A.2 Test 2

Figure A.2: Configuration for Test 2

Table A.2: Results for Test 2

OS IP Services Found Exploited Exploits

Windows XP SP3 172.16.221.1 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 7, Generated: 11

CentOS 6.7 172.16.221.2 Squid, Dovecot, Postfix, SSH Yes No Launched: 211, Generated: 211

Ubuntu 15.04 172.16.221.3 Apache, Samba, CUPS Yes No Launched: 11, Generated: 11

Windows XP SP2 172.16.222.2 Netbios-ssn, Windows RPC, Microsoft-ds Yes No Launched: 11, Generated: 11

Exploit Rank Threshold 5 Runtime 50 minutes, 42 seconds
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A.3 Test 3

Figure A.3: Configuration for Test 3

Table A.3: Results for Test 3

OS IP Services Found Exploited Exploits

Ubuntu 12.04 172.16.221.1 Vstpfd, SSH, Dnsmasq, Apache, Dovecot,

Rpcbind, Samba, LDAP, MySQL

Yes No Launched: 240, Generated: 240

Windows XP Bare 172.16.222.2 Netbios-ssn, Windows RPC, Microsoft-ds No No Launched: 0, Generated: 0

Windows XP SP1 172.16.222.3 Netbios-ssn, Windows RPC, Microsoft-ds No No Launched: 0, Generated: 0

Windows XP SP2 172.16.222.4 Netbios-ssn, Windows RPC, Microsoft-ds No No Launched: 0, Generated: 0

Windows XP SP3 172.16.222.5 Netbios-ssn, Windows RPC, Microsoft-ds No No Launched: 0, Generated: 0

Exploit Rank Threshold 4 Runtime 45 minutes, 46 seconds
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A.4 Test 4

Figure A.4: Configuration for Test 4

Table A.4: Results for Test 4

OS IP Services Found Exploited Exploits

Windows XP SP2 172.16.221.1 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 4, Generated: 23

Windows XP Bare 172.16.222.2 Netbios-ssn, Windows RPC, Microsoft-ds Yes No Launched: 23, Generated: 23

Windows XP SP1 172.16.222.3 Netbios-ssn, Windows RPC, Microsoft-ds Yes No Launched: 23, Generated: 23

Windows XP SP3 172.16.222.4 Netbios-ssn, Windows RPC, Microsoft-ds Yes No Launched: 23, Generated: 23

Windows Server

2012 R2

172.16.222.5 Windows DNS, Netbios-ssn, Windows

RPC, Microsoft-ds, Apache, MySQL

Yes No Launched: 206, Generated: 206

Ubuntu 12.04 172.16.222.6 SSH, Dnsmasq, Apache, Dovecot,

Rpcbind, Samba, LDAP, MySQL

Yes No Launched: 264, Generated: 264

Exploit Rank Threshold 3 Runtime 105 minutes, 51 seconds
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A.5 Test 5

Figure A.5: Configuration for Test 5

Table A.5: Results for Test 5

OS IP Services Found Exploited Exploits

Windows XP SP2 172.16.221.1 Microsoft-ds Yes Yes Launched: 10, Generated: 20

Windows XP Bare 172.16.221.2 Windows RPC, Microsoft-ds Yes Yes Launched: 3, Generated: 21

Windows XP SP1 172.16.221.3 None No No Launched: 0, Generated: 0

172.16.222.3 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 9, Generated: 23

Windows XP SP3 172.16.221.4 Microsoft-ds Yes Yes Launched: 11, Generated: 20

Exploit Rank Threshold 3 Runtime 18 minutes,30 seconds
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A.6 Test 6

Figure A.6: Configuration for Test 6

Table A.6: Results for Test 6

OS IP Services Found Exploited Exploits

Windows XP SP2 172.16.221.4 Microsoft-ds Yes Yes Launched: 6, Generated: 20

Windows XP Bare 172.16.223.2 Netbios-ssn, Windows RPC, Microsoft-ds Yes No Launched: 23, Generated: 23

Windows XP SP1 172.16.222.3 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 3, Generated: 23

Windows XP SP3 172.16.221.5 Microsoft-ds Yes Yes Launched: 6, Generated: 20

Exploit Rank Threshold 3 Runtime 23 minutes, 28 seconds
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A.7 Test 7

Figure A.7: Configuration for Test 7

Table A.7: Results for Test 7

OS IP Services Found Exploited Exploits

Windows XP SP2 172.16.221.4 Microsoft-ds Yes Yes Launched: 14, Generated: 20

Windows XP Bare 172.16.223.2 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 2, Generated: 23

Windows XP SP1 172.16.222.3 Netbios-ssn, Windows RPC, Microsoft-ds Yes Yes Launched: 3, Generated: 23

Windows XP SP3 172.16.221.5 Microsoft-ds Yes Yes Launched: 20, Generated: 20

Exploit Rank Threshold 2 Runtime 25 minutes, 30 seconds
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