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ABSTRACT 
 

Complex Filters as a Cascade of Buffered Gingell Structures: Design from Band-Stop 
Constraints 

 
Samuel Robert Johnston 

 
This thesis presents an active Complex Filter implementation that creates a transfer 

function with a single real pole and a complex zero. The two-input/two-output network 

developed in this thesis responds differently based upon the relative phase difference of 

the two inputs. If a negative ninety-degree phase difference occurs between the two 

inputs, the filter exhibits a bandstop response. While a positive ninety-degree phase 

difference exhibits a bandpass response. This topology relates to Gingell’s RC-CR 

polyphase topology but because of the use of op-amps, can cascaded without suffering 

loading effects. This thesis focuses primarily on the bandstop response characteristics of 

the filter. In a several stage cascade, each stage contributes a notch to broaden the 

attenuation band.  Closed form design equations were derived to give expressions for the 

“attenuation floor”. These equations predict the attenuation provided by a cascaded 

system. The closed form expressions derived in this thesis implement an example five-

stage topology that operates from 147 Hz to 3.34 KHz. The thesis also investigates the 

robustness of multi-stage cascades to component variations. Monte Carlo analysis 

determines the effects of cascading the filter in different orders, component tolerances, 

and a comparison to an idealized polyphase RC-CR topology.  

 
 
 
 
Keywords: Complex Filters, image rejection, phase splitter, quadrature, active network, 
cascade  
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1. INTRODUCTION 
 

1.1. Thesis Statement  
 

Two active components implement a buffered first order Gingell network. Each stage 

contributes a single real pole and a single complex zero with the same magnitude. Per-

stage buffering offers benefits in the design of achievable attenuation and flexibility in 

stage ordering. N filter stages have N-factorial different network configurations; some 

connection configurations have a greater robustness to component variations than others. 

1.2. Statement of Problem 
 

This thesis designs and implements an active complex filter that creates a transfer 

function with a single real pole and complex zero. This topology derives from an RC-CR 

topology, but creates more complex transfer functions through cascading.  

 
1.3. Purpose of Study  

   
This study creates an active Complex Filter based upon an RC network developed by 

Gingell [1]. Upon verification of the new topology, the discussion shifts to the cascading 

properties of the topology  

This thesis investigates the number of active devices needed to create an active 

implementation of the Gingell network. An active implementation drives subsequent 

stages without experiencing loading effects. An Nth order filter network has N! different 

arrangements even though the resulting transfer function remains unchanged. Different 

cascade configurations attempt to improve system robustness.  
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The topic of designing a cascaded complex network and the parameters needed for 

characterization become a major focus of this thesis. Bandwidth and attenuation seen in 

the stopband characterize the system response. Closed-form expressions approximate 

attenuation and bandwidth based upon frequency selection. 

1.4. Differential Circuits (Multi-input Networks) and Their Relation to Complex   
Circuits 

 

To better understand Complex Filters, this section presents an overview of traditional 

multi-input/multi-output networks that operate on conceptually similar principals.  

Differential amplifiers are an example of a 2-input linear network.  A differential 

amplifier requires two responses for characterization: common-mode and differential-

mode characteristics [2].  

To obtain common-mode characteristics, drive each input of the amplifier with 

signals that have the same magnitude and a 0-degree phase difference; short the two 

inputs of the amplifier and driving both inputs with the same signal. Figure 1 

demonstrates conceptually the Common-mode response of a differential amplifier. 

 

Figure 1. Common-mode characteristics of a differential amplifier 

The common mode gain approximately zero; ACM ~ 0. In an ideal amplifier,           

ACM = 0 [2]. 
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Differential-mode characteristics result from driving each input of the amplifier with 

signals that have the same magnitude and a 180-degrees phase difference. When one 

input gets larger, the other gets smaller. Unlike the common-mode characteristics, desired 

differential gain is large; ADM>> ACM. 

 

Figure 2. Differential-mode characteristics of a differential amplifier 

 

Common mode rejection ration (CMRR) measures how well the amplifier rejects 

common-mode input voltage compared to differential-input voltage: 

 
𝐶𝑀𝑅𝑅 = 	

𝐴'(
𝐴)(

 
(1.1) 

where 
𝐴'( = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 − 𝑚𝑜𝑑𝑒	𝑣𝑜𝑙𝑡𝑎𝑔𝑒	𝑔𝑎𝑖𝑛 
𝐴)( = 𝑐𝑜𝑚𝑚𝑜𝑛 −𝑚𝑜𝑑𝑒	𝑣𝑜𝑙𝑡𝑎𝑔𝑒	𝑔𝑎𝑖𝑛 

 
This work considers a 2-input/2-output network that discriminates signals based upon 

input frequency and the relative phase difference between inputs.  

The adjective “complex” refers to the ability of the network to simultaneously receive 

two input signals and deliver two output signals. A pair of (scalar) signals can be 

regarded as a vector or a complex quantity; Appendix A contains a discussion on this 
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topic [3]. Complex filters discriminate (complex) signals based upon the relative phase 

difference of the signals applied to the two inputs. Two frequency responses characterize 

these filters: “negative frequency” response and the “positive frequency” response; 

Appendix B discusses the topic of positive and negative frequencies. The two test signals 

in a complex filter maintain a positive and negative 90-degree phase shift.  

Characterizing a Complex Filter requires quadrature input signals [3]. Looking at 

what signal leads and lags relative to the other signal determines filter performance. 

When the first signal lags the second (Figure 3), a negative sequence input, the filter 

rejects this sequence. This performance is similar to the common-mode characteristics of 

the differential amplifier.  

For determining the “negative frequency” response, a negative 90-degree phase 

difference occurs between the two input signals. 

 
𝑖𝑛𝑝𝑢𝑡	1 =

𝐴
2
cos 𝜔𝑡 ⟹	

𝐴
2

 

 

(1.2) 

 

 𝑖𝑛𝑝𝑢𝑡	2 = − B
C
sin 𝜔𝑡 ⟹ 	𝑗 B

C
  (1.3) 
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Figure 3. Complex Filter when inputs correspond to a negative sequence – Attenuate 
inputs 

 

When the first signal leads the second (Figure 4), a positive sequence input, the filter 

passes this sequence with a given amount of gain. This performance resembles the 

differential-mode characteristics of a differential amplifier. 

For determining “positive frequency” response, a positive 90-degree phase difference 

occurs between the two inputs: 

 
𝑖𝑛𝑝𝑢𝑡	1 = 	

𝐴
2
cos	(𝜔𝑡) 	⟹

𝐴
2

 

 

(1.4) 

 

 𝑖𝑛𝑝𝑢𝑡	2 = sin 𝜔𝑡 ⟹ −𝑗 B
C
   

 

(1.5) 
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Figure 4. Complex Filter when inputs correspond to a positive sequence – Exhibit gain 

1.5. Gingell Topology 
 

An RLC notch filter has a frequency symmetric response. This differs from the 

frequency asymmetric response found in a Complex Filter. Deriving the RCL notch filter 

response shows the creation of a frequency symmetric response. Figure 5 shows a single 

stage notch filter. Performing the derivation of the RLC notch filter serves as an 

introduction to the importance of transmission zeroes in signal rejection.  

 

 
Figure 5. Single stage RLC notch filter 
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Figure 5 and equations (1.6)-(1.9) derive the transfer function for an RLC notch filter. 
 

 
𝐻 𝑠 = 	

𝑍L)
𝑍L) + 𝑅

 

 

(1.6) 

 
 

 
𝐻 𝑠 = 	

𝑠C𝐶𝐿 + 1
𝑠𝐶

𝑠C𝐶𝐿 + 1
𝑠𝐶 + 𝑅

 

 

(1.7) 

 
 

 
𝐻 𝑠 = 	

𝑠C𝐶𝐿 + 1
𝑠C𝐶𝐿 + 𝑠𝐶𝑅 + 1 

 

(1.8) 

 
 

𝐻 𝑠 = 	
𝑠C + 1

𝐿𝐶
𝑠C + 𝑠𝑅𝐿 + 1

𝐿𝐶
 

 

(1.9) 

 
This RLC notch filter response has two poles and two zeros; corresponding to a 

second order system. A voltage divider between the series combination of the inductor 

and capacitor with the resistor gives the transfer function for the filter.  

The zeros locations correspond to ±𝑗 P
L)

 . Having zeros on the jω axis creates the notch 

response.  

Find pole locations utilize the denominator of transfer function of the standard 

RLC notch filter, Equation (1.10). This discussion assumes a critically damped system; 

resulting in two real poles.   
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𝑠C +

𝑅
𝐿 𝑠 +

1
𝐿𝐶 = 0 

 

(1.10) 

 
 (𝑠 + 𝜔R) 𝑠 + 𝜔R = 0 

 
(1.11) 

 
 
 

 𝑠C + 2 ∗ 𝑠 ∗ 𝜔R + 𝜔RC 
 

(1.12) 

 
 

 
2 ∗

1
𝐿𝐶

=
𝑅
𝐿  

 
 

(1.13) 

 
 

𝑅 = 2 ∗
𝐿
𝐶 

 

(1.14) 

Insert (1.14) into (1.10): 
 

 
𝑠C +

1
𝐿 ∗ 𝑠 ∗ 2

𝐿
𝐶 ∗ +

1
𝐿𝐶 = 0 

 

(1.15) 

 
 

(𝑠 +
1
𝐿𝐶
)(𝑠 +

1
𝐿𝐶
) 

 

(1.16) 

 
This circuit creates two identical poles located at TP

L)
. 
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The symmetric zero arrangement (Figure 6, a) produces a symmetric response 

with respect to the origin. The filter has identical responses for both positive and negative 

frequencies. Due to this symmetric frequency response, the standard RLC notch is not a 

complex filter. 

 

 
Figure 6. (a) symmetric pole-zero plot, RLC notch filter, (b) single real pole and 

imaginary zero, asymmetrical response, (c) single real pole and negative imaginary zero, 
asymmetrical response 

 
To create a complex filter, the system needs to have an asymmetric pole zero 

response. For example, the pole zero diagram in Figure 6,b implements a transfer 

function that has a single real pole and a single imaginary zero. Figure 6,c implements a 

transfer function that has a single real pole and a single negative imaginary zero. This 

filter has a band-stop response with negative input sequence and a band-pass response 

with positive input sequence.  

The RC Ladder network developed by Gingell, Figure 7, [1] implements a 

transfer function that has a single real pole and a single complex zero under quadrature 

drive. Unlike the complex filter structures discussed in Chapter 3, the Gingell topology is 

a 4-input/4-output complex network. This topology accepts four signals 90-degrees out of 

phase with each other and produces four signals 90-degrees out of phase with each other. 
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This network essentially behaves as two 2-input/2-output networks connected on top of 

each other.  

 
Figure 7. Gingell Topology – RC Ladder Network [1] 

 

Gingell’s a 4-input/4-output creates fully differential complex filter.  

Equations (1.17) and (1.18) give the transfer function of the Gingell network:  

 
 
 

 
𝑉VWXP =

1
𝑠𝐶𝑅 + 1𝑉YZP +	

𝑠𝐶𝑅
𝑠𝐶𝑅 + 1𝑉YZC 

(1.17) 

   
 
 

 𝑉VWXC = 	−
[)\

[)\]P
𝑉YZP +	

P
[)\]P

𝑉YZC  
 

(1.18) 

 
 

 
This network creates the pole-zero response shown in Figure 6,c.  
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The Gingell network creates the desired asymmetric pole zero response and reacts 

differently to positive and negative frequency. Gingell’s network (Figure 7) is passive. If 

one attempts to connect multiple stages of the passive network, the overall response 

becomes loaded. Zero locations remain the same but pole locations shift. 

Examining the effect of positive and negative frequencies on the transfer function 

illustrates the frequency asymmetric response of the Gingell topology.  

 Consider an input sequence with positive frequency: 

 𝑉YZP 𝑡 = cos(𝜔𝑡) 
 

(1.19) 

 

 𝑉YZC 𝑡 = sin(𝜔𝑡) 
 

 

(1.20) 

 In the phasor domain, this sequence becomes:  

 𝑉YZP = 1 
 

(1.21) 

 𝑉YZC = −j 
 

(1.22) 
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Evaluating equations 1.17 and 1.18 using 1.21 and 1.22 as inputs yields the following 

response: 

 
𝑉YZP = 1 ∗

1 + 𝜔 ∗ 𝑅𝐶
1 + 𝑗 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶 

 

(1.23) 

 

 
𝑉YZP = −𝑗 ∗

1 + 𝜔 ∗ 𝑅𝐶
1 + 𝑗 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶 

 
 

(1.24) 

This shows that an input sequence of (1, -j) maintains the same phase shift on the 

output.  

The magnitude of the system with a positive input sequence: 

 
𝐻]_ =

1 + 𝜔 ∗ 𝑅𝐶
1 + (𝜔 ∗ 𝑅 ∗ 𝐶)C

 

 

(1.25) 

The magnitude response of the system is greater than or equal to one for all 

frequencies. The maximum value of this magnitude response occurs at the characteristic 

frequency reciprocally related to the time-constant RC. At the characteristic frequency, 

𝐻]_ = 2; this corresponds to a +3dB gain in the logarithmic scale. 
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Now consider an input sequence with negative frequency: 

 𝑉YZP 𝑡 = cos(𝜔𝑡) 
 

(1.26) 

 

 𝑉YZC 𝑡 = −sin(𝜔𝑡) 
 

 

(1.27) 

 In the phasor domain, this sequence becomes: 

 𝑉YZP = 1 
 

(1.28) 

 𝑉YZC = j 
 

 

(1.29) 

Evaluating equations 1.17 and 1.18 using 1.28 and 1.29 as inputs yields the following 

response: 

 
𝑉YZP = 1 ∗

1 − 𝜔 ∗ 𝑅𝐶
1 + 𝑗 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶 

 

(1.30) 

 

 
𝑉YZP = 𝑗 ∗

1 − 𝜔 ∗ 𝑅𝐶
1 + 𝑗 ∗ 𝜔 ∗ 𝑅 ∗ 𝐶 

 
 

(1.31) 

An input sequence of type (1, j) produces an output sequence of the same type.  

The above derivation shows the Gingell topology maintains the relative phase differences 

on the input.  
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The magnitude of the system with a negative input sequence becomes: 

 
𝐻T_ =

1 − 𝜔 ∗ 𝑅𝐶
1 + (𝜔 ∗ 𝑅 ∗ 𝐶)C

 

 
 

(1.32) 

The system yields a magnitude response less than or equal to one for all frequencies. 

At the characteristic frequency, 𝐻T_ = 0. In the logarithmic scale, a magnitude of 0 

corresponds to −∞ at the characteristic frequency. As predicted, a negative-frequency 

sequence creates the notch response.  

1.6. Cascaded Gingell Topology Implementations 
 

This thesis creates an active implementation of the Gingell topology that maintains 

the same transfer function and exhibits cascade-able properties. Figure 8 shows an active 

implementation of the Gingell topology. This topology connects a unity gain buffer to 

each output of the network shown in Figure 7. This active network requires four active 

components, and maintains the fully differential aspects of Gingell’s complex topology.  

 

 
Figure 8. Directly buffered Gingell topology 
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The topology in Figure 8 simplifies by sacrificing the fully differential nature of 

the structure. The outputs Vout1 and Vout2 require the inputs Vin1, Vin2, and –Vin1. Instead 

of accepting three inputs, a unity gain inverting stage tied to Vin1; locally generating          

-Vin1. Figure 9 depicts the reduced Gingell topology.  

 
Figure 9. Simplified, Buffered, Gingell topology (2-input) 

The network in Figure 9 requires three active components (op-amps) and 

simplifies the original Gingell topology (Figure 7). The objective of this thesis reduces 

the number of active components while maintaining the same transfer function from 

equations 1.17 and 1.18. Chapter 3 derives an active Gingell topology. 
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2. LITERATURE REVIEW 
 

2.1. Topologies for Use in Image Reject Receivers 
 

“Complex Low-Pass Filters” presents a method of reducing the imbalance of the I 

and Q paths in a zero-if transceiver [4]. This paper provides analytical and numerical 

analysis of the complex low-pass filter developed by Kiss, Prodanov, and Glas.  

 
      [5] illustrates common image-reject architectures and focuses on complex polyphase 

filters. The analysis of polyphase responses relies on vector analysis. This paper designs a 

single stage polyphase filter and relates the design to a cascade.  

2.2. Topologies Used/Developed for Phase Splitters (In SSB Transmission) 
 

    Sidney Darlington’s paper explores how to approximate a constant phase 

difference over a given frequency range and how to design a network capable of 

producing that approximation [6]. The Hartley single sideband modulator uses this 

topology. The method discussed in [6] outlines the construction of constant resistance 

phase-shifting networks connected in parallel. 

 Saraga uses phase splitting networks for SSB transmission in [7]. This paper 

explores phase splitting networks and gives a general design procedure. The paper 

presents a basic phase splitting network and gives design approximations to create a wide 

band phase splitting network. 

Howard’s 1955 paper “A constant phase-difference network and its applications 

to a filter for an amateur-type transmitter” demonstrates another RC-CR topology. This 

paper explores the design and implementation of a passive all-pass filter that maintains a 

constant phase difference on the outputs [8].   
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Bedrosian’s 1960 paper, “Normalized Design of 90° Phase-Difference Networks” 

presents another implementation of a passive all-pass network that produces two outputs 

90-degreess out of phase with each other over a design bandwidth [9]. This paper 

attempts to simplify the computational complexity by providing normalized tables, used 

to design a network that operates over a designed frequency band. 

The Gingell topology introduced in Figure 7 synthesizes a 90-degree phase shift 

between the two outputs [1]. To illustrate this, set the input to the network to:  

𝑉YZP 𝑡 =
1
2 cos 𝜔 ∗ 𝑡 +	

1
2 cos 𝜔 ∗ 𝑡 = cos	(𝜔 ∗ 𝑡) 
 

(1.33) 

𝑉YZC 𝑡 =
1
2 sin 𝜔 ∗ 𝑡 + −

1
2 sin 𝜔 ∗ 𝑡 = 0 

 

(1.34) 

The output is calculated as the sum of the response to each input sequence (positive and 

negative).  

 

Figure 10. Demonstration of the phase-splitting properties of the Gingell topology 

Figure 10 shows that when the input to Gingell network is (cos	(𝜔 ∗ 𝑡), 0) the outputs 
have the same magnitude and a 90-degree phase shift relative to each other.  
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2.3. Passive V.S. Active Topologies 
 
       [1], [6], [7], [8], and [9] present passive networks that synthesize a phase splitting 

network between outputs of the system.   

In the 2006 paper "An AF All pass Quadrature Networks Practical Approach old 

Technique Revised” by Siniša, presents an active network that maintains a phase 

difference between the two output signals [10].  

     [11] explores an active wideband 90-degree phase splitting network that attempts to 

reduce the number of different components used. 

These sources show that generating quadrature outputs has been a topic of extensive 

research for the last 65 years.  

     [12] derives an active RC polyphase filter that requires three operational amplifiers. 

This topology implements a single pole and an optional zero. This active topology creates 

arbitrary polyphase transfer functions.  

2.4. Impact of Component Mismatches 
 

[8] discusses the importance of component matching in the construction of phase 

splitting networks. 

Siniša presents Monte Carlo analysis to show the influences of component tolerances 

on the topology [10].  

[13] presents another design and analysis of 90-degree phase splitting networks. 

This work investigates how component variations impact network design. Two passive 

realizations of phase splitting networks are presented to illustrates the effect of 

component tolerances. 
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 Hutchins explores the implementation of wideband 90-degree phase splitters 

without using a wide spread of capacitor values [11]. Selectively grouping poles reduces 

capacitor spread. Poles are grouped highest and lowest, second highest and second 

lowest, and so on.   

 
2.5. Other Uses of Hilbert Pairs 

 
 [14] details an application of the Hilbert Transform. This tutorial uses the Hilbert 

Transform in linear and nonlinear vibration analysis. This work discusses realizing the 

Hilbert Transform in digital signal processing and how to apply the Hilbert Transform to 

time varying signals. This paper shows phase splitter outputs form a Hilbert Pair. 

 [15] presents an overview of the Hilbert Transform and then discusses 

applications of the transform in Signal processing and system identification. In Signal 

processing the discrete time Hilbert Transform needs to be defined and used to sample 

bandpass signals. The Hilbert Transform relates the real and imaginary part of the 

transfer function of a linear time-invariant system. 

 
 [16] shows how the Hilbert Transform calculates the analytic signal from an EEG 

measurement. This article illustrates how time-varying state variables derive from EEG 

measurements to evaluate cortical states. 

 [17] presents the topic of the Hilbert Transform and directly applies it to signal 

processing. The application details using the Hilbert Transform to create amplitude 

modulated SSB signals.  
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3. NON-INVERTING TOPOLOGY 
 

3.1. Derivation 
 

 
Figure 11. Two-op-amp architecture with sequence asymmetric properties identical to 

those of Gingell’s RC network 

Figure 11 shows a 2-input/2-output complex filter that uses two op-amps. The use 

of op-amps allows this circuit to drive loads without impacting the transfer function. This 

section derives the transfer function of the network by examining each op-amp 

individually. The top op-amp creates an active RC low-pass/high-pass filter (Figure 12) 

and the lower op-amp creates a low-pass response with respect to the first input and a 

high-pass response with respect to the second input (Figure 13). This topology further 

reduces of the network shown in Figure 9. Appendix C derives the entire transfer 

function for each output of Figure 11.  
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Figure 12. Dual-input LP/HP non-inverting stage 

VOUT: 
 

 
𝑉abc =

1
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉P +	

𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉C 

 

(3.1) 

 
 

 
Figure 13. 2-input topology realizes LP TF with respect to v1 and inverting HP with 

respect to v2 

 
 
VOUT: 

 
𝑉abc = −

𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉P +	

1
1 + 𝑠 ∗ 𝐶 ∗ 𝑅C

∗
𝑠 ∗ 2 ∗ 𝐶 ∗ 𝑅 + 1
𝑠 ∗ 𝐶 ∗ 𝑅 + 1

∗ 𝑉C	 
 

(3.2) 

 
The circuits shown in Figure 12 and Figure 13 combine to produce the complex filter of 

Figure 11. This circuit takes two inputs and produces two different outputs.  
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Equations (3.3) and (3.4) summarize the transfer function of the complex filter topology 
shown in Figure 11:  

 
𝑉abcP =

1
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉YZP +	

𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉YZC 

 

(3.3) 

   
 

𝑉abcC = −
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 𝑉YZP +
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅C
∗
𝑠 ∗ 2 ∗ 𝐶 ∗ 𝑅 + 1
𝑠 ∗ 𝐶 ∗ 𝑅 + 1 𝑉ZC 

 

(3.4) 

Setting the value of R2 to twice the value of R, preserves the system time constant. 

The equations given in (3.3) and (3.4) reduces to the equations given in (1.17) and (1.18). 

As a result, the Figure 14 circuit accomplishes the same transfer function given in (1.17) 

and (1.18) using only two op-amps. This topology is technically a second order filter, but 

because of the R2, R relationship (R2, = 2*R), a pole-zero cancelation occurs. This creates 

the response shown in Figure 6,c.  

SPICE simulation verifies the functionality of the Figure 14 circuit, the input 

signals tested consist of (cos, -sin), (cos, sin), (cos, cos); corresponding to Figure 15, 

Figure 16, and Figure 17. 

 
Figure 14. Single-stage complex filter with characteristic frequency (notch) location of 

3.183 kHz 

 
The simulated filter has a characteristic frequency of 3.1622 KHz.  
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Figure 15.  Inputs: COS,-SIN Produces a notch at FC= 3.162kHz Identical Magnitude 

and Notch 

Figure 15 shows that input signals (cos, -sin), a negative 90-degree phase shift 

between the two inputs, produce a notch response. Both outputs have the same magnitude 

and notch frequency.  

 

 
Figure 16. Inputs: COS, SIN Produces a Bandpass at FC= 3.162kHz Identical 

Magnitude 
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Figure 16 shows that with input signals (cos, sin), a positive 90-degree phase shift 

between the two inputs, produce a bandpass response. Both outputs have identical 

magnitude.  

 
Figure 17. Inputs: COS, COS Produces an “all-pass” circuit with respect to V2; Mag = 

1, phase not constant 

Inputting signals that have the same phase, such as cosine and cosine produce an 

all-pass circuit. The magnitude is unaffected, but the phase changes relative to the phase 

of the input signals.  This test also reveals high frequency imperfections related to        

op-amp finite Gain-BW product. 

To investigate the phase splitting capabilities of the topology, ground input 2 and 

sweep the frequency on input 1. Figure 18 shows the result of phase splitting simulation. 
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Figure 18. Frequency sweep on one input while input2 = grounded – shows the phase 

splitting property of the topology 

 
Figure 18 shows that a constant phase difference of 90-degrees exists on the output 

and magnitude crossover occurs at the characteristic frequency. This simulation shows 

that phase splitting has a narrow-band response. A broadband response requires a 

cascade. 

3.2. Cascading  
 

The complex filter developed in the Chapter 3.1 creates only one notch and has a 

passband gain of 3 dB. One of the primary objectives of this thesis designs a filter that 

has multiple notches; to extend the stopband bandwidth and increase passband gain. 

Cascading multiple stages of the topology shown in Figure 11 meets this objective.  

Figure 19 shows the resulting cascade. The outputs of the first filter stage directly 

connected to the inputs of the second filter stage.   
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In this example the central frequency of the first stage is 147 Hz. The second 

stage has a central frequency approximately two times the first stage frequency; 322 Hz. 

Chapter 4.1 goes into greater detail regarding the importance of the spacing of notch 

frequencies. 

 
Figure 19. Two stage "Non-Inverting" filter topology 

 
Figure 20. Stopband performance for a two-stage system 
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Figure 21. Pass-band response of two-stage system 

 
Figure 20 and Figure 21 show the passband and stopband magnitude response of a 

two-stage cascade of the complex topology shown in Figure 11. In the stopband, the 

cascade creates two distinct notches at the filters respective characteristic frequencies. 

Cascading two notches forms an attenuation “hump” between the first and second notch. 

The gain of the passband increases in the two-stage implementation over the single stage. 

The three-stage topology in Figure 22 uses the same central notches from Figure 19 and 

sets a central frequency to 703 Hz in the third stage.  

 

 
Figure 22. Three stage filter topology 
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To further illustrate the effect of cascading the “Non-Inverting” topology, Figure 22 

shows a three-stage cascade of the Figure 11 topology. 

 

 
Figure 23. Stopband performance for a three-stage system 

 
 

 
Figure 24. Passband performance for a three-stage system 
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Figure 23 and Figure 24 show the stopband and passband performance of a three 

stage-cascade of the complex topology shown in Figure 22. In the stopband, the cascade 

creates three distinct notches at the filter stage’s characteristic frequency. The three-stage 

cascade forms two attenuation “humps”. These “humps” are defined as the relative 

“attenuation floor” of the complex filter cascade. This floor represents the maximum 

amount of attenuation that one can expect to see in a cascaded filter topology over the 

distance from the first characteristic frequency to the last. The gain of the passband 

continues to increase as stage order increases.  
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4. MATHEMATICAL DERIVATION OF STOPBAND ATTENUATION 
 

4.1. Definition of Stopband Notch Placement 
 

In a multi-stage cascaded topology, the stopband consists of several notch 

frequencies. The selected notch frequencies create a symmetric response in a logarithmic 

frequency plot. Figure 25 demonstrates the stopband symmetry for a multistage 

configuration. This plot shows how each notch stage contributes to the total response.  

 

 
Figure 25. Frequencies of interest for finding average minimum midband suppression 

The peaks of these lobes lie in between the successive ωn locations. The peak 

frequencies are referred to as fpm or ωpm, where “p” stands for “peak” and “m” 

corresponds to the peak of interest (a number, centered at 0).  
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 Figure 25 shows the midband peaks of interest.  fpm refers to the geometric mean 

of its two neighbor notch frequencies: 

 
 𝑓Rd = 	 𝑓Z×𝑓ZTP = 	

𝜔Rd
2𝜋  

 

(4.1) 

 
Where  

ωo = the notch frequency of interest, 

ωn, ωn+1, ωn+2 (…) = the notch location due to the stage, and 

ωp= the lobe peak frequency. 

k = the ratio between notch frequencies: 

 
 
 
 
 

𝑓Z
𝑓ZTP

= 𝑘 
(4.2) 

  
Figure 26. Stop-band plot for N = 3, 5, 7 (normalized frequency) 
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Figure 26 plots the stopband of an N = 3, 5, and 7 cascade. This figure shows the 

central frequency corresponds to the middle notch location. 

For a system consisting of an odd number of stages, the equidistant notch 

frequency spacing preserves symmetry with respect to the center frequency (fo). While 

maintaining a constant ratio, k, between adjacent notch frequencies, the notch locations to 

the right of the central frequency are expressed as: 

 
 𝑓]P = 𝑘𝑓V  , 𝑓]C = 𝑘C𝑓V, …𝑓]Z = 𝑘Z𝑓V (4.3) 

 
Where n corresponds to an integer 

 
Represent the frequencies below the central notch as:  

 𝑓TP = 𝑓V/𝑘 , 𝑓TC = 𝑓V/𝑘C, …𝑓TZ = 𝑓V/𝑘Z (4.4) 
 

Where n corresponds to an integer 
This notation generalizes to:  
 

 𝑓Y = 𝑘Y𝑓V	, for 𝑖 = −iTP
C
	𝑡𝑜	 iTP

C
  (4.5) 

 
Where i corresponds to the offset from the center frequency 
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Figure 27. Stop-band plot for N = 2, 4, 6 (normalized frequency) and log scale 

Figure 27 plots the stopband for N = 2, 4, and 6. Notice, the central frequency no 

longer corresponds to a notch frequency. With an even system order, the central 

frequency corresponds to the peak of the middle attenuation lobe.  

 

For an even number of stages, preservation of symmetry relative to fo also 

requires a constant k-ratio. However, there is no notch at fo. When viewed on a 

normalized logarithmic frequency scale, the notches appear with a 𝑘 ∗ j
C
 (half-distance 

offset) from fo. Using the same notation as the odd order network for frequencies above 

the central frequency: 

 
 𝑓]P/C = 𝑘P/C𝑓V , 𝑓]k/C = 𝑘k/C𝑓V, … 𝑓]Z/C = 𝑘Z/C𝑓V (4.6) 

 
where n corresponds to an integer 
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and for the frequencies below the central frequencies: 
 

 𝑓TP/C = 𝑘TP/C𝑓V,  𝑓Tk/C = 𝑘Tk/C𝑓V, … 𝑓TZ/C = 𝑘TZ/C𝑓V,  (4.7) 
 

where n corresponds to an integer 
This notation generalizes to:  
 

 𝑓Y = 𝑘Y/C𝑓V	, for 𝑖 = −iTP
C
	𝑡𝑜	 iTP

C
 (4.8) 

 
where i corresponds to the offset from the center frequency 

 

Calculating the attenuation lobe heights in the stopband uses Figure 25. This 

derivation assumes an infinite number of stages. This assumption allows the selection of 

the central frequency to be any notch location. 

The attenuation at a peak frequency of interest in the midband (ωp0) corresponds 

to the summation of the attenuation attributed to the superimposed notches at ωn, for all 

values of n.  Because symmetric attenuation occurs, the contributions due to ωn, ωn+1, ωn+2 

contribute individually. Determining the magnitude at ωn, ωn+1, ωn+2 depends upon the 

transfer function of the system, repeated below: 

 
 

𝐻 𝜔 =	
𝜔𝑅𝐶 − 1
𝜔𝑅𝐶 C + 1

= 	

𝜔
𝜔V

− 1

𝜔
𝜔V

C
+ 1

 

 

(4.9) 

 
Because of the equidistant spacing of the notches and the fact that the peaks fall 

exactly equidistant between notches, Equation 4.10 determines the attenuation due to the 

successive stages. 
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Table 1. Attenuation at stopband peak locations contributed by a single notch 

k Gain at ωp0 Gain at ωp1 Gain at ωp2 

 
20× logPn

𝑘 − 1
𝑘 + 1

 20× logPn
𝑘 𝑘 − 1
𝑘k + 1

 20× logPn
𝑘C 𝑘 − 1
𝑘o + 1

 

 
Therefore, the gain at a particular ωpm corresponds to: 
 

 
20× logPn

𝑘d 𝑘 − 1
𝑘P]C×d + 1

 

 

(4.10) 

 
For positive m values 

 
Microsoft Excel calculates ωpm values up to ωp3, given a k range from 1.3 to 3.  

Notice Figure 26 and Figure 27 show non-identical attenuation lobes. In cases 

where N ≥ 3, the first and last lobe attenuation is less than the attenuation of middle 

lobes. For example, when N = 5; the first and fourth lobe have identical attenuations less 

than the attenuation of the second and third lobe. As a result, two cases are evaluated 

when estimating stopband lobe height; middle lobe attenuation and edge lobe attenuation.  

 

Table 2 contains the calculated values for attenuation peaks.  Because the system 

has symmetric notches, determining the total suppression for the midband adds the 

suppression contributed by individual notches going in one direction and multiplying it 

by two. Finding total attenuation for a peak in the edge region multiplies the closest peak 

attenuation by two and sums it with the remaining attenuations in one direction. 
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Table 2. Excel calculations of stopband attenuation 
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Based on the values calculated in Excel, total “middle lobe” attenuation was 

plotted against the given k value (Figure 28).  Fitting the data with a power-law trend line 

gives Equation 4.11: 

 
 𝑚𝑖𝑑𝑑𝑙𝑒	𝑙𝑜𝑏𝑒	𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 119.69𝑘TP.oou 

 
(4.11) 

 
Equation 4.11 allows a designer to determine and calculate the approximate 

attenuation of the middle lobes in the stopband of a cascaded topology given a k value 

(4.2) that ranges from 1.4 to 3. The attenuation given by Equation 4.11 does not yield an 

exact result due to the simplifying assumptions made in creating Table 2. 

 
Figure 28. Graph of total attenuation (middle lobe) versus k 

  
 The data obtained in Table 2 graph of the total attenuation in the edge lobes 

versus the given k value (Figure 29).  Fitting the data with a power trend line gives 

Equation 4.12: 

 
 𝑒𝑑𝑔𝑒	𝑙𝑜𝑏𝑒	𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 84.131 ∗ 𝑘TP.kyy 

 
(4.12) 
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Similar to Equation 4.11, Equation 4.12 gives an approximation of edge lobe 

attenuation. The trend line provides an accurate approximation when k ranges from 1.4 to 

3. 

 
Figure 29. Graph of total attenuation (edge lobe) versus k 

 
 

4.2. Definition of Stopband Bandwidth  
 

In the case of positive frequency, bandwidth measurements require little attention. 

Since the filter exhibits a band-pass response, locate the central peak and measure 3dB 

down on either side to determine bandwidth. Determining the stopband bandwidth 

presents much more of a challenge. Using a similar approach to the passband case in the 

stopband involves measuring 3dB down from 0dB on either end of the stopband. This 

metric yields a measured stopband much larger than the targeted passband bandwidth. 

Another approach would first locate the “attenuation floor” in the stopband. Then 

measure at which point the first and last time the response crosses this level; illustrated in 

Figure 30. Bandwidth becomes dependent on the “attenuation floor” of the cascaded 

response. This yields  a better representation of stopband than simply using -3dB points, 

however it presents a mathematically challenging measurement model.  
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Figure 30. “Attenuation floor” bandwidth 

The simplest measurement definition of stop-band bandwidth is the distance 

between the first and last notches. This measurement captures the performance of the 

design because specific notch placement allows the designer to use the distance between 

the first and last notches to find system bandwidth. This bandwidth decides the stage 

order. Figure 31 presents an example of this bandwidth measurement. Equation 4.13 

determines stopband bandwidth: 

 
 z{

|}
≡ 𝑘

���
� − 𝑘T

���
�   (4.13) 

 
Equation 4.13 depends on the notch placement relevant to the central frequency 

and applies to both even and odd stage configurations. A notch-to-notch bandwidth 

simplifies measurements, and relates to the number of stages (N) and frequency spacing 

(k) to system bandwidth. This “conservative” measurement provides the designer with a 

worst-case measurement of bandwidth.  
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Figure 31. Notch-to-notch Bandwidth 

 
4.3. Design Example 

 
4.3.1. Calculation and Simulation 

 
This section demonstrates the utility of the topology shown in Figure 11. A five-

stage network has a central frequency of 703 Hz and a minimum of 30 dB of attenuation 

in the stopband. This central frequency corresponds to the peak human speech frequency 

sensitivity range [18]. 

Equation 4.12 determines frequency spacing, k, from its relationship to attenuation. 

 30𝑑𝐵 = 84.131 ∗ 𝑘TP.kyy, 𝑘 = 2.15 
 

(4.14) 

 

Equation 4.5 yields the characteristic frequencies for each stage  

 𝑓Y = 2.15Y ∗ 703	, for 𝑖 = − oTP
C
	𝑡𝑜	 oTP

C
  (4.15) 
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Table 3. Corner frequencies selected in design example 

 Corner 
Frequencies 

147 Hz 322 Hz 703 Hz 

= fo 

1534 Hz 3344 Hz 

 

Using [19] determines the exact passband gain: 

 

3+40 logPn
2.15� + 1
2.15C� + 1

= 10.851	𝑑𝐵

oTP
C

��P

 

(4.16) 

 
Using the characteristic frequencies in Table 3, a five-stage cascade of the filter in 

Figure 11 was created. Resistor and capacitors set the desired characteristic frequencies. 

Table 4 shows ideal component values.  
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Figure 32. Non-Inverting topology, 5 stages cascaded, ideal component values 
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LTSpice simulation verifies the operation of Figure 32 circuit.  Figure 33 presents the 

results of simulation using Ideal components, given in Table 4.  

 
 

Table 4. Ideal resistor values for each stage of non-inverting topology 

Resistor Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
R1 108.269k 49.4k 68.604k 103.752k 47.5231k 
R2 216.53k 98.85k 137.208k 207.503k 95.0462k 

 

 
Figure 33. Non-inverting topology outputs for ideal component values 

 
Figure 33 shows the two outputs of the circuit with inputs of V1 = cosine and    

V2 = –sine. Both outputs exhibit the same magnitude response (two curves plotted but 

only one seen as outputs overlap). “Attenuation floor” = -28.33 dB using ideal 

components. 
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4.3.2. Component Selection For Design Implementation 
 

One of the key challenges in implementing the design using “real world” 

components requires that R2 = 2*R1. The following discussion compares two methods of 

maintaining the R2/R1 relationship. The first rounds all ideal values to the nearest 1% 

component, and the second creates the R2 resistor by using a series combination of two R1 

resistors.  

To perform a preliminary investigation on component tolerance variations, 

standard 1% tolerance values replace the ideal values found in Table 4. These new values 

are shown in Table 5. Figure 34 shows the outputs of the circuit with  standard values. 

 
Table 5. Standard 1%(E96)  values for non-inverting topology 

Resistor Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
R1 107k 49.9k 68.1k 105k 47.5k 
22 215k 100k 137k 205k 95.3k 

 

 
Figure 34. Non-inverting topology outputs for standard 1% tolerance component values 
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Figure 34 show that rounding component values changes the stopband 

performance. The notches in outputs 9 and 10 no longer match exactly and the 

attenuation between the two outputs differs. Out9 has an “attenuation floor” of 27.080 dB 

and out10 has an “attenuation floor” of 28.179 dB. Out10 compares favorably with the 

ideal component simulation where “attenuation floor” = -28.33 dB, while out9 has 1.25 

dB less attenuation than the ideal simulation. 

 Table 6 shows the selected standard one percent component values where the R2 

resistor corresponds to a series combination of two R1 resistors. Figure 35 shows the 

output of the circuit with those values. 

 
Table 6. Standard 1% values for non-inverting topology, R2 as series combination of R1 

Resistor Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
R1 107k 49.9k 68.1k 105k 47.5k 
R2 214k 99.8k 136.2k 210k 95k 

 

 
Figure 35. Non-inverting topology outputs for standard 1% tolerance component values, 

R2 as series combination of R1 
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 By switching to R2 = 2*R1 values instead of using rounded 1% components, the 

notch frequencies and attenuation of the peaks match for the two outputs. This choice of 

values provides three advantages: precise notch frequency locations, output magnitude 

matching, and fewer different-value resistors for construction.  

Both outputs exhibit the same “attenuation floor”; 28.157 dB. This compares favorably 

with the ideal component simulation. 

4.3.3. Summary of Simulation Resistor Variations 
 

Table 7 compares the results of notch frequency locations for each stage of the 

filter constructed in Figure 32 depending on the resistor configuration selection. This 

table shows that resistor precision does cause the notch location to shift. Chapter 5.3 

details the effect of component tolerances. From this table, note that resistor 

configuration must be taken into account in a precise design, but in most cases any 

configuration meets design specification within 10 percent of ideal component values. 
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Table 7. Notch frequencies for different resistor configurations 
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Table 8. “Attenuation floor” lobe heights for different resistor configurations 
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Table 8 compares the stopband lobe attenuations created by the five-stage cascade 

for each simulated resistor configuration. Similarly to the notch locations, resistor 

configuration does affect attenuation, but all configurations meet an attenuation floor 

specification within 10 percent. 

 
4.3.4. Prototyping Design Example 

 
This example constructs the filter using 1% components after verifying that the 

filter design meets specification in simulation. While the results in Figure 34 show that 

using standard 1% component values did not perfectly match the ideal component 

simulation shown in Figure 32, selecting 1% component values reduce complexity in 

construction of the filter network. Table 9 shows the resistors and capacitors used in 

prototype testing. Prototyping utilizes the MCP6282 op-amp. The MCP6282’s rail-to-rail 

characteristics and high Gain Bandwidth Product relative to designed characteristic 

frequencies make it well suited for this application. The Gain Bandwidth Product of the 

MCP6282 is 5 MHz. This IC has two op-amps per package. Prototyping requires 5 

MCP8262 packages. 

Table 9. Component values for design example 

Stage 
Notch 

Frequency 
(Hz) 

Component Values 
Standard 1% 

Capacitor (nF) 
Standard 1% 
Resistor  (kW) 

1 151 10 108 
2 326 10 49.9 
3 700 3.3 68.1 
4 1505 1.0 105 
5 3236 1.0 47.5 
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Figure 36 shows the physical implementation using the components shown in Table 9. 
 

 
Figure 36. Five-stage active complex filter prototype implemented using five dual op-amp 

chips on a perforated board 

Figure 37 shows the magnitude of response of the circuit under quadrature drive input 

compared to simulation.  

 
Figure 37. Filter magnitude for the image reject operation 

  

Figure 38 and Figure 39 graph the output over input frequency using a quadrature input. 
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Figure 38. Non-inverting configuration output for 90/0 quadrature 

 
 

 
Figure 39. Non-inverting configuration output for 90/180 quadrature 

 

As previously stated, to implement the five-stage cascade, round ideal 

components to the nearest E96 value. Looking at the difference between out9 and out10 

(black and grey dots) in Figure 37 shows similar stopband performance to the LTSpice 

simulation found in Figure 34. This simulation produces two identical outputs. 

 Measuring output signals creates errors. At approximately −30𝑑𝐵, noise impacts 

the measured signal. This makes precise magnitude measurements very difficult. Also, 

the quadrature signal generated may create a parasitic sequence that affects the response 

of the filter.   
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Measurements were performed using the RIGOL DG1062Z function generator, the 

Agilent MSO-X 2012A oscilloscope, and a HP 6235A power supply.  
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5. MONTE CARLO ANALYSIS 
 

This section investigates the robustness of multi-stage filters implemented with the 

"Non-Inverting" filter topology discussed in Chapter 3 and the “Inverting” filter topology 

discussed in Hay [19]. First, an investigation of the level of achieved attenuation between 

attenuation lobe frequencies in the two topologies determines if one topology has a clear 

advantage over the other. Next, Monte Carlo analysis determines if filter stage order 

affects overall system attenuation. In a multi-stage topology where the number of stages, 

designated as N, creates N! different orderings of the topology. Finally, Monte Carlo 

analysis investigates the effect of component tolerances on the robustness of the “Non-

Inverting” topology. 

 
5.1. Attenuation Estimates 

  
5.1.1. Comparison of Non-Inverting and Inverting Attenuation at Design 

Frequencies and a Comparison to The “Standard” Gingell Topology 
  
 This analysis determines the strengths of each topology. In this simulation            

k = 2.1867 and utilizes ideal component values. Figure 33 and Figure 40 show the 

schematic used in Monte Carlo analysis. For both the non-inverting and inverting cases, 

the edge peaks and middle peaks compare relative  to each other to explore how the 

topology responds to component variation at different frequencies using Monte Carlo 

analysis. 
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Figure 40. 5-stage filter that uses the “Inverting" topology 
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Figure 41. Comparison of edge peaks in a 5-stage filter implemented using Figure 33 

 
Figure 42. Comparison of middle peaks in a 5-stage filter implemented using Figure 33 
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Table 10. Comparison of attenuation and standard deviation of peak frequencies in the 
“Non-Inverting” topology 

 
  

Figure 41 compares the two peak edge lobe frequencies and Figure 42 compares 

to two middle lobes in a Monte Carlo analysis that runs 1000 times. The edge lobe 

frequencies exhibit more sensitivity  to component variation than the middle peaks. At 

213.796 Hz the five-stage filter that uses the “Non-Inverting” topology has an average 

attenuation of 28.555 dB and a standard deviation of 2.048. The other edge frequency, 

2.344 KHz, has an average attenuation of 29.175 dB and a standard deviation of       

4.427 dB. The trace at 2.344 KHz exhibits greater spread than at 213.796 Hz. As the 

frequency increases, the spread of the distribution also increases.  

The middle lobes have an average attenuation of 32.268 dB at 467.735 Hz and 

32.598 dB at 1.947 KHz. The first middle lobe has a standard deviation of 4.518 dB and 

the second peak has a standard deviation of 5.982 dB. This shows that the topology 

exhibits less sensitivity to resistor and capacitor tolerances in the middle lobes when 

compared to the edge lobes. The middle peaks have similar attenuations and standard 

deviations. 

 Figure 41 shows that in the five-stage filter using the “Non-Inverting” topology 

frequency has an impact on how the system responds to resistor and capacitor tolerance 

variation. The edge lobes exhibit greater variation than the middle lobes relative to each 

other but the middle lobes both have large standard deviations. 
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Figure 43. Comparison of edge peaks in a 5-stage filter implemented using Figure 40 

 
Figure 44. Comparison of middle peaks in a 5-stage filter implemented using Figure 40 

 
 
 



 58 

 

Table 11. Comparison of attenuation and standard deviation of peak frequencies in the 
inverting topology 

 
 Figure 43 and Figure 44 demonstrates how the five-stage filter that uses the 

“Inverting” topology compare to each other. At 213.796 Hz, the system has an average 

attenuation of 28.441 dB and a standard deviation of 1.765 dB. The other edge frequency, 

2.344 KHz, has an average attenuation of 28.325 dB and a standard deviation 1.021. This 

shows that the lower edge lobe has a wider distribution that the higher frequency edge. 

The first middle peak has an attenuation of 31.463 dB and a standard deviation of 2.198 

dB. At 1.047 KHz the system has an average attenuation of 31.544 dB and a standard 

deviation of 1.920 dB. At the higher middle lobe frequency, the standard deviation 

reduces. These two peaks are well matched. 

 From the results shown in the figure above, the inverting topology exhibits less 

sensitivity to component variation. The “Non-Inverting” topology lobes have much larger 

standard deviations than the inverting topology.  
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Figure 45. Comparison of peak frequencies between the ideal “Non-Inverting” (blue) 

and inverting (orange) topologies 

 Figure 45 demonstrates the effect component variation has on the two topologies 

at the frequencies of interest (lobe frequencies). The five stage filter that uses the      

“Non-Inverting” topology and the five stage filter that uses the “Inverting” topology have 

similar performance at 213.769 Hz, but at the higher frequency lobes, one can see the 

inverting topology has much less variation than the “Non-Inverting” topology. 

5.2. Filter Stage Ordering 
 
 In an active cascade topology, the overall system transfer function corresponds to 

the product of the individual (stage) transfer functions. The overall system transfer 

function remains unchanged irrespective of stage ordering. This section explores if 

system robustness depends on stage order. 
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 Previous research has shown that implementing a cascaded filter where each stage 

has a higher characteristic frequency than the previous stage does not always yield the 

best performance. In 5.1, the filter stages connect such that each stage has a higher 

characteristic frequency than the last. [4] found a particular stage ordering that improves 

overall system robustness. 

 Stage orderings in this section are denoted as 1-2-3-4-5 where each number 

corresponds to a filter stage. The 1 stage corresponds to the lowest characteristic 

frequency of interest and the following stages have increasing characteristic frequency 

locations over the previous stages. To simplify discussion of stage ordering the stage 

number refers to the stage that has a particular characteristic frequency location based 

upon the initial configuration. 

 
5.2.1. 3-Stage System 

 
 To test all possible arrangement of the filter, set filter order to 3. With higher 

order systems, the number of ordering possibilities becomes very large; (N!) where N 

corresponds to the number of stages. A three-stage system yields 6 combinations of stage 

arrangements for each topology. This analysis looks at the attenuation floor (detailed in 

4.2) of each topology and compares the results.  
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Figure 46. Comparison of distributions in a “Non-Inverting” N = 3 rearranged stage 

system, using ideal components 

 
Figure 46 compares all six stage arrangement combinations of a “Non-Inverting” 

N = 3 cascaded system. This figure shows that the (1-2-3) and (1-3-2) stage 

configurations do not have the same performance as the other configuration 

arrangements. Arrangements (2-1-3), (2-3-1), (3-1-2), and (3-2-1) higher distribution of 

0.25 dB centered around -24.5 dB. The (1-2-3) and (1-3-2) have a distributions of 

approximately 0.2 dB centered at -24 dB. The filter exhibits greater robustness when 

connected in the (2-1-3), (2-3-1), (3-1-2), and (3-2-1) orderings. The data presented in 

Figure 46 suggests that connecting the stages of the cascade in the descending 

characteristic frequency (3-2-1) configuration yields better robustness than connecting 

the filter in the ascending characteristic frequency (1-2-3) order.   
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Figure 47. Comparison of distributions in an inverting N = 3 rearranged system, using 

ideal component values 

 
Figure 47 shows a comparison of the normal distributions in an “Inverting” N = 3 

cascade. The inverting cascade has a tighter spread than the normal distributions in 

Figure 46 for the “Non-Inverting” topology. The (1-2-3) and (2-3-1) have the highest 

distribution of approximately 0.25 dB centered around -24.5 dB. The responses from the 

(1-3-2) and (3-2-1) stage arrangements center around approximately -24.5 dB. The (3-2-

1) and (2-1-3) arrangements have a distribution of 0.225 dB centered around -24 dB. 

From the data presented in Figure 47, connecting the stages of the cascade in the 

ascending characteristic frequency (1-2-3) configuration yields more robustness than 

connecting the filter in the descending characteristic frequency (3-2-1) order.   
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To accurately measure the performance of the reduced-op-amp topology, it 

becomes necessary to relate it to the buffered version of the Gingell RC-CR topology.  

This provides a “standard” comparison for the transfer characteristics and the robustness 

of the new topology.  Figure 48 depicts the LTSpice schematic of the buffered Gingell 

RC-CR topology. 
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Figure 48. LTSpice schematic of buffered and cascaded Gingell’s RC-CR topology 
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Resistor and capacitor values parameterize based on the notch frequency spacing 

value, k.  The k value remains the same as the Gingell as the derived three stage       

“Non-inverting” topology; k = 1.38. 

 
Figure 49. Comparison of distributions in a buffered Gingell RC-CR N = 3 rearranged 

system; k = 1.38 

Figure 49 compares the different stage arrangements of a 3 stage buffered Gingell 

topology. The distribution has approximately 35 dB of attenuation and distribution peak 

of 0.08. The (1-2-3) arrangement exhibits the best performance. The (3-1-2) arrangement 

has the worst performance.  
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Figure 50. Monte Carlo Analysis of the "Non-Inverting" three stage topology; k = 1.38 

 
Figure 50 shows the normal distributions of the arrangement of stages of an N = 3   

“Non-Inverting” topology where k = 1.38. The distribution of this topology has more 

variation between arrangements than the active Gingell topology seen in Figure 49 and is 

centered on a lower attenuation, but has higher distribution peaks than the active Gingell 

topology. 
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Figure 51. Monte Carlo Analysis of the “Inverting" three stage topology; k = 1.38 

 

Figure 51 shows the distributions of the arrangement of stages of an N = 3 

“Inverting” topology where k = 1.38. This topology has less overall variation when 

compared to the “Non-Inverting” topology, but is centered on a lower attenuation than 

the active Gingell topology. The “Inverting” topology has a distribution peak of 0.09 dB.  

The results of this analysis shows that the distributions of the active Gingell 

topology performs comparably to the normal distributions of the “Non-Inverting” and 

“Inverting” topologies. Figure 50 and Figure 51 show that both topologies compare with 

the active Gingell topology. 
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5.2.2. 4-Stage System 
 
 The investigation of a N= 4 “Non-Inverting” topology determines if stage order 

impacts robustness. Because a 4-stage cascade has 24 different stage arrangements (based 

upon the N! relationship), the analysis uses only nine different cascade configurations. 

Using the results found in Chapter 5.2.1, the key configurations are the (1-2-3-4) and    

(4-3-2-1) arrangements.  

 
 

 
Figure 52. Comparison of distributions in a “Non-Inverting” N = 4 rearranged stage 

system, using ideal component values 

 
Figure 52 compares the distribution of several arrangements of a “Non-Inverting” 

N = 4 stage filter. Increasing the order of the filter increases the attenuation (distribution 

center). In the 4 stage cascade, all distributions center around approximately -30dB. The 

arrangements that have the highest normal distributions are (2-4-3-1) and (4-3-2-1) and 

have a distribution peak of 0.1 dB. This shows that the data found in Chapter 5.2.1 
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applies to higher order filters as well. The “Non-Inverting” topology performs best when 

connected in a reverse order cascade. 

 
5.2.3. 5-Stage System 

 
The Monte Carlo analysis performed in 5.2.1 indicates that a “Non-Inverting” 

cascade exhibits the best performance when connected in a descending frequency order 

and the “Inverting” topology exhibits the best performance when connected in the 

standard ascending frequency arrangement. Chapter 5.2.2 shows that when filter order 

increases, the results found in 5.2.1 still apply. This section performs Monte Carlo on the 

five-stage cascade designed in Chapter 3.1 and the “Inverting” topology designed in Hay 

[19]. This investigation looks at each peak lobe in the stop-band response instead of 

looking at the overall highest attenuation point to better compare the performance of the 

filter cascades over the entire stopband.  

This section explores the impact of cascading the “Non-Inverting” and 

“Inverting” topologies in reverse order; arranging characteristic frequencies from highest 

frequency to lowest frequency. In these configurations the peak frequencies shift slightly 

from the original configurations. The frequency peaks occur at 206.538 Hz, 469.894 Hz, 

1.051 KHz, and 2.388 KHz. 
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Figure 53. Comparison of edge peaks in a 5-stage filter implemented using reverse order 

of Figure 33, using ideal component values 

 

 
Figure 54. Comparison of middle peaks in a 5-stage filter implemented using a reverse 

order of Figure 33, using ideal component values 
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Table 12. Comparison of attenuation and standard deviation of peak frequencies in the 
“Non-Inverting” topology with stage order reversed 

Peak Average Attenuation (dB) Standard Deviation (dB) 
Edge Peak 1(206.528 Hz) 28.284 1.014 
Edge Peak 2(2.388 KHz) 28.482 1.760 
Middle Peak 1(469.894Hz) 31.545 1.922 
Middle Peak 2(1.051 KHz) 31.622 2.350 

 
Figure 53 compares the edge peaks and the middle peaks in the ideal              

“Non-Inverting” topology with the stage order reversed. This configuration exhibits 

much less variation than the standard “Non-Inverting” topology. In both configurations, 

the worst-case standard deviations occur at the second middle peak. In the standard 

configuration, the standard deviation is 5.982 dB. With the stage order reversed, the 

standard deviation is 2.350 dB.  

The sensitivity of the “Non-Inverting” topology reduces dramatically by 

connecting the stages in reverse order. The system achieves performance similar to the 

standard inverting topology shown in Fig. 45. 
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Figure 55. Comparison of edge peaks in a 5-stage filter implemented using a reverse 

order of Figure 40, using ideal component values 

 

 
Figure 56.  Comparison of middle peaks in a 5-stage filter implemented using a reverse 

order of Figure 40, using ideal component values 
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Table 13. Comparison of attenuation and standard deviation of peak frequencies in the 

inverting topology with stage order reversed 

Peak Average Attenuation (dB) Standard Deviation (dB) 
Edge Peak 1(206.538 Hz) 29.441 4.819 
Edge Peak 2(2.388 KHz) 28.525 1.833 
Middle Peak 1(469.894Hz) 33.032 6.200 
Middle Peak 2(1.051 KHz) 32.488 4.753 

 
Table 13 shows that for both edge and middle peaks, the higher frequency peaks 

exhibit less variation due to component tolerances. This matches the behavior seen in the 

standard “Inverting” topology. Connecting the “Inverting” topology in a reverse order the 

system yields more sensitivity to component variation than the standard cascade. The 

worst-case standard deviation occurs at the first middle peak in both configurations. In 

the standard configuration, the standard deviation is 2.198 dB. In the reverse order 

configuration, the standard deviation is 6.200 dB. 

The results of this analysis show that by connecting the stages in a descending 

frequency order, the “Non-Inverting” topology exhibits less sensitivity  to component 

variation and yields performance similar to the ideal inverting topology. If one wishes to 

use a “Non-Inverting” topology, they simply need to connect it in descending frequency 

order to improve the systems robustness to component variation.  

In the case of the inverting topology with stage order reversed, sensitivity to 

component variation increases. 
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5.3. Component Matching 
 
 
 This section aims to illustrate the effect of component tolerances on the amount of 

attenuation produced by the cascaded system. This simulation utilizes a “Non-Inverting”        

N = 3 cascade in a (3-2-1) order to perform Mote Carlo analysis with different 

component tolerances – 1%, 3%, and 5%.  

 

The initial study utilizes identical component tolerances; 1%, 3%, or 5%. Next, 

Monte Carlo analysis determines if using higher tolerance components in the first two 

stages and using 1% components in the third stage improves the distribution of the 

response when compared with the all higher tolerance configurations. Figure 57 shows 

simulation results.  

 

 
Figure 57. Non-inverting three stage topology with variable component tolerances 
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Using 1% components yields the best distribution response. The distribution 

centers around -42 dB and has a peak of 0.12. When tolerance values increases  to 3%, 

the attenuation floor shifts to -34.8 dB and has a distribution of 0.085 dB. Increasing the 

tolerances to 5% further decreases the amount of expected attenuation to -27 dB with a 

distribution of 0.08 dB. This analysis shows a clear improvement using tighter tolerance 

components.  

This research leads to the following observation. The amount of attenuation seen in a 

cascade depends upon component tolerance values.  

 
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛	~	20 ∗ logPn %𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  (5.1) 

 
For example, using 1% components yields,  
 

 20 ∗ logPn 0.01 ~	− 40	𝑑𝐵 (5.2) 
 

The measured attenuation floor equals 42 dB. Equation 5.2 shows that the 

approximate attenuation floor equals 40 dB. This equation serves as a “quick” method for 

determining the expected amount of attenuation given a certain percentage tolerance of 

components. This method of quickly determines design practicality given component 

tolerance. For example if a designer uses Equation 4.12, and calculates an attenuation of 

60 dB; Equation 5.1 determines physical feasibility of a design specification with a given 

component tolerance. Using the result of equation 5.2, one percent components do not 

realize this attenuation goal.  

 

This investigation did not test < 1% component tolerances because the 

investigation focuses on easily available and inexpensive components. 
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Monte Carlo analysis investigates two arrangements where the first two stages use 

3% and 5% component values and the last stage in both networks uses 1% component 

tolerances. This determines if using 1% components in the final stage mitigate the effects 

of using lower tolerance components in the first two stages. Figure 57 shows that these 

arrangements do not increase the amount of attenuation that the distribution is centered 

around but does increase the height of the distribution peak. This shows that while using 

one percent components in the final stage does not dramatically change the overall 

response, it improves the robustness of the network, somewhat. 

 
5.4. Summary of Monte Carlo Results 

 
Chapter 5 performs extensive Monte Carlo analysis to determine the robustness of the 

topologies introduced in this thesis and in Hay [19]. The first Monte Carlo analysis 

investigates if the “Non-Inverting” topology or the “Inverting” topology has dramatically 

better performance than the other. Analysis found the “Inverting” topology performs 

better than the “Non-Inverting” topology. The next investigation determines if the 

arrangement of the cascade could improve the performance of both topologies. The result 

of this investigation found arrangements yielding better performance than others. The 

distributions of both topologies compare well with the active Gingell topology.  

 

The Monte Carlo analysis in this chapter found that stage ordering does matter. The 

“best” ordering depends on the topology. For the multistage “Non-inverting” topology, 

the most robustness arrangement occurs in a descending characteristic frequency ordering 

and the multistage “Inverting” topology has the most robust response when connected in 

an ascending characteristic frequency ordering. 
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The largest finding of Chapter 5 is approximating filter performance based on the 

component tolerances used in a design; shown in Equation 5.1.   
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6. APPLICATIONS 
 

6.1. Operation as a Phase Splitting Network 

 Figure 58  captures the magnitude response of the circuit when operated as a 

phase-splitter. Phase splitting output occurs by grounding one input and applying a 

sinusoid to the other.  

 

 
Figure 58. Filter magnitude response for phase-splitter operation 
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Figure 59. Non-inverting circuit outputs at calculated frequencies 

 Figure 59 shows the two outputs of the network in phase-splitter configuration. 

Each plot corresponds to the characteristic frequencies of each stage. These plots verify 

the phase splitting properties of the network over a large frequency range. 

6.2. Alternative Waveform Visualization  
 
 

The human brain is well suited for visual pattern recognition. Research has found that 

it takes the brain approximately 150 ms to process a complex image [20]. Due to the 

unique phase splitting characteristics of the topology developed in this thesis, an 

application of the network connects each output of the network to two inputs of an 

oscilloscope in XY mode. A sinusoidal input to the network creates two output sinusoids 

90-degrees out of phase with other. Connecting an oscilloscope in XY mode to the two 

outputs displays a circle. 
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Figure 60 through Figure 77 present a number of time domain waveforms and their 

XY counterparts. The purpose of this section presents examples of visualizing traditional 

waveforms in an alternative fashion. These responses have applications in visual signal 

pattern recognition.  

 
 
Input Sine 560Hz, 1Vpp, 2.5DC Offset 

 
Figure 60.  Hilbert pair of signals produced by Input: Sine 560Hz, 1Vpp, 2.5DC Offset - 

Time Domain 

  
Figure 61.  Hilbert pair from Figure 60 displayed as parametric x-y plot  
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Input Square 560Hz, 1Vpp, 2.5DC Offset, 50%Duty 
 

 
Figure 62. Hilbert pair of signals produced by Input: Square 560Hz, 1Vpp, 2.5DC Offset, 50% Duty Cycle -Time 

Domain 

 
Figure 63. Hilbert pair from Figure 62 displayed as parametric x-y plot 

 
Input Ramp 560Hz, 1Vpp, 2.5DC Offset, 100% Symmetry 
 

 
Figure 64. Hilbert pair of signals produced by Input: Ramp 560Hz, 1Vpp, 2.5DC Offset, 

100% Symmetry - Time Domain 
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Figure 65. Hilbert pair from Figure 64 displayed as parametric x-y plot 

 
Input Pulse 560Hz, 1Vpp, 2.5DC Offset, 50% Duty 

 
Figure 66. Hilbert pair of signals produced by Input: Pulse 560Hz, 1Vpp, 2.5DC Offset, 

50% Duty Cycle - Time Domain 

 
Figure 67. Hilbert pair from Figure 66 displayed as parametric x-y plot 
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Input Noise 4.8Vpp, 2.5VDC Offset 

 
Figure 68. Hilbert pair of signals produced by Input: Noise 4.8Vpp, 2.5VDC Offset - 

Time Domain 

 
Figure 69. Hilbert pair from Figure 68 displayed as parametric x-y plot 

 
Input Sinc 560Hz, 1Vpp, 2.5DC Offset 

 
Figure 70. Hilbert pair of signals produced by Input: Sinc 560Hz, 1Vpp, 2.5DC Offset - 

Time Domain 
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Figure 71. Hilbert pair from Figure 70 displayed as parametric x-y plot 

 
 
Input Gaussian Pulse 560Hz, 1Vpp, 2.5DC Offset 

 
Figure 72. Hilbert pair of signals produced by Input: Gaussian Pulse 560Hz, 1Vpp, 

2.5DC Offset - Time Domain 

  
Figure 73. Hilbert pair from Figure 72 displayed as parametric x-y plot 
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Input Voice 560Hz, 1Vpp, 2.5DC Offset 

  
Figure 74. Hilbert pair of signals produced by Input: Voice 560Hz, 1Vpp, 2.5DC Offset - 

Time Domain 

  
Figure 75. Hilbert pair from Figure 74 displayed as parametric x-y plot  

 
Input Cardiac 560Hz, 1Vpp, 2.5DC Offset 
 

   
Figure 76. Hilbert pair of signals produced by Input: Cardiac 560Hz, 1Vpp, 2.5DC 

Offset - Time Domain 
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Figure 77. Hilbert pair from Figure 76 displayed as parametric x-y plot 
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7. CONCLUSION AND FUTURE WORK 
 
 

This thesis creates an active Complex Filter that requires two op-amps. The Complex 

Filter exhibits a frequency asymmetric property that responds differently to input 

sequences that have either a positive 90-degree phase difference or a negative 90-degree 

phase difference. When the input sequence has a positive 90-degree phase difference, the 

filter has a band-pass response and when the input sequence has a negative 90-degree 

phase difference, the system has a band-stop response. This discussion focuses heavily on 

the design of a Complex Filter from the band-stop perspective. In a cascade, each stage 

contributes a notch response that changes attenuation seen in the stopband. The spacing 

of the notch locations contributed by each stage leads to the derivation of equations that 

approximate stop-band attenuation. 

The robustness of the topology developed in this thesis and the topology developed in 

Hay [19] is investigated using Monte Carlo Analysis. The analysis found the “Non-

Inverting” topology becomes most robust when connected with decreasing characteristic 

frequencies. The most robust “Inverting” topology occurs when connected with 

increasing characteristic frequencies. Component tolerances determine approximate 

system attenuation.  

Future work includes the application of the phase-splitting properties of the Complex 

Filter derived in this thesis. The analysis found in Chapter 6.2 presents a variety of time 

domain signals and their XY counterparts to highlight waveform visualization 

applications. The XY representation has the potential for applications in signal processing 

where patterns lost in the time domain representation become apparent.  
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APPENDICES 
     
A. Complex Sequence 
 

Complex number notation, x+jy, describes a rotating vector. This notation has a 

complex exponential representation. A counter-clock-wise rotating vector (Figure 78,a) 

with a fixed magnitude and angular rate of change expressed in complex notation 

corresponds to:  

 𝐴
2
∗ cos 𝜔 ∗ 𝑡 + 𝑗 ∗ 	

𝐴
2
∗ sin 𝜔 ∗ 𝑡 = 	𝐴 ∗ 𝑒�_X 

(A.1) 

 
 

Similarly, a clock-wise rotating vector in complex number notation correspond to: 
 

 
	
𝐴
2
∗ cos 𝜔 ∗ 𝑡 − 𝑗 ∗ 	

𝐴
2
∗ sin 𝜔 ∗ 𝑡 = 	𝐴 ∗ 𝑒T�_X 

(A.2)  

Extending the same notation to real-valued functions, for a cosine results in the following 

equation: 

 

 
𝐴 ∗ cos 𝜔 ∗ 𝑡 + 𝑗 ∗ 0 = 	

𝐴
2 ∗ 𝑒

�_X +		
𝐴
2 ∗ 𝑒

T�_X 
 

(A.3) 

Euler’s equation describes equation A.3 [21,16]. 

To examine a clock-wise case, exchange the x and the y components, represented in 

Figure 78, b.  
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Figure 78. Component definition and rotation direction definition in the S-plane, a. X and 

Y components of a rotating vector, b. Clock-wise (positive) rotation, c. Counter clock-
wise (negative) rotation 

 Table 14 and Table 15 illustrate the resulting vector angle from X and Y 

components given a particular component angle.  This proves that interchanging the X 

component and Y component (counter-clock-wise case) results a change in the direction 

of the vector’s rotation, which corresponds to change in the sign of the angular frequency. 

 
 

Table 14. X = cos θ, Y = sin θ, X + jY = e^ϕ 

Position (Fig. 1, b) 𝜽(˚) 𝝓(˚) 
1 0 0 
2 45 45 
3 90 90 
4 135 135 
5 180 180 

 
 

 
Table 15. X = sin θ, Y = cos θ, X + jY = e^ϕ 

Position (Fig. 1, c) 𝜽 (˚) 𝝓(˚) 
1 0 90 
2 45 45 
3 90 0 
4 135 -45 
5 180 -90 
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B. Positive and Negative Frequencies  
 

Frequency describes periodic behavior. The concept of positive and negative 

frequencies requires more explanation.  

To better understand “Negative frequency”, consider how the concept of frequency 

relates to a rotating vector. Angular frequency, magnitude, and direction describe any 

rotating vector. Angular frequency is measured in radians-per-second and describes how 

fast the vector rotates. “Positive” and “negative” describe the direction of rotation. A 

vector rotating in the counter-clockwise direction, Figure 78 b, corresponds to a positive 

frequency. A clockwise rotating Figure 78 c, would have a negative frequency.  

 

      Figure 78, shows the end point of a rotating vector. This point traces a circle. Using 

Cartesian coordinates as a pair of sinusoids. A vector rotating in the counter-clockwise 

direction with an angular frequency of ω has the parametric description described below.  

 

 
𝑥 𝑡 = 	

𝐴
2
∗ cos	(𝜔 ∗ 𝑡) 

 

(B.1) 

 
𝑦 𝑡 = 	

𝐴
2
∗ sin	(𝜔 ∗ 𝑡) 

 
 

(B.2) 
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A clockwise rotating vector has the following parametric description. 
 

 
𝑥 𝑡 = 	

𝐴
2
∗ cos	(𝜔 ∗ 𝑡) 

 

(B.3) 

 
𝑦 𝑡 = 	−

𝐴
2
∗ sin	(𝜔 ∗ 𝑡) 

(B.4) 

Rewrite the description as:  
 

𝑥 𝑡 = 	
𝐴
2
∗ cos	(−𝜔 ∗ 𝑡) 

 

(B.5) 

 
𝑦 𝑡 = 	

𝐴
2
∗ sin	(−𝜔 ∗ 𝑡) 

 
 

(B.6) 

This shows that changing the direction of rotation changes the sign of the frequency.  
 
Any sinusoidal pair corresponds to a sum of positive and negative frequency sequences.  

 

For example: 

 𝑉YZP 𝑡 = cos	(𝜔 ∗ 𝑡) 
 

(B.7) 

 
 

𝑉YZC 𝑡 = 0 
 

(B.8) 
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Expressed as  

𝑉YZP 𝑡 =
1
2 cos 𝜔 ∗ 𝑡 +	

1
2 cos	(𝜔 ∗ 𝑡) 

 

(B.9) 

𝑉YZC 𝑡 =
1
2 sin 𝜔 ∗ 𝑡 + (−

1
2 sin 𝜔 ∗ 𝑡 ) 

 

(B.10) 

The positive sequence corresponds to P
C
cos 𝜔 ∗ 𝑡  and P

C
sin 𝜔 ∗ 𝑡  and the negative 

sequence corresponds to P
C
cos 𝜔 ∗ 𝑡  and −P

C
sin 𝜔 ∗ 𝑡 . 
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C. Derivation of Complex Topology in Figure 11 by superposition 
 
 

 
Figure 79. Active RC low pass filter 

For V2 grounded: 
𝑉abcP −	𝑉P

𝑅 +
𝑉abcP − 	0

1
𝑠 ∗ 𝑐

= 0	 

 
𝑉abcP − 𝑉P +	𝑉abcP ∗ 𝑠 ∗ 𝐶 ∗ 𝑅

𝑅 = 0 
 

𝑉abcP 1 + 𝑠 ∗ 𝐶 ∗ 𝑅 = 	𝑉P 
 
 

𝐻P =
𝑉abc
𝑉P

= 	
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 

 
For V1 grounded:  

𝑉abcC −	𝑉C
1

𝑠 ∗ 𝐶
+	
𝑉abcC − 0

𝑅 = 0 

 
(𝑉abcC − 𝑉C) ∗ 𝑅 +	𝑉abcC ∗

1
𝑠 ∗ 𝐶

1
𝑠 ∗ 𝐶 ∗ 𝑅

= 0 

 
𝑉abcC ∗ 𝑅 −	𝑉C ∗ 𝑅 + 𝑉abcC ∗ 𝑠 ∗ 𝐶 = 	0 

 

𝑉abcC(𝑅 +	
1

𝑠 ∗ 𝐶 = 	𝑉C ∗ 𝑅 
 

𝐻C	 = 	
𝑉abcC
𝑉C

= 	
𝑅

𝑅 +	 1
𝑠 ∗ 𝐶

=
1

𝑅 ∗ 𝑠 ∗ 𝐶 + 1
𝑠 ∗ 𝐶

= 	
𝑅 ∗ 𝑠 ∗ 𝐶

𝑅 ∗ 𝑠 ∗ 𝐶 + 1 

 
VOUT: 



 96 

𝑉abc = 𝐻P 𝑠 ∗ 	𝑉P + 𝐻C 𝑠 ∗ 	𝑉C = 	
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉P 𝑠 +	
𝑠 ∗ 𝐶 ∗ 𝑅

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 ∗ 𝑉C(𝑠) 
 

 

 
Figure 80. 2-input topology realizes LP TF with respect to v1 and inverting HP with 

respect to v2 

For V2 grounded: 
𝑉] − 𝑉P
2 ∗ 𝑅 +

𝑉] − 0
1

𝑠 ∗ 𝐶
= 0 

𝑉] − 𝑉P
2 ∗ 𝑅 + 𝑉] ∗ 𝑠 ∗ 𝐶 = 0 

 
𝑉] − 𝑉P + 𝑉] ∗ 𝑠 ∗ 𝐶 ∗ 2𝑅 = 0 

 
𝑉] 1 + 𝑠 ∗ 𝐶 ∗ 2𝑅 = 	𝑉P 

 

𝑉] =
𝑉P

1 + 𝑠 ∗ 𝐶 ∗ 2𝑅 = 	𝑉T 
 

𝑉] = 	𝑉T 
 

𝑉T − 𝑉abcP
𝑅 +

𝑉T − 0

𝑅 +	 1
𝑠 ∗ 𝐶

= 0 

 
𝑉T	 −	𝑉abcP

𝑅 +	
𝑉T

𝑅 ∗ 𝑠 ∗ 𝐶 + 1
𝑠 ∗ 𝐶

= 0 

 
𝑉T − 𝑉abcP

𝑅 +
𝑉T ∗ 𝑠 ∗ 𝐶

𝑅 ∗ 𝑠 ∗ 𝐶 + 1 = 0 
 

𝑉T − 𝑉abcP
𝑅 = −

𝑉T ∗ 𝑠 ∗ 𝐶
𝑅 ∗ 𝑠 ∗ 𝐶 + 1 

 
𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅 + 1 −	𝑉abcP 𝑠 ∗ 𝐶 ∗ 𝑅 + 1 = 	−𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅  

 
 

𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅 + 1 + 𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅 	= 	𝑉abcP 𝑠 ∗ 𝐶 ∗ 𝑅 + 1  
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𝑉abcP = 	
𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅 + 1 + 𝑉T 𝑠 ∗ 𝐶 ∗ 𝑅

𝑠 ∗ 𝐶 ∗ 𝑅 + 1

=
𝑉P

1 + 𝑠 ∗ 𝐶 ∗ 2𝑅 𝑠 ∗ 𝐶 ∗ 𝑅 + 1 + 𝑉P
1 + 𝑠 ∗ 𝐶 ∗ 2𝑅 𝑠 ∗ 𝐶 ∗ 𝑅

𝑠 ∗ 𝐶 ∗ 𝑅 + 1  

 
 
 

𝐻P = 	
𝑉abcP
𝑉P

= 	
1 + 𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 2𝑅 +

𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 2𝑅

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 = 	
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 + 𝑠 ∗ 𝐶 ∗ 𝑅

1 + 𝑠 ∗ 𝐶 ∗ 2𝑅
1 + 𝑠 ∗ 𝐶 ∗ 𝑅

= 	
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 
 
 
 
For V1 grounded: 

𝑉T − 𝑉C
𝑅 ∗ 𝑠 ∗ 𝐶 + 1

𝑠 ∗ 𝐶
+	
𝑉T − 𝑉abcC

𝑅 = 0 

 
 

	
𝑉T ∗ 𝑠 ∗ 𝐶 − 𝑉C ∗ 𝑠 ∗ 𝐶

𝑅 ∗ 𝑠 ∗ 𝐶 + 1 +	
𝑉T − 𝑉abcC

𝑅 = 0 
 
 

𝑉T ∗ 𝑠 ∗ 𝐶 − 𝑉C ∗ 𝑠 ∗ 𝐶
𝑅 ∗ 𝑠 ∗ 𝐶 + 1 = −	

𝑉T − 𝑉abcC
𝑅  

 
𝑉T ∗ 𝑠 ∗ 𝐶 ∗ 𝑅 − 𝑉C ∗ 𝑠 ∗ 𝐶 ∗ 𝑅 = −	𝑉T ∗ 𝑅 ∗ 𝑠 ∗ 𝐶 + 1 + 𝑉abcC(𝑅 ∗ 𝑠 ∗ 𝐶 + 1) 

 
 

𝑉T = 0 
 
 

−𝑉C ∗ 𝑠 ∗ 𝐶 ∗ 𝑅 = 𝑉abcC ∗ (1 + 𝑠 ∗ 𝐶 ∗ 𝑅) 
 
 

𝐻C = 	
𝑉abcC
𝑉C

= 	
−𝑠 ∗ 𝐶 ∗ 𝑅
1 + 𝑠 ∗ 𝐶 ∗ 𝑅 

 
VOUT: 

𝑉abc =
1

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 𝑉P 𝑠 −
𝑠 ∗ 𝐶 ∗ 𝑅

1 + 𝑠 ∗ 𝐶 ∗ 𝑅 𝑉C(𝑠)	 
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D. Passband centric design approach example 
 
This section illustrates a passband centric design approach to building a five-stage filter.  
 
The number of stages in equals 5. 
Using the normalized bandwidth and number of stages, the spacing of the notch 
frequency (k) depends upon:: 
 
 

𝑘 =
4

5 − 1.3 ∗ ln
4.86 ∗ 5� − 1

0.85 + 1 = 2.346 

 
Next, the equation for estimating edge stop-band attenuation determines the approximate 
gain of the system 
 

𝐸𝑑𝑔𝑒	𝐿𝑜𝑏𝑒	𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = 84.13 ∗ 2.346TP.kyy = 26.74	𝑑𝐵 
 
 
 
 
The equation for pass-band gain determines overall filter gain for positive frequency 
input: 
𝑃𝑎𝑠𝑠 − 𝑏𝑎𝑛𝑑	𝑔𝑎𝑖𝑛	 𝑜𝑑𝑑

= 20 logPn 2

+ 40 logPn
𝑘� + 1
𝑘C� + 1

= 20 logPn 2 + 40 logPn
2.346� + 1
2.346C� + 1

oTP
C

��P

iTP
C

��P
= 10.346	𝑑𝐵 

 
 
The equation for k and passband gain found  in Hay [19] and used in this design example.  
 
Standard capacitor values and the general equation for RC time constant determine the 
values found in Table 16. The individual stage frequencies center at 3 kHz and use the 
ratio of k to determine adjacent frequencies.  
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Table 16. Component values selected in passband centric design approach 

Stage Notch 
Frequency 
(Hz) 

Component Values 

Standard 1% 
Capacitor (nF) 

Standard 1% 
Resistor 
(kW) 

1 2.448k 1 64.9/130 
2 5.746k 1 28/56.2 
3 13.482k 1 11.8/23.7 
4 1.044k 10 15/30.1 
5 445 10 35.7/71.5 

 
 
 

 
Figure 81. Stopband performance for topology with N = 5 and k = 2.346 

 
Attenuation bandwidth: 13.01 kHz 
Attenuation “floor”: 26.1 dB 
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Figure 82. Passband performance when N = 5 and k = 2.346 

 
Band-pass bandwidth: 14.175 kHz 
Band-pass gain: 10.36 dB 
 
 
After simulation, KICAD tools lay out the topology as a PCB. 
 

 
Figure 83. PCB layout of "Non-Inverting" topology when N = 5 and k = 2.346 

 

 
Figure 84. 3D view of PCB layout of "Non-Inverting" topology where N = 5 and k = 

2.346 


