
INCORPORATING HISTOGRAMS OF ORIENTED GRADIENTS INTO

MONTE CARLO LOCALIZATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Michael K. Norris

June 2016

c© 2016

Michael K. Norris

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Incorporating Histograms of Oriented Gra-

dients into Monte Carlo Localization

AUTHOR: Michael K. Norris

DATE SUBMITTED: June 2016

COMMITTEE CHAIR: John Seng, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Bellardo, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: Lynne Slivovsky, Ph.D.

Professor of Electrical Engineering

iii

ABSTRACT

Incorporating Histograms of Oriented Gradients into Monte Carlo Localization

Michael K. Norris

This work presents improvements to Monte Carlo Localization (MCL) for a mobile

robot using computer vision. Solutions to the localization problem aim to provide

fine resolution on location approximation, and also be resistant to changes in the

environment. One such environment change is the kidnapped/teleported robot prob-

lem, where a robot is suddenly transported to a new location and must re-localize.

The standard method of "Augmented MCL" uses particle filtering combined with

addition of random particles under certain conditions to solve the kidnapped robot

problem. This solution is robust, but not always fast. This work combines Histogram

of Oriented Gradients (HOG) computer vision with particle filtering to speed up the

localization process.

The major slowdown in Augmented MCL is the conditional addition of random

particles, which depends on the ratio of a short term and long term average of particle

weights. This ratio does not change quickly when a robot is kidnapped, leading the

robot to believe it is in the wrong location for a period of time. This work replaces

this average-based conditional with a comparison of the HOG image directly in front

of the robot with a cached version. This resulted in a speedup ranging from from

25.3% to 80.7% (depending on parameters used) in localization time over the baseline

Augmented MCL.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. John Seng, for all of his insightful comments and great suggestions.

• Dr. John Bellardo, for showing me how much error checking matters in network

coding.

• Dr. Lynne Slivovsky, for mentoring the project that got me my first major

internship.

• My mother, Naomi Norris, for supporting me through college and beyond.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 4

3 BACKGROUND . 6

3.1 Monte Carlo Localization . 6

3.2 Histograms of Oriented Gradients . 13

4 IMPLEMENTATION . 18

4.1 Modifying Monte Carlo Localization 18

4.2 Implementation Environment . 20

4.2.1 OpenCV . 20

4.2.2 V-REP Robotics Simulator . 20

4.2.3 Qt Creator and MinGW . 24

4.2.4 Position Tracking . 24

4.2.5 Gnuplot Particle Visualization 25

4.2.6 Remote API Client . 26

5 RESULTS . 30

5.1 Memory, Disk Usage, and Computation Time 30

5.2 Comparing Histogram Binning . 32

5.3 Convergence After Kidnapping . 34

5.4 Analysis of Results . 37

6 FUTURE WORK . 43

7 CONCLUSION . 44

BIBLIOGRAPHY . 46

APPENDICES

A GRAPHS WITH VARIED PARAMETERS 50

B PLOTTING PARTICLES . 62

vi

C HISTOGRAM BIN COMPARISON 64

D GNUPLOT COMMANDS . 67

vii

LIST OF TABLES

Table Page

5.1 Time taken to localize for various parameters 39

viii

LIST OF FIGURES

Figure Page

1.1 Simplified depiction of Monte Carlo’s particle filtering. 3

3.1 Initial particle spread . 7

3.2 Particles trimmed down to more likely locations 7

3.3 Particles localized on a point . 7

3.4 Random sampling of weighted particles. [32] 8

3.5 Random sampling of weighted particles. [33] 10

3.6 Simple laser scan visualization. 11

3.7 Idealized gradient for one pixel. Gradient vector in green. 14

3.8 V-REP gradient for one pixel. Gradient vector in green. 14

3.9 Example histogram with vectors sorted into bins. 15

3.10 Cells vs blocks in an image. 16

4.1 Overview of the modified MCL process. 19

4.2 Simulated environment of the Cal Poly CSC offices 21

4.3 Means of communication around V-REP [3] 23

4.4 Position tracking formulas. 25

4.5 HOGDescriptor object used in these experiments (GRADIENT_BINS
was varied). 27

4.6 Resampling algorithm pseudocode. 29

5.1 Comparing the difference in output gradient vector of the captured
image against the cached image with 5 bins. 33

5.2 Comparing the difference in output gradient vector of the captured
image against the cached image with 18 bins. 33

5.3 Time taken for baseline MCL to localize. 35

5.4 2.5 x 1.25m areas, 8 orientations, 9 bins (Inconsistent) 35

5.5 1.25 x 1.25m areas, 4 orientations, 9 bins 36

5.6 Varying areas for 4 orientations, 9 bins. 38

5.7 Varying orientations and bins for 30 by 20 areas. 40

ix

5.8 2.0 x 1.67m areas, 8 orientations, 9 bins 41

5.9 Algorithm iterations made by the HOG approach in green, and the
baseline in blue. 42

A.1 5 x 2.5m areas, 4 orientations, 18 bins (Inconsistent) 50

A.2 5 x 2.5m areas, 4 orientations, 9 bins (Inconsistent) 51

A.3 5 x 2.5m areas, 8 orientations, 18 bins (Inconsistent) 51

A.4 5 x 2.5m areas, 8 orientations, 9 bins (Inconsistent) 52

A.5 2.5 x 1.25m areas, 4 orientations, 18 bins (Inconsistent) 52

A.6 2.5 x 1.25m areas, 4 orientations, 9 bins (Inconsistent) 53

A.7 2.5 x 1.25m areas, 8 orientations, 18 bins (Inconsistent) 53

A.8 2.5 x 1.25m areas, 8 orientations, 9 bins (Inconsistent) 54

A.9 1.67 x 1.25m areas, 8 orientations, 5 bins (Failed) 54

A.10 1.67 x 1.25m areas, 8 orientations, 7 bins (Inconsistent) 55

A.11 1.67 x 1.25m areas, 4 orientations, 18 bins 55

A.12 1.67 x 1.25m areas, 4 orientations, 9 bins 56

A.13 1.67 x 1.25m areas, 8 orientations, 18 bins 56

A.14 1.67 x 1.25m areas, 8 orientations, 9 bins 57

A.15 1.25 x 1.25m areas, 4 orientations, 18 bins 57

A.16 1.25 x 1.25m areas, 4 orientations, 9 bins 58

A.17 1.25 x 1.25m areas, 8 orientations, 18 bins 58

A.18 1.25 x 1.25m areas, 8 orientations, 9 bins 59

A.19 1.25 x 0.83m areas, 4 orientations, 18 bins 59

A.20 1.25 x 0.83m areas, 4 orientations, 9 bins 60

A.21 1.25 x 0.83m areas, 8 orientations, 18 bins 60

A.22 1.25 x 0.83m areas, 8 orientations, 9 bins 61

B.1 The starting graph without any particles plotted. 62

B.2 Initial particles across the field. 63

B.3 Teleporting the robot after it has localized. 63

C.1 Comparing the difference in output gradient vector of the captured
image against the cached image with 5 bins. 64

x

C.2 Comparing the difference in output gradient vector of the captured
image against the cached image with 7 bins. 65

C.3 Comparing the difference in output gradient vector of the captured
image against the cached image with 9 bins. 65

C.4 Comparing the difference in output gradient vector of the captured
image against the cached image with 18 bins. 66

xi

Chapter 1

INTRODUCTION

Localization is a widely studied problem in robotics, with a vast swath of literature

researching the topic. It is defined as the estimation of a robot’s pose (location and

orientation) when the robot is placed into an unknown location in a known map. Many

algorithms and improvements upon those algorithms exist to solve this problem, but

localization is essentially accomplished by comparing incoming sensor data to a map

represented in the robot’s memory.

Across many fields, the most logical technology for positioning information is

GPS. GPS is critical in the mobile industry, global clock synchronization, military

applications, and in branches of robotics. However, GPS is only accurate down to

a few meters [23]. This is the difference between being obstructed by obstacles and

navigating a path successfully. GPS is also subject to environmental interference, and

cannot be used in applications without satellites (such as Mars rovers).

To work with GPS, the most common method of navigation is through straight line

distance data, gathered through a sensor. By analyzing this data and comparing it to

a known map in the robot’s memory, it can perform one of two types of localization:

local or global. Local techniques rely on knowing some sort of initial position of the

robot, and cannot recover if position data is lost. For example, if the robot relies

on tracking wheel revolutions and is temporarily halted (or completely displaced, as

in the kidnapped/teleported robot problem [16–18]), the position estimate will be

off. Global techniques have no such restriction, and can localize a robot when placed

arbitrarily in a given map.

1

Monte Carlo Localization, or MCL, achieves global localization by passing sensor

data through a particle filter. Particle filters are methods used approximate a number

of problems in signal processing. Particle filtering has been shown by previous work

to outperform other filtering methods when used with MCL [21]. A simplified look of

the algorithm can be found in Figure 1.1. At a basic level, the robot first generates a

large number of particles (shown as the initial set in 1.1) around its in-memory map

of the environment, which are hypothesized poses (position-orientation pairs) that the

robot could be located at. This pose is shown as an orange point with a direction at

the top of Figure 1.1. It then assigns a weight to each particle according to how well

sensor readings match up to the particle’s readings, obtained by ray tracing from the

particle to the nearest object in the in-memory map. Finally, it randomly resamples,

or chooses, particles from that weighted set based on the particle’s weight. The higher

the weight, the more likely a particle is to be resampled. A colored version of this is

shown on the bottom of Figure 1.1, where the larger circles have higher weights. As

the image shows, particles can be chosen multiple times. The algorithm repeats this

process continuously to refine the robot’s true position.

Classic "Adaptive MCL" does handle the teleported robot problem, which is es-

sentially a repeated global localization after initially determining a location. However,

due to the nature of the algorithm, it takes the robot some time to realize that it has

been moved. This can be problematic in a dynamic environment where the robot may

be displaced frequently such as a sand dune or a windy location (in the case of an

aerial robot). Shortening the time it takes to localize would improve performance of

certain tasks of the robot such as sampling minerals, aerial imaging, and other tasks.

Improvements to localization algorithms can be made by incorporating different

types of sensor data besides simple straight line distance. These can take the form

of WiFi signal strength, radio signal strength, floor and wall texture data [23], light

intensity [12], or computer vision [20]. The work of this thesis is to incorporate

2

Figure 1.1: Simplified depiction of Monte Carlo’s particle filtering.

computer vision specifically into MCL to improve the recovery time in the case of the

teleported robot problem.

This work is organized as follows. Chapter 2 discusses a variety of related work in

the field of robot localization. Chapter 3 describes background in both particle filter

localization and histograms of oriented gradients. Chapter 4 discusses design of the

modified MCL and computer vision algorithm using histograms of oriented gradients,

then goes into implementation details of the system including the simulation environ-

ment that these results were obtained in. Chapter 5 examines the results obtained

from experiments with both the baseline implementation and the improved version.

Chapter 6 details possible ideas for future work in localization using computer vision.

Chapter 7 concludes this work, and discusses enhancements.

3

Chapter 2

RELATED WORK

A great deal of previous research has gone into solving the localization problem ef-

ficiently. Localization in particular involves refinement of a set of probabilistic loca-

tions. This can apply to both the global or local (also known as position tracking)

localization problem. The basis for more modern localization solutions lies in the

Monte Carlo methods, which are a broad range of algorithms that use some form of

random sampling to produce a result. This section briefly lists some of the histori-

cal contributions to localization, then goes into a technical background of the most

current approach.

Kalman [22] was one of the first to describe a continual refinement of probabilistic

locations. The strategy he employed became known as the Kalman filter approach to

localization. The iterative improvement of probabilistic states set the basis for mod-

ern implementations. However, Kalman filters can only solve the position tracking

problem; not the global problem [17].

Smith and Cheeseman [31] focused on establishing a system for associating one

reference frame with another, given different degrees of error. Their work gave a

way of representing the amount of certainty a robot has of its position by chaining

comparisons of reference frames.

Burgard et al. [11] created what is known today as Markov localization. The

name of this method refers to the Markov Property. This states that the system is

memoryless, and only depends on the present state to determine future states; past

states have no effect. This yields a much simpler implementation strategy than Smith

and Cheeseman’s reference frame comparison. The Markov solution employs a set of

4

states of likely locations that are continually refined, and either a topological or a

grid map of the area to be explored. The topological map is less precise, as positions

are only distinguished by different levels in the topography. The grid type separates

the map into many small cells, giving a smaller resolution for the possible locations.

It solves the global localization problem successfully.

The most modern strategies are variations on Monte Carlo localization, estab-

lished by Fox et al. [16–18, 32–34]. It solves the global localization problem, but it

also outperforms Markov localization in both memory usage and accuracy. Because

Markov localization uses discrete blocks as locations (each grid cell must be repre-

sented in memory), an Markov implementation must decide between a small block size

(which increases memory usage), or a larger block size (which decreases accuracy).

MCL avoids this by using a set of non-discrete locations called particles. Particles

include the estimated position and orientation of the robot, as well as the probability.

Chapter 3.1 describes how the algorithm works in detail.

Many modern MCL variations exist. Elinas and Little [14] introduced a local-

ization approach called σMCL that uses in-memory maps made of 3D landmarks.

Zickler et al. [35] use wireless signal strength along with a model that maps strengths

to real-world locations. Of important note is that Zickler’s approach did not require

landmarks, as many computer vision approaches do. Röwekämper et al. [29] use a

precise motion capture system (essentially high-precision cameras that feed into a

control system) to show that very precise localization can be performed with modern

hardware. Their results returned precision of roughly one to two centimeters in the

worst case. Gil et al. [19] use SIFT (scale-invariant feature transform) features to

identify objects in an environment and perform successful localization within a few

iterations. It was not readily apparent how long each iteration of the algorithm took

though.

5

Chapter 3

BACKGROUND

Chapter 1 briefly mentioned that Monte Carlo uses a particle filter to perform lo-

calization. Figures 3.1, 3.2, and 3.3 give a visual for the process occurring. At a

high level, particles are initially randomly spread through the robot’s internal map

of the environment in valid locations. In these figures, this is the non-black area. In

this work, the robot’s map was created as a bitmap from the robot’s simulation en-

vironment, discussed further in Chapter 4.2.2. As the robot moves and takes sensor

values, it will resample particles from the old set based on how closely they match

the sensor values. The particles form into groups, then down to a single point. If the

localization implementation is correct, this will be on top of the robot.

Some works [23] have sought to increase accuracy in generating particles and

giving a final estimation of the robot’s position. Others [12] have simply explored the

possibility of localizing using certain methods without comparing to a baseline MCL

implementation. The goal of this thesis is to improve the speed of global localization

after a robot has been kidnapped. In particular, this work incorporates histograms

of oriented gradients to localize faster than a baseline implementation of MCL. This

chapter gives an overview of both particle filtering localization and computer vision

(specifically histograms of oriented gradients).

3.1 Monte Carlo Localization

A basic breakdown of the algorithm has been difficult to find in other literature, even

though the pseudocode in Figure 3.4 can be found in many places. As a note: the

computer vision portion of this work covered in Chapter 3.2 is intended to optimize

6

Figure 3.1: Initial particle spread

Figure 3.2: Particles trimmed down to more likely locations

Figure 3.3: Particles localized on a point

7

Figure 3.4: Random sampling of weighted particles. [32]

8

essentially a single conditional in the classic MCL algorithm, seen in Figure 3.4 on

line 13. The following steps have been summarized from various sources [16,17,23,30]

to give a perhaps more easily understood description of the algorithm. Monte Carlo

localization performs the following:

1. Initialize the set of particles randomly around the in-memory map of the envi-

ronment.

2. Apply the robot’s most recent movement to each particle.

3. Randomly sample a new set of particles from the previous set based on each

particle’s probability.

4. Take distance sensor readings.

5. Assign new weights to the sample set of particles based on sensor readings. This

consists of:

(a) A Gaussian calculation of sensor readings and particle position estimation.

(b) Normalization of each probability.

6. Conditionally add a small number (comparatively to the set size) of particles

with an average probability and random pose to the set.

7. Go to Step 2.

MCL begins by initializing the set of particles around the space to be explored

(Step 1). These have random poses (both position and orientation) around the space

to be explored. This means that most initial particles will be nowhere near the robot’s

initial pose.

In Step 2, the robot moves some distance, and then applies this transformation in

movement to each particle. This means that each particle moves forward in their own

9

Figure 3.5: Random sampling of weighted particles. [33]

pose by a certain amount. To give a sense of scale, this "motion model" step can last

for many seconds; it is not restricted to be a tiny movement forward. A small amount

of Gaussian random noise is added to the movement of the particle to account for

inexact motor calibration and resistance between the wheels and the environment.

Step 3 utilizes random sampling aspect of the Monte Carlo methods. Given a

set of particles (which each have a certain weight), randomly sample a set of new

particles based on the weight. These probabilities are initially uniform, but are quickly

weighted towards particles with similar readings to the robot’s location. This can be

seen in Figure 3.5. Particles are first spread uniformly as seen in "S(k-1)"; after

weights are calculated, the particles with the higher weights (matching the sensors

most closely as in "weighted S’(k)") survive the resampling and are displayed in

"S(k)".

Sensor readings are then taken at this new location in Step 4. These take the

form of laser or sonar distance readings. An easy way to think of a "reading" is a

straight beam that extends from the robot to the first obstacle. Laser scanners may

take thousands of readings on each pass [28], but an accurate position can still be

attained with orders of magnitude fewer scans. Indeed, the next step is faster with

10

Figure 3.6: Simple laser scan visualization.

fewer scans and it is thus less optimal to use the thousands that typical hardware will

provide. A simple visualization can be seen in Figure 3.6.

Step 5 compares the particle position with the sensor readings, and get a measure

of how accurate each particle is. To be clear, each particle has a set of readings

obtained by ray tracing the particle’s position to the nearest wall of the in-memory

map, and the below accuracy calculation is done on each beam for each particle. The

full probability equation for a single beam is shown by formula 3.1. This consists

of three probabilities added together. The coefficients ahit, arand, and amax are non-

negative weighting parameters that sum to one. These are determined empirically

based on sensor accuracy.

p(sk|x) = ahitphit(s
k|x) + arandprand(s

k|x) + amaxpmax(s
k|x) (3.1)

The first (titled phit in 3.1) is given by Gaussian distribution seen in formula 3.2.

In the Gaussian distribution, the mean µ represents the sensor reading, x represents

the particle’s reading, and σ represents the standard deviation. The standard devi-

ation value depends on the noise associated with the sensor, and is also determined

empirically. It is interesting to note that varying the standard deviation directly con-

trols how "aggressive" the resampling process is. If this value is set too small, only

the highest weight particles will be resampled and the likelihood of localizing to the

11

wrong point is high. Too low, and most particles will be resampled and no progress

is made toward localizing the robot.

phit(s
k|x) = 1

σ
√
2π
· e
−
(

(x−µ)2
2σ2

)
(3.2)

The two remaining probabilities, prand and pmax, represent the probability of noise

in the sensor reading and the sensor erroneously reading a maximum value respec-

tively. Both are fairly small, as prand can be represented by a small percentage of phit

and pmax is negligible in simulation.

The final weight that a particle has consists of first multiplying the probabilities

of each beam associated with that particle, obtained above. Then, the weights of all

particles are normalized to sum to one, to enable Step 3 (resampling of particles).

The formal definition for this equation can be seen in 3.3, where K is the number of

beams for each particle.

p(s|x) =
K∏
k=1

p(sk|x) (3.3)

Step 6 adds a few random particles into the set based on a condition. According

to Fox [17], this step allows the robot to recover if it becomes wildly off-course but

the particles all happen to be at another location. Because new particles are sampled

from the old set, if the old set is all at a single location, the robot cannot correct for

a complete change in pose (i.e. if it fell off a cliff and had to re-localize). However,

with a small number of random samples mixed in, the random samples have a chance

of being more accurate than the large grouping at the wrong location, and will have

a higher probability to be sampled on the next iteration. This allows the robot to

recover its position.

At the end, the robot loops back around to Step 2, as the particles are continuously

refined towards the robot’s true location.

12

Monte Carlo localization can also include adaptive sampling. When particles are

grouped closely together after iterations of resampling, the number of particles can

be trimmed by orders of magnitude to improve performance. This actually does not

result in a loss in accuracy in practice. This is because when the robot’s location is

known with a high probability, the problem turns into position tracking localization

(the local problem, rather than the global one). This requires comparatively very few

particles to retain an accurate location. Even when the robot loses course catastroph-

ically, Step 6 of the algorithm will simply mix in many more randomly posed particles

across the exploration space, which will ensure the robot’s recovery [17,18,33].

The condition in Step 6 is the important part, and the key piece that this work

seeks to optimize using histograms of oriented gradients. Particles are added with the

chance seen on line 13 in Figure 3.4. The alpha values are empirically determined

decay rates, and are required to be 0 ≤ aslow � afast [32]. The w fast will decrease

much more quickly than w slow when the robot is kidnapped, introducing random

particles [32]. The problem with this approach is that if aslow is too large (as in closer

to a fast), particles will be introduced randomly when they shouldn’t be. If aslow is

too small, then random particles will never be added or will be added too slowly to

localize effectively. The baseline implementation in this work used 0.001 for aslow and

0.1 for a fast.

3.2 Histograms of Oriented Gradients

A visual descriptor is a description of the content of an image, video, or other visual

media. These descriptors are meant to characterize shape, color, or other distinguish-

ing elements in the above [15]. One such shape visual descriptor is the histogram of

oriented gradients (HOG) introduced by Dalal and Triggs [13]. HOG has been shown

to perform well in object detection [15,26] even in black-and-white images. On a pos-

13

Figure 3.7: Idealized gradient for one pixel. Gradient vector in green.

Figure 3.8: V-REP gradient for one pixel. Gradient vector in green.

sibly constrained system, only sending a third of the data to encode a black-and-white

image compared to a more expensive RGB image is a bonus. There are other features

detectors such as SIFT and GIST, but they perform fairly similarly to HOG [10]. In

short, "HOG decomposes an image into small squared cells, computes an histogram

of oriented gradients in each cell, normalizes the result using a block-wise pattern,

and return a descriptor for each cell." [7] The following explanation of the algorithm

uses information from [13] and [26] heavily; to avoid overciting, both are listed here.

The HOG computation begins by dividing the image up into cells. Dalal and

Triggs found 8x8 pixels for each cell to be optimal in their experiments. In each cell,

the gradient vector for each pixel is calculated. This is simply the rate of change of

a function that points in the direction of greatest increase in function value. Figure

3.7 shows an idealized, zoomed-in edge in an image, while Figure 3.8 illustrates the

effect in action on a wall edge from the V-REP robotics simulator used in this work.

In the context of computer graphics, the gradient vector of the pixel in red is simply

calculated by the difference in intensity of the pixel above minus the pixel below,

and the pixel to the right minus the pixel to the left. If both parts of the vector

14

Figure 3.9: Example histogram with vectors sorted into bins.

are positive as in Figure 3.7, the gradient vector will point up and to the right,

perpendicular to the edge. In Figure 3.8, the black area on the right is much darker

than the pixel on the left, so the vector will point away from the black. The top

pixel is also slightly darker than the bottom, so the gradient vector points slightly

downward. This shows that the gradient is indeed pointing in the direction of greatest

increase in pixel values.

Each gradient vector magnitude is then binned into a histogram based on the

vector angle. Figure 3.9 shows only up to 180because the original implementation

by Dalal and Triggs used unsigned gradients. This means that a vector pointing in

an arbitrary direction will be put into the same bin as a vector pointing in the exact

opposite direction. The rationale here is that it doesn’t matter if an edge is trending

dark to light or light to dark; the only concern is that it exists. The gradients in

each bin of the histogram are added together to form the Y axis of the histogram,

meaning that very strong vectors (perpendicular to very sharp edges in the image)

will effect the bin magnitude more. To prevent a strong gradient vector right on the

edge of a bin from only affecting a single bin, the algorithm splits gradient vectors

between the closest two bins. Thus a vector at angle 120would get split its magnitude

15

Figure 3.10: Cells vs blocks in an image.

evenly between 110and 130 A vector at 125would be split 3/4 in the 130bin, and only

1/4 in the 110bin. Dalal and Triggs found that 9 bins worked optimally. In the end,

this histogram only has the same number of values as bins. This reduces the number

of values needed from 64 gradient vectors each with their own angle to only 9 sums

of magnitudes of the gradient vectors in that bin. Programmatically, this can be

thought of as an array (or similar data structure) of 9 float values.

It is important to note that due to the nature of gradient vectors, HOG is immune

to contrast changes of the source image. This is because even though the vector

values themselves will change (as contrast increases, both vector values will increase

also), the ratio between them will not. The angle is thus the same, and the gradient

magnitude will be binned into the same container of the histogram. This is important

in localization outside, where images of a location may change in brightness depending

on the time of day.

After calculating the histogram for each cell, blocks are formed in groups of cells.

Figure 3.10 shows a 2x2 grouping that Dalal and Triggs used. This is referred to as

local contrast normalization [13]. The histograms of each cell in a block are concate-

nated into one vector, and then divided by the magnitude of the vector. This means

16

that each block is normalized by a different value depending on the gradient strengths

of the cells that comprise it. The next block to process is only one cell width to the

right, including the rightmost cells of the first block and two new cells. This overlap

means that cells appear multiple times (non corner edge cells twice, inner cells four

times), but are normalized by different cells depending on the block that normalized

it. The goal of this can be thought of as capturing contrast changes in a small area to

assess gradient strengths instead of trying to increase contrast over the entire image.

As Dalal and Triggs stated, "This may seem redundant but good normalization is

critical and including overlap significantly improves the performance."

The result is the "vector of all components of the normalized cell responses from

all of the blocks" [13]. In other words, each block will return a 36 element (9 bins, 4

cells per block) vector of values. The size in bytes of the vector for the entire image

is a concatenation of these block vectors, and is given by the formula in 3.4.

size = numBlocks ∗ numCellsPerBlock ∗ sizeof(float) ∗ numBinsPerCell (3.4)

Dalal and Triggs set out with the explicit intent to identify people in images by

training a support vector machine classifier with these HOG results. In the context

of robot localization, this is not strictly necessary. If a camera-equipped robot knows

that an image does not match up with some cached form of the HOG result vector,

it knows it is probably in the wrong location.

17

Chapter 4

IMPLEMENTATION

This chapter discusses the proposed modifications to MCL with computer vision, and

then the implementation of these changes in the V-REP robotics simulator [3]. As a

broad overview: both laser scanner and camera image data are collected from sensors

controlled by Lua scripts mounted on a mobile robot inside the simulator. These are

passed to a C++ client, which then processes laser scanner data for classic MCL and

passes the image data to OpenCV [5] to compute histograms of oriented gradients for

each cell in the image. A visualization of the gradients computed on each cell can be

seen in Figure 4.1 (credit to [9] for method of producing a visual HOG on each cell),

which also gives an overview of the bigger process. The captured data is compared

against a cached version to determine whether the robot should add randomly posed

particles. The client also pipes data to gnuplot [4] to give a visual representation of

the locations of each particle.

4.1 Modifying Monte Carlo Localization

As mentioned in Section 3.1, the conditional in line 13 of 3.4 is the target for

improvement. The goal is to mix in random particles in a faster way if the robot

realizes that it has been displaced.

The image HOG captured from the robot can be compared to a cached histogram

of the closest location and orientation of the robot’s hypothesized location. If the

two histograms are different above some empirically determined threshold, and the

histograms continue to be above this threshold as the robot moves (checking the cache

18

Figure 4.1: Overview of the modified MCL process.

in different areas as the robot itself moves to different areas), then the robot knows

to mix in random particles.

Thus the implementation strategy is as follows: the remote API client (the pri-

mary controlling system for the robot) will first move a floating camera around the

simulator, capturing images and computing histograms at various distances and ori-

entations. The result is a series of location-orientations that map to a HOG for the

image at that location-orientation. The robot can then do a fast lookup to check

whether its hypothesized position’s histogram matches with what it sees in front of

it. If it does, then no random particle inclusion is necessary. If it does not match for

a period of time, then it will mix in random particles in the same way classic Monte

Carlo Localization does.

19

4.2 Implementation Environment

Implementation of this work simulates the robot movement and sensor data collection

inside the V-REP robotics simulator, while a V-REP remote API client handles local-

ization using scanner data, image processing using OpenCV, and output to gnuplot

for particle visualization on a map.

4.2.1 OpenCV

OpenCV is a computer vision framework with interfaces available in C, C++, Python

and Java. The C++ interface was used for this project for use with the V-REP remote

API client. It implements a histogram of oriented gradients class that can perform

the computation to return the result vector described in Chapter 3.2 and general

object detection.

OpenCV’s HOG.compute() function calculates a histogram of oriented gradients

for an image. This image is given as a Mat object with dimensions 128x128 in this

work, of type CV_8UC1. The image captured from V-REP is black and white, and

thus only requires one byte per pixel as opposed to an RGB triplet.

As opposed to the ray tracing which is done on readings for every particle, the

image processing comparison is done only after initial localization onto a point. The

call to OpenCV’s HOG.compute() is thus only made once per MCL iteration.

4.2.2 V-REP Robotics Simulator

The V-REP robotics simulator by Coppelia [3] is a free (with paid options for addi-

tional functionality), open source simulator that includes a host of example plugins,

great documentation, hundreds of models and a complex physics engine. This was

chosen over a physical robot due to cost (additional sensors in a simulator are free),

20

Figure 4.2: Simulated environment of the Cal Poly CSC offices

time (additional sensors in a simulator don’t take a week to ship), logistics of checking

out a physical laser scanner, and securing physical locations to test.

Figure 4.2 shows the environment created for the robot to localize in: a to-scale

recreation of the Cal Poly Computer Science professors’ offices. The environment

is 50 meters by 25 meters, closely matching the real area. Finer details such as

individual office doors and windows were considered not strictly necessary and thus

omitted. Figure B.1 shows the map used by the robot to localize and plot particles

via gnuplot. This was generated by taking the positions of each object in the V-

REP environment via V-REP’s simxGetObjectPosition, made available to the

remote API client by V-REP’s framework.

The Pioneer P3DX robot was chosen to navigate the simulated environment as

it was a robot included with V-REP. It was equipped with the V-REP’s simulated

version of the Hokuyo URG 04LX UG01 laser scanner to take distance measure-

ments, and V-REP’s "blob detection camera" that (contrary to the name) was used

to simply capture a 128x128 pixel black-and-white image of the view in front of

the robot without additional blob processing. This camera had a range of 2 me-

ters and a field of view of 60 degrees. Color images from the camera were deemed

21

not strictly necessary as HOG functions just as well without it, so black and white

images were captured. This image was delivered to the remote API from V-REP’s

simxGetVisionSensorImage, the V-REP remote API client function for getting

camera image data. This returns a series of bytes where each byte represented the

brightness of a pixel from 0 to 255. No image header information is attached to this

byte stream.

There are several means of communicating commands to robots inside V-REP.

These include embedded scripts, add-ons, plugins, remote API clients, ROS nodes,

and custom client/server setups. Figure 4.3 shows the different advantages and

disadvantages of each. The Remote API client was chosen for use in this project,

because it is the most similar to code running on a real robot if this were to be used

in the real world.

The problem eventually encountered with the remote API was that V-REP takes

some time ranging in the hundreds of milliseconds to send data between the simu-

lator and a remote API client. V-REP requires simxGetVisionSensorImage to

be called in non-blocking mode of operation, so attempting to access the image data

directly after this call will produce a crash. To take images from V-REP, Sleep

calls in between calls to simxGetVisionSensorImage were inserted. It is rec-

ommended to use an embedded Lua script (which can be adapted for real-world use)

for future use of V-REP for repeated camera image capture which will not incur this

communication time. The laser scanner did not experience this issue because it trans-

mitted much less data (one float value for each reading compared to thousands for

each HOG).

22

Figure 4.3: Means of communication around V-REP [3]

23

4.2.3 Qt Creator and MinGW

Qt Creator [6] is an IDE meant for development with Qt, a cross-platform application

development framework. Qt Creator allows a user to choose a specific version of Qt

(Desktop Qt 5.5.0 in this work) and compiler (MinGW 32-bit in this work) to use.

At the time of starting this work, V-REP samples all used Qt Creator make files

to build, so Qt Creator was chosen as the primary remote API client development

system for this work. C++ was chosen as the main implementation language for the

same reason.

The Qt project file used for including sources and libraries has a very easy-to-use

syntax that reads like a simple coding language. For example, including files in the

path is done by INCLUDEPATH += "path/to/file".

4.2.4 Position Tracking

The position tracking portion of this work is referred to as the "motion model" in

3.4, and has been a well-solved problem for quite some time (this work uses the de-

scriptions of trigonometry from Lucas [25] in this subsection, but similar descriptions

exist in a variety of resources). Position tracking is performed on each particle; each

particle is moved forward in their respective directions by the same amount that the

robot moved, plus or minus a random measure of error. This error is generated from

the Box-Muller transform [8], a pseudo-random number sampling method.

When the robot is going straight, distance traveled is given by the classic distance

formula (distance equals rate times time, where the rate is given in meters per second).

Time passed was determined using std::high_resolution_clock. The rate

is a defined constant for wheel speed. When the robot backs up and turns (which

happens when obstacles are within a certain threshold distance), the wheels will move

24

Figure 4.4: Position tracking formulas.

at different velocities and the reckoning becomes slightly trickier. To find the distance

traveled in x and y to apply to each particle, approximations [25] can be used as seen

in Figure 4.4. Both SR and SL below are the arc length of the turn for the right

and left sides respectively, b is the width of the robot, θ0 is the initial angle of the

particle, and x0 and y0 are the coordinates for the initial position.

4.2.5 Gnuplot Particle Visualization

As previously stated, data was piped to gnuplot for graphing. Figures B.2 and B.3

show some images generated from gnuplot. Gnuplot supports command-line style

input, which is necessary for this application. More than one graphing library was

tried and discarded over the course of this work. Of note, Qt’s own C++ graphing

library called through QWidget did not work because it required that a QApplication

be started, which V-REP forbade at the time of implementation. The final result was

using popen on gnuplot as shown in directly below and calling fprintf to write

gnuplot commands to the new process.

FILE *pipe = popen("gnuplot -persist", "w");

Appendix D contains the gnuplot commands used for graphing. Newline charac-

ters denote the actual end of each command. It is important to note that entering

a newline before the first long command is complete results in error. The <p_x>

and <p_y> actually represent many values; they were replaced by newline-separated

float values for each particle position x and y. The <a_x> and <a_y> represent

25

the robot’s actual location, and are a single set of values. Lastly, the <m_x> and

<m_y> are again a single set of two float values, and are the robot’s most likely lo-

cation, represented by the average of the highest weight particles. Again, this average

will only be single point after successful localization. The "map.png" line below allows

the particles to be plotted on top of the graphic shown in B.1. This implementation

used 4000 particles total.

4.2.6 Remote API Client

Extensive discussion has been given about replacing the single line in the pseudocode

to optimize the algorithm. This section goes over the implementation of the remote

API client that will implement this more holistically, incorporating the points at

which V-REP calls, position tracking, comparison of scan data, and plotting are made.

Referring to the broken-down steps in Chapter 3.1 may be helpful for understanding

how the pieces of MCL fit together in this section. Robot in the following section

refers to the simulated robot inside V-REP with accompanying sensors, and remote

API client refers to the controlling code that performs MCL and processes images

based on the sensor data from the robot.

Before entering the main program loop, a call to simxStart is made using argv

parameters that are passed in when V-REP begins simulating. Several successive calls

are made to obtain handles to V-REP objects such as the robot and camera objects.

These are used later when plotting the robot’s real location and setting wheel speeds.

Particles are initialized with random position and orientation around the area. An

array of readings for each particle is computed by 2D ray tracing of white locations

to the first dark pixel in the map seen in Figure B.1. Pixel resolution to simulated-

environment distance is 1 pixel to 2 square centimeters. The control loop is then

entered, and the first of two main branches is chosen: if this is an initial run where a

26

Figure 4.5: HOGDescriptor object used in these experiments
(GRADIENT_BINS was varied).

cached HOG map must be computed, the program will generate one. Otherwise, it

will read the cached map from disk and proceed localizing.

Generating the HOG map was done by moving a camera around the simulator to a

grid of points and orientations at those points, delivering the image to the remote API

client, processing that with OpenCV, and storing that value for this location on disk.

Certain areas were skipped when moving the camera around that the robot would not

be able to enter, marked in black on the map. Additional Sleep calls were required in

between moving the camera, setting the orientation and collecting the image because

of the V-REP-mandated non-blocking modes. The OpenCV HOGDescriptor in Figure

4.5 was created. Some notable parameters are the resolution (128x128), block size

(16x16), cell size (8x8) and step size (8x8) which are the same values as seen in

Chapter 3.2. This object then called the HOGDescriptor.compute() function

which returned a vector of descriptors to be cached.

After generating the cached HOGmap, the remote API client begins the motion

model described in Section 4.2.4. The remote API client then retrieves the current

scan data. This is initially sent from the Lua script controlling the laser scanner inside

the simulator. The laser scanner Lua script by default sends absolute positions relative

to the laser scanner; it was modified to send raw distance measurements as float values.

This particular scanner sends several hundred values on each pass [28], but only 50

total values were used. As discussed in Chapter 3.1, localization can be performed

accurately with many fewer readings. A small amount of noise (also from the Box-

Muller transform [8]) was added to the distance readings to reflect interference that

27

would be observed in a real-world environment. The standard deviation in Equation

3.2 for this work was 3.0 to 6.0 for all tests. Weights were then calculated for each

particle after the readings were converted to double values instead of floats. The phit

value is obtained for each particle by multiplying the equation in 3.2 for each reading

(which can be seen in equation 3.3), which becomes a value fairly close to 0 on the

order of 10-60. On the experimental platform, single precision floats are only accurate

to roughly 10-38 [2] while double precision is accurate to roughly 10-324, making it more

than adequate for the task. The final weight assigned to the particle is then obtained

by dividing the value obtained from equation 3.3 for one particle by the total from

all particles, which gives a weight much closer to 1 / number_of_particles

(within one or two magnitudes). This is termed the "normalized weight" and is used

for the resampling process. The sum of the normalized weights of every particle is

1.0.

The remote API client can declare itself initially localized in two ways: measuring

how far apart every particle is to ensure a single grouping, or simply waiting a certain

number of iterations of the algorithm and assuming localization occurred successfully.

Both were tested in this work, though measuring each particle’s distance from one

another added approximately 100ms overhead to each iteration of the algorithm. The

remote API client then captures an image from the current position from the camera

mounted on the robot. The histogram of oriented gradients is computed on this

image, and then compared to the cached HOG map location that the remote API

client believes the robot to be. Thus the second central conditional of the modified

MCL arises: if this observed HOG value remains different than the cached versions

for a period of time, then the remote API client will mix in particles with random

position and pose.

In the other case, particles are resampled from the previous set of supposed "good"

particles. This means that the new set of particles is chosen uniformly at random

28

Figure 4.6: Resampling algorithm pseudocode.

from the old set; the normalized weights of each particle in the old set are essentially

the likelihood that they are going to be resampled. This resampling can be thought of

as a circle where each particle weight represents one single sector. All of these sectors

together form a single complete circle. The higher the weight, the larger the sector

will be that represents that particle. The uniform random float from 0 to 1 will act

like a spinning arm mounted at the center of the circle, selecting a sector on every

iteration of the resampling process. Because the normalized weights conveniently add

to 1.0, the resampling algorithm used can be seen in Figure 4.6.

X is the set of particles, total_weight was obtained during Equation 3.3, and

zones was implemented using a C++ std::map in conjunction with the std::

map::upper_bound function to find the correct sector.

In either case (resampling of old particles or inclusion of new particles with random

position and pose), the 2D ray tracing is performed again to obtain the updated

readings for each particle. At the end of this process, each particle is plotted by

piping commands to gnuplot, and the algorithm repeats from the top of the main

control loop.

29

Chapter 5

RESULTS

The goal of this thesis is to improve Monte Carlo localization in terms of speed, even

when confronted with the teleported robot problem after initial localization. Thus is

is most logical to compare the work of this thesis to a baseline MCL in a dynamic

environment and assess accuracy, memory usage, and speed at which the particles can

converge toward the robot. Unit testing of various key functions (Gaussian probability

density function, ray tracing) is, of course, important. However, judging the work as

a whole compared to a baseline is the primary method of validation.

The first section of this validation covers additional memory and disk usage in the

computer vision method. The second section displays the results of using different

numbers of bins in each histogram. The third section measures the time it takes for

particles to converge to a certain threshold of accuracy; this is arguably the most

important, as it determines whether the change to computer vision improved the

algorithm. The final section of this chapter analyzes and draws conclusions from each

prior section.

All experiments took place on a desktop machine with an Intel 2500k CPU, 8 GB

of RAM, an Nvidia GTX 970, and a 256 GB SSD running an installation of Windows

10.

5.1 Memory, Disk Usage, and Computation Time

As discussed in Chapter 3, the output of the histogram computation is a vector of

float values given by the formula 3.4. As discussed in Chapter 4.2.2, images on the

robot were taken as 128x128 pixel images. Thus the overall size of the vector is given

30

by the formula in equation 5.1. Note: the number of bins in 5.1 is left as a variable

as it was a variable value in these experiments that ranged from 5 to 18. The size

of a float on the simulation platform was 4 bytes and has been substituted into the

equation.

size = numBlocks ∗ numCellsPerBlock ∗ sizeof(float) ∗ numBinsPerCell (5.1)

size = (128/8− 1) ∗ (128/8− 1) ∗ 4 ∗ numBinsPerCell (5.2)

size = 900 ∗ numBinsPerCell (5.3)

The bin sizes tested were 5, 7, 9, and 18. Computing the HOG for an image took

the the OpenCV HOG.compute() function alone approximately 120 miliseconds to

complete. Compared to the rest of the algorithm (particularly the 2D ray tracing

for every particle), this is a fairly cheap computation. The baseline algorithm took

roughly 2 seconds to complete an entire iteration, while the computer vision modi-

fications took roughly 3 seconds to complete an iteration. This additional second is

due to the Sleep call required to get valid data from the simulated camera into the

remote API client. As discussed at the end of Chapter 4.2.2, a Lua plugin inside the

simulator would not have this overhead.

The other two parameters varied in these experiments were the number of points

at which the floating camera took images in the simulator, and the number of images

taken at those points in different orientations. The points at which the camera took

images ranged from 10 by 10 on each axis (each point covering a range of 5 by 2.5

meters) to 40 on the X and 30 on the Y (each point covering a range of 1.25 to 1.67

meters). Both 4 (0, 90, 180, and 270 degrees) and 8 (0, 45, 90, 135, 180, 225, and

270 degrees) orientations were tested. 2 orientations was tested with both 0/180 and

90/270 degrees, but failed to localize regardless of other parameters.

31

5.2 Comparing Histogram Binning

Dalal and Triggs [13] have shown that 9 bins works well for histograms of oriented

gradients in object detection. Lower bin values (5, 7) were tested in this work in

an attempt to reduce the memory footprint. A much larger bin value (18) was also

tested to see if any benefits are gained.

The goal of these tests was to find the lowest number of bins that could still

give a clear threshold when the robot was kidnapped. Using different numbers of

histogram bins affects how well the remote API client can discern if the area captured

in front of it matches up to the cached location. These runs used the maximum

of other parameters tested (8 orientations and 40 by 30 points for the histogram

cache), making the histogram bins the only possible "weak variable". Using fewer

bins logically reduces the ability to distinguish images because the gradient vectors

are being sorted into more of the same bins. Figure 5.1 shows that only using

5 bins does not provide a clear horizontal boundary for when the robot has been

teleported. Right before the teleportation (red vertical line), the histogram difference

jumps to approximately 200 even though the robot is still on track. Even though

one high histogram difference is observed later, it doesn’t occur for a long enough

period to distinguish teleportation from error. The robot ultimately fails to localize

in this run because no consistent threshold can be obtained. Figure 5.2 shows a

clearer difference when the teleportation happens. Values rise after the teleportation

to around 700 before the robot localizes. Appendix C contains data from all four

bin sizes.

32

Figure 5.1: Comparing the difference in output gradient vector of the
captured image against the cached image with 5 bins.

Figure 5.2: Comparing the difference in output gradient vector of the
captured image against the cached image with 18 bins.

33

5.3 Convergence After Kidnapping

The goal of changing the parameters covered in this section is to minimize memory

usage (in terms of bins, points at which images were taken, and orientations) while

still localizing successfully. Runs of variations on every parameter can be found in

Appendix A.

The most minimal and still consistently successful configuration was using 9 his-

togram bins, 1.67 x 1.25m areas for the cached camera locations, and 4 orientations

at each area. The number of points at which the camera captured image had a great

deal to do with the camera’s field of vision. The camera had a perspective angle of 60

degrees and a visual depth of 2 meters. Objects beyond this simply appeared black

in the image. If the points at which the cached image HOGs were created is too far

apart (i.e. there is a possibility of the robot ending up in a gap where no images

were captured), then the likelihood of the robot-mounted camera matching up to the

hypothesized location is much lower.

As mentioned in Appendix A, the red line in the figures in this section Figure 5.3

shows the time taken for the baseline implementation to localize after teleportation.

After teleportation, the distance from the actual location to the hypothesized location

rises to above 400. It takes the remote API client over 80 seconds to successfully

include random particles and localize. Immediately after including random particles,

the robot’s hypothesized location often stays at the original location for a short period

of time for the baseline. This is because randomly posed particles are introduced at

a moving ratio of the entire set of particles. As a note: the distance from the actual

stays at the same value so long in this run because the teleported robot and the

previously most likely location are moving parallel to one another.

34

Figure 5.3: Time taken for baseline MCL to localize.

Figure 5.4: 2.5 x 1.25m areas, 8 orientations, 9 bins (Inconsistent)

35

Figure 5.5: 1.25 x 1.25m areas, 4 orientations, 9 bins

Figure 5.4 shows one example of inconsistent localization. By the end of this

particular run the robot eventually localizes, but takes a comparatively long time of

mixing in random particles and is not guaranteed to actually localize successfully for

a long period of time. This is discussed further in Section 5.4.

Figure 5.5 shows one example of a working localization with the HOG modifica-

tions to the algorithm. The robot is teleported at roughly 40 seconds into simulation,

and re-localizes at just over 80. This run is approximately twice as fast as the baseline.

The spike in distance right around 75 seconds shows that a group of particles farther

away briefly had a higher weight than the real position. As the robot continued to

move, the resampling of particles favored the random particles that appeared where

the robot had teleported to, as the distance measurements there matched up much

more closely. Marginally better and worse runs can be found in Appendix A, which

also contains the most minimal but still successful memory usage configuration in

Figure A.12.

36

5.4 Analysis of Results

Up to now, the term successful, inconsistent, and failed have been mentioned without

strict definitions. These will now be defined as follows:

Successful: If the mean of the distance between the robot’s actual location and

the most likely location (based on particle weight) is below 30cm for 60 seconds, the

localization was performed successfully. Note: this 60 second window of deciding if

the localization was performed successfully is not included in the localization speeds

in this section. These speeds record the time taken for particles to converge to the

correct location. The 60 second measure is only meant to verify that more particles

are not generated incorrectly after convergence.

Inconsistent: If the robot generates random particles after it successfully local-

izes or continuously generates random particles (showing that it at least knows it got

off-track), this is labeled inconsistent.

Failed: If the robot never recognizes that it was teleported, then the localization

completely failed.

Modifying MCL with computer vision did improve the localization speed over the

baseline. Table 5.1 displays the time taken to localize for the baseline and every

other variation of parameters. Times marked with an asterisk denote inconsistent

localization, as the robot may have localized correctly once but loses its position soon

after. A simpler look can be found in Figures 5.6 and 5.7. In Figure 5.6, the bin

size and orientations are fixed to 9 and 4 respectively, and the different numbers of

areas tested are varied along the X axis (with the baseline on the left). On the Y

axis, the time to localize is recorded. Empty columns signify a failed or inconsistent

localization. In Figure 5.7, all varied bin sizes and orientations are listed for the 30

37

Figure 5.6: Varying areas for 4 orientations, 9 bins.

by 20 points of image caching. The Y axis similarly records the time to localize. The

most notable results for each varied parameter are listed as bullet points below.

• Using either 9 or 18 bins did not seem to affect localization speed or success

rate, but below 9 bins led to inconsistent localization.

• The number of points at which the camera captured images had to be at least

more than 30 on the X and 20 on the Y. Everything at or above this localized

successfully. Values below this localized inconsistently or completely failed.

• Using either 4 or 8 orientations did not seem to affect localization speed or

success rate. Using only 2 orientations failed to localize.

In regards to the first bullet about histogram bins: the inconsistent localization

below 9 bins is due to the difference in the captured histogram and the cached his-

togram not being consistent enough to find a good threshold. That threshold was

determined empirically, and ranged from 100 to 150 for 9 bins and 200 to 250 for 18

bins. Chapter 5.2 covered this in more detail.

38

Table 5.1: Time taken to localize for various parameters

Baseline 83 seconds

10 by 10 4 orientations 9 bins 32 seconds*

10 by 10 4 orientations 18 bins FAILED

10 by 10 8 orientations 9 bins FAILED

10 by 10 8 orientations 18 bins FAILED

20 by 20 4 orientations 9 bins FAILED

20 by 20 4 orientations 18 bins FAILED

20 by 20 8 orientations 9 bins 107 seconds*

20 by 20 8 orientations 18 bins 48 seconds*

30 by 20 4 orientations 5 bins FAILED

30 by 20 4 orientations 7 bins 55 seconds*

30 by 20 4 orientations 9 bins 16 seconds

30 by 20 4 orientations 18 bins 31 seconds

30 by 20 8 orientations 9 bins 56 seconds

30 by 20 8 orientations 18 bins 27 seconds

40 by 20 4 orientations 9 bins 42 seconds

40 by 20 4 orientations 18 bins 35 seconds

40 by 20 8 orientations 9 bins 62 seconds

40 by 20 8 orientations 18 bins 27 seconds

40 by 30 4 orientations 9 bins 19 seconds

40 by 30 4 orientations 18 bins 42 seconds

40 by 30 8 orientations 9 bins 35 seconds

40 by 30 8 orientations 18 bins 16 seconds

39

Figure 5.7: Varying orientations and bins for 30 by 20 areas.

The second bullet point regarding areas has quite a bit to do with the camera and

simulated environment in this experiment. The camera has a range of 2 meters, and

the 20 by 20 points has an area of 2.5 by 1.67 meters, which just barely exceeds the

camera range. This means that a gap can exist between the image capture points.

To test whether the hypothesis that the camera range directly impacted how many

image capture points were needed, an additional test was run with 25 points on the

X by 20 points on the Y, to provide a 2 by 1.67 meter area for each image capture

using 9 histogram bins and 8 orientations. Figure 5.8 displays this data. The robot

was indeed able to localize.

The reason that two orientations simply failed is that the robot will travel in one

direction for quite some time, and then travel in a direction at a right angle to the

first for quite some time in this mode of exploration. The wheel code only backed up

to change direction when an object was too close to the front of the robot. Because

the Cal Poly Computer Science offices have a fairly rectangular architecture, the

robot will end up going in one direction, then backing up and moving perpendicular

40

Figure 5.8: 2.0 x 1.67m areas, 8 orientations, 9 bins

to the first direction. Even if the first direction matches to a 2-orientation cached

direction, the second will not. In such a rectangular environment, a 4-orientation

cache is sufficient.

Table 5.1 showed that the modified version of MCL using histograms of oriented

gradients does outperform the baseline in terms of pure runtime. To determine the

number of algorithm iterations for both the baseline and the modified version to

localize, 300 runs of each version were performed. Figure 5.9 shows how long it

took each algorithm to localize in terms of purely algorithm iterations, to offset the

additional Sleep() required by the simulated environment in the histograms of

oriented gradients approach. The HOG approach uses only 12.96 of iterations on

average to recover from the kidnapped robot problem, while the baseline averaged

84.36.

In summary, the modified MCL with greater than or equal to 30 by 20 points of

image capture, greater than or equal to 4 orientations at each point, and at least 9

41

Figure 5.9: Algorithm iterations made by the HOG approach in green,
and the baseline in blue.

bins performed from 25.3% faster (62 seconds) to 80.7% faster (16 seconds) than the

baseline. This wide range is due in part to the random resampling portion of the

algorithm. More likely particles based on ray tracing are indeed weighted heavier and

are more likely to be selected, but Monte Carlo is still subject to a chance of selecting

lower weight particles to survive.

42

Chapter 6

FUTURE WORK

While this work did compare against the baseline Monte Carlo algorithm and showed

improvement, more analysis can be done when comparing to other localization algo-

rithms with computer vision. Even though training a classifier for object detection

takes some time, it would be worthwhile to compare this to the fast comparison

approach in this work. The most relevant characteristics to study are how object de-

tection affects the runtime of an iteration of the algorithm, memory usage, and if the

overall speed of localization is quicker. The environment that this work was tested

in had a large number of uniform structures (many pillars, fences, brick walls, etc.)

which may inhibit an object detection approach. Other studies [14,19,29] seemed to

use smaller environments with fairly distinctive objects. Performing object detection

and differentiating between similar objects is a good objective for future work.

Of course, there is always room to incorporate additional sensors as discussed

in Chapter 1. Localization is by no means a solved problem, and different types

of sensor data may speed up the process or increase particle generation accuracy as

in [23].

43

Chapter 7

CONCLUSION

This thesis presented a version of Monte Carlo Localization that incorporated image

processing using histograms of oriented gradients into the localization process. Cer-

tain parameter configurations failed to localize while others outperformed the baseline

MCL inside the V-REP simulator. The most minimal setup that still localized reli-

ably required 30 by 20 cached locations, 4 orientations and 9 histogram bins. Fewer

cached locations produced failed localizations to the wrong location, as well as using

only 2 orientations and fewer than 9 histogram bins.

One of the limiting factors of using the remote API client with V-REP is the com-

munication time mentioned in Chapter 4.2.2. The Windows Sleep call was made

both when capturing an image (1 seconds) and when moving the camera (another 1

second) to generate the cached HOG map. This renders the cheap HOG computation

fairly moot and the Sleep become the primary source of overhead. However, despite

the 1 second image capture overhead when actually localizing, the aforementioned

configurations with histograms of oriented gradients outperformed the baseline im-

plementation. Implementing a Lua plugin inside the V-REP simulator to negate this

need for a Sleep would return even quicker results.

The other limiting factor was the camera range. However, even with a camera

range that could capture images all the way down the long hallways of the simulated

environment, the histogram of oriented gradients produced on that image will not

match what a robot captures partway down the hallway. A fair number of image

points will still need to be taken to perform this localization strategy even with a

long-distance camera.

44

Other work has used various forms of computer vision in localization, but these

generally have to do with recognizing location based on the shape of certain objects.

This work explored a simple, very cheap comparison of images instead. Hopefully

this strategy can be used when developing future solutions.

45

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] IEEE standard for binary floating-point arithmetic. Institute of Electrical and

Electronics Engineers, New York, 1985. Note: Standard 754–1985.

[3] Coppelia robotics. http://www.coppeliarobotics.com/, 2016.

[4] gnuplot homepage. http://www.gnuplot.info/, 2016.

[5] Opencv (open source computer vision. http://opencv.org/, 2016.

[6] Qt. https://www.qt.io/developers/, 2016.

[7] T. authors of VLFeat. Basic hog computation, 2016.

[8] G. E. P. Box and M. E. Muller. A note on the generation of random normal

deviates. Ann. Math. Statist., 29(2):610–611, 06 1958.

[9] J. Brauer. Hog descriptor computation and visualization, 2016.

[10] M. Brown and S. Süsstrunk. Multi-spectral sift for scene category recognition.

In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pages 177–184, June 2011.

[11] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute

position of a mobile robot using position probability grids. Proc. of the

Fourteenth National Conference on Artificial Intelligence, pages 896–901, 1996.

[12] F. Cozman and E. Krotkov. Robot localization using a computer vision

sextant. 1:106–111, May 1995.

46

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.

In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[14] P. Elinas and J. J. Little. σMCL: Monte-Carlo localization for mobile robots

with stereo vision. In Proceedings of Robotics: Science and Systems,

Cambridge, USA, June 2005.

[15] A. Fierro-Radilla, K. Perez-Daniel, M. Nakano-Miyatakea, H. Perez-Meana,

and J. Benois-Pineau. An effective visual descriptor based on color and shape

features for image retrieval. In Human-Inspired Computing and Its

Applications, volume 8856, pages 336–348. Springer, 2014.

[16] D. Fox. Adapting the sample size in particle filters through kld-sampling.

International Journal of Robotics Research, 22:2003, 2003.

[17] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization:

Efficient position estimation for mobile robots. In IN PROC. OF THE

NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI,

pages 343–349, 1999.

[18] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in

dynamic environments. Journal of Artificial Intelligence Research, 11:391–427,

1999.

[19] A. Gil, Ó. Reinoso, M. A. Vicente, C. F. Peris, and L. Payá. Monte carlo

localization using SIFT features. In Pattern Recognition and Image Analysis,

Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005,

Proceedings, Part I, pages 623–630, 2005.

47

[20] T. Goedemé, M. Nuttin, T. Tuytelaars, L. V. Gool, K. U. Leuven, K. U.

Leuven, and E. T. H. Zürich. Markerless computer vision based localization

using automatically generated topological maps. 2004.

[21] J. S. Gutmann and D. Fox. An experimental comparison of localization

methods continued. In Intelligent Robots and Systems, 2002. IEEE/RSJ

International Conference on, volume 1, pages 454–459 vol.1, 2002.

[22] R. E. Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45,

1960.

[23] S. Krapil. Adapting Monte Carlo Localization to Utilize Floor and Wall

Texture Data. Master’s thesis, California Polytechnic State University, San

Luis Obispo, 2014.

[24] R. Kummerle, R. Triebel, P. Pfaf, and W. Burgard. Monte carlo localization in

outdoor terrains using multilevel surface maps. Journal of Field Robotics,

25:346–359, June 2008.

[25] G. Lucas. A tutorial and elementary trajectory model for the differential

steering system of robot wheel actuators.

http://rossum.sourceforge.net/papers/DiffSteer/#d3, 2001.

[26] C. McCormick. Hog person detector tutorial. May 2013.

[27] A. Milstein. Dynamic maps in monte carlo localization. In Advances in

Artificial Intelligence, pages 1–12. Springer, 2005.

[28] Mori, Maeda, and Yamamoto. Scanning laser range finder URG-04LX-UG01

(Simple-URG), 2009.

48

[29] J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and

W. Burgard. On the position accuracy of mobile robot localization based on

particle filters combined with scan matching. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3158–3164, 2012.

[30] M. P. Schlachtman. Using Monocular Vision and Image Correlation to

Accomplish Autonomous Localization. Master’s thesis, California Polytechnic

State University, San Luis Obispo, 2010.

[31] R. C. Smith and P. Cheeseman. On the representation and estimation of

spatial uncertainly. Int. J. Rob. Res., 5(4):56–68, Dec. 1986.

[32] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT press, 2005.

[33] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Monte carlo localization for

mobile robots. Robotics and Automation, 2:1322 – 1328, May 1999.

[34] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization

for mobile robots. Artificial Intelligence, 128(1-2):99–141, May 2001.

[35] S. Zickler and M. Veloso. Rss-based relative localization and tethering for

moving robots in unknown environments. In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 5466–5471. IEEE, May 2010.

49

Appendix A

GRAPHS WITH VARIED PARAMETERS

The graphs below show the distance from the most likely location of the robot (highest

weighted particle) to the actual location vs time in seconds. When the Y value is

low for a long time, the robot has a good estimate of where it is, as the highest

weight particle matches the true position very closely. The vertical red lines delineate

when the robot was teleported to another location. Varied parameters include the

area of the grid that the camera images were taken at, the number of orientations

that the camera pointed in, and the number of bins in each histogram. Figures

tagged with (Inconsistent) shows that the incorporation of random particles did not

always relocalize successfully. Figures tagged with (Failed) mean that the histogram

difference threshold was high and no random particles could be added without adding

at the wrong time.

Figure A.1: 5 x 2.5m areas, 4 orientations, 18 bins (Inconsistent)

50

Figure A.2: 5 x 2.5m areas, 4 orientations, 9 bins (Inconsistent)

Figure A.3: 5 x 2.5m areas, 8 orientations, 18 bins (Inconsistent)

51

Figure A.4: 5 x 2.5m areas, 8 orientations, 9 bins (Inconsistent)

Figure A.5: 2.5 x 1.25m areas, 4 orientations, 18 bins (Inconsistent)

52

Figure A.6: 2.5 x 1.25m areas, 4 orientations, 9 bins (Inconsistent)

Figure A.7: 2.5 x 1.25m areas, 8 orientations, 18 bins (Inconsistent)

53

Figure A.8: 2.5 x 1.25m areas, 8 orientations, 9 bins (Inconsistent)

Figure A.9: 1.67 x 1.25m areas, 8 orientations, 5 bins (Failed)

54

Figure A.10: 1.67 x 1.25m areas, 8 orientations, 7 bins (Inconsistent)

Figure A.11: 1.67 x 1.25m areas, 4 orientations, 18 bins

55

Figure A.12: 1.67 x 1.25m areas, 4 orientations, 9 bins

Figure A.13: 1.67 x 1.25m areas, 8 orientations, 18 bins

56

Figure A.14: 1.67 x 1.25m areas, 8 orientations, 9 bins

Figure A.15: 1.25 x 1.25m areas, 4 orientations, 18 bins

57

Figure A.16: 1.25 x 1.25m areas, 4 orientations, 9 bins

Figure A.17: 1.25 x 1.25m areas, 8 orientations, 18 bins

58

Figure A.18: 1.25 x 1.25m areas, 8 orientations, 9 bins

Figure A.19: 1.25 x 0.83m areas, 4 orientations, 18 bins

59

Figure A.20: 1.25 x 0.83m areas, 4 orientations, 9 bins

Figure A.21: 1.25 x 0.83m areas, 8 orientations, 18 bins

60

Figure A.22: 1.25 x 0.83m areas, 8 orientations, 9 bins

61

Appendix B

PLOTTING PARTICLES

This section shows three images of robot’s internal bitmap of the environment that

was also graphed in gnuplot. Figure B.1 simply shows the bitmap without particles,

the most likely particle, or the robot’s actual location. In B.2 and B.3, the robot’s

real position is marked with a purple X, the most likely location is marked as a red

dot, and particles are marked in green. These were taken directly from gnuplot while

running a simulation of the V-REP environment directed by the remote API client.

B.3 shows the robot’s true position farther away from the particles, as it was just

kidnapped to another location for testing the kidnapped robot problem.

Figure B.1: The starting graph without any particles plotted.

62

Figure B.2: Initial particles across the field.

Figure B.3: Teleporting the robot after it has localized.

63

Appendix C

HISTOGRAM BIN COMPARISON

These figures compare the varying histogram bin sizes tested in this experiment. Each

graph shows the difference between the cached histogram and the histogram directly

in front of the robot versus time. The remote API client will use more memory linearly

as histogram bins increase, so minimizing the number of bins used is advantageous.

The 9 and 18 bin runs rise to a very noticeable difference (above 600) for a long

period of time, clearly showing that the robot has been teleported. The 7 bin run

is much less clear showing the teleportation, and the 5 bin run does not show the

teleportation at all.

Figure C.1: Comparing the difference in output gradient vector of the
captured image against the cached image with 5 bins.

64

Figure C.2: Comparing the difference in output gradient vector of the
captured image against the cached image with 7 bins.

Figure C.3: Comparing the difference in output gradient vector of the
captured image against the cached image with 9 bins.

65

Figure C.4: Comparing the difference in output gradient vector of the
captured image against the cached image with 18 bins.

66

Appendix D

GNUPLOT COMMANDS

These commands have been made available in this appendix because no examples

were readily available online that performed the exact functionality desired at the

time of writing. These may be useful for any future use of gnuplot for real-time

graphing.

p l o t \"map . png\" binary f i l e t y p e=png w rgbimage , ’− ’

us ing 1 :2 with po in t s po inttype 3 ps 1 l c rgb ’#00008B8B’ , ’− ’

us ing 1 :2 with po in t s po inttype 2 ps 3 l c rgb ’ purple ’ , ’− ’

us ing 1 :2 with po in t s po inttype 82 ps 1 l c rgb ’ red ’ \ n

<p_x> <p_y>\n

e\n

<a_x> <a_y>\n

e\n

<m_x> <m_y>\n

e\n

67

