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ABSTRACT

Characterizing Neurotransmitter Receptor Activation with a Perturbation Based

Decomposition Method

Stephen Jue

The characterization of postsynaptic potentials, in terms of neurotransmitter receptor acti-

vation, is of clinical significance because information associated with receptor activation can

be used in the diagnosis and study of neurological disorders. Single-unit recordings provide a

method of measuring postsynaptic potentials in neurons using a microelectrode system, but

yield no detailed information regarding the neurotransmitter receptors that contribute to the

potential. To determine the types of neurotransmitter receptors that result in a compound

postsynaptic potential from a microelectrode reading, decomposition of the potential is nec-

essary. In this work, a perturbation-based decomposition method developed by R. Szlavik is

evaluated for this application, and compared to a generalized Fourier series approach. The

resultant estimator is valid for decomposition of multiple-receptor compound postsynaptic

potentials as well as single-receptor compound postsynaptic potentials. The estimator also

yields a satisfactory decomposition of experimental postsynaptic potential data found in the

literature.
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1 Introduction

The human body is an unimaginably complex system, and nowhere else is this better il-

lustrated than in the brain. The average human brain has 100 billion neurons [2], while

the cerebral cortex has about 0.15 quadrillion synapses between its neurons [3]. However,

hidden in this complexity is a remarkable simplicity: the neurotransmitters mediating the

communication between neurons. While there are around 50−100 known neurotransmitters

[4], just a handful of them do the majority of the work. Since most activity in the brain is

mediated by chemical synapses, almost all of the signals in the brain can be characterized

by a few different neurotransmitter receptors. Many disorders in the brain cause changes

in the activation frequency of these receptors, so being able to detect these changes would

be useful. The purpose of this work is to present and evaluate a method that estimates

the frequency of neurotransmitter receptor activation from a whole-cell patch-clamp voltage

recording of a neuron.

1.1 Motivation

It is well known that many disorders, including Parkinson’s disease and Alzheimer’s disease,

are caused, in part, by neurotransmitter receptor dysfunction [5]. In fact, it is widely believed

that Alzheimer’s disease begins as a malfunction of synapses. The amyloid-β peptide, which

accumulates in the brains of patients with Alzheimer’s disease, has been shown to impair

memory by influencing the removal of NMDA receptors [6] and GABAA receptors [7].

To facilitate diagnosis and study of such disorders, a technique to characterize neural

signals by neurotransmitter receptor activation would be useful. This work will present

and evaluate such a technique. In particular, a method of “decomposing” a patch-clamp

recording into single-neuron postsynaptic potentials (PSPs) will be presented and evaluated.

Specifically, this method will decompose a compound PSP into four components: NMDA

1



receptor-mediated PSP, AMPA receptor-mediated PSP, fast-responding GABAA receptor-

mediated PSP, and slow-responding GABAA receptor-mediated PSP. This method can be

used to estimate the frequency of activation of NMDA receptors, AMPA receptors, fast-

responding GABAA receptors, and slow-responding GABAA receptors, which could be used

for the diagnosis and study of neurological disorders.

1.2 Previous Work

The related problem of determining the time course of neurotransmitter in the synaptic cleft

has spanned more than 60 years of neuroscience research, and has yet to have a definite con-

sensus. A study by Scimemi et al. overviews some of the attempts, such as quantal analysis,

mathematical modeling of synaptic currents, as well as sniffer and imaging approaches [8].

Some in vitro studies have sought to determine the contribution of AMPA receptors [9] and

other classes of glutamate receptors [10] to postsynaptic potentials using pharmacological

isolation techniques. Another in vitro work analyzed the contribution of AMPA, NMDA,

and GABAA receptors to temporal patterns in PSPs of the inferior colliculus of the rat [11].

Though there have been many in vitro studies doing component analysis of PSPs, very little,

if any, simulation-based PSP decomposition methods have been developed. This work aims

to introduce this novel PSP analysis technique as a way to study neurotransmitters and their

receptors.

1.3 Outline

The paper will be structured as follows: First, a background on the biology and biophysics

of synaptic transmission will be provided. Then, R. Szlavik’s perturbation decomposition

method will be described and adapted to this problem with the use of biophysical models in

the literature. Finally, the method will be evaluated by applying it to simulated postsynaptic

potentials and to experimental data, and comparing it to a generalized Fourier series method.
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2 Background

2.1 The Human Nervous System

The human nervous system can be divided into two branches: the central nervous system

(CNS) and the peripheral nervous system (PNS). The CNS is the control center of the nervous

system—it interprets sensory input and dictates output based on reflexes, past experiences,

and current conditions. The PNS consists mainly of nerves (bundles of axons) and ganglia

(collections of cell bodies). It can be further divided into the sensory division, which

consists of neurons conveying impulses to the central nervous system from sensory receptors,

and the motor division, which transmits signals from the CNS to muscles and glands.

2.2 The Neuron

Neurons are highly specialized cells that conduct messages in the form of nerve impulses

throughout the body. They coordinate with other cells and systems to perform various

functions, including information processing, muscle coordination, and sensory reception and

processing. To accomplish such feats, they are arranged in complicated neural networks

throughout the body and connected to sensory receptors, muscles, and other organs to relay

messages to and from the brain and spinal cord.

The cell body, or soma, of a neuron ranges in diameter from 5 to 140 µm [12]. The soma

has dendrites, which are short, branching extensions that provide an enormous surface area

for receiving signals from other neurons. The small gap between connected neurons is called

the synapse. Each neuron has an axon, which is a slender process of uniform diameter.

Some neurons have very short axons, while others—such as the motor neurons controlling

the skeletal muscles in the feet—can extend over a meter in length. A long axon is called a

nerve fiber. At the end of the axon are knoblike terminal branches, called axon terminals.

3



Figure 2.1: The human nervous system [12].

The axon is the conducting region of the neuron—it generates and transmits nerve im-

pulses, or action potentials. When the action potential reaches the axon terminals, it

causes neurotransmitters—signalling chemicals—to be released. These neurotransmitters

either inhibit or excite other neurons.

Figure 2.2: Structure of a motor neuron [12].
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2.2.1 Neural Signaling

Like all cells, neurons have a resting membrane potential (Vm). A neuron’s membrane is

said to be polarized, with a potential difference of −40 to −90 mV depending on the type of

neuron [12]. This potential difference is due to the differences in Na+ and K+ concentrations

inside and outside the cell, as well as differences in permeability of the plasma membrane to

these ions. Namely, potassium ions can flow out of the neuron much more easily than sodium

ions can flow in, causing a negative resting potential. To maintain this ionic imbalance

(and thus maintain the resting membrane potential), neurons have sodium-potassium pumps

powered by adenosine triphosphate.

Neurons receive and send information through changes in their membrane potential.

These voltage changes are caused by anything that alters the membrane permeability to

an ion. A positive change in voltage is called a depolarization, while a negative change is

called a hyperpolarization. Changes in membrane potential can cause two types of signals:

graded potentials and action potentials.

2.2.1.1 Graded Potentials

Graded potentials are short-lived, localized changes in membrane potential that typically

occur in the soma or axon hillock of the neuron. When a graded potential is triggered

by a neurotransmitter released by another neuron, it is called a postsynaptic potential

(PSP). For a neuron to fire an action potential, the membrane potential must reach the

threshold voltage (Vt) of the neuron. This voltage is more positive than the resting

membrane potential, Vm, as depicted in Figure 2.3.

There are two types of postsynaptic potentials: inhibitory postsynaptic potentials (IP-

SPs) and excitatory postsynaptic potentials (EPSPs). IPSPs decrease the neuron’s mem-

brane voltage and thus make it less likely to fire an action potential, while EPSPs make

the membrane voltage more positive, bringing it closer to the threshold voltage and thus

increasing the chance that it will fire.

5



Figure 2.3: Excitatory and inhibitory postsynaptic potentials [12].

The cumulative effect of two PSPs close in time is called temporal summation, while

the cumulative effect of two simultaneous stimuli at different locations is called spatial

summation. Summation can be additive (EPSP + EPSP) or subtractive (EPSP + IPSP).

Figure 2.4 depicts four different cases. The inner figures (b) and (c) show the membrane

potential reaching threshold and firing an action potential, while the outer figures (a) and

(d) show the membrane potential staying at subthreshold levels.

Figure 2.4: Different cases of IPSP and EPSP summation [12].

Postsynaptic potentials will be the focus of this work. In particular, a method of breaking

6



apart a compound PSP (multiple IPSPs and EPSPs) into single IPSPs and EPSPs will be

presented and evaluated.

2.2.1.2 Action Potentials

When the membrane potential of a neuron reaches the threshold voltage, an action potential

(AP) is fired. APs are the signals that transfer information from the receptive regions of a

neuron (the dendrites) to the secretory regions of a neuron (the axon terminals). Whereas a

graded potential can be many different shapes and amplitudes—some strong, some weak—an

AP is an all-or-nothing event: it either happens completely or not at all. Once an AP is fired,

it self-propagates along the axon of the neuron toward the axon’s terminals at a constant

velocity. This propagation is illustrated in Figure 2.5.

Figure 2.5: Action potential propagation along an axon [12].

The initiation of an AP in a neuron sets off a domino effect of depolarizations along its

axon, such that the peak of the AP travels at a constant speed. A typical shape for an AP

can be seen in Figure 2.5(c).
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2.3 The Synapse

The nervous system depends on the flow of information through networks of neurons, con-

nected by synapses. A synapse is a gap between two neurons that mediates the transfer of

information between one neuron and the next. The neuron conducting an impulse towards

the synapse is the presynaptic neuron and the neuron transmitting a signal away from

the synapse is the postsynaptic neuron. Most neurons function as both presynaptic and

postsynaptic neurons.

Synapses come in two variations: chemical synapses and electrical synapses. At a chemi-

cal synapse, the presynaptic neuron releases neurotransmitter molecules, which bind to and

open/close corresponding ligand-gated ion channels (Figure 2.6) on the postsynaptic neuron,

creating a graded potential.

Figure 2.6: Ligand-gated ion channel [12].

Electrical synapses are gap junctions between two neurons, which are faster than chemical

synapses, but lack gain. These are much less common than chemical synapses, and will not

be considered in this paper.

2.3.1 Information Transfer Across Chemical Synapses

Chemical transmission across a synapse always follows a similar chain of events. These steps

are listed below, and have corresponding illustrations in Figure 2.7.
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1. An action potential arrives at the axon terminal.

2. Depolarization of the membrane by the AP causes voltage-gated Ca2+ channels to

open, allowing Ca2+ to flow into the neuron.

3. Ca2+ causes synaptic vesicles to fuse with the axon membrane and empty their neuro-

transmitter content into the synaptic cleft.

4. Neurotransmitter diffuses across the synaptic cleft and binds to specific receptors on

the postsynaptic neuron’s membrane.

5. Neurotransmitter binding causes the ion channels to open or close, resulting in graded

potentials (IPSPs and EPSPs).

6. Neurotransmission stops by reuptake through transport proteins, enzymatic degrada-

tion, or diffusion away from the synapse.
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Figure 2.7: Chemical synapse signal transmission [12].
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2.3.2 Neurotransmitters

As seen in the previous section, neurotransmitters are critical for the communication between

neurons. However, there is not just one type of neurotransmitter. Rather, they come in many

different shapes, sizes, and chemical compositions.

Many neurotransmitters are synthesized from simple precursors such as amino acids.

Other neurotransmitters are monoamines, which are amino groups attached to an aromatic

ring. Some neurotransmitters are peptides, which are chains of amino acid monomers linked

by peptide bonds. Others aren’t easily classified, like the organic chemical acetylcholine,

which is the primary neurotransmitter used in the muscular system. A survey of the struc-

tures of these types of molecules can be seen in Figure 2.8.

Figure 2.8: Structural formulas of common neurotransmitters [13].

For a substance to be considered a neurotransmitter, it must meet the following criteria,

from Purves et al.:

1. The substance must be present within the presynaptic neuron

11



2. The substance must be released in response to presynaptic depolarization via Ca2+

3. Specific receptors for the substance must be on the postsynaptic neuron [14]

Though all neurotransmitters meet these criteria and follow the same steps when causing

a postsynaptic potential, each neurotransmitter has a different function in the body. Of

particular interest in this work are glutamate and gamma-Aminobutyric acid (GABA), as

they are the primary excitatory and inhibitory neurotransmitters of the mammalian brain,

respectively [15][16].

2.3.2.1 Glutamate

Glutamate plays a key role in synaptic plasticity, or the ability for synapses to strengthen or

weaken over time, and thus is involved in cognitive functions such as learning and memory

[17]. Glutamate has also been proven to be beneficial for several neurological disorders

including epilepsy and intellectual disability [18].

2.3.2.2 GABA

GABA acts as a counterbalance to the excitatory effects of glutamate by inhibiting the

transfer of nerve impulses between neurons. In both human and animal studies, it has been

shown that positive modulators of GABA receptors inhibit anxiety while negative modulators

cause anxiety [19]. Several other clinical studies indicate that not only anxiety disorders,

but also depressive disorders depend on GABA metabolism [19].

2.3.3 Neurotransmitter Receptors

During synaptic transmission, a neurotransmitter will bind to one of two broad families

of receptor proteins. The first family of receptors are ionotropic receptors, which are

directly connected to ion channels; they are synonymous with ligand-gated ion channels.

The second family of receptors are metabotropic receptors, which depend on a cascade

of metabolic steps to open an ion channel. These receptors activate G-proteins, which then

disassociate from the receptor to interact with an ion channel or bind to other effector

12



proteins to eventually open or close an ion channel. These two families of neurotransmitter

receptors are compared in Figure 2.9.

Figure 2.9: Ionotropic and metabotropic neurotransmitter receptors [14].

In this study, only ionotropic glutamate receptors and ionotropic GABA receptors will

be considered. The following four receptors will be considered:

1. Glutamate receptors

(a) AMPA receptor

(b) NMDA receptor

2. GABA receptors

(a) Fast-responding GABAA receptor (GABAA, fast)

(b) Slow-responding GABAA receptor (GABAA, slow)

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is an ionotropic

glutamate receptor, named as such because the compound AMPA is a selective agonist for

the receptor. AMPA trafficking (relocation of AMPA receptors from one region of a cell to

another) is known to play an important role in synaptic plasticity [20]. In many neuropathies,

AMPA receptor function is altered, making it a potential therapeutic target.
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The N-methyl-D-aspartate (NMDA) receptor is an ionotropic glutamate receptor, named

as such because the agonist molecule NMDA selectively binds to it. The NMDA receptor is

essential for the synaptic plasticity underlying learning, memory and development [21]. It is

also associated with a number of diseases. A severe form of encephalitis (acute inflammation

of the brain) has been found to be caused by antibodies against NR1-NR2 heteromers of the

NMDA receptor [22]. This is called anti-NMDA-receptor encephalitis, which was discovered

in 2007. Several NMDAergic drugs have been created, such as the NMDA receptor agonist

metamine, which is the first in a novel class of Alzheimer’s disease medications [23].

The neurotransmitter GABA mediates most neural inhibition through GABAA receptors

[24]. Changes in GABAergic transmission contribute to the etiology of several neurological

and mental disorders, such as epilepsy, anxiety, Angelman syndrome, and schizophrenia

[24]. Thus, there is a strong case for the development of GABAergic drugs, especially those

targeting GABAA receptors. Two kinetically distinct evoked GABAA responses (GABAA, fast

and GABAA, slow) have been observed in neurons [25], and as such will be treated as different

receptors in this work.

Figure 2.10: GABAergic drugs as a treatment of stress-related disorders [19].
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3 Methods

Given a recording of a postsynaptic potential in a neuron, it is difficult to determine what

neurotransmitters caused the potential, since it is often a summation of many different

potentials. This paper will describe and evaluate a method of decomposing a compound

potential into single-neuron potentials caused by specific types of neurotransmitter receptors.

This technique could be used to determine the active synaptic receptors of a given neuron

for study or diagnosis of diseases caused by neurotransmission deficiencies.

In general, the presented method is a way of decomposing a compound postsynaptic

potential Ψ(t) into n single postsynaptic potentials, Λ1(t), . . . ,Λn(t). Functional represen-

tations of the single potentials, Λk(t), must be determined before decomposing a compound

potential into them. This could be done experimentally by isolating specific receptors in a

neuron and stimulating a presynaptic neuron. As a proof of concept, biophysical models

found in the literature will be used for these functions.

3.1 Postsynaptic Potential Models

Conductance-based models are the simplest biophysically-accurate models for the excitable

cell. Graded potentials can be simulated by modeling the neuron’s membrane as a capacitor

and the influx of ions due to a neurotransmitter-binding event as a transient conductance.

The postsynaptic potential in a neuron can be approximated by the following differential

equation [26].

C
dv

dt
= −Gsyn(t)(v − Vsyn)− gm(v − Vm) (3.1)

where v = v(t) is the graded potential, C is the membrane capacitance, Gsyn(t) is the

transient synaptic conductance due to a neurotransmitter binding event, Vsyn is the synaptic
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reversal potential, gm is the intrinsic membrane conductance, and Vm is the resting membrane

potential of the neuron. Values used in this equation are outlined in Table 3.1. Gsyn(t) and

Vsyn will be listed later, as they depend on the type of neurotransmitter receptor.

Table 3.1: Values used in Postsynaptic Potential Models.

Term Value Description

C 1 nS Membrane capacitance[26]

gm 0.0258 µS Intrinsic membrane conductance[26]

Vm −75 mV Resting membrane potential

3.1.1 Synaptic Conductance Model

In order to use (3.1) for different synaptic receptors, functions for Gsyn(t) were found in

the literature, based on curve-fitting to experimental data. Below are equations that model

synaptic conductance during the binding of neurotransmitters to four different types of

synaptic receptors: AMPA receptors, NMDA receptors, GABAA, fast receptors and GABAA, slow

receptors [27].

• Excitatory conductances

– AMPA conductance

GA(t) =

ḡA · rate · t t < 0.5 ms

ḡA · e−t/τA t ≥ 0.5 ms
(3.2)

– NMDA conductance

GN(t) = ḡN
e−t/τN1 − e−t/τN2

1 + η · [Mg2+] · e−γ·Vm
(3.3)

• Inhibitory conductances

– GABAA, fast conductance

GF (t) = ḡF · [1− e−t/τF1 ] · e−t/τF2 (3.4)
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– GABAA, slow conductance

GS(t) = ḡS · [1− e−t/τS1 ] · e−t/τS2 (3.5)

These equations were used as substitutes for Gsyn(t) in (3.1) to produce four independent

equations. Since the ensuing decomposition methods assume linear summation, the molar

concentration rate, η, in (3.3) was set to 0 /mM to make the equation voltage-independent.

Table 3.2 outlines the other values used for these conductance equations.

Table 3.2: Values used in Synaptic Conductance Models.

Term Value Description

ḡA 0.3 nS AMPA max synaptic conductance

τA 2 ms AMPA time constant[27]

rate 2 ms−1 AMPA rate[27]

Vsyn,A 0 mV AMPA synaptic reversal potential[27]

ḡN 0.3 nS NMDA max synaptic conductance

τN1 60 ms NMDA time constant 1[27]

τN2 0.66 ms NMDA time constant 2[27]

η 0 /mM Molar rate constant [27]

Mg2+ 1 mM Mg2+ concentration [27]

γ 0.08 mV−1 Exponential decay rate [27]

Vsyn,N 0 mV NMDA synaptic reversal potential[27]

ḡS 2 nS GABAA, slow max synaptic conductance

τS1 0.75 ms GABAA, slow time constant 1[27]

τS2 37 ms GABAA, slow time constant 2[27]

Vsyn,G −80 mV GABAA synaptic reversal potential[27]

ḡF 2 nS GABAA, fast max synaptic conductance

τF1 1.5 ms GABAA, fast time constant 1[27]

τF2 7.25 ms GABAA, fast time constant 2[27]
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3.1.2 Solving for Postsynaptic Potential Numerically

To determine the postsynaptic potentials for these four different types of synaptic receptors,

the differential equation (3.1) needed to be solved. This first-order ordinary differential

equation (ODE) was solved numerically using MATLAB’s ode15s solver. The solver required

the equations to be written in this form:

dy(t)

dt
= f(y(t), t)

where y(t) is a vector of functions and f is a vector-valued function. The equations

modeling postsynaptic potentials for each of the four synaptic receptors were programmed

into the solver as follows:

dvA
dt

=
1

C

(
−GA(t)(vA − Vsyn,A)− gm(vA − Vm)

)
dvN
dt

=
1

C

(
−GN(t)(vN − Vsyn,N)− gm(vN − Vm)

)
dvF
dt

=
1

C

(
−GF (t)(vF − Vsyn,G)− gm(vF − Vm)

)
dvS
dt

=
1

C

(
−GS(t)(vS − Vsyn,G)− gm(vS − Vm)

)

These equations were solved for vA(t), vN(t), vF (t), and vS(t), respectively. Figure 3.1

shows a plot of each of the voltages, normalized by subtracting the base voltage Vm from

each solution.
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Figure 3.1: Postsynaptic Potentials due to binding to four different types of
receptors: AMPA, NMDA, GABAA, fast and GABAA, slow.

3.2 Generalized Fourier series approach

A natural way to decompose a compound signal into smaller signals, or basis functions, is

through the generalized Fourier series. However, since in general the single postsynaptic

potentials Λk(t) do not form an orthonormal basis, this will only provide a rough estimation.

Equation 3.6 can be used to estimate the amount ξ′k of the single potential Λk(t) in the

compound potential, where ‖Λk(t)‖2 =
∫ τf
0

Λk(t)Λk(t)dt.

ξ′k =
1

‖Λk(t)‖2

∫ τf

0

Ψ(t)Λk(t)dt (3.6)

This typically yields incorrect estimates since the single potentials that make up a com-

pound potential are usually temporally overlapped, and thus not orthogonal or even near-

orthogonal.
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3.3 Perturbation Decomposition Method

Szlavik [28] presented a novel technique for estimating the size distribution of nerve fibers con-

tributing to a compound-evoked potential, Ψ(t). The technique uses functional representa-

tions for single fiber-evoked potentials from n different fiber diameter classes, Λ1(t), . . . ,Λn(t),

found in the literature. The compound-evoked potential in the frequency domain Ψ(f) =

F [Ψ(t)] is hypothesized to consist of a contribution from each fiber diameter class Λk(f) =

F [Λk(t)], which have been perturbed, by a determinable degree εi,j, by contributions from

each of the other classes. This statement can be written mathematically as

Ψ(f) =

Λ1(f) ε2,1Λ1(f) εn,1Λ1(f)

+ + +

ε1,2Λ2(f) + Λ2(f) + · · ·+ εn,2Λ2(f)

+ + +
...

...
...

+ + +

ε1,nΛn(f) ε2,nΛn(f) Λn(f)

(3.7)

The k-th column in (3.7) represents the perturbation of the respective diameter class

Λk(f). This equation may be evaluated at a specific frequency point fl for l = 1, . . . ,m and

rearranged as follows

Ψ(fl)−
n∑
i=1

Λi(fl) =
n∑

i=1
i6=j

n∑
j=1

εi,jΛj(fl) (3.8)

The equations from (3.8) form an overdetermined linear system (m > n2 − n). Thus, an

approximate solution can be found in the least-squares sense. It is useful to write (3.7) as a

summation over the rows as follows

Ψ(f) =
n∑
k=1

B′kΛk(f) (3.9)

B′k = (ε1,k + · · ·+ εk−1,k + 1 + εk+1,k + · · ·+ εn,k) (3.10)
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where the estimator B′k is complex, since the εi,j are complex valued. The real valued

estimator β′k can be written as

β′k =
√

(B′k) · (B′k)∗ (3.11)

Once the εi,j are found, in the least-squares sense, the compound evoked-potential in the

frequency domain, Ψ(f), can be approximated as a sum of single fiber-evoked potentials from

each fiber diameter class, each scaled linearly by the real valued estimator β′k. An inverse

Fourier transform yields an estimation of Ψ(t).

Ψ(f) ≈ β′1Λ1(f) + β′2Λ2(f) + · · ·+ β′nΛn(f) (3.12)

Ψ(t) = F−1[Ψ(f)] (3.13)

In effect, this technique approximates the amount of each single fiber-evoked potential in

the compound signal Ψ(t). Thus, it can be used to “decompose” a compound fiber evoked-

potential into many single fiber-evoked potentials.

3.3.1 Generalizing the Perturbation Decomposition Method

Though this method was originally used for estimation of conducting nerve fiber diameter

distributions, it can be applied to any situation where a function Ψ(t) needs to be decomposed

into n smaller functions Λ1(t), . . . ,Λn(t), which may or may not be orthogonal.

A MATLAB function provided by Szlavik can be used to decompose a discrete function

represented by the vector Ψ into basis functions Λ1,Λ2, . . . ,Λn. It returns a vector of

frequencies f = [β′1, β
′
2, . . . , β

′
n], which is a least-squares estimate of the contribution of each

basis function to the compound function. Thus, given well-posed inputs, it is expected that

f · [Λ1,Λ2, . . . ,Λn] ≈ Ψ. This procedure is written in pseudocode as Algorithm 1.
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Algorithm 1 Szlavik Perturbation Decomposition Algorithm.

1: procedure Perturbation-Decomposition(Ψ, [Λ1,Λ2, . . . ,Λn])

2: Ψf = DiscreteFourierTransform(Ψ)

3: Λif = DiscreteFourierTransform(Λi)

4: Solve linear system in Equations 3.7 and 3.8 in least-squares sense for εi,j

5: for i = 1, . . . , n do

6: Solve for B′i as in Equation 3.10

7: β′i ←
√

(B′i) · (B′i)∗

8: return f = [β′1, . . . , β
′
n]

3.4 Decomposition of Compound Postsynaptic Potential

The decomposition technique by Szlavik can be applied to compound postsynaptic potentials

(PSPs). Given a compound PSP and a set of individual graded PSPs caused by presynaptic

neurons, the technique can estimate the amount of each individual PSP in the compound

PSP. In this paper, two situations are considered: when all presynaptic neurons fire at once,

and when the presynaptic neurons fire at different times.

3.4.1 Synchronous presynaptic firing

Assuming that a compound postsynaptic potential was caused by presynaptic neurons that

fired at the same time, the compound potential can be written as a linear combination of

the individual potentials, vA(t), vN(t), vF (t) and vs(t). The decomposition technique will

solve for the coefficients in the following expression:

Ψ(f) ≈ β′1vA(f) + β′2vN(f) + β′3vF (f) + β′4vS(f) (3.14)

where the functions have been normalized by subtracting the resting membrane voltage in

the time-domain. A reconstruction of the compound potential would therefore be Ψ(t)+Vm.

This is an accurate model of graded potential summation if the following assumptions hold:

• Linear summation of postsynaptic potentials
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• Summation occurs at subthreshold neuron voltage

• AMPA, NMDA, GABAA, fast, and GABAA, slow are the only contributing synaptic re-

ceptors

• All presynaptic neurons fire at the same time

• Small neuron body (spatial effects are negligible)

3.4.2 Asynchronous presynaptic firing

The assumption that all presynaptic neurons fire at the same time is very limiting since

different neurons typically fire at different times. However, it was too computationally taxing

to consider the most general case where all four receptors are activated at different times.

Instead, each of the four types of receptors were considered separately.

3.4.2.1 AMPA-mediated potentials

A compound potential caused by asynchronous AMPA-mediated neurons can be written as

Ψ(t) ≈ β′1vA(t− t1) + β′2vA(t− t2) + · · ·+ β′pvA(t− tp) (3.15)

where presynaptic neurons are fired at times t1, t2, . . . , tp. The method from section 3.1.2

will solve for the coefficients in the following expression:

Ψ(f) ≈
p∑
i=1

β′ivA,ti(f)

where vA,ti(f) = F [vA(t − ti)] and each function vA(t − ti) has been normalized by

subtracting the resting membrane voltage Vm. This is an accurate model of graded potential

summation if the following assumptions hold:

• Only temporal summation

• Linear summation of postsynaptic potentials

• Summation occurs at subthreshold neuron voltage
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• AMPA is the only contributing synaptic receptor

• Small neuron body (spatial effects are negligible)

Decomposition of potentials caused by the other three receptors follow the exact same

steps. The equations for the compound potentials Ψ(t) are listed below.

3.4.2.2 GABAA, slow-mediated potentials

Ψ(t) ≈ β′1vS(t− t1) + β′2vS(t− t2) + · · ·+ β′pvS(t− tp) (3.16)

3.4.2.3 GABAA, fast-mediated potentials

Ψ(t) ≈ β′1vF (t− t1) + β′2vF (t− t2) + · · ·+ β′pvF (t− tp) (3.17)

3.4.2.4 NMDA-mediated potentials

Ψ(t) ≈ β′1vN(t− t1) + β′2vN(t− t2) + · · ·+ β′pvN(t− tp) (3.18)
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4 Results

As seen previously, there were two types of compound potentials that were evaluated: those

caused by different neurotransmitter receptors activated at the same time (synchronous

presynaptic firing), and those caused by a single type of neurotransmitter receptor activated

at different times (asynchronous presynaptic firing). These results are in Sections 4.1 and

4.2, respectively. Each simulated compound potential was decomposed with Szlavik’s per-

turbation decomposition method, and then with the generalized Fourier series method. The

errors from these two methods were then compared. Finally, the perturbation decomposition

method is validated with experimental postsynaptic potential data in Section 4.3.

4.1 Synchronous presynaptic firing

To demonstrate the effectiveness of the proposed technique, an arbitrary compound potential

ΦPSP (t) was created using four basis potentials.

ΦPSP (t) = 3vA(t) + 12vN(t) + 15vS(t) + 9vF (t) (4.1)

This compound potential can be thought of as 3 AMPA-mediated potentials, 12 NMDA-

mediated potentials, 15 GABAA, slow-mediated potentials, and 9 GABAA,fast-mediated po-

tentials, all occurring at the same time. This combination was selected to demonstrate the

effectiveness of the technique rather than to be consistent with any expected physiological

pattern. Figure 4.1 shows the basis functions and 4.2 shows the compound potential ΦPSP (t).
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Figure 4.1: Basis functions for synchronous presynaptic firing,
vA(t), vN(t), vS(t), vF (t)
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Figure 4.2: Compound function ΦPSP (t) + Vm
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Szlavik’s algorithm was run on the compound potential Ψ = ΦPSP (t) with basis functions

Λ1 = vA(t),Λ2 = vN(t),Λ3 = vS(t), and Λ4 = vF (t). The algorithm returned frequencies

β′1 = 3, β′2 = 12, β′3 = 15, and β′4 = 9, which are the exact frequencies of the functions in the

original equation. A plot of the exact frequencies βk and the estimates β′k is seen in Figure

4.3.
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Figure 4.3: Frequency distribution from decomposition of ΦPSP (t).

As a comparison, the compound potential was also decomposed using the generalized

Fourier series approach, yielding estimates ξ′k. Because of the non-orthogonality of the

basis functions, these estimates were incorrect. A plot comparing error of the Fourier series

approach to the Szlavik perturbation decomposition approach can be seen in Figure 4.4.
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Figure 4.4: Comparison of error from the generalized Fourier series approach
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4.2 Asynchronous presynaptic firing

Szlavik’s technique was also evaluated for the asynchronous presynaptic firing case. First,

AMPA-mediated potentials were considered, then GABAA, slow-mediated, then GABAA, fast-

mediated, then finally NMDA-mediated.

4.2.1 AMPA-mediated potentials

An arbitrary compound potential ΦAMPA(t) was created by adding together five time-shifted

AMPA-mediated depolarizations, as follows.

ΦAMPA(t) = vA(t− t1) + vA(t− t2) + vA(t− t10) + vA(t− t11) + vA(t− t30) (4.2)

tn = (n− 1) · 5 ms

This potential could be caused by a single neuron firing multiple times, or by several
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neurons. The basis functions can be seen in Figure 4.5, and the compound function ΦAMPA(t)

can be seen in Figure 4.6.
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Figure 4.5: Basis functions for asynchronous presynaptic firing of AMPA-
mediated neurons, Λn = vA(t− tn) for n = 1, . . . , 40.

29



0 50 100 150 200
−75.1

−75

−74.9

−74.8

−74.7

−74.6

−74.5

−74.4

−74.3

Time (ms)

V
o
lt
a
g
e
 (

m
V

)

Figure 4.6: Compound function ΦAMPA(t) + Vm.

Using Szlavik’s algorithm to decompose the signal with Ψ = ΦAMPA(t) and Λn = vA(t−
tn) for n = 1, . . . , 40 once again yielded a perfect frequency distribution, with β′1 = 1, β′2 =

1, β′10 = 1, β′11 = 1, and β′30 = 1 and all other coefficients equal to zero. A histogram of the

frequencies can be seen in Figure 4.7.
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Figure 4.7: Frequency distribution from decomposition of ΦAMPA(t).

Once again the compound potential ΦAMPA(t) was decomposed using the generalized

Fourier series for comparison. As seen in Figure 4.8, the generalized Fourier series was only

marginally worse than the Szlavik perturbation method, which is expected since the basis

functions are very distinct. Errors ranged from 0 to about 0.1.
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Figure 4.8: Comparison of error from generalized Fourier series approach to
Szlavik perturbation decomposition approach for AMPA-mediated potentials.

4.2.2 GABAA, slow-mediated potentials

An arbitrary compound potential ΦGABA,slow(t) was created by adding together four time-

shifted GABAA, slow-mediated potential, as follows.

ΦGABA,slow(t) = vS(t− t1) + 3vS(t− t2) + vS(t− t3) + 5vS(t− t10) (4.3)

tn = (n− 1) · 10 ms

The basis functions vS(t− t1), . . . , vS(t− t20) and the compound function ΦGABA,slow(t)

can be seen in Figures 4.9 and 4.10, respectively.
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Figure 4.9: Basis functions for asynchronous presynaptic firing of GABAA, slow-
mediated neurons, Λn = vS(t− tn) for n = 1, . . . , 20
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Figure 4.10: Compound function ΦGABA,slow(t) + Vm

Using Szlavik’s algorithm to decompose the signal with Ψ = ΦGABA,slow(t) and Λn =

vS(t − tn) for n = 1, . . . , 20 yielded coefficients β′1 = 1, β′2 = 3, β′3 = 1, and β′10 = 5, and

all other coefficients equal to zero. The algorithm again yielded an exact estimation of the

frequency of each postsynaptic potential in the compound potential. A histogram of the

frequencies can be seen in Figure 4.11.
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Figure 4.11: Frequency distribution from decomposition of ΦGABA,slow(t).

The compound potential ΦGABA,slow(t) was decomposed using the generalized Fourier se-

ries for comparison. As seen in Figure 4.12, the generalized Fourier series gave very incorrect

estimates since the basis functions overlap so much.
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Figure 4.12: Comparison of error from generalized Fourier series approach to
Szlavik perturbation decomposition approach for GABAA, slow-mediated poten-
tials.

4.2.3 GABAA, fast-mediated potentials

An arbitrary compound potential ΦGABA,fast(t) was defined as follows:

ΦGABA,fast(t) = 5vF (t− t2) + 3vF (t− t13) + vF (t− t14) + 3vF (t− t15) (4.4)

tn = (n− 1) · 10 ms

The basis functions vF (t− t1), . . . , vF (t− t20) and the compound function ΦGABA,fast(t)

can be seen in Figures 4.13 and 4.14, respectively.
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Figure 4.13: Basis functions for asynchronous presynaptic firing of GABAA, fast-
mediated neurons, Λn = vF (t− tn) for n = 1, . . . , 20
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Figure 4.14: Compound function ΦGABA,fast(t) + Vm

Using Szlavik’s algorithm to decompose the signal with Ψ = ΦGABA,fast(t) and Λn =

vF (t − tn) for n = 1, . . . , 20 yielded coefficients β′2 = 5, β′13 = 3, β′14 = 1, and β′15 = 3, and

all other coefficients equal to zero. The algorithm again yielded an exact estimation of the

number of each repolarization in the compound potential. A histogram of the frequencies

can be seen in Figure 4.15.
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Figure 4.15: Frequency distribution from decomposition of ΦGABA,fast(t).

The compound potential ΦGABA,fast(t) was decomposed using the generalized Fourier

series for comparison. As seen in Figure 4.16, the generalized Fourier series once again gave

incorrect estimates.
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Figure 4.16: Comparison of error from generalized Fourier series approach to
Szlavik perturbation decomposition approach for GABAA, fast-mediated poten-
tials.

4.2.4 NMDA-mediated potentials

An arbitrary compound potential ΦNMDA(t) was defined as follows:

ΦNMDA(t) = 3vN(t− t3) + vN(t− t6) + vN(t− t18) + 3vN(t− t19) + vN(t− t20) (4.5)

tn = (n− 1) · 10 ms

The basis functions vN(t− t1), . . . , vN(t− t20) and the compound function ΦNMDA(t) can

be seen in Figures 4.17 and 4.18, respectively.
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Figure 4.17: Basis functions for asynchronous presynaptic firing of NMDA-
mediated neurons, Λn = vN(t− tn) for n = 1, . . . , 20
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Figure 4.18: Compound function ΦNMDA(t) + Vm

Using Szlavik’s algorithm to decompose the signal with Ψ = ΦNMDA(t) and Λn = vN(t−
tn) for n = 1, . . . , 20 yielded coefficients β′3 = 3, β′6 = 1, β′18 = 1, β′19 = 3, and β′20 = 1, and

all other coefficients equal to zero. The algorithm again yielded an exact estimation of the

number of each depolarization in the compound potential. A histogram of the frequencies

can be seen in Figure 4.19.
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Figure 4.19: Frequency distribution from decomposition of ΦNMDA(t).

The compound potential ΦNMDA(t) was decomposed using the generalized Fourier series

for comparison. As seen in Figure 4.20, the generalized Fourier series once again gave

incorrect estimates.
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Figure 4.20: Comparison of error from generalized Fourier series approach to
Szlavik perturbation decomposition approach for NMDA-mediated potentials.

4.3 Experimental validation

In order to fully evaluate the perturbation decomposition technique for this application,

it was tested against experimental data. Abrahamsson et al. did a study on synaptic

integration of cerebellar interneurons in which dendrite and somatic neurons were stimulated

with spike trains [29]. Figure 4.21(a) shows dendritic and somatic responses to a 50 Hz train

applied by electrical stimulation. The dendritic response (gray) was traced using MATLAB

and stored in a vector Ψ. Next, it was hypothesized that these were NMDA-mediated

depolarizations based on the decay rates. A basis potential vN(t) was generated by using

the physiological values in Table 4.1 to tune to the traced data. The algorithm was then

used with Λn = vN(t− tn) for n = 1, . . . , 50 where tn = (n− 1) · 1.2 ms.
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(a) Dendritic (gray) and somatic (blue) EPSPs

in response to a 50 Hz train [29].
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(b) Data trace of three dendritic spikes from (a)

using MATLAB.

Figure 4.21: Data trace of compound AMPA PSP.

Table 4.1: Changes to AMPA PSP values for curve fitting.

Term Value Description

τA 4 ms AMPA time constant

ḡA 3.5 nS AMPA max synaptic conductance
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Figure 4.22: Basis functions for decomposition of traced data from Abrahamsson
et al.

Szlavik’s technique returned the frequency distribution f depicted in Figure 4.23. It

clearly has three distinct peaks as expected.
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Figure 4.23: Frequency plot of Perturbation Decomposition Method on experi-
mental data. Dashed red line denotes chosen cutoff frequency, fc = 0.3.

A raw reconstruction of the signal, f ·Ψ can be seen in Figure 4.24(a). To get a better

reconstruction of the signal, a discrete high pass filter with a cutoff frequency of fc = 0.3

was applied to the frequency distribution f to create the distribution g. The i-th element of

g is

gi =

fi for fi > 0.3

0 for fi ≤ 0.3
.

This filter, depicted as a dashed red line in Figure 4.23, greatly reduces the error of

the reconstruction and gives a satisfactory estimate of the original signal. Whereas the raw

reconstruction f ·Ψ fits the data with R2 = 0.43, the filtered reconstruction g ·Ψ fits the

data with R2 = 0.89. This reconstruction g ·Ψ can be seen in Figure 4.24(b).
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(b) High-pass filtered reconstruction (fc = 0.3)

Figure 4.24: Reconstruction of EPSP spike train from Abrahamsson et al. study
[29].

The raw frequency distribution, f = [β′1, . . . , β
′
n], was then compared to the frequency

distribution returned by the generalized Fourier series distribution, h = [ξ′1, . . . , ξ
′
n]. As

illustrated in Figure 4.25, Szlavik’s method gave much more distinct peaks, and thus a

better estimation of the compound postsynaptic potential.
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Figure 4.25: Comparison of Szlavik perturbation decomposition estimations (β′k)
to generalized Fourier series estimations (ξ′k) on experimental data from Abra-
hamsson et al. study.
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5 Discussion

The results of this work have shown not only that Szlavik’s perturbation decomposition

method is a viable method for analyzing postsynaptic potentials, but also that it can be used

as a substitute for the generalized Fourier series when working with non-orthogonal func-

tions. The perturbation decomposition method successfully decomposed compound func-

tions of time-shifted AMPA receptor-mediated potentials, time-shifted GABAA, slow receptor-

mediated potentials, time-shifted GABAA, fast receptor-mediated potentials, time-shifted NMDA

receptor-mediated potentials, as well as compound potentials from all four types of recep-

tors. In contrast, the generalized Fourier series method only gave close estimates for the

AMPA receptor-mediated potentials. In addition, the perturbation decomposition method

was evaluated by applying it to experimental data, yielding satisfactory results.

5.1 Implications

The experimental validation demonstrated that the perturbation decomposition method can

be applied to whole patch-clamp recordings to estimate the contribution of different recep-

tors to a neuron’s postsynaptic potential signal. The output of this decomposition could be

used to study the pathogenesis of disorders such as Parkinson’s and Alzheimer’s by quanti-

fying the activation frequency of AMPA receptors, NMDA receptors, GABAA, slow receptors,

and GABAA, fast receptors in healthy and diseased neurons. Automated whole-cell patch

clamping of rats in vivo is possible using a robot developed by Kodandaramaiah et al. [30].

If such a robot can be created for use with humans, the perturbation decomposition method

could be used as a technique for diagnosis of neurological and mental disorders. Having a

quantitative test for mental disorders could help reduce the large number of mental disorder

misdiagnoses.

This research, along with Szlavik’s work [28] forms the basis for a general mathematical
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method of biopotential signal analysis. Given a signal, such as a compound postsynaptic

potential reading from a neuron, not much analysis can be done directly due to the complexity

of the signal. However, by introducing known models, such as the time responses of single-

receptor postsynaptic potentials, the compound signal can be analyzed and studied effectively

using Szlavik’s perturbation decomposition method. Thus, this technique can be applied

to any problem where the signal of interest is a combination of other signals that can be

accurately modelled.

5.2 Limitations and Future Work

Due to memory constraints, this method could not be used to decompose a compound

signal into time-shifted potentials from all four different types of neurotransmitter receptors.

However, given more computing resources, this decomposition could be accomplished. In

addition, future work can be undertaken to account for spatial effects and non-linearity in

postsynaptic potential summation. One such non-linearity is the NMDA receptor’s Mg2+

block mechanism, which makes the receptor both ligand-gated and voltage-gated. This block

mechanism was assumed to be negligible, but should be incorporated in future iterations.

To apply this method to neurological diagnostics, research should be done to determine

the receptor activation frequency of healthy and diseased neurons for various disorders.

Other PSP models such as quantal PSP models could be used as basis functions to estimate

neurotransmitter concentration in the synaptic cleft during transmission. Moving outside

the application of postsynaptic potentials, Szlavik’s perturbation method could be applied

to the inverse problem in EEG source localization, which is the problem of predicting the

current sources that caused a particular voltage reading on the scalp [31].

5.3 Conclusion

Many brain disorders manifest themselves at a small scale. Often, neurological disorders

are caused by small changes in the amount or frequency of activation of neurotransmitter

receptors in neurons. If these changes can be detected, the associated disorders could be

more effectively studied or diagnosed. The perturbation decomposition technique developed

by R. Szlavik can be used as a tool to estimate the receptor activation frequency of a given
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neuron, assuming the postsynaptic potential models accurately model the electrical activity

during the neurotransmission events for each receptor. If an in vivo patch clamp machine can

be made for use with humans, this could change the way many brain disorders are diagnosed.
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[23] C. G. Parsons, A. Stöffler, and W. Danysz, “Memantine: a NMDA receptor antagonist

that improves memory by restoration of homeostasis in the glutamatergic system - too

little activation is bad, too much is even worse,” Neuropharmacology, vol. 53, no. 6,

pp. 699 – 723, 2007.
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APPENDIX A

A.1 PostsynapticPotential.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Function: PostsynapticPotential

% Revision Date: 04/14/2016

% Author: Stephen G. Jue

%

% Function for differential equation that solves for a postsynaptic

% potential in a neuron. For use with ode15s.

%

% Arguments: t = time (ms)

% v = voltage (V)

% Gsyn = function handle that describes synaptic conductance

% with time

% Cm = membrane capacitance

% gm = intrinsic membrane conductance

% Vr = reversal potential

% Vm = resting membrane potential

%

% Returns: dvdt = numerical approximation of dv/dt at time t

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dvdt = PostsynapticPotential(t, v, Gsyn, Cm, gm, Vr, Vm)

dvdt = (-Gsyn(t)*(v - Vr) - gm*(v - Vm)) / Cm;

end
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A.2 VectorBasis.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Function: VectorBasis

% Revision Date: 04/14/2016

% Author: Stephen G. Jue

%

% Creates set of m equally-spaced basis vectors V = [v 1, v 2, ..., v n]

%

% Arguments: v = vector

% n = number of vectors desired

%

% Returns: V = a vector of n equally-spaced, time-shifted v vectors

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function V = VectorBasis(v, n)

V = zeros(size(v, 1), n);

V(:, 1) = v;

T = size(v, 1);

shift = floor(T/n);

for i = 2:n

V(shift*(i-1) + 1:end, i) = v(1:end-shift*(i-1));

end

end
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A.3 PSP.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Script: PSP

% Revision Date: 04/14/2016

% Author: Stephen G. Jue

%

% Uses Perturbation.m by Robert Szlavik to decompose compound

% postsynaptic potentials into components (AMPA, NMDA, GABA A slow,

% GABA A fast).

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

clc

dt = 10.0E-3;

T = 200;

% -------- SYNAPTIC CONDUCTANCES --------

g a = 0.3e-9; % AMPA max synpaptic conductance (S)

g n = 0.3e-9; % NMDA max synaptic conductance (S)

g s = 2e-9; % GABA A slow max synaptic conductance (S)

g f = 2e-9; % GABA A fast max synaptic conductance (S)

% -------- TIME CONSTANTS --------

tau = 2; % AMPA time constant(ms)

tau N1 = 60; % NMDA time constant 1 (ms)

tau N2 = 0.66; % NMDA time constant 2 (ms)
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tau S1 = 0.75; % GABA A slow time constant 1 (ms)

tau S2 = 37; % GABA A slow time constant 2 (ms)

tau F1 = 1.5; % GABA A fast time constant 1 (ms)

tau F2 = 7.25; % GABA A fast time constant 2 (ms)

% -------- REVERSAL POTENTIALS --------

Vr am = 0; % AMPA reversal potential (V)

Vr nm = 0; % NMDA reversal potential (V)

Vr ga = -80e-3; % GABA reversal potential(V)

% -------- MEMBRANE PROPERTIES --------

Cm = 1e-9; % Membrane capacitanceS

gm = 0.02583e-6;

Vm = -75e-3; % Resting membrane potential

% -------- OTHER PARAMETERS --------

rate = 2; % AMPA rate (msˆ-1)

eta = 0; % Molar rate constant (mMˆ-1)

Mg conc = 1; % Mg2+ concentration (mM)

gamma = 1000 * 0.08; % exponential decay rate (Vˆ-1)

% -------- SYNAPTIC CONDUCTANCE MODELS --------

G a = @(t) (t < 0.5) .* g a .* rate .* t + ...

(t >= 0.5) .* g a .* exp(-t/tau);

G n = @(t) g n * (exp(-t/tau N1) - exp(-t/tau N2)); / ...

(1 + eta * Mg conc * exp(-gamma * Vm));

G s = @(t) g s * (1 - exp(-t/tau S1)) .* exp(-t/tau S2);

G f = @(t) g f * (1 - exp(-t/tau F1)) .* exp(-t/tau F2);

t = 0:dt:T; % time vector (ms)

[T, Y] = ode15s(@PostsynapticPotential, t, Vm, [], G a, Cm, gm, Vr am, Vm);
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[T, Y2] = ode15s(@PostsynapticPotential, t, Vm, [], G n, Cm, gm, Vr nm, Vm);

[T, Y3] = ode15s(@PostsynapticPotential, t, Vm, [], G s, Cm, gm, Vr ga, Vm);

[T, Y4] = ode15s(@PostsynapticPotential, t, Vm, [], G f, Cm, gm, Vr ga, Vm);

%% Synchronous Presynaptic Firing

num basis = 4;

basis = zeros(size(Y,1), num basis);

basis(:,1:4) = [Y, Y2, Y3, Y4];

basis = basis - Vm; % Normalize basis functions

beta = [3, 12, 15, 9];

compound = sum(bsxfun(@times, basis, beta), 2);

f = Perturbation(dt, num basis, compound, basis)

% Generalized Fourier series

beta norm estimate = zeros(size(basis,2), 1);

for i = 1:size(basis,2)

numerator = dt*trapz(basis(:,i).*compound);

denominator = dt*trapz(basis(:,i).*basis(:,i));

beta norm estimate(i) = numerator/denominator;

end

beta norm estimate

%% Asynchronous Presynaptic Firing - GABA A SLOW

num gaba = 20;

v basis = VectorBasis(Y3 - Vm, num gaba);

beta = zeros(1,num gaba);

beta(1) = 1;

beta(2) = 3;

beta(3) = 1;

beta(10) = 5;

compound = sum(bsxfun(@times, v basis, beta), 2);

f = Perturbation(dt, num gaba, compound, v basis);
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% Generalized Fourier series

beta norm estimate = zeros(size(v basis,2),1);

for i = 1:size(v basis,2)

numerator = dt*trapz(v basis(:,i).*compound);

denominator = dt*trapz(v basis(:,i).*v basis(:,i));

beta norm estimate(i) = numerator/denominator;

end

%% Asynchronous Presynaptic Firing - GABA A FAST

num gaba = 20;

v basis = VectorBasis(Y4 - Vm, num gaba);

beta = zeros(1,num gaba);

beta(2) = 5;

beta(13) = 3;

beta(14) = 1;

beta(15) = 3;

compound = sum(bsxfun(@times, v basis, beta), 2);

f = Perturbation(dt, num gaba, compound, v basis);

% Generalized Fourier series

beta norm estimate = zeros(size(v basis,2),1);

for i = 1:size(v basis,2)

numerator = dt*trapz(v basis(:,i).*compound);

denominator = dt*trapz(v basis(:,i).*v basis(:,i));

beta norm estimate(i) = numerator/denominator;

end

%% Asynchronous Presynaptic Firing - NMDA

num nmda = 20;

v basis = VectorBasis(Y2 - Vm, num nmda);

beta = zeros(1,num nmda);
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beta(3) = 3;

beta(6) = 1;

beta(18) = 1;

beta(19) = 3;

beta(20) = 1;

compound = sum(bsxfun(@times, v basis, beta), 2);

f = Perturbation(dt, num nmda, compound, v basis);

% Generalized Fourier series

beta norm estimate = zeros(size(v basis,2), 1);

for i = 1:size(v basis,2)

numerator = dt*trapz(v basis(:,i).*compound);

denominator = dt*trapz(v basis(:,i).*v basis(:,i));

beta norm estimate(i) = numerator/denominator;

end
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A.4 PSPExperimentalValidation.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Script: PSPExperimentalValidation

% Revision Date: 04/14/2016

% Author: Stephen G. Jue

%

% Uses Perturbation.m by Robert Szlavik to decompose compound

% postsynaptic potential traced from data by Abrahamsson et. al.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

close all

clear all

PSP; % Generate basis functions

load('ampa data.mat');

v to mv = 1e3;

t start = 0; % ms

t end = 60.6; % ms

dt = 0.01; % Sample Time

t = t start : dt : t end;

ts = timeseries(ampa data(:, 2), ampa data(:, 1));

ts2 = 1e-3 * resample(ts, t);

compound = ts2.Data;

compound(isnan(compound)) = 0;
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v basis = VectorBasis(basis(1:size(t,2), 1), 50);

% Compound function

f distr = Perturbation(dt, 1, compound, v basis);

% Raw Reconstruction

reconstruction = sum(bsxfun(@times, f distr', v basis), 2);

plot(t, v to mv * reconstruction)

% Filtered Reconstruction

f distr(f distr < 0.3) = 0;

reconstruction filt = sum(bsxfun(@times, f distr', v basis), 2);

%R-squared calculation

Rsq1 = 1 - sum((compound - reconstruction).ˆ2) / ...

sum((compound - mean(compound)).ˆ2)

Rsq2 = 1 - sum((compound - reconstruction filt).ˆ2) / ...

sum((compound - mean(compound)).ˆ2)
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